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The sensitivity of structural equation modeling with ordinal data to
underlying non-normality and observed distributional forms

Njål Foldnes and Steffen Grønneberg
BI Norwegian Business School

Structural equation modeling (SEM) of ordinal data is often performed using normal theory
maximum likelihood estimation based on the Pearson correlation (cont-ML) or using least
squares principles based on the polychoric correlation matrix (cat-LS). While cont-ML ignores
the categorical nature of the data, cat-LS assumes underlying multivariate normality. The-
oretical results are provided on the validity of treating ordinal data as continuous when the
number of categories increases, leading to an adjustment to cont-ML (cont-ML-adj). Previ-
ous simulation studies have concluded that cat-LS outperforms cont-ML, and that it is quite
robust to violations of underlying normality. However, this conclusion was based on a data
simulation methodology equivalent to discretizing exactly normal data. The present study
employs a new simulation method for ordinal data to re-investigate whether ordinal SEM is
robust to underlying non-normality. In contrast to previous studies, we include a large set
of ordinal distributions, and our results indicate that ordinal SEM estimation and inference is
highly sensitive to the interaction between underlying non-normality and the ordinal observed
distributions. Our results show that cont-ML-adj consistently outperforms cont-ML, and that
cat-LS is less biased than cont-ML-adj. The sensitivity of cat-LS to violation of underlying
normality necessitates the need for a test of underlying normality. A bootstrap test is found to
reliably detect underlying non-normality.

Keywords: Ordinal data, latent variable models, underlying normality, simulation

Variables measured on an ordered categorical scale
abound in the psychological and educational sciences. Such
ordinal variables often stem from Likert-type scales, and are
frequently used as indicators for latent variables that are re-
lated according to substantive theory in a structural equation
model (SEM). In the following we use the term ordinal SEM
to refer to SEM applied to ordinal data. Initially, SEM es-
timators were developed under the assumption of multivari-
ate normal continuous data (Jöreskog, 1967), with later de-
velopments for non-normal continuous data (Browne, 1984;
Satorra & Bentler, 1988). In principle, one should not apply
estimators based on continuous data to ordinal indicators,
since data at the ordinal level of measurement do not sup-
port calculation of means and covariances. However, many
researchers still model data with ordinal indicators as con-
tinuous (e.g., Brennan et al., 2017; Gaspard et al., 2018;
Marsh, Abduljabbar, et al., 2013; Marsh, Vallerand, et al.,
2013; Neff, Whittaker, & Karl, 2017), using the normal the-
ory maximum likelihood (ML) estimator, with robustified
standard errors and model fit statistics. We refer to this con-
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tinuous methodology as cont-ML. One reason for using cont-
ML with ordinal data is the relative ease of handling missing
data and large complex models.

A popular approach of modeling the ordinal nature of the
data is to add a discretization process based on thresholds
to the standard SEM. This approach was first proposed by
Christoffersson (1977) for binary data, and subsequently de-
veloped to handle observed variables measured with more
than two ordered categories (Jöreskog, 1994; Muthén, 1984).
First, for any pair of ordinal variables, the so-called poly-
choric correlation is estimated. This is the correlation be-
tween two underlying unobserved variables that are posited
to have created the observed categorical data through dis-
cretization. Since the time of Pearson (1900) it has been a
standard assumption that these underlying variables follow
a normal distribution. In the second stage, the model pa-
rameters are estimated by fitting the model to the matrix of
polychoric correlations using least-square principles, and we
refer to this methodology as cat-LS. In cat-LS formulas for
standard errors and model test statistics (Muthén, 1993) are
similar to those proposed for non-normal data in the con-
tinuous case (Satorra & Bentler, 1988)1. Simulation stud-

1In Mplus (Muthén & Muthén, 2012) cont-ML and cat-LS
are available as MLR and WLSMV estimation, respectively. In
lavaan (Rosseel, 2012) the cont-ML is obtained with “estima-
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ies (e.g., Beauducel & Herzberg, 2006; Li, 2016b; Rhem-
tulla, Brosseau-Liard, & Savalei, 2012) indicate that cat-LS
in general outperforms cont-ML. However, the discrepancy
between these two methodologies has been reported to de-
crease with five or more categories that are symmetrically
distributed (e.g., Rhemtulla et al., 2012).

Both cont-ML and cat-LS are frequently used to esti-
mate SEM models with ordinal data, and their properties
have been extensively studied in many simulation studies.
The consequences of underlying non-normality on estima-
tion bias have been thoroughly investigated (e.g., Flora &
Curran, 2004; Li, 2016a; Quiroga, 1994; Rhemtulla et al.,
2012), resulting in a general consensus that ordinal SEM
is quite robust to moderate violation of underlying normal-
ity. However, these studies were conducted using simula-
tion methodology which is equivalent to simulating exactly
normal data (Grønneberg & Foldnes, 2019). In the present
study, we reassess the robustness issue using a newly de-
veloped simulation methodology (Foldnes & Grønneberg,
2019) which ensures proper violation of underlying normal-
ity. We also propose and evaluate an alternative to cont-ML
which takes advantage of the discretization model employed
by cat-LS. We refer to this new method as cont-ML-adj. In-
ference for cont-ML-adj utilizes the same robustification for-
mulas for standard errors and model fit statistics as cont-ML
and cat-LS.

Our research questions are as follows. First, how sensi-
tive are cont-ML, cont-ML-adj, and cat-LS to variation in
the observed ordinal distributions? That is, we will study the
stability, or lack thereof, of correlation and ordinal SEM es-
timates under a large number of discretizations of the same
underlying continuous distribution. Previous studies (e.g.,
Beauducel & Herzberg, 2006; Li, 2016a, 2016b; Muthén &
Kaplan, 1985; Rhemtulla et al., 2012) have included only
a small set of threshold configurations to generate ordinal
data, typically consisting of a symmetrical distribution and
one or two asymmetrical observed ordinal distributions. The
focus in these studies has been to compare the performance
of different estimators, but using only a handful of threshold
configurations. In the present study we utilize 150 threshold
configurations in each design condition to assess the extent to
which cont-ML, cont-ML-adj, and cat-LS estimation depend
on the specific marginal ordinal distribution. To the best of
our knowledge, this is a novel perspective leading to insights
into the sensitivity of the three estimators to the distributional
shapes of the ordinal univariate marginals.

The second research question is: How sensitive are cont-
ML, cont-ML-adj, and cat-LS to departures from normality
in the underlying dataset? In the case where the observed or-
dinal data are produced by the discretization of an underlying
continuous vector that does not have the multivariate normal
distribution, the normal theory polychoric estimator will typ-
ically be biased (Foldnes & Grønneberg, 2019b). That is,

the true correlation matrix among the underlying continuous
variables will differ from the estimated polychoric correla-
tions, even at the population level. This could have a pro-
found impact on the second stage of cat-LS, with the SEM
model estimated from a biased polychoric correlation ma-
trix. Hence, in the case of underlying non-normality, a well-
fitting SEM may be estimated with substantial bias in model
parameters and fit indices, which invalidates inference. We
apply newly developed simulation methodology for ordinal
data in the context of a realistic SEM model to investigate
the extent to which underlying non-normality produces bias
in parameter estimation, confidence interval (CI) coverage
rates, and in model fit assessment.

Our third research question relates to the proposed cont-
ML-adj estimator. What are its theoretical properties, in re-
lation to both cont-ML and cat-LS? And how does it empiri-
cally perform in the setting of a realistic SEM model?

Our fourth and final question is: How well can we detect
underlying non-normality in an ordinal dataset, in the con-
text of a medium-sized SEM model? In conditions where
underlying non-normality is detrimental to SEM inference,
we aim at detecting the underlying non-normality using a
statistical test. A bootstrap test for this purpose has recently
been proposed (Foldnes & Grønneberg, 2019b), and found to
outperform the test of Maydeu-Olivares (2006) in a limited
simulation study with small- and medium-sized factor mod-
els. In the present article we evaluate the performance of this
bootstrap test in a medium-sized SEM setting.

The remainder of the article is structured as follows: We
first provide a concise description of cont-ML, cont-ML-adj
and cat-LS, and then describe a new simulation method for
ordinal data that we employ in the present study. Next, a
literature review provides the context of our research ques-
tions. This is followed by a discussion of the complex-
ity of interpreting ordinal SEM simulation studies, which
provides justification for employing the new simulation ap-
proach. Theoretical results on the consistency of our three
estimators as the number of categories increase are provided.
We report results from three empirical studies on the perfor-
mance of cont-ML, cont-ML-adj and cat-LS in the context
of a medium-sized SEM. We investigate how the shape of
ordinal data distributions and underlying non-normality af-
fect parameter bias, confidence interval coverage and model
fit testing. The performance of the bootstrap test for under-
lying non-normality is also evaluated. We conclude with a
discussion of the results with recommendations for applied
researchers.

Estimation methods

There are two popular limited-information approaches to
ordinal SEM. The first approach is cont-ML, which calcu-

tor=MLM/MLMV” and cat-LS by specifying the "ordered" option.
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lates the correlation or covariance matrix directly on the or-
dinal observations, which is then provided as input to the
standard normal theory maximum likelihood estimator. The
second approach is cat-LS, where we first estimate the cor-
relation matrix of an underlying continuous random vector
X∗ and then uses least squares estimation methods to fit the
proposed SEM to the estimated correlation matrix (Muthén,
1984). This approach is implemented in current software
packages such as EQS (Bentler, 2006), Mplus (Muthén &
Muthén, 2012), LISREL (Jöreskog & Sörbom, 2015), and
lavaan (Rosseel, 2012), and is frequently employed by re-
searchers.

cat-LS is based on the following discretization model. We
have n independent and identically distributed observations
of a random ordinal vector X = (X1, X2, . . . , Xp)′. We assume
that each Xk may take on discrete values xk,1, . . . , xk,K for
some number K, and that the data stem from discretization
of an unobserved continuous p-dimensional random vector
X∗ = (X∗1, X

∗
2, . . . , X

∗
p)′ as follows:

Xk =


xk,1, if X∗k ≤ τk,1
xk,2, if τk,1 < X∗k ≤ τk,2
...

xk,K , if τk,K−1 < X∗k

(1)

for k = 1, 2, . . . , p. We refer to the τ as thresholds which
fulfills τk, j−1 ≤ τk, j and define τk,0 = F−1

k (0), τk,K = F−1
k (1),

where Fk(x) = P(X∗k ≤ x) is the k-th marginal distribution
of X∗. For all distributions with infinite support, such as the
normal distribution, we have τk,0 = −∞, τk,K = ∞. To iden-
tify the thresholds, the marginals of X∗ have to be known.
Usual practice is to assume that X∗ has standardized normal
marginals: X∗k ∼ N(0, 1) for k = 1, 2, . . . , p.

The SEM specified by the researcher relates to the con-
tinuous X∗ vector. That is, model estimation requires the
correlation matrix of X∗. This matrix is not identified, and
the traditional assumption since Pearson (1900) has there-
fore been to assume that X∗ is multivariate normal. Under
this assumption the correlation matrix of X∗ may be consis-
tently estimated by the polychoric correlation matrix, which
is a limited information maximum likelihood estimator (Ols-
son, 1979a). The polychoric correlation matrix then forms
the basis for estimating the parameters of the SEM, typically
using diagonally weighted least squares estimation (DWLS).
This means that the discrepancy between model-implied and
estimated polychoric correlations is minimized, where the
weights are obtained from the diagonal of the asymptotic co-
variance matrix of the estimated polychoric correlations. Ro-
bust standard errors and goodness-of-fit testing are also ob-
tained based on the asymptotic covariance matrix (see Mon-
roe (2018) for further details).

We next propose a third limited-information approach to
ordinal SEM, with complete technical descriptions given in
a later section. Usually, the values of the coordinates of X

are taken as a sequence of consecutive integers 1, 2, . . . ,K,
which is not in general the scale used by X∗. This is the
approach of cont-ML. We propose to adjust cont-ML as fol-
lows. Instead of integer values, we choose the values of
X in such a way that the covariance matrix of X approxi-
mates that of X∗. To estimate the parameters of the SEM,
the usual normal theory ML procedure is then applied to the
appropriately encoded observations. The resulting estimator
is called cont-ML-adj, and it borrows from cat-LS the dis-
cretization model in Equation (1) in order to adjust the cont-
ML correlations. While polychoric correlations assume that
X∗ is normal, cont-ML-adj requires only that the marginal
distributions of X∗ are known, i.e., we know the functions
P(X∗k ≤ x) for k = 1, . . . , p. The marginals do not have to
be normal. Since the marginals are known, we will show
later in the article that the thresholds (τk, j) can be estimated
from data by estimators, say, (τ̂k, j). Consider the first co-
ordinate X1. From Equation (1), X1 takes the value of x1,1
when X∗1 ≤ τ1,1. We therefore choose x1,1 somewhere in
the interval < −∞, τ1,1]. In general, we adjust xk, j to a new
value x̂k, j which is placed in the interval [τk, j−1, τk, j]. One
way to achieve this is to use x̂k, j = mk(τ̂k, j−1, τ̂k, j) where
mk(x, y) = E

(
X∗k

∣∣∣x ≤ X∗k ≤ y
)

is the conditional expectation
of X∗k when the value of X∗k is compatible with the observed
value of X in the original encoding. When X∗k is assumed to
be standard normal so that Fk = Φ with density φ = Φ′, we
have that mk(x, y) = [φ(x) − φ(y)]/[Φ(y) − Φ(x)], so that

x̂k, j = [φ(τ̂k, j−1) − φ(τ̂k, j)]/[Φ(τ̂k, j) − Φ(τ̂k, j−1)].

Figure 1 shows the probability plot for the original and ad-
justed values, for a K = 4 distribution with floor effects.
While the original values are equidistant, the adjusted values
are unevenly spaced. The original values range from X = 1
to X = 4, with probabilities 0.54, 0.36, 0.07, and 0.03, re-
sulting in adjusted values X̂ = −0.74, 0.60, 1.49, and 2.21,
respectively.

0.0

0.2

0.4

−1 0 1 2 3 4
x

pr
ob

Original integer coded Adjusted values

Figure 1. Cont-ML-adj: Adjustment of original values X =

1, . . . , 4.

The following R-code implements the adjustment on the
ordinal dataframe ordinal.df:
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adjust <- function(x){
taus<-c(-Inf,qnorm(cumsum(prop.table(table(x))

↪→ )))
newvalues <- apply(embed(taus, 2)[, 2:1], 1,
function(x) (dnorm(x[2])-dnorm(x[1]))/(pnorm(x

↪→ [1])-pnorm(x[2])))
plyr::mapvalues(x, sort(unique(x)), newvalues)

↪→ }
adjusted.df <- sapply(ordinal.df, adjust)

A new simulation technique for non-normal ordinal
covariance models

The work of Grønneberg and Foldnes (2019) provided
a major impetus for the present study in pointing out that,
surprisingly, a large portion of the literature on robustness
of ordinal SEM against underlying non-normality has to be
re-interpreted. These studies generated ordinal data by dis-
cretizing a non-normal continuous vector and the results
showed that the effect of non-normality on ordinal SEM was
moderate or minor. However, careful examination of the
properties of the non-normal continuous vector reveals that
the ordinal data produced from it are indistinguishable from
ordinal data produced by discretizing a fully normal con-
tinuous vector. In brief, thresholds, and marginal distribu-
tions are not jointly identified, and the effect of marginals
and threshold choice is confounded. These observations
have complex implications for the interpretation of simula-
tion studies for ordinal data methods, which we discuss in
a separate and upcoming section, see p.7, as well as in the
online supplementary material (p.1).

As a response to the shortcoming of the existing sim-
ulation methodology, Foldnes and Grønneberg (2019) pro-
posed a new simulation technique for ordinal data in the con-
text of covariance structure analysis, where the continuous
marginals are fixed to the standard normal distribution. That
is, multivariate ordinal data for covariance structure mod-
els are generated by randomly drawing observations from
the vector X∗ with standard normal marginals, and the ordi-
nal data are obtained through discretizing these observations
with user-specified thresholds. Importantly, since we are
dealing with factor or structural equation models, the vector
X∗ must have a user-specified correlation matrix. There are
many possible non-normal multivariate distributions for X∗

where the univariate marginals are standard normal, and with
a given correlation matrix. Foldnes and Grønneberg (2019)
proposed to investigate robustness to non-normality by vary-
ing the type and degree of non-normality embedded in X∗.
Since the marginals are always standard normal, keeping the
thresholds fixed is equivalent to keeping the marginal distri-
bution of the observed ordinal variables fixed. That is, we
may vary the distribution of X∗ from the multivariate normal
case to different types of non-normal distributions, without

changing either the univariate observed ordinal variables or
the correlation matrix of X∗. This approach therefore allows
us to disentangle effects of the observed ordinal distribution
(level of symmetry, ceiling effects, etc) from effects of the
underlying degree and type of non-normality.

To construct non-normal distributions X∗ with standard
normal marginals and a given correlation matrix, Foldnes
and Grønneberg (2019) suggested to use the VITA (VIne-To-
Anything) method (Grønneberg & Foldnes, 2017). We here
informally present VITA. A more technical introduction to
copulas, regular vines and VITA is available in the online
supplementary material (p. 6). VITA constructs a multi-
variate non-normal distribution, with given marginal distri-
butions and correlation matrix, called a regular vine (Bed-
ford & Cooke, 2002). Regular vines is a flexible class of
distributions, constructed by assembling bivariate copulas in
a hierarchy of tree structures. There are many copulas to
choose from, and many possible tree structures. We empha-
size that the VITA vectors used in this study all have stan-
dard normal marginals, and all match the same fixed target
population correlation matrix. To illustrate bivariate copulas,
which serve as basic building blocks for VITA distributions,
we paired three different bivariate copulas with standard nor-
mal marginals and plotted the contours in Figure 2. All three
distributions have correlation ρ = 0.56 and standard normal
marginals. However, the distributions are constructed from
different copulas. In Figure 2(a) the copula is the normal
copula, which when combined with normal marginals yields
the bivariate normal distribution. In Figure 2(b) the cop-
ula belongs to the class of Clayton copulas, and the figure
presents contours for the distribution obtained by combining
this copula with standard normal marginals. Similarly, Fig-
ure 2(c) depicts a Joe-type copula paired with standard nor-
mal marginals. The two latter distributions differ from the
bivariate normal distribution by allowing tail dependencies.
As can be seen in Figure 2, relative to the normal copula, the
Clayton copula has stronger lower tail dependency, while the
Joe copula has stronger upper tail dependency. Also, to illus-
trate the discretization process, in Figure 2 we have drawn
lines representing fixed thresholds of τ1,1 = −1, τ1,2 = 0 for
X∗1, and τ2,1 = −1, τ2,2 = 1 for X∗2. The ordinal variables
X1 and X2 will then have three levels: 1, 2 and 3, for exam-
ple. The marginal distributions of X1 and X2 will be identi-
cal across the three distributions in Figure 2. However, the
bivariate distributions of the ordinal vector (X1, X2)′ will not
be identical. For instance, the lower left corner of each figure
corresponds to the event X1 = 1 ∩ X2 = 1, and inspection of
the contour lines suggests that this event is most likely in the
Clayton case in Figure 2(b), and least likely in the Joe case
in Figure 2(c). In fact, we may calculate these probabilities
using the copula package (Hofert, Kojadinovic, Maechler, &
Yan, 2013) for R (R Core Team, 2020). The probabilities
for X1 = 1 ∩ X2 = 1 are 0.068, 0.095 and 0.046 for the
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distributions in Figures 2(a), 2(b) and 2(c), respectively. The
normality-based maximum likelihood for the polychoric cor-
relation is maximized at ρ = 0.56 only in the normal case in
Figure 2(a). For the Clayton distribution in Figure 2(b) the
value that maximizes the likelihood is 0.613, while for the
Joe distribution in Figure 2(c) the likelihood is maximized at
0.496. This simple illustration suggests that the polychoric
estimator is sensitive to the underlying distribution. For the
distributions in Figures 2(b) and 2(c), the true correlation is
0.56, but the polychoric estimates are biased, with a relative
bias of +9.5% and −11.4%, respectively.

The full VITA distribution is constructed by specifying
bivariate copulas for every pair of variables, where the con-
struction order is dictated by the sequence of trees. Each
sequence of trees results in a different distribution, as does
each choice of bivariate copulas for the variable pairs, lend-
ing the VITA class great flexibility. VITA construction in-
volves numerically solving for a bivariate copula parame-
ter for each pair of variables, rendering VITA calibration
more time consuming than other, less flexible methods (e.g.,
Foldnes & Olsson, 2016; Vale & Maurelli, 1983). VITA cal-
ibration is implemented in the R package covsim (Foldnes &
Grønneberg, 2020). After VITA calibration, fast simulation
is available using the rvinecopulib package (Nagler & Vatter,
2019).

Literature review and the present study

In previous simulation studies only a small number of
threshold configurations have been used, i.e., the simulated
ordinal data exhibited only a small number of distributional
forms. For instance, Rhemtulla et al. (2012) and Li (2016b)
employed only three specific threshold configurations (sym-
metrical, moderately skewed, and severely skewed). That
is, for each generated continuous dataset only three marginal
distributions of the ordinal datasets were produced. In the
present article, our first empirical study reverses this perspec-
tive, by generating a large number of ordinal datasets from
a limited number of underlying continuous large-sample
datasets. We generate a dataset from each of three under-
lying distributions (multivariate normal and two non-normal
distributions) and discretize it using several different thresh-
olds, chosen from a large set of threshold configurations.
Then, variation in parameter bias may be studied as a func-
tion of variation in threshold sets. Also, in previous stud-
ies, with the exception of Rhemtulla et al. (2012), all ordi-
nal variables in the observed ordinal vector shared the same
distribution. In other words, ordinal data were generated
by applying the same set of thresholds to each continuous
variable. Such distributions are rarely encountered in a real-
world dataset, where one variable is typically distributed dif-
ferently than another variable. In the present study no two or-
dinal variables have the exact same distribution, and thereby
better reflecting a real-world dataset. Foldnes and Grøn-
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Figure 2. Three bivariate distributions with correlation 0.56
and standard normal marginals.
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neberg (2019b) demonstrated, under bivariate non-normality,
that the specific choice of thresholds, i.e., of observed ordi-
nal distributions, substantively impacts the bias of the esti-
mated polychoric correlation. In the present study we extend
this line of research from the bivariate case of a polychoric
correlation to the multivariate case of model parameters, CI
coverage, and model fit assessment in a medium-sized SEM.
We expect that the variation in bias observed by Foldnes and
Grønneberg (2019b) for the polychoric case will propagate
into ordinal SEM estimation.

