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PARTIAL IDENTIFICATION OF LATENT CORRELATIONS WITH

BINARY DATA

STEFFEN GRØNNEBERG, JONAS MOSS, AND NJÅL FOLDNES

Abstract. The tetrachoric correlation is a popular measure of association for binary data

and estimates the correlation of an underlying normal latent vector. However, when the

underlying vector is not normal the tetrachoric correlation will be different from the under-

lying correlation. Since assuming underlying normality is often done on pragmatic and not

substantial grounds, the estimated tetrachoric correlation may therefore be quite different

from the true underlying correlation that is modeled in structural equation modeling. This

motivates studying the range of latent correlations that are compatible with given binary

data, when the distribution of the latent vector is partly or completely unknown. We show

that nothing can be said about the latent correlations unless we know more than what can be

derived from the data. We identify an interval constituting all latent correlations compatible

with observed data when the marginals of the latent variables are known. Also, we quantify

how partial knowledge of the dependence structure of the latent variables affect the range

of compatible latent correlations. Implications for tests of underlying normality are briefly

discussed.

1. Introduction

An important class of statistical methods for samples from random vectors X with ordinal

coordinates follows the perspective of Pearson (1900) by postulating a continuous random vector

Z which when discretized producesX. The present study is concerned with the most simple case

of ordinal variables, namely the binary case, where we observe samples from X = (X1, . . . , Xd)

obtained through the following discretization:

(1) Xi = 1{Zi > τi}, i = 1, . . . , d.

Here, 1{·} is the indicator function, Z = (Z1, . . . , Zd) are latent variables, and τ1, . . . , τd are

fixed thresholds. In psychometrics, prominent methods that are based on the discretization

framework are factor analysis (Christoffersson, 1975; Muthén, 1978), principal component anal-

ysis (Kolenikov & Angeles, 2009), and structural equation models (Jöreskog, 1994; Muthén,

1984), as well as some models usually formulated without direct reference to Z, such as multi-

variate item response theory models (Takane & de Leeuw, 1987). A crucial ingredient in these

methods is the estimation of the covariance matrix Σ of Z. In the present article we investigate,

for binary variables, what can be said about the covariance among the latent variables Zi and

Zj when their joint distribution is not fully known.

It is instructive to contrast factor analysis and structural equation modeling with ordinal data

to the approach taken with continuous data. Both approaches achieve parameter estimation

by minimizing the distance between the model-implied covariance matrix Σ(θ) and an estimate
1
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of the population covariance matrix. For continuous data, it is straightforward to consistently

estimate the population covariance matrix, by computing directly from the data the sample

covariance matrix S. The most common estimator for continuous data is normal theory based

maximum likelihood (NTML). The likelihood assumes that the observed vector is drawn from

a multivariate normal distribution. It would therefore seem that the normality assumption

is crucial for NTML estimation and inference, given that maximum likelihood estimators are

usually inconsistent if the probability distribution that observables are assumed to follow is

misspecified (see e.g. Claeskens & Hjort, 2008, Chapter 2.2). However, NTML estimation for

covariance models turns out to be contained within a class of moment based estimators known

as minimum discrepancy function estimators (see e.g. Shapiro, 1983), and is therefore consistent

and covered by a known inference theory even under non-normality as long as the covariance

model itself holds. Due to this fortunate fact, NTML estimation is used in almost all applied

work with covariance models, and is the standard estimation method of software packages such

as mplus (Muthén & Muthén, 2017), Lisrel (Jöreskog & Sörbom, 1996), and lavaan (Rosseel,

2012).

In the ordinal case, it does not make sense to assume multivariate normality for the observed

variables. Instead, the normality assumption has traditionally been made for the unobserved

vector Z. By assuming that Z is normally distributed, an assumption originating from Pearson

(1900), we may estimate its correlation matrix with polychoric correlations (Olsson, 1979),

known as tetrachoric correlations in the binary case. The posited model is then fitted to

the polychoric correlation matrix using minimum discrepancy methods. In contrast to the

continuous case, the multivariate normality assumption is crucial in the ordinal case. Without

this, or a similar distributional assumption regarding Z, we can not obtain a sample estimate

of the covariance matrix Σ of Z. The reason is that with only the observed vector X at hand,

the available information is limited, taking the form of a contingency table. In the bivariate

binary case, the information is contained in a 2 × 2 table. Therefore, we must make strong

assumptions on the distribution of Z in order to identify its correlations.

In the present paper our aim is to investigate what can be learned about the latent correla-

tions when the normality assumption is relaxed: Based on observed data, and partial knowledge

of the distribution of Z, what can be said about the correlations of Z? We demonstrate that

these correlations will not be identified even under quite strong assumptions on the distribution

of Z. This means there are several distributions for Z that are compatible with our knowledge,

and that can generate X, and these distributions may have different correlations. Instead, we

calculate intervals which contain all possible correlations compatible with observed data and

our knowledge of the distribution of Z. In the continuous case, population correlations are

always identified, and the consequences of relaxing the normality assumption for NTML is a

well-studied problem, and several robust approaches (e.g., Satorra & Bentler, 1988) are avail-

able to conduct inference in a valid manner. In contrast, in the ordinal case the correlations

are not even identified, which is the starting point for all classical statistical techniques. The

distributional assumptions made on Z are often based on pragmatic considerations (this is also

argued in Molenaar & Dolan, 2018), and not on what we will call substantial knowledge of the
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phenomena involved. In practice, it seems that the use of estimation methods which assume

the normality of Z is often based on an earlier consensus that normal theory methods are fairly

robust against underlying non-normality. This consensus, based on earlier simulation studies,

was questioned in Foldnes and Grønneberg (2019a, 2019b, 2020), who used the non-normal

simulation method of Grønneberg and Foldnes (2017) to argue that normal theory methods are

not as robust as previously thought. Substantial knowledge of the distribution of Z is therefore

required. This is in agreement with the discussion in Pearson and Heron (1913, p. 161–162).

We focus on the simplest case of two binary variables, summarized by a 2×2 table. We relax

the normality assumption for the joint distribution of the two underlying continuous variables,

and ask what can be known about their correlation when the joint distribution is completely

or partially unknown. Such an analysis of parameter sets compatible with the observed data is

known as partial identification, and has a long history in statistics and econometrics (Manski,

2003; Tamer, 2010), but is to the best of our knowledge hitherto not used in psychometrics. If

we can establish a rather narrow band of possible correlations, this would mean that we may

estimate the parameters in θ with at least some degree of certainty. If, on the other hand the set

of possible correlations that are compatible with the 2 × 2 table is wide, we can not proceed to

estimate our model without imposing further restrictions on the distribution of Z. If such is the

case, the validity of our statistical analysis will depend crucially on the normality assumption,

and steps must be taken to test this assumption prior to further analysis together with strong

reasons why we would expect Z to be multivariate normal. There are various tests for the

distributional assumptions made on Z (e.g., Foldnes & Grønneberg, 2019b; Maydeu-Olivares,

2006).

The remainder of this article is organized as follows. In Section 2.1 we show for the bivariate

case that nothing can be said about the correlation of Z unless we take into account substantial

knowledge of the distribution of Z, that is, knowledge not derivable from the distribution of the

observations X. In Section 2.2, we assume substantial knowledge justifies treating the marginal

distributions as known, and identify a set which contains all possible Pearson correlations of

Z that are compatible with observed data. A similar analysis is done for Spearman’s rho. For

Spearman’s rho, the resulting sets have, in contrast to the Pearson correlation, lengths less than

two also if nothing is known about the distribution of Z. Unfortunately, these sets are always so

wide that they contain little to no practical information. In Section 2.3 we illustrate in a simple

setting with known marginals that a partial identification analysis of latent correlations can

be used to provide a partial identification analysis of latent correlation models. In Section 2.4,

we study the case when marginals are known, and a rectangle of the cumulative distribution

function of the copula is also known, where the rectangle includes the point of the copula which

is shown in Section 2.1 to be deducible from the distribution of X. We interpolate between

knowing only this point, which leads to extraordinarily spacious intervals, to fully knowing the

copula of Z, which point identifies the latent correlation. In Section 2.5, a partial identification

analysis is performed when Z2 is directly observed, and Z1 is observed via a binary discretized

variable, but has a known marginal distribution. When the full distribution of Z is assumed to

be normal, this is the setting of the biserial correlation of Pearson and Pearson (1922).
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In Section 3.2 we show that without substantial knowledge, multivariate information cannot

help identify the pairwise correlations of Z. In Section 3.3, we discuss tests for underlying

normality in light of our results. Our study only derives partial identification sets for a single

latent correlation, and Section 3.4 discusses the limitations springing from this focus. Some

concluding remarks are given in Section 4.

