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We experimentally test the effects of information quality in a global game of regime 

change. The game features a payoff structure such that more dispersed private informa- 

tion induces agents to attack more often and reduces regime stability in the Bayesian Nash 

Equilibrium. We show that subjects in the lab do not play as predicted by equilibrium the- 

ory. Instead, more dispersed information makes subjects more cautious, increasing regime 

stability. We show that this finding is consistent with a modified global game model in 

which agents engage in level- k thinking. In the level- k model, information quality affects 

agents’ actions through a novel channel, that enables a strategic attenuation effect. As 

information quality worsens, strategic complementarities between different level- k types 

weaken, generating a force that is capable of reversing the comparative statics from the 

equilibrium model. 
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1. Introduction 

Global games of regime change are commonly used to analyze important economic phenomena involving elements of 

coordination, such as currency crises, bank runs, and political change. 1 A central question in this literature is how infor-

mation quality – the precision of agents’ private information – affects the probability of a successfully coordinated attack. 

Understanding the particular role of information quality is important from both theoretical and applied perspectives. For 
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1 See Morris and Shin (1998) for currency crises, Rochet and Vives (2004) and Goldstein and Pauzner (2005) for bank runs, and Edmond (2013) for 

political change. 
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example, in contexts such as speculative currency attacks or debt rollover crises, it can inform policymakers about the likely 

effects of various disclosure policies on financial stability. 

In this paper we experimentally test how a change in private information precision affects regime stability in a standard 

global game of regime change. Specifically, we let several groups of subjects play a series of games, in which they take binary

decisions – attack or not attack. Each subject’s payoff from attacking depends on both an underlying state and the actions 

of the other subjects in the group. If a sufficient number of agents choose to attack (given the value of the underlying state),

then all attacking agents obtain a discretely higher payoff relative to not attacking. In addition, the higher the value of the

state, the higher the payoff gain from a successful attack. 2 Finally, subjects obtain private signals about the underlying state 

with some noise. We set up the payoffs of subjects to correspond to the literature on speculative currency attacks, where

theory predicts that higher private information dispersion makes agents more likely to attack in equilibrium, decreasing 

regime stability ( Heinemann and Illing, 2002, Iachan and Nenov, 2015 ). 3 In this setting, we compare subjects’ behavior in

two treatments: one where private information dispersion is low (“Low Noise treatment”) and one where the information 

dispersion is high (“High Noise treatment”). 

The observed behavior in both treatments is consistent with subjects following cutoff strategies – attacking whenever 

their private signal is above a specific value – as predicted by the theory. However, contrary to the equilibrium prediction 

described above, subjects tend to play according to cutoff strategies with lower cutoffs in the Low Noise treatment compared 

to the High Noise treatment. This is true both for individual subject cutoffs, which tend to follow a distribution that is shifted

to the right in the High Noise treatment relative to the Low Noise treatment, as well as for average cutoffs across groups,

which tend to be lower in the Low Noise treatment compared to the High Noise treatment. Therefore, in a lab environment,

noisier private information makes agents less, not more, aggressive, contradicting the baseline equilibrium theory. 

We then argue that a theoretical framework in which players have limited depth of reasoning is both qualitatively and 

quantitatively consistent with our main experimental result. In particular, we focus on one specific non-equilibrium theory 

that has received recent experimental and theoretical attention in the literature on global games and informational fric- 

tions ( Kneeland, 2016, Angeletos and Lian, 2017 ): level- k thinking ( Nagel, 1995; Stahl and Wilson, 1995 ). 4 Models of level- k

thinking assume that agents have limited depth of reasoning and, at the same time, provide a specific structure to agents’

beliefs. Despite this deviation from the equilibrium theory, agents still follow cutoff strategies, similar to the equilibrium 

model. Moreover, agents with higher depth of reasoning (higher level- k types) play according to cutoff strategies that are 

closer to the equilibrium cutoff, compared to agents with lower depth of reasoning (lower level- k types), whose behavior is

influenced by the perceived play of a fictitious and fully behavioral L 0 type. In that sense, the level- k global games model

naturally extends to the equilibrium global games model to incorporate possible bounded rationality in the behavior by 

experimental subjects. 

We show, however, that this departure from equilibrium play can significantly alter the prediction of the standard global 

games model. Specifically, with level- k thinking, the effect of more dispersed information on agents’ actions and regime 

stability can be reversed for low level- k types, compared to the equilibrium model and consistent with the experimental 

results. Intuitively, with level- k thinking, different cognitive types have different strategic cutoffs. At the same time, there is 

a strategic complementarity across subsequent level- k types, which anchors the aggressiveness of a specific cognitive type 

to that of the preceding cognitive type. Therefore, an aggressive agent with relatively low depth of reasoning, makes the 

cognitive type above her more aggressive, which in turn increases the aggressiveness of the subsequent cognitive type, and 

so on. 

In that environment, higher information dispersion acts to attenuate the across-type strategic complementarity and de- 

anchor the behavior of different cognitive types. This is because more dispersed information makes agents less coordinated 

when attacking and reduces their ability to forecast the actions of other agents, thus flattening the best response function 

that links an agent’s strategic cutoff to the strategic cutoff that she believes other players are using. Therefore, whenever 

lower cognitive types are relatively more aggressive, the de-anchoring induced by more dispersed private information acts 

towards reducing the higher cognitive types’ willingness to attack. We call this de-anchoring effect of information dispersion 

strategic attenuation . If the strategic attenuation effect is strong enough, some cognitive types actually become less aggressive 

with higher information dispersion. 

To assess whether the level- k model is quantitatively consistent with our experimental findings, we follow Kneeland 

(2016) and structurally estimate a finite mixture model of play with different level- k types, using data from both treat-

ments. We make two assumptions that allow the novel strategic attenuation effect to play a countervailing role and to be

quantitatively relevant. First, and in line with previous work on global games with level- k types ( Kneeland, 2016 ), we as-

sume that L 0 types play more aggressively than uniform randomization. 5 Second, we allow for risk aversion by assuming
2 Therefore, a higher state in our abstract game can be interpreted as a lower value of a common economic fundamental. 
3 In general, the effect of a change in private information dispersion on regime stability is ambiguous and depends on the payoff structure that is 

generated by the underlying economic environment ( Iachan and Nenov, 2015 ). To provide a clear theoretical prediction to test in a laboratory setting, we 

opt for a specific payoff structure that leads to the aforementioned comparative static. 
4 An overview of models and evidence of non-equilibrium strategic thinking is provided in Crawford et al. (2013) . 
5 Assuming that L 0 types randomize uniformly in a global game leads to the global game equilibrium prediction (see e.g. Morris and Shin, 2003 ). 

Therefore, global games models with level- k agents, such as Kneeland (2016) assume that L 0 types deviate from uniform randomization. Moreover, as us, 
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that agents have constant relative risk aversion (CRRA) preferences over payoffs obtained in each decision round and jointly 

estimate the coefficient of relative risk aversion together with the other model parameters. 6 

In our baseline structural estimation, we estimate a common distribution of level- k types for both treatments, assuming 

fixed play by L 0 types across the treatments. Therefore, our results are not driven by variation in L 0 types’ perceived play

or different distributions of the level- k types across the two treatments but are purely due to the effect of information

dispersion on actions in our modified level- k model. 

We estimate a large share (around 73%) of level- k types, which results in a weighted-average of strategic cutoffs in both

treatments in line with the estimated average cutoffs in the experiment. A caveat for comparing these averaged cutoffs is 

that they do not incorporate trembles, which our estimated model allows for. We therefore use our estimated model to 

simulate the outcomes of many sessions for each of the two treatments. Around 98% of our simulated sessions result in a

negative cutoff difference, with around 15% of simulated sessions having a cutoff difference equal to or larger (in magnitude) 

than the average cutoff difference in the experimental data. Therefore, our structural estimation shows that a level- k model, 

augmented with relatively aggressive L 0 types and risk averse agents can quantitatively explain the observed differences in 

the strategic cutoffs in our experiment. 