Many simulation studies (e.g., Flora & Curran, 2004;
Jin, Luo, & Yang-Wallentin, 2016; Li, 2016a; Moshagen &
Musch, 2014; Natesan, 2015; Nestler, 2013; Quiroga, 1994;
Rhemtulla et al., 2012; Yang & Green, 2015) have investi-
gated the robustness of ordinal SEM to non-normality. The
general consensus formed from these studies is that “estima-
tion of polychoric correlations is robust to modest violations
of underlying normality” (Flora & Curran, 2004). For in-
stance, Liu et al. (2017) refer to these studies and suggest that
cat-LS factor loading bias may tend to be trivial when the un-
derlying distribution is non-normal (p.501). Recent research
(Grønneberg & Foldnes, 2019) identified a problem in the
way data were generated in these studies, that weakens and
severely complicates claims of robustness of the polychoric
estimator. These studies relied on the popular data generation
technique of Vale and Maurelli (1983), which is readily avail-
able in software packages. Grønneberg and Foldnes (2019)
pointed out that, surprisingly, discretizing a non-normal vec-
tor obtained using the approach of Vale and Maurelli (VM)
is in most cases equivalent to discretizing a normal vector.
This is the result of a fundamental lack of identifiability of
the underlying continuous vector X∗, combined with the fact
that the VM approach in most cases results in data that have a
normal copula (Foldnes & Grønneberg, 2015). A careful and
detailed discussion of this surprising equivalence is given in
the next section.

There are few studies focusing on polychoric correlation
estimation bias based on underlying bivariate distributions
that are not VM transforms. Monroe (2018) used the bivari-
ate t-distribution, a skew-normal distribution, and a normal
mixture and found substantial bias, especially in the two lat-
ter distributions. Jin and Yang-Wallentin (2017) used skew-
normal and skewed t- distributions and found moderate bias.
Likewise, to our knowledge, there is a scarcity of studies
on the effect of underlying non-normality on ordinal factor
analysis/structural equation modeling (CFA/SEM) based on
underlying continuous distributions other than the VM trans-
form. Monroe (2018) employed outliers and the inclusion
of a quadratic term to generate multivariate non-normality
for a two-factor analytical model using 10 and 20 variables,
and reported substantial bias in estimated factor loadings and
test statistics when data were generated by using a quadratic
term. Maydeu-Olivares (2006) presented a small simulation

study using a CFA with 12 variables, and a fixed symmetri-
cal ordinal distribution with 3 levels, where the underlying
distribution followed the multivariate t-distribution. Bias in
parameter estimates and standard errors was low, with me-
dian absolute relative bias at 1% and 4%, respectively, for a
sample size of n = 1000. Given the scarcity of studies not
using the VM method that investigate how ordinal CFA/SEM
estimation is affected by underlying non-normality, and the
conflicting results among such studies, we deem it important
to further investigate this issue.

A majority of simulation studies have employed confirma-
tory factor models (Hoogland & Boomsma, 1998), and it has
therefore been recommended to extend such studies to full
SEM models (Beauducel & Herzberg, 2006; Flora & Curran,
2004; Rhemtulla et al., 2012). Hence, in the present study
we adopt the full SEM model used by Li (2016b) to assess
the performance of various estimators for ordinal SEM un-
der the assumption of underlying normality. This model was
constructed from a review of empirical studies using struc-
tural equation modeling to be representative from a practical
standpoint.

In non-normal conditions where cont-ML, cont-ML-adj,
and cat-LS estimation may perform poorly due to estimation
bias, there is a need for a test for underlying normality. Be-
fore conducting a SEM with ordinal data, a researcher could
use such a test to assess whether there is evidence of dis-
cretized non-normality in the data. Should the test indicate
that the ordinal dataset is unlikely to stem from discretizing
a normal vector, cat-LS must be used with caution. Unfortu-
nately, due to the lack of a statistical test for underlying non-
normality in popular software packages, the current practice
in empirical studies utilizing ordinal SEM is to take the nor-
mality of X∗ for granted. A true multivariate test for underly-
ing normality was proposed by Maydeu-Olivares (2006), but
this test has been largely ignored in the literature and in soft-
ware packages. Foldnes and Grønneberg (2019b) conducted
the first empirical investigation of this test, and also proposed
a new parametric bootstrap test. The bootstrap test operates
by estimating the polychoric correlation and the thresholds
from the original sample. Then, many continuous samples
are drawn from a multivariate normal vector whose correla-
tion matrix equals the polychoric correlation matrix. Each
continuous sample is further discretized using the estimated
thresholds to produce an ordinal data sample. Then, the test
statistic of Maydeu-Olivares (2006) is calculated in each or-
dinal sample. The proportion of times the bootstrapped test
statistics exceed the test statistic from the original sample
serves as the p-value of the bootstrap test for underlying nor-
mality. The test of Maydeu-Olivares (2006) and the bootstrap
test were found to maintain Type I error well for dimension-
alities less than ten, but only the bootstrap test maintained
an adequate Type I error control for larger dimensionalities.
The bootstrap test has hitherto been studied only by Foldnes
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and Grønneberg (2019b) in a CFA context with at most 15
variables. An aim in the present study was therefore to eval-
uate the bootstrap test in the context of a medium-sized SEM
with 20 variables. It is hoped that such a test may reliably
detect conditions where underlying non-normality and the
observed ordinal distributional forms render ordinal SEM in-
ference severely biased.

The complications of interpreting ordinal SEM
simulation studies

The problem of identification of aspects of the underlying
distribution of X∗ based on observations from the ordinal-
categorical X has recently received attention (Almeida &
Mouchart, 2014; Foldnes & Grønneberg, 2019, 2019b; Grøn-
neberg & Foldnes, 2019). Here, we summarize some of the
main conclusions from Grønneberg and Foldnes (2019) and
Foldnes and Grønneberg (2019), which show that utmost
caution must be taken when interpreting simulation studies
using the VM simulation method in the context of ordinal
variables. We split our discussion into two subsections. First,
we outline how the effect of the marginal distribution of X∗

and the threshold placement are confounded in simulation
designs. Second, we discuss the interpretation of simula-
tion results for cat-LS where the simulation method is to dis-
cretize a VM vector. We review the arguments of Grønneberg
and Foldnes (2019) which note that in most circumstances,
simulating X by discretizing a VM vector X∗ is numerically
identical to simulating X from an exactly multivariate normal
X∗. The only difference is that the thresholds are changed.

Since the ordinal vector X is a censored version of the
underlying vector X∗, there will in general be many other
vectors, say X̃∗, which when discretized produce exactly the
same vector X, or at least a vector with the same distribu-
tion. Therefore, one cannot use X to pin-point the exact dis-
tribution of X∗. To simulate by discretization of X∗ into X
therefore also implies that we simulate by discretization of
X̃∗ into X. This complicates the interpretation of all simula-
tion studies where ordinal data stem from discretizing contin-
uous variables. The concept of partial identification analysis
is briefly introduced as a theoretical solution to this problem
in the online supplementary material (p. 1).

Marginal distributions and thresholds are confounded

The marginal distributions of X∗ and the thresholds (τk, j)
cannot be separately identified from data. That is, when only
observing X, we cannot simultaneously estimate the thresh-
olds and marginal distributions if they are both unknown.
Since the values of X∗ are not used in generating X except
through the thresholds, the marginal scale of X∗ is not iden-
tified when observing only X. Let Fk(x) = P(X∗k ≤ x) be
the k-th marginal distribution of X∗. We assume that Fk is

invertible. Then

P(Xk ≤ xk, j) = P(X∗k ≤ τk, j) = Fk(τk, j) (2)

Since P(Xk ≤ xk, j) is a feature of the distribution of X, it can
be deduced from data. However, only Fk(τk, j) is identified,
and the marginal Fk and the thresholds τk, j are not separately
identified. Once the marginal distributions of X∗ are speci-
fied, we can use this to solve Equation (2) for τk, j, producing
the equation

τk, j = F−1
k

(
P(Xk ≤ xk, j)

)
. (3)

This equation shows that in an empirical setting the thresh-
olds and the marginal distribution are inseparable, unless we
know one or the other. Let us further consider the interaction
between thresholds and marginal distributions and how this
affects simulation when X∗ is non-normal. From Equation
(1), we have the equivalence

Xk = xk, j ⇐⇒ τk, j−1 < X∗k ≤ τk, j. (4)

However, as we will see in examples in the upcoming sub-
section, there are many random vectors X̃∗ which generate X
via Equation (1) using a modified set of thresholds. Indeed,
for any sequence H1, . . . ,Hp of strictly increasing transfor-
mations, we have from Equation (4) that

Xk = xk, j ⇐⇒ Hk(τk, j−1) < Hk(X∗k ) ≤ Hk(τk, j).

Let τ̃k, j = Hk(τk, j−1) and X̃∗k = Hk(X∗k ). Then this equation is

Xk = xk, j ⇐⇒ τ̃k, j−1 < X̃∗k ≤ τ̃k, j. (5)

The distribution of X̃∗ = (X̃1, . . . , X̃k)′ will be different than
the distribution of X∗. Mathematically, the marginals of X̃∗

have changed compared to X∗, but the rest of the distribu-
tion, what is formerly known as the copula, has stayed the
same. By an appropriate choice of Hk functions, one can
show that the marginal distributions of X∗ can be transformed
into whatever distribution one would like. For example, it
is always possible to choose Hk in such a way that X̃∗ is
marginally standard normal (Foldnes & Grønneberg, 2019,
Proposition 1). Hence, in a simulated sample, there is no sin-
gle and correct way to define the population thresholds and
marginal distributions of X∗. We have seen that simulating X
through discretizing X∗ yields ordinal observations that are
numerically equal to simulating X through discretizing X̃∗.
By numerically equal, we mean that the simulated samples
of X from X∗ and X̃∗ are identical. The simulation of X can
therefore be seen as having been generated simultaneously
from X∗ as well as X̃∗, though with different thresholds.

Let us now return to Equation (3). In our simulation de-
sign, outlined in the method section, we vary the marginal
distribution of X across other factors, such as the type of non-
normality of X∗. Since the marginal distributions of X∗ and
the threshold values jointly produce the marginal distribution
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of X through Equation (3), we decided to fix the marginal dis-
tributions of X∗ to standard normal, and let the threshold val-
ues vary to produce different marginal X distributions. Then
the thresholds uniquely define the marginal distribution of X,
and vice versa, by

P(Xk ≤ xk, j) = Φ(τk, j), τk, j = Φ−1
[
P(Xk ≤ xk, j)

]
.

Fixing the marginal distribution of X∗ allows us to study
the effect of the shape of the ordinal observed marginal distri-
bution of X on ordinal SEM. The choice of standard normal
marginals for X∗ is natural because this is the scale of the
standard methodology: The covariance of a random vector
depends on the marginal distributions, yet the marginal dis-
tribution of X∗ is not identified based on observations from X.
Therefore, consistent statistical estimators for Cov(X∗) must
make assumptions on what the marginal distribution of X∗

is. The common assumption is that they are standard normal,
hence dictating the scale at which the covariance matrix is to
be estimated.

The surprising equivalence between ordinal VM simula-
tion and ordinal normal simulation

Here, we consider the consequences of the non-
identifiability of the distribution of X∗ from the distribu-
tion of X in the case of the well-known VM simulation
method. Briefly, VM consists of applying third order poly-
nomial transformations to the coordinates of a random vec-
tor Z which is multivariate normal with a covariance matrix
ΣZ . In practice, the polynomial transformations are usually
either strictly increasing or strictly decreasing. We will limit
attention to the strictly increasing case, and refer the reader
to Grønneberg and Foldnes (2019) for a full discussion. For
each k = 1, . . . , p, VM generates

X∗k = Hk(Zk), where HK is strictly increasing.

While the function Hk used in the original VM approach is a
third degree polynomial, the upcoming argument rests only
on the assumption that Hk is a strictly increasing transforma-
tion. The ordinal observations are thereafter generated fol-
lowing Equation (1):

Xk = xk, j, when τk, j−1 < X∗k ≤ τk, j (6)

Since X∗k = Hk(Zk) we have that τk, j−1 < X∗k ≤ τk, j is equiva-
lent to

τk, j−1 < Hk(Zk) ≤ τk, j. (7)

We next apply the strictly increasing inverse of Hk to the
above inequalities, and get

Xk = xk, j, when τ̃k, j−1 < Zk ≤ τ̃k, j (8)

where τ̃k, j = H−1
k (τk, j). This argument can be reversed by

starting with discretizing a multivariate normal random vec-
tor Z into X, and applying Hk to the inequalities in Equation
(8) and arrive at Equation (6).

We conclude that simulating X by discretizing a VM gen-
erated X∗ is equivalent to simulating X by discretizing an
exactly multivariate normal vector Z. The polynomial trans-
formation that the VM method applies to Z is essentially lost
under discretization. This has consequences when applying
statistical methods to samples from X which assume that X∗

is multivariate normal. One such prominent method is the
polychoric correlation of Pearson and Pearson (1922) and
Olsson (1979a), which is also central to cat-LS. Above we
observed that when X∗ = Z is exactly multivariate normal,
any strictly increasing transformation Hk can be applied to
the coordinates of X∗, and the resulting vector, say X̃∗, could
have generated X when discretized. The only change is the
numerical values of the thresholds. When the transforma-
tions are strictly increasing third-order polynomials, the re-
sulting vector X̃∗ has the same distribution as a VM simu-
lated vector. Yet, the polychoric estimator will estimate the
correlation matrix of X∗ and not X̃∗ which here could have
been generated from the VM method. Why is this? The
answer lies in the consistency of the polychoric correlation
when X∗ is normal, which is the case for the fully normal X∗

and not for the VM vector X̃∗. The polychoric correlation
estimator will estimate the covariance matrix of the version
of the underlying vector which is fully normal. Should X be
a discretization of a VM vector X̃∗, the polychoric correla-
tion estimator will still implicitly work with the transformed
vector Z, because it is exactly normal. Therefore, the poly-
choric correlation will not estimate the correlation matrix of
the simulated X∗, but will instead estimate the correlation
matrix of the underlying Z. A more mathematical expla-
nation of this correspondence is given in Grønneberg and
Foldnes (2019). Several numerical illustrations of this cor-
respondence, where it is shown that the above observations
may be used to exactly predict the results reported in sim-
ulation studies on the effect of non-normality on polychoric
estimation (e.g., Flora & Curran, 2004), is given in the online
appendix of Grønneberg and Foldnes (2019). A particularly
unfortunate feature of the VM method is that the covariance
matrix of Z and X∗ are often very similar, therefore making
it more difficult to detect this problem in numerical investi-
gations.

We illustrate the above discussion by considering a typi-
cal simulation condition used in ordinal SEM simulation arti-
cles. Flora and Curran (2004) included a condition with mod-
erate skewness and moderate kurtosis, where skewness=1.25
and excess kurtosis = 3.75 in all marginal distributions. For
the K = 5 condition they adopted thresholds from Muthén
and Kaplan (1985): τ1 = −1.645, τ2 = −0.643, τ3 = 0.643,
and τ4 = 1.645. The VM method first determines the polyno-
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Figure 3. Fleishman polynomial H(Z) = −0.16 + 0.82Z +

0.16Z2 + 0.05Z3 that yields skewness=1.25 and kurtosis =

3.75. The dashed arrows represent threshold transformations
from the Fleishman metric to the standard normal metric.

mial coefficients so that X∗k = H(Zk) has the required skew-
ness and kurtosis. Such a polynomial is depicted in Figure
3. Note that the polynomial is strictly increasing, so we may
solve for the thresholds, as indicated by dashed arrows. The
new thresholds τ̃1 = −2.122, τ̃2 = −0.657, τ̃3 = 0.817, and
τ̃4 = 1.53 are located along the Z axis. This means that
discretizing a standard normal variable according to the τ̃i,
i = 1, . . . , 4 leads to the exact same univariate ordinal distri-
bution as discretizing the Fleishman variable according to the
original thresholds, that is, a five-category distribution with
proportions 0.017, 0.239, 0.537, 0.144, and 0.063.

In the simulation design of Flora and Curran (2004) it
was required that the correlation between X∗1 = H(Z1) and
X∗2 = H(Z2) be equal to ρX∗ = 0.49. A correlation be-
tween Z1 and Z2 which makes this possible is ρZ = 0.5084.
We may therefore simulate a VM pair of variables by first
simulating from a bivariate normal distribution with corre-
lation ρZ = 0.5084 and standard marginals, and then apply
the polynomial H(·) to both margins. This defines a bivari-
ate distribution whose population (univariate) skewness and
kurtosis equals 1.25 and 3.75, respectively, and whose cor-
relation equals ρ = 0.49. The crucial insight now is to ob-
serve that to discretize a VM dataset using thresholds τ, is
exactly the same as discretizing the original data set drawn
from (Z1,Z2) using the transformed thresholds τ̃. We exem-
plify this by simulating a dataset with n = 500 using the VM
method. This means first drawing a sample with n = 500
from a bivariate normal distribution with standard normal
marginals and with correlation ρZ = 0.5084 and then dis-
cretizing X∗ = (H1(Z1),H2(Z2))′ into X. Figure 4(b) shows
a scatter plot of the simulated sample from X∗ together with
its thresholds. Similarly, Figure 4(a) shows a scatter plot of
the simulated sample from the normal data Z, together with
the transformed thresholds.

In both plots, we use a color coding for the cells in the
resulting 5 × 5 contingency table and show that the corre-
sponding contingency tables deriving from the data in Fig-
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(a) Sample drawn from bivariate normal distribution,
with thresholds τ̃1 = −2.122, τ̃2 = −0.657, τ̃3 = 0.817,
and τ̃4 = 1.53.
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(b) VM transformed sample, with thresholds τ1 =

−1.645, τ2 = −0.643, τ3 = 0.643, and τ4 = 1.645.

Figure 4. A n = 500 sample drawn from a bivariate normal
distribution and then transformed with polynomial H(Z) =

−0.16 + 0.82Z + 0.16Z2 + 0.05Z3.

ures 4(a) and 4(b) are identical. The monotonic VM transfor-
mation is such that the discretized data are actually produced
by discretizing data drawn from the normal distribution. In
large samples drawn from the VM distribution the polychoric
estimator will tend to approach 0.5084; refer to the R sup-
plementary material for more details on the computations.
The reason for the polychoric correlation not approaching the
specified ρX = 0.49 therefore is not to be found in any under-
lying non-normality, but is due to the demonstrated equiv-
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alence of discretized VM data and discretized normal data.
Such an equivalence does not happen when using the VITA
simulation method, except in extraordinary cases which may
be detected by applying a test for underlying normality to a
large VITA sample.

To sum up, studies using the VM method for ordinal data
do not, in this sense, violate the normality assumption, but
instead do something exactly equivalent to simulating from
multivariate normal random vector X̃∗ = Z whose covariance
matrix departs slightly from the intended covariance matrix.
In many studies, the latent variable model employed was not
correctly specified for X̃∗ = Z even when it holds for the
VM random vector X∗. This means that several influential
simulation studies must be re-interpreted in light of this ob-
servation.

Theoretical investigations: What happens when the
number of categories increases?

The behavior of ordinal SEM methodology crucially de-
pends on the way correlations are calculated. Here, we de-
velop several fundamental theoretical and mathematical in-
sights into the behavior, as the number of categories in-
creases, of three approaches to calculating correlations in or-
dinal data. The first two approaches are well-known, namely
the Pearson correlation and the polychoric correlation. Our
analysis leads us to propose an adjusted version of the Pear-
son correlation, as well as extending the scope of valid es-
timation for the polychoric correlation. To the best of our
knowledge, all the results presented in this section are new.
We give brief numerical illustrations of our results.

We first provide conditions under which the observed vec-
tor X is similar to X∗ in the sense that Cov(X) is a good ap-
proximation to Cov(X∗) as K → ∞. This motivates an empir-
ical adjustment to integer-encoded data which approximates
the values that lead to consistency. The crucial assumption
to achieve this is that the marginal distributions of X∗ are
known. Since no aspect of the marginal distribution can be
estimated through statistical means, this requirement is ab-
solute when aiming at estimating Cov(X∗) unless we have
knowledge of the values of the thresholds.

To our knowledge, our empirical adjustment and its the-
oretical justification are new, but we emphasize that it is
closely related to other methods that convert ordinal vari-
ables into continuous variables. These methods use differ-
ent assumptions and theoretical frameworks, e.g., variants of
optimal scaling (De Leeuw, Young, & Takane, 1976), item
response theory prediction of summary scores (Harwell &
Gatti, 2001), anchoring vignettes (King, Murray, Salomon, &
Tandon, 2003), and the Markov Chain Monte Carlo Scaling
method of Granberg-Rademacker (2010). The adjustment
we suggest has the advantage of being simple and compu-
tationally cheap. It does not require numerical optimization
and rests only on univariate assumptions on X∗. This is in

contrast to more complicated approaches, such as Markov
Chain Monte Carlo Scaling, which rests on an assumption
of multivariate normality for an underlying variable and is
computationally demanding.

Initial numerical experiments indicated that the empirical
adjustment method we propose is usually inferior to the poly-
choric correlation, even when the assumption of full normal-
ity of X∗ is not true. We found a theoretical answer to why
this is the case: the polychoric correlation is consistent as
K → ∞, even when the distribution of X∗ is non-normal.
Again, we must assume that the marginals of X∗ are known,
though they need not be normal. This observation signifi-
cantly increases the scope of the polychoric correlation.

Our final contribution in this section is an expression for
the population value of the polychoric correlations as K → ∞
if the marginal distributions are supposed to be known, but
are misspecified. A consequence of this analysis is the fact
that we can consistently estimate the Spearman correlation
of X∗ as K → ∞, by assuming uniform marginals. We also
show that simply applying the regular Spearman correlation
to the ordinal data is also consistent as K → ∞.

To make clear that X depends on K, we write X(K), and
indicate this relationship in the same manner also for other
quantities that depend on K, such as the thresholds.

When is the Pearson correlation consistent with a large
number of categories?

Our observations X(K) are not on the interval scale. Their
numerical values are therefore strictly speaking arbitrary, as
long as the order is properly encoded. The common prac-
tice of using cont-ML with integer encoded data is therefore
problematic, as the encoding will influence the analysis in
an arbitrary manner. As discussed in Bollen (1989, Chap-
ter 4.3), the assumptions underlying SEM are not fulfilled
for integer encoded data, and therefore cont-ML need not
be consistent, even when the underlying vector X∗ is exactly
normal.

Instead of encoding data by a sequence of consecutive in-
tegers, we propose to encode in such a way that the covari-
ance matrix of X(K) approximates that of X∗ as well as possi-
ble. We here identify encoding conditions making this possi-
ble, which leads us to understand when integer-encoded data
can be used as continuous when the number of categories in-
creases to infinity. Also, our analysis suggests a data-driven
adjusted encoding which places the ordinal observations on
the same scale as the underlying variable X∗

Let us consider why it could be worth studying what hap-
pens as K → ∞, although K in practice is typically less than
ten. An asymptotic analysis has the advantage of identifying
assumptions that have to be fulfilled if consistency is to be
reached, even in the best case scenario of having very large
K. From the perspective of infinity, it is of little consequence
whether K is 7 or 7100, since both numbers are very far from
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infinity. The hope in asymptotic analysis is that the resulting
approximations are relevant for small K. Whether or not this
is the case may be determined by simulations.

