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a b s t r a c t

This paper develops a novel Method of Moments approach for panel data models with
endogenous regressors and unobserved common factors. The proposed approach does
not require estimating explicitly a large number of parameters in either time-series or
cross-sectional dimension, T and N respectively. Hence, it is free from the incidental
parameter problem. In particular, the proposed approach does not suffer from ‘‘Nickell
bias" of order O(T−1), nor from bias terms that are of order O(N−1). Therefore, it can
operate under substantially weaker restrictions compared to existing large T procedures.
Two alternative GMM estimators are analyzed; one makes use of a fixed number of
‘‘averaged estimating equations" à la Anderson and Hsiao (1982), whereas the other one
makes use of ‘‘stacked estimating equations", the total number of which increases at the
rate of O(T ). It is demonstrated that both estimators are consistent and asymptotically
mixed-normal as N → ∞ for any value of T . Low-level conditions that ensure local and
global identification in this setup are examined using several examples.
© 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

1. Introduction

Common factor structures are a topic of broad interest in panel data analysis because they offer wide scope for
ontrolling for unobservables, including situations where there is cross-sectional dependence (see e.g. Chudik and Pesaran,
015b and Sarafidis and Wansbeek, 2021, among others).
To date, the panel common factor literature has been divided among methods catering for panels where the number

f time series observations, denoted by T , is ‘‘fixed and small’’, and panels where ‘‘T is large’’. The present paper develops
new Generalized Method of Moments (GMM) approach, which is consistent for any value of T . Currently, there are no
esults in the GMM literature covering the setup where T can be small or large. Our approach is mainly motivated by the
ncreasing availability of micro-panels in which the value of T is not negligible (but often not as large as in macro-panels),
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s it is the case with several household surveys,2 or firm level panels that contain balance sheet and income statement
ata.3
The proposed approach gives rise to estimators that are free from incidental parameters by construction. In particular,

wo key elements are combined: (i) a quasi-differencing transformation that removes the unobserved factor loadings from
he error; and (ii) an approximation of the unknown factors, based either on observed variables or on the composite error
term of the model. The latter has an exact factor structure once evaluated at the true value of the slope parameters.
Essentially, these two elements allow us to devise a strategy that avoids estimating explicitly a large number of
parameters, regardless of the size of N or T .

More specifically, we put forward two alternative GMM estimators; one is based on a constant number of ‘‘averaged
estimating equations’’ à la Anderson and Hsiao (1982), whereas the other one makes use of ‘‘stacked estimating equations’’,
the total number of which increases at the rate of O(T ). We demonstrate that the former estimator is consistent and
asymptotically mixed-normal as N → ∞ for any value of T . The latter remains consistent and asymptotically mixed-
ormal although, unsurprisingly, it can be subject to an asymptotic bias proportional to T/N due to the use of ‘‘many
oment conditions’’.
For the case of a simple AR(1) model with a one-way error components structure, it is shown that the proposed

stimating equations reduce to moment conditions with instruments either in first-differences or long-differences, as
.g. in Hahn et al. (2007) (see Example 1 in Section 3.2 for details).
In comparison to the approach developed in this paper, existing fixed T GMM estimators require estimation of O(T )

uisance parameters in order to control for the unobserved factors; see e.g. Holtz-Eakin et al. (1988), Nauges and Thomas
2003), Hayakawa (2011), Ahn et al. (2013), Robertson and Sarafidis (2015) and Juodis and Sarafidis (2020), among others.
uch requirement is problematic for asymptotic approximations with T → ∞. The reason is that the moment conditions
ecome multiplicative functions of incidental parameters in the T dimension, and thereby standard GMM formulation
reaks down.4 Unfortunately, alternative fixed T consistent estimators proposed in the literature, such as the ‘‘correlated
andom effects’’ Maximum Likelihood (ML) approach of Bai (2013), are only applicable to the panel AR(1) model with
trictly exogenous regressors. As such, they are not suitable for our general setup, which allows for endogeneity and
eneral forms of weak exogeneity.
For panels with T large, popular estimators include those developed by Pesaran (2006) and Bai (2009), known in

he literature as ‘‘CCE’’ (Common Correlated Effects) and ‘‘PC’’ (Principal Components), respectively. Both CCE and PC
ave been originally designed for models with strictly exogenous regressors. Recent extensions to models with weakly
xogenous or endogenous regressors suffer from the ‘‘incidental parameters problem’’ since an increasing number of
uisance parameters needs to be estimated as either T or N grows. That is, unbiased asymptotic inference is guaranteed
nly after appropriate bias-correction; see e.g. Lee et al. (2012), Everaert and Pozzi (2014), Chudik and Pesaran (2015a),
oon and Weidner (2017), Juodis et al. (2021) and Juodis (2020a), among others.5 By contrast, the GMM approach in this
aper does not suffer from ‘‘Nickell bias’’ of order O(T−1), nor from bias terms that are of order O(N−1), where N denotes
he number of cross-sectional observations. Therefore, it can operate under substantially weaker restrictions compared
o existing large T procedures, which typically require T ≈ N .