1.1. Related literature 

We next detail our contribution relative to the experimental literature on global games. Initial coordination experiments 

focused on static games with complete information ( Cooper et al., 1990; 1992; Straub, 1995; Van Huyck et al., 1990 ). Such

games have multiple equilibria and strategic uncertainty comes to the forefront. As a response to this indeterminacy, the 

theory of global games was initially developed by Carlsson and van Damme (1993) . The theory was later advanced by

Morris and Shin (1998) to macroeconomic applications. The global games framework provides an explicit model of strate- 

gic uncertainty. It shows that coordination games with multiple equilibria under complete information may have a unique 

equilibrium if certain parameters of the payoff function are private information instead of common knowledge. 

Much of the experimental literature on global games has focused on comparing the effects of private versus pub- 

lic (or common) information. Heinemann et al. (2004) tests the predictions of the theory of global games under 

both private and public information. 7 In the unique global games equilibrium agents use monotone cutoff strategies. 

Heinemann et al. (2004) show that subjects tend to use such strategies, both under public and private information. 8 , 9 

Moreover, and contrary to the standard theory, they show that subjects are more coordinated under public information 

and play strategies close to the payoff-dominant equilibrium. Cabrales et al. (2007) test the global games theory in a series

of two-person games with a simplified information structure. The design ensures that equilibrium is reached after only four 

rounds of elimination of (interim) strictly dominated strategies. Similar to Heinemann et al. (2004) , they find that subjects

converge to the unique global games equilibrium under private information, but that under public information they tend to 

play closer to the payoff-dominant equilibrium. We complement these papers by comparing how different levels of private 

information quality affect experimental play in a global game of regime change, thus testing a different prediction of the 

theory of global games compared to this previous literature. 10 , 11 

Kneeland (2016) analyses global games in which agents engage in level- k thinking as a way of rationalizing the findings

in Heinemann et al. (2004) . Using experimental data from Heinemann et al. (2004) , she shows that the level- k model fits
Kneeland (2016) assumes that L 0 types play more aggressively than uniform randomization, in line with the literature on experimental coordination games 

which shows that initial play tends to be biased towards the payoff dominant actions. 
6 Allowing for some risk aversion helps match the level of strategic cutoffs across treatments. Risk aversion on its own cannot reverse the comparative 

statics in a standard global game model, since it only weakens the equilibrium effect of information dispersion in that model. Furthermore, we estimate a 

coefficient of relative risk aversion of 0.48, which is broadly in line with other studies estimating risk attitudes based on data from experimental games, 

individual decision making experiments, as well as field studies. See Section 5.2 for further discussion. 
7 There is a rich experimental follow up literature. Duffy and Ochs (2012) , Shurchkov (2013) , and Shurchkov (2016) study coordination experimentally in 

dynamic global games. Heinemann and Moradi (2018) provide conditions for a unique equilibrium where agents follow a sunspot announcement depending 

on the realization of an informative private signal, and compare this equilibrium to a global games equilibrium in an experiment. They find that observed 

behavior converges to the global games equilibrium in the majority of groups, while one third of the groups coordinate on the sunspot equilibrium. 

Heinemann (2018) solves for the global games selection with asymmetric players, and runs treatments with symmetric and asymmetric players in an 

experiment. He finds that the global-games selection predicts actions well with symmetric players but fails miserably with asymmetric players. 
8 As in that paper, we also find that agents use monotone cutoff strategies. Widespread use of monotone, or near monotone, cutoff strategies has 

also been documented in a broader class of global games experiments ( Cornand and Heinemann, 2014; Avoyan, 2017; Szkup and Trevino, 2020 ). 

Heinemann et al. (2009) develop a method to measure strategic uncertainty as an alternative to varying the parameters of the game exogenously. They 

also find widespread use of cutoff strategies. Heggedal et al. (2018) find widespread use of cutoff strategies in a coordination game with type uncertainty 

rather than uncertainty about fundamentals. 
9 Cornand (2006) expands on Heinemann et al. (2004) by demonstrating that public information is stabilizing in an experiment using a currency attack 

game. 
10 If one is to interpret public information in experimental global games as a situation with (arbitrarily) precise private information, then the findings in 

Heinemann et al. (2004) and Cabrales et al. (2007) that agents tend to play more aggressively under public information are consistent with our experi- 

mental findings. 
11 For further analysis of the effects of precision in public signals see Baeriswyl and Cornand (2016) , and for relative precision of private and public signals 

see Dale and Morgan (2012) . 
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the data better than the fully rational model. Relative to her paper, we provide a novel prediction on the effect of changes

in information dispersion on different cognitive types’ strategic cutoffs and show experimental support for this prediction. 12 

In a recent contribution, Szkup and Trevino (2020) also consider an experimental setting in which the precision of private

signals varies across treatments. Like us, they find that the comparative statics are reversed relative to what the theory 

predicts. To explain the reversal in the theoretical comparative statics Szkup and Trevino (2020) argue that there is a link

between players’ perception of strategic uncertainty and fundamental uncertainty. They propose a “sentiment theory”, where 

as fundamental uncertainty increases, players also become more pessimistic about the actions of others. 

We complement Szkup and Trevino (2020) along several dimensions. First, we differ in the experimental setting. Specifi- 

cally, they investigate a two-player investment game similar to Carlsson and van Damme (1993) , while we consider a larger

coordination game of regime change. Second, and more importantly, we explain the reversed comparative statics with a the- 

ory based on bounded rationality and limited depth of reasoning. In that theory, we identify a novel effect of information

quality on agents’ actions, which is absent in the equilibrium model. We then evaluate the ability of this theory to explain

the data. 

2. Information quality and the payoff sensitivity effect 

We consider a regime-change game that can serve as a simple representation of the strategic interactions involved in 

currency crises ( Morris and Shin, 1998 ), debt rollover ( Rochet and Vives, 2004, Goldstein and Pauzner, 2005 ), and political

change ( Edmond, 2013 ). We follow the notation from Iachan and Nenov (2015) , with a few modifications necessary for

the experimental test of the effect of information dispersion on players’ actions and regime stability. Most importantly, we 

assume that there is a discrete number N of players. 

Agents take a binary action s i ∈ { 0 , 1 } simultaneously. We interpret s i = 1 as player i attacking the status quo. We let

Z = 

∑ 

i s i denote the number of agents who choose s i = 1 . A state variable Y (the fundamentals) determines agents’ payoffs, 

and also the minimal number of agents required for a successful attack. We assume that Y is distributed uniformly on [ 0 , M ] ,

for M > 0 and is not directly observed by agents, who hold this distribution as their prior belief about the state. 

Regime change occurs if at least a fraction g ( Y ) of agents attack, where g ( ·) is a decreasing function of the fundamen-

tals. 13 We define G N ( Y ) ≡ � g ( Y ) N � , so that regime change occurs if, and only if, Z ≥ G N (Y ) . We assume that the net payoff

to a player from choosing s i = 1 over s i = 0 is D (Y ) in case of regime change and U(Y ) in case of status quo survival. We

assume that D ( Y ) > 0 and U ( Y ) < 0 and that both are either constant or strictly increasing in Y . As a consequence, actions

are strategic complements. 

Before choosing actions, agents observe noisy signals about the state Y . Specifically, we assume that player i observes a

signal x i = Y + ηi , where ηi ’s are distributed uniformly on [ −ε, ε] , ε > 0 , and ε � M. The draws of ηi are independent across

players and, also, independent of the realization of Y . We denote the expectation with respect to the information set of an

agent that receives signal x i by E x i [ ·] . 
Equilibrium. The definition of a Bayesian Nash Equilibrium for our game is standard (see Morris and Shin, 2003 ). We

restrict attention to equilibria in monotone strategies. A monotone strategy Y ∗ is such that s ( x i ) = 1 iff x i > Y ∗. In that case

it is straightforward to apply standard results from global games to show that there is a unique equilibrium. Furthermore, 

the restriction is without loss of generality ( Morris and Shin, 2003 ). 