Assumption 1. 1. We assume there is an ε > 0 such that
E |X∗k |

2+ε < ∞ for k = 1, . . . , p.

2. We have τ(K)
k, j−1 ≤ x(K)

k, j ≤ τ(K)
k, j for k = 1, . . . , p and

j = 1, . . . ,K − 1.

3. We have that limK→∞ sup1≤k≤p,2≤ j≤K−1

[
τ(K)

k, j − τ
(K)
k, j−1

]
=

0, and that τ(K)
k,1 −−−−→K→∞

F−1
k (0) and τ(K)

k,K−1 −−−−→K→∞
F−1

k (1)
for k = 1, . . . , p.

4. We have x(K)
k,1 Fk(τ(K)

k,1 ) −−−−→
K→∞

0 and x(K)
k,K[1 −

Fk(τ(K)
k,K−1)] −−−−→

K→∞
0 for k = 1, . . . , p.

A technical discussion of these assumptions, a mathemat-
ical proof of the following result, and the intuition that led to
its formulation is given in the online supplementary material,
p. 2.

Proposition 1. Under Assumption 1 we have limK→∞ ΣK =

Σ, where ΣK = Cov(X(K)) and Σ = Cov(X∗).

This proposition gives insight into why cont-ML some-
times produces reasonable results. As seen above, the
marginals of X∗ cannot be deduced from X, but as X∗ is usu-
ally assumed to be standardized, the scale of the covariance
matrix of X is entirely a product of the integer encoding to-
gether with the placement of the thresholds, both of which
should not affect a statistical analysis. Further, it is clear that
as K → ∞, both |E X(K)

k | → ∞ and Var X(K)
k → ∞, hence the

covariance matrix of X(K) cannot approximate Cov(X). But
the correlation matrix can approximate Cov(X), and since
it stays invariant under affine transformations (i.e., transfor-
mations of the form x 7→ ax + b), cont-ML based on the
correlation matrix will be consistent as K → ∞ when the
thresholds are evenly spaced. If this is the case, Equation (2)
(p. 7) implies that for each k, the CDF of Xk matches that
of X∗k . This means that if the thresholds are evenly spaced,
and X∗k is normal, the bar plot of the ordinal observations
will appear normal in shape. The fact that ordinal obser-
vations can successfully be treated as continuous when the
marginal observations of X are shaped like the normal distri-
bution and X∗ in fact is normal, has been observed on sev-
eral occasions (Babakus, Ferguson, & Jöreskog, 1987; DiS-
tefano, 2002; Johnson & Creech, 1983; Muthén & Kaplan,
1985; Olsson, 1979b; Rhemtulla et al., 2012), but to date, to
our knowledge, this seems to have not been explained theo-
retically. We formalize this into the following corollary.

Assumption 2. Suppose that for each 1 ≤ k ≤ p, the thresh-
olds τ(K)

k, j for j = 1, 2, . . . ,K − 1 are evenly spaced and of the
form

τ(K)
k, j = z(K)

m + (z(K)
M − z(K)

m )( j − 1)/(K − 2)

where z(K)
m and z(K)

M are such that Assumption 1 (4) are ful-
filled for x(K)

k,1 = z(K)
m and x(K)

k,K = z(K)
M .

The proof of the following corollary is given in the online
supplementary material (p.4).

Corollary 1. Suppose Assumption 1 (1), (2) and (3) and
Assumption 2 hold. Then, for integer encoded observa-
tions, i.e., when xk, j = j, we have limK→∞ Cor(X(K)

k , X(K)
l ) =

Cor(X∗k , X
∗
l ) for each 1 ≤ k, l ≤ p.

Corollary 1 can in many cases be used to deduce what
cont-ML estimates outside Assumption 2. Here, we give an
illustration. Suppose there is an invertible function Hk such
that

τk, j = Hk(τ̃(K)
k, j ),

where (τ̃(K)
k, j ) fulfill Assumption 2. Since

τk, j−1 ≤ X∗k ≤ τk, j

⇐⇒ Hk(τ̃k, j−1) ≤ X∗k ≤ Hk(τ̃k, j)

⇐⇒ τ̃k, j−1 ≤ H−1
k (X∗k ) ≤ τ̃k, j

the variable X̃∗ = (H−1
k (X∗1, . . . ,H

−1
k (X∗p))′ is discretize equiv-

alent to X∗, using the thresholds (τ̃k, j). Therefore, Corollary
1 implies that for integer encoded data, we have

lim
K→∞

Cor(X(K)
k , X(K)

l ) = Cor(H−1
k (X∗k ),H−1

l (X∗l )) (9)

for each 1 ≤ k, l ≤ p. With the exception of rare cases,
we have that Cor(H−1

k (X∗k ),H−1
l (X∗l )) , Cor(X∗k , X

∗
l ), showing

that cont-ML will be invalid, even in the best case scenario
that K → ∞.

What then, should be done if evenly spaced thresholds are
incompatible with the marginal distributions of X∗? We may
then use the threshold values to assign an encoding which is
not evenly spaced. This leads us to an adjusted Pearson cor-
relation. In practice, the thresholds are unknown, and there-
fore have to be estimated. A full theoretical analysis of the
consequences of empirical threshold estimates is beyond the
scope of the present article, but we briefly mention that one
may extend Proposition 1 into a generally consistent method
based on adjusted observations using an empirical version of
Assumption 1 (2) given by

τ̂k, j−1 ≤ x̂k, j ≤ τ̂k, j (10)

where τ̂k,0 = F−1
k (0) which equals −∞ in the normal case,

and where τ̂k,0 = F−1
k (1) which equals ∞ in the normal case,

and where for j = 1, . . . ,K − 1 we have

τ̂k, j = F−1
k (π̂k,1: j), π̂k,1: j =

1
n

n∑
i=1

I{X(K)
k,i ≤ j}. (11)

Here, X(K)
k,i is the k’th marginal of the i’th person in a sample.

The estimators (τ̂k, j) are the standard estimator for thresh-
olds, see Pearson and Pearson (1922) and Olsson (1979a).
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Ordinal SEM based on such empirically adjusted observa-
tions is referred to as cont-ML-adj. The requirement of Equa-
tion (10) leaves the concrete choice of (x̂k, j) open. A reason-
able suggestion is for k = 1, . . . , p and j = 1, . . . ,K to let

x̂k, j = mk(τ̂k, j−1, τ̂k, j)

where
mk(x, y) = E

(
X∗k

∣∣∣x ≤ X∗k ≤ y
)
.

Note that mk is a known function since the marginal distribu-
tions (Fk) are assumed known. Ignoring sampling error, the
value x̂k, j is the conditional expectation of X∗k when we know
that τ̂k, j−1 ≤ X∗k ≤ τ̂k, j. When X∗k is standard normal so that
Fk = Φ with density φ = Φ′, we have that

mk(x, y) = [φ(x) − φ(y)]/[Φ(y) − Φ(x)]

(Kotz, Balakrishnan, & Johnson, 2004, Chapter 13, sec-
tion 10.1). The suggested empirical adjustment procedure
is therefore to encode the ordinal observations according to

x̂k, j = [φ(τ̂k, j−1) − φ(τ̂k, j)]/[Φ(τ̂k, j) − Φ(τ̂k, j−1)].

cat-LS is consistent when the number of categories in-
creases and marginal distributions are correctly specified

In our simulations (Study 1, p.16), it is seen that cont-ML-
adj performs overall better than the unadjusted cont-ML, al-
though the improvement is generally moderate. In some of
our simulation conditions, cont-ML-adj outperforms cat-LS,
and this motivates a more general comparison as a topic for
further research. However, in most simulation conditions,
cat-LS based on the polychoric estimator of Olsson (1979a);
Pearson and Pearson (1922) is the best approach, despite
cont-ML-adj being valid even when X∗ is not multivariate
normal, as K → ∞.

A theoretical explanation for the relatively high perfor-
mance of the polychoric correlation is that as K → ∞, cat-LS
is actually also a consistent method as long as the marginals
of X∗ are known and standardized. This is suprising, since
the polychoric estimator was developed under the assump-
tion that X∗ is fully normal. This new observation signifi-
cantly increases the scope of the polychoric correlation, and
may justify its use in empirical studies where full underlying
normality is unknown. The following argument can be made
mathematically rigorous, but the approximations which un-
derly its formal proof are involved, and we consider it outside
the scope of the present article. We will however numerically
illustrate its validity.

We consider the thresholds known, as they can always be
consistently estimated. This can be seen from Equation (11):
Since π̂k,1: j consistently estimates πk,1: j = P(X(K)

k ≤ j) =

P(X∗k ≤ τk, j) = Fk(τk, j) the continuous mapping theorem

implies that τ̂k, j is a consistent estimator for any set of (con-
tinuous) marginals Fk. Therefore,

τ̂k, j = F−1
k (π̂k,1: j)

P
−−−−→
n→∞

F−1
k (πk,1: j)

= F−1
k [Fk(τk, j)] = τk, j (12)

where
P
−−−−→
n→∞

means convergence in probability as the sample
size n increases to infinity. Now with a finer and finer net
of thresholds, the polychoric correlation matrix, which is the
normal theory MLE (maximum likelihood estimator) based
on progressively less censored versions of X∗ as K → ∞, will
approach the normal theory pairwise MLE of the underlying
X∗ as K → ∞.

The normal theory pairwise MLE based on samples from
the underlying X∗ when we only estimate the correlation (and
use the knowledge that X∗ has standardized marginals) will,
as the sample size increases, converge towards

ρ◦(Fk,l) = arg max
−1≤r≤1

EFk,l log φ2(X∗k , X
∗
l ; r),

where s◦ = arg maxs H(s) means the arguments that maxi-
mize H(s) are contained in s◦, i.e., the set (or singleton when
the maximum is unique) such that s ∈ s◦ implies H(s) ≥ H(s̃)
for all s̃. Also, Fk,l is the bivariate CDF of (X∗k , X

∗
l )′, and

φ2(·, ·; r) is the density of a bivariate normal Z with standard-
ized marginals and correlation r. The proof of the following
lemma is given in the online supplementary material (p.4).

Lemma 1. If Fk, Fl are standardized, then ρ◦(Fk,l) =

Cor(X∗k , X
∗
l ).

Therefore, the polychoric correlation is consistent when
K → ∞ as long as the standardized marginals are correctly
specified.

Suppose now that the true marginal distributions are not
known, but are erroneously assumed to equal Fk for k =

1, . . . p, when in fact they are equal to Gk for k = 1, . . . , p.
Suppose Fk,Gk are continuous and strictly increasing for
k = 1, 2, . . . , d, and that Fk is standardized. Following the ar-
gument that leads to Equation (12), we see that we then have

τ̂k, j
P
−−−−→
n→∞

F−1
k Gk(τk, j). Since the marginals are arbitrary, we

can choose them in a manner explained in the online sup-
plementary material (p. 5) so that the thresholds in fact are
consistent. We are then estimating a covariance matrix with
elements σ̃k,l = Cor(F−1

k Gk(X∗k ), F−1
l Gl(X∗l )) as K → ∞.

As an example application, let us consider now how to use
this to estimate the Spearman correlation ρS

k,l of X∗k , X
∗
l , which

is the Pearson correlation of the copula of X∗k , X
∗
l (Nelsen,

2007, Theorem 5.1.6). That is, ρS
k,l = Cor(Fk(X∗k ), Fl(X∗l )).

In order to reach ρS
k,l by using polychoric correlations, the

following considerations are necessary. Since (Uk,Ul)′ =

(Fk(X∗k ), Fl(X∗k ))′ has uniform marginals on [0, 1], which are
not standardized, we deduce the standardized versions of
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these distributions. Since E Uk = 1/2 and
√

Var Uk =

1/
√

12 = 1/(2
√

3), we have that Ũk = (Uk − 1/2)(2
√

3)
is standardized, and uniform on [−

√
3,
√

3]. Therefore, in
order to reach the Spearman correlation, we estimate the
thresholds using the assumption that the marginal distribu-
tions of X∗k are uniform on [−

√
3,
√

3], so that their CDF is

Fk(x) =

( x − a
b − a

)
I{a ≤ x ≤ b} + I{x > b}, a = −b, b =

√
3.

Numerical illustrations of this technique are found after the
next sub-section. Note that a simple extension of cont-ML-
adj is to use standardized uniform marginals, which leads to
another estimator of Spearman’s correlation.

The Spearman correlation is consistent as the number of
categories increases

The empirical Spearman correlation based on the ordi-
nal observations is also consistently estimating the Spearman
correlation of X∗ as K → ∞. Since this is far simpler than
computing the polychoric correlation with standardized uni-
form marginals, the above discussion is merely an illustra-
tion of our arguments. Note that applying both the empirical
Spearman correlation and the polychoric correlation based
on standardized uniform marginals will consistently reach
the Spearman correlation of X∗ as the sample size and K in-
crease, and also note that this is achieved without assump-
tions on the marginal distribution or any other feature of the
distribution of X∗. This is because the Spearman correlation
is defined as the correlation of the distribution of X∗ when the
marginals are transformed to a specific distribution, namely
the uniform distribution. See the online supplementary ma-
terial (p. 4) for a proof of the following proposition.

Proposition 2. Suppose Assumption 1 holds. Assume in ad-
dition that X∗ has continuous marginal distributions. Then
the population Spearman’s correlation based on X(K) consis-
tently estimates the population Spearman’s correlation based
on X∗.

Numerical illustrations

Here, we provide four illustrations of consistency, or lack
thereof, as the number of categories increases. Reproduction
files are found in the supplementary material of this article.

Illustration 1 demonstrates the result in Corollary 1 that
the Pearson correlation is consistent as K increases, pro-
vided the thresholds are evenly distributed. A large sam-
ple with n = 107 was generated from a distribution with a
Clayton copula (C) and normal marginals, and from a fully
normal distribution (N), both with a correlation of ρ = 0.7.
The samples are then discretized according to Equation (1)
with evenly spaced thresholds varying between −3.2 and 3.2,
the number of which is equal to K − 1 (producing K cate-
gories). For K = 1 we used τk,1 = 0. For K = 2 we used

τk,1 = −3.2/2, τk,2 = 3.2/2. For the remaining values of K,
we used τk, j = z(K)

m + (z(K)
M − z(K)

m )( j − 1)/(K − 2) with zm =

−3.2, zM = 3.2. Based on the discretized datasets, we calcu-
lated the Pearson correlation for X(K) for each K = 2, . . . , 19.
Since n is large, the computed values are close to the pop-
ulation values. The resulting values are plotted in Figure 5.
We clearly see the consistency as K increases, and the ap-
proximation is very good around K = 16. Whether X∗ has
a normal or Clayton copula is of little consequence in this
illustration.
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Figure 5. Population values for the Pearson correlation of
integer-coded data from evenly spaced thresholds. Dashed
horizontal line at 0.7 represents true correlation of X∗. K=

number of categories. Normal=underlying bivariate normal
distribution. Clayton=Underlying distribution with normal
marginals and Clayton copula.

Illustration 2 demonstrates Equation (9), for the same two
large datasets N and C, this time discretized only once, with
unevenly spaced thresholds. We let K = 51 and use the fol-
lowing thresholds: τk, j = τ̃3

k, j where τ̃k, j = x(K)
m + (x(K)

M −

x(K)
m )( j−1)/(K−2) for xm = −(3.2)1/3, xm = (3.2)1/3. In Table

1 (p.13), we see that the Pearson correlation does not reach
ρ = 0.7 even for K = 51. As dictated from Equation (9),
it instead reaches Cor((X∗1)1/3, (X∗2)1/3). In contrast, both the
Pearson-adjusted correlation and the polychoric correlation
are consistent as K → ∞.

Table 1
The inconsistency of the Pearson correlation with unevenly
spaced thresholds.

True ρ Pearson Pearson-adj polychoric Cor
(
(X∗1)1/3, (X∗2)1/3

)
Normal 0.70 0.63 0.70 0.70 0.63
Clayton 0.70 0.65 0.70 0.70 0.65

Illustration 3 also demonstrates the consistency of the ad-
justed Pearson and the polychoric correlations with unevenly
spaced threshold generated in a similar way as was done in
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Illustration 2. This time we investigate the rate of conver-
gence, as K increases, see Figure 6. Under normality, it is
seen that the polychoric correlation is unbiased for all K. Un-
der the Clayton copula, the polychoric correlation is biased
for low values of K, but approaches the true underlying cor-
relation rather quickly, being virtually unbiased for K = 10.
We also see the consistency of the adjusted Pearson corre-
lation for both underlying distributions, as K increases. In
contrast, the standard Pearson correlation converges at a fast
rate to a value not close to ρ = 0.7, but converges instead to
Cor

(
(X∗1)1/3, (X∗2)1/3

)
as dictated by theory.
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Figure 6. Population correlation values for data stemming
from unevenly spaced thresholds. Dashed horizontal line at
0.7 represents true correlation of X∗. Pearson = Pearson cor-
relation. Pearson-adj= The Pearson correlation of adjusted
values. polychoric= polychoric correlation. K= number of
categories. N and C refer to underlying distributions with
normal and clayton copula, respectively.

Illustration 4 demonstrates techniques developed for the
polychoric correlation as outlined after Lemma 1. We iden-
tify a setting where the Pearson correlation and Spearman
correlation differ considerably: X∗1 = Z, X∗2 = Z3 + ε
where Z, ε are independent, and both are standard normal.
We simulated a sample from (X∗1, X

∗
2) of size n = 107.

Since this is a large sample, the estimates based on this
sample are close to population quantities. We calculated
(U1,U2)′ = (F1(X∗1), F2(X∗2))′ where F1, F2 are the CDFs

of X∗1, X
∗
2 respectively. The correlation of (U1,U2)′ is the

Spearman correlation of (X∗1, X
∗
2)′ and equals 0.714. We

then discretized (U1,U2)′ with 60 evenly spaced thresholds
on the interval [0.001, 0.999] and calculated the standard
polychoric correlation, assuming normal marginals, which
equaled 0.804. This polychoric correlation does not esti-
mate Cor(U1,U2) nor Cor(X∗1, X

∗
2) but instead it estimates

Cor(Φ−1(U1),Φ−1(U2)) which we calculated as equal to
0.807. We then calculated the polychoric correlation using
standardized uniform marginals, which equaled 0.714, which
consistently approximates Cor(U1,U2). Finally, we calcu-
lated the Pearson correlation directly on the integer-encoded
data, which according to theory is consistent. Indeed, we get
that this estimate equals 0.713, close to the true 0.714. Note
that Cor(X∗1, X

∗
2), which equaled 0.750, is not estimated by

any of the procedures we considered.

Finally we mention that in the supplementary material we
also provide R code that illustrates the general consistency
of the Spearman correlation. For both the evenly and non-
evenly spaced threshold configurations, Spearman’s correla-
tion based on the ordinal observations is demonstrated to be
close to the true population correlation of X∗.

Method

Each of the studies presented here is based on the same
SEM model and the same underlying multivariate continuous
distributions. The threshold sets are of three types, accord-
ing to whether they produce distributions with floor effects,
ceiling effects or with symmetry. In each type, fifty thresh-
old sets were generated. The large amount of threshold sets
guarantees that our findings are not overly dependent upon
specific ordinal distributions, and therefore allows us to in-
terpret results as smoothed across fifty threholds all sharing
the same basic type, e.g., across fifty distributions all having
floor effects.

Study 1 is conducted at the population level, where we dis-
cretize the three distributions using a large number of thresh-
old sets. The outcome variables are the relative bias of Pear-
son, Pearson adjusted, and polychoric correlations and cont-
ML, cont-ML-adj, and cat-LS SEM model estimates across
threshold sets and underlying distributions.

Study 2 is a simulation study where we draw and dis-
cretize medium-sized samples from the three underlying dis-
tributions, using the same threshold sets as in Study 1. The
outcome variables are CI coverage rates for model parame-
ters and rejection rates for a test of correct model specifica-
tion.

Study 3 evaluates the performance of the bootstrap test at
small to medium sample sizes, and is limited to nine thresh-
old sets.



THE IMPACT OF UNDERLYING NON-NORMALITY ON ORDINAL SEM 15

Population model

We follow Li (2016b), who conducted a thorough analy-
sis of 36 empirical studies that used ordinal structural equa-
tion modeling, and found that the median number of factors
was five and that the median number of variables was 18.
Li (2016b) therefore emulated a realistic empirical setting
by constructing a five-factor structural equation model. This
model was deemed representative of medium-sized SEM
model specifications encountered in applications, and we
present its structural part in Figure 7. Not depicted in the
path diagram are the observed ordinal variables, four for each
factor, so that the simulated data had p = 20 dimensions.
The factor loadings for the continuous X∗ variables were
set to 0.8, 0.7, 0.6 and 0.5 within each factor, and the cor-
responding residual variances were chosen so that each X∗k ,
k = 1, . . . , 20, had unit variance. The interfactor correlation
was φ = 0.3 for the two exogeneous factors, each of which
had unit variance. The residuals ζ1, ζ2 and ζ3 had variances so
that the path values in Figure 7 were standardized regression
coefficients. The model-implied correlation matrix contains
mostly moderate correlations, see Table 2.

Figure 7. Population model. Only the structural model
among five latent variables is shown, and for clarity indicator
variables are not depicted.
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Distributions for the underlying continuous vector

We considered three types of underlying continuous dis-
tributions: the multivariate normal (N) and two non-normal
VITA distributions. In the first VITA distribution (C) we used
Clayton bivariate copulas to construct the regular vine, while
in the second distribution (J) we used Joe bivariate copulas.
The tree structure was identical in both VITA distributions.
The N, C, and J distributions were constructed in a way to
have the correlation structure given in Table 2. That is, the
SEM model is correctly specified with respect to all three
distributions. Also, each of the N, C, and J distributions has
standard normal univariate marginal distributions. Hence, it

is the multivariate dependence structures inherent in the dis-
tributions that differ from one another.

Sample size

In Study 1 we generated three large (n = 105) samples
from distributions N, J, and C. The large sample size re-
duces sampling fluctuations so that this study is conducted
close to the population level. Understanding parameter bias
at the population level is a prerequisite before investigating
sampling properties. Given that for fixed K, cont-ML and
cont-ML-adj are generally not consistent, and cat-LS is not
consistent under the VITA distributions C and J, population-
level parameter bias does not disappear with increasing sam-
ple size. Using a large dataset allows us to calculate the bias
with virtually no confounding due to sampling fluctuation.
In Study 2 we included medium to large sample sizes of
n = 500 and n = 1000, while in Study 3 a range from small
to medium sample sizes, n = 100, 300, 500, was employed.

