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Abstract:

The probability of an observed financial return being equal to zero is not necessarily zero, or constant. In ordinary models

of financial return, however, e.g. ARCH, SV, GAS and continuous-time models, the zero-probability is zero, constant or

both, thus frequently resulting in biased risk estimates (volatility, Value-at-Risk, Expected Shortfall, etc.). We propose

a new class of models that allows for a time varying zero-probability that can either be stationary or non-stationary.

The new class is the natural generalisation of ordinary models of financial return, so ordinary models are nested and

obtained as special cases. The main properties (e.g. volatility, skewness, kurtosis, Value-at-Risk, Expected Shortfall) of

the new model class are derived as functions of the assumed volatility and zero-probability specifications, and estimation

methods are proposed and illustrated. In a comprehensive study of the stocks at New York Stock Exchange (NYSE) we

find extensive evidence of time varying zero-probabilities in daily returns, and an out-of-sample experiment shows that

corrected risk estimates can provide significantly better forecasts in a large number of instances.

JEL Classification: C01, C22, C32, C51, C52, C58

Keywords: Financial return, ARCH models, volatility, zero-inflated return, Value-at-Risk, Expected Shortfall

1 Introduction

It is well-known that the probability of an observed financial return being equal to zero is not necessarily zero.

This can be due to liquidity issues (e.g. low trading volume), market closures, data issues (e.g. data imputation

due to missing values), price discreteness and/or rounding error, characteristics specific to the market, and so

on. Moreover, the zero-probability may change and depend on market conditions. In ordinary models of financial

risk, however, the probability of a zero return is usually zero, or non-zero but constant. Examples include the

∗We are grateful to the Editor, three reviewers, Christian Conrad, Christian Francq, participants at the PUCV seminar in statistics
(August, 2018), French Econometrics Conference 2017 (Paris), HeiKaMEtrics Conference 2017 (Heidelberg), VieCo 2017 conference
(Vienna), the CFE 2016 conference (Seville), the CEQURA 2016 conference (Munich), the CATE September 2016 workshop (Oslo),
the CORE 50th. anniversary conference (May, 2016, Louvain-la-Neuve), the Maastricht econometrics seminar (May, 2016), the
Uppsala statistics seminar (April 2016), the CREST econometrics seminar (February 2016), the SNDE Annual Symposium 2015
(Oslo) and the IAAE Conference 2015 (Thessaloniki) for useful comments, suggestions and questions.
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Autoregressive Conditional Heteroscedasticity (ARCH) class of models of Engle (1982), the Stochastic Volatility

(SV) class of models (see Shephard (2005)), the Generalised Autoregressive Score (GAS) or Dynamic Conditional

Score (DCS) model proposed by Creal et al. (2010) and Harvey (2013), respectively, and continuous-time models

(e.g. Brownian motion).∗ A time varying zero-probability will generally lead to biased risk estimates in all of

these model classes.

Several contributions relax the constancy assumption by specifying return as a discrete dynamic process.

Hausman et al. (1992), for example, allow the zero-probability to depend on other conditioning variables (e.g.

volume, duration and past returns) in a probit framework. This was extended in two different directions by

Engle and Russell (1998), and Russell and Engle (2005), respectively. In the former, the durations between price

increments are specified in terms of an Autoregressive Conditional Duration (ACD) model, whereas in the latter

price-changes are specified in terms of an Autoregressive Conditional Multinomial (ACM) model in combination

with an ACD model of the durations between trades. Liesenfeld et al. (2006) point to several limitations and

drawbacks with this approach. Instead, they propose a dynamic integer count model, which is extended to the

multivariate case in Bien et al. (2011). Rydberg and Shephard (2003) propose a framework in which the price

increment is decomposed multiplicatively into three components: Activity, direction and integer magnitude.

Finally, Kümm and Küsters (2015) propose a zero-inflated model for German milk-based commodity returns

with autoregressive persistence, where zeros occur either because there is no information available (i.e. a binary

variable), or because of rounding.

Even though discrete models in many cases provide a more accurate characterisation of observed returns,

the most common models used in risk analysis in empirical practice are continuous. Examples include ARCH,

SV, GAS/DCS and continuous-time models. Arguably, the discreteness point that causes the biggest problem for

continuous models is located at zero. This is because zero is usually the most frequently observed single value

– particularly in intraday data, and because its probability is often time varying and dependent on random

or non-random events (e.g. periodicity), or both. A non-zero and/or time varying zero-probability may thus

severely invalidate the parameter and risk estimates of continuous models, in particular if the zero process is

non-stationary. We propose a new class of financial return models that allows for a time varying conditional

probability of a zero return. The new class decomposes returns multiplicatively into a continuous part and a

discrete part at zero that is appropriately scaled by the conditional zero-probability. The zero and volatility

processes can be mutually dependent, and standard volatility models (e.g. ARCH, SV and continuous-time

models) are nested and obtained as special cases when the conditional zero-probability is constant and equal to

zero. Hautsch et al. (2013) propose a model for volume which uses a decomposition that is similar to ours. In

their model the dynamics is governed by a logarithmic Multiplicative Error Model (MEM) with a Generalised

F as conditional density, see Brownlees et al. (2012) for a survey of MEMs. Our model is much more general

and nests the specification of Hautsch et al. (2013) as a special case: The dynamics need not be specified in logs,

∗See Bauwens et al. (2012) for a survey of these models.
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the density of the continuous part (squared) need not be Generalised F , our framework also applies to return

models (not only MEMs), and the model class is not restricted to ARCH-type models. Another attraction

of our model is that many return properties (e.g. conditional volatility, return skewness, Value-at-Risk and

Expected Shortfall) are obtained as functions of the underlying volatility model. Moreover, our model allows for

autoregressive conditional dynamics in both the zero-probability and volatility specifications, and for a two-way

feedback between the two. Finally, a recent strand of the continuous-time literature introduces the idea of “stale”

price increments, see e.g. Bandi et al. (2017), and Bandi et al. (2018). This can be viewed as a continuous-time

analogue of our discrete-time framework.

Our results shed light on the effect and bias caused by zeros in several ways. First, for a given volatility

level, our results imply that a higher zero-probability increases both the conditional skewness and conditional

kurtosis of return, but reduces return variability when defined as conditional absolute return (see Proposition

2.1). Second, we derive general formulas for Value-at-Risk (VaR). They show that the bias induced by not

correcting for zeros depends, in nonlinear ways, on the volatility bias caused by the misspecified model and/or

estimator, and on the exact shape of the conditional density. In other words, whether the estimated risk is too

low or too high will depend on a variety of factors that would vary from application to application. Nevertheless,

for a given level of volatility, our results show that risk – when defined as VaR – will be biased downwards for

rare loss events (5% or less) if zeros are not corrected for (see Section 2.3). Third, we derive general formulas

for Expected Shortfall (ES). Since the formulas depend on the value of the VaR, also here the bias depends,

in nonlinear ways, on the volatility bias caused by the misspecified model and/or estimator, and on the exact

shape of the conditional density. Notwithstanding, for a given level of volatility, our results show that risk –

when defined as ES – will be biased downwards (i.e. just as for VaR) for rare loss events (10% or less) if zeros

are not corrected for (see Section 2.4). Fourth, since the models and/or estimators that are commonly used by

practitioners can lead to severely biased risk estimates – in particular if the zero-probability is non-stationary, we

outline an estimation and inference procedure that reduces the bias caused by a time varying zero-probability,

and which can be combined with well-known models and estimators (see Section 2.5). Section 3 contains a

detailed illustration of our results and methods applied to the daily returns of three stocks at the New York

Stock Exchange (NYSE). The stocks have been carefully selected to illustrate three different types of zero-

probability dynamics. Finally, in a comprehensive study of the stocks at the NYSE (see Section 4) we find that

24.4% of the daily returns we study are characterised by a time varying zero-probability. The actual proportion

is likely to be higher, since the stocks we omit from our analysis – stocks with less than thousand observations

in the in-sample – are likely to be characterised by a high zero-probability, and therefore also of a time varying

zero-probability. Next, an out-of-sample experiment shows that corrected risk estimates can provide significantly

better forecasts in a large number of instances.

The rest of the paper is organised as follows. Section 2 presents the new model class and derives some

general properties, and the formulas for zero-corrected VaR and ES. The section ends by outlining situations
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where volatility estimates are not biased even though the zero-probability is time varying (and stationary), and

by outlining a general estimation and inference procedure that reduces the volatility bias caused by zeros when

the zero-probability is non-stationary. A main attraction with the procedure is that it can be combined with

common models and methods. Section 3 contains the detailed illustration of the results and methods of Section

2. Section 4 contains a comprehensive study of stocks at the NYSE, whereas Section 5 concludes. The Appendix

contains the proofs and additional auxiliary material.

2 Financial return with time varying zero-probability

2.1 The ordinary model of return

The ordinary model of a financial return rt is given by

rt = σtwt, Et−1(wt) = 0, Et−1(w2
t ) = σ2

w, Pt−1(wt = 0) = 0, t ∈ Z, (1)

where σt > 0 is a time varying scale or volatility (that does not need to equal the conditional standard deviation).

The subscript t− 1 is notational shorthand for conditioning on the past. Unless we state otherwise, the past

will be the sigma-field generated by {ru : u < t}, and when needed we will denote this sigma-field by Frt−1. The

wt is an innovation and Pt−1(wt = 0) is the zero-probability of wt conditional on the past. We refer to (1) as

an “ordinary” model of return, since the zero-probability of return rt is 0 for all t. An example of an ordinary

model is the GARCH(1,1) of Bollerslev (1986), where

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1, wt ∼ N(0, 1). (2)

Another example is the Stochastic Volatility (SV) model, where

lnσ2
t = α0 + β1 lnσ2

t−1 + ηvt−1, wt ∼ N(0, 1), vt ∼ N(0, σ2
v), (3)

with vi being independent of wj for all pairs i, j. Other examples of σt include quadratic variation and other

continuous-time notions of volatility, the Gaussian log-GARCH models proposed independently by Geweke

(1986), Pantula (1986) and Milhøj (1987), the EGARCH model of Nelson (1991) with w ∼ GED (where GED

stands for Generalised Error Distribution), the mixed data sampling (MIDAS) regression of Ghysels et al. (2006),

and the Dynamic Conditional Score (DCS)/Generalised Autoregressive Conditional Score (GAS) models of

Harvey (2013) and Creal et al. (2013).
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2.2 A model of return with time varying zero-probability

Let rt denote a return governed by

rt = σtzt, σt > 0, t ∈ Z, (4)

zt = wtItπ
−1/2
1t , Et−1(wt) = 0, Et−1(w2

t ) = σ2
w, Pt−1(wt = 0) = 0, (5)

It ∈ {0, 1}, π1t = Pt−1(It = 1), 0 < π1t ≤ 1. (6)

Again, the subscript t− 1 is shorthand notation for conditioning on the past, and again the past is given by the

sigma-field generated by past returns, i.e. Frt−1. The indicator variable It determines whether return rt is zero

or not: rt 6= 0 if It = 1, and rt = 0 if It = 0. This follows from Pt−1(wt = 0) = 0, which is an assumption that

is needed for identification (it ensures zeros do not originate from both wt and It). The probability of a zero

return conditional on the past is thus π0t = 1− π1t. The motivation for letting π1t enter the way it does in zt

is to ensure that V art−1(z) = σ2
w (see Proposition 2.1 below). In particular, if σ2

w = 1, then we can interpret σt

and σ2
t as the conditional standard deviation and variance, respectively. Note that (4) – (6) do not exclude the

possibility of It being contemporaneously dependent on the value of wt, e.g. that small values of |wt| increase

the probability of It being zero. A specific example is the situation where wt conditional on the past is standard

normal, and It = 1 if |wt| > 0.05 and 0 otherwise (so that π1t = 0.96 for all t). Note also that (4) – (6) do not

exclude the possibility of σt being contemporaneously dependent on wt or It, or both. Finally, we will refer to

r̃t = σtwt as “zero-adjusted” or “zero-corrected” return, since r̃t = rtπ
1/2
1t whenever It 6= 0.