The proposed approach enables us to transparently study identification in this setup. In particular, we investigate
everal examples and provide necessary and sufficient conditions to ensure local and global identification of the slope
arameters. Currently, the vast majority of the GMM panel factor literature takes it for granted that the moment conditions
lobally identify the parameters of the model. This is despite the fact that global identification might fail for nonlinear
oment conditions, which existing GMM procedures heavily rely upon.6
One interesting result shows that when it comes to identification of the true parameter vector, one cannot do worse by

sing stacked estimating equations as opposed to averaged ones. That is, the class of globally and locally identified models
ased on averaged estimating equations is no larger than the class based on stacked ones. In terms of local identification
pecifically, we demonstrate that even when the Jacobian matrix of the averaged estimating equations is singular for T
arge, it converges to zero at a slower rate than the moment conditions. Thus, the corresponding GMM estimator is at
east

√
N-consistent and mixed-normal. Notably, inference remains valid without knowledge of the convergence rate of

the estimator. That is, from a practical point of view, there is no need to know the convergence rate of the estimator in
order to conduct asymptotically valid inferences. For these reasons, this setup is different from the weak-identification
setup in Staiger and Stock (1997), where failure of local identification may lead to inconsistent parameter estimates. In

2 Prominent examples include the Panel Study of Income Dynamics (PSID) in the U.S. and the European Union Labor Force Survey (EC LFS), which
contains quarterly data spanning the period 1983–present.
3 For example, the Federal Deposit Insurance Corporation (FDIC) provides detailed data for the U.S. banking industry on a quarterly frequency

from 2001 onwards.
4 Note that even in the literature of GMM estimation with ‘‘many moment conditions’’, it is typically assumed that the number of parameters is

fixed as the number of moment conditions grows large, see e.g. Han and Phillips (2006) and Newey and Windmeijer (2009).
5 A notable exception is the IV estimator of Norkutė et al. (2021) and Cui et al. (2020), which makes use of averaged moment conditions, and

requires strictly exogenous regressors as well as N ≈ T .
6 Hayakawa (2016) provides examples where global identification fails in the case where T = 3, for the moment conditions proposed by Ahn

et al. (2013).
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erms of global identification, we show that potential failure of global identification can be avoided in a straightforward
anner, using multiple factor proxies.
Finally, the proposed approach is appealing because it can be extended to a wide range of models, motivated by

ither the micro- or macro-econometric literature. These include non-parametric models (e.g. Su and Jin, 2012), models
ith spatial dependence (Kuersteiner and Prucha, 2020), unit root tests (Robertson et al., 2018), smooth transition and
tructural breaks (Qian and Su, 2016), inference in partially identified panels with common factors (Hong et al., 2019), to
ention a few.
The remainder of this paper is as follows: Section 2 presents the model and puts forward estimating equations, which

re either linear or nonlinear in the parameters of interest. Section 3 develops limit theory for the proposed GMM
stimators under N, T → ∞ asymptotics. Section 4 discusses various extensions, including models with multiple factors.
ection 5 studies inference and identification. Section 6 examines the finite sample properties of the proposed estimators
sing Monte Carlo experiments. A final section concludes. Proofs of theoretical results are documented in Appendix A.
n online Supplementary Appendix studies the properties of the proposed GMM estimators under large N , fixed T
symptotics. Furthermore, the Supplementary Appendix explores identification-robust inference and analyzes local and
lobal identification for the panel AR(1) model, both theoretically and numerically.

. Framework

.1. The model

We consider the following linear panel data model with a single factor component:

yi,t = x′

i,tβ + λift + εi,t; i = 1, . . . ,N; t = 1, . . . , T , (1)

here xi,t =

(
x(1)i,t , . . . , x

(K )
i,t

)′

denotes a [K × 1] vector of regressors, β is the corresponding slope parameter vector,

hereas λi and ft denote the individual-specific factor loadings and factors, respectively.7
Throughout this paper, xi,t is allowed to be correlated both with λi and ft , although xi,t need not have a factor structure

nd it can be a nonlinear function of λi, ft . Furthermore, the cross-sectional correlation in xi,t is not restricted to be driven
y ft only.8 To simplify some expressions, in what follows we shall use the shorthand notation N1 = N−1 and T1 = T −1.
Suppose for the moment that the sequence of factors {ft}Tt=1 is observed. In order to remove the source of endogeneity

that stems from the dependence between xi,t and λi, we make use of the following one-step Forward Quasi-Differencing
(hereafter, FQD) transformation:

ft+1(yi,t − x′

i,tβ) − ft (yi,t+1 − x′

i,t+1β) = ft+1εi,t − ftεi,t+1; t = 1, . . . , T1, (2)

noting that

ft+1λift − ftλift+1 = 0. (3)

Eq. (2) resembles the one-step backward quasi-differencing transformation employed by Holtz-Eakin et al. (1988),
except that therein the above equation is divided by ft+1, mutatis mutandis. That is, in their case the factor is essentially
reparameterized as rt = ft/ft+1. As a result, consistent parameter estimation requires that ft+1 ̸= 0 for all t . By contrast,
the above FQD transformation only requires ft+1 ̸= 0 for at least one value of t . Notice that the FQD transformation can
be extended to accommodate the Quasi-Long-Differencing (hereafter, QLD) transformation proposed by Ahn et al. (2013),
after replacing t + 1 with T . However for technical reasons, the QLD transformation is not appealing in the present setup
because it effectively conditions on the last value of the factor, i.e. fT becomes present in all equations. Therefore, the
unconditional limiting distribution of the resulting GMM estimator becomes a function of fT in the limit as T → ∞.
While such dependence is irrelevant for T fixed, it is not appropriate (or not even defined) for T → ∞.9