We call the critical value Y ∗ the strategic cutoff. Note that for a given value Y ∗ in the finite-player case, the number of

players who observe a signal above Y ∗ and thus choose s i = 1 is stochastic. Given a value of the fundamental Y , with signals

uniformly distributed on the interval [ Y − ε, Y + ε] , the probability that at least K players get a signal above Y ∗ is given by

the tail distribution of a Binomial random variable 

F N ( K, Y, Y ∗) = 

N ∑ 

k ≥K 

(
N 

k 

)
p ( Y, Y ∗, ε) 

k 
( 1 − p ( Y, Y ∗, ε) ) 

N−k (1) 

where 

p ( Y, Y ∗, ε) = min 

{ 

max 

{ 

0 , 
Y + ε − Y ∗

2 ε

} 

, 1 

} 

(2) 

Therefore, the probability of regime change given a state Y is 

P ( Y, Y ∗) ≡ F N (G N (Y ) , Y, Y ∗) (3) 

Note that P ( Y, Y ∗) = 1 for Y ≥ Y ∗ + ε and P ( Y, Y ∗) = 0 for Y ≤ Y ∗ − ε. It is also convenient to define the probability of regime

change for a player that attacks ( s = 1 ). We define this probability by ˜ P ( Y, Y ∗) . Specifically, a player that attacks expects
i 

12 Cornand and Heinemann (2014) analyze the relative weighting of public and private signals in a global game by a k-level model and a cognitive 

hierarchy model. 
13 Therefore, higher Y means weaker fundamentals in this setting. Furthermore, to ensure equilibrium uniqueness, we assume that there exist upper 

and lower dominance regions of the following form: There exists a Y ∈ ( 0 , M ) and a Y ∈ ( 0 , M ) , such that for Y < Y , g ( Y ) > 1 and for Y > Y , g ( Y ) < 0 . For 

 ∈ 
(
Y , Y 

)
, g ( Y ) ∈ ( 0 , 1 ) . 
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Fig. 1. Percentage of subjects, whose behavior is consistent with undominated cutoff strategies. 

Fig. 2. Empirical CDFs of individual cutoffs, by treatment. 

Table 1 

Equilibrium predictions. 

Treatments Low Noise High Noise 

( ε = 10 ) ( ε = 20 ) 

Strategic cutoff Y ∗L = 41.4 Y ∗H = 37.8 

Expected treatment difference Y ∗L − Y ∗H = 3.6 

 

 

 

 

 

 

U  

 

 

regime change to occur if at least G N − 1 of the remaining N − 1 other players attack, which gives 

˜ P ( Y, Y ∗) ≡ F N−1 (G N (Y ) − 1 , Y, Y ∗) (4) 

Given this probability of regime change, Y ∗ is determined by an indifference condition for a marginal agent – a player who

observes a signal x i = Y ∗. Specifically, Y ∗ solves 

E Y ∗
[
D ( Y ) ̃  P ( Y, Y ∗) + U(Y ) 

(
1 − ˜ P ( Y, Y ∗) 

)]
= 0 . (5) 

That is, for a marginal agent, the expected payoff from attacking over not attacking is equal to zero. 

Payoff sensitivity effect. As shown by Iachan and Nenov (2015) , with a continuum of players, the effect of information

quality on the equilibrium of this game depends on a comparison of the sensitivities of payoffs in the case of regime change

and status quo survival. In our experiment, we focus on the case where U ( Y ) = U < 0 and D ( Y ) is strictly increasing in Y . The

prediction of the model that we aim to test experimentally is the comparative static of Y ∗ with respect to ε. In the context of

a continuum of players, increased information dispersion is destabilizing ( Iachan and Nenov, 2015 ). Put differently, if U(Y ) =
 < 0 , ∀ Y , and D (Y ) is strictly increasing, then 

∂Y ∗
∂ε

< 0 , so agents are more aggressive when attacking. This comparative

static continues to hold in our specific experimental set-up with a finite number of players as Fig. 4 in Section 5.1 illustrates.

Below we refer to this effect of information dispersion on the strategic cutoff Y ∗, the payoff sensitivity effect . The intuition

for this effect is the following. 

Under imperfect information, the expected net payoff associated with regime change provides incentives to attack, while 

the expected net payoff in the case of status quo survival provides opposing incentives. Less precise information makes ex- 
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Fig. 3. Strategic attenuation from higher noise ε. 

Table 2 

Group cutoffs; first round data only, ranked groups. 

Group # Low noise High noise 

Group cutoff Lowest ind. cutoff Highest ind. cutoff Group cutoff Lowest ind. cutoff Highest ind. cutoff

1 22.8 3.7 35.5 31.8 7.3 43.9 

2 30.2 1.7 48.7 35.8 17.6 47.8 

3 35.9 27.6 46.3 39.4 28.2 71.8 

4 38.0 4.5 93.25 41.3 13.3 59.6 

5 39.9 7.4 73.3 44.6 34.3 59.9 

6 40.8 7.14 57.7 48.7 20.1 90.9 

7 44.4 32.5 56.5 49.5 33.7 69.0 

8 44.8 25.1 66.5 51.5 29.5 85.86 

Average 37.1 42.9 

Standard deviation 7.4 6.9 

Equilibrium cutoff 41.4 37.8 

Table 3 

One-sided t -test of average cutoff difference 

across treatments . 

Treatment Average cutoff Std. dev. 

Low noise 37.1 7.4 

High noise 42.9 6.9 

Difference p-value 

-5.7 0.067 

 

 

 

treme realizations of the fundamentals more likely, changing expected net payoffs. Whenever the net payoff from attacking 

increases more strongly with fundamentals than the net payoff in case of regime survival, the first force dominates and less 

precise information make agents more likely to attack. 

3. Experimental implementation 

In order to test the payoff sensitivity effect in the lab, we follow closely Heinemann et al. (2004) . 14 The experiment

consists of a series of 8 independent rounds. In each round each subject makes 10 independent binary choices. We organize

subjects in groups of N = 10 , with subjects indexed by i . Subjects stay in the same group for all eight rounds. The rules of
14 We adopt the same payoff functions and other parameters as in their (T = 20; Z = 60) treatments. Our experiment is based on the same zTree files and 

the same instructions as their experiment. The only differences, aside from the subject pool, is that we follow Heinemann et al. (2009) in considering 

groups of 10 rather than 15 subjects, and that we replace the complete information treatment of Heinemann et al. (2004) with our High Noise treatment. 
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the game are made public knowledge through the reading of instructions aloud. 15 Unique subjects are used in all sessions.

The language of the experiment is neutral. 

At the beginning of each round, 10 different values of Y are drawn, where Y is distributed uniformly on [ 0 , 100 ] . For any

realization of Y , individual signals x i are then drawn independently according to a uniform distribution on [ Y − ε, Y + ε] . 

Each individual signal is revealed to subject i but not to the other subjects in the group. Within a treatment and a given

round, the list of fundamentals ( Y ) are identical for the subjects in different groups, while the list of signals ( x i ) varies

over subjects. Given their signals, subjects are asked to make a decision ( A or B ) for each of the 10 decision situations in

that round. In the context of the model outlined above, A corresponds to s i = 0 and B corresponds to s i = 1 . Subjects get

a feedback after each round. For each of the 10 games on the list, this feedback consists of the number Y , the number

of subjects that decided for A and B , and the subject’s own payoff. Subjects earn profits for each decision taken in the

experiment. 16 

If a subject chooses A , she receives an endowment of 20 experimental currency units. If the subject chooses B , she

receives a payoff which depends on both the number of other subjects who chose B and the state Y. Regime change takes

place if G 10 (Y ) = [ 10 ( 80 − Y ) / 60 ] individuals choose B . More specifically, our payoff structure is as follows. Let Z be the

number of agents in a group that attack. π(Y, Z) is the net payoff from choosing B , given the fundamental Y and the actions

of the group members. π(Y, Z) is increasing in Y . 