We ignore sampling error in the paper. The partially identified sets we calculate are intervals,

where inference can easily be dealt with when observing independent and identically distributed

data (Tamer, 2010, Section 4.4). Proofs of all results are found in Appendix A. The online

supplementary material includes an online appendix with additional technical details, as well

as several R scripts.

2. Partial identification with 2× 2 tables

The starting point for most statistical theory is that the parameters of interest are point-

identified. This is often achieved only under strong assumptions, and some of these assumptions

may be questionable. Partial identification analysis calculates the set of possible parameter val-

ues attainable under the subset of assumptions that are seen as unquestionable. An immediate

application is a form of sensitivity analysis (Tamer, 2010, Section 1), as the size and shape of

the resulting set gives information on the influence from the more questionable assumptions.

Tamer (2010) contains a literature review of partial identification while the book Manski (2003)

is an introduction to the field.

We briefly summarise the Fréchet–Höffding bounds and the partial identification analysis

of the Pearson correlation when only the marginal distributions are assumed known, but the

full distribution is not known. This may occur if we have studied two phenomena separately,

but not jointly. This partial identification problem was solved by Höffding (1940) and Fréchet

(1960), with a modern presentation in Nelsen’s book (2007). See also the influential papers by

Lehmann (1966) and Whitt (1976). Our results are generalizations of the arguments underlying

the Fréchet–Höffding bounds argument.

Suppose F is a bivariate cumulative distribution function with marginal distributions F1, F2.

Recall that a copula C is a cumulative distribution function with uniform marginals on [0, 1].

According to Sklar’s theorem (Nelsen, 2007; Sklar, 1959, Theorem 2.3.3), there exists a copula

C such that for any x1, x2 we have

(2) F (x1, x2) = C(F1(x1), F2(x2)),

where the copula is unique on the range of F1, F2, and therefore unique if F1, F2 are con-

tinuous. Moreover, if C is a copula and F1, F2 are univariate cumulative distribution func-

tions, then F defined by eq. (2) is a cumulative distribution function with marginals F1, F2.

The Fréchet–Höffding bound (Nelsen, 2007, Theorem 2.2.3) states that any copula C fulfils

W (u, v) ≤ C(u, v) ≤ M(u, v) for all u, v ∈ [0, 1], where W,M are the copulas W (u, v) =

max(u+v−1, 0) and M(u, v) = min(u, v). Sklar’s theorem implies that for W [F1, F2](x1, x2) =

W (F1(x1), F2(x2)) and M [F1, F2](x1, x2) = M(F1(x1), F2(x2)), both W [F1, F2] and M [F1, F2]
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are distribution functions with marginals F1, F2. The Fréchet–Höffding bound gives

(3) W [F1, F2](x1, x2) ≤ F (x1, x2) ≤M [F1, F2](x1, x2)

for all x1, x2. Since the upper and lower bounds are themselves distribution functions with

marginals F1, F2, this bound cannot be improved.

Let ρ(F ) denote the Pearson correlation of F when F is a distribution function. The Höffding

(1940) formula for the correlation states that

(4) ρ(F ) = sd(F1)−1 sd(F2)−1

∫ ∞
−∞

∫ ∞
−∞

F (z1, z2)− F1(z1)F2(z2) dz1dz2,

where sd(F1), sd(F2) are the standard deviations of F1, F2, the marginals of F .

For a set P of bivariate distributions with finite standard deviations, define ρ(P) = {ρ(F ) :

F ∈ P}. Let P be the set of distributions with fixed marginals F1, F2 and let F ∈ P. The

Fréchet–Höffding bounds (3) implies that

ρ(F ) ∈ [ρ(W [F1, F2]), ρ(M [F1, F2])].

An argument based on convex combinations of the boundary distributions shows that ρ(P) =

[ρ(W [F1, F2]), ρ(M [F1, F2])], see the proof of Proposition 1 for details.

2.1. Latent correlations in 2 × 2 tables. Now we will handle the discretization model (1)

in the bivariate case. Let Z = (Z1, Z2) be a bivariate latent variable with distribution function

F . Denote its marginal distribution functions by F1, F2, and its copula by C. The distribution

of X is parametrised by the 2× 2 table

p =

[
p00 p01

p10 p11

]
, px1x2

= P(X1 = x1, X2 = x2).

Here x1, x2 ∈ {0, 1} are the inputs to a distribution function, as in eq. (2), though in a different

domain. We ignore sampling error, and therefore assume that p is known.

We have P(X1 = 0) = P(Z1 ≤ τ1) = F1(τ1) and P(X2 = 0) = F2(τ2). Therefore, if F1, F2 are

specified, we get the simple relationship τ1 = F−1
1 (p01 +p00) and τ2 = F−1

2 (p10 +p00). Without

specifying F1, F2, nothing can be said about τ1, τ2, as only F1(τ1) and F2(τ2) are identified.

From the remaining degree of freedom in p, we can derive a restriction on C, the copula of Z.

From Sklar’s theorem (2) we get

(5) p00 = P(Z1 ≤ τ1, Z2 ≤ τ2) = C[F1(τ1), F2(τ2)] = C[p01 + p00, p10 + p00].

We are interested in the correlation of Z. This latent correlation is not unique as a function

of p unless we place restrictions on the family of distributions for Z. Let P be a family of

probability measures over Z with finite standard deviations. Define the set ρ (P; p) as the set

of latent correlations compatible with p and P. That is,

(6) ρ (P; p) = {ρ(F ) : F ∈ P, CF [p01 + p00, p10 + p00] = p0,0}

where CF is the copula of F .

Assume P is the class of bivariate normal distributions, as done by Pearson (1900). In

this case the latent correlation is called the tetrachoric correlation. By a change in threshold
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values, we may assume that the marginals are standard normal (Pearson, 1900, eq. (i)-(v)).

By Sklar’s theorem, P = {Cρ(Φ(x1),Φ(x2)) : −1 ≤ ρ ≤ 1} where Φ is the standard normal

cumulative distribution function and Cρ is the normal copula parametrised by the correlation

ρ. From Joe (1997, Section 5.1) and Almeida and Mouchart (2014), we know that ρ 7→ Cρ(u, v)

is strictly increasing for 0 < u, v < 1. The tetrachoric correlation is therefore point-identified

and solves Cρ[p01 +p00, p10 +p00] = p0,0. As noted by Almeida and Mouchart (2014), the same

argument can yield identifiability when assuming other marginals and other one-dimensional

parametric copula classes {Cθ : θ ∈ Θ}. We only require that θ 7→ Cθ(u, v) is increasing for

each 0 < u, v < 1, a property fulfilled by many copulas classes, for instance those catalogued

in Section 5.1 of Joe (1997).

Theorem 1 calculates ρ(P; p) when we place no restrictions on P, see page 15 of the appendix

for the proof.

Theorem 1. Suppose P contains all probability distributions. If none of the elements of p

are zero, then ρ(P; p) = (−1, 1).

Pearson’s correlation depends on the marginals of Z as well as the copula of Z. While

equation (5) gives a restriction on the copula of Z, the marginals of Z are unrestricted, and

this is what we use to show Theorem 1. In contrast, Spearman’s rho, a copula dependency

measure, has partially identified sets with lengths less than two, even when nothing is known

of the distribution of Z, as we will see in the upcoming Proposition 2.