Distributions of the observed variables

Li (2016b) reported that in empirical research the most
common number of levels in ordinal data are 4, 5 and 7, and
we included these levels in our study. For each K, we con-
sidered three general types of distributions for the ordinal
marginal distributions in X, which we refer to as Symmetri-
cal, Floor, and Ceiling. Symmetrical implies that the prob-
ability distribution of X is symmetric with highest values in
the middle of the range 1, . . . ,K. Floor refers to a floor effect,
that is, the highest probability occurs for the lowest levels of
X and decreases with increasing levels. Ceiling refers to a
ceiling effect, that is, the lowest probability occurs for the
lowest level of X and increases with increasing levels. We
note that distributions with floor or ceiling effects are rou-
tinely encountered in the social sciences.

A single univariate ordinal distribution is defined by a set
of thresholds. For each of the twenty variables, we employed
a different set of thresholds, so that the observed ordinal vec-
tor had marginals with different distributions, as we believe
this is representative of real-world datasets. We refer to the
collection of twenty different threshold sets as a threshold
configuration. To avoid our results being contingent upon
a small number of specific threshold values, we randomly
generated fifty threshold configurations in each class of sym-
metrical, floor, and ceiling distributional forms. Our results
concerning these three distributional forms may therefore be
seen as smoothed over fifty specific distributions belonging
to each form. The generation of threshold configurations us-
ing R is available in the supplementary material. In Figure
8 we have plotted, for K = 4, the ordinal distributions asso-
ciated with three threshold configurations. The upper, mid-
dle, and lower panels in Figure 8 refer to ceiling, floor, and
symmetrical configuration, respectively. The columns in the
figure correspond to the twenty ordinal variables.
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Table 2
Correlation matrix Σ implied by the population model.

X∗1 X∗2 X∗3 X∗4 X∗5 X∗6 X∗7 X∗8 Y∗1 Y∗2 Y∗3 Y∗4 Y∗5 Y∗6 Y∗7 Y∗8 Y∗9 Y∗10 Y∗11 Y∗12
X∗1 1.00
X∗2 0.56 1.00
X∗3 0.48 0.42 1.00
X∗4 0.40 0.35 0.30 1.00
X∗5 0.19 0.17 0.14 0.12 1.00
X∗6 0.17 0.15 0.13 0.10 0.56 1.00
X∗7 0.14 0.13 0.11 0.09 0.48 0.42 1.00
X∗8 0.12 0.10 0.09 0.07 0.40 0.35 0.30 1.00
Y∗1 0.37 0.32 0.28 0.23 0.46 0.40 0.35 0.29 1.00
Y∗2 0.32 0.28 0.24 0.20 0.40 0.35 0.30 0.25 0.56 1.00
Y∗3 0.28 0.24 0.21 0.17 0.35 0.30 0.26 0.22 0.48 0.42 1.00
Y∗4 0.23 0.20 0.17 0.15 0.29 0.25 0.22 0.18 0.40 0.35 0.30 1.00
Y∗5 0.41 0.36 0.30 0.25 0.34 0.30 0.26 0.21 0.43 0.38 0.32 0.27 1.00
Y∗6 0.36 0.31 0.27 0.22 0.30 0.26 0.23 0.19 0.38 0.33 0.28 0.24 0.56 1.00
Y∗7 0.30 0.27 0.23 0.19 0.26 0.23 0.19 0.16 0.32 0.28 0.24 0.20 0.48 0.42 1.00
Y∗8 0.25 0.22 0.19 0.16 0.21 0.19 0.16 0.13 0.27 0.24 0.20 0.17 0.40 0.35 0.30 1.00
Y∗9 0.36 0.32 0.27 0.23 0.35 0.30 0.26 0.22 0.43 0.37 0.32 0.27 0.48 0.42 0.36 0.30 1.00

Y∗10 0.32 0.28 0.24 0.20 0.30 0.27 0.23 0.19 0.37 0.33 0.28 0.23 0.42 0.37 0.32 0.26 0.56 1.00
Y∗11 0.27 0.24 0.20 0.17 0.26 0.23 0.20 0.16 0.32 0.28 0.24 0.20 0.36 0.32 0.27 0.23 0.48 0.42 1.00
Y∗12 0.23 0.20 0.17 0.14 0.22 0.19 0.16 0.14 0.27 0.23 0.20 0.17 0.30 0.26 0.23 0.19 0.40 0.35 0.30 1.00

Note. Values are rounded to two decimal places. X∗1 − X∗4 are indicators for ξ1. X∗5 − X∗8 are indicators for
ξ2. Y∗1 − Y∗4 are indicators for η1. Y∗5 − Y∗8 are indicators for η2. Y∗9 − Y∗12 are indicators for η3.

In Studies 1 and 2, datasets drawn from continuous dis-
tributions N, C, and J were each discretized using a total
of 150 threshold configurations: 50 of each of type Floor,
Symmetrical, and Ceiling. In Study 3, due to the consider-
able computational burden of the bootstrap, the number of
threshold configurations was restricted to three for each of
the types Floor, Symmetrical, and Ceiling. Also, to reduce
computation time, we excluded the condition K = 5 from
Study 3.

Data generation and model estimation

In each of the finite sample conditions in Studies 2 and
3 we generated 1000 datasets. In Study 3, we used 1000
bootstrap replications for each sample. The simulations in
Studies 2 and 3 were performed on resources provided by
UNINETT Sigma2 - the National Infrastructure for High
Performance Computing and Data Storage in Norway. The
samples were generated in the R computing environment (R
Core Team, 2020), with the help of the VineCopula package
(Schepsmeier et al., 2018). cont-ML and cont-ML-adj were
computed based on the covariance matrix using fully stan-
dardized solutions. Polychoric correlation estimation was
performed with the sirt package (Robitzsch, 2019). Model
estimation and testing was achieved with lavaan (Rosseel,
2012), as detailed in the supplementary material. The mod-
els were identified by setting the variance of the latent vari-
ables to unity. The model fit statistic for all three estima-
tors was the scaled-and-shifted statistic of Asparouhov and
Muthén (2010). The bootstrap test of underlying normality
was implemented using the R package discnorm (Foldnes
& Grønneberg, 2020b). Computer code is provided in the
supplementary material.

Evaluation criteria

In Studies 1 and 2 the outcome variable for a statistic θ̂
was relative bias (RB), defined as the mean bias across all
replications in the design condition: RB = 100 · (θ̂ − θ0)/θ0,
where θ0 denotes the true population value of the parameter.
Note that while in Study 2 the replications are random sam-
ples from multivariate distributions, the replications in Study
1 consists of 50 configuration sets. To avoid canceling of
negative and positive bias within a condition, the mean abso-
lute relative bias (MARB) was also employed. CI coverage
is defined as the proportion of times the 95% CI contained
the true population value. For the statistical tests in Study 2
and Study 3 the evaluation criterion was the rejection rate of
the test at the 5% level of significance.

Performance criteria for estimation and inference out-
comes are as follows. We deem acceptable relative bias
smaller than 5%, 95 % CI coverage rates between 92% and
98%, and rejection rates between 2.5% and 7.5% (Bradley,
1978).

Results

Study 1: Bias in parameter estimates at the population
level

Relative bias at the population level was calculated for the
190 correlations. Our design crosses three underlying distri-
butions with three levels of K and three ordinal distributional
forms, yielding 27 conditions. In each of these conditions,
MARB was calculated from 190 relative bias values across
50 threshold configurations, yielding Table 3.

Compared to the standard Pearson correlation, the ad-
justed Pearson correlation managed to reduce bias in 25 of
a total of 27 conditions. The overall mean MARB reduction
of the adjusted Pearson correlation relative to the original
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Figure 8. Three configurations of thresholds for K = 4. The upper, middle, and lower panels contain distributions of twenty
ordinal variables with ceiling, floor, and symmetrical distributions, respectively.

Pearson correlation was 14%. The improvement offered by
the adjusted Pearson correlation was most notable for K = 7:
The overall percentage improvement for K = 4, 5, and 7 was,
respectively, 0%, 12%, and 31%. Given that the adjustment
to the Pearson correlation was found overall to reduce bias
relative to the original Pearson correlation, we do not com-
ment further on the latter.

The adjusted Pearson and the polychoric correlation
achieved acceptable bias in 6 and 14 of the 27 conditions, re-
spectively. The overall MARB for the adjusted Pearson and
the polychoric correlation was 14.1% and 7.8%, respectively.
Overall, the polychoric correlation was therefore less biased
at the population level than the adjusted Pearson correla-
tion. However, in conditions with underlying non-normality
and asymmetrical ordinal distributions, the polychoric cor-
relation did not always outperform the adjusted correlation.
Specifically, for Joe VITA discretized into floor distributions,
and for Clayton VITA discretized into ceiling distributions,
the adjusted Pearson correlation was less biased than the
polychoric correlation.

Let us now turn to parameter bias in the population for
the SEM model depicted in Figure 7, which we first illus-
trate for two parameters in the model. Similar analyses for
all model parameters are found in the online supplementary
material. Figure 9 contains boxplots for bias in the structural
regression coefficient γ21, relating ξ1 to η2. With underly-
ing normality, cont-ML relative bias was acceptable in 61%
of the 450 (three levels of K, three distributional forms and
50 threshold configurations) ordinal distributions. For cont-
ML-adj and cat-LS the corresponding rate of acceptable bias
were 63% and 99%, respectively. Under the Joe VITA the ac-
ceptance rates were 55%, 65%, and 60% for cont-ML, cont-
ML-adj, and cat-LS, respectively, while the respective per-

centages for the Clayton VITA were 60%, 67%, and 71%.
Under non-normality, the distributional shape of the ordinal
data greatly affects the estimators. Categorization of the Joe
VITA into ceiling effects produces severe negative bias in all
three estimators. The Joe VITA discretized into floor effect
distributions on the other hand does not produce bias in the
majority of threshold configurations. For the Clayton VITA;
it is seen that floor effect distributions lead to pronounced
negative bias for all three estimators. There is also consider-
able bias variation within each distributional form, especially
at K = 4. For instance, for the 50 K = 4 threshold config-
urations with floor effects, cat-LS relative bias ranged from
+10.4% to -7.4%. Variation across threshold configurations
decreased with increasing K, with the mean range in cont-
ML relative bias decreasing from 35% to 27% for K = 4 to
K = 7, respectively. For cont-ML-adj and cat-LS, relative
bias range for K = 4 were 31% and 33%, respectively, de-
creasing to 17% and 16% for K = 7, respectively. Also, as K
increases, relative bias tends to decrease. Overall, for K = 4
and K = 7, MARB values for cont-ML, cont-ML-adj and
cat-LS were (6.3%, 4.6%), (5.8%, 3.3%), and (4.6%, 2.8%),
respectively.

Figure 10 presents relative bias for the factor loading λ11,
relating X∗1 to ξ1. As expected, cat-LS under the ideal condi-
tion of multivariate normality is unbiased. However, in strik-
ing contrast to the above findings for structural coefficient
γ21, cont-ML and cont-ML-adj are biased under normality,
even with symmetrical ordinal distributions. The bias in λ11
was acceptable in only 43% of the 450 discretizations ob-
tained by aggregating over K and ordinal distributions. In
comparison, for cont-ML-adj and cat-LS the percentage of
acceptable relative bias was 46% and 100%, respectively.
In other words, under normality only cat-LS was unbiased.
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Figure 9. Study 1. Relative bias for regression parameter γ21. Each boxplot is based on 50 threshold configurations. Floor,
Ceiling, and Symmetrical refer to ordinal distributions with floor effect, ceiling effect, and symmetry, respectively. cont-ML,
cont-ML-adj, and cat-LS refer to estimation based on Pearson, Pearson adjusted, and polychoric correlations, respectively. K
is the number of categories. N, J, and C, refer to normal, Joe VITA, and Clayton VITA underlying distributions.

With underlying non-normality all three estimators exhibited
bias. Under the Joe VITA, cont-ML, cont-ML-adj and cat-LS
bias was acceptable in 54%, 63%, and 66%, respectively, of
the 450 threshold configurations. For the Clayton VITA, the
corresponding acceptance rates were 55%, 59%, and 68%.
We note that there is one specific symmetrical configuration
for K = 5 where the bias is about -34% for cont-ML and
cont-ML-adj. Similar to findings for γ21, we observed that
the extent and direction of bias was dictated by the inter-
action of underlying distribution and ordinal distributional
form. cat-LS with underlying Joe VITA distributions is pos-
itively biased, often above +10%, when the ordinal variables
exhibit floor effects. In the same condition, bias become neg-
ative for ceiling effects. For underlying Clayton VITA, the
situation is reversed, and ordinal distributions with ceiling
effects yield positive bias, while ordinal distributions with

floor effects is associated with negative bias. Overall, bias is
reduced with increasing number of categories.

We now summarize bias across groups of model param-
eters. It is natural to assemble the SEM parameters into
four groups: The first group consists of the 8 factor loadings
for the exogenous variables ξ1 and ξ2, and the second group
consists of the twelve loadings for the endogenous variables
η1, η2, and η3. The third group consists of the six structural
coefficients γi j relating the η-variables with the ξ-variables.
Finally, the fourth group consists of the three structural coef-
ficients relating the η variables. We refer to these four groups
respectively as λex, λen, γ, and β. We next report the mean
absolute relative bias calculated across parameters in each of
the four parameter groups. First, let us investigate the ef-
fect of K, the number of categories. Table 4 shows that es-
timation bias consistently decreases with increasing number
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Figure 10. Study 1. Relative bias for factor loading associated with X∗1 and ξ1. Each boxplot is based on 50 threshold
configurations. Floor, Ceiling, and Symmetrical refer to ordinal distributions with floor effect, ceiling effect, and symmetry,
respectively. cont-ML, cont-ML-adj, and cat-LS refer to estimation based on Pearson, Pearson adjusted, and polychoric
correlations, respectively. K is the number of categories. N, J, and C refer to normal, Joe VITA, and Clayton VITA underlying
distributions.

of categories. This holds across model estimation methods
and parameter groups. Also, it is seen that across all condi-
tions, cat-LS (MARB 3.1% ) is less biased than cont-ML-adj
(MARB 4.7% ), which in turn is less biased than cont-ML
(MARB 5.5%). In none of the 12 conditions (4 parameter
groups vs. 3 levels of K) did cont-ML or cont-ML-adj out-
perform cat-LS. However, in all nine conditions cont-ML-
adj outperformed cont-ML, so the proposed adjustment to
Pearson correlation represents an improvement, although not
enough to outperform cat-LS.

Further study of Table 4 reveals that the distribution of
bias among the parameter groups differs across estimation
methods. For cont-ML and cont-ML-adj the most biased
parameters are the factor loadings for exogenous variables,
while for cat-LS the most biased parameters are the struc-

tural regression coefficients from the exogenous to the en-
dogenous latent variables. Nevertheless, in this group of pa-
rameters cat-LS still has less bias than cont-ML and cont-
ML-adj.

We next investigate another characteristic that determines
ordinal distributions, namely the distributional shapes, and
how they interact with the underlying continuous distribu-
tion, see Table 5. The underlying continuous distribution af-
fects bias for all three estimation methods. Inspection of the
last column in Table 5 reveals that cont-ML and cont-ML-adj
are particularly biased when the underlying Joe VITA distri-
bution is discretized so as to produce ceiling effects. With
this combination, bias is above 13% for both estimators for
parameter groups λen and γ, that is, for factor loadings and
structural paths emanating from the endogenous latent vari-
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ables. The other condition where cont-ML and cont-ML-
adj are particularly biased is when the Clayton VITA is dis-
cretized to produce floor effects, with bias at or well above
10% for groups λen and γ.

In contrast to cont-ML and cont-ML-adj, cat-LS expect-
edly exhibits negligible bias with underlying normality. Even
with underlying non-normality, cat-LS bias is still small, pro-
vided the ordinal distribution is symmetrical. Floor and ceil-
ing effects in the ordinal distributions inflate cat-LS bias un-
der non-normality to around 5%-6%. In particular, there
are two such conditions (of a total of nine conditions ob-
tained from crossing the three underlying and the three or-
dinal distributions) where cont-ML-adj is less biased than
cat-LS. In the first condition the Joe VITA is discretized to
produce floor effects (cat-LS: 5.9% vs. cont-ML-adj: 2.1%),
and the second condition is discretizing the Clayton VITA
to produce ceiling effects (cat-LS: 5.1% vs. cont-ML-adj:
1.8%). Detailed inspection of Table 5 reveals that in these
two conditions bias in cat-LS is located mainly in the fac-
tor loadings. Given that structural parameters, being esti-
mates of association among latent constructs, in many cases
are of more substantive interest than factor loadings, we cal-
culated bias for the combined (γ and β) group of structural
coefficients. The results indicate that in the two conditions
where cat-LS is more biased than cont-ML-adj, the struc-
tural biases were comparable. More precisely, underlying
Joe VITA combined with floor effects yielded a combined
structural parameter bias of 3.2% and 3.1% for cat-LS and
cont-ML-adj, respectively. Similarly, for underlying Clay-
ton VITA combined with ceiling effects, combined structural
parameter bias was 2.6% and 2.9% for cat-LS and cont-ML-
adj, respectively. Therefore, in terms of structural parameter
bias, cont-ML-adj did not clearly outperform cat-LS in any
condition. On the other hand, for factor loading bias cont-
ML-adj outperformed cat-LS in 2 of 9 conditions.

To sum up, at the population level we found that cat-LS
overall was less biased than cont-ML-adj, which again was
less biased than cont-ML. Hence it is worthwhile to replace
the Pearson correlations with adjusted Pearson correlations
before doing the SEM analysis based on Pearson correla-
tions, although this methodology was found to perform con-
siderably worse than cat-LS. We found a strong interaction
between the underlying continuous distribution and the ordi-
nal observed distribution on parameter bias. Especially two
conditions, namely Joe VITA combined with floor effects,
and Clayton VITA combined with ceiling effects, produced
poor performance of cat-LS relative to cont-ML-adj. In these
conditions the bias was mostly related to factor loadings, and
structural parameter bias in cat-LS was comparable to cont-
ML-adj.

Table 3
Study 1: Mean absolute relative bias of estimated correla-
tions.

Underlying
distribution

Ordinal
distribution K Pearson Pearson-adj polychoric

N

Floor
4 17.8 17.4 0.7
5 13.7 12.9 0.6
7 9.6 8.1 0.4

Ceiling
4 18.0 17.5 0.7
5 13.8 12.9 0.6
7 9.8 8.1 0.4

Symm.
4 14.1 13.9 0.6
5 11.0 10.7 0.5
7 6.1 5.6 0.4

J

Floor
4 5.5 5.5 16.1
5 5.6 3.3 13.1
7 7.4 1.8 9.6

Ceiling
4 43.1 39.6 26.3
5 38.6 32.9 22.4
7 33.9 24.6 17.3

Symm.
4 19.3 18.7 5.1
5 14.3 13.4 3.3
7 9.5 7.9 2.1

C

Floor
4 37.0 33.8 19.4
5 32.5 27.6 16.4
7 28.0 20.0 12.5

Ceiling
4 4.1 5.7 14.6
5 3.4 2.9 12.1
7 5.3 1.2 9.0

Symm.
4 16.6 16.3 2.5
5 12.7 12.1 1.7
7 7.8 6.8 1.1

Total 16.2 14.1 7.8
Note. Floor, Ceiling, and Symmetrical refer to ordinal distri-
butions with floor effect, ceiling effect, and symmetry, respec-
tively. Pearson, Pearson-adj, and polychoric refer to estima-
tion based on Pearson, adjusted Pearson, and polychoric corre-
lations, respectively. N, J, and C refer to underlying distribu-
tions of type normal, Joe VITA, and Clayton VITA, respectively.

Study 2: CI coverage and model fit rejection rates

Across all conditions, cont-ML, cont-ML-adj and cat-LS
always produced properly converged solutions in model es-
timation. Reported here are results for sample size n = 500.
Findings for n = 1000 were not qualitatively different, and
are presented in the online supplementary material.

Coverage rates at the 95% confidence level for the re-
gression coefficient γ21 and for the factor loading coefficient
λ11 are presented in Figures 11 and 12. With underlying
normality, coverage rates for the structural parameter γ11
are deemed acceptable for all estimators. With underlying
Joe or Clayton VITA, performance deteriorates, especially
for cat-LS. Overall, for the Joe VITA, cont-ML, cont-ML-
adj and cat-LS have acceptable coverage in 96.5%, 96.7%,
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Table 4
Study 1: Mean absolute relative bias of model parameters.

Estimator
Parameter

group K
Group
mean

Overall
mean

4 5 7

cont-ML

λex 6.0 4.9 3.5 4.8  5.5
λen 9.0 7.3 5.6 7.3
γ 6.9 5.9 5.1 5.9
β 3.4 2.9 2.4 2.9

cont-ML-adj

λex 5.6 4.2 2.4 4.1  4.7
λen 8.5 6.3 3.9 6.3
γ 6.3 5.1 3.7 5.0
β 3.0 2.3 1.5 2.3

cat-LS

λex 3.5 2.9 2.3 2.9  3.1
λen 3.8 3.1 2.4 3.1
γ 4.9 4.1 3.1 4.0
β 2.6 2.1 1.5 2.0

Overall mean 5.6 4.5 3.2
Note. cont-ML, cont-ML-adj, and cat-LS refer to model es-
timator. λex, λen, γ, and β refer to groups of model param-
eters, containing, respectively, factor loadings for exogenous
and endogenous latent variables, regression coefficients among
exogenous and endogenous latent variables, and among en-
dogenous latent variables. K= number of categories.

and 51.1% of the conditions, respectively. Similarly, for the
Clayton VITA, acceptable coverage was achieved in 100%,
100%, and 75.1% of the conditions. Therefore, with under-
lying non-normality, cat-LS coverage for this structural pa-
rameter was far less acceptable than the coverage attained by
cont-ML and cont-ML-adj.

Let us next investigate coverage for the factor loading co-
efficient λ11 which relates X∗1 with ξ1, see Figure 12. Under
normality cat-LS performs well, while cont-ML and cont-
ML-adj perform poorly. In fact, cont-ML and cont-ML-adj
had acceptable coverage in 0.7% and in 1.1% of the con-
ditions with underlying normality, respectively, while cat-LS
had acceptable coverage in 100% of the conditions. With un-
derlying non-normality, performance deteriorates markedly
for all three estimators. Overall, for the Joe VITA, cont-ML,
cont-ML-adj, and cat-LS have acceptable coverage in 15.1%,
30.9%, and 9.3% of the conditions, respectively. With the
Clayton VITA, acceptable coverage was achieved in 17.8%,
38.7%, and 25.1% of the conditions. Therefore, cat-LS did
not perform as well as cont-ML and cont-ML-adj with under-
lying non-normality. The results are highly dependent upon
the specific thresholds. Consider, for instance, cont-ML with
five categories and underlying Joe VITA distribution. Across
the fifty ceiling distributions coverage then ranges from 0%
to 83.6%, with median coverage 36.8%.