π(Y, Z) = 

{
Y − 20 : Z ≥ G 10 (Y ) 
−20 : Z < G 10 (Y ) 

(6) 

With this set-up, observe that playing A is dominant if Y < 20 and playing B is dominant if Y > 74 . 

We run a simple design in which the only treatment is the dispersion in the private signals, parameterized by the noise

term ε. Specifically, we consider two treatments – a Low noise treatment with εL > 0 , and a High noise treatment with εH >

εL . Let Y ∗
j 

denote the theory-implied strategic cutoff for treatment j = { L, H } . The theoretical predictions are summarized in 

Table 1 . 

We collected data on 8 groups in the High Noise treatment and 8 groups in the Low Noise treatment, a total of 160

subjects. The sessions were run in the BI Norwegian Business School Research Lab. The experiment was programmed in z- 

ree ( Fischbacher, 2007 ) and subjects were recruited from the general student populations of BI Norwegian Business School 

and the University of Oslo using the software ORSEE ( Greiner, 2015 ). 

4. Experimental results 

Our first objective is to test to what extent subjects follow the equilibrium requirement of using undominated cutoff

strategies in our experiment. For each player i and each round t , let x A 
it 

be the highest signal at which subject i chooses A

and x B 
it 

be the lowest signal at which she chooses B. We say that a subject’s behavior is consistent with a cutoff strategy

in round t , if x B 
it 

≥ x A 
it 

. Letting ε be the noise in each treatment ( ε ∈ { 10 , 20 } ), observe that playing B is dominated by A

whenever x it < 20 − ε and A is dominated by B whenever x it > 74 + ε. We say that a subject’s behavior is consistent with

an undominated cutoff strategy if it is consistent with a cutoff strategy and x B 
it 

≥ 20 − ε and x A 
it 

≤ 74 + ε. 

Overall, the observed behavior of the subjects is largely consistent with playing undominated cutoff strategies. On aver- 

age, 89% of the subjects play in a way consistent with undominated cutoff strategies in the Low Noise treatment. In the High

Noise treatment, the corresponding number is 92%. There is also some evidence of an increasing reliance on undominated 

cutoff strategies over time. Fig. 1 shows the evolution in the use of cutoff strategies over time for each of our treatments.

The percentage of subjects whose behavior is consistent with undominated cutoff strategies increases as play progresses. 

Result 1 (Cutoff strategies): Subjects play consistently with undominated cutoff strategies. 

Therefore, in the remaining analysis of this section, we follow Heinemann et al. (2009) and focus on subjects who play

according to a cutoff strategy. To estimate individual strategic cutoffs for each round, we take the individual-level average of 

the highest signal for which a subject chooses A and the lowest signal for which the subject chooses B . We then take the

mean of these individual cutoffs within each group and refer to that mean as the group cutoff. 

In what follows we focus on first-round behavior. The level- k model we study in Section 5 below is meant to address

initial play in unfamiliar environments, before learning kicks in ( Crawford, 1995 ). 17 Experimental evaluations using models of 

limited depths of reasoning, therefore, typically focus on first round behavior (e.g., Crawford, 1995, Camerer, 2011 , chapters 1
15 Instructions for the High noise treatment are available at: http://www.leifhelland.net/working-papers/ and also in the Online Appendix. 
16 An alternative would be to draw one decision in the experiment randomly and pay subjects for the outcome of the corresponding game. This incen- 

tivizes all decisons while neutralizing wealth effects created by the accumulation of profits. A drawback stems from more complicated instructions adding 

to the risk of confusing subjects. Both methods have been employed in the experimental literature on global games. Results in Heinemann et al. (2004) (that 

run two high-stake treatments) indicate that the random payment scheme induces more risk-averse behavior. We shed further light on this in our analysis 

of the evolution in risk-attitudes below. 
17 See also the discussion in Heinemann et al. (2009) , p.191, regarding path dependence from initial play in repeated coordination games. 
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and 6). Moreover, result 4 below suggests that there is some learning taking place over time. Since we do not study learning

dynamics in this paper, we focus on first-round behavior in our main analysis. 18 

Fig. 2 shows the empirical CDFs of the individual cutoffs according to treatment. Interestingly, the CDF of individual cut- 

offs in the High Noise treatment is a rightward shift of the CDF of individual cutoffs in the Low Noise treatment. Table 2 re-

ports the group cutoffs for each group. Data in the table are ranked in ascending order for each treatment based on the

value of the group cutoff. We also include the lowest and highest signal used to compute the cutoffs, as well as the equi-

librium strategic cutoffs for each treatment. As is evident, in each ordered pair of groups, the group cutoff is higher in the

High Noise treatment. 

According to the payoff sensitivity effect (cf. Section 2 ), subjects should play more aggressively in the High Noise treat- 

ment compared to subjects in the Low Noise treatment. Both Fig. 2 and Table 2 indicate that this is not the case. Fig. 2 shows

that the CDF of individual cutoffs in the High Noise treatment is a rightward shift of the CDF of individual cutoffs in the

Low Noise treatment. Therefore, individuals are more cautious when their information is less precise. Using a two-sample 

Kolmogorov-Smirnov test, we can reject the hypothesis that the two empirical CDFs are identical in favor of an alternative 

hypothesis of smaller cutoffs in the Low Noise treatment with a p-value of 2.5 % . However, this test does not take into ac-

count common within-group disturbances. Therefore, we proceed with a more conservative approach based on the group 

cutoffs from Table 2 . 

Table 2 shows that the average (group) cutoff in the High Noise treatment is 5.7 units higher than in the Low Noise

treatment, which has the opposite sign compared to the difference in equilibrium cutoffs. To formally test whether the 

difference across treatments is significant, we use a one-sided t -test. 19 The results are reported in Table 3 . We reject the

null hypothesis with a p-value of 6.7%, when considering an alternative hypothesis of a lower threshold in the Low Noise

treatment. We conclude that contrary to equilibrium theory, subjects play less aggressively in the High Noise treatment 

compared to the Low Noise treatment. 

Result 2 (Information quality comparative statics): The estimated average strategic cutoff is lower in the Low Noise treat- 

ment compared to the High Noise treatment. 

5. A model with limited depth of reasoning 

The results in the previous section show that higher information dispersion makes subjects behave less aggressively. This 

is the exact opposite of the payoff sensitivity effect that one should expect according to equilibrium play (cf. Section 2 ). In

this section, we develop and test a model that is consistent with this experimental finding. Our model assumes that players

deviate from equilibrium play and instead have limited depth of reasoning in the form of level- k thinking. 

5.1. Level- k thinking 

Level- k thinking is a frequently used solution concept in Behavioral Game Theory. 20 It features limited depths of rea-

soning, adds a specific structure to agents’ beliefs, and is particularly meant to capture players’ initial behavior in strategic 

games, before learning induces higher levels of sophistication. The main appeal of level- k thinking in our setting is that it

can change the comparative statics from the equilibrium theory on how information dispersion affects players’ actions and 

regime stability. In this section, we illustrate and discuss the theoretical mechanism through which this happens. 

5.1.1. Set-up 

We consider again the set-up from Section 2 with net payoffs U ( Y ) and D ( Y ) given as in our experimental implementa-

tion, so that U(Y ) = U < 0 , ∀ Y , and D (Y ) is linear and increasing in Y . Assume that agents have limited depth of reasoning.