In what follows, all random variables are defined on the common probability space (Ω,A, P). Furthermore, F denotes
the σ -field generated by all common shocks driving the individual specific variables in the model, such that conditionally
on F all cross-sectional units are independent. In particular, all factors {ft}Tt=1 are measurable with respect to F , but we
also allow variables such as regressors and instruments to be a function of other common shocks (not necessarily of finite
dimension), resulting in additional sources of dependence across cross-sectional units.10

Under standard assumptions to be documented later, it holds from Eq. (2) that

EF
[
ft+1εi,t − ftεi,t+1

]
= 0, t = 1, . . . , T1. (4)

7 For ease of exposition, we consider a single factor model. The case of multiple factors is discussed in Section 4.
8 In this respect, our framework resembles closer to the framework in Bai (2009) than in Pesaran (2006).
9 One can also use forward differencing that involves higher steps, such as two-step or three-step. However, one-step differencing is attractive

in the single factor model because it retains the maximum possible number of observations in estimation.
10 For example, one can easily allow xi,t = b

(
ψi, g t , ζi,t

)
, where b (·) is a linear/nonlinear function in all arguments. This is similar to models

iscussed in Menzel (2019), Juodis (2020b) and Fernández-Val et al. (2021).
3
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In order to allow for an additional source of endogeneity stemming from possible correlations between xi,t and the
idiosyncratic error component, εi,t , we assume that there exists a Dt dimensional vector of instruments, z i,t , such that

EF [εi,s|z i,t ] = 0; s ≥ t. (5)

z i,t may contain elements of xi,t (or lagged values thereof), depending on whether the regressors are strictly/weakly
exogenous or endogenous with respect to εi,t . As it is the case with xi,t , the correlation between z i,t and λift is left
unrestricted. Note that the restriction on conditional moments in Eq. (5) is sufficient but not necessary, as the estimators
developed in this paper employ unconditional moments of the form EF [εi,sz i,t ] = 0Dt , s ≥ t . However, for technical
reasons related to the large T theory, it is more convenient to specify (more restrictive) conditional moment restrictions.
For more details see Appendix A.

Given the moment conditions listed in Eqs. (4)–(5), we put forward the following estimating equations indexed by β,
which will be used to develop Method of Moments estimators for β:

mi,t (β) = ft+1z i,t (yi,t − x′

i,tβ) − ftz i,t (yi,t+1 − x′

i,t+1β); t = 1, . . . , T1, (6)

such that under Eqs. (4)–(5), we have EF
[
mi,t (β0)

]
= 0Dt .

As it stands, the above expression is not feasible because {ft}Tt=1 is unobserved. The standard (T ‘‘fixed and small’’)
approach, as e.g. in Holtz-Eakin et al. (1988), treats {ft}Tt=1 as unrestricted parameters to be estimated. However, this
strategy is problematic for asymptotic approximations with T → ∞. This is due to the fact that, unlike the one-way error
components model, here the moment conditions become multiplicative functions of incidental parameters, and therefore
standard GMM formulation breaks down. Rather than treating the factors as explicit parameters, the present paper puts
forward two approaches that circumvent the need to numerically estimate {ft}Tt=1 (or {λi}

N
i=1).

Remark 1 (Additive Error Components). The model in Eq. (1) can be extended to control for additional additive error
components. For instance, individual-specific effects can be eliminated by taking first-differences a priori. Furthermore,
additive time effects can be removed by transforming the model in terms of time-specific cross-sectional averages. The
implication of this transformation on the properties of the moment conditions put forward in the present paper is analyzed
in Lemma S.1 in the Supplementary Appendix.

Remark 2 (Low-rank Regressors). When xi,t includes time-invariant regressors, identification of β requires that ft
is sufficiently time-varying, i.e. the factor component does not degenerate. Otherwise, time-invariant regressors are
asymptotically eliminated by the quasi-differencing transformation. See Ahn et al. (2001) for further details. On the other
hand, the effect of individual-invariant regressors is identifiable, provided that these regressors are not linearly dependent
with {ft}Tt=1, and one does not transform the model a priori in terms of deviations from time-specific cross-sectional
averages, as in Remark 1.

2.2. Linear approach

We start with the simplest possible approach, which requires relatively more restrictions on the data generating
process (DGP) but simplifies estimation considerably. In particular, suppose there exists a time-varying variable of the
following form:

di,t = λdi ft + εdi,t . (7)

Here di,t can be internal, i.e. one of the regressors in xi,t , or external to the model in Eq. (1), as e.g. in Hansen and Liao
(2018) among many others.