2.2. Partial identification for given latent marginals. From Theorem 1, the point identi-

fication of the latent correlation depends crucially on assumptions on the distribution of Z. As

discussed by Pearson and Heron (1913), such assumptions must be justified by external infor-

mation on the variable Z. Let us suppose that relevant external information is available, but

that this only specifies the marginal distributions F1, F2 and not the full distribution F . Prac-

tically, this may occur in situations where the coordinates of Z have been studied separately,

and from this the likely distribution can be deduced, but the joint distribution is unknown.

Proposition 1. Let P be the set of distributions with marginals F1, F2. Then

ρ(P; p) = [ρ(W [F1, F2; p]), ρ(M [F1, F2; p])],

where ρ(P; p) is defined in equation (6). Here M [F1, F2; p](x1, x2) = Mp(F1(x1), F2(x2)) and

W [F1, F2; p](x1, x2) = Wp(F1(x1), F2(x2)) are defined in terms of the copulas

Mp(u, v) = min
{
u, v, p00 + (u− p01 − p00)+ + (v − p10 − p00)+

}
,

Wp(u, v) = max
{

0, u+ v − 1, p00 − (p01 + p00 − u)+ − (p10 + p00 − v)+
}
.

The proof of Proposition 1 is in Appendix A, page 16.

An important class of applications of normal theory tetrachoric correlations is factor anal-

ysis for ordinal data, as well as more general structural equation models. Since the Pearson
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correlation depends on the marginal distributions of Z, normal marginals are of special interest

as this is the marginal scale of standard methodology.

Computational considerations for how to apply Proposition 1 are given in Appendix A.5,

page 22, including considerable computational simplifications when the marginals are normal.

Spearman’s rho is the Pearson correlation of a copula (Nelsen, 2007, Section 5.1.2), and is

therefore not dependent on the unidentified marginals. Let R(p) be the set of Spearman’s rho

values compatible with p. We therefore have R(p) = ρ(P, p) when P is the set of distributions

with uniform marginals on [0, 1]. We identify the following compact algebraic formula, proved

on page 17 in Appendix A.

Proposition 2. We have R(p) = [6p00p11(p00 + p11)− 1, 1− 6p01p10(p01 + p10)].

2.3. Some illustrations. Let the distribution of the binary vector (X1, X2) be given by the

2× 2 table

(7) p =

[
0.2 0.4

0.1 0.3

]
.

Assuming Z has a normal copula, Spearman’s rho is 0.14; assuming Z is bivariate normal,

Pearson’s correlation is 0.15; assuming normal marginals, ρ(P; p) = [−0.88, 0.93]. The interval

of compatible correlations is very wide. On the other hand, if the distribution of Z is totally

unknown, ρ(P; p) = (−1, 1) by Theorem 1 and R(p) = [−0.82, 0.88] by Proposition 2.

The skew-t family (Azzalini, 2013, Section 4.3) is commonly used to model skewed and

heavy-tailed data. For instance, the multivariate skew-t has been studied in structural equation

models by Asparouhov and Muthén (2016). In addition to the degree of freedom parameter

ν from the t-distribution, it is parametrised by the skewness parameter α. The distribution

is skewed to the right if α > 0, skewed to the left if α < 0, and symmetric if α = 0, with

the degree of skewness increasing with the absolute value of α. When α = 0 and ν = ∞ the

distribution is normal.

To investigate how skewness and heavy tails influence the length of the bounds, we calculated

the length of the bounds for α ∈ (−20, 20) and ν ∈ (3, 100) when both marginals have the same

distribution. The underlying 2 × 2 table is p in eq. (7). The lengths range from 1.95 to 1.76,

with heavier tails (smaller ν) and negative skew being associated with intervals of larger lengths

(the length with normal marginals is 1.81). All these lengths are too large to be useful, but

the maximal difference of approximately 0.20 is larger than expected. As seen in Figure 1, the

relationship between α, ν and the length is quite complicated.

For more illustrative examples, see Appendix A, page 14.

Now we illustrate how the partially identified interval above leads to a partial identification

analysis for a factor model. Since the present article has a bivariate focus, our illustrative factor

model is necessarily simple. Suppose (Z1, Z2) follows the congeneric measurement model[
Z1

Z2

]
=

[
λ1

λ2

]
ξ +

[
ε1

ε2

]
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(1.74, 1.76]

(1.76, 1.78]
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(1.83, 1.86]

(1.86, 1.88]

(1.88, 1.91]

(1.91, 1.93]

(1.93, 1.96]

Figure 1. Lengths of the identification intervals for the skew-t distribution

as a function of the skewness α and degrees of freedom ν.

where ξ is a one-dimensional variable with unit variance, ε1, ε2 are error terms, mutually un-

correlated, and uncorrelated with ξ.

To identify the parameter vector θ = (λ1, λ2, σ) as a function of ρ, we assume that Z1 and

Z2 have unit variance, that the error variances are identical and equal to, say, σ2, and that

λ1 ≥ 0. We get

Cov

[
Z1

Z2

]
= Cor

[
Z1

Z2

]
=

[
λ2

1 + σ2 λ1λ2

λ1λ2 λ2
2 + σ2

]
.

From λ2
1 + σ2 = λ2

2 + σ2 = 1 and λ1λ2 = ρ we get λ1 =
√
|ρ|, λ2 = sign(ρ)λ1, and σ =√

1− |ρ|. Given the identification interval ρ(P; p) = [−0.88, 0.93], the joint identification region

for (λ1, λ2, σ) becomes

H(λ1, λ2, σ; ρ(P; p)) = {(
√
|ρ|,−

√
|ρ|,
√

1− ρ2) | ρ ∈ ρ(P; p) ∩ [−1, 0]}

∪ {(√ρ,√ρ,
√

1− ρ2) | ρ ∈ ρ(P; p) ∩ [0, 1]}.

Figure 2 shows the joint partial identification region for (λ1, λ2, σ), a union of two curves. Under

bivariate normality, the tetrachoric correlation is ρ = 0.15, and (λ1, λ2, σ) = (0.39, 0.39, 0.92).
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σ

Figure 2. Joint partial identification region for (λ1, λ2, σ) when ρ(P; p) =

[−0.83, 93]. The point at (0.39, 0.39, 0.92) corresponds to the fully identified

parameter vector assuming Z is bivariate normal, where ρ = 0.15.

2.4. Quantifying the effect of increasing the degree of knowledge of the latent dis-

tribution. We consider a way to interpolate between only knowing the marginal distributions

of Z to completely specifying the distribution of Z, studying how the sets of possible latent

correlation values change from being exceedingly wide in the case when only marginals are

known, to being point-identified when the full distribution of Z is known.

From Theorem 1 we know that we must be able to specify certain aspects of the distribution

of Z in order to say anything about the latent correlation. We have hitherto only specified

knowledge of the marginals, but other forms of knowledge may be relevant in some cases. The

main ingredient for extending our result to such cases is optimal Fréchet–Höffding distributions

that are compatible with what is known.

Now we study partial identification of latent correlations in the case when the marginals are

known, and a rectangular region of the copula cumulative distribution function is known to

equal the normal copula with a correlation compatible with the generated distribution of X.

From equation (5), we have

p00 = C(ũ, ṽ), ũ = p01 + p00, ṽ = p10 + p00.

Let Q be the unique bivariate normal copula that is compatible with this restriction. We

consider knowledge of C of the form

C(u, v) = Q(u, v) for all (u, v) ∈ H,

where H = {(ũ + ε1, ṽ + ε2) : 0 ≤ ũ + ε1 ≤ 1, 0 ≤ ṽ + ε2 ≤ 1, |ε1| ≤ r1, |ε2| ≤ r2} for some

numbers r1, r2 ≥ 0. That is, we specify that we know the copula of Z exactly in a rectangular

region.
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Optimal Fréchet–Höffding distributions that are compatible with these restrictions are iden-

tified in Corollary 2.2 of Bernard, Jiang, and Vanduffel (2012). From the Höffding formula of

equation (4), we get formulas for the partial identification interval of the latent correlation by

plugging in the resulting upper and lower copulas. As in earlier cases, the property of agree-

ing with the normal copula on a rectangle is stable under convex combinations, meaning that

all values in between the upper and lower correlation limits are attainable, and the partial

identified set is an interval.