An attractive feature of (4)–(6) is that many properties can be expressed as a function of the underlying

models of volatility and the zero-probability. In deriving these properties we rely on suitable subsets of the

following assumptions.

Assumption 1 (regularity of distribution) Conditional on the past Frt−1:

(a) The joint probability distribution of wt and It is regular.

(b) The joint probability distribution of r̃t and It is regular.

Assumption 2 (identification) For all t: Et−1(wt|It = 1) = 0 and Et−1(w2
t |It = 1) = σ2

w with 0 < σ2
w <∞.

Assumption 1 is a technical condition ensuring that probabilities conditional on the past can be manipulated

as usual, see Shiryaev (1996, pp. 226-227). In what follows, (a) will usually be needed when deriving properties

involving zt, whereas (b) will usually be needed when deriving properties involving rt. Assumption 2 states that,

conditional on both Frt−1 and It = 1, the expectation of wt is zero, and the expectation of w2
t exists and is

equal to σ2
w for all t. The motivation behind this assumption is to ensure that zt exhibits the first and second

moment properties that are typically possessed by the scaled innovation in volatility models. In particular, if

σ2
w = 1 (as in the ARCH class of models), then σt and σ2

t will usually correspond to the conditional standard
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deviation and variance, respectively. The assumption can thus be viewed as an identification condition. The

conditional zero-mean property will usually ensure that returns are Martingale Difference Sequences (MDSs).

It should be noted, however, that Assumption 2 is used only once in the proofs of our results, namely in the

proof of Proposition 2.1. In other words, Assumption 2 is not required for the other propositions. Proposition

2.1 collects some properties of zt that follow straightforwardly.

Proposition 2.1 (properties of zt) Suppose (4) – (6), Assumption 1(a) and Assumption 2 hold. Then:

(i) If Et−1|zt| <∞ for all t, then {zt} is a Martingale Difference Sequence (MDS).

(ii) If Et−1|z2t | <∞ for all t, then V art−1(zt) = σ2
w for all t, and {zt} is covariance-stationary with E(zt) = 0,

V ar(zt) = σ2
w and Cov(zt, zt−j) = 0 when j 6= 0.

(iii) If Et−1|zst | <∞ for some s ≥ 0, then Et−1(zst ) = π
(2−s)/2
1t Et−1(wst |It = 1).

(iv) If Et−1|zst | <∞ for some s ≥ 0, then Et−1|zt|s = π
(2−s)/2
1t Et−1(|wt|s|It = 1).

Proof: See Appendix A.1.

Property (i) means that {zt} is a MDS even if π1t is time varying. Indeed, it remains a MDS even if {It}

is non-stationary. Usually, (i) will imply that {rt} is also a MDS, e.g. in the ARCH class of models, since

there Et−1(rt) = σtEt−1(zt), see Assumption 4 and Proposition 2.4. Property (ii) means that σ2
t corresponds

to the conditional variance in ARCH models, and that the unconditional second moment – if it exists – is

not affected by the presence of time varying zero-probability. For example, in the semi-strong GARCH(1,1) of

Lee and Hansen (1994), where zt is strictly stationary and ergodic with σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1, we have

V art−1(rt) = σ2
t and V ar(rt) = α0/(1− α1 − β1) regardless of whether π1t is constant or time varying. Also,

if the zero-probability is periodic (as is common in intraday returns) or downwards trending (as in some daily

returns) so that It is non-stationary, then Property (ii) means that zt will still be covariance stationary even

though It and zt are not stationary. The implications of It being non-stationary is discussed in Section 2.5.

Property (iii) means higher order (i.e. s > 2) conditional moments (in absolute value) are scaled upwards by

positive zero-probabilities, whereas the opposite is the case for lower order (i.e. s < 2) conditional moments.

In particular, both conditional skewness (s = 3) and conditional kurtosis (s = 4) become more pronounced.†

Similarly, property (iv) means that higher order (i.e. s > 2) conditional absolute moments are scaled upwards

by positive zero-probabilities, whereas the opposite is the case for lower order (i.e. s < 2) conditional moments.

In particular, for a given volatility level σt the conditional absolute return (i.e. s = 1) is scaled downwards.

†Whether this implies that higher order conditional moments of return rt become more pronounced or not depends on the
specification of σt and π1t, and on the nature of their inter-dependence.
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2.3 Value-at-Risk (VaR)

For notational simplicity we will, henceforth, denote the cumulative distribution function (cdf) of a random

variable Xt conditional on Frt−1 as FXt
(x), hence omitting the subscript t− 1. Conditional on both Frt−1 and

It = 1, we will use the notation FXt|1(x).

Proposition 2.2 (cdfs of zt and rt) Suppose (4) – (6) hold, and let 1{x≥0} denote an indicator function equal

to 1 if x ≥ 0 and 0 otherwise:

(i) If also Assumption 1(a) holds, then the cdf of zt at t conditional on Frt−1 is

Fzt(x) = Fwt|1(xπ
1/2
1t )π1t + 1{x≥0}(1− π1t). (7)

(ii) If also Assumption 1(b) holds, then the cdf of rt at t conditional on Frt−1 is

Frt(x) = Fr̃t|1(xπ
1/2
1t )π1t + 1{x≥0}(1− π1t). (8)

Proof: See Appendix A.2.

Natural examples of Fwt|1 and Fr̃t|1 are, respectively, N(0, 1) and N(0, σ2
t ).

If FXt(x) denotes the cdf of a random variable Xt conditional on the past Frt−1, then its lower c-quantile

with c ∈ (0, 1) is given by

Xc,t = inf{x ∈ R : FXt
(x) ≥ c}. (9)

We will write F−1Xt
(c) = Xc,t even though the inverse of FX does not exist, and we will refer to F−1Xt

(c) as the

generalised inverse of FXt
(x), see e.g. Embrechts and Hofert (2013). In order to derive general formulas for

quantiles and VaRs, we introduce an additional, technical assumption on the distributions of wt and r̃t. The

assumption can be relaxed, but at the cost of more complicated formulas.

Assumption 3 Conditional on the past Frt−1 and It = 1:

(a) The cdf of wt, denoted Fwt|1, is strictly increasing.

(b) The cdf of r̃t, denoted Fr̃t|1, is strictly increasing.

The assumption is fairly mild, since it holds for most of the conditional densities that have been used in the

literature, including the standard normal, the Student’s t and the GED, and also for many skewed versions. In

particular, the assumption does not require smoothness or continuity. A consequence of (a) and (b) is that Fzt

and Frt are both increasing. Accordingly, their lower and upper c-quantiles – as defined in Acerbi and Tasche

(2002, Definition 2.1, p. 1489) – coincide. This simplifies the expressions for the quantile, VaR and ES.
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Proposition 2.3 (quantiles and VaRs) Suppose (4) – (6) hold and that c ∈ (0, 1):

(a) If also Assumptions 1(a) and 3(a) hold, then the cth. quantile of zt conditional on the past Frt−1 is

zc,t = F−1z (c)

=


π
−1/2
1t F−1wt|1(c/π1t) if c < Fwt|1(0)π1t

0 if Fwt|1(0)π1t ≤ c < Fwt|1(0)π1t + π0t

π
−1/2
1t F−1wt|1

[
(c−π0t)
π1t

]
if c ≥ Fwt|1(0)π1t + π0t,

(10)

and the 100 · (1− c)% Value-at-Risk (VaRc) of zt conditional on the past Frt−1 is −zc,t.

(b) If also Assumptions 1(b) and 3(b) hold, then the cth. quantile of rt conditional on the past Frt−1 is

rc,t = F−1r (c)

=


π
−1/2
1t F−1r̃t|1(c/π1t) if c < Fr̃t|1(0)π1t

0 if Fr̃t|1(0)π1t ≤ c < Fr̃t|1(0)π1t + π0t

π
−1/2
1t F−1r̃t|1

[
(c−π0t)
π1t

]
if c ≥ Fr̃t|1(0)π1t + π0t,

(11)

and the 100 · (1− c)% Value-at-Risk (VaRc) of rt conditional on the past Frt−1 is −rc,t.

Proof: See Appendix A.3.

The expression for rc,t is not necessarily the most convenient from a practitioner’s point of view. Indeed, in some

situations it is desirable to be able to write rc,t = σtzc,t, so that the estimation of σt and zc,t may be separated

into two different steps. The following assumption ensures that rc,t can indeed be written as σtzc,t.

Assumption 4 σt is measurable with respect to Frt−1.

The assumption is fulfilled by most ARCH models, but not necessarily by SV models. The assumption is only

needed to prove Propositions 2.4 and 2.6.

Proposition 2.4 Suppose (4) – (6) and Assumptions 1, 3 and 4 hold. If c ∈ (0, 1), then rc,t = σtzc,t, where zc,t

is given by (10).

Proof: See Appendix A.4

Note that we need both the (a) and (b) parts of Assumptions 1 and 3 for the proposition to hold.

Figures 1 and 2 provide an insight into the effect of zeros on VaR for a fixed value of volatility σt. Figure

1 plots VaR (i.e. −zc,t) for different values of c and π0t, and for three different densities of wt: The standard

normal, the standardised Student’s t with five degrees of freedom, and the standardised skew Student’s t with five
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degrees of freedom.‡ When c ∈ {0.05, 0.01}, then VaR always increases when the zero-probability π0t increases.