Specifically, each player i ∈ { 1 , 2 , . . . , N } is assumed to have a type Lk drawn from a discrete distribution over k ∈ { 1 , . . . , ∞ } ,
where Lk denotes a type that engages in k rounds of reasoning. An Lk type best-responds to the belief that all other agents

play as L ( k − 1 ) types, for k > 1 . Finally, L 1 types best respond as if all other agents act as L 0 types, where the behavior of

L 0 types is specified as a model primitive. Note that there are no actual L 0 types among the players. 

Following Kneeland (2016) , we assume that L 1 types believe that the aggregate behavior of L 0 types is described by the

cumulative distribution function Q ( z| Y ) , where z denotes the fraction of agents that attack. Here, Q ( z| Y ) is continuously 

differentiable and weakly decreasing in Y , so that L 1 types believe that a higher value of Y leads to a larger share of L 0

types attacking. 
18 Note, however, that results are qualitatively and quantitatively similar when using all data and preforming a logit estimation of individuals likelihood 

of attacking conditional on their signals, the treatment and an interaction-term. Also, in Section 5.2.2 we explore the evolution of risk-attitudes and the 

distribution of behavioral types using the full data set. 
19 In the Appendix, we follow a more conservative approach and run a Mann-Whitney U test. The difference across thresholds is significant with a p-value 

of 8.5%. 
20 See, for instance, Nagel (1995) , Stahl and Wilson (1995) , Kubler and Weizsacker (2004) , Crawford et al. (2013) . 
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Table 4 

Parameter estimates and log-likelihoods. 

Model: (1) Baseline (2) Risk-neutral (3) Equilibrium types (4) Endo. L 0 (5) Fixed L 0 : Alt 1. (6) Fixed L 0 : Alt 2. (7) Three Lk -types 

Fraction of level-1 agents ( p 1 ) 0.1935 0.0558 - 0.1860 0.0899 0.1113 0.1512 

[0.0865] [0.0717] [0.0633] [0.0562] [0.0531] [0.0838] 

Fraction of level-2 agents ( p 2 ) 0.5328 0.3203 - 0.5899 0.5385 0.5631 0.2410 

[0.1295] [0.0586] [0.1068] [0.1289] [0.1218] [0.0862] 

Fraction of level-3 agents ( p 3 ) - - - - - 0.4744 

[0.0881] 

Fraction of equilibrium types ( 1 − p 1 − p 2 − p 3 ) 0.2737 0.6239 - 0.2241 0.3716 0.3256 0.1334 

[0.1468] [0.0868] [0.1295] [0.1374] [0.1313] [0.1232] 

Trembling rate ( ν) 0.6481 0.4819 0.6691 0.8269 0.6311 0.7240 0.6715 

[0.1936] [0.0760] [0.0684] [0.1899] [0.1878] [0.1843] [0.1430] 

Precision of error density ( λ) 0.2211 0.0255 0.0525 0.3694 0.2122 0.2500 0.2218 

[0.0860] [0.0053] [0.0054] [0.1383] [0.1094] [0.0825] [0.0819] 

Coefficient of relative risk aversion ( α) 0.4756 - 0.1199 0.4248 0.4577 0.4804 0.3253 

[0.0744] [0.0878] [0.0907] [0.0919] [0.0813] [0.0859] 

Shape-parameter - - - 34.2829 - - - 

[16.1759] 

Log-likelihood −617.0765 −670.8003 −685.3984 −604.8430 −614.6746 −615.1004 −618.1589 

1600 1600 1600 1600 1600 1600 1600 

Notes: Bootstrapped standard errors in brackets.. The table reports parameter estimates from estimating equation (10) on data from round 1. In Column (1) we estimate a model with L 1 , L 2 and 

equilibrium types under the assumption that the proportion of L 0 attacking is drawn from a Beta (10 , 1) distribution and where all agents are risk-averse. In Column (2) we estimate a similar 

model as in (1), but where agents are risk-neutral. In Column (3) we estimate a model with only risk-averse equilibrium types. In Column (4) we estimate a similar model as in (1), but where the 

proportion of L 0 attacking is drawn from a Beta (x, 1) distribution and where x (“Shape-parameter”) is estimated. In Column (5) we estimate a similar model as in (1), but where the proportion of 

L 0 attacking → 1. In Column (6) we estimate a similar model as in (5), but where L 0 types do not attack in the lower dominance region. Finally, in Column (7) we estimate a model as in (1), but 

where we allow for a L 3 type as well. 

5
4
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5.1.2. Characterization 

Let Y ∗
k 

denote the signal value of an Lk type, for which that type is indifferent between attacking and not attacking.

In other words, Y ∗
k 

is the strategic cutoff for an Lk type. An Lk type that attacks expects that regime change occurs with

probability ˜ P k ( Y ) . Given the level- k assumptions, it follows that 

˜ P k ( Y ) = 

{
1 − Q 

(
G N (Y ) −1 

N 
| Y ), k = 1 

˜ P 
(
Y, Y ∗

k −1 

)
, k > 1 

, (7) 

where ˜ P ( Y, x ) = F N−1 (G N−1 (Y ) , Y, x ) . Therefore, Y ∗
k 

solves 

E Y ∗
k 

[
( D ( Y ) − U ) ̃  P k ( Y ) 

]
+ U = 0 (8) 

One can also characterize Y ∗
k 

as follows. Define implicitly the function h ( x ) by 

E h ( x ) 
[
( D ( Y ) − U ) ̃  P ( Y, x ) 

]
+ U = 0 . 

Therefore, h ( x ) is the strategic cutoff given that all other players use cutoff strategies with cutoff x . Because the strategic 

cutoff fully characterizes the strategies of Lk types, it follows that one can think of h ( x ) as the best response function of an 

agent who anticipates that all other players use cutoff x . To find the strategic cutoffs for all Lk types, let Y ∗
1 

solve (8) and let

 

∗
k 

= h 
(
Y ∗

k −1 

)
for k > 1 . 

Remark 1. Recall from Section 2 that Y ∗ denotes the strategic cutoff according to equilibrium play. Then Y ∗ is the fixed

point of h ( . ) and satisfies Y ∗ = h ( Y ∗) . Moreover, continuity of h ( x ) implies that Y ∗
k 

→ Y ∗. 

Remark 2. It is straightforward to show that h ( x ) is strictly increasing in x . Therefore, there is a strategic complementarity

across Lk types. Specifically, the aggressiveness of the level- ( k − 1 ) types (i.e. the location of their cutoff) influences the level-

k type’s cutoff (and, through that cutoff, affects level- ( k + 1 ) agents, and so forth). The lower the value of Y ∗
k −1 

(the more

aggressive the L ( k − 1 ) type), the lower the value of Y ∗
k 

, Y ∗
k +1 

, etc. 

5.1.3. Effects of changes in information quality 

Next, we discuss how changes in ε affect the behavior of Lk types (i.e. the effects of ε on Y ∗
k 

). To this end we first show a

specific example which illustrates the novel channel through which information quality affects the behavior of Lk types. For 

analytical convenience, we take N → ∞ , so that ˜ P ( Y, x ) converges to a step function with a discontinuity at Y f ( x ) , in which

 

f ( x ) satisfies 

g 
(
Y f ( x ) 

)
= 

1 

2 

+ 

Y f ( x ) − x 

2 ε
. (9) 

We also follow our experimental implementation and the structural estimation below, and assume that g ( Y ) is linear and 

the distribution of play of L 0 types is independent of Y and has an increasing density. Finally, we assume that D ( Y ) = D > 0

is a constant. This particular assumption is made to switch off the payoff sensitivity effect from changes in information 

dispersion ε (cf. Section 2 and Corollary 1 in Iachan and Nenov (2015) ). As a result, the equilibrium strategic cutoff, Y ∗, does

not vary with information dispersion ε. In contrast to the noise invariance of equilibrium play, we have the following result

for the strategic cutoff of Lk types. 