In Figure 3 we have numerically identified these intervals for the case when the marginals

are standard normal, Q is the normal copula with correlation 1/2, when (ũ, ṽ) = (1/2, 1/2),

and when r1 = r2 is set to ε which varies in the region [0, 1/2]. When ε = 0, we regain the

bounds from Proposition 1. When ε = 1/2, we have point-identified the latent correlation. We

see that the upper and lower limits of the intervals converge towards each other at 1/2 in a

non-symmetric manner: The upper bound is closer to 1/2 when ε = 0 compared to the lower

bound, and the upper bound therefore moves slower towards its endpoint compared to the

lower bound. In summary, the figure shows how increasing knowledge of the latent distribution

influences the length of the possible values of the latent correlation.

0.0 0.1 0.2 0.3 0.4 0.5

−1.0

−0.5

0.0

0.5

1.0

ε

In
te

rv
al

 b
ou

nd
s

Upper limit
Lower limit

Figure 3. The partial identified interval for the latent correlation with grow-

ing knowledge of the latent distribution when X is compatible with being

generated by an underlying normal variable with correlation 0.5.
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2.5. Partial identification when Z2 is directly observed. We now assume that Z2 is

directly observed. When Z is normal, this gives the biserial correlation of Pearson (1909), see

also Tate (1955a, 1955b). That is, we observe X = (1{Z1 > τ1}, Z2)′. Let the distribution

of X be denoted by p. From p, we deduce F2, F1(τ1) and C(F1(τ1), v) for all v. But we can

neither deduce F1 nor the copula C. The latent correlation is therefore not identified from data

alone. Define ρ(P; p) as the correlations of Z with distribution in P that can generate X. The

next result builds on Tankov (2011). For compactness, we state it in terms of C(F1(τ1), ·) and

F1(τ1) and not directly via the distribution of X.

Proposition 3. Let P be the set of distributions with marginals F1, F2. Let ρ(P; p) be

the set of every possible correlation of Z when Z has a distribution in P that can generate

X = (1{Z1 > τ1}, Z2)′ with distribution p. Then

ρ(P; p) = [ρ(W [F1, F2; p]), ρ(M [F1, F2; p])].

Here M [F1, F2; p](x1, x2) = Mp(F1(x1), F2(x2)) and W [F1, F2; p](x1, x2) = Wp(F1(x1), F2(x2))

are defined in terms of the copulas

Mp(u, v) = min
(
u, v, C(F1(τ1), v) + (u− F1(τ1))+

)
,

Wp(u, v) = max
(
0, u+ v − 1, C(F1(τ1), v)− (F1(τ1)− u)+

)
.

The proof of Proposition A.3 is in the appendix, page 18.

For a numerical illustration, consider the case when Z is normal with standardized marginals

and correlation ρ = 0.15, and let τ1 = 0.25. If Z2 is also dichotomized with τ2 = −0.52, this

gives the 2× 2 table used in the numerical illustration after Proposition 2. Proposition 3 gives

ρ(P; p) = [−0.49, 0.68]. This is considerably tighter than the bounds from Propositions 1 and

2. As in Section 2.2, a partial identification analysis of Spearman’s rho is given by the above

analysis when assuming uniform marginals.

3. The multivariate binary case

3.1. The distinction between distributional and substantial knowledge. Consider the

case when we observe (X,Y ) where Y is a random variable, and X = (1{Z1 > τ1}, 1{Z2 > τ2}).
In the upcoming Theorem 2 we show in a more general setting that we cannot learn anything

more about the distribution of Z from the joint distribution of (X,Y ) compared to what we

know from the distribution of X.

This may seem counter-intuitive, as Y is arbitrary, and may equal Z. If we knew that Y = Z,

instead of just the distribution of (X,Y ), the distribution of Z would have been identified. We

define substantial knowledge as knowledge that is not derivable from the distribution of the

observables. For example, that Y = Z is substantial knowledge, as it cannot be deduced from

the distribution of (X,Y ), as shown in a more general setting in Theorem 2. Theorem 2 also

shows that without substantial knowledge, knowledge of the joint distribution of (X,Y ) is as

informative for identifying the latent correlation as when only knowing the distribution of X.
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Hence, without substantial knowledge, the bivariate case is studied without loss of generality

when considering a bivariate statistic, such as the correlation.

Underlying normality of Z is substantial knowledge, see Section 3.3. Another example is

when Y = Z2 and this relation is known, which leads to the case considered in Section 2.5. An

interesting third example is when Z is known to be discretized into a vector of ordinal variables

X that have multiple categories. When Z is normal, this leads to the polychoric estimator of

Pearson and Pearson (1922). We may represent the coordinates of X by a sequence of binary

variables. For example, we could encode (1{τ1,1 < Z1 < τ1,2}+ 2× 1{Z1 > τ1,2}, 1{Z2 > τ2,1})
by (1{Z1 > τ1,1}, 1{Z2 > τ2,1}, Y ) where Y = 1{Z1 > τ1,2}. Substantial knowledge of the

connection between Y and Z is then given from the structure of the problem. The authors are

preparing a follow-up paper on this topic. A final example, now from a different context, is the

direction and presence of causal effects in structural models, as these cannot always be deduced

from observational data (Pearl, 2009). For example, there are many structural equation models

for continuous data which has the same covariance matrix as other structural equation models

with different causal directions (Bollen, 2014, Chapter 3). Which model is correct therefore

cannot be deduced by statistical means, but requires substantial knowledge.

3.2. Increasing the dimensionality can not help identify parameters when substan-

tial knowledge is lacking. We here briefly consider a more general problem, which encom-

passes the problem of latent correlations as a special case as shown in Example 1. For a

probability measure P on S, and a random variable X, let PX denote the distribution of X,

defined by PX (A) = P (X ∈ A) (Kallenberg, 2006, p.47). The map P 7→ PX is not injective in

general. That is, there will usually be probabilities P 6= P ′ such that PX = P ′X . Let fθ, θ ∈ Θ

be a family of measurable functions. Define two families of measures by

γ (PX) =
{
PZ | Pfθ(Z) = PX for some θ

}
,

γ (PX,Y ) =
{
PZ | Pfθ(Z),Y = PX,Y for some θ

}
.

Here γ (PX) is the family of all distributions PZ that could have generated some PX by means

of fθ, θ ∈ Θ. On the other hand, γ (PX,Y ) is the family of all distributions PZ that could have

generated PX,Y by means of fθ, θ ∈ Θ.

Example 1. When fθ (z) = (1 {z1 > θ1} , 1 {z2 > θ2}) we regain the case in Section 3.1.

Suppose we know the distribution PX,Y . Can this knowledge be more informative than

knowing PX for deducing aspects of the distribution of Z? The following result shows this not

to be possible. It is shown under a mild measure-theoretic assumption stated in the appendix,

page 21.

Theorem 2. We have γ (PX) = γ (PX,Y ).

3.3. On the interpretation of tests for underlying normality. For 2× 2 tables, we saw

in Section 2.1 that there is a bijection between the table p on one hand, and the normal theory
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tetrachoric correlation and τ1, τ2 on the other. Underlying normality therefore has no testable

implications.

As observed by Vaswani (1950) and Muthén and Hofacker (1988), we may increase the di-

mensionality, and study trivariate binary variables to reach a testable implication of underlying

normality. Similar tests for compatibility with normality have been proposed in the general

polychoric case with arbitrary dimensions (Foldnes & Grønneberg, 2019b; Maydeu-Olivares,

2006). While such tests can identify incompatibilities with underlying normality, what are the

implications if such incompatibilities are not detected?

If we do not have substantial knowledge about the normality of the latent variables, Theorem

2 shows that compatibility with underlying multivariate normality cannot reduce the bounds

found from Proposition 1 even when the marginals are known to be normal: Firstly, the bounds

on ρ are optimal when taking into account only the bivariate information in the 2 × 2 table.