By contrast, when c = 0.10 then VaR generally falls, with the exception being when wt ∼ N(0, 1). There, VaR

first falls and then increases in π0t. In summary, therefore, the main implication of Figure 1 is that the effect of

zeros on VaR, for a given level of volatility, is highly non-linear and dependent on the density of wt. Nevertheless,

if c is sufficiently small, then the figure suggests VaR usually increases when the zero-probability increases. In

other words, if VaR is not corrected for the zero-probability, then risk – defined in terms of VaR – will be

biased downwards. Figure 2 provides an insight into the relative size of the bias. The figure contains the ratio

of the incorrect VaR (numerator) divided by the correct VaR (denominator). That is, wc,t/zc,t, where wc,t is

the cth. quantile of wt. Of course, wc,t = zc,t when π1t = 1. The plot reveals that, in relative terms, the effect

depends, in non-linear ways, on c, π0t and the density of wt. Nevertheless, one general characteristic is that

when c ∈ {0.05, 0.01}, then the largest effect on VaR occurs when wt is normal. That is, the most commonly

used density assumption.

2.4 Expected Shortfall (ES)

Let FX(x) and xc denote the cdf and c-quantile of a random variable X, and let 1{X<xc} denote an indicator

function equal to 1 if X < xc and 0 otherwise. Following Acerbi and Tasche (2002, Definition 2.6, p. 1491), we

define the Expected Shortfall at level c ∈ (0, 1) for a random variable X as

ESc = −1

c

[
E(X1{X<xc}) + xc (c− FX(xc))

]
. (12)

The last term in the definition, i.e. xc (c− FX(xc)), is needed if FX is discontinuous. This may complicate

the expressions for ESc considerably. As a mild simplifying assumption, therefore, we introduce a continuity

assumption on Fwt|1 and Fr̃t|1, which ensures that the term is zero for Fzt and Frt .

Assumption 5 Conditional on the past Frt−1 and It = 1:

(a) The cdf of wt, denoted by Fw|1, is continuous and has density with respect to the Lebesgue measure.

(b) The cdf of r̃t, denoted by Fr̃t|1, is continuous and has density with respect to the Lebesgue measure.

The assumption is mild in the sense that it is assumed in most of the empirical applications that compute

VaR and ES. That the assumption indeed ensures that xc (c− FX(xc)) is zero for both zt and rt, is shown in

Appendix A.5 (see Lemma A.2).

Proposition 2.5 (ES) Suppose (4) – (6) hold and that c ∈ (0, 1):

‡The skewing method used is that of Fernández and Steel (1998), and it is implemented by means of the corresponding functions
in the R package fGarch, see Wuertz et al. (2016).
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(a) If Assumptions 1(a), 3(a) and 5(a) also hold, then the 100 · (1− c)% Expected Shortfall (ESc) of zt

conditional on the past Frt−1 is −c−1Et−1(zt|zt ≤ zc,t), where

Et−1(zt|zt ≤ zc,t)

=


π
1/2
1t Et−1

(
wt1{wt≤F−1

w|1(c/π1t)}

)
if c < Fw|1(0)π1t,

π
1/2
1t Et−1

(
wt1{wt≤0}

)
if Fw|1(0)π1t ≤ c < Fw|1(0)π1t + π0t,

π
1/2
1t Et−1

(
wt1{wt≤F−1

w|1[(c−π0t)/π1t]}

)
if c ≥ Fw|1(0)π1t + π0t,

(13)

(b) If Assumptions 1(b), 3(b) and 5(b) also hold, then the 100 · (1− c)% Expected Shortfall (ESc) of rt

conditional on the past Frt−1 is −c−1Et−1(rt|rt ≤ rc,t), where

Et−1(rt|rt ≤ rc,t)

=


π
1/2
1t Et−1

(
r̃t1{r̃t≤F−1

r̃|1 (c/π1t)}

)
if c < Fr̃|1(0)π1t,

π
1/2
1t Et−1

(
r̃t1{r̃t≤0}

)
if Fr̃|1(0)π1t ≤ c < Fr̃|1(0)π1t + π0t,

π
1/2
1t Et−1

(
r̃t1{r̃t≤F−1

r̃|1 [(c−π0t)/π1t]}

)
if c ≥ Fr̃|1(0)π1t + π0t,

(14)

Proof: See Appendix A.5.

Just as with the expression for the quantile rc,t in Proposition 2.3, the expression for Et−1(rt|rt ≤ rc,t) is

not necessarily the most convenient from a practitioner’s point of view. Indeed, in many situations it would

be desirable if we could write Et−1(rt|rt ≤ rc,t) as σtEt−1(zt|zt ≤ zc,t), so that the estimation of σt and

Et−1(zt|zt ≤ zc,t) may be separated into two different steps. If we rely on all of the assumptions stated so

far, apart from Assumption 2, then we can indeed write the expression in this way.

Proposition 2.6 Suppose (4) – (6), and Assumptions 1 and 3 – 5 hold. If c ∈ (0, 1), then Et−1(rt|rt ≤ rc,t) =

σtEt−1(zt|zt ≤ zc,t), where Et−1(zt|zt ≤ zc,t) is given by (13).

Proof: See Appendix A.6.

For a given volatility level σt, ES is determined by the ES of zt, i.e. −c−1Et−1(zt|zt ≤ zc,t) from Proposition

2.5(a). Figure 3 plots this expression for different values of c and π0t, and for different densities of wt (the same as

those for VaR above). Contrary to the VaR case, here the effect is always monotonous for c ∈ {0.10, 0.05, 0.01}:

ES increases as the zero-probability increases. In other words, risk – defined as ES – will be biased downwards

if it is not corrected for the zero-probability. Figure 4 provides an insight into the magnitude of the bias in

relative terms. The plots contain the ratios of ES of zt: The numerator contains ES under the assumption

that π1t = 1, i.e. −c−1Et−1(wt|wt ≤ wc,t), whereas the denominator contains ES of zt adjusted for zeros, i.e.

−c−1Et−1(zt|zt ≤ zc,t). Of course, the expressions are equal when π1t = 1. The plots reveal that, in relative
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terms, the smaller the c, the larger the effect. The largest effect occurs when c = 0.01 and wt is normal, just as

in the VaR case.

2.5 Estimation of volatility

The σt can be specified in terms of a wide range of volatility models. If {zt} is a MDS that is strictly stationary

and ergodic, for example, then the result by Lee and Hansen (1994) means that σt can be specified as a

GARCH(1,1) in the usual way, i.e.

σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1, (15)

since Gaussian QML then provides strongly consistent and asymptotically normal estimates of α0, α1 and β1. Of

course, this holds even if zt is non-normal and skewed in unknown ways (in fact, the conditional third and fourth

moments of zt can even be time varying). Escanciano (2009) and Francq and Thieu (2018) extend this result

to the GARCH(p, q) and GARCH(p, q)-X specifications, respectively. In particular, the latter accommodates

asymmetry (i.e. “leverage”) and stationary covariates (‘X’), including past values of It, as conditioning variables.

Another example of σt with zt stationary is a log-GARCH(1,1) that “skips” the zeros, i.e.

lnσ2
t = α0 + α1It−1 ln r2t−1 + β1 lnσ2

t−1, (16)

where It ln r2t = ln r2t if It = 1 and 0 otherwise. A MEM version of this specification was proposed by Hautsch

et al. (2013) for volume, and according to Francq and Zaköıan (2019) an extended version of the specification

is strictly stationary and ergodic.

If the zero process {It} is not stationary, however, then zt is not strictly stationary. The zero process can

be non-stationary if, say, the zero-probability is periodic (as in intraday returns), or if it is trending upwards

or downwards over time because of general market developments (e.g. the influx of high-frequency algorithmic

trading, increased trading volume, increased quoting frequency, lower tick-size, etc.). In this case, an alternative

approach to the specification of σt is to formulate it in terms of zero-corrected return r̃t = σtwt. For example,

the GARCH(1,1) model in terms of zero-corrected return is given by

σ2
t = α0 + α1r̃

2
t−1 + β1σ

2
t−1, (17)

whereas the zero-corrected log-GARCH(1,1) model is given by

lnσ2
t = α0 + α1 ln r̃2t−1 + β1 lnσ2

t−1. (18)

If r̃t were observed, then estimation could proceed as usual by, say, maximising
∑n

t=1 ln fr̃t(r̃t), where fr̃t is a

suitably chosen density. In practice, however, r̃t is not observed. Instead, therefore, we propose an approximate
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estimation and inference procedure that consists of first replacing r̃t with its estimate rtπ̂
1/2
1t , and then to treat

zeros as “missing”:

1. Record the locations at which the observed return rt is zero and non-zero, respectively. Use these locations

to estimate π1t.

2. Obtain an estimate of r̃t by multiplying rt with π̂
1/2
1t , where π̂1t is the fitted value of π1t from Step 1. At

zero locations the zero-corrected return r̃t is unobserved or “missing”.

3. Use an estimation procedure that handles missing values to estimate the volatility model.

Sucarrat and Escribano (2017) propose an algorithm of this type for the log-GARCH model, where missing

values are replaced by estimates of the conditional expectation (see also Francq and Sucarrat (2018)). If Gaussian

(Q)ML is used for estimation, then this can be viewed as a dynamic variant of the Expectation Maximisation

(EM) algorithm. A similar algorithm can be devised for many additional volatility models, including the GARCH

model, subject to suitable assumptions. Appendix B contains the details of the algorithm together with a small

simulation study, whereas Section 3 illustrates the usage of the algorithm. It should be noted that the algorithm

does not necessarily provide consistent parameter estimates – in particular if the zero-probability is large. The

reason for this is that the missing values induce a repeated irrelevance of initial value problem, see the discussion

in Sucarrat and Escribano (2017).

3 An illustration

The aim of this section is to provide a detailed illustration of the results and methods of the previous section.

To this end, we use the daily returns of three stocks listed at the NYSE. The stocks have been carefully selected

to illustrate three different types of zero-probability dynamics. The first stock, General Electric (GE), is a high-

volume stock, since its trading volume averages about 68 million USD per day over the sample. The second stock,

Vonage Holdings Corporation (VG), a cloud communication services company, is a medium-volume stock, since

its traded volume on average is about 2.2 million USD per day over the sample. The third stock, The Bank of

New York Mellon Corporation (BKT), a financial products and services firm, is a low-volume stock, since its

trading volume averages about 0.18 million USD per day over the sample. The daily returns are computed as

(lnSt − lnSt−1) · 100, where St is the stock price at the end of day t. Saturdays, Sundays and other non-trading

days are excluded from the sample, and the sample period is 3 January 2007 – 31 December 2014. The sample

period thus coincides with the in-sample analysis in Section 4. The source of the data is Bloomberg, and the

data was obtained with the R package Rblpapi (Armstrong et al. (2018)) on a Bloomberg terminal. Descriptive

statistics of the returns are contained in the upper part of Table 1. The statistics confirm that the returns exhibit

the usual properties of excess kurtosis when compared with the normal distribution, and ARCH as measured

by first order autocorrelation in the squared return. The fraction of zeros over the sample is 1.5% for GE, 7.4%

for VG and 12.8% for BKT.
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3.1 Models

The middle part of Table 1 contains estimates of three logit models for each return:

Constant: ht = ρ0,

ACL(1,1): ht = ρ0 + ρ1st−1 + ζ1ht−1, st = (It − π1t)/
√
π1tπ0t,

Trend: ht = ρ0 + λt∗, t∗ = t/T, t∗ ∈ (0, 1].