Proposition 1. (Strategic attenuation) Consider the game described above and let D ( Y ) = D > 0 . Suppose that L 0 types play

more aggressively than uniform randomization, so Y ∗
1 

< Y ∗. Then, 
∂Y ∗

k 
∂ε

> 0 : Higher noise makes Lk types less aggressive. 

Proof. See the Online Appendix. �

Figure 3 illustrates this result. A higher value of ε flattens the best response function h ( x ) (dashed line) and rotates it

clockwise around the fixed point Y ∗, which is noise invariant. To the left of Y ∗, h ( x ) increases. Intuitively, an increase in the

dispersion of private noise attenuates the strategic complementarity across Lk types, because it makes agents less coordi- 

nated when attacking and also reduces their ability to forecast the actions of other agents. This shows up as a flattening of

the best response function that links an Lk type’s strategic cutoff with the strategic cutoff she believes L ( k − 1 ) types follow. 

Therefore, whenever L ( k − 1 ) types are more aggressive than Lk types, higher information dispersion makes Lk types react 

less to the aggressiveness of L ( k − 1 ) types; Lk types become less aggressive with higher information dispersion. We call this 

effect of information dispersion strategic attenuation . 21 

The strategic attenuation effect suggests that the effects of information quality can be reversed for some Lk types relative 

to the equilibrium model. Figure 3 suggests that the effect is stronger for more aggressive L 1 types (a low initial value of

 

∗
1 ) and for low values of k > 1 , that is for Lk types who engage in few rounds of reasoning. In terms of model primitives,

L 1 types tend to be more aggressive when they expect L 0 types to play more aggressively. Therefore, in our structural

estimation below we will assume that L 0 types play relatively aggressively, so that the strategic attenuation effect operates. 
21 Figure 3 also illustrates that strategic attenuation would also operate if L 1 types are less aggressive than the equilibrium agents. In that case, provided 

that Y ∗1 does not vary much with ε, a higher value of ε would imply that Lk types become more aggressive. 
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Fig. 4. Strategic cutoffs of level- k and equilibrium types and estimated average cutoffs for low and high level of ε. Notes: In the left panel, agents are 

risk-neutral. In the right panel, agents are risk-averse with a CRRA-coefficient equal to the estimate from the baseline model in Table 4 . 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Remark 1. The flattening of the best response function h when ε is increased is closely related to the mechanism through

which strategic complementarities in combination with small amounts of private information lead to a unique equilibrium 

in global games of regime change. Indeed, if ε = 0 , then in the example above, h ( x ) has a slope of one, leading to multiple

equilibria. 

Remark 2. The strategic attenuation effect operates at each level of reasoning, for k > 1 . Therefore, even in a case in which

the behavior of L 1 players is noise invariant, the strategic attenuation effect kicks in for all higher levels of k . 

Next, we show that the strategic attenuation effect also operates in the context of our experimental set-up with a finite

number of players and where payoffs are such that the payoff sensitivity effect also operates (including for Lk players). 

Figure 4 plots the strategic cutoffs of different level- k types for the two different values of ε used in the experiment. The

left-hand panel is for risk neutral agents, while the right-hand panel is for risk averse agents with constant relative-risk 

aversion (CRRA) type preferences and coefficient of relative risk aversion equal to the estimated coefficient in our structural 

estimation below. 22 The figure also includes the average cutoffs for each experimental treatment. The figure shows how Y ∗
k 

converges to a stable value as k increases, which is also the strategic cutoff in the equilibrium model, Y ∗ (denoted by ∞ on

the x-axis of each panel). 

There are several observations we can make from this figure. First, in the context of our experimental set-up, changes in

information quality impact the strategic cutoff of some level- k types differently from the equilibrium model. Indeed, while 

equilibrium types (which we define as agents that use a cutoff equal to the cutoff in the equilibrium model) end up playing

more aggressively with high noise, L 2 and L 3 types play less aggressively irrespective of whether they are risk neutral or

risk averse. This difference in behavior is due to the strategic attenuation effect dominating the payoff sensitivity effect in 

the case of L 2 and L 3 types. 

Second, risk aversion has a two-fold effect on behavior. First, it raises the strategic cutoffs for all level- k (and the equilib-

rium) types. As a result, while with risk neutral agents the estimated average cutoffs for each treatment are closer to those

of the equilibrium types, with risk averse agents, the estimated average cutoffs are more in line with the strategic cutoffs of

lower level- k types, such as L 1 and L 2 types. In addition, risk aversion significantly weakens the “payoff sensitivity” effect

as evident from the effect of higher information dispersion on the strategic cutoff of equilibrium types. 

Therefore, although risk aversion on its own does not reverse the comparative statics with respect to information preci- 

sion, and the comparative statics are reversed for low level- k types even with risk neutral agents, risk aversion is important

for the magnitude of the reversal. In addition, it ensures that the levels of the strategic cutoffs of the Lk types are in line

with our empirical data. For these reasons, in our structural estimation below we allow agents to have CRRA preferences 
22 The assumption of L 0 play is as in our baseline structural estimation below, i.e. the fraction of attacking L 0 -types is distributed according to a Beta( α, β) 

distribution with shape-parameters α = 10 and β = 1 . In the Appendix, we characterize the strategic cutoffs for level- k types with CRRA preferences. 
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Fig. 5. Beta(10,1) vs. uniform distribution. 

 

 

 

 

 

 

 

 

 

 

 

 

and estimate the coefficient of relative risk aversion for these agents jointly with the other parameters of our structural 

model. 23 

5.2. Empirical evaluation 

In this section, we evaluate empirically whether the level- k model can account for the deviations from equilibrium theory 

that we have documented in Section 5.2.2 . We first structurally estimate a finite mixture model of play on our experimental

data and then use the estimated model to explain the deviations from equilibrium theory that we observe. 

5.2.1. Methodology 

To separate the subjects into different level- k types, we follow Kneeland (2016) and estimate a finite mixture model on

our experimental data. 24 For our baseline estimation, we allow subjects to be L 1 , L 2 , and equilibrium types, which we denote

by Lk , k ∈ { 1 , 2 , ∞ } . 25 We denote the share of Lk types by p k , with p ∞ 

denoting the share of equilibrium types. Following

the discussion from the previous section, we assume that players have CRRA preferences over the (gross) payoffs from each 

decision with a coefficient of relative risk aversion of α, and estimate α jointly with the other model parameters. We further

assume that each subject follows the action of a particular Lk type with some error. Specifically, in each decision round a

subject makes a decision consistent with her type with probability 1 − ν and makes an error with probability ν . If the player

makes an error, the choice depends on an error density d k 
(
a i q , λ

)
specified in equation (11) below. 

As illustrated in Proposition 1 , the effect of information quality can be reversed for some level- k types compared to the

equilibrium model. This happens if L 0 types are expected to play sufficiently aggressively, so that level- k types play more

aggressively than the equilibrium types. Therefore, we assume that L 0 types are expected to play aggressively. Specifically, 

in our baseline estimation we assume that the fraction of attacking L 0 -types is distributed according to a Beta(10,1) distri-

bution, which has a mean of 0.909. 