Secondly, Theorem 2 shows that we cannot improve the bounds when taking into account

multivariate information. Therefore, if a test for underlying normality is not rejected, or even

when the exact distribution of X is compatible with having been generated from a multivariate

normal Z, this fact is not useful from a partial identification perspective.

3.4. Limitations originating from focusing on the bivariate case. We have focused

on the partial identification of a single latent correlation. Theorem 2 implies that including

multivariate information cannot be used to rule out values attainable by this single correlation

identified by a bivariate analysis. While this is a multivariate result, it still deals with the

identification of a single bivariate correlation. This bivariate identification does not extend to

multivariate identification. That is, we can not use our results to exactly calculate the space

S of latent correlation matrices attainable by a multivariate Z that is compatible with the

distribution of X and specified substantial knowledge of the distribution of Z.

The reason for this is that there need not be multivariate probability distributions which

simultaneously attain the bivariate copulas identified in e.g., Proposition 1. This is similar to

the more familiar setup with confidence regions for population means µ based on a multivariate

normal sample. The standard 95% confidence region for µ is an ellipsoid. From this ellipsoid,

we may deduce 95% confidence intervals for each coordinate of µ by identifying the values

attained by this coordinate in the confidence ellipsoid. But we cannot go from knowing 95%

confidence intervals for each coordinate of µ to knowing a 95% confidence region for µ: All we

know is the rectangle within which the ellipsoid is contained, and this is not enough information

to reconstruct the ellipsoid. For the same reason, we cannot in general deduce S from knowing

how its coordinates vary. While this gives us an upper bound for S, this upper bound is likely

to be crude.

4. Concluding remarks

We have shown that a great deal of substantial knowledge is required to usefully analyse

binary data through the perspective of latent correlations. As mentioned in Section 2, a par-

tial identification analysis can be seen as a sensitivity analysis. Our analysis shows that the
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methodology of tetrachoric correlations is highly sensitive to the assumption of underlying

normality.

Our conclusions complement the analyses of Foldnes and Grønneberg (2019a, 2019b, 2020)

where it was shown that if one simulates non-normal continuous data and discretize it, normal

theory tetrachoric or polychoric correlations estimated from the discretized data can completely

miss the underlying correlation, see for example Figure 2 in the introductory example of Foldnes

and Grønneberg (2019b). The present paper exactly identifies what can be said about the latent

correlation if we only know the discretized data and some specified aspects of the distribution

of Z. If no substantial knowledge of the distribution of Z is known, which may often be the

case, especially in exploratory studies, we have shown that nothing can be said about the latent

correlations.

Even when substantial knowledge allows us to postulate known marginal distributions, the

interval of latent correlations that are consistent with the data is still very wide. Smaller

and more informative intervals are only available by imposing restrictions on the dependency

structure among the underlying latent variables, as we saw in our illustration in Section 2.4.

This kind of substantial knowledge seems hard to justify in many practical applications. We

therefore must conclude that the normal theory tetrachoric correlation coefficient may not be an

informative measure of association for binary variables. We stress that this criticism holds only

if underlying normality is not known. If underlying normality is known, there is no problem

with the tetrachoric correlation as a measure of association.

An important extension of our investigation is the polychoric case. Most psychometric tests

are based on 5-point scales, and the typical size of the set of possible values of latent correlation

matrices in this case is practically important. When marginals are known and the number of

categories increase, we approach the identified case, and the speed at which this occurs is an

interesting subject of investigation. When the marginals are unknown, this convergence does

not take place, as the scale of the correlation is undetermined.

Appendix A. Technical proofs and further numerical illustrations

A.1. Further numerical illustrations for given marginals. We here give further numer-

ical illustrations of the bounds. Since there is a bijection between 2 × 2 tables and the di-

chotomization of standard normal distributions with free correlations and free thresholds τ0, τ1,

we generate 2× 2 tables from proportions of a normal latent variable with varying correlations

and chosen threshold parameters. For each table, we compute the bounds from Proposition

1 with standard normal marginals, as well as the bound from Proposition 2. Recall that the

bound from Proposition 2 is actually the bound from Proposition 1 with uniform marginals.

The lengths of the resulting intervals are shown in Figures 4 and 5. Full computational details

are given in the accompanying R scripts. In Figure 4, we have τ1 = τ2 = 0, which is a best case

scenario. Figure 5 shows a more typical situation, where the length of all bounds are close to

the maximal length of such an interval, namely 2. Figure 5 incidentally also illustrates that

the bound for the Pearson correlation with standard normal marginals does not always contain

the bound for Spearman’s rho. In both Figure 4 and Figure 5, points close or at the endpoints
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Figure 4. Length of bounds for τ1 = 0, τ2 = 0 based on normal or uniform

marginal assumptions. The graph does not cover points close to ρ = ±1.

ρ = ±1 are not included, as different numerical techniques are needed in this region, as done in

an attached R file found in the online supplementary material. It is here found that minimum

lengths are attained at ρ = ±1 and τ1 = τ2 = 0, with a length of 0.67 for normal marginals and

0.5 for uniform marginals. In our analysis, we use the R (R Core Team, 2020) packages copula

(Yan & Others, 2007), cubature (Narasimhan, Johnson, Hahn, Bouvier, & Kiêu, 2020), and

copBasic (Asquith, 2020).

A.2. Proofs for Section 2. We will sometimes use the following principle of duality, as ob-

served by Tankov (2011, Appendix). The usual matrix of probabilities is

P =

[
p00 p01

p10 p11

]
.

The swapped matrix is

P ? =

[
p01 p00

p11 p10

]
.

This matrix has will have the same upper bound as the negative lower bound of P ; this is

because it corresponds to the discretized distribution of (−X,Y ). Hence we may compute, say,

a lower bound via an upper bound by using this duality. Some of the upcoming arguments

apply this technique when convenient.

Proof of Theorem 1. We show that |ρ| 6= 1 by contradiction. Suppose |ρ| = 1. By the Cauchy-

Schwarz inequality, Z1 = a + bZ2 for some numbers a, b. For any thresholds τ1, τ2, the prob-

abilities of X equals the probability of observing Z in one of the quadrants x > τ1, y > τ2 or

x < τ1, y < τ2 or x > τ1, y < τ2 or x < τ1, y > τ2. Since any two straight lines intersect at
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Figure 5. Length of bounds for τ1 = 1.2, τ2 = 1.2 based on normal or uniform

marginal assumptions. The graph does not cover points close to ρ = ±1.

either one or zero points, one quadrant will have zero probability, therefore contradicting our

assumption that none of the cell probabilities are zero. Therefore, |ρ| = 1 is incompatible with

the distribution of X.

Now we show that any ρ ∈ (0, 1) is compatible with X. To do this, let a, b > 0 be two

positive real numbers and define the random variable

Z(a, b) | X =


(a, a) X = (1, 1),

(b,−b) X = (1, 0),

(−a,−a) X = (0, 0),

(−b, b) X = (0, 1).

Then pr[Z(a, b) ∈ Aij ] = pr[X = (i, j)] = pij when Aij are the quadrants A00 = [−∞, 0] ×
[−∞, 0], A01 = [0,∞] × [−∞, 0], A10 = [−∞, 0] × [0,∞], and A11 = [0,∞] × [0,∞]. Thus

Z(a, b) induces X through discretization when τ1 = τ2 = 0. We now let a = 1/b. When

b → 0+, we get a correlation converging to 1. When b → ∞, we get a correlation converging

to −1. This is visually obvious, as the points get closer and closer to a straight line, and is

confirmed algebraically in the online appendix accompanying this paper. At the end of the

online appendix, we also show that any intermediate value is possible, which is a consequence

of the continuity of the correlation of Z as a function of b. �

Proof of Proposition 1. Theorem 3.2.3 of Nelsen (2007, p. 70) shows that all copulas C that

fulfil eq. (5) fulfil Wp(u, v) ≤ C(u, v) ≤ Mp(u, v) and that Wp,Mp are copulas fulfilling the

constraint in eq. (5). The Höffding representation in eq. (4) therefore implies ρ(Wp[F1, F2]) ≤
ρ(F ) ≤ ρ(Mp[F1, F2]). Since Wp,Mp are copulas, this bound cannot be improved. We now
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show that the interval with limits as in the bound for ρ(F ) equals ρ(P, p). We use an argument

that goes back to Fréchet (1958), see (Nelsen, 2007, p. 15, exercise 2.4).