Remark 3. The existence of di,t is plausible in panel data models because economic agents are subject to common
influences, such as shifts in technology and productivity, changes in preferences and tastes, to mention a few. Therefore,
many variables share the same common factors. For example, Pesaran et al. (2013) develop panel unit root tests based
on simple averages of cross-sectionally augmented Sargan–Bhargava statistics. In their empirical illustration, they test
the null of a unit root in real interest rates across a sample of countries. The unobserved factors are approximated using
cross-sectional averages of two external variables, namely oil and equity prices. Juodis and Sarafidis (2020) develop a
linear GMM estimator for fixed T panels with unobserved common factors. In their empirical application, they estimate the
price elasticity of residential water demand conditional on weather conditions, namely rainfall and temperature. Similar
to Pesaran et al. (2013), the unobserved factor component is approximated by an external variable, i.e. the average daily
soil moisture index.

Remark 4 (Comparison with Existing Literature). Although the use of observed variables to approximate factors draws
from existing literature, namely the CCE approach of Pesaran (2006) and the GMM approach of Juodis and Sarafidis
(2020), there exist some major differences: firstly, unlike the aforementioned papers, the present approach remains

applicable even when di,t does not exist, as it will be shown below. Secondly, Pesaran (2006) assumes that all K

4
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egressors are strictly exogenous with respect to εi,t . In contrast, here the regressors can be weakly exogenous or
ndogenous. Finally, Juodis and Sarafidis (2020) focus solely on the case where T is fixed. In particular, their moment
onditions involve nuisance parameters that absorb the (unobserved) correlations between the factor component and the
nstruments. Since these correlations are allowed to be time-varying, the number of nuisance parameters increases with
, leading to incidental parameters in the time-series dimension. In contrast, the present approach employs a forward
uasi-differencing transformation that eliminates {λi}

N
i=1 from the model; therefore, it avoids numerical estimation of

uisance parameters. However, in comparison to Juodis and Sarafidis (2020), as well as other fixed-T GMM procedures,
ur approach is expected to be less efficient because we use only O(1) moment conditions, or at most O(T ), as opposed
o O(T 2) moment conditions. This is illustrated in the context of Example 1, Section 3.2.

Next to Eq. (7) we further assume there exists a time-varying variable, qi,t , which is either stochastic or non-stochastic,
uch that the following condition holds true:

EF [εdi,s|qi,t ] = 0; s ≥ t. (8)

he above condition implies weak (sequential) exogeneity of qi,t with respect to εdi,t . For instance, time-varying weights
hat may satisfy weak exogeneity are lagged values of z i,t . Moreover, let

EF [qi,tλdi ] ̸= 0; t = 1, . . . , T . (9)

Multiplying the observed variable di,s by qi,t , for s = {t; t + 1}, one obtains

w
(L)
i,t,s = qi,tdi,s = qi,tλdi fs + qi,tεdi,s, (10)

uch that

w
(L)
t,s = EF

[
w

(L)
i,t,s

]
= EF [qi,tλdi ]fs + EF [qi,tεdi,s] = ct fs. (11)

ence, qi,t can be thought of as a weight that scales the cross-sectional average of di,s. Using w
(L)
t,s in place of fs in Eq. (6),

= {t; t + 1}, we have

m(L)
i,t (β) = w

(L)
t,t+1z i,t (yi,t − x′

i,tβ) − w
(L)
t,tz i,t (yi,t+1 − x′

i,t+1β); t = 1, . . . , T1, (12)

oting that

w
(L)
t,t+1λift − w

(L)
t,tλift+1 = ct ft+1λift − ct ftλift+1 = 0. (13)

hus EF [m(L)
i,t (β0)] = 0Dt . The superscript ‘‘(L)’’ emphasizes that the above equations are linear in β, and therefore they

can be used to construct a GMM objective function with a closed form solution; see Section 3.

Remark 5 (Violation of Weak Exogeneity for qi,t ). When EF [qi,tεdi,s] ̸= 0, w(L)
t,s has an additional, non-negligible term and

therefore Eq. (11) is violated. However, such violation leads to a mis-specified model, which implies that this restriction
is testable within the GMM framework based on the usual over-identifying restrictions test statistic.

Remark 6 (Time-invariant Weights). Our setup also accommodates naturally setups with time-invariant weights qi,t = qi
∀t , as long as all aforementioned conditions are satisfied. For instance, time-invariant weights are considered in Pesaran
(2006), which focuses on qi = 1, and in Juodis and Sarafidis (2020), which considers qi ∈ {1, yi,0, x′

i,0}, where xi,0 denotes
the K ×1 vector of initial conditions of the covariates. Fan and Liao (2020) have recently advocated a similar construction
of factor proxies, which involves pre-specified (potentially arbitrary) weights qi.

2.3. Nonlinear approach

In some setups, the requirement of the existence of additional variables (di,t ) with an exact factor structure in terms
of ft can be restrictive. In this case the linear estimating equations described above may not be feasible. An alternative
approach for approximating the factors, which does not require the existence of di,t , can be based on the composite error
term of the model.