In Fig. 5 , we illustrate how this distribution of L 0 -types’ play differs from the case where L 0 -types randomize uniformly

over actions. While most of the literature in which level- k models are used to explain data from experimental games makes

the latter assumption, ( Crawford et al., 2013 , and references therein), the literature on experimental coordination games 
23 Notice that for L 1 types the strategic cutoff changes little with information dispersion in both the risk neutral and risk averse cases. Moreover, the 

comparative statics for L 1 types can go either way. The reason is that the payoff sensitivity effect impacts the behavior of L 1 types, as it does higher level- k 

types, and pushes for L 1 types to be more aggressive when ε increases. On the other hand, the strategic attenuation effect does not operate for L 1 types, 

and instead changes in ε interact with the distribution of play of L 0 types. If the distribution of play of L 0 types has an increasing density, then a higher 

value of ε pushes towards L 1 types being less aggressive. However, this effect tends to be weak, so that when agents are risk neutral, the payoff sensitivity 

effect dominates for L 1 types, while with risk averse agents, the payoff sensitivity effect is also weak, so the two effects almost balance out. 
24 We follow the estimation procedure for finite mixture models in Mofatt (2016) , chapter 8. 
25 We follow a structural approach and estimate parameters of a pre-specified model, including the proportion of players that follow each particular 

Lk-type behavior. As described soon, players are assumed to make errors in their play. The frequency of those errors, combined with their variance, can be 

understood as a measure of mismatch between the behavior assumed for a particular type and what is observed. As in Kneeland (2016) , equilibrium types 

engage in infinite rounds of reasoning, so they play according to the equilibrium strategies from the global games model. 
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has shown that initial play tends to be biased towards payoff dominant actions ( Costa-Gomes et al., 2009 ). 26 , 27 Moreover,

assuming that L 0 types randomize uniformly in global games of regime change (so that the share of agents attacking is

uniformly distributed) leads to the equilibrium outcome, since L 1 types end up holding (and reacting to) Laplacian beliefs 

about the remaining players’ actions ( Morris and Shin, 2003 ). For these reasons Kneeland (2016) assumes that L 0 types play

more aggressively than uniform randomization in her empirical investigation of a level- k model in an experimental global 

game. 28 

Our assumption of aggressive L 0 types is, therefore, in line with this previous work on level- k models in experimental

global games. To investigate the robustness of our results to the assumed behavior of L 0 types, below we also investigate

the performance of the model under several alternative assumptions. 

Let Q = { 1 , 2 , . . . , 10 } denote the set of all decisions, q ∈ Q denote a specific decision instance, and a i q denote the choice

of subject i in instance q . For each subject ×type, we define the set Q 

ik ⊂ Q , which consists of all instances q , where subject

i made a choice a i q consistent with type Lk . Weighting over the different types ( k ) and summing over all subjects ( i ), we get

that the log-likelihood of observing a particular set of choices is 

L = 

N ∑ 

i =1 

log 

[ ∑ 

k ∈ { 1 , 2 , ∞ } 
p k 

(

q ∈ Q ik 

(
1 − ν + νd k 

(
a i q , λ

)))(

q / ∈ Q ik νd k 

(
a i q , λ

))] 

. (10) 

The parameter λ is a precision parameter in the error density 

d k 
(
a i q , λ

)
= 

exp 

{
λS k q 

(
a i q 

)}
exp 

{
λS k q ( attack ) 

}
+ exp 

{
λS k q ( not attack ) 

} , (11) 

where S k q 

(
a i q 

)
denotes the expected payoff of an agent of type Lk at decision instance q , who makes a choice a i q . 

The unit of analysis is now individual decisions, which is in line with the existing literature on coordination experiments 

( Costa-Gomes et al., 2009; Crawford et al., 2008 ). In our benchmark estimation, we estimate 5 independent parameters,

namely p 1 , p 2 (the fractions of types L 1 and L 2 ), λ, ν , and α on data from the first round for both treatments. 

5.2.2. Results 

We report the estimation results in Table 4 . In Column (1) we report the results from estimating our baseline model. The

fraction of level- k types is estimated to be 72%. This is roughly in line with the estimate from Kneeland (2016) . Most agents

are classified as L 2 types. In terms of trembling probabilities, we estimate a relatively large trembling rate ν . Note however,

that the actual trembling probabilities, which are given by νd k 
(
a i q , λ

)
are substantially lower than ν , as illustrated in the 

Appendix Figure 9, which plots the distributions of νd k 
(
a i q , λ

)
by subjects and decision rounds for the three different Lk -

types in the model given the round one data. As the Figure illustrates the trembling probabilities tend to be low, suggesting

that for the most part observed play is consistent with the theoretical predictions of the level- k model. The estimated CRRA

parameter of 0.48 is broadly in line with other studies estimating risk attitudes based on data from experimental games, 

individual decision making experiments, as well as field studies. 29 

In Column (2), we report the results from estimating a model where agents are instead assumed to be risk neutral. With

risk neutral agents the estimation procedure ends up classifying the majority of players (around 62%) as equilibrium types, 

This should not be surprising in light of Fig. 4 above, which shows that with risk neutral agents the estimated average

cutoffs in the experimental data are closer to the theoretical cutoffs of equilibrium types than of L 1 or L 2 types. 
26 A deviation from the assumption of uniform randomization over actions for L 0 types is also found in the literature on auctions, where such types are 

assumed to bid their value conditional on their own signal ( Crawford and Iriberri, 2007 ). 
27 Initial bias towards the payoff dominant action is also observed in the weakest-link game analyzed by Van Huyck et al. (1990) . Their version of the 

game has seven Pareto ranked equilibria characterized by all players choosing the same (out of seven available) effort levels. While a large fraction of 

subjects initially try to coordinate on the payoff dominant equilibrium by choosing the highest effort level, behavior quickly converges to coordination 

on the least efficient equilibrium where all players choose their minimum effort level (which ensures their maximin payoff). The hurdle function in 

Van Huyck et al. (1990) is demanding in that it requires that all players coordinate on the same effort level for coordination to succeed. In parallel, to 

this, experiments on global games find that the frequency of subjects choosing the risky action goes down with a more demanding hurdle (see for instance 

the results in Heinemann et al. (2009) ). Goeree and Holt (2005) note that efficiency in weakest-link experiments improves significantly when the cost of 

coordination failure is reduced (while preserving the Nash equilibrium structure), and that the logit QRE equilibrium explains this phenomenon well. 
28 A theoretical literature using non-equilibrium concepts to understand coordination in a global games setting is emerging. 

Heinemann et al. (2015) shows that the over-reaction to public signals observed in the experimental literature is welfare improving if agents have 

limited levels of reasoning. Shapiro et al. (2014) investigate the predictive power of the global games set-up when agents have limited depths of reasoning. 

Their model focuses on the strength of the coordination motive and wether information is symmetric (two public signals) or asymmetric (one public and 

one private signal). Their k-level model predicts that coordination is increasing in the strength of the coordination motive and with symmetric information. 

Their experiment lends support to these predictions. 
29 In auction experiments, the estimated risk-aversion parameter ˆ α lies in the interval 0.48–0.67 ( Cox and Oaxaca (1996) ; Chen and Plott (1998) ; 

Goeree et al. (2002) ). In comparison, Campo (2012) and Lu and Perrigne (2008) estimate ˆ α to be 0.55 for field data on timber auctions. In experi- 

ments on 2X2 asymmetric matching pennies games ( Goeree et al. (2003) ) ˆ α lies in the intervall 0.42–0.44. In a dynamic legislative bargaining experiment 

Battaglini and Palfrey (2012) find ˆ α to be 0.50. Heggedal et al. (2020) estimate an ˆ α = 0 . 35 when investigating a probabalistic voting model. Albeit not a 

coordination game, exogenous uncertainty are central features of a probabilitic voting game as well as a global game. In comparison, for the lottery choice 

experiments (i.e., individual decision making) of Holt and Laury (2002, 2005) ) ˆ α is found to be in the range 0.30–0.60. 
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Table 5 

Two-sided t -test of the estimated average cutoff versus the average cutoff from the level- k 

model. 