There is a notable difference between the coverage of γ21
and λ11. The former parameter is well estimated, while the
latter has very poor coverage for all estimators in the major-
ity of conditions. It is only cat-LS with underlying normality
that yields valid inference for the factor loading λ11. To sys-

Table 5
Study 1: Mean absolute relative bias of model parameters.

Estimator
Underlying
distribution

Ordinal
distribution Parameter group Overall

λex λen γ β

cont-ML

N
Floor 5.2 6.6 3.6 2.2 5.0

Ceiling 5.2 6.6 2.9 1.4 4.7
Symmetrical 5.0 5.3 1.3 1.2 3.9

J
Floor 3.4 3.1 4.7 3.7 3.6

Ceiling 7.8 16.3 15.8 4.4 11.5
Symmetrical 2.9 5.8 6.4 3.0 4.4

C
Floor 7.9 14.6 10.7 4.1 9.9

Ceiling 2.6 2.3 3.6 3.9 2.8
Symmetrical 3.3 5.5 4.3 2.3 4.0

cont-ML-adj

N
Floor 5.3 6.2 2.8 1.7 4.7

Ceiling 5.2 6.2 2.3 1.2 4.5
Symmetrical 4.9 5.2 1.2 1.1 3.8

J
Floor 1.7 1.5 3.6 2.2 2.1

Ceiling 5.9 13.0 14.0 3.9 9.3
Symmetrical 3.0 5.5 5.3 2.5 4.1

C
Floor 6.0 11.8 9.6 3.4 8.1

Ceiling 1.2 1.4 3.0 2.5 1.8
Symmetrical 3.5 5.3 3.6 1.9 3.9

cat-LS

N
Floor 0.3 0.3 1.1 1.1 0.5

Ceiling 0.3 0.3 1.3 1.1 0.6
Symmetrical 0.3 0.2 1.2 1.2 0.6

J
Floor 7.5 6.7 3.5 2.5 5.9

Ceiling 4.4 7.0 11.8 3.4 6.6
Symmetrical 2.4 1.0 4.7 2.3 2.5

C
Floor 2.8 5.8 7.2 2.5 4.5

Ceiling 6.4 5.9 2.5 2.6 5.1
Symmetrical 1.5 0.6 3.0 1.6 1.6

Note. cont-ML, cont-ML-adj, and cat-LS refer to model esti-
mator. λex, λen, γ, and β refer to groups of model parameters,
containing, respectively, factor loadings for exogenous and en-
dogenous latent variables, regression coefficients among exoge-
nous and endogenous latent variables, and among endogenous
latent variables. N, J, and C refer to underlying distributions
of type normal, Joe VITA, and Clayton VITA, respectively.

tematically inquire into the differential coverage among dif-
ferent types of model parameters, aggregated coverage rates
for parameter groups λex, λen, γ, and β, are presented in Ta-
ble 6. For the factor loading parameters in λex and λen, cov-
erage is generally lower than coverage associated with the
structural parameters γ and β. It is especially under cont-ML
and cont-ML-adj that factor loadings have unacceptably low
coverage rates. Coverage is slightly, but consistently, higher
for the loadings of exogenous factors ξ1 and ξ2, compared
to coverage associated with endogenous factors η1, η2, and
η3. Coverage for structural parameters is acceptable for all
estimation methods. Overall, we see that coverage improves
with the number of categories. The overall coverage rate is
highest for cat-LS and lowest for cont-ML.

To further inquire into the effect of observed ordinal dis-
tributions, we next look into how the observed distributional
forms interact with the type of underlying distribution, see
Table 7. cat-LS achieves acceptable coverage under multi-
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variate normality regardless of ordinal distributional shape,
and under Clayton VITA with symmetrical ordinal distribu-
tions. cont-ML does not achieve acceptable coverage in any
of the nine conditions. cont-ML-adj has acceptable cover-
age when the Joe and Clayton VITA distributions are dis-
cretized into ordinal data with floor and ceiling effects, re-
spectively. With underlying normality, cont-ML and cont-
ML-adj coverage is only slightly better under symmetrical
ordinal distributions compared to ordinal distributions with
floor or ceiling effects. cat-LS is expectedly performing very
well in terms of coverage under multivariate normality, for
all distributional forms. With underlying non-normal distri-
butions, all three estimators have coverage that is dependent
upon the ordinal distributional form. For cont-ML and cont-
ML-adj, coverage is particularly poor when the Joe VITA is
discretized into ordinal data with ceiling effects, and when
the Clayton VITA is discretized into data with floor effects.
For cat-LS poorest coverage appears when the Joe and Clay-
ton VITA distributions are discretized into floor and ceiling
effects, respectively. To sum up, in those conditions where
cont-ML and cont-ML-adj coverage is poorest, cat-LS offers
improved coverage, and vice versa, in poor coverage condi-
tions for cat-LS, cont-ML, and cont-ML-adj offer improved
coverage.

Table 6
Study 2: 95% CI coverage rates.

Estimator
Parameter

group K
Group
mean

Overall
coverage

4 5 7

cont-ML

λex 68.2 74.5 80.6 74.5  79.7
λen 65.5 72.3 78.2 72.0
γ 94.6 94.6 94.6 94.6
β 94.9 94.9 94.9 94.9

cont-ML-adj

λex 70.0 78.6 87.6 78.7  82.8
λen 67.3 76.5 86.1 76.6
γ 94.7 94.7 94.8 94.7
β 95.0 94.9 95.0 95.0

cat-LS

λex 84.8 85.8 87.3 86.0  87.7
λen 83.0 84.1 86.0 84.4
γ 94.0 93.6 93.1 93.6
β 94.4 93.9 93.4 93.9

Overall coverage 79.6 83.4 87.3
Note. cont-ML, cont-ML-adj, and cat-LS refer to model es-
timator. λex, λen, γ, and β refer to groups of model param-
eters, containing, respectively, factor loadings for exogenous
and endogenous latent variables, regression coefficients among
exogenous and endogenous latent variables, and among en-
dogenous latent variables. K= number of categories.

The scaled-and-shifted test of correct model specification
was evaluated by calculating rejection rates at the 5% level
of significance. In Figure 13 are depicted boxplots of rejec-
tion rates. Each of the 81 boxplots represent 50 threshold
configurations in which rejection rate was calculated. cont-
ML-adj attains acceptable performance in all 4050 condi-
tions, while cont-ML has acceptable performance in 99.3%,

Table 7
Study 2: 95% CI coverage rates according to ordinal distri-
butional form.

Estimator
Underlying
distribution

Ordinal
distribution Parameter group Overall

λex λen γ β

cont-ML

N
Floor 79.0 76.9 94.6 95.1 83.0

Ceiling 79.6 76.4 95.0 95.5 83.1
Symmetrical 82.5 80.7 94.8 95.4 85.6

J
Floor 86.1 85.0 94.2 94.3 88.2

Ceiling 39.7 34.8 93.8 94.2 54.5
Symmetrical 84.1 83.2 94.5 94.7 87.0

C
Floor 44.8 39.2 94.5 94.9 58.0

Ceiling 90.1 89.4 94.9 94.6 91.3
Symmetrical 84.1 82.4 95.0 95.0 86.8

cont-ML-adj

N
Floor 79.6 77.5 94.7 95.3 83.5

Ceiling 80.0 77.1 94.9 95.5 83.5
Symmetrical 82.7 81.0 94.8 95.4 85.8

J
Floor 93.1 93.0 94.5 94.5 93.5

Ceiling 53.3 48.8 94.0 94.3 64.1
Symmetrical 84.8 84.2 94.6 94.8 87.6

C
Floor 56.7 51.4 94.6 94.9 66.3

Ceiling 93.8 93.5 95.1 94.8 94.1
Symmetrical 84.6 83.0 95.1 95.1 87.2

cat-LS

N
Floor 94.3 94.0 94.4 95.2 94.3

Ceiling 94.1 94.0 94.7 95.4 94.3
Symmetrical 94.2 94.0 94.6 95.3 94.3

J
Floor 66.4 62.5 91.6 91.8 72.6

Ceiling 82.9 79.6 93.6 93.7 84.9
Symmetrical 89.8 89.9 91.8 92.2 90.5

C
Floor 86.8 83.7 94.3 94.6 87.9

Ceiling 73.0 69.7 93.6 93.4 78.0
Symmetrical 92.2 91.7 93.5 93.6 92.4

Note. cont-ML, cont-ML-adj, and cat-LS refer to model estima-
tor. λex, λen, γ, and β refer to groups of model parameters, contain-
ing, respectively, factor loadings for exogenous and endogenous
latent variables, regression coefficients among exogenous and en-
dogenous latent variables, and among endogenous latent variables.
N, J, and C refer to the underlying continuous distribution being
normal, Joe VITA, and Clayton VITA, respectively. Floor, Ceil-
ing, and Symmetrical refer to the ordinal distributional shape.

98% and 100% of conditions, when underlying distribution
is normal, Joe VITA, and Clayton VITA, respectively. For
cat-LS, 100% of the conditions involving underlying nor-
mality had acceptable rejection rates. However, under non-
normality cat-LS performs poorly in terms of Type I er-
ror control: Only 3.8% and 12% of conditions involving
Joe and Clayton underlying VITA distributions, respectively,
produced acceptable rejection rates. In these conditions it is
seen that the type of underlying distribution interacts with
ordinal observed distributional form when it comes to cat-LS
rejection rate. Also, with an increasing number of categories,
it is more likely to reject the null hypothesis of correct model
specification.

It is surprising that cont-ML and cont-ML-adj model fit
testing achieved acceptable Type I error control across a large
majority of conditions, and utmost caution must be exercised
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Figure 11. Study 2: Coverage rates for regression parameter γ21 at sample size n = 500. Each boxplot is based on 50 threshold
configurations. Floor, Ceiling and Symmetrical refer to ordinal distributions with floor effect, ceiling effect and symmetry,
respectively. cont-ML, cont-ML-adj and cat-LS refer to estimation based on Pearson, adjusted Pearson and polychoric cor-
relations, respectively K is the number of categories. N, J, and C refer to normal, Joe VITA, and Clayton VITA underlying
distributions.

when interpreting these rejection rates, as cont-ML, cont-
ML-adj and cat-LS are all inconsistent, with the exception
of cat-LS under normality. Study 1 demonstrated that the
Pearson (adjusted) correlations are biased (see Table 3) in the
population, so that the SEM model would seem misspecified
at the population level. Study 1 indeed showed that model
parameters obtained with cont-ML and cont-ML-adj were
biased (Tables 4 and 5). However, the specific SEM model
utilized in this study encompasses a large set of correlation
structures, including those calculated in cont-ML and cont-
ML-adj estimation. In the upcoming discussion section we
discuss this topic further, and demonstrate that imposing a
few correctly specified constraints in the original SEM model
produces unacceptable Type I error control for the cont-ML

and cont-ML-adj model test.

Study 3: The bootstrap test for underlying non-normality

The bootstrap test for underlying normality was evaluated
using nine of the 150 threshold configurations employed in
Studies 1 and 2. Type I error control (underlying distribution
N) was acceptable in 17%, 78%, and 89% of the conditions
for sample sizes n = 100, 300, and 500, respectively. At
sample size n = 500, Type I error control was acceptable
in all conditions, except under two of the three symmetrical
configurations.

In Table 8 are given the rejection rates at the 5% level of
significance. Within each distributional form (floor effects,
ceiling effects and symmetrical) there was little variation in
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Figure 12. Study 2: Coverage rates for factor loading relating X∗1 to ξ1. Each boxplot is based on 50 threshold configurations.
Floor, Ceiling and Symmetrical refer to ordinal distributions with floor effect, ceiling effect and symmetry, respectively. cont-
ML, cont-ML-adj and cat-LS refer to estimation based on Pearson, adjusted Pearson and polychoric correlations, respectively
K is the number of categories. N, J, and C refer to normal, Joe VITA, and Clayton VITA underlying distributions.

rejection rates across the three threshold configurations, so
we decided to collapse results across these configurations.
The full table with rejection rates for each threshold config-
uration is presented in the supplementary material.

The power of the bootstrap test (underlying distribution
J and C) is generally high. For sample sizes n = 300 and
n = 500 the bootstrap test always rejected the null hypothe-
sis of underlying normality, for both types of underlying nor-
mality, both levels of K, and all ordinal distributional forms.
At the smallest sample size, n = 100, violation of the normal-
ity assumption was not always detected, especially under the
distribution C. However, the bootstrap test exhibited power
in the ranges 0.6 − 0.8 and 0.7 − 0.9 for K = 4 and K = 7,
respectively.

Discussion

In the present article we carefully analyzed the discretiza-
tion model which is frequently used to analyze ordinal data in
SEM. Identification issues were discussed, and it was argued
that to investigate the effect of underlying non-normality, a
new simulation method based on VITA distributions is well-
suited. Also, we presented theoretical results on the consis-
tency of three kinds of correlation matrices as the number of
categories increases. First, we proposed a new encoding of
ordinal data that ensures that the Pearson correlation matrix
of the adjusted data will approach the true underlying corre-
lation matrix as K increases. Second, we showed that this
convergence also holds for the polychoric correlation matrix,
provided correct marginal distributions are specified for the
underlying vector. Thirdly, consistency of the Spearman cor-
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Figure 13. Study 2: Rejection rates at the 5% level of significance of the scaled-and-shifted test statistic. Each boxplot is
based on 50 threshold configurations. Floor, Ceiling, and Symmetrical refer to ordinal distributions with floor effect, ceiling
effect, and symmetry, respectively. K is the number of categories. N, J, and C refer to normal, Joe VITA, and Clayton VITA
underlying distributions. The horizontal line corresponds to 5% rejection rate.

relation based on ordinal data towards the population Spear-
man correlation of the underlying variable was shown under
weak assumptions.

Next, we investigated in the context of a specific medium-
sized SEM model, the extent to which underlying non-
normality and variation in ordinal distributional forms affects
ordinal SEM estimation and inference. We also evaluated for
the first time the performance of a bootstrap test for under-
lying non-normality in the context of a medium-sized SEM
model.

Our first research question asked whether variation in or-
dinal distributional forms affects ordinal SEM estimation and
inference. Study 1 showed that population-level correla-
tions and SEM model parameters for all three estimators to
a large degree depended on the specific distributional form.

We found systematic variation in estimates as a function of
whether the ordinal variables had floor effects, were symmet-
rical, or had ceiling effects. There was also significant vari-
ation within these classes of distributional forms. That is,
discretizing a continuous vector in two ways, both of which
produce floor effects in all twenty variables, may lead to very
different model parameter estimates.

Our second research question asked whether cont-ML,
cont-ML-adj, and cat-LS are robust to underlying non-
normality. We found that all three estimators are substan-
tially biased when the underlying normality assumption is
violated. In the present study cat-LS with underlying non-
normality performed much worse than previously reported
(e.g., Flora & Curran, 2004; Li, 2016a; Rhemtulla et al.,
2012). The sensitivity of cat-LS to underlying non-normality
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Table 8
Study 3: Rejection rates at the α = 0.05 level of significance
of the bootstrap test for underlying normality.

Underlying
distribution K n Floor Ceiling Symm.

N

4
100 0.08 0.08 0.11
300 0.05 0.05 0.07
500 0.05 0.05 0.06

7
100 0.18 0.13 0.29
300 0.07 0.06 0.08
500 0.05 0.05 0.08

J

4
100 0.92 0.89 0.96
300 1.00 1.00 1.00
500 1.00 1.00 1.00

7
100 0.85 0.99 0.98
300 1.00 1.00 1.00
500 1.00 1.00 1.00

C

4
100 0.76 0.66 0.80
300 1.00 1.00 1.00
500 1.00 1.00 1.00

7
100 0.96 0.68 0.88
300 1.00 1.00 1.00
500 1.00 1.00 1.00

Note. N, J, and C refer to the underlying continuous distribu-
tion being normal, Joe VITA, and Clayton VITA, respectively.
Floor, Ceiling, and Symmetrical refer to the ordinal distribu-
tional shape. K= number of categories. n= sample size.

should be taken into account by researchers. For instance,
with underlying non-normality model fit assessment in terms
of the chi-square statistic will tend to indicate that the model
has poorer fit than is really the case. We also found that for all
three estimators the effect of underlying non-normality was
strongly moderated by the distributional form of the ordinal
variables. For instance, in Figure 9, cont-ML mean relative
bias for the structural coefficient γ21 across 50 ordinal ceiling
distributions with K = 4 was -20% under the Joe VITA. The
same ceiling ordinal distributions produced a mean relative
bias of only -3% under the Clayton VITA. For the 50 ordi-
nal K = 4 distributions with floor effects, the situation is
reversed, with a mean relative bias of -1% for the Joe VITA,
compared to -11% for the Clayton VITA. This pattern may
allow us to speculate that upper (lower) tail dependency com-
bined with ordinal ceiling (floor) effects makes it especially
hard to recover the true underlying correlation.

The third topic on our research agenda was the theoretical
and empirical assessment of the new cont-ML-adj estimator,
which may be seen as a hybrid of cont-ML and cat-LS, since
it incorporates the discretization model but still treats data as
continuous in the sense that Pearson correlations are used.

In contrast to cont-ML, we proved that cont-ML-adj is con-
sistent as K increases. Across all conditions in our simula-
tion design cont-ML-adj outperformed cont-ML on all eval-
uation criteria. However, cat-LS outperformed cont-ML-adj
in most conditions. Interestingly, the structural regression
coefficients did not suffer from poor CI coverage in any of
the three estimators, while the factor loading parameters had
unacceptable coverage, especially under cont-ML and cont-
ML-adj. Similar results were also reported in Li (2016a) and
Li (2016b). The acceptable performance of structural pa-
rameter coverage may well be, however, a by-product of the
specified model in this and related studies.

We urge caution on this point because, as seen in Study
1, the parameter estimates are biased for all three estima-
tors under non-normality. We have observed in numerical
experiments that the bias is concentrated mainly in either the
factor loadings or in the regression coefficients, depending
upon how we identify the SEM. If the model is identified
by setting unit variance for the latent variables, which we do
in the present study, we impose a correct assumption on the
latent variables, which reduces bias in the structural part of
the model. However, when identifying the model by fixing
one factor loading per latent variable to its true value, bias
is reduced in the factor loadings, but increases in the struc-
tural part of the model. This means that the high quality of
structural coefficient inference observed in Study 2 may be
of limited external validity.

Similarly, caution is also warranted when interpreting the
even more striking Type I error control of the test of model
fit demonstrated by cont-ML and cont-ML-adj in Study 2.
We know from Study 1 that these estimators are biased at
the population level, so we would not in general expect the
model fit test to perform well. We discuss this issue further
at the end of this section.

We have seen that cont-ML, cont-ML-adj, and cat-LS
need not give valid results when underlying normality is vi-
olated. It is therefore important to evaluate methods of de-
tecting underlying non-normality. To answer our fourth re-
search question, we evaluated in Study 3 the performance of
the newly proposed bootstrap test (Foldnes & Grønneberg,
2019b) of underlying normality in ordinal data. The test was
found to adequately maintain Type I error control for sample
sizes of n = 300 or more. Also, the bootstrap test exhibited
high power to detect underlying non-normality.

We next discuss some limitations in the present study,
which may lead to follow-up studies extending the present
work. Our results were obtained in the context of a single
medium-sized SEM whose population values were chosen
to be representative of real-world applications (Li, 2016b).
The correlations implied by this model are moderate, with
a maximum value of 0.56. We conjecture that bias be-
comes even more pronounced under stronger correlations up
to a certain point, as observed by Foldnes and Grønneberg
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(2019b). Robustness of ordinal SEM to underlying non-
normality, and its dependence on threshold configurations
in other application settings (e.g., multilevel or multi-group
analyses) should be studied in future work. Our implemen-
tation of cat-LS was based on DWLS estimation. An alter-
native would be unweighted least squares (ULS) estimation.
We believe however that our results will replicate under ULS
estimation, given that ULS and DWLS have been reported to
yield similar results (Forero, Maydeu-Olivares, & Gallardo-
Pujol, 2009; Li, 2016b). As for the proposed new cont-ML-
adj estimator, we considered only one simple way of obtain-
ing adjusted values. There may be additional improvements
to be gained from identifying better placements of the nu-
merical values of the ordinal observations.

The external validity of our simulation study is also lim-
ited by our choice of underlying and ordinal observed dis-
tributional forms. First, cat-LS assumes that the underly-
ing variable is normal, and while we have studied its per-
formance under non-normality, we have kept the underlying
marginals exactly normal. This means that we have stud-
ied a situation where the marginals are correctly specified.
Second, we have studied only two non-normal multivari-
ate distributions. Using the VITA simulation technique of
Grønneberg and Foldnes (2017) and implemented in the R-
package covsim (Foldnes & Grønneberg, 2020), one may
easily extend our study to a much broader range of dependen-
cies. Third, although we considered many threshold config-
urations, the ordinal variables in each condition all belonged
to the same type (ceiling, floor or symmetrical) of distribu-
tions. In real-world settings some observed variables may
have symmetrical distributions, some may have ceiling ef-
fects, and others may have floor effects. An extension of our
work would therefore be to discretize the continuous vector
X∗ into variables whose distributions are mixed among ceil-
ing, floor, and symmetrical observed distributions. Fourth,
we have simulated data only with a correctly specified un-
derlying moment model. Therefore, our discussion of the
performance of model fit tests only concerns Type I error
control.

Our simulation study was based on the VITA simulation
methodology of Grønneberg and Foldnes (2017). The two
advantages of using VITA to simulate X∗ in contrast to using
the VM method are: First, VITA will in most cases not be
discretized equivalent to an exactly multivariate normal ran-
dom vector. Second, we are able to fix marginals and control
other aspects of the distribution of X∗ including Cov(X∗),
which means that we can isolate the effect of the marginal
distribution of X as explained above. The VITA method is
still just one possible member of the space of distributions
that when discretized into an ordinal vector X̃ has exactly the
same distribution as X. Unless a partial identification anal-
ysis is conducted, as discussed in the online supplementary
material (p. 1), simulation studies have to be interpreted with

caution.