In all three the conditional zero-probability π0t is given by (1− π1t) with π1t = 1/(1 + exp(−ht)). In the first

model the zero-probability is constant, whereas in the second it is driven by a first order Autoregressive

Conditional Logit (ACL) specification. The ACL is the binomial version of the Autoregressive Conditional

Multinomial (ACM) of Russell and Engle (2005). In the third model the conditional zero-probability is governed

by a deterministic trend (t∗ is “relative time”). To select the specification that best characterises the zero-

probability, we use the Schwarz (1978) information criterion (SIC), whose values are contained in the second-

to-last column of the middle part in Table 1. For GE returns it is the first specification that fits the data best,

for VG it is the second, and for BKT it is the third. In other words, according to the SIC, the conditional

zero-probability of GE returns is constant, the conditional zero-probability of VG returns is time varying and

stationary, whereas the conditional zero-probability of BKT returns is time varying and non-stationary. The

first row of graphs in Figure 5 contains the fitted conditional zero-probability π̂0t of the selected models. For

GE returns it is constant at 1.5%. For VG returns it varies between 5.6% and 25.9%, and the dynamics is

characterised by clustering. That is, a high π̂0t tends to be followed by another high one, and a low π̂0t tends to

be followed by another low one. The fitted conditional zero-probability of BKT returns exhibits a clear upwards

trend. It starts at a minimum of 8.4% in the beginning of the sample, and increases gradually to a maximum of

18.4% at the end of the sample.

The bottom part of Table 1 contains GARCH(1,1) estimates of the return series. We fit an Ordinary

GARCH-specification to all three return series, whereas to BKT returns we also fit a zero-corrected GARCH-

specification. The Ordinary specification is given by

Ordinary: σ2
t = α0 + α1r

2
t−1 + β1σ

2
t−1. (19)

If zt is strictly stationary and ergodic, then the results by Escanciano (2009), and Francq and Thieu (2018)

imply that Gaussian QML provides consistent parameter estimates (subject to additional regularity conditions)

even if π0t is time varying. As noted above, however, It is non-stationary for BKT. This means that zt is not

strictly stationary, and so the results by Escanciano (2009), and Francq and Thieu (2018) are not applicable. To

accommodate the non-stationarity of It in the BKT case, we also fit a zero-corrected GARCH(1,1) specification
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to its returns:

0-corrected: σ2
t = α0 + α1r̃

2
t−1 + β1σ

2
t−1. (20)

The parameters are estimated by Gaussian QML in combination with the missing values algorithm outlined in

Section 2.5. The algorithm proceeds by replacing r̃t with its estimate π̂
1/2
1t rt whenever rt 6= 0, while treating

zeros as missing observations. The π̂1t’s are those of the Trend model. Next, the missing values are replaced by

estimates of their conditional expectations, i.e. Êt−1(r̃2t ) = σ̂2
t . Since Gaussian QML is used in the estimation, the

algorithm can be viewed as a dynamic variant of the Expectation-Maximisation (EM) algorithm (see Appendix

B for more details). The nominal differences between the parameter estimates of the Ordinary and 0-corrected

specifications may appear small. However, as we will see, these nominal differences – together with the different

treatment of zeros – can lead to substantially different risk estimates and risk dynamics.

3.2 Volatility

For GE and VG, estimates of σ2
t are unaffected by zeros (subject to the assumption that zt is strictly stationary

and ergodic). For BKT, the difference between the estimates is xt = σ̂2
t,0-adj − σ̂2

t , where σ̂2
t,0-adj is the estimate

produced by the zero-corrected GARCH, and σ̂2
t is the estimate obtained under the erroneous statistical

assumption that the zero-probability is stationary. So xt can be interpreted as an estimate of the error incurred

by the ordinary GARCH. The second row in Figure 5 contains graphs of the errors. For GE and VG, the

errors are all 0 over the sample, since estimates of σ2
t are unaffected by zeros. The Mean Error (ME) provides a

measure of the overall or unconditional error, whereas the Mean Absolut Error (MAE) provides a measure of the

day-to-day or conditional error. For BKT, the ME and MAE are computed as T−1
∑T

t=1 xt and T−1
∑T

t=1 |xt|,

respectively. Accordingly, a negative value on ME means the incorrect risk estimate is, on average, higher than

the zero-corrected one. In the graphs, the values in square brackets are p-values associated with tests of ME and

MAE. For both ME and MAE the tests are implemented via the OLS estimated regression xt = µ+ ut with

standard error of the Newey and West (1987) type. For ME, H0 : µ = 0 and HA : µ 6= 0. For MAE, to avoid

non-standard inference, we specify the null as H0 : µ = 0.01, i.e. away from the lower bound 0 of the permissible

parameter space, and the alternative as HA : µ > 0.01. The ME is −0.013 and significantly different from zero

at the most common significance levels. The value of −0.013 means the risk, as measured by the conditional

variance, is estimated to be too high by 0.013 points on average if the zeros are not corrected for. However, the

graph shows that, on a day-to-day basis, the differences can be much larger in absolute value: The maximum

difference is 0.37 points, whereas the minimum is −1.33 points. In other words, on a day-to-day basis, the

difference can be very large with substantial implications for risk analysis. The MAE, which provides an overall

measure of the day-to-day differences, is 0.04 and significantly greater than 0.01 at all the usual significance

levels.
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3.3 Value-at-Risk (VaR)

To illustrate the effect of time varying zero-probability on VaR, we choose c = 0.025. This corresponds to the

97.5% VaR. The differences between the estimated VaRs are contained in the third row of graphs in Figure 5.

The difference or error at t is given by xt = r̂c,t − r̂c,t,0−adj , which is equivalent to xt = −r̂c,t,0−adj − (−r̂c,t).

That is, zero-corrected VaR minus incorrect VaR. Since return rt is expressed in percent, the difference xt can

be interpreted as the percentage point difference between the VaRs, and 100 · xt can be interpreted as the basis

point difference. For GE, VG and BKT, r̂c,t is computed as σ̂tẑc, where σ̂t is the fitted value of (19), and ẑc is

the empirical c-quantile of the residuals ẑt. Subject to suitable regularity assumptions, ẑt provides a consistent

estimate, see e.g. Francq and Zaköıan (2015), and Ghourabi et al. (2016). For GE and VG, r̂c,t,0−adj is computed

as σ̂tẑc,t, where ẑc,t is obtained using the relevant formula in (10), i.e. π
−1/2
1t F−1w|1(c/π1t). To estimate F−1w|1(c/π1t)

at t we use the empirical c/π̂1t-quantile of the zero-corrected residuals ŵt (zeros excluded). For BKT, r̂c,t,0−adj

is computed as σ̂t,0−adj ẑc,t, where σ̂t,0−adj is the fitted value of (20), and ẑc,t is computed in the same way as

for GE and VG. Again we use the ME as an overall or unconditional measure of the errors, and MAE as an

average measure of the day-to-day differences. We also implement tests of ME and MAE in the same way as

above (Section 3.2).

Unsurprisingly, both ME and MAE are essentially 0 for GE, although the latter is statistically significant at

the usual significance levels. For VG, the tests of ME and MAE are both significant at the usual levels, and both

are equal to 0.09. That is, on average the incorrect VaR is 0.09%-points lower than the zero-corrected VaR, both

overall and on a day-to-day basis. The reason they are identical is that the zero-corrected VaR is always higher

than the incorrect VaR over the sample. The maximum difference over the sample is 1.21%-points. For BKT,

the tests of ME and MAE are also significant at the usual levels, and their values are both negative and equal

to −0.25 when rounded to two decimals. On a day-to-day basis the discrepancy can be as large as −1.91. The

negative sign on ME is opposite to that of VG. In other words, the presence of a time varying zero-probability

may bias VaR either upwards or downwards.

3.4 Expected Shortfall (ES)

To illustrate the effect of zeros on ES, we choose c = 0.025. This corresponds to the 97.5% ES. The differences

between the estimated ESs are contained in the bottom row of graphs in Figure 5. The difference at t is given

by xt = ÊSc,t,0−adj − ÊSc,t, where ÊSc,t,0−adj is the zero-corrected ES and ÊSc,t is incorrect ES. Also here can

xt and 100 · xt be interpreted as the percentage point and basis point difference, respectively. For GE, VG and

BKT, ÊSc,t is computed as −c−1σ̂tÊt−1(zt|zt ≤ zc,t), where σ̂t is the estimate from (19), and Êt−1(zt|zt ≤ zc)

is computed as the sample average of the residuals ẑt that are equal to or lower than ẑc as defined above

(i.e. the empirical c-quantile of the residuals ẑt). Subject to suitable regularity assumptions, Êt−1(zt|zt ≤ zc)

provides a consistent estimate, see e.g. Francq and Zaköıan (2015). For GE and VG, the zero-corrected estimate

ÊSc,t,0−adj is computed as −c−1σ̂tÊt−1(zt|zt ≤ zc,t), where Êt−1(zt|zt ≤ zc,t) now is obtained via the relevant
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formula in (13), i.e. π
1/2
1t Et−1

(
wt1{wt≤F−1

wt|1
(c/π1t)}

)
. To estimate F−1wt|1(c/π1t) at t we use the empirical c/π̂1t-

quantile of the zero-corrected residuals ŵt (zeros excluded). Next, we estimate Et−1

(
wt1{wt≤F−1

wt|1
(c/π1t)}

)
at

t by forming an average made up of the non-zero residuals ŵ: T−11

∑
It=1 ŵt1{ŵt≤F̂−1

wt|1
(c/π̂1t)}, where T1 is

the number of non-zero observations (i.e. T1 =
∑n

t=1 It), F̂
−1
wt|1(c/π̂1t) is the estimate of F−1wt|1(c/π1t), and the

symbolism
∑

It=1 means the summation is over non-zero values only. For BKT, the zero-corrected estimate

ÊSc,t,0−adj is computed as −c−1σ̂t,0−adjÊt−1(zt|zt ≤ zc,t), where σ̂t,0−adj is the estimate from (20), and where

Êt−1(zt|zt ≤ zc,t) is computed in the same way as for GE and VG. Again we use the ME as an overall measure,

and MAE as an average measure of the day-to-day differences. Tests of ME and MAE are implemented in the

same way as above.