In particular, let qi,t be as above, but now the conditions (8)–(9) are with respect to the model error term εi,t . That is,
we assume

EF [εi,s|qi,t ] = 0; s ≥ t, (14)

or, more generally,

EF [εi,t |Fi,t ] = 0; Fi,t = σ
(
{z i,τ }tτ=1 ∨ {qi,τ }tτ=1

)
. (15)

This is essentially the same assumption placed on qi,t as in the linear approach, except that the idiosyncratic errors and
the factor loadings correspond to the process of yi,t rather than the process of di,t . Thus, using similar notation as with
the linear estimator, one may set:

(NL) (NL) (NL) ′ d d
wi,t,s = qi,tdi,s (β); di,s (β) = yi,s − xi,sβ; λi = λi; εi,s = εi,s. (16)

5



A. Juodis and V. Sarafidis Journal of Econometrics xxx (xxxx) xxx

E

c
t

3

ffectively, Eq. (16) makes use of the fact that the composite error term, once evaluated at the true value β = β0, has an
exact factor structure, i.e. yi,s − x′

i,sβ0 = λifs + εi,s.
Defining w(NL)

t,s = EF [w
(NL)
i,t,s ] and replacing w(L)

t,s by w(NL)
t,s in Eq. (12), the corresponding estimating equations become

nonlinear in β. The resulting approach is more akin to the framework of Bai (2009) in that it does not require the existence
of covariates driven by the same factors as those entering directly into the error term of the process for yi,t . On the other
hand, as this approach is nonlinear, it is computationally more demanding than the linear one.

3. Asymptotic results

This section studies the case where both N and T grow to infinity jointly. The case where T is fixed with N → ∞ is
analyzed in the Supplementary Appendix of this paper.

3.1. Assumptions

Let Ki be the σ -field generated by all time-invariant, individual-specific random variables for unit i. We denote the
σ -field generated by all individual- and time-specific variables by D, i.e. D = σ (F∨{Ki}

N
i=1). Let Ξ be some finite constant

independent of N and T . Moreover, let X i =
(
xi,1, . . . , xi,T

)′, Z i =
(
z i,1, . . . , z i,T

)′, εi =
(
εi,1, . . . , εi,T

)′, εdi =
(
εdi,1, . . . , ε

d
i,T

)′,
qi =

(
qi,1, . . . , qi,T

)′. Our assumptions directly accommodate both time-invariant (qi) and time-varying (qi,t ) weights.

Assumption 3.1 (Data Generating Process). The DGP for all i and t satisfies the following restrictions for some r ≥ 4 and
δ > 0:

(a) Υ i = (X i, Z i, εi, ε
d
i , qi) are identically distributed and independent across i, conditional on F . Υ i are independent

across i, conditional on D.
(b) pi,t = (x′

i,t , z
′

i,t , εi,t , ε
d
i,t , qi,t )

′
⊗ (1, ft , ft+1)′ is a (D conditional) α-mixing (or strong-mixing) sequence in t , with

mixing coefficients αi(m) that are measurable w.r.t. D and satisfy supi(αi(m)) = O(m−µ) as m → ∞, with

µ = 3(r + δ)/δ.11 Each element p(h)i,t satisfies ED

[⏐⏐⏐p(h)i,t

⏐⏐⏐r+δ] < Ξ .

(c) σ -fields Ki are independent across i, conditional on Fc ⊂ F . vi = (λi, λdi , qi)
′ is Ki-measurable and identically

distributed across i. Furthermore, each element v(h)i satisfies EF

[⏐⏐⏐v(h)i

⏐⏐⏐r+δ] < Ξ .

(d) ED[εi,t |Fi,t ] = 0, and ED[εdi,t |F
d
i,t ] = 0, where Fi,t = σ ({z i,τ }tτ=1) and Fd

i,t = σ ({qi,τ }tτ=1).

The notion of conditional mixing has been used by Fernández-Val and Weidner (2016), Su et al. (2015) and Lu and
Su (2016), among others, in the context of large T panel data analysis. Note that unlike many other studies, e.g. Su et al.
(2015), here ‘‘innovations’’ εi,t , and/or εdi,t are not assumed to be martingale difference sequences (MDS). In particular,
the large N dimension allows both random sequences to be serially and contemporaneously correlated, as long as they
are mixing. The rates r and µ are generally sufficient to use most of the standard inequalities for mixing processes, see
e.g. Doukhan (1994). The conditional mixing restrictions on the memory of pi,t are imposed to ensure that the resulting
convergence rate is

√
NT and not

√
N . However, as discussed by Hansen (2007), the slower convergence rate generally

has no impact on standardized statistics in this setup. Alternatively, one can impose high-level assumptions directly on
the convergence rates of averages of data, as in Bai (2009). In this way, part (b) of Assumption 3.1 on the α(m)-mixing
oefficient αi(m), can be relaxed. Finally, for the nonlinear estimating equations, condition (d) should be interpreted in
erms of the joint σ -field σ ({z i,τ }tτ=1 ∨ {qi,τ }tτ=1).

.2. Estimating equations

Consider the following [Dt × 1] vector of estimating equations available at time period t:

m(ξ )
t (β) =

1
N2

N∑
i=1

N∑
j=1

[
w

(ξ )
j,t,t+1z i,t

(
yi,t − x′

i,tβ
)
− w

(ξ )
j,t,tz i,t

(
yi,t+1 − x′

i,t+1β
)]
, (17)

for t = 1, . . . , T1, where ξ ∈ {L;NL}. The double summation over (i, j) is a direct by-product of making use of
cross-sectional averages of w(ξ )

i,t,s in the approximation of fs, s = {t; t + 1}.