Treatment Estimated average cutoff Structural model prediction p-value 

Low noise 37.1 38.73 0.53 

High noise 42.9 41.26 0.56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Column (3), we report the results from estimating a model without level- k types but only with risk averse equilibrium

types. Importantly, the log-likelihoods of both models (2) and (3) are substantially lower than the log-likelihood in our 

baseline model (1), indicating that the data is substantially more likely to be generated by a level- k model with risk averse

agents. Specifically, we can test for risk neutrality versus risk aversion using a likelihood-ratio test. Under the null hypothesis 

of risk neutrality, the distribution of −2 ln 

(
L Model (2) 
L Model (1) 

)
is χ2 with one degree of freedom. The value of the test statistic is

107.4, which implies a p-value of less than 0.001. Therefore, risk neutrality is strongly rejected in the data. We can use a

similar approach to test for only equilibrium types by comparing the log-likelihood of model (3) against our benchmark 

model. Under the null hypothesis of only equilibrium types, the distribution of −2 ln 

(
L Model (3) 
L Model (1) 

)
is χ2 with two degrees 

of freedom. The value of the test statistic is 136, which also implies a p-value of less than 0.001. Therefore, having only

equilibrium types is also strongly rejected in the data. 

Next, we investigate the robustness of our assumption of relatively aggressive play by L 0 types. In column (4), we assume

that the fraction of L 0 types attacking is governed by a Beta(x,1) distribution and estimate x directly. Importantly, this model

nests uniform randomization over actions by L 0 types, as a uniform distribution and a Beta(1, 1) distribution coincide. The

resulting x is 34.2, which translates into a mean attack rate of approximately 97%. Importantly, when we estimate the 

implied behavior of L 0 types, the log-likelihood improves further compared to the baseline. Therefore, the data favors even 

more aggressive perceived play by L 0 types compared to our baseline assumption. 

We can also compare the log-likelihoods from models (3) and (4) to explicitly test if uniform randomization by L 0 types

is rejected in the data. The reason for this is that model (4) nests model (3), since as already discussed above, a fully

rational model and a model with level- k types in which the L 0 types are perceived to randomize uniformly over actions

lead to identical cutoffs for all level- k types that equal the strategic cutoff of equilibrium types. Under the null hypothesis

of uniform randomization by L 0 types, the distribution of −2 ln 

(
L Model (3) 
L Model (4) 

)
is χ2 with one degree of freedom. The value of

the test statistic is 186 ( p-value < 0.001), so uniform play by L 0 types is strongly rejected in our data. 30 

To additionally assess the robustness of our estimates to the assumed behavior of L 0 types, in Columns (5) and (6) we

return to the case where L 0 behavior is fixed, and report the results under two alternative assumptions about L 0 behavior. In

column (5) we estimate a model where the proportion of L 0 types attacking approaches 1, while in column (6) we estimate

model where L 0 types do not attack in the lower dominance region. In both cases, all parameters and the log-likelihoods

are similar to the baseline. Finally, in column (7) we report the results from estimating a level- k model when also including

L 3 types. In this case, the estimated risk aversion declines somewhat and the fraction of L 1 and L 2 types decline. The log-

likelihood is similar to the different models with two level- k types, and a likelihood ratio test cannot reject that the data is

generated by our baseline model with only two level- k types. 

We proceed by investigating whether the estimated baseline level- k model can rationalize the experimental effect of 

information quality (Result 2 from Section 5.2.2 ). A simple first pass is to compute the weighted-average of the theory-

implied strategic cutoffs given the estimated risk-aversion coefficient and using the estimated distribution of Lk types from 

Table 4 as weights. We can then investigate whether the resulting average cutoff in the Low Noise treatment is lower 

than the average cutoff in the High Noise treatment. This exercise yields an average strategic cutoff of 38.73 in the Low 

Noise treatment, and 41.26 in the High Noise treatment. Put differently, agents are, on average, less aggressive in the High

Noise treatment compared to the Low Noise treatment, which is in line with our experimental findings. To further shed 

light on how the estimated level- k model performs relative to the data, we test whether the level- k implied cutoffs differ

significantly from our estimated average cutoffs. The results are shown in Table 5 . In both cases, we cannot reject that the

average strategic cutoffs implied by the level- k model differs significantly from the estimated average cutoffs in the data. 

A caveat with the preceding exercise is that it does not take into account that our estimated model allows for trembles.

We therefore proceed with the following simulation exercise: We simulate 10 0 0 sessions, whereby in each session 640 

games are played. For each session and game, agents draw a type according to the estimated type distribution from Table 4 .

We then assume that agents play according to their drawn type, with a probability of trembling equal to our estimated

ν . Conditional on trembling, agents choose actions subject to a spike-logit error, governed by the precision parameter λ, 

leading to decision frequencies specified in equation (11) . For each game, we then compare the mean cutoffs across a high
30 Note that a likelihood ratio test of our baseline model against model (4) also rejects our assumption of a Beta(10,1) distribution of play for L 0 types 

in favor of the more aggressive play estimated in model (4) at conventional levels of significance. Therefore, in our baseline model we assume that the L 0 

types are too cautious relative to what the data appears to favor. 
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Fig. 6. Empirical CDF of estimated cutoff differences from 10 0 0 simulated sessions. Dotted lines indicate 95% confidence intervals as computed by Green- 

wood’s formula. Red vertical line correspond to the average cutoff difference in the data (-5.8). 

Fig. 7. Evolution of model parameters over time. First and last period. 

 

 

 

 

 

 

and a low noise treatment, denoted by ˆ θl and 

ˆ θh , respectively. In the Appendix, we provide further information on the 

simulation exercise. 

Figure 6 plots the empirical CDF of the differences between average cutoffs across the two treatments ( ̂  θl − ˆ θh ) using

the simulated data. Approximately 98% of the simulated sessions have negative differences in average cutoffs. In addition, 

around 15% of sessions have an average cutoff difference equal to or larger (in magnitude) than the average cutoff difference 

we observe in the experimental data as illustrated by the red, vertical line. We take this as additional evidence that the

level- k model can explain our main experimental finding. 

To investigate learning dynamics, in Fig. 7 , we compare the estimated fraction of level- k agents, for k ∈ { 1 , 2 } , and the

estimated CRRA-coefficient from the model estimated on period 1 and period 8 data, respectively. The estimated fraction 

of level- k agents is lower when using period 8 data compared to period 1, suggesting that agents tend to behave more

like equilibrium types in the latter stages of the experiment. This is consistent with the evolution of the estimated average

cutoffs (see Fig. 8 in the Appendix). However, the decline is relatively small, which suggests that learning is slow in this

environment. 31 Note that the observed decline in the estimated CRRA coefficient is consistent with the accumulation of 
31 However, we caution against drawing strong conclusions about long run behavior from these results. Convergence may require a considerable num- 

ber of rounds even in simple games ( Friedman et al., 2015 ). Though some evidence of convergence to Nash equilibrium exists for p-beauty contests 

( Camerer, 2011 :318–322), the global game model is more complex than a p-beauty contest. Complexity is known to impact on the form and speed of 

learning in games ( Paich and Sterman (1993) , Ho and Weigelt (1996) ). In our view, the study of long run behavior in global games is a promising venue 
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profits over the course of the experiment, creating a wealth effect, further justifying our focus on first period behavior in

the main analysis. 

6. Concluding remarks 

In this paper we experimentally test how changes in private information precision affect regime stability in a standard 

global games model. We show that contrary to the equilibrium predictions of a standard global game, higher information 

precision is destabilizing. We show that augmenting the standard global games set-up with boundedly rational agents that 

engage in level- k thinking can help explain our experimental finding. In the level- k model, information quality affects agents’

actions through a novel channel, which does not operate in the fully rational model. Specifically, higher private information 

dispersion attenuates the across-type strategic complementarity in the level- k model, which can reverse the comparative 

statics with respect to changes in information quality. 

The fact that the fully rational and level- k models can differ so dramatically in their predictions about the effect of infor-

mation quality on behavior points to the importance of studying more carefully global coordination games with boundedly 

rational agents, both theoretically and experimentally. We view this as a promising venue for future research. 
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