Let ρL = ρ(Wp[F1, F2]) and ρU = ρ(Mp[F1, F2]). Suppose ρ ∈ [ρL, ρU ]. Then there is an

0 ≤ α ≤ 1 such that

(8) αρL + (1− α)ρU = ρ.

Let Cα(u, v) = αWp(u, v) + (1 − α)MP (u, v) which is a convex combination of copulas, and

hence a copula (Nelsen, 2007, Exercise 2.3 and 2.4). Let Hα(x1, x2) = Cα(F1(x1), F2(x2)).

By the second half of Sklar’s theorem, Hα is a distribution function with marginals F1, F2.

Since F1(τ1) = p01 + p00 and F2(τ2) = p10 + p00, and p00 = Hα(τ1, τ2) = Cα(F1(τ1), F2(τ2)) =

Cα(p01 + p00) the copula Cα fulfils eq. (5). Therefore, Hα ∈ P. We now show that ρ(Hα) = ρ

using the Höffding representation from eq. (4) in Section 2.

Firstly, we have F1(x1)F2(x2) = αF1(x1)F2(x2)+(1−α)F1(x1)F2(x2), and so by the Höffding

representation equation (4), the covariance of Hα equals

ρ(Hα) = sd(F1)−1 sd(F2)−1

∫ ∞
−∞

∫ ∞
−∞

Cα(F1(x1), F2(x2))− F1(x1)F2(x2) dx1dx2

= sd(F1)−1 sd(F2)−1

∫ ∞
−∞

∫ ∞
−∞

αCL(F1(x1), F2(x2))− αF1(x1)F2(x2)

+ sd(F1)−1 sd(F2)−1

∫ ∞
−∞

∫ ∞
−∞

(1− α)CU (F1(x1), F2(x2))

− (1− α)F1(x1)F2(x2) dx1dx2

= αρ(Wp[F1, F2]) + (1− α)ρ(Mp[F1, F2])

= ρ

using equation (8). �

Proof of Proposition 2. Define a = p00, b = p00 + p01, c = p00 + p10 and d = c+ b− a. We will

calculate the integral
∫

[0,1]2
CU (u, v) dudv. Define the set AF = [a, d]× [a, d]. Then

∫
[0,1]2

CU (u, v) dudv =

∫
AF

CU (u, v) dudv +

∫
ACF

CU (u, v) dudv.(9)

On ACF it holds that CU (u, v) = min (u, v). Since
∫

[0,1]2
min (u, v) dudv = 1/3 and

∫ d

a

∫ d

a

min (u, v) dudv =
1

3
(a+ b+ c) (a+ b− 2c)

the second integral in (9) equals∫
AcF

CU (u, v) dudv =
1

3
− 1

3
(b− a) (c− a) (b+ c) .
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The next part is
∫
AF

CU (u, v) dudv. It is handy to divide AF into four rectangles

ABL = [a, b]× [a, c] ,

ATR = [b, d]× [c, d] ,

ATL = [a, b]× [c, d] ,

ABR = [b, d]× [a, c] .

At ABL we have CU (u, v) = a and∫
ABL

CU (u, v) dudv = a (b− a) (c− a) .

At ATR, CU (u, v) = −d+ u+ v and its integral is∫
ATR

CU (u, v) dudv =
1

2
(b− a) (c− a) (b+ c) .

At ATL, CU (u, v) = min (u, a− c+ v) and the integral equals∫
ATL

CU (u, v) dudv =
1

3
(b− a)

2
(2a+ b) ,

and at ABR, CU (u, v) = min (v, a− b+ u) the integral is∫
ABR

CU (u, v) dudv =
1

3
(c− a)

2
(2a+ c) .

Add all the expressions together, make the substitutions b = p01 + p00, a = p10 + p00 and

simplify to get ∫
[0,1]2

CU (u, v) dudv =
1

6
(2− 3p01p10 (p01 + p10))

hence

12

∫
[0,1]2

CU (u, v) dudv − 3 = 1− 6p01p10 (p01 + p10)

as claimed. The lower bound follows by duality. �

The reasoning behind the decomposition can be seen in Figure 6, where each colour corre-

spond to a continuous part of the piece-wise continuous function CU (u, v).

A.3. Proofs for Section 2.5.

Proof of Proposition 3. We follow the structure of the argument of Proposition 1. To help

simplify the argument, we structure the argument in a series of lemmas. For easy reference,

these lemmas are stated inside the present proof. The proofs of these supporting lemmas follow

after the present proof is complete.

Firstly, let us identify what can be said of C when knowing the distribution of X, which

is given by the function p(x1, y) = P(X1 = x1, Z2 ≤ y), for x1 = 0, 1 and y a real number.

We have that p(0, y) = P(X1 = 0, Z2 ≤ y) = P(Z1 ≤ τ1, Z2 ≤ y) = C(F1(τ1), F2(y)). Since

p(0, y) + p(1, y) = F2(y), and therefore p(1, y) = F2(y)− p(0, y), we do not get new knowledge

from similarly expressing p(1, y) in terms of the copula C. Our knowledge of C is therefore that

(10) C(u, v) = p(0, F−1
2 (v)) ((u, v) ∈ U = {(u, v) | u = F1(τ1), 0 ≤ v ≤ 1}) .
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Figure 6. Colour-coded graph of the bound copula. Each colour correspond

to a continuous part of the piece-wise continuous function CU (u, v).

We now use a constrained Fréchet–Höffding bound found in Tankov (2011) to take into account

this knowledge.

Lemma 1. Any copula C that satisfies equation (10) also satisfies

CL,U (u, v) ≤ C(u, v) ≤ CL,U ,

where CL,L and CU,U are

CU,U (u, v) = min(u, v,min
b

[C(F1(τ1), b) + (u− F1(τ1))+ + (v − b)+]),(11)

CL,U (u, v) = max(0, u+ v − 1,max
b

[C(F1(τ1), b)− (F1(τ1)− u)+ − (b− v)+]).(12)

Moreover, both CL,U and CU,U are copulas that satisfy equation (10).

Let us now simplify the expressions for CL, CU through identifying the inner minimum or

maximum in CL, CU respectively. This will show that they are equal to the expressions in the

statement of the result. This is achieved in the following lemma.

Lemma 2. The copulas CL,U and CU,U are equal respectively to Wp,Mp from the statement

of Proposition 3. That is,

CU,U (u, v) = min(u, v, min
b∈[0,1]

[C(F1(τ1), b) + (u− F1(τ1))+ + (v − b)+])(13)

= min(u, v, C(F1(τ1), v) + (u− F1(τ1))+),
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and

CU,U (u, v) = max(u, u+ v − 1, max
b∈[0,1]

[C(F1(τ1), b)− (F1(τ1)− u)+ − (b− v)+]),(14)

= max(0, u+ v − 1, C(F1(τ1), v)− (F1(τ1)− u)+).

From this, the Höffding representation from eq. (3) in Section 2 gives for any F ∈ P which

is compatible with p that ρ(W [F1, F2; p]) ≤ ρ(F ) ≤ ρ(M [F1, F2; p])]. We now show that any

values within this interval can be attained as correlations in ρ(P, p).
As in the proof of Proposition 1, we study convex combinations ofWp andMp. For 0 ≤ α ≤ 1,

we study Cρ(u, v) = αWp + (1 − α)Mp. That this class induces all correlation values in the

stated interval follows exactly as in the proof of Proposition 1. What is left to show is that the

convex combination also fulfil the restriction in eq. (10). Now from Lemma 1, we have that both

Wp and Mp fulfil eq. (10), i.e., that Wp(F1(τ1), v) = Mp(F1(τ1), v) = p(0, F−1
2 (v)). Therefore,

we also have Cρ(F1(τ1), v) = αCL,U (F1(τ1), v) + (1−α)CU,U (F1(τ1), v) = αp(0, F−1
2 (v)) + (1−

α)p(0, F−1
2 (v)) = p(0, F−1

2 (v)). �

We now prove the two lemmas stated within the proof of Proposition 3.