As indicated by the bottom row of graphs in Figure 5, for GE the ME and MAE are both essentially 0. The

test of ME, however, reject the null at the usual significance levels. Note that, here, the difference is not due to

a time varying zero-probability, but the discreteness in the cumulative density function. For VG, the ME and

MAE are −0.06 and 0.08, respectively, and the null is rejected at the usual significance levels in both tests. The

negative sign on ME means the incorrect ES is biased upwards by about 0.06%-points on average. However, as

the graph show, on a day-to-day basis it can be about 1.1%-points in absolute value. Interestingly, the negative

sign of the overall bias is opposite to its VaR case, since there the sign of the overall bias is positive. For BKT,

the ME and MAE are both 0.73, and also here is the null rejected at the usual significance levels in both tests.

The positive sign on ME means the incorrect ES is, on average, 0.73%-points lower. On a day-to-day basis,

however, the graph reveals the difference can be as large as 4.3%-points in absolute value. The positive sign on

ME is opposite to that of VG. So just as for VaR, the presence of a time varying zero-probability may bias ES

either upwards or downwards. Finally, the positive sign of the overall bias on ME for BTK is opposite to its

VaR case, since there the sign of the overall bias is negative.

4 The importance of time varying zero-probabilities at the NYSE

The New York Stock Exchange (NYSE) is one of the largest stock exchanges in the world measured by market

capitalisation. The period we study is 3 January 2007 – 4 February 2019, i.e. a maximum of 3043 daily

observations before lagging and differencing. Weekends and non-trading days are excluded from the sample.

We split the sample period in two. The first part, the in-sample period, goes from the start of 2007 until the

end of 2014 (up to 2014 observations before lagging and differencing). This part is used to identify the zero-

probability dynamics that characterises each stock return. The remaining part (up to 1029 observations) is used

for the out-of-sample comparison. To ensure that a sufficient number of observations is used for the in-sample

identification, we exclude all stocks with less than 1000 observations in the in-sample period. This leaves us with

1665 stocks out of the about 2300 stocks listed at NYSE in February 2019. It is reasonable to conjecture that

this induces a selection bias: The stocks that are left out are more likely to be characterised by a time varying

zero-probability. To identify the type of zero-probability dynamics exhibited by each stock, we use the strategy
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of Section 3.1. That is, we fit three logit-models to each return (Constant, ACL(1,1) and Trend), and compare

their fit by means of the Schwarz (1978) information criterion. The source of the data is Bloomberg, and the

data were downloaded with the R package Rblpapi (Armstrong et al. (2018)) on a Bloomberg terminal.

Table 2 contains the identification results. Out of the 1665 stock return series, 1259 are found to have

a constant zero-probability, 228 are found to have a time varying zero-probability of the ACL(1,1) type, and

178 are found to have a trend-like time varying zero-probability. That means 24.4% of the stocks we study at

NYSE are characterised by a time varying zero-probability. As noted above, the actual proportion is likely to

be higher, since the stocks we omit from our analysis are likely to be characterised by a high zero-probability,

and therefore also by a time varying zero-probability. This conjecture is supported by Table 2: The average

of the zero-proportions is higher among the stocks characterised by ACL and trend-like dynamics (2.6% and

3.2% in comparison to 1.9%). As expected, the average daily trading volume is lower among the stocks with

a time varying zero-probability. However, the relationship between zero-proportions and daily average volumes

is maybe not as strong as expected. Across all stocks, the sample correlation is −0.14. Among the stocks with

a constant zero-probability, the correlation is −0.13. Among the stocks with time varying zero-probability, the

correlation is −0.21 for the stocks with ACL-like dynamics, and −0.28 for the stocks with trend-like dynamics.

4.1 Out-of-sample forecasting of volatility

To shed light on the importance of a time varying zero-probability in out-of-sample volatility forecasting,

we compare the 1-step ahead volatility forecasts of an ordinary GARCH(1,1) with that of a zero-corrected

GARCH(1,1). We use the same approach as in Section 3.2. Recall that the QMLE estimates of an ordinary

GARCH(1,1) are valid when the zero process is stationary, even if the the zero-probability is time varying.

Accordingly, we restrict the comparison to the 178 stock returns that are characterised by a non-stationary zero

process. The ordinary GARCH(1,1) is thus estimated under the erroneous statistical assumption that the zero

process is stationary, whereas the zero-corrected GARCH(1,1) accommodates non-stationarity by means of the

method proposed in Section 2.5.

Let σ̂2
it,0-adj denote the fitted zero-corrected volatility of stock i, and let σ̂2

it denote the fitted ordinary

volatility of stock i, t = 1, 2, . . . , Ti, where Ti is the number of out-of-sample observations for stock i. Note that

Ti varies slightly across the 178 stocks, but is usually 1029 (the minimum Ti across the stocks is 988). For each

out-of-sample day t = 1, 2, . . . , Ti, we fit an ordinary and a zero-corrected GARCH(1,1) model to each stock

return, and then generate 1-step forecasts of volatility. The sample used for estimation and forecasting consists

of the observations preceding t. So the sample size increases with t as more observations become available. It

is unclear whether and to what extent standard volatility proxies made up of high-frequency intraday data

provide accurate estimates of volatility in the presence of time varying and non-stationary zero-probabilities.

So the best measure of volatility at hand is probably the estimate provided by the zero-corrected model. Let

xit = σ̂2
it,0-adj − σ̂2

it denote the 1-step forecast error at t. The ME and MAE are computed as
∑Ti

t=1 xit/Ti and∑Ti

t=1 |xit|/Ti, respectively. The former provides a measure of the overall or unconditional error, whereas the
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latter provides a measure of the day-to-day or conditional error. Tests of ME and MAE are implemented as in

Section 3.2.

The results are contained in the upper part of Table 3. The average of the MEs is −0.059, the maximum

ME is 2.832 and the minimum is −1.686. In other words, although the average of the MEs is negative, the

results do not suggest that there is a clear tendency in the sign of the bias. Out of the 178 tests with H0 : µi = 0

and HA : µi 6= 0, the null is rejected 149 times at the 10% significance level, 140 times at 5% and 127 times at

1%. This is substantially more than what is expected by chance: If µi = 0 for all i, then one should on average

expect 17.8 false rejections at the 10% significance level, 8.9 false rejections at 5% and 1.78 false rejections at 1%.

Accordingly, the large number of rejections provide comprehensive evidence of an overall or unconditional effect

of time varying zero-probability. As for a day-to-day effect, the average of the MAEs is 0.302, the maximum

MAE is 4.092 and the minimum is 0.008. Out of the 178 tests with H0 : µi = 0.01 and HA : µi > 0.01, the null is

rejected 175 times at the 10% and 5% significance levels, and 173 times at 1%. By chance, one would on average

expect the same number of false rejection as in the ME tests. So the results provide even more comprehensive

evidence of a day-to-day discrepancy than in the unconditional case.

4.2 Out-of-sample VaR forecasting

To shed light on the importance of a time varying zero-probability in the out-of-sample forecasting of VaR,

we compare the incorrect 1-step ahead VaR forecasts with the zero-corrected ones. The comparison is made

for all the n = 406 stocks with a time varying zero-probability. As in Section 3.3, we choose c = 0.025, which

corresponds to the 97.5% VaR. Let −r̂c,it,0−adj denote the zero-corrected 97.5% VaR of stock i at t, and let

−r̂c,it denote the incorrect 97.5% VaR of stock i at t. The ME and MAE are computed as
∑Ti

t=1 xit/Ti and∑Ti

t=1 |xit|/Ti, respectively, where xit = −r̂c,it,0−adj − (−r̂c,it) = r̂c,it − r̂c,it,0−adj is the error at t. Tests of ME

and MAE are implemented as above. For each out-of-sample day t = 1, 2, . . . , Ti, forecasts are obtained as

described in Section 3.3. The sample used for estimation consists of the observations preceding t, so the sample

size increases with t as more observations become available, just as in the out-of-sample forecasting of volatility

above.

The middle part of Table 3 contains the results. The average of the MEs is 0.004, and they range from

−0.241 (minimum) to 0.434 (maximum). As for volatility, the results do not suggest a clear tendency in the sign

of the bias across stocks. Out of the 406 tests of ME, the null is rejected 328, 307 and 269 times at the 10%,

5% and 1% significance levels, respectively. Again, this is substantially more rejections than what is expected

by chance: If µi = 0 for all i, then one should on average expect 40.6, 20.3 and 4.06 false rejections, respectively.

The average of the MAEs is 0.050, and they range from 0.000 (minimum) to 0.692 (maximum). Out of the

406 tests of MAE, the null is rejected 255, 254 and 248 times at the 10%, 5% and 1% levels, respectively. Just

as for ME, this is substantially more than what is expected by chance. All-in-all, therefore, the large number

of rejections – both for ME and MAE – provide comprehensive support of the hypothesis that an appropriate

zero-correction can improve out-of-sample VaR forecasts significantly.
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Table 4 provides some diagnostics on the VaR forecasts. The table contains the results of two tests proposed

by Christoffersen (1998): The unconditional coverage test and an independence test. In both tests one should –

on average – expect 40.6, 20.3 and 4.06 false rejections, respectively, at the 10%, 5% and 1% significance levels,

respectively. In the first test there are 62, 36 and 14 rejections, respectively, for the unadjusted model. For the

zero-corrected model there are 67, 44 and 13 rejections, respectively. The number of rejections is thus slightly

higher for the zero-corrected model at 10% and 5%, and slightly lower at 1%. All-in-all, the number of rejections

are not substantially higher than what one should on average expect by chance. This means both methods

produce, in general, good VaR forecasts in the unconditional coverage sense. For the independence test, the

number of rejections is identical for the two models, and substantially higher than one should expect by chance.

However, it should be noted that independence may not be required by either method. The large number of

rejections nevertheless suggests there is room for improved risk estimates, e.g. by adding lagged covariates in

the volatility and/or zero-probability specifications.

4.3 Out-of-sample ES forecasting

In this subsection we shed light on whether a correction for the time varying zero-probability improves the

out-of-sample forecasting of ES. We use the same approach as for VaR: The incorrect 1-step ahead forecasts

are compared out-of-sample with the zero-corrected ones. The comparison is made for all the n = 406 stocks

return with time varying zero-probability. Again we choose c = 0.025, which corresponds to the 97.5% ES. Let

ÊSc,it,0−adj denote the zero-corrected 97.5% ES forecast of stock i at t, and let ÊSc,it denote the incorrect

97.5% ES forecast of stock i at t. The forecasts are computed as in Section 3.4, so the difference or error is given

by xit = ÊSc,it,0−adj − ÊSc,it. The ME and MAE, and their associated tests, are defined in the same way as

earlier. Finally, as for volatility and VaR, the sample used for estimation consists of the observations preceding

t. So the sample size increases with t as more observations become available.