11 The mixing coefficients are defined as αi(m) = supt supA∈Ai
t ,B∈B

i
t+m

|PD(A ∩ B) − PD(A)PD(B)|, where Ai
t and Bi

t denote the σ -field generated by(
pi,t , pi,t−1, . . .

)
and

(
pi,t , pi,t+1, . . .

)
, respectively. Intuitively, a stochastic process is mixing if its values at widely-separated times are asymptotically
independent. Thus, the mixing coefficients αi(m) represent a ‘‘measure of dependence’’.

6
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Before we provide formal asymptotic analysis, it is useful to informally characterize the asymptotic properties of the
leading component in Eq. (17). In particular, under the regularity conditions listed in Assumption 3.1, the leading term in
the asymptotic expansion of m(ξ )

t (β0) is given by12:

√
Nm(ξ )

t (β0) =
1

√
N

N∑
i=1

µ
(ξ )
i,t + oP (1), (18)

uch that

µ
(ξ )
i,t = EF [qi,tλ

(ξ )
i ]z i,t

(
ft+1εi,t − ftεi,t+1

)
− EF [z i,tλi]qi,t

(
ft+1ε

(ξ )
i,t − ftε

(ξ )
i,t+1

)
, (19)

where for convenience we adopt the notation λ(L)i = λdi , λ
(NL)
i = λi, ε

(L)
i,t = εdi,t and ε

(NL)
i,t = εi,t . Thus, although the original

sample estimating equations involve double summation over (i, j), the leading term in the expression above involves
single summation over the cross-sectional dimension. This is because averages over j implicitly estimate expected values,
i.e. EF [qi,tλ

(ξ )
i ] and EF [z i,tλi].13

For the case of the nonlinear approach specifically, it is straightforward to see that Eq. (19) simplifies considerably:

µ
(NL)
i,t =

(
EF [qi,tλi]z i,t − EF [z i,tλi]qi,t

) (
ft+1εi,t − ftεi,t+1

)
. (20)

The above expression indicates that the proposed method quasi-differences not only the model for yi,t in Eq. (1), to avoid
estimation of λi, but also functions involving the instruments, z i,t . This is due to the fact that the correlation between
instruments and the factor component is left unrestricted. By contrast, when {ft}Tt=1 is treated as known (e.g. ft = 1
∀t), then one requires differencing of yi,t only, but not z i,t . However, it is worth noting that these transformations are
implemented without any need to numerically estimate the nuisance parameters {λi}

N
i=1 and {ft}Tt=1.

Example 1. Consider a panel AR(1) model with a one-way error components structure, i.e ft = 1 ∀t . Setting qi,t = yi,t−2
and zi,t = yi,t−1, Eq. (20) reduces to

µ
(NL)
i,t =

(
EF [λiyi,t−2]yi,t−1 − EF [λiyi,t−1]yi,t−2

) (
εi,t − εi,t+1

)
. (21)

Under mean-stationarity, i.e. EF [λiyi,s] = (1 − α0)−1 EF [λ2i ], where α0 denotes the true value of the autoregressive
parameter, the above expression simplifies further to

µ
(NL)
i,t = − EF [λiyi,0]

(
∆yi,t−2∆εi,t

)
. (22)

That is, in this case the estimating equations reduce to moment conditions with instruments in first-differences (up to a
constant), as e.g. in Anderson and Hsiao (1982). On the other hand, with time-invariant weights, qi,t = qi = yi,0 (say), the
above expression becomes

µ
(NL)
i,t = − EF [λiyi,0]

(
yi,t−1 − yi,0

)
∆εi,t , (23)

in which case the moment conditions make use of instruments in long-differences. Thus, some of the classical Method of
Moments procedures can be viewed as special cases of the estimating equations put forward in the present paper (under
some restrictions on the DGP). □

Note that in dynamic panels, moment conditions with instruments in first-differences are known to have larger
variance compared to their level counterparts, see e.g. Arellano (1989). Hence, the above example illustrates that the
implicit double differencing employed in this paper, i.e. over i and over t , cannot be optimal when any knowledge of
either λi or ft is available.

Remark 7 (Multiple Weights). The statistical framework considered thus far makes use of a single weight to proxy
the factors, which can be time-varying or time-invariant. In essence, this setup corresponds to the exactly identified
instrumental variable framework in proxying ft . Given this natural interpretation, our approach can be easily extended to
multiple vector weights qi,t =

(
q(1)i,t , . . . , q

(S)
i,t

)′

. For instance, for S = 2 the estimating equations can be expressed as in
the following [2Dt × 1] vector:

m(ξ )
t (β) =

(
m(ξ )(1)

t (β)

m(ξ )(2)
t (β)

)
, (24)

where m(ξ )(κ)
t (β) corresponds to setting w(ξ )(κ)

i,t,s = q(κ)i,t d
(ξ )
i,s , for κ = 1, 2. Similarly, for the linear approach one can also

consider multiple observed variables, d i,t . It is clear from the above formulation in (24) that in practice one does not need

12 The expression in Eq. (18) can be interpreted as the Hájek projection of m(ξ )
t (β0), see e.g. Ch. 12 of van der Vaart (2000) for a formal definition.