Interpreting cont-ML and cont-ML-adj model fit rejec-
tion rates

In Study 2 (see Figure 13) we reported that cont-ML and
cont-ML-adj maintained Type I error rates surprisingly well
for the the test of correct model specification. When dealing
with consistent estimation methodology, observing a rejec-
tion rate which is close to nominal in a simulation study is
in favor of the estimation methodology. However, Study 1
demonstrated that cont-ML and cont-ML-adj estimates are
biased in the population (see Table 3). This should be kept
in mind when interpreting the rejection rates in Study 2. The
model fit test assesses whether the population covariance ma-
trix of X is expressible by the considered covariance model:
Σ(θ0) = Cov(X) for some vector θ0 of model parameters.
The alternative hypothesis is that no such θ0 exists. The
model fit test is consistent, in other words, the rejection rate
will converge to 100% under the alternative hypothesis. Our
simulations therefore indicate that the null hypothesis is true
when using cont-ML and cont-ML-adj. The null hypothesis
only specifies that the covariance model is fulfilled, and it
may therefore be true also when the population parameters
of the underlying model for X∗ are not reached. Our design
ensures that the model holds for X∗, and there is therefore
a θ◦ such that Σ(θ◦) = Cov(X∗). From Study 1 we know
that θ◦ , θ0. This means that the covariance of the ordi-
nal observations X are compatible with the covariance model
θ 7→ Σ(θ). The specific SEM model utilized in this study en-
compasses a large set of correlation structures, coincidentally
also including those calculated in cont-ML and cont-ML-
adj estimation. The almost nominal rejection rates associ-
ated with cont-ML and cont-ML-adj therefore occur as a by-
product of the model we set up in Figure 7, and should count
in favor of cont-ML and cont-ML-adj only with these impor-
tant caveats in mind. Why then, do not cat-LS rejection rates
approximate the nominal 5% level under non-normality? It
so happens that the parameters towards which cat-LS con-
verges are not included in the covariance model θ 7→ Σ(θ). If
cat-LS estimates were inconsistent under non-normality yet
converged to a parameter configuration compatible with the
covariance model, this would not by itself be in favor of cat-
LS. This argument is not a defense of the high rejection rate
of the goodness of fit test with cat-LS. Instead, it is a caution-
ary note on interpreting rejection rates for the goodness of fit
test with inconsistent estimators in general.

We confirm this observation by restricting the covariance
model through imposing four correctly specified constraints
on our model. We impose equality constraints on all five fac-
tor loadings that take the value 0.7 in the population. We sim-
ulated one thousand datasets, each of size n = 1000 from a
multivariate normally distributed X∗, which were discretized
into ordinal datasets with K = 4 and ceiling effects. Three
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model fit statistics were computed: cont-ML without and
with constraints, and cat-LS with constraints. The rejection
rates were 4.9%, 99.9%, and 4.7% respectively. Compati-
ble with the simulations from Study 2, cont-ML for the orig-
inal unrestricted model has a rejection rate close to nomi-
nal. This is the same for cat-LS with the constraints, which
is expected since we simulate under normality. In contrast,
cont-ML with the (true) constraints has a rejection rate close
to 1, illustrating that cont-ML does not in general reach the
covariance model of X∗. This supports our claim that the
approximately nominal rejection rates observed for cont-ML
and cont-ML-adj observed in Study 2 were due to the fact
that the unconstrained SEM model considered encompasses
the covariance matrices of X. Details of this numerical illus-
tration are given in an R-script in the supplementary material.

Conclusions

Several well-cited simulation studies have concluded that
ordinal SEM estimation (e.g., the WLSMV option in Mplus)
is fairly robust to violation of underlying normality (e.g.,
Flora & Curran, 2004; Quiroga, 1994; Rhemtulla et al.,
2012), and consequently researchers rarely test for underly-
ing normality in ordinal data. The present article describes
the first comprehensive simulation study where the simulated
data are not compatible with underlying normality. The re-
sults show that ordinal SEM is sensitive to underlying non-
normality, resulting in parameter bias at the population level
and unacceptable CI coverage rates at the finite-sample level.
We also introduced and analyzed cont-ML-adj, which theo-
retically and empirically outperforms the classical cont-ML
approach to treating ordinal data as continuous.

The conclusion based on our simulation study is that stan-
dard methods, as well as the new cont-ML-adj, are all highly
sensitive to underlying non-normality. It is therefore impor-
tant for researchers to carefully consider whether underlying
normality is a reasonable assumption, and to empirically as-
sess whether the data contain evidence to the contrary. A
bootstrap test to this purpose is available in the R package
discnorm (Foldnes & Grønneberg, 2020b). In the present
study the bootstrap test adequately controlled the Type I error
for a sample size of n = 300. Also, the test was able to reli-
ably detect underlying non-normality at this sample size. We
recommend that applied researchers use this test in applied
work.

From our theoretical study of the problem, we also con-
clude that all three estimators will work better as the number
of categories K increases. That is, when K increases, sta-
tistical analysis of ordinal data becomes more well behaved.
Therefore, applied researchers ought to aim at increasing K
when designing studies. Whether or not this is feasible in a
practical situation involves many considerations that are out-
side the scope of the present work.

So which estimator do we recommend? We must be care-

ful to point out that the external validity of our study is lim-
ited, as it is for all simulation studies. However, based on
our study we recommend cat-LS over cont-ML-adj. If un-
derlying normality is seen as reasonable, and the bootstrap
test of underlying normality is not rejected, cat-LS estimation
and inference are valid procedures. Should the bootstrap test
indicate that we are handling data stemming from underly-
ing non-normality, cat-LS still is preferable to cont-ML-adj.
In terms of population bias, Study 1 found that overall, the
mean relative model parameter bias under non-normality was
0% and -4% for cat-LS and cont-ML-adj, respectively, and
the corresponding values for the mean absolute relative bias
were 4.4% and 4.9%, respectively. In addition, Study 2 re-
vealed that CI coverage rates under non-normality are overall
higher with cat-LS (84%), compared to cont-ML-adj (82%)
(see Table 7). However, with underlying non-normality, we
must interpret cat-LS results with caution. Estimates may
be biased, and model fit assessment may be biased towards
poor fit. In brief, applied researchers should be aware that
cat-LS in the presence of underlying non-normality can not
be considered a robust methodology.

Acknowledgments

We thank the associate editor and the reviewers for
thoughtful and constructive feedback.

References

Almeida, C., & Mouchart, M. (2014). Testing normality of latent
variables in the polychoric correlation. Statistica, 74(1), 3–
25.

Asparouhov, T., & Muthén, B. (2010). Simple second order chi-
square correction. Mplus technical appendix, 1–8.

Babakus, E., Ferguson, C. E., & Jöreskog, K. G. (1987). The sensi-
tivity of confirmatory maximum likelihood factor analysis to
violations of measurement scale and distributional assump-
tions. Journal of marketing research, 24(2), 222–228.

Beauducel, A., & Herzberg, P. Y. (2006). On the performance
of maximum likelihood versus means and variance adjusted
weighted least squares estimation in cfa. Structural Equation
Modeling: A Multidisciplinary Journal, 13(2), 186-203.

Bedford, T., & Cooke, R. M. (2002). Vines–a new graphical model
for dependent random variables. The Annals of Statistics,
30(4), 1031–1068.

Bentler, P. (2006). Eqs 6 structural equations program manual.
Encino, CA: Multivariate Software, Inc.

Bollen, K. A. (1989). Structural equations with latent variables.
New York: Wiley. doi: 10.1002/9781118619179

Bradley, J. V. (1978). Robustness? British Journal of Mathematical
and Statistical Psychology, 31(2), 144–152.

Brennan, S. E., McKenzie, J. E., Turner, T., Redman, S., Makkar, S.,
Williamson, A., . . . Green, S. E. (2017). Development and
validation of seer (seeking, engaging with and evaluating re-
search): a measure of policymakers’ capacity to engage with
and use research. Health research policy and systems, 15(1),
1.



THE IMPACT OF UNDERLYING NON-NORMALITY ON ORDINAL SEM 29

Browne, M. W. (1984). Asymptotically distribution-free methods
for the analysis of covariance structures. British Journal of
Mathematical and Statistical Psychology, 37(1), 62–83.

Christoffersson, A. (1977). Two-step weighted least squares factor
analysis of dichotomized variables. Psychometrika, 42(3),
433–438.

De Leeuw, J., Young, F. W., & Takane, Y. (1976). Additive structure
in qualitative data: An alternating least squares method with
optimal scaling features. Psychometrika, 41(4), 471–503.

DiStefano, C. (2002). The impact of categorization with confir-
matory factor analysis. Structural equation modeling, 9(3),
327–346.

Flora, D. B., & Curran, P. J. (2004). An empirical evaluation of al-
ternative methods of estimation for confirmatory factor anal-
ysis with ordinal data. Psychological methods, 9(4), 466–
491.

Foldnes, N., & Grønneberg, S. (2020a). covsim: Simulate from
distributions with given covariance matrix and marginal in-
formation [Computer software manual]. Retrieved from
https://CRAN.R-project.org/package=covsim (R
package version 0.1.0)

Foldnes, N., & Grønneberg, S. (2020b). discnorm: Test for dis-
cretized normality in ordinal data [Computer software man-
ual]. Retrieved from https://CRAN.R-project.org/
package=discnorm (R package version 0.1.0)

Foldnes, N., & Grønneberg, S. (2015). How general is the Vale–
Maurelli simulation approach? Psychometrika, 80(4), 1066–
1083.

Foldnes, N., & Grønneberg, S. (2019a). On identification and non-
normal simulation in ordinal covariance and item response
models. Psychometrika, 84(4), 1000–1017.

Foldnes, N., & Grønneberg, S. (2019b). Pernicious polychorics:
The impact and detection of underlying non-normality.
Structural Equation Modeling: A Multidisciplinary Journal,
1–19.

Foldnes, N., & Olsson, U. H. (2016). A simple simulation technique
for nonnormal data with prespecified skewness, kurtosis, and
covariance matrix. Multivariate behavioral research, 51(2-
3), 207–219.

Forero, C. G., Maydeu-Olivares, A., & Gallardo-Pujol, D. (2009).
Factor analysis with ordinal indicators: A monte carlo study
comparing dwls and uls estimation. Structural Equation
Modeling: A Multidisciplinary Journal, 16(4), 625–641.

Gaspard, H., Wigfield, A., Jiang, Y., Nagengast, B., Trautwein, U.,
& Marsh, H. W. (2018). Dimensional comparisons: How
academic track students’ achievements are related to their
expectancy and value beliefs across multiple domains. Con-
temporary Educational Psychology, 52, 1–14.

Granberg-Rademacker, J. S. (2010). An algorithm for converting
ordinal scale measurement data to interval/ratio scale. Edu-
cational and Psychological Measurement, 70(1), 74–90.

Grønneberg, S., & Foldnes, N. (2017). Covariance model simula-
tion using regular vines. Psychometrika, 82(4), 1035–1051.

Grønneberg, S., & Foldnes, N. (2019). A problem with discretiz-
ing Vale-Maurelli in simulation studies. Psychometrika, 84,
554-561.

Harwell, M. R., & Gatti, G. G. (2001). Rescaling ordinal data to
interval data in educational research. Review of Educational

Research, 71(1), 105–131.
Hofert, M., Kojadinovic, I., Maechler, M., & Yan, J. (2013). copula:

Multivariate dependence with copulas [Computer software
manual]. Retrieved from http://CRAN.R-project.org/
package=copula (R package version 0.999-7.)

Hoogland, J. J., & Boomsma, A. (1998). Robustness studies in
covariance structure modeling: An overview and a meta-
analysis. Sociological Methods & Research, 26(3), 329–
367.

Jin, S., Luo, H., & Yang-Wallentin, F. (2016). A simulation study
of polychoric instrumental variable estimation in structural
equation models. Structural Equation Modeling: A Multi-
disciplinary Journal, 23(5), 680–694.

Jin, S., & Yang-Wallentin, F. (2017). Asymptotic robustness study
of the polychoric correlation estimation. Psychometrika,
82(1), 67–85.

Johnson, D. R., & Creech, J. C. (1983). Ordinal measures in mul-
tiple indicator models: A simulation study of categorization
error. American Sociological Review, 48(3), 398–407.

Jöreskog, K. G. (1967). Some contributions to maximum likelihood
factor analysis. Psychometrika, 32(4), 443–482.

Jöreskog, K. G. (1994). Structural equation modeling with ordinal
variables. Lecture Notes-Monograph Series, 297–310.

Jöreskog, K. G., & Sörbom, D. (2015). Lisrel 9.20 for windows
[computer software]. Skokie, IL: Scientific Software Interna-
tional, Inc..

King, G., Murray, C. J., Salomon, J. A., & Tandon, A. (2003).
Enhancing the validity and cross-cultural comparability of
measurement in survey research. American political science
review, 97(4), 567–583.

Kotz, S., Balakrishnan, N., & Johnson, N. L. (2004). Continuous
multivariate distributions, volume 1: Models and applica-
tions (Vol. 1). John Wiley & Sons.

Li, C.-H. (2016a). Confirmatory factor analysis with ordinal
data: Comparing robust maximum likelihood and diagonally
weighted least squares. Behavior Research Methods, 48(3),
936–949.

Li, C.-H. (2016b). The performance of ml, dwls, and uls estimation
with robust corrections in structural equation models with
ordinal variables. Psychological methods, 21(3), 369.

Liu, Y., Millsap, R. E., West, S. G., Tein, J.-Y., Tanaka, R., &
Grimm, K. J. (2017). Testing measurement invariance in
longitudinal data with ordered-categorical measures. Psy-
chological methods, 22(3), 486.

Marsh, H. W., Abduljabbar, A. S., Abu-Hilal, M. M., Morin, A. J.,
Abdelfattah, F., Leung, K. C., . . . Parker, P. (2013). Fac-
torial, convergent, and discriminant validity of timss math
and science motivation measures: A comparison of arab and
anglo-saxon countries. Journal of Educational Psychology,
105(1), 108.

Marsh, H. W., Vallerand, R. J., Lafrenière, M.-A. K., Parker, P.,
Morin, A. J., Carbonneau, N., . . . and others (2013). Passion:
Does one scale fit all? construct validity of two-factor pas-
sion scale and psychometric invariance over different activi-
ties and languages. Psychological Assessment, 25(3), 796.

Maydeu-Olivares, A. (2006). Limited information estimation and
testing of discretized multivariate normal structural models.
Psychometrika, 71(1), 57–77.

https://CRAN.R-project.org/package=covsim
https://CRAN.R-project.org/package=discnorm
https://CRAN.R-project.org/package=discnorm
http://CRAN.R-project.org/package=copula
http://CRAN.R-project.org/package=copula


30 NJÅL FOLDNES AND STEFFEN GRØNNEBERG

Monroe, S. (2018). Contributions to estimation of polychoric corre-
lations. Multivariate behavioral research, 53(2), 247–266.

Moshagen, M., & Musch, J. (2014). Sample size requirements of
the robust weighted least squares estimator. Methodology,
10(2), 60-70.

Muthén, B. (1984). A general structural equation model with di-
chotomous, ordered categorical, and continuous latent vari-
able indicators. Psychometrika, 49(1), 115–132.

Muthén, B., & Kaplan, D. (1985). A comparison of some method-
ologies for the factor analysis of non-normal likert variables.
British Journal of Mathematical and Statistical Psychology,
38(2), 171–189.

Muthén, B., & Muthén, L. (2012). Mplus version 7: User’s guide.
Los Angeles, CA: Muthén & Muthén.

Muthén, B. O. (1993). Goodness of fit with categorical and other
nonnormal variables. SAGE Focus Editions, 154, 205–205.

Nagler, T., & Vatter, T. (2019). rvinecopulib: High performance al-
gorithms for vine copula modeling [Computer software man-
ual]. Retrieved from https://CRAN.R-project.org/
package=rvinecopulib (R package version 0.5.1.1.0)

Natesan, P. (2015). Comparing interval estimates for small sample
ordinal CFA models. Frontiers in psychology, 6, 1599. doi:
10.3389/fpsyg.2015.01599

Neff, K. D., Whittaker, T. A., & Karl, A. (2017). Examining the
factor structure of the self-compassion scale in four distinct
populations: Is the use of a total scale score justified? Jour-
nal of Personality Assessment, 99(6), 596–607.

Nelsen, R. B. (2007). An introduction to copulas. Springer Science
& Business Media.

Nestler, S. (2013). A Monte Carlo study comparing PIV, ULS and
DWLS in the estimation of dichotomous confirmatory fac-
tor analysis. British Journal of Mathematical and Statistical
Psychology, 66(1), 127-143. doi: 10.1111/j.2044-8317.2012
.02044.x

Olsson, U. (1979a). Maximum likelihood estimation of the poly-
choric correlation coefficient. Psychometrika, 44(4), 443–
460.

Olsson, U. (1979b). On the robustness of factor analysis against
crude classification of the observations. Multivariate behav-
ioral research, 14(4), 485–500.

Pearson, K. (1900). Mathematical contributions to the theory of
evolution. vii. on the correlation of characters not quantita-
tively measurable. Philos. Trans. R. Soc. SA, 196, 1–47.

Pearson, K., & Pearson, E. S. (1922). On polychoric coefficients of
correlation. Biometrika, 14(1), 127–156.

Quiroga, A. M. (1994). Studies of the polychoric correlation and
other correlation measures for ordinal variables. (Unpub-
lished doctoral dissertation). Uppsala University.

R Core Team. (2020). R: A language and environment for statistical
computing [Computer software manual]. Vienna, Austria.
Retrieved from https://www.R-project.org/

Rhemtulla, M., Brosseau-Liard, P. É., & Savalei, V. (2012). When
can categorical variables be treated as continuous? a com-
parison of robust continuous and categorical SEM estima-
tion methods under suboptimal conditions. Psychological
methods, 17(3), 354.

Robitzsch, A. (2019). sirt: Supplementary item response
theory models [Computer software manual]. Retrieved

from https://CRAN.R-project.org/package=sirt (R
package version 3.4-64)

Rosseel, Y. (2012). lavaan: An R package for structural equation
modeling. Journal of Statistical Software, 48(2), 1–36.

Satorra, A., & Bentler, P. (1988). Scaling corrections for statis-
tics in covariance structure analysis (UCLA statistics series
2). Los Angeles: University of California at Los Angeles,
Department of Psychology.

Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B., Na-
gler, T., & Erhardt, T. (2018). Vinecopula: Statistical in-
ference of vine copulas [Computer software manual]. Re-
trieved from https://CRAN.R-project.org/package=
VineCopula (R package version 2.1.8)

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate
nonnormal distributions. Psychometrika, 48(3), 465–471.

Yang, Y., & Green, S. B. (2015). Evaluation of structural equa-
tion modeling estimates of reliability for scales with ordered
categorical items. Methodology, 11(1), 23-34.

https://CRAN.R-project.org/package=rvinecopulib
https://CRAN.R-project.org/package=rvinecopulib
https://www.R-project.org/
https://CRAN.R-project.org/package=sirt
https://CRAN.R-project.org/package=VineCopula
https://CRAN.R-project.org/package=VineCopula


THE IMPACT OF UNDERLYING NON-NORMALITY ON ORDINAL SEM 1

Online Supplementary Material to Article
The sensitivity of structural equation modeling
with ordinal data to underlying non-normality

and observed distributional forms

Njål Foldnes & Steffen Grønneberg

On Partial identification

Here, we consider the interpretation of simulation stud-
ies with discretized ordinal vectors when considering more
general rather than normal theory methods such as the poly-
choric estimator. Interpretation then becomes more complex.
For normal theory methods, we were able to pin-point an un-
derlying single random vector X∗ which the polychoric es-
timator targeted. In general, such a simple answer will not
hold, as the distribution of X∗ is not identified from the dis-
tribution of X. If we are to study the effect of non-normality
of X∗ without further strong distributional restrictions that
lead to the identification of the distribution of X∗ based on
X, we must exercise utmost caution, since we are dealing
with a non-identified statistical model where unexpected and
unusual phenomena may happen.

We here review and extend some of the discussion in
Foldnes and Grønneberg (2019). Let us consider the interpre-
tation of using the VM simulation technique to generate X∗

that is then discretized into X, which for the sake of argument
is encoded using integers from 1 to K. That is, in Equation
(1) we have xk, j = j for 1 ≤ k ≤ p and 1 ≤ j ≤ K. Based on
a simulated sample from X, we compare the known Pearson
correlation matrix of X∗ to that of the empirical correlation
matrix of the sample from X. For large samples, this will
estimate Cov(X). What the interpretation and justification of
this comparison?

As we have seen, when simulating X∗ which is then dis-
cretized into X using Equation (1) and some threshold set,
there is a large class of random vectors X̃∗ that when dis-
cretized according to Equation (1) with adjusted thresholds,
yields the same distribution for X. Formally, Foldnes and
Grønneberg (2019) calls X∗ and X̃∗ discretize equivalent if
they can be discretized into vectors X and X̃ where X and X̃
have the same distribution. Recall that if two vectors have
the same distribution, they are statistically identical. As dis-
cussed in Foldnes and Grønneberg (2019), it is not just the
marginals of X∗ that may vary, but also features of the cop-
ula of X∗. When simulating X through discretizing X∗ via
Equation (1), we are therefore implicitly simulating X also
through discretizing X̃∗ for all X̃∗ which are discretize equiv-
alent to X∗. In general, the covariance matrix of discretize
equivalent vectors X∗ and X̃∗ will differ, and may even differ
greatly. The comparison of Cov(X) and Cov(X∗) is therefore
somewhat arbitrary: Why compare Cov(X) with Cov(X∗) and
not to Cov(X̃∗). After all, X̃∗ can be said to generate X just
as much as X∗.

This observation rests on an ontological question: When
we have instructed the computer to first generate X∗, which
is then discretized into X, why is it not clear that our X∗ is
the “true” underlying vector? The reason that this may be
a problematic interpretation is that simulation methods only
deals with distribution functions. In a real data-set, assuming
we are taking the discretization procedure described by the
model in Equation (1) very seriously, it seems unproblematic
to think that there exists a real X∗, and refer to its distribution
and properties in the singular. But in simulation studies, we
are only dealing with vectors fulfilling certain distributional
laws. Everything is essentially a matter of combining the
same source of pseudo random variables into something with
a pre-defined distribution, and generating numbers with the
pre-defined distribution is the only success criteria.

From this perspective, when simulating X by discretizing
X∗ using some thresholds, we claim that we are simultane-
ously also simulating X by discretizing any X̃∗ (with possi-
bly different thresholds) where X̃∗ is discretize equivalent to
X∗. Since this point may strike the reader as controversial, let
us consider in more detail what makes a simulation method
valid. Let us suppose that we have two independent ran-
dom variables U1,U2, both uniformly distributed on [0, 1].
A standard way to simulate two independent standard normal
random variables is then

Z1 = Φ−1(U1),Z2 = Φ−1(U2).

This method is valid, since the joint distribution of Z1,Z2 is
as claimed. Similarly, the Box-Muller method of generating
two independent normal random variables is given by

Z3 =
√
−2 log U1 cos(2πU2), Z4 =

√
−2 log U2 cos(2πU1).

This method is equally valid, as one can show that the
joint distribution of Z3,Z4 is also that of a bivariate inde-
pendent standard normal distribution. From a simulation
point of view, it is irrelevant how the simulated random vari-
ables came about. Only the resulting distribution is rele-
vant. Therefore, when simulating X by discretizing X∗ using
thresholds (τk, j) is also a perfectly valid method for simulat-
ing X by discretizing a discretize equivalent X̃∗ using thresh-
olds (τ̃k, j) as long as the resulting variable X has the same
distribution.