The bottom part of Table 3 contains the results. The average of the MEs is 0.004, and the MEs range from

−0.340 (minimum) to 0.691 (maximum). So yet again there is no clear tendency with respect to the sign of the

bias across stocks. Out of the 406 tests of ME, the null is rejected 255, 232 and 205 times at the 10%, 5% and

1% levels, respectively. Again, this is substantially more than what is expected on average by chance (40.6, 20.3

and 4.06 false rejections, respectively, under the null). The average of the MAEs is 0.074, and they range from

0.001 (minimum) to 0.926 (maximum). Out of the 406 tests of MAE, the null is rejected 328, 245 and 70 times

at the 10%, 5% and 1% significance levels, respectively. Albeit this is substantially more than what is expected

by chance, the number of rejections is notably smaller than for ME at the 1% level. This may suggest that

the improvement induced by zero-correcting is – in general – small in nominal terms. Nevertheless, all-in-all,

the results provide comprehensive support of the hypothesis that an appropriate zero-correction can improve

out-of-sample ES forecasts significantly.
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5 Conclusions

We propose a new class of financial return models that allows for a time varying zero-probability that can

either be stationary or non-stationary. Standard volatility models (e.g. ARCH, SV and continuous-time models)

are nested and obtained as special cases when the zero-probability is zero or constant, the zero and volatility

processes are allowed to be mutually dependent, and properties of the new class (e.g. conditional volatility,

skewness, kurtosis, VaR, ES, etc.) are obtained as functions of the underlying volatility model. Analytically,

our results imply that, for a given volatility level, a higher conditional zero-probability increases the conditional

skewness and kurtosis of return, but reduces return variability when defined as conditional absolute return.

Moreover, for a given level of volatility and sufficiently rare loss events (5% or less), risk defined as VaR or ES

will be biased downwards if zeros are not corrected for. Empirically, the sign and size of the bias will depend

on a number of additional circumstances and how they interact: The magnitude of the zero-proportion, the

stationarity properties of the zero process, the exact type of the zero-probability dynamics, the exact volatility

model and/or estimator, and on the conditional density of return. To alleviate the unpredictable biases caused

by non-stationary zero processes, we outline an approximate estimation and inference procedure that can be

combined with standard volatility models and estimators. Finally, we undertake a comprehensive study of the

stocks listed at the New York Stock Exchange (NYSE). We identify 24.4% of the daily returns that we study

to be characterised by a time varying zero-probability. However, the actual proportion is likely to be higher,

since we restrict our analysis to stocks with more than 1000 observations in the in-sample. Next, we conduct an

out-of-sample forecast evaluation of our results and methods. Our results show that zero-corrected risk estimates

provide an improvement in a large number of cases.

Our results have several empirical, theoretical and practical implications. First, we found a widespread

presence of time varying zero-probabilities in daily stock returns at NYSE, which is one of the most liquid

markets in the world. In less liquid markets, in other asset-classes, and at higher frequencies (i.e. intradaily), the

proportion of zeros is likely to be substantially higher, and the zero-probability dynamics is likely to be much

more pronounced. Accordingly, our results are likely to be of even greater importance in markets that are not

as liquid as the NYSE. Second, the widespread presence of a non-stationary zero process prompts the need for

new theoretical results. This is because most models, estimators and methods are derived under the assumption

of a stationary zero process. Finally, at a practical level our results suggests more attention should be paid to

how market quotes and transaction prices are aggregated in order to obtain the asset prices reported by data

providers, Central Banks and others. In particular, if a non-stationary zero process is the result of specific data

practices, then it may be worthwhile to re-consider these.
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A Proofs

A.1 Proof of Proposition 2.1

Throughout, Et−1(wst · 0|It = 0)π0t with s ≥ 0 stands for Et−1(wst · 0) whenever π0t = 0.

http://dx.doi.org/10.1080/1351847X.2017.1336452
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(i) Assumption 2 and Et−1|zt| <∞ imply that

Et−1(zt) = π
−1/2
1t Et−1(wtIt)

= π
−1/2
1t

(
Et−1(wt · 1|It = 1)π1t + Et−1(wt · 0|It = 0)π0t

)
= 0

for all t. Accordingly, {zt} is a MDS.

(ii) Assumption 2 and Et−1|z2t | <∞ imply that

Et−1(z2t ) = π−11t Et−1(w2
t I

2
t )

= π−11t

(
Et−1(w2

t · 1|It = 1)π1t + Et−1(w2
t · 0|It = 0)π0t

)
= π−11t

(
σ2
wπ1t

)
= σ2

w.

for all t. Next, since {zt} is a MDS and V art−1(zt) = σ2
w for all t, we have (for all t) that E(zt) = 0,

E(z2t ) = σ2
w and Cov(zt−i, zt−j) = 0 for all i 6= j. So {zt} is covariance-stationary.

(iii) Since Et−1|zst | <∞, we have that

Et−1(zst ) = π
−s/2
1t Et−1(wst It)

= π
−s/2
1t

(
Et−1(wst · 1|It = 1)π1t + Et−1(wst · 0|It = 0)π0t

)
= π

(2−s)/2
1t Et−1(wst |It = 1)

for all t.

(iv) If Et−1|zst | <∞, we have that

Et−1|zt|s = π
−s/2
1t Et−1(|wt|sIst )

= π
−s/2
1t

(
Et−1(|wt|s · 1|It = 1)π1t + Et−1(|wt|s · 0|It = 0)π0t

)
= π

(2−s)/2
1t Et−1(|wt|s|It = 1)

for all t. The notation Et−1(|wt|s · 0|It = 0)π0t stands for Et−1(|wt|s · 0) whenever π0t = 0.
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A.2 Proof of Proposition 2.2

Let Xt = wtItπ
−1/2
1t , and let Pt−1(Xt ≤ x) denote the cdf of Xt at t conditional on Frt−1. By Assumption 1(a)

this conditional probability is regular. Hence:

Pt−1(Xt ≤ x) = Pt−1(wtItπ
−1/2
1t ≤ x)

(a)
= Pt−1(wtItπ

−1/2
1t ≤ x, It = 1) + Pt−1(wtItπ

−1/2
1t ≤ x, It = 0)

(b)
= Pt−1(wtπ

−1/2
1t ≤ x, It = 1) + Pt−1(0 ≤ x, It = 0)

(c)
= Pt−1(wtπ

−1/2
1t ≤ x, It = 1) + 10≤xπ0t

= Pt−1(wtπ
−1/2
1t ≤ x|It = 1)π1t + 10≤xπ0t

= Pt−1(wt ≤ x
√
π1t|It = 1)π1t + 10≤xπ0t

(d)
= Fwt|1(x

√
π1t)π1t + 10≤xπ0t,

where we have used (a) P (A) = P (A ∩B) + P (A ∩Bc), (b) It = 1 in wtItπ
−1/2
1t in the first term and It = 0

in the second term, (c) for 0 > x we have Pt−1(0 ≤ x ∩ It = 0) = Pt−1(∅ ∩ It = 0) = 0, and for 0 ≤ x we

have Pt−1(0 ≤ x, It = 0) = Pt−1(Ω ∩ {It = 0}) = Pt−1(It = 0) = π0t, where Ω is the whole outcome set of the

underlying probability space, (d) the assumption π1t = Pt−1(It = 1) in (6) implies that π1t is measurable with

respect to Frt−1.

Replacing wt with r̃t so that Xt = rt, and assuming Assumption 1(b) instead of Assumption 1(a), gives (8).

A.3 Proof of Proposition 2.3

Let f, g denote two functions, and let f ◦ g denote function composition so that f ◦ g(x) = f(g(x)). The

statements in the following Lemma will be used in the proofs of Propositions 2.3 and 2.5.

Lemma A.1 Let ξ ∼ U [0, 1], let F be a cdf, and let F−1 be the generalised inverse of F as defined in (9).

(a) We have that X := F−1(ξ) ∼ F , that is, X is distributed according to F .

(b) We have {F−1(ξ) ≤ x} = {ξ ≤ F (x)} as events, for any x.

(c) We have that F ◦ F−1(c) ≥ c for all 0 ≤ c ≤ 1 with equality failing if and only if c is not in the range of

F on [−∞,∞].

(d) We have that F−1 ◦ F (x) ≤ x for all −∞ < x <∞ with equality failing if and only if F (x− ε) = F (x) for

some ε > 0.

All four statements are contained and proved in Shorack and Wellner (1986): (a) and (b) are in Theorem 1 on

p. 3, (c) is Proposition 1 on p. 5, and (d) is Proposition 3 on p. 6.

From Assumption 3(a) and the expression for Fzt(x) in Proposition 2.2, it follows that Fzt(x) is strictly

increasing for x ∈ (−∞, 0) ∪ (0,∞). So in these regions the inverse function exists, and solves the equation

Fzt(x) = c for c. We first deal with the intervals (−∞, 0) and (0,∞), and then the case corresponding to x = 0:
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1. For x ∈ (−∞, 0) it follows from Proposition 2.2 that Fzt(x) = Fwt|1(xπ
1/2
1t )π1t, and hence that c <

Fwt|1(0)π1t. Next: Fzt(x) = c⇔ Fwt|1(x
√
π1t)π1t = c⇔ F−1wt|1 ◦ Fwt|1(x

√
π1t) = F−1wt|1(c/π1t). Since Fwt|1

is assumed to be strictly increasing, we have F−1wt|1 ◦ Fwt|1(x) = x by Lemma A.1 (d). So x =

π
−1/2
1t F−1wt|1(c/π1t).

2. For x ∈ (0,∞), then it follows from the expression of Fzt(x) in Proposition 2.2 that c ≥ Fwt|1(0)π1,t +

π0,t. We search for the solution x to Fzt(x) = Fwt|1(c)π1,t + π0,t ⇔ Fwt|1(x
√
π1,t) = (c− π0,t)/π1,t ⇔

F−1wt|1Fwt|1(x
√
π1,t) = F−1wt|1[(c− π0,t)/π1,t]. Since Fwt|1 is assumed to be strictly increasing, we have

F−1wt|1 ◦ Fwt|1(x) = x by Lemma A.1 (d). So x = π
−1/2
1,t F−1wt|1[(c− π0,t)/π1,t].

3. For Fwt|1(0)π1,t ≤ c < Fwt|1(0)π1,t + π0,t, then there is no solution x to Fzt(x) = c. In this region, the

generalised inverse is by definition equal to the smallest value x such that Fzt(x) is more than or equal to

c, see equation (9). Since Fzt(x) makes this jump at x = 0 and is therefore never equal to c, we get that

F−1zt (c) = 0 which is the smallest possible choice of x so that Fzt(x) ≥ c.

Relying on Assumption 3(b) instead of Assumption 3(a), and replacing wt with r̃t and zt with rt, gives (11).