Proof of Lemma 1. Since U is compact, Theorem 1 (i) of Tankov (2011) shows the claimed

bound, and that CL,U and CU,U fulfil equation (10).

We now check the conditions of Theorem 1 (ii) of Tankov (2011) which shows that CL,U

and CU,U are actually copulas. What is required is that U is both a increasing and a so-called

decreasing set, as defined in Tankov (2011, Section 2, bottom of p. 390): A set S ⊂ [0, 1]2

is increasing if for all (a1, b1), (a2, b2) ∈ S we have either (i) a1 ≤ a2 and b1 ≤ b2 or (ii)

a1 ≥ a2 and b1 ≥ b2. For S = U this is trivially fulfilled, since if (a1, b1), (a2, b2) ∈ U we have

a1 = a2 = F1(τ1) as we only have one possible element in the first coordinate, and therefore we

trivially also have that either b1 ≤ b2 or b1 ≥ b2 by tautology.

Similarly, recall that a set S ⊆ [0, 1]2 is decreasing if for all (a1, b1), (a2, b2) ∈ S we have

either (i) a1 ≤ a2 and b1 ≥ b2 or (ii) a1 ≥ a2 and b1 ≤ b2. This is again trivially fulfilled. �

For the proof of Lemma 2, we need the following technical result.

Lemma 3. Let C be a bivariate copula distribution function and 0 ≤ a ≤ 1. Then

C(a, v)− v is decreasing in v when 0 ≤ v ≤ 1.

Proof. By definition (Nelsen, 2007, p. 8), a bivariate copula satifies C(1, v) = v when 0 ≤ v ≤ 1

and

C(u1, v1)− C(u2, v1) ≥ C(u1, v2)− C(u2, v2)

when 0 ≤ u1 ≤ u2 ≤ 1 and 0 ≤ v1 ≤ v2 ≤ 1. Now choose u1 = a and u2 = 1, and

C(a, v1)− v1 ≥ C(a, v2)− v2 when 0 ≤ v1 ≤ v2 ≤ 1, as claimed. �
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Proof of Lemma 2. We start with CU,U . We must show that

CU,U (u, v) = min(u, v, min
b∈[0,1]

[C(F1(τ1), b) + (u− F1(τ1))+ + (v − b)+]),

= min(u, v, C(F1(τ1), v) + (u− F1(τ1))+),

where the first equality is from Lemma 1 while the second line is the definition of Mp(u, v) from

Proposition 3. The second equality holds if, and only if,

min
b∈[0,1]

[C(F1(τ1), b) + (v − b)+] = C(F1(τ1), v),

which is true if and only if C(F1(τ1), b)+(u−F1(τ1))+ +(v−b)+ is minimized when b = v. Now

we show this is indeed the case. For b ≤ v, we have 0 ≤ v−b, and so h(b) = C(F1(τ1), b)+v−b,
which is decreasing by Lemma 3 (p. 20). For b > v, we have v − b < 0, and so h(b) =

C(F1(τ1), b), which is increasing. The minimum is therefore attained at b = v and

min
b∈[0,1]

[C(F1(τ1), b) + (v − b)+] = C(F1(τ1), v),

as claimed.

The case of CL,U is similar, as we have to show that

CU,U (u, v) = max(u, u+ v − 1, max
b∈[0,1]

[C(F1(τ1), b)− (F1(τ1)− u)+ − (b− v)+]),

= max(0, u+ v − 1, C(F1(τ1), v)− (F1(τ1)− u)+).

Again, the first line is from Lemma 1 and second line is the definition of Wp from Proposition

3. The second equality holds if, and only if,

max
b∈[0,1]

[C(F1(τ1), b)− (b− v)+] = C(F1(τ1), v).

This equality is true by the same reasoning as above. For b ≤ v, we have b−v ≤ 0 and so g(b) =

C(F1(τ1), b), which is increasing. For b > v, we have b−v > 0 and so g(b) = C(F1(τ1), b)−b+v,

which is decreasing by Lemma 3 (p. 20). Therefore, the maximum is attained at b = v, and

max
b∈[0,1]

[C(F1(τ1), b)− (b− v)+] = C(F1(τ1), v).

as claimed. �

A.4. Proof for Section 3.2. Let S = (Ω,Σ) be a measure space. We assume S is an un-

countable standard Borel space, i.e., it can be identified with the Borel space over the real

numbers. We also assume that S is a rich Borel space, meaning it supports an independent

uniform random variable that can be used as a randomization device (Kallenberg, 2006, p.112).

This assumption can be made with practically no loss of generality.

Proof of Theorem 2. The inclusion γ (PX,Y ) ⊆ γ (PX) is true for any Z and S. Choose a PX ,

a PX,Y compatible with PX , and a PZ ∈ γ (PX). We must show PZ ∈ γ (PX,Y ), or Pfθ(Z),Y =

PX,Y for some θ ∈ Θ. As a candidate θ choose one of the witnesses of Pfθ(Z) = PX . By

assumption there are two variables X,Y in S with distribution PX,Y such that X is distributed

as fθ (Z) when Z is distributed according to PZ . By Corollary 6.11 of Kallenberg (2006), there
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is a variable Z ′ in S such that X = fθ (Z ′) and PZ = P ′Z . But then Pfθ(Z′),Y = PX,Y and we

are done. �

A.5. Computational simplifications when applying Proposition 1. The integrals defin-

ing the end points of ρ(P, p) in Proposition 1 can be calculated directly via numerical inte-

gration. However, this approach is computationally intensive, as we integrate functions with

jumps. We here simplify the integrals in Proposition 1 by splitting the integrals into regions

without jumps. This considerably reduces the computational burden of numerical integration.

The analysis is analogous to the proof in Proposition 2, except that the integrals at ABR and

ATR must be divided in two.

We only treat the upper bound. The lower bound can be found by duality. In the follow-

ing argument, we assume that F1, F2 have variance one, an assumption made without loss of

generality, as it can be achieved by re-scaling.

Define

g (u, v) = M [F1, F2; p] (F1 (u) , F2 (v))−min (F1 (u) , F2 (v)) .

By the Höffding formula for covariance, we have

ρ(M [F1, F2; p]) =

∫
R2

M [F1, F2; p] (F1 (u) , F2 (v))− F1 (u)F2 (v) dudv

= J1 +

∫
R2

g (u, v) dudv

where

J1 =

∫
R2

min (F1 (u) , F2 (v))− F1 (u)F2 (v) dudv.

Here, J1 is the covariance of the distribution with the Fréchet–Höffding upper bound copula

and marginals F1, F2. The integral J1 is seen to be finite by the Cauchy-Schwarz inequality,

since it is a covariance where the marginals are assumed to have finite variance. The integral∫
R2 g (u, v) dudv can be calculated using a similar decomposition as the one used in Proposition

2. We see that ρ(M [F1, F2; p]) =
∑8
i=1 Ji where

J2 = −
∫
B

min (F1 (u) , F2 (v)) dudv,

J3 =

∫
ABL

M [F1, F2; p] (F1 (u) , F2 (v)) dudv,

J4 =

∫
ATR

M [F1, F2; p] (F1 (u) , F2 (v)) dudv,

J5 =

∫
TTL1

M [F1, F2; p] (F1 (u) , F2 (v)) dudv,

J6 =

∫
TTL1

M [F1, F2; p] (F1 (u) , F2 (v)) dudv,

J7 =

∫
TBR1

M [F1, F2; p] (F1 (u) , F2 (v)) dudv,

J8 =

∫
TBR2

M [F1, F2; p] (F1 (u) , F2 (v)) dudv.
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The domains of integration can be seen in Figure 6. Here RBL is the bottom-left rectangle,

TTL1 the first top-left triangle, et cetera.