In order to quantify the types of variables X̃∗ that we are
implicitly also simulating from when simulating X through
discretizing the simulated X∗, let us write X∗ ≡ X̃∗ as a short
hand for the statement that X∗ is discretize equivalent to X̃∗.
Let us write the distribution of a random vector Y as PY , and
consider a set of distributions P which contains PX∗ . This
set may for example be the set of all distributions whose
marginal distributions are all standard normal. The space of
possible covariance matrices compatible with generating X
is the set

SK = {Cov(X̃∗) : X̃∗ ≡ X∗, PX̃∗ ∈ P}.
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The calculation of such sets is called partial identification
analysis, see e.g., Manski (2003). Partial identification analy-
sis is an important theme in modern econometrics, but to our
knowledge has hitherto played a minor role in psychomet-
rics. A recent article (Grønneberg, Moss, & Foldnes, 2020)
studies SK when K = 2, and further limits attention to each
element of the covariance matrix separately. Grønneberg et
al. (2020) is able to quantify the amount of knowledge of the
distribution of X∗ that is needed to get partial identification
sets that are small. The required knowledge is considerable,
and even when considering marginal distributions of X∗ as
known, the set S is a large set that is too large to be useful.

The calculation or even approximation of S is non-trivial.
Further, in terms of psychometric models, the covariance ma-
trix of X∗ is really just a stepping-stone to the estimation of
parameters of underlying factor or structural equation mod-
els that contain the parameters of fundamental interest. A
non-trivial task is therefore to develop a partial identifica-
tion machinery for the actual covariance model for X∗ based
on available information in the distribution of X. Simula-
tion studies therefore appear to be necessary, even though
they have the unfortunate arbitrariness of comparing statisti-
cal methodology based on X to distributional aspects of X∗

which is just one out of many representations of underlying
random variables that may generate X. The quantification
of whether the resulting comparison is typical or not in the
class of distributions which may generate X cannot be an-
swered unless a partial identification analysis is performed,
either exactly or approximately.

Proof and a technical discussion of Proposition 1

We first provide some insights into the intuition leading
up to Proposition 1. Our core observation is that the covari-
ance matrices Cov(X(K)) and Cov(X∗) are integrals where the
integrand is the distribution of X(K) and X∗ respectively. For
these to be close, we may construct the distribution of X(K) so
that the resulting integral defining Cov(X) is a Riemann sum
approximation to Cov(X∗). To see how this may be achieved,
consider the simpler case of the expectation of X(K)

k , where
1 ≤ k ≤ p. Let Fk(x) = P(X∗k ≤ x) be the k-th marginal
cumulative distribution function (CDF) of X∗. Assuming Fk

to be continuous with density fk, and letting I{A} denote the
indicator function of A, which is one if A is true, and zero

otherwise, we have

E X(K)
k = E

K∑
j=1

x(K)
k, j I{τ(K)

k, j−1 < X∗k ≤ τ
(K)
k, j }

=

K∑
j=1

x(K)
k, j E I{τ(K)

k, j−1 < X∗k ≤ τ
(K)
k, j }

=

K∑
j=1

x(K)
k, j P(τ(K)

k, j−1 < X∗k ≤ τ
(K)
k, j )

=

K∑
j=1

x(K)
k, j

[
Fk(τ(K)

k, j ) − Fk(τ(K)
k, j−1)

]
.

When choosing the values (x(K)
k, j ) so that τ(K)

k, j−1 ≤ x(K)
k, j ≤ τ

(K)
k, j

for 1 ≤ k ≤ p and 1 ≤ j ≤ K, we recognize the above
sum as what is known as a Riemann-Stieltjes sum, which ap-
proximates a Riemann-Stieltjes integral (Rudin, 1976, Chap-
ter 6). Under further assumptions, we get limK→∞ E X(K)

k =∫ ∞
−∞

x dFk(x) =
∫ ∞
−∞

x fk(x)dx = E X∗k , as desired. We now
extend this analysis to the full covariance matrix of X(K), and
identify conditions on the values of (x(K)

k, j ), the thresholds and
the marginal distributions of X∗ so that Cov(X(K)) approxi-
mates Cov(X∗).

We next discuss Assumption 1. Assumption 1 (1) is a mo-
ment condition required for our proof method. The assump-
tion is close to minimal, in the sense that Cov(X∗) exists only
when E |X∗k |

2 < ∞ for k = 1, . . . , p. Recall that if the k-th
marginal is normal, which is the most common assumption,
we have E |X∗k |

q < ∞ for any q > 0. Assumption 1 (2) speci-
fies that the values X(K) are are getting increasingly closer to
the values attained by X∗. Assumption 1 (3) requires that res-
olution of the threshold configuration increases indefinitely,
and that the range of the thresholds will eventually cover the
full support of X∗. Recall that for normal marginals, and any
distribution with unbounded range, we have F−1

k (0) = −∞

and F−1
k (1) = ∞. Assumption 1 (4) places a restriction on the

rate of growth of the values (x(K)
k, j ) compared to the threshold

values (τ(K)
k, j ). Note that from Assumption 1 (2), the values of

(x(K)
k, j ) are between the thresholds, whose range is expanding

to the support of X∗k and whose resolution increases indefi-
nitely. These properties are therefore also transferred to the
numbers (x(K)

k, j ).
Suppose X∗ has standard normal marginals, and let us con-

sider Assumption 1 (4) in detail. Since the standard normal
distribution Φ is symmetric around zero, we restrict attention
to the upper tail requirement limK→∞ x(K)

k,K[1 − Φ(τ(K)
k,K−1)] =

0. We recall (Feller, 1968, Lemma 2, Chapter VII) that
for x > 0 we have 1 − Φ(x) ≤ x−1φ(x) where φ(x) =

Φ′(x) = (2π)−1/2 exp(−x2/2). From Assumption 1 (3), we
have limK→∞ τ

(K)
k,K−1 = Φ−1(1) = ∞. The value x(K)

k,K is then
to fulfill limK→∞ x(K)

k,K(τ(K)
k,K−1)−1 exp(−(τ(K)

k,K−1)2/2) = 0, which
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is implied by the weaker limK→∞ x(K)
k,K exp(−(τ(K)

k,K−1)2/2) = 0.
For an illustration of this assumption, suppose τ(K)

k,K−1 grows
at the very slow sub-logarithmic rate τ(K)

k,K−1 = 2(log K)1/2.
Then, exp(−(τ(K)

k,K−1)2/2) = 1/K, so that for this slow growth
we require that x(K)

k,K has a sub-linear growth to infinity as
K → ∞.

Proof of Proposition 1. The result follows from standard
convergence results in probability. We give all technical de-
tails for completeness.

We show convergence of the relevant expectations using
the following argument, proved as a corollary to Theorem
25.12 in (Billingsley, 1995, p. 348). For completeness, we
reproduce the result here (using obvious modifications to the
notations in that book). In its statement, YK =⇒ Y as
K → ∞ denotes that YK convergences in distribution to
Y as K → ∞. From Theorem 25.2 in (Billingsley, 1995,
p. 340), the required convergence in distribution is implied
if YK converges in probability to Y . We will write this as
YK − Y = oP(1) or equivalently YK = Y + oP(1), where oP(1)
is used to denote a quantity converging to zero in probability.
We recall that ZK = oP(1) means that for any ε > 0 we have
that limK→∞ P(|ZK | > ε) = 0.

Corollary 2. Let r be a positive integer. If YK =⇒ Y and
supK≥1 E[|YK |

r+ε] < ∞ where ε > 0, then E[|Y |r] < ∞ and
limK→∞ E[Yr

K] = E[Yr].

Step 1: Proof that limK→∞ E X(K)
k = E X∗k

for each 1 ≤ k ≤ p. Lemma 3 shows that X(K) = X∗ + oP(1),
which implies that for each 1 ≤ k ≤ p we have that
X(K)

k = X∗k + oP(1). The conclusion limK→∞ E X(K)
k = E Xk

therefore follows from Corollary 2 if we show
supK≥1 E |X(K)

k |
1+ε < ∞. By assumption, E |X∗k |

2+ε < ∞,
which gives E |X∗k |

1+ε̃ < ∞ where ε̃ = 1 + ε > 0. The required
result supK≥1 E |X(K)

k |
1+ε < ∞ for some ε > 0 therefore

follows from Lemma 4.
Step 2: Proof that limK→∞ E(X(K)

k X(K)
l ) = E X∗k X∗l

for all 1 ≤ k, l ≤ p. Let 1 ≤ k, l ≤ p. Since

Cov(X(K)
k , X(K)

l ) = E(X(K)
k X(K)

l ) − (E X(K)
k )(E X(K)

l ) and we
have already shown that E X(K)

k → E X∗k for each 1 ≤ k ≤ p,
we only need to show that E(X(K)

k X(K)
l )→ E X∗k X∗l .

Recall that a sequence of variables (YK) is said to be
bounded in probability, denoted by OP(1), if for any ε > 0
there exists an M > 0 such that supK≥1 P(YK > M) < ε. Also
recall that OP(1)oP(1) = oP(1), that oP(1) + oP(1) = oP(1),
and that for any random variable Y , we have Y + oP(1) =

OP(1) (Van der Vaart, 2000, see e.g., Chapter 2.2). For any
1 ≤ k ≤ p, we have Xk = X∗k + oP(1) = OP(1) from Lemma

3. Therefore,

X(K)
k X(K)

l = (X∗k + oP(1))(X∗l + oP(1))
= X∗k X∗l + X∗k oP(1) + X∗l oP(1) + oP(1)
= X∗k X∗l + oP(1).

For Corollary 2 to give us the desired conclusion, we are
therefore left with showing that for an ε > 0 we have

sup
K≥1

E |X(K)
k X(K)

l |
1+ε/2 < ∞.

From the Cauchy-Schwarz inequality, we have

E |X(K)
k X(K)

l |
1+ε/2 = E |X(K)

k |
1+ε/2|X(K)

l |
1+ε/2

≤

√
E |X(K)

k |
2+ε

√
E |X(K)

l |
2+ε . (13)

From Lemma 4, we have that supK≥1 E |X(K)
k |

2+ε < ∞ and
that supK≥1 E |X(K)

l |
2+ε < ∞. Therefore, considering Equa-

tion (13), we also have that supK≥1 E |X(K)
k X(K)

l |
1+ε/2 < ∞.

We have therefore verified the conditions for using Corollary
2, and we conclude that E X(K)

k X(K)
l → E X∗k X∗l . �

We now provide the lemmas called upon in the first proof.
We start by a preliminary lemma, which re-writes Assump-
tion 1 into the forms which will be directly applied in the
upcoming proofs.

Lemma 2. 1. Under Assumption 1 (4), we have
that limK→∞ x(K)

k,1 P(X(K)
k = x(K)

k,1 ) = 0 and
limK→∞ x(K)

k,K P(X(K)
k = x(K)

k,K) = 0.

2. Under Assumption 1 (3) we have X∗k (I{X∗k ≤

τ(K)
k,1 or X∗k > τ

(K)
k,K−1}) = oP(1)

Proof. 1. We have P(X(K)
k = x(K)

k,1 ) = P(X∗k ≤ τ(K)
k,1 ) =

Fk(τ(K)
k,1 ) and P(X(K)

k = x(K)
k,K) = P(X∗k > τ(K)

k,K−1) =

1 − Fk(τ(K)
k,K−1).

2. We have 0 ≤ I{X∗k ≤ τ(K)
k,1 or X∗k > τ(K)

k,K−1} ≤ I{X∗k ≤
τ(K)

k,1 }+I{X∗k > τ
(K)
k,K−1}. Since τ(K)

k,1 −−−−→K→∞
F−1

k (0) we have

that for any E |I{X∗k ≤ τ
(K)
k,1 }| = E I{X∗k ≤ τ

(K)
k,1 } = P(X∗k ≤

τ(K)
k,1 ) −−−−→

K→∞
P(X∗k ≤ F−1

k (0)) = Fk(F−1
k (0)) = 0. Since

convergence in absolute value, i.e., L1 convergence,
implies convergence in probability, we have I{X∗k ≤
τ(K)

k,1 } = oP(1). Similarly, I{X∗k > τ(K)
k,K−1} = oP(1).

Therefore, I{X∗k ≤ τ
(K)
k,1 or X∗k > τ(K)

k,K−1} = oP(1). Now,
X∗k = OP(1) since X∗k is a random variable. Therefore,
X∗k I{X∗k ≤ τ

(K)
k,1 or X∗k > τ

(K)
k,K−1} = OP(1)oP(1) = oP(1).

�

Lemma 3. Suppose given Assumption 1. We then have that
X(K) = X∗ + oP(1).
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Proof. Let δi(k) := I{τ(K)
k,i−1 < X∗k ≤ τ

(K)
k,i }. We have

X(K)
k =

K∑
i=1

(x(K)
k,i − X∗k + X∗k )δi(k)

=

K∑
i=1

(x(K)
k,i − X∗k )δi(k) + X∗k

K∑
i=1

δi(k)︸   ︷︷   ︸
=1

=

K∑
i=1

(x(K)
k,i − X∗k )δi(k) + X∗k

= X∗k +

K−1∑
i=2

(x(K)
k,i − X∗k )δi(k) + x(K)

k,1 I{X∗k ≤ τ
(K)
k,1 }

+ x(K)
k,K I{X∗k > τ

(K)
k,K−1}

− X∗k (I{X∗k ≤ τ
(K)
k,1 } + I{X∗k > τ

(K)
k,K−1})

= X∗k + x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 } + x(K)

k,K I{X∗k > τ
(K)
k,K−1}

− X∗k (I{X∗k ≤ τ
(K)
k,1 or X∗k > τ

(K)
k,K−1})

+

K−1∑
i=2

(x(K)
k,i − X∗k )δi(k). (14)

We have x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 } = oP(1) since by Markov’s in-

equality, we have, for ε > 0, that

P(x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 } > ε) ≤ ε

−1 E x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 }

= ε−1x(K)
k,1 P(X∗k ≤ τ

(K)
k,1 ) −−−−→

K→∞
0

by Lemma 2 (1). Also by Lemma 2 (1), x(K)
k,K I{X∗k >

τ(K)
k,K−1} = oP(1). We also have X∗k (I{X∗k ≤ τ(K)

k,1 or X∗k >

τ(K)
k,K−1}) = oP(1) by Lemma 2 (2). Finally, letting MK =

sup1≤k≤p,2≤ j≤K−1

[
τ(K)

k, j − τ
(K)
k, j−1

]
, and recalling that by As-

sumption 1 we have limK→∞ MK = 0, we see that

|

K−1∑
i=2

(x(K)
k,i − X∗k )δi(k)| ≤

K−1∑
i=2

|x(K)
k,i − X∗k |δi(k)

(a)
≤ MK

K−1∑
i=2

δi(k)
(b)
≤ MK (15)

(a) When δi(k) = 1, we have that both x(K)
k,i and X∗k are

contained within the interval (τk, j−1, τk, j]. The absolute dif-
ference between two numbers contained in an interval is
bounded by the length of the interval. Therefore, |x(K)

k,i −

X∗k |δi(k) ≤ (τk, j − τk, j−1)δi(k) ≤ MKδi(k). When δi(k) = 0,
this inequality is also true, giving the conclusion. (b) We
have

∑K
i=1 δi(k) = 1.

In conclusion, we have

X(K)
k = X∗k + oP(1).

for each k. �

Lemma 4. Suppose given Assumptions 1 (2), (3), and (4).
If for some ε > 0 we have E |X∗|m+ε < ∞, we also have
supK≥1 E |X(K)

k |
m+ε < ∞.

Proof. Recalling Equation (14), and writing the Lp norm of
a random variable Y as

‖Y‖p = (E |Y |p)1/p

we use Minkowski’s inequality (the triangle inequality for Lp

norms) with p = m + ε to see that

(E |X(K)
k |

m+ε)1/(m+ε) = ‖X(K)
k ‖m+ε

= ‖X∗k + x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 } + x(K)

k,K I{X∗k > τ
(K)
k,K−1}

− X∗k (I{X∗k ≤ τ
(K)
k,1 or X∗k > τ

(K)
k,K−1})

+

K−1∑
i=2

(x(K)
k,i − X∗k )δi(k)‖m+ε

= ‖X∗k‖m+ε + ‖x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 }‖m+ε + ‖x(K)

k,K I{X∗k > τ
(K)
k,K−1}‖m+ε

+ ‖X∗k (I{X∗k ≤ τ
(K)
k,1 or X∗k > τ

(K)
k,K−1})‖m+ε

+ ‖

K−1∑
i=2

(x(K)
k,i − X∗k )δi(k)‖m+ε .

Now ‖X∗k‖m+ε < ∞ since X∗ is assumed to have n + ε mo-
ments.

Recall that a sequence of numbers (xK) is o(1) if
limK→∞ xK = 0. Further,

‖x(K)
k,1 I{X∗k ≤ τ

(K)
k,1 }‖m+ε = (E |x(K)

k,1 I{X∗k ≤ τ
(K)
k,1 |

m+ε)1/(m+ε)

= |x(K)
k,1 |P(X∗k ≤ τ

(K)
k,1 ) = o(1)

by Lemma 2 (1), recalling that if for some numbers cK we
have limK→∞ cK = 0, then also limK→∞ |cK | = 0. Similarly,
‖x(K)

k,K I{X∗k > τ
(K)
k,K−1}‖m+ε = o(1).

Since the indicator function is bounded by 1, we have
‖X∗k (I{X∗k ≤ τ(K)

k,1 or X∗k > τ(K)
k,K−1})‖m+ε ≤ ‖X∗k‖m+ε < ∞ by

the assumption of the lemma. Finally, from Equation (15),
we have ‖

∑K−1
i=2 (x(K)

k,i − X∗k )δi(k)‖m+ε ≤ ‖MK‖m+ε = MK =

o(1). �

Proofs of Corollary 1, Lemma 1, and Proposition 2

Proof of Corollary 1. For each 1 ≤ k ≤ p, let γ(K)
k, j = τk, j for

j = 1, 2, . . . ,K − 1 and let γk,K = z(K)
M . By Assumption 2, we

have that Assumption 1 (4) holds for x(K)
k, j = γ(K)

k, j . Let X̃(K) =

(X̃(K)
1 , . . . , X̃(K)

p ) where for each 1 ≤ k ≤ p we let X̃(K)
k =∑K

j=1 γ
(K)
k, j δ j(k) where δ j(k) := I{τ(K)

k, j−1 < X∗k ≤ τ
(K)
k, j }. Propo-

sition 1 therefore implies that Cov(X̃(K)) −−−−→
K→∞

Cov(X∗).

Therefore, limK→∞ Cor(X̃(K)
k , X̃(K)

l ) = Cor(X∗k , X
∗
l ). We show

that in fact Cor(X̃(K)
k , X̃(K)

l ) = Cor(X(K)
k , X(K)

l ), which finishes
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the proof, since this implies the required convergence. Using
that

∑K
j=1 δ j(k) = 1 we get that

X̃(K)
k =

K∑
j=1

(
z(K)

m + (z(K)
M − z(K)

m )( j − 1)/(K − 2)
)
δ j(k)

= z(K)
m + (z(K)

M − z(K)
m )

 K∑
j=1

jδ j(k) − 1

 /(K − 2)

=
(
z(K)

m + (z(K)
M − z(K)

m )
(
X(K)

k − 1
)
/(K − 2)

)
= a(K)

k X(K)
k + b(K)

k

for non-random numbers a(K)
k , b(K)

k . Since correlation is un-
changed under affine transformations, the result follows. �

Proof of Lemma 1. Recall that φ2(x1, x2; r) =
1

2π
√

1−r2
exp

(
− 1

2(1−r2)

[
x2

1 + x2
2 − 2rx1x2

])
. Let H(r) =

EFk,l log φ2(X∗k , X
∗
l ; r). Using that X∗k , X

∗
l are standardized,

and denoting Cor(X∗k , X
∗
l ) by ρ, we have

H(r) = − log(2π) −
1
2

log(1 − r2)

−
E(X∗k )2 + E(X∗l )2 − 2r E X∗k X∗l

2(1 − r2)

= − log(2π) −
1
2

log(1 − r2) −
2 − 2rρ

2(1 − r2)

= − log(2π) −
1
2

log(1 − r2) −
1 − rρ

(1 − r2)
.

We have

H′(r) = −
1
2

2r
1 − r2 −

−ρ(1 − r2) − (1 − rρ)(−2r)
(1 − r2)2

=
r(1 − r2) + ρ(1 − r2) − (1 − rρ)2r

(1 − r2)2

=
r − r3 + ρ − ρr2 − 2r + 2ρr2

(1 − r2)2

=
−r − r3 + ρ + ρr2

(1 − r2)2

=
(r2 + 1)(ρ − r)

(1 − r2)2 ,

so that H′(r) = 0 if and only if r = ρ. We have H′′(r) =

−(1 + 6r2 + r4 − 6rρ − 2r3ρ)/(1 − r2)3 and H′′(ρ) = −(r2 +

1)/[(r2 − 1)2(r + 1)2] < 0, showing that r = ρ is the global
maximum. �

Proof of Proposition 2. Let 1 ≤ k, l ≤ p be given. Let
U(K)

k = F(K)
k (X(K)

k ) and Uk = Fk(X∗k ) for 1 ≤ k ≤ p. Recall
ρS ,(K)

k,l = Cor(U(K)
k ,U(K)

l ) and ρS
k,l = Cor(Uk,Ul). We have

ρS ,(K)
k,l = Cor(U(K)

k ,U(K)
l )

=
E U(K)

k U(K)
l − (E U(K)

k )(E U(K)
l )√

E(U(K)
k )2 − (EU(K)

k )2
√

E(U(K)
l )2 − (EU(K)

l )2
.

It therefore suffices to prove E U(K)
k = E Uk + o(1) and

E U(K)
k U(K)

l = E UkUl + o(1) for every 1 ≤ k, l ≤ p.
Let F(K)

k (x) = P(X(K)
k ≤ x). Since by Lemma 4 (p.4) we

have X(K)
k = X∗k + oP(1) as K → ∞, meaning X(K)

k
P
−−−−→
K→∞

X∗k ,
and since (as reviewed at the start of the proof of Proposition
1) convergence in probability implies convergence in distri-

bution, we have that also X(K)
k

d
−−−−→
K→∞

X∗k . By the definition of
convergence in distribution, this means that for all x where
Fk is continuous, which by the assumption that Fk is con-
tinuous means for all x, we have limK→∞ P(X(K)

k ≤ x) =

limK→∞ F(K)
k (x) = Fk(x) = P(X∗k ≤ x). Since Fk is con-

tinuous, this convergence is in fact uniform in x. Indeed,
by e.g., Lemma 2.11 in Van der Vaart (2000), we have that
limK→∞ supx |F

(K)
k (x) − Fk(x)| = 0. Since

U(K)
k = F(K)

k (X(K)
k ) = Fk(X(K)

k ) − [F(K)
k (X(K)

k ) − Fk(X(K)
k )]

and

|F(K)
k (X(K)

k ) − Fk(X(K)
k )| ≤ sup

x
|F(K)

k (x) − Fk(x)| = o(1),

we get
U(K)

k = Fk(X(K)
k ) + oP(1).