13 Essentially these terms are the so-called ‘‘g ’’ parameters introduced by Robertson and Sarafidis (2015) and Juodis and Sarafidis (2020). However,
unlike these papers, here we do not need to numerically estimate E [q λ

(ξ )
] and E [z λ ].
F i,t i F i,t i

7
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o choose explicitly among different choices of qi,t or d i,t , since these give rise to different estimating equations that can
be stacked together, as in a standard overidentifying instrumental variables framework. In this sense, the treatment of
multiple weights at time period t , qi,t , is no different than the treatment of multiple instruments, z i,t . This is in stark
ifference with the linear GMM estimator of Juodis and Sarafidis (2020), designed for fixed T panels. In particular, therein
he correlations between instruments and the factor component (the ‘‘g ’’ parameters) are estimated explicitly. Therefore
n their setup, including more weights (or variables) than necessary in the approximation of the factors can render the
symptotic distribution of GMM non-standard.14

.3. Limit theory for averaged estimating equations

In what follows, we focus on the case where the dimension of z i,t is fixed for all values of t , such that Dt = D(= O(1)),
nd we shall study ‘‘averaged estimating equations’’. In particular, we consider the following [D × 1] vector of estimating
quations:

m
(ξ )

(β) =
1
T1

T1∑
t=1

m(ξ )
t (β). (25)

n Section 3.4 we shall consider the case where instead of averaging m(ξ )
t (β) over t , these estimating equations are stacked

uch that the total number of moment conditions used in estimation is of order O(T ).
Before stating the remaining assumptions necessary for identification and derivation of the asymptotic distribution of

he proposed estimator, the following lemma demonstrates that the linear averaged estimating equations can be biased
or T large.

emma 1. Suppose that Assumption 3.1 is satisfied. Then for all t = 1, . . . , T1,

ED
[
m(L)

t (β0)
]

̸= 0D; (26)

ED
[
m(NL)

t (β0)
]

= 0D. (27)

urthermore, b = E
[
m

(L)
(β0)

]
= O(N−1).

Proof. See Appendix A. □

The form of the (potential) bias for the linear estimating equations is solely determined by the ‘‘own’’ terms and arises
because the covariance matrix between (qi,t , z ′

i,t )
′ and (εi,t , εdi,t )

′ is largely unrestricted.15 Notably, this bias diminishes
with large N . To illustrate, suppose that N = Tρ for some positive integer ρ, and the underlying mixing process is strictly
tationary. Then, it is straightforward to see that

√
NT E

[
m

(L)
(β0)

]
=

√
ρb + oP (1) = OP (1). (28)

hus, the linear estimator might suffer from an ‘‘incidental parameters problem’’ under diagonal (or proportional)
symptotics, which is due to the approximation of the T -dimensional parameter vector f = (f1, . . . , fT )′ from NT
bservations. The bias term is of order O(

√
TN−1), i.e. it is negligible for N ≫ T , e.g. when T is fixed. Further details

re provided in Appendix A.
Despite of this, the source of the potential bias above is easily eliminated by replacing the factor proxies f̂t =

−1∑N
i=1w

(L)
i,t,t (identical for all i) with individual-specific proxies:

f̂i,t =
1
N1

N∑
j̸=i

w
(L)
j,t,t . (29)

he resulting linear estimating equations available for each period t are of the following form:

m̃(L)
t (β) =

1
N(N1)

N∑
i=1

N∑
j̸=i

[
w

(L)
j,t,t+1z i,t

(
yi,t − x′

i,tβ
)
− w

(L)
j,t,tz i,t

(
yi,t+1 − x′

i,t+1β
)]
. (30)

he corresponding nonlinear equations available for each t are of identical form, except that w(L)
j,t,s is replaced by w(NL)

j,t,s ,
for s = {t; t + 1}.16

14 This issue is circumvented in their paper using regularization or best-subset selection.
15 For the precise definition of the bias term, the interested reader may refer to the corresponding proof.
16 For the nonlinear approach, however, it is not necessary to use individual-specific factor proxies because we know from Lemma 1 that the
estimating equations remain unbiased.
8
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The ‘‘delete-one’’ construction of f̂i,t ensures that factor proxies are uncorrelated with all i specific variables. Therefore,
the resulting estimating equations are unbiased for any values of N and T and so they can be viewed as an average
U-statistic of second degree:

m̃(ξ )
t (β) =

1
2

1(N
2

) N∑
i=2

m̃(ξ )
i,t (β), (31)

here

m̃(ξ )
i,t (β) =

∑
j<i

[
w

(ξ )
j,t,t+1z i,t

(
yi,t − β′xi,t

)
− w

(ξ )
j,t,tz i,t

(
yi,t+1 − β′xi,t+1

)]
+

∑
j<i

[
w

(ξ )
i,t,t+1z j,t

(
yj,t − β′xj,t

)
− w

(ξ )
i,t,tz j,t

(
yj,t+1 − β′xj,t+1

)]
. (32)

Let

m̃
(ξ )

(β) =
1
T1

T1∑
t=1

m̃(ξ )
t (β).