A.4 Proof of Proposition 2.4

Due to Assumptions 1 and 4 we have

Fr̃t|1(x) = Pt−1(r̃t ≤ x|It = 1)

= Pt−1(σtwt ≤ x|It = 1)

= Pt−1(wt ≤ xσ−1t |It = 1)

(4)
= Fwt|1(xσ−1t ),

where (4) indicates where we have used Assumption 4. Both Fwt|1 and Fr̃t|1 are assumed strictly increasing

in Assumption 3, so both Fwt|1 and Fr̃t|1 are invertible. Denote y = Fr̃t|1(x), so that F−1r̃t|1(y) = x. Since

Fr̃t|1(x) = Fwt|1(xσ−1t ), this means y = Fwt|1(xσ−1t ), and hence F−1wt|1(y) = xσ−1t . Substituting for x (we have

that x = F−1r̃t|1(y)) in this expression and re-arranging, gives

F−1r̃t|1(y) = σtF
−1
wt|1(y).

From this it follows that (11) can be re-written as

rc,t = F−1r (c)

= σt


π
−1/2
1t F−1w̃t|1(c/π1t) if c < Fw̃t|1(0)π1t

0 if Fw̃t|1(0)π1t ≤ c < Fw̃t|1(0)π1t + π0t

π
−1/2
1t F−1w̃t|1

[
(c−π0t)
π1t

]
if c ≥ Fw̃t|1(0)π1t + π0t.
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That is, rc,t = σtzc,t.

A.5 Proof of Proposition 2.5

In deriving the expression for Et−1(zt|zt ≤ zc,t) we start by showing that xc(c− FX(xc)) in (12) is indeed equal

to zero for zt:

Lemma A.2 If Assumptions 1(a), 3(a) and 5(a) hold, then zc,t(c− Fzt(zc,t)) = 0.

Proof. (a) and (b) in Lemma A.1 imply that Pt−1(zt ≤ F−1zt (c)) = Pt−1(F−1zt (ξ) ≤ F−1zt (c)) = Pt−1(ξ ≤

Fzt ◦ F−1zt (c)). Next, since ξ ∼ U [0, 1], we have that Pt−1(ξ ≤ x) = x1{0≤x≤1} + 1{x>1}. Since 0 ≤ Fzt ≤ 1 we

get Pt−1(ξ ≤ Fzt ◦ F−1zt (c)) = Fzt ◦ F−1zt (c). Hence we are left with computing Fzt ◦ F−1zt (c):

Case 1. If c ∈ [0, Fwt|1(0)π1t) ∪ [Fwt|1(0)π1t + π0t,∞), which is the range of Fzt by Proposition 2.2 and

Assumption 5, then Fzt ◦ F−1zt (c) = c by (c) in Lemma A.1. So F−1zt (c)[c− Pt−1(zt ≤ F−1zt (c))] = 0.

Case 2. If on the other hand Fwt|1(0)π1t ≤ c < Fwt|1(0)π1t + π0t, then F−1zt (c) = 0 by Proposition 2.2, so

F−1zt (c)[c− Pt−1(zt ≤ F−1zt (c))] = 0.

We now turn to the three cases in (13):

Case 1: c < Fwt|1(0)π1t. In this case F−1zt (c) = π
−1/2
1t F−1wt|1(c/π1t) according to Proposition 2.3, and so

E(zt1{zt≤F−1
zt (c)}) =

∫
A

x dFzt(x), A = (−∞, π−1/21t F−1wt|1[c/π1t]).

Because c < Fwt|1(0)π1t and F−1zt is a non-decreasing function, we have that F−1zt (c) < F−1zt [Fwt|1(0)π1t] = 0.

Hence, the area we integrate over only includes negative numbers. In this region

Fzt(x) = π1tFwt|1(x
√
π1t) + 1{0≤x}π0t = π1tFwt|1(x

√
π1t)

with derivative equal to π
3/2
1t fwt|1(x

√
π1t) by Assumption 5. So

E(zt1{zt≤F−1
zt (c)}) = π

3/2
1t

∫
A

xfwt|1(x
√
π1t) dx.

Letting u = x
√
π1t so that x = u/

√
π1t gives dx = du/

√
π1t, and the area of integration is changed to

(−∞, F−1wt|1[c/π1t]) because, for the function u(x) = x
√
π1t, we have u(−∞) = −∞ and u(π

−1/2
1t F−1wt|1[c/π1t) =
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π
−1/2
1t F−1wt|1[c/π1t

√
pi1t] = F−1wt|1[c/π1t]. This gives

E(zt1{zt≤F−1
zt (c)}) = π

3/2
1t

∫ F−1
wt|1

[c/π1t]

−∞
(u/
√
π1t)fwt|1(u) du/

√
π1t

=
√
π1t

∫ F−1
wt|1

(c/π1t)

−∞
ufwt|1(u) du

=
√
π1tE(wt1{wt≤F−1

wt|1
(c/π1t)}).

Case 2: Fwt|1(0)π1t ≤ c < Fwt|1(0)π1t + π0t. In this case E(zt1{zt≤F−1
zt (c)}) = E(zt1{zt≤0}) according to Propo-

sition 2.3, and so

E(zt1{zt≤0}) =

∫ 0

−∞
x dFzt(x) =

∫ 0

−∞
x d[π1tFwt

(x
√
π1t)] +

∫ 0

−∞
x d[π0t1{0≤x}].

We have
∫ 0

−∞ x d[π0t1{0≤x}] = π0t
∫
R 1{x≤0}x d1{0≤x} = π0t1{x≤0}x|x=0 = 0, since 1{0≤x} is the cumulative dis-

tribution function of a (degenerate) random variable Z with P (Z = 0) = 1. We therefore get that E(zt1{zt≤0}) =∫ 0

−∞ x d[π1tFwt
(x
√
π1t)], which equals

√
π1tE(wt1{wt≤0}) by means of the same sort of calculations as in case 1.

Case 3: c ≥ Fwt|1(0)π1t + π0t. In this case E(zt1{zt≤F−1
zt (c)}) = E(zt1{zt≤π−1/2

1t F−1
wt|1

[(c−π0t)/π1t]}
) according to

Proposition 2.3. Let B := (−∞, π−1/21t F−1wt|1[(c− π0t)/π1t]). As in case 2, we use the linearity of the Lebesgue-

Stieltjes integral in terms of its measure to see that

E(zt1{zt≤F−1
zt (c)}) =

∫
B

x dFzt(x) =

∫
B

x d[π1tFwt|1(x
√
π1t)] +

∫
B

x d[π0t1{0≤x}].

The integral from the discrete component is computed as in case 2, and we see that

∫
B

x d[π0t1{0≤x}] = π0t

∫
R

1{x∈B}x d1{0≤x} = π0t1{x∈B}x|x=0 = 0.

As in case 1 we see that

∫
B

x d[π1tFzt(x
√
π1t)] = π

3/2
1t

∫
B

xfwt|1(x
√
π1t) dx =

√
π1tE

(
wt1{wt≤F−1

wt|1
[(c−π0t)/π1t]}

)
.

Relying on Assumptions 1(b), 3(b) and 5(b) instead of 1(a), 3(a) and 5(a), and replacing wt with r̃t and zt

with rt, gives (14).

A.6 Proof of Proposition 2.6

From the measurability of σt with respect to Frt−1 (i.e. Assumption 4) it follows that Et−1(r̃t1A) = σtEt−1(wt1A),

where A denotes an event. Denote y = Fr̃t|1(x), so that F−1r̃t|1(y) = x. From the proof of Proposition 2.4 in
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Appendix A.4 it follows that Fr̃t|1(x) = Fwt|1(xσ−1t ) and F−1r̃t|1(y) = σtF
−1
wt|1(y). Accordingly, we can re-write

(14) as

Et−1(rt|rt ≤ rc,t)

= σt


π
1/2
1t Et−1

(
wt1{wt≤F−1

w|1(c/π1t)}

)
if c < Fwt|1(0)π1t,

π
1/2
1t Et−1

(
wt1{wt≤0}

)
if Fw|1(0)π1t ≤ c < Fwt|1(0)π1t + π0t,

π
1/2
1t Et−1

(
wt1{wt≤F−1

w|1[(c−π0t)/π1t]}

)
if c ≥ Fwt|1(0)π1t + π0t.

That is, Et−1(rt|rt ≤ rc,t) = σtEt−1(zt|zt ≤ zc,t).

B Missing values estimation algorithm

Let α̂
(k)
0 , α̂

(k)
1 and β̂

(k)
1 denote the parameter estimates of a GARCH(1,1) model after k iterations with some

numerical method (e.g. Newton-Raphson). The initial values are at k = 0. If there are no zeros, so that rt = r̃t

for all t, then the kth. iteration of the numerical method proceeds in the usual way:

1. Compute, recursively, for t = 1, . . . , T :

σ̂2
t = α̂

(k−1)
0 + α̂

(k−1)
1 r̃2t−1 + β̂

(k−1)
1 σ̂2

t−1.

2. Compute the log-likelihood
∑n

t=1 ln fr̃(r̃t, σ̂t) and other quantities (e.g. the gradient and/or Hessian)

needed by the numerical method to generate α̂
(k)
0 , α̂

(k)
1 and β̂

(k)
1 .

Usually, fr̃ is the Gaussian density, so that the estimator may be interpreted as a Gaussian QML estimator. The

algorithm we propose modifies the kth. iteration in several ways. Let G denote the set that contains non-zero

locations, and let T ∗ denote the number of non-zero returns. The kth. iteration now proceeds as follows:

1. Compute, recursively, for t = 1, . . . , T :

a) r2t =

 r̃2t if t ∈ G

σ̂2
t if t /∈ G, where σ̂2

t = α̂
(k−1)
0 + α̂

(k−1)
1 r2t−1 + β̂

(k−1)
1 σ̂2

t−1,

b) σ̂2
t = α̂

(k−1)
0 + α̂

(k−1)
1 r2t−1 + β̂

(k−1)
1 σ̂2

t−1.

2. Compute the log-likelihood
∑

t∈G ln fr̃(r̃t, σ̂t) and other quantities (e.g. the gradient and/or Hessian)

needed by the numerical method to generate α̂
(k)
0 , α̂

(k)
1 and β̂

(k)
1 .

Step 1.a) means that r2t is equal to an estimate of its conditional expectation at the locations of the zero values.

In Step 2 the symbolism t ∈ G means that the log-likelihood only includes contributions from non-zero locations.
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A practical implication of this is that any likelihood comparison (e.g. via information criteria) with other models

should be in terms of the average log-likelihood, i.e. division by T ∗ rather than T .