Finally, since Fk is continuous, and X(K)
k = Xk + oP(1), the

continuous mapping theorem gives

U(K)
k = Fk(Xk +oP(1))+oP(1) = Fk(Xk)+oP(1) = Uk +oP(1).

Since U(K)
k ∈ [0, 1], its expectation is bounded by 1, as is its

1 + ε moment. Similarly, E |U(K)
k U(K)

l |
1+ε ≤ 1 for any ε > 0.

Therefore, by Corollary 2, the statement follows. �

On polychoric correlations with misspecified marginals

For simplicity, we assume that both Gk and Fk are strictly
increasing, for k = 1, . . . , p. Recall that we assume that
Fk for k = 1, . . . , p are standardized, so Lemma 1 will give
consistency of the polychoric estimator if the marginals are
chosen in such a manner that the thresholds are consistent.
Recall that the true marginals of X∗ are Gk for k = 1, . . . , d.
Since the marginals are not identified, they can be made to
equal Fk with a change of threshold values. Let Uk = Gk(X∗k )
so that Uk is uniform on [0, 1], see Equation (16) (p.6.) Re-
call that if given a random variable Uk that is uniform on
[0, 1], then X̃k = F−1

k (Uk) is Fk distributed. This follows as
in Equation (19), i.e., we have

P(X̃k ≤ x) = P(F−1
k (UK) ≤ x) = P(Uk ≤ Fk(x)) = Fk(x).

Recall that since Fk is strictly increasing, also F−1
k is strictly

increasing. Since Gk is strictly increasing, also the composite
map F−1

k Gk(x) = F−1
k (Gk(x)) is strictly increasing. We have

Xk = xk, j, when τk, j−1 ≤ X∗k ≤ τk, j
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Emulating the argument from Equation (7) to Equation (8)
on p. 8 shows that

Xk = xk, j, when τ̃k, j−1 ≤ X̃∗k ≤ τ̃k, j

where

X̃∗k = F−1
k Gk(X∗k ), τ̃k, j = F−1

k Gk(τk, j).

Therefore, X̃ = (X̃1, . . . , X̃p)′ has marginals F1, . . . , Fp and
is discretize equivalent to X∗. Since the threshold estimators
built on the assumption that X∗ has marginals F1, . . . , Fp are
consistent estimators when this is correct, and we see that
this in fact is correct for a discretize equivalent vector X̃∗,
they are consistently estimating the thresholds τ̃k, j.

An introduction to copulas, vines and the VITA method

Vine distributions present a general method for combin-
ing a series of bivariate distributions into a valid full mul-
tivariate distribution, and was developed in Joe (1996) and
Bedford and Cooke (2002), see Joe (2014). Vines are built
around the concept of copulas, which we will introduce in
the following. See Nelsen (2007) for a general introduc-
tion to copulas. Briefly, copulas allow the specification of
a multivariate distribution with uniform marginals that are
then connected with univariate marginal distributions, giv-
ing a full distribution with the attached marginals. The con-
struction of multivariate distributions is therefore split into
first constructing univariate marginal distributions, which is
a well-studied problem, and then constructing a multivariate
distribution with uniform marginals, i.e., copulas. The con-
struction of copulas is in general difficult, although the vine
technique allows a large class of multivariate copula distri-
butions to be constructed in a simple manner.

We will not review all the technical details of the general
vine construction. Our aim is instead to provide the neces-
sary overview to gain an understanding of what the VITA
simulation method of Grønneberg and Foldnes (2017) does.
The VITA method is based on simulating from a particularly
chosen vine distribution whose Pearson covariance matrix is
fixed. We also explain enough technical details in some intro-
ductory cases for the reader to appreciate the main limitation
of the vine construction which is given by a property called
the simplifying assumption. This limitation is on the other
hand the reason for the ease of use and flexibility of vines.

Since VITA is based on vines, which in turn are based on
connecting bivariate copula distributions in a certain manner,
we start by reviewing copulas, we then present the bivari-
ate copulas we use in our applications, and then we briefly
present the core idea of vines. Finally, a brief introduction to
the core idea of the VITA simulation method is summarized.

Copulas are distribution functions with marginal distribu-
tions that are uniform on [0, 1]. Let us therefore review these

concepts first. Consider a random vector Y = (Y1, . . . ,Yp)′.
Its distribution is fully characterized by its CDF given by

F(y1, . . . , yp) = P(Y1 ≤ y1, . . . ,Yp ≤ yp) = P(∩p
j=1{Y j ≤ y j}).

For any 1 ≤ j ≤ p, let [a j, A j] be the shortest interval (pos-
sibly infinite) where Y j is always contained (i.e., the support
of Y j). That is, we always have a j ≤ Y j ≤ A j. If Y j is normal,
we have a j = −∞ and A j = ∞. Since {Y j ≤ A j} is always the
case, we have that for any 1 ≤ k ≤ p that

Fk(yk) = F(A1, . . . , Ak−1, yk, Ak+1, . . . , Ap)
= P({Yk ≤ yk} ∩ ∩1≤ j≤p, j,k{Y j ≤ A j})
= P(Yk ≤ yk).

Therefore, Fk is the k-th marginal distribution of Y , i.e., the
CDF of Yk.

Recall that a distribution Fk is uniform on [0, 1] if Fk(x) =

xI{0 ≤ x ≤ 1}+ I{x > 1} where I{A} is 1 if A is true, and zero
otherwise. For 0 ≤ x ≤ 1 we have simply Fk(x) = x. The
support of Fk is then [ak, Ak] = [0, 1]. Therefore, a copula is
a CDF C with the property that for each 1 ≤ k ≤ p and each
0 ≤ uk ≤ 1 we have

C(1, . . . , 1, uk, 1, . . . , 1) = uk.

The importance of copulas comes from Sklar’s theorem
(Sklar, 1959), see also Nelsen (2007), which informally
states that we may always express any CDF in terms of its
copula and its marginal distributions, and that if we start with
a copula and some marginal distributions, we may combine
them in a manner that always lead to a valid full distribution
having the chosen marginal distributions.

For simplicity we assume that for each 1 ≤ k ≤ p the
function Fk is continuous and strictly increasing, and hence
has a continuous and strictly increasing inverse F−1

k . Let Y be
a random vector with CDF F, which we will write as Y ∼ F.
Then we define the random vector

U = (F1(Y1), . . . , Fp(Yp))′.

Denote the CDF of U by C. That is, U ∼ C. The variable U
has uniform marginals, which is seen by

P(U1 ≤ u1) = P(F1(Y1) ≤ u1) = P(Y1 ≤ F−1
1 (u1))

= F1

(
F−1

1 (u1)
)

= u1 (16)

when 0 ≤ u1 ≤ 1. Hence C is a copula, and is in fact the
copula of F. We calculate the fundamental relations

C(u1, . . . , up) = P(U1 ≤ u1, . . . ,Ud ≤ up)
= P(F1(Y1) ≤ u1, . . . , Fd(Yd) ≤ up)

= P(Y1 ≤ F−1
1 (u1), . . . ,Yd ≤ F−1

d (up))

= F
(
F−1

1 (u1), . . . , F−1
d (up)

)
(17)
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and

F(y1, . . . , yp) = P(Y1 ≤ y1, . . . ,Yp ≤ yp)
= P(Y1 ≤ y1, . . . ,Yp ≤ yp)
= P(F1(Y1) ≤ F1(y1), . . . , Fp(Yp) ≤ Fp(yp))
= C(F1(y1), . . . , Fp(yp)). (18)

From Equation (18), we gain a useful method to simulate Y in
two stages. We may first simulate U ∼ C, and then perform
the simple transformation

Ỹ = (F−1
1 (U1), . . . , F−1

p (Up))′.

The resulting vector, here tentatively called Ỹ , has the distri-
bution of F, and is therefore a valid method to simulate from
Y . This follows from Equation (18) since

P(F−1
1 (U1) ≤ y1, . . . , F−1

p (Up) ≤ yp)

= P(U1 ≤ F1(y1), . . . ,Up ≤ Fp(yp))
= F(y1, . . . , yp). (19)

In our applications, U will be a vine copula, whose sim-
ulation methods are developed in Joe (1996), Bedford and
Cooke (2001), and presented, e.g., in Dissmann, Brechmann,
Czado, and Kurowicka (2013). The simulation methods are
also implemented in several packages in the R system (R
Core Team, 2020), such as the vinecopula (Schepsmeier et
al., 2018) and rvinecopulib (Nagler & Vatter, 2019) pack-
ages.

By the above observation, it is therefore easy (once U is
simulated) to set the marginals to what the application re-
quires. In our applications the marginal distributions will be
standard normal. When we now discuss vines, we only focus
on vine copulas, which are vine distributions with uniform
marginals. The full vine distribution will be a vine copula
connected to marginal distributions as in the above.

As vines are constructed from a sequence of bivariate cop-
ulas in a manner that produces a full multivariate distribution,
let us first review the three central bivariate copulas used in
the present study. The Gaussian, or normal copula is defined
as follows. Let Y = (Y1,Y2) ∼ N(µ,Σ) where µ = (µ1, µ2)′

and Σ is a covariance matrix. We may identify the copula of
Y using Equation (17). The marginal distributions of Y are

Fk(yk) = P(Yk ≤ yk) = P
(

Yk − µk

σk
≤

yk − µk

σk

)
= Φ

(
yk − µk

σk

)
.

Suppose Fk(yk) = x, which means Φ
(

yk−µk
σk

)
= x. Therefore,

Φ−1(x) =
yk−µk
σk

which means that F−1
k (x) = σkΦ

−1(x) + µk.
Let us write the density FY of Y via its correlation ρ and its

standard deviations σ1, σ2, so that

fY (y1, y2) =
1

2πσ1σ2
√

1 − ρ2
exp

(
−

1
2(1 − ρ2)

[ (y1 − µ1)2

σ2
1

+
(y2 − µ2)2

σ2
2

−
2ρ(y1 − µ1)(y2 − µ2)

σ1σ2

])
Note that fY (y1, y2) = φ2([y1−µ1]/σ1, [y2−µ2]/σ2; ρ) where
φ2(·, ·; ρ) is the density of a bivariate normal Z with standard-
ized marginals and correlation ρ. The copula of Y is found
using Equation (17) and the formula for the inverse of F1, F2,
and is given by

CN(u1, u2; ρ)

= F(F−1
1 (u1), F−1

2 (u2))

=

∫ F−1
1 (u1)

−∞

∫ F−1
2 (u2)

−∞

fY (y1, y2) dy1dy2

=

∫ σ1Φ−1(u1)+µ1

−∞

∫ σ2Φ−1(u2)+µ2

−∞

φ2

(y1 − µ1

σ1
,

y2 − µ2

σ2
; ρ

)
dy1dy2

=

∫ Φ−1(u1)

−∞

∫ Φ−1(u2)

−∞

φ2(x1, x2; ρ) dx1dx2

using the change of variables x1 = [y1 − µ1]/σ1 and x2 =

[y2 − µ2]/σ2. We therefore see that the copula of Y is the
same as the copula of Z, and the normal copula is therefore
parameterized by the Pearson correlation ρ. There is no sim-
ple formula for CN . In contrast, the Joe and Clayton copulas,
denoted by CJ and CC , are defined directly in terms of their
CDFs:

CJ(u1, u2; θ) = 1 −
[
(1 − u)θ + (1 − v)θ − (1 − u)θ(1 − v)θ

]1/θ
,

CC(u1, u2; θ) =
[
max

{
u−θ + v−θ − 1; 0

}]−1/θ
,

where the dependence parameter θ ∈ [1,∞) for the Joe cop-
ula, and θ ∈ [−1,∞) \ {0} for the Clayton copula. Both copu-
las express positive dependence, but can be rotated to express
also negative dependence, see e.g. the documentation of the
R package copula (Hofert et al., 2013).

These copulas produce different types of dependencies.
The density of the distribution of Y = (Φ−1(U1),Φ−1(U2))′

when (U1,U2)′ come from a normal, a Joe or a Clayton cop-
ula is plotted in Figure 2 (p.5) when the dependency param-
eters are all chosen such that the Pearson correlation of the
final Y is fixed to 0.56. For the normal copula, the depen-
dence parameter is precisely the correlation of the copula
when joined with normal marginals, which is exactly what
we do here, so that the dependence parameter of the copula
is simply ρ = 0.56. In contrast, for the Joe and the Clay-
ton copulas, the dependence parameters θ are found via a
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numerical search, computing for each candidate value θ the
resulting Pearson correlation of Y until a match is found.

We next introduce vines. Our technical discussion is lim-
ited to the three-dimensional case, which illustrates the main
features of the construction. The general case is later out-
lined, but without several complicated rules and definitions.
A full presentation is given e.g. in Joe (2014), and is summa-
rized in Dissmann et al. (2013), and Grønneberg and Foldnes
(2017).

In psychometrics, we are used to summarizing dependen-
cies using a covariance matrix. For a multivariate normal ran-
dom vector Z = (Z1,Z2,Z3)′, the covariance matrix does in-
deed summarize the multivariate dependence properties of Z
perfectly. Since we will be interested in copulas, we assume
that Z is standardized. Therefore, we assume Z ∼ N(0,Σ),
where Σ is a correlation matrix.

The fact that the correlation matrix suffices to describe
the multivariate dependence structure of Z is somewhat sur-
prising, since it only contains numbers that quantify bivari-
ate features of the distribution. Indeed, Σ consists of the
numbers ρ1,2 = Cov(Z1,Z2), ρ1,3 = Cov(Z1,Z3) and ρ2,3 =

Cov(Z2,Z3). From these bivariate numbers, we may deduce
for example genuine multivariate features of the distribution,
such as the conditional distribution of Z1,Z2 given Z3. Since
the formula for this conditional distribution will motivate the
construction of vines in general, we review its derivation. Us-
ing general results for the normal distribution (e.g., Mardia,
Kent, & Bibby, 1979), and writing

Σ =

 1 ρ1,2 ρ1,3
ρ1,2 1 ρ2,3
ρ1,3 ρ2,3 1

 =

(
Σ(1,2),(1,2) Σ(1,2),3
Σ′(1,2),3 Σ3,3

)

where

Σ(1,2),(1,2) =

(
1 ρ1,2
ρ1,2 1

)
, Σ(1,2),3 =

(
ρ1,3
ρ2,3

)
, Σ3,3 = (1).

we have that

(Z1,Z2|Z3) ∼ N(Σ(1,2),3Σ−1
3,3Z3,Σ(1,2),(1,2) − Σ(1,2),3Σ−1

3,3Σ′(1,2),3)

∼ N
((
ρ1,3Z3
ρ2,3Z3

)
,

(
1 ρ1,2
ρ1,2 1

)
−

(
ρ1,3
ρ2,3

)
(ρ1,3, ρ2,3)

)
∼ N

((
ρ1,3Z3
ρ2,3Z3

)
,

(
1 − ρ2

1,3 ρ1,2 − ρ1,3ρ2,3

ρ1,2 − ρ1,3ρ2,3 1 − ρ2
2,3

))
.

Conditional on Z3, we therefore have that Z1,Z2 is again nor-
mal. Therefore, it has a normal copula, with correlation equal
to

ρ1,2|3 =
ρ1,2 − ρ1,3ρ2,3√

1 − ρ2
1,3

√
1 − ρ2

2,3

.

The number ρ1,2|3 is known as the partial correlation, and un-
der normality will exactly specify the dependency properties

of Z1,Z2 given Z3. We have also shown that

µ1|3 = E[Z1|Z3] = ρ1,3Z3,

µ2|3 = E[Z2|Z3] = ρ2,3Z3,

σ1|3 =
√

Var(Z1|Z3) = 1 − ρ2
1,3,

σ2|3 =
√

Var(Z2|Z3) = 1 − ρ2
2,3.

From our earlier derivations on the normal copula, we have
that

P(Z1 ≤ z1,Z2 ≤ z2|Z3)

= CN(σ1|3Φ−1(z1) − µ1|3, σ2|3Φ−1(z2) − µ2|3; ρ1,2|3)

= CN(σ1|3Φ−1(z1) − ρ1,3Z3, σ2|3Φ−1(z2) − ρ2,3Z3; ρ1,2|3),

where the dependence on Z3 is only present through µ1|3 and
µ2|3. Importantly, the copula CN and its parameter ρ1,2|3 do
not depend on the value attained by Z3. The fact that the cop-
ula CN stays the same for every value of Z3 need not be the
case for general non-normal distributions, and we will call
this assumption “the simplifying assumption” (Joe, 2014).
Joe (1996) defined (a subset of) the distributions later called
vine copulas as a generalization of this simplifying assump-
tion. Instead of the normal copula, we could replace CN by
another copula, say C̃, and we would still have a valid proba-
bility distribution. From knowing the marginal distributions
of Z1,Z2,Z3 when seen separately, the bivariate distributions
of (Z1,Z3) and (Z2,Z3), and finally the bivariate conditional
distribution of (Z1,Z2) conditioned on Z3, we have enough
information to perfectly reconstruct the full distribution of
(Z1,Z2,Z3). To see this, we use the rule of iterated expec-
tations together with the rule E[h(X)Y |X] = h(X) E[Y |X] so
that

P(Z1 ≤ z1,Z2 ≤ z2,Z3 ≤ z3)
= E I{Z1 ≤ z1,Z2 ≤ z2,Z3 ≤ z3}

= E I{Z3 ≤ z3}I{Z1 ≤ z1,Z2 ≤ z2}

= E (E(I{Z3 ≤ z3}I{Z1 ≤ z1,Z2 ≤ z2}|Z3))

= E (I{Z3 ≤ z3}E(I{Z1 ≤ z1,Z2 ≤ z2}|Z3))

= E (I{Z3 ≤ z3}P(Z1 ≤ z1,Z2 ≤ z2|Z3))

= E
(
I{Z3 ≤ z3}CN(σ1|3Φ−1(z1) − ρ1,3Z3,

σ2|3Φ−1(z2) − ρ2,3Z3; ρ1,2|3)
)

=

∫ ∞

−∞

I{x3 ≤ z3}CN(σ1|3Φ−1(z1) − ρ1,3x3,

σ2|3Φ−1(z2) − ρ2,3x3; ρ1,2|3)φ(x3) dx3.

This is therefore a type of expansion of the full distribution
in terms of unconditional and conditional bivariate distribu-
tions, as well as the marginal distributions. Note that the bi-
variate distributions of (Z1,Z3) and (Z2,Z3) and the marginal
distributions of Z1,Z2,Z3, as well as the conditional distribu-
tion of (Z1,Z2) conditioned on Z3 were used in forming the
above expression.
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1 2 3 4

1, 2 2, 3 3, 4

1, 3 | 2 2, 4 | 3

1, 2 2, 3 3, 4

1, 3 | 2 2, 4 | 3

1, 4 | 2, 3

Figure 14. A four-dimensional regular vine.

If instead CN was replaced by e.g., a Joe copula CJ , say
with dependence parameter θ, the resulting function∫ ∞

−∞

I{x3 ≤ z3}CJ(σ1|3Φ−1(z1) − ρ1,3x3,

σ2|3Φ−1(z2) − ρ2,3x3; θ)φ(x3) dx3

would be a valid distribution function. The remaining com-
ponents of the distribution would still be normal, but the
copula of the conditional distribution of (Z1,Z2) conditioned
on Z3 would be a highly non-normal Joe copula. By the
same types of steps, we could have changed the marginals,
as well as the bivariate distributions of (Z1,Z3) and (Z2,Z3).
The resulting distribution would be highly non-normal, even
though it still would fulfill the algebraic similarity to the nor-
mal distribution by fulfilling the simplifying assumption, i.e.,
that the conditional distribution of Z1,Z2 given Z3 has a cop-
ula that does not change with the value of Z3.

In general, vine copulas can be formed by emulating the
formulas for the expanded versions of the distribution of a
multivariate normal distribution in terms of conditional and
unconditional bivariate distributions, and then, while pre-
serving the simplifying assumption, changing the normal
copulas to copulas of our choosing. The only normal charac-
teristic then remaining is the simplifying assumption. With-
out this assumption, the connecting of sequences of the con-
ditional distributions would be much more complicated. In
the tri-variate case, we could for example have expanded the
distribution in terms of (Z1,Z2), (Z1,Z3) and then the condi-
tional distribution of (Z1,Z3) conditional on Z2. In higher
dimensions, there are many options for such expansions.

The expansion of a copula distribution into conditional
and unconditional bivariate distributions can be represented
by a sequence of trees, called a vine. A four-dimensional
example of such an expansion is visualized in Figure
14. Let the resulting copula distribution be C, and let
(U1,U2,U3,U4)′ ∼ C. Figure 14 shows a vine comprised
by three trees.

The lowest tree specifies which unconditional bivariate
distributions are to be specified by bivariate copulas. The

figure shows that we are required to directly specify the bi-
variate distributions of (U1,U2), of (U2,U3) and of (U3,U4).
The next tree knits together the copulas from the first tree,
through saying that we are further to specify the copula of
the conditional distribution of (U1,U3) given U2, as well as
the copula of the conditional distribution of (U2,U3) given
U3. These copulas are not to depend on the conditioning vari-
ables, thereby fulfilling the same type of simplifying assump-
tion which we saw was fulfilled by the normal distribution.
As in that case, the conditional marginal distributions will
in general depend on the conditioning variables, but these
conditional marginal distributions are consequences of the
choices at the first level, and have therefore already been in-
directly specified. The final level of the tree completes the
linkage of a complete multivariate distribution, and requires
the specification of a bivariate copula for the conditional dis-
tribution of (U1,U4) when we condition on the remaining
variables, i.e., (U2,U3).

There are other four-dimensional vines, and with higher
dimensions there is a great number of possible vine configu-
rations. Each bivariate copula distribution represented in the
figure is a copula distribution that we can choose freely, and
the resulting distribution will be valid. In our applications
for simplicity we considered only cases where every copula
is of the same class, and fix the dependence parameters of
the copulas separately in order to control the covariance ma-
trix of the resulting full distribution once we attach marginal
distributions to the copula. Since there are as many copulas
as there are elements in a correlation matrix, this matching is
often possible. This idea is the core idea of the VITA method
of Foldnes and Grønneberg (2017), where the practical and
computational details for achieving this match is discussed.
Through certain simplifications originating from the simpli-
fying assumption, simulation is easily implemented without
the need for numerical integration, at least when using com-
mon copulas such as the Joe or Clayton copula, as shown in
Joe (1996) and discussed in Dissmann et al. (2013); Schep-
smeier et al. (2018). The R package covsim (Foldnes &
Grønneberg, 2020) can be used for identifying a vine with
dependency parameters so that for given marginal distribu-
tions and for a given sequence of bivariate copulas, their
combination into a full vine distribution results in a distri-
bution that has a pre-specified covariance matrix.
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