When the marginals are normal, concrete formulas for the integrals over J3 and J4 are

possible to derive by using well-known results for normal integrals (Owen, 1980). A simple

algebraic formula such as that given in Proposition 2 seems out of reach in this case, as the

integrals J5, J6, J7, J8 are too complicated.

In our numerical implementation, we assume that F1, F2 are equal, and are capable of sup-

porting perfect correlations of ±1, as is well known to hold for normal marginals. As shown

in Section 2, the maximum possible correlation with marginals F1, F2 equals J1, and so this

assumption amounts to J1 = 1.
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hebdomadaires des séances de l’Académie des sciences(2), 2719–2720. Retrieved from https://

gallica.bnf.fr/ark:/12148/bpt6k723q/f661.image
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ONLINE APPENDIX FOR “PARTIAL IDENTIFICATION OF LATENT

CORRELATIONS WITH BINARY DATA”

STEFFEN GRØNNEBERG, JONAS MOSS, AND NJÅL FOLDNES

Besides this online appendix, the online supplementary material accompanying the paper

“Partial identification of latent correlations with binary data” includes several R-scripts. These

are described in the text-file index.txt.

1. Detailed algebraic verification of Theorem 1

For completeness, we here provide a complete algebraic verification of Theorem 1. The

calculations are tedious but elementary.

The distribution of Z = (Z1, Z2) is

P(Z = (a, a)) = p11, P(Z = (b,−b)) = p10,

P(Z = (−a,−a)) = p00, P(Z = (−b, b)) = p01.

From this we compute

E(Z1Z2) = a2(p11 + p00)− b2(p10 + p01).

The marginal distributions of Z1, Z2 are

P(Z1 = a) = p11 = P(Z2 = a), P(Z1 = b) = p10 = P(Z2 = −b)

P(Z1 = −a) = p00 = P(Z2 = −a), P(Z1 = −b) = p01 = P(Z2 = b).

We therefore have

E(Z1) = ap11 + bp10 − ap00 − bp01

= a(p11 − p00) + b(p10 − p01),

E(Z2) = ap11 − bp10 − ap00 + bp01

= a(p11 − p00)− b(p10 − p01)

= EZ1 − 2b(p10 − p01).

Therefore,

Cov (Z1, Z2) = E(Z1Z2)− E(Z1) E(Z2)

= a2(p11 + p00)− b2(p10 + p01)

− [a(p11 − p00) + b(p10 − p01)][a(p11 − p00)− b(p10 − p01)]

= a2(p11 + p00)− b2(p10 + p01)− a2(p11 − p00)2 + b2(p10 − p01)2

= a2(p11 + p00 − (p11 − p00)2)− b2(p10 + p01 − (p10 − p01)2).

1



2 STEFFEN GRØNNEBERG, JONAS MOSS, AND NJÅL FOLDNES

We also have

E(Z2
1 ) = E(Z2

2 )

= a2p11 + b2p10 + a2p00 + b2p01

= a2(p11 + p00) + b2(p10 + p01).

Therefore,

Var (Z1) = E(Z2
1 )− E(Z1)2

= a2(p11 + p00) + b2(p10 + p01)− [a(p11 − p00) + b(p10 − p01)]2

= a2(p11 + p00) + b2(p10 + p01)− a2(p11 − p00)2

− 2ab(p11 − p00)(p10 − p01)− b2(p10 − p01)2

= a2(p11 + p00 − (p11 − p00)2) + b2(p10 + p01 − (p10 − p01)2)−

2ab(p11 − p00)(p10 − p01),

and, using that E(Z2) = E(Z1), and that E(Z2) = E(Z1)− 2b(p10 − p01), we get

Var (Z2) = E(Z2
2 )− E(Z2)2

= E(Z2
1 )− (E(Z1)− 2b(p10 − p01))

2

= E(Z2
1 )− E(Z1)2 + 4 E(Z1)b(p10 − p01)− 4b2(p10 − p01)2

= Var (Z1) + 4[a(p11 − p00) + b(p10 − p01)] · b(p10 − p01)− 4b2(p10 − p01)2

= Var (Z1) + 4ab(p11 − p00)(p10 − p01) + 4b2(p10 − p01)2 − 4b2(p10 − p01)2

= Var (Z1) + 4ab(p11 − p00)(p10 − p01).

We want to calculate

ρ =
Cov (Z1, Z2)

(Var (Z1) Var (Z2))
1/2

.

We first calculate the product Var (Z1) Var (Z2). We now use a = 1/b. This simplifies the

expressions to

Var (Z1) = a2(p11 + p00 − (p11 − p00)2) + b2(p10 + p01

− (p10 − p01)2)− 2ab(p11 − p00)(p10 − p01)

= q − 2∆,

where q = a2(p11+p00−(p11−p00)2)+b2(p10+p01−(p10−p01)2) and ∆ = (p11−p00)(p10−p01).

Similarly, Var (Z2) = q + 2∆, and therefore,

Var (Z1) Var (Z2) = (q − 2∆)(q + 2∆)

= q2 − 4∆2

= a4c21 + b4c22 + 2a2b2c1c2 − 4∆2.

Where c1 = p11 + p00 − (p11 − p00)2, and c2 = p10 + p01 − (p10 − p01)2. We note that c1, c2,∆

does not vary with a or b.
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In terms of the introduced constants, we recognize that

Cov (Z1, Z2) = a2c1 − b2c2.

We therefore have

ρ =
Cov (Z1, Z2)

(Var (Z1) Var (Z2))
1/2

=
a2c1 − b2c2√

a4c21 + b4c22 + 2a2b2c1c2 − 4∆2
.

Using a = 1/b, we see that

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

,

where d = 2a2b2c1c2 − 4∆2 = d = 2c1c2 − 4∆2 does not depend on a, b.

Case 1: Letting b→∞, giving the negative end-point. We use a = 1/b and get

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

=
b−2c1 − b2c2√
b−4c21 + b4c22 + d

=
b−4c1 − c2√

b−4(b−4c21 + b4c22 + d)

=
b−4c1 − c2√

b−8c21 + c22 + b−4d)

→ −c2
|c2|

.

If c2 > 0, this shows that ρ→ −1. We recall that c22 = (p10 + p01 − (p10 − p01)2)2 ≥ 0, and we

only need to show that c22 6= 0. We have

p10 + p01 − (p10 − p01)2 = p10 + p01 − p2
10 + 2p10p01 − p2

01

= (p10 − p2
10) + (p01 − p2

01) + 2p10p01.

Since p01 and p10 are in (0, 1), we have p10p01 > 0. We have that p10 > p2
10 and p01 > p2

01, and

therefore p10 − p2
10 > 0 and p01 − p2

01 > 0. Therefore, c22 6= 0.

Case 2: Letting b→ 0+, giving the positive end-point. We use b = 1/a and the exact same

steps as above to get that

ρ =
a2c1 − b2c2√
a4c21 + b4c22 + d

→ c1
|c1|

.
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If c1 > 0, this shows that ρ → 1. We recall that c21 = (p11 + p00 − (p11 − p00)2)2 ≥ 0, and we

only need to show that c21 6= 0. We have

p11 + p00 − (p11 − p00)2 = p11 + p00 − p2
11 + 2p11p00 − p2

00

= (p11 − p2
11) + (p00 − p2

00) + 2p11p00.

Since p00 and p11 are in (0, 1), we have p11p00 > 0. We have that p11 > p2
11 and p00 > p2

00, and

therefore p11 − p2
11 > 0 and p00 − p2

00 > 0. Therefore, c21 6= 0.

Let ρb be the correlation of Z(b) = Z(1/b, b) for b > 0. We recall

ρb =
b−4c1 − c2√

b−8c21 + c22 + b−4d)

and c1, c2 > 0. Since this is a continuous function with limits −1 and 1, every correlation in

(−1, 1) is attained by the intermediate value theorem.
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