QML Estimation of the log-GARCH model is via its ARMA-representation, see Sucarrat and Escribano

(2017). If |E(lnw2
t )| <∞, then the ARMA(1,1) representation is given by

ln r̃2t = φ0 + φ1 ln r̃2t−1 + θ1ut−1 + ut, ut = lnw2
t − E(lnw2

t ),

where φ0 = α0 + (1− β1)E(lnw2
t ), φ1 = α1 + β1, θ1 = −β1 and ut is zero-mean. Accordingly, subject to suitable

assumptions, the usual ARMA-methods can be used to estimate φ0, φ1 and θ1, and hence the log-GARCH

parameters α1 and β1. To identify α0 an estimate of E(lnw2
t ) is needed. Sucarrat et al. (2016) show that, under

very general assumptions, the formula − ln
[
T−1

∑n
t=1 exp(ût)

]
provides a consistent estimate (see also Francq

and Sucarrat (2017)). To accommodate the missing values, this formula is modified to − ln
[
T ∗−1

∑
t∈G exp(ût)

]
.

In order to study the finite sample bias of the algorithm, we undertake a simulation study. In the simulations

the Data Generating Process (DGP) of return is given by

rt = σtItwtπ
−1/2
1t , wt ∼ N(0, 1), t = 1, . . . , T = 10000,

where the 0-DGP is governed by a deterministic trend equal to

π1t = 1/(1 + exp(−ht)), ht = ρ0 + λt∗, t∗ = t/T.

The term t∗ = t/T is thus “relative” time with t∗ ∈ (0, 1]. We use three parameter configurations for the 0-DGP:

(ρ0, λ) = (∞, 0), (ρ0, λ) = (0.1, 3) and (ρ0, λ) = (0.2, 3). These yield fractions of zeros over the sample equal to

0, 0.1 and 0.2, respectively. The DGPs of the GARCH and log-GARCH models, respectively, are given by

σ2
t = α0 + α1r̃

2
t−1 + σ2

t−1,

lnσ2
t = α0 + α1 ln r̃2t−1 + lnσ2

t−1,

with (α0, α1, β1) = (0.02, 0.1, 0.8) in each. We compare two estimation approaches. In the first, which we label

“Ordinary”, r̃2t is replaced by r2t in the recursions. For the log-GARCH, whenever r2t = 0, its value is set to

1 (i.e. the specification of Francq et al. (2013), but without asymmetry). Estimation of the GARCH model is

by Gaussian QML, whereas estimation of the log-GARCH is by Gaussian QML via the ARMA-representation,

see Sucarrat et al. (2016). The second estimation approach, which we label “Algorithm”, uses the missing

value algorithm as described in the above. Figure 6 contains the parameter biases for the GARCH(1,1) and

log-GARCH(1,1) models, respectively. A solid blue line stands for the bias produced by the algorithm (i.e.

the second estimation approach), whereas a dotted red line stands for the bias of ordinary Gaussian QML
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estimation without zero-adjustment (i.e. the first estimation approach). The figure confirms that the algorithm

provides approximately unbiased estimates in finite samples in the presence of missing values, and that the

bias is increasing in the zero-probability. Nominally, the biases produced by the ordinary method may appear

small. However, as we will see in the empirical applications, such small nominal differences in the parameters

can produces large differences in the dynamics.
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Table 1: Descriptive statistics, logit models and GARCH-models of the daily returns of three NYSE-
listed stocks (see Section 3)

Descriptive statistics:

Sample Volume s2 s4 ARCH
[p−val]

T 0s π̂0

GE 3/1/2007–31/12/2014 67.75 4.55 12.57 154.1
[0.00]

2013 30 0.015

VG 3/1/2007–31/12/2014 2.20 32.00 75.21 40.05
[0.00]

2013 148 0.074

BKT 3/1/2007–31/12/2014 0.176 0.621 21.45 31.81
[0.00]

2013 258 0.128

Logit models:

ρ̂0
(s.e.)

ρ̂1
(s.e.)

ζ̂1
(s.e.)

λ̂1
(s.e.)

SIC Logl

GE Constant: 4.191
(0.184)

0.1587 −155.961

ACL(1,1): 3.315
(2.418)

−2.624
(6.331)

0.278
(0.404)

0.1649 −154.574

Trend: 4.736
(0.421)

−1.008
(0.653)

0.1613 −154.739

VG Constant: 2.534
(0.085)

0.5291 −528.726

ACL(1,1): 0.756
(0.275)

0.270
(0.054)

0.710
(0.106)

0.5222 −514.163

Trend: 2.585
(0.173)

−0.102
(0.296)

0.5328 −528.667

BKT Constant: 1.917
(0.067)

0.7696 −770.752

ACL(1,1): 0.127
(0.120)

0.070
(0.040)

0.934
(0.062)

0.7729 −766.476

Trend: 2.393
(0.147)

−0.901
(0.235)

0.7659 −763.281

GARCH models:

α̂0
(s.e.)

α̂1
(s.e.)

β̂1
(s.e.)

GE Ordinary: 0.024
(0.012)

0.066
(0.016)

0.925
(0.017)

VG Ordinary: 1.031
(0.563)

0.190
(0.071)

0.795
(0.071)

BKT Ordinary: 0.029
(0.011)

0.144
(0.035)

0.798
(0.049)

0-adjusted: 0.024
(0.008)

0.148
(0.030)

0.804
(0.041)

GE, the ticker of General Electric. VG, the ticker of Vonage Holdings Corporation. BKT, the ticker
of The Bank of New York Mellon Corporation. Volume, average daily trading volume in millions of
USD over the sample. s2, sample variance of return. s4, sample kurtosis of return. ARCH, Ljung
and Box (1979) test statistic of first-order serial correlation in the squared return. p− val, the p-
value of the test-statistic. T , number of observations before differencing and lagging. 0s, number
of zero returns. π̂0, proportion of zero returns. s.e., approximate standard errors (obtained via the
numerically estimated Hessian). k, the number of estimated model coefficients. LogL, log-likelihood.
SIC, the Schwarz (1978) information criterion. Datasource: Bloomberg. All computations in R (R
Core Team, 2018).
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Table 2: In-sample descriptives of logit-models (see Section 4)
n avg(π̂0i) max π̂0i min π̂0i avg(voli) ρ(π̂0i, voli)

All 1665 0.0211 0.1931 0.0000 1.822 −0.14
Constant 1259 0.0188 0.1311 0.0000 1.907 −0.13
ACL(1,1) 228 0.0259 0.1931 0.0015 1.580 −0.21
Trend 178 0.0317 0.1282 0.0030 1.533 −0.28
n, number of stocks. π̂0i, stock i’s proportion of zero returns. avg(π̂0i), average
of the π̂0i’s. max π̂0i, the largest zero-proportion across stocks. min π̂0i, the
smallest zero-proportion across stocks. voli, stock i’s daily average volume in
million USD. avg(voli), average of the voli’s. ρ(π̂0i, voli), sample correlation
between π̂0i and voli.

Table 3: Out-of-sample ME and MAE results (see Section 4)

Volatility:

n avg. max. min. n(0.10) n(0.05) n(0.01)
ME 178 −0.059 2.832 −1.686 149 140 127
MAE 178 0.302 4.092 0.008 175 175 173

97.5% VaR:
n avg. max. min. n(0.10) n(0.05) n(0.01)

ME 406 0.004 0.434 −0.241 328 307 269
MAE 406 0.050 0.692 0.000 255 254 248

97.5% ES:
n avg. max. min. n(0.10) n(0.05) n(0.01)

ME 406 0.004 0.691 −0.340 255 232 205
MAE 406 0.074 0.926 0.001 328 245 70

n, number of stocks. avg., the average of the MEs or MAEs across stocks.
max., the maximum ME or MAE across the stocks. min., the minimum ME
or MAE across the stocks. n(α), the number of rejections of H0 at significance
level α. The tests are implemented via OLS estimated regressions with Newey
and West (1987) standard error. For ME, xit = µi + uit with H0 : µi = 0 and
HA : µi 6= 0. For MAE, |xit| = µi + uit with H0 : µi = 0.01 and HA : µi > 0.01.
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Table 4: Coverage and independence tests of out-of-sample VaR forecasts (see Section 4)

97.5% VaR:
Unconditional coverage Independence

n n(0.10) n(0.05) n(0.01) n(0.10) n(0.05) n(0.01)
Ordinary 406 62 36 14 398 397 397
0-adjusted 406 67 44 13 398 397 397

The tests are those of Christoffersen (1998). n, number of stocks. n(α), the number of
rejections of H0 at significance level α.
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Figure 1: VaR of zt, i.e. −zc,t, where zc,t is given by (10), for different values of π0t and c, and for different
densities of wt, see Section 2.3
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Figure 2: Ratios of VaRs (computed as −wc,t/− zc,t where wc,t is the cth. quantile of wt) for different values of
π0t and c, and for different densities of wt, see Section 2.3
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Figure 3: ES of zt, i.e. −c−1Et−1(zt|zt ≤ zc,t), for different values of π0t and c, and for different densities of wt,
see Section 2.4
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Figure 4: Ratios of ESs (−c−1Et−1(wt|wt ≤ wc,t) in the numerator, −c−1Et−1(zt|zt ≤ zc,t) in the denominator)
for different values of π0t and c, and for different densities of wt, see Section 2.4
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Figure 5: Fitted zero-probabilities (0-prob), and the differences between fitted σ2
t , 97.5% VaR and 97.5% ES (see

Section 3). The difference or error xt at t is computed as the zero-corrected risk-estimate minus the incorrect

one. The Mean Error (ME) is computed as T−1
∑T

t=1 xt, and the Mean Absolute Error (MAE) is computed

as T−1
∑T

t=1 |xt|. For ME, the p-value in square brackets is from a test implemented via the OLS estimated
regression xt = µ+ ut with H0 : µ = 0 and HA : µ 6= 0. The t-distributed test statistic is µ̂/se(µ̂), where se(µ̂) is
the standard error of Newey and West (1987). For MAE, the p-value in square brackets is from a test implemented
via the OLS estimated regression |xt| = µ+ ut with H0 : µ = 0.01 and HA : µ > 0.01. The t-distributed test
statistic is (µ̂− 0.01)/se(µ̂), where se(µ̂) is the standard error of Newey and West (1987).

0.00 0.05 0.10 0.15 0.20

−
0.

04
0.

00
0.

04

Average zero−probability

G
A

R
C

H
 b

ia
s

α0:

Algorithm
Ordinary

0.00 0.05 0.10 0.15 0.20

−
0.

04
0.

00
0.

04

Average zero−probability

α1:

0.00 0.05 0.10 0.15 0.20

−
0.

04
0.

00
0.

04

Average zero−probability

β1

0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

05

Average zero−probability

Lo
g−

G
A

R
C

H
 b

ia
s α0:

Algorithm
Ordinary

0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

05

Average zero−probability

α1:

0.00 0.05 0.10 0.15 0.20

−
0.

05
0.

05

Average zero−probability

β1

Figure 6: Simulated parameter biases in GARCH(1,1) and log-GARCH(1,1) models for the missing values
algorithm in comparison with ordinary methods (see Appendix B)
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