For both linear and nonlinear approaches, we define the estimator that makes use of averaged estimating equations as
the solution of the following standard Method of Moments minimization problem:

β̂
(ξ )
MM = argmin

β∈Θ

((
m̃

(ξ )
(β)
)′

WN,T m̃
(ξ )

(β)
)
, (33)

or ξ ∈ {L;NL}, where WN,T is a positive definite weighting matrix such that WN,T
p

−→ W as N, T → ∞, and W is
assumed to be F-measurable and positive definite a.s. A similar U-statistic based objective function has been recently
used in Jochmans (2017) to estimate common parameters for nonlinear dyadic models. As with the setup in Eq. (25) for
ξ = NL, the proposed moment conditions in Jochmans (2017) are multiplicative functions of common parameters.

The at-most-quadratic nature of the proposed estimating equations implies that

m̃
(ξ )

(β) = m̃
(ξ )

(β0) +

(
Γ̃

(ξ )
+

1
2

K∑
k=1

H̃
(ξ )

k (βk − β0,k)

)
(β − β0), (34)

here Γ̃
(ξ )

=

[
∂m̃

(ξ )
(β)/∂β′

]
β=β0

is of dimension [D × K ], while the [D × K ] matrices H̃
(ξ )

k denote the corresponding

matrix-valued second derivatives of m̃
(ξ )

(β) with respect to β, where βk is the kth element of β.

Assumption 3.2 (Local Identification). For each ξ = {L;NL} the limiting Jacobian matrix Γ (ξ )
= plimN,T→∞ Γ̃

(ξ )
is

F-measurable with rank K a.s., i.e. rk[Γ (ξ )
] = K .

Assumption 3.2 ensures consistency of the proposed estimator based on the linear estimating equations. On the other
hand, as it is generally the case for nonlinear approaches, additional restrictions are required to ensure consistency of the
proposed nonlinear estimator.

Assumption 3.3 (Global Identification). The parameter space Θ ⊂ RK is compact and contains β0 in its interior. The

limiting matrices plimN,T→∞ H̃
(ξ )

k are F-measurable, and bounded a.s. for all k. Let m(NL)(β) = plimN,T→∞ m̃
(NL)

(β) for all
β ∈ Θ . β0 is identified on Θ such that m(NL)(β) = 0D iff β = β0 a.s.

Assumption 3.3 implies that the corresponding limiting estimating equations point identify the parameter of interest
over Θ . In Section 5 we discuss examples where Assumption 3.2–3.3 can be violated.

Denote by µ(ξ )
i,T the time-series average of the leading term given in Eq. (19), i.e.

µ
(ξ )
i,T =

1
T1

T1∑
t=1

µ
(ξ )
i,t . (35)

e assume that the following quantities are well defined and a.s. finite:

Ω (ξ )
= plim

T→∞

EF

[
T1µ

(ξ )
i,T

(
µ

(ξ )
i,T

)′
]

; (36)

Σ (ξ )
=

[(
Γ (ξ ))′ WΓ (ξ )

]−1 (
Γ (ξ ))′ W . (37)

oreover, Σ (ξ ) has rank K a.s. For technical reasons we also impose the following restriction on the relative rates of N, T .
9
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ssumption 3.4 (Asymptotics). NT is a non-decreasing function of T such that NT → ∞ as T → ∞.

Assumption 3.4 merely requires that NT is a non-decreasing function of T . In particular, it is weaker than assuming
hat T/N → ρ ∈ [0; ∞), e.g. one can allow NT =

√
T .17 This restriction allows us to use the central limit theorem for

DS arrays from Hall and Heyde (1980).
The following theorem summarizes the asymptotic distribution of the proposed estimator.

heorem 1. Suppose that Assumptions 3.1–3.4 hold true and rk
[
Ω (ξ )]

= D a.s. Then, as N, T → ∞ we have√
NT1

(
β̂
(ξ )
MM − β0

)
⇒ Σ (ξ ) (Ω (ξ ))1/2 ψ (F − stably), (38)

for ξ = {L;NL}, where Σ (ξ ) and Ω (ξ ) are independent of ψ ∼ N(0D, ID).

Proof. See Appendix A. □

Since Σ (ξ ) and Ω (ξ ) can be random matrices (measurable with respect to F , but independent of ψ), the unconditional
limiting distribution of the proposed estimator is mixed-normal rather than normal, in general. To appreciate this fact
recall that the leading term of the asymptotic distribution is determined by the scaled time-series average in Eq. (35), i.e.√

T1µ
(ξ )
i,T =

1
√
T1

T1∑
t=1

[
EF [qi,tλ

(ξ )
i ]z i,t

(
ft+1εi,t − ftεi,t+1

)
− EF [z i,tλi]qi,t

(
ft+1ε

(ξ )
i,t − ftε

(ξ )
i,t+1

)]
. (39)

As T → ∞, all time-varying components average out unless some of them are Fc measurable. As an example, let
λi = λdi = λ̃λi where λ is some random variable, and λ̃i is an i.i.d. sequence. In such a case, the asymptotic distribution of
the estimator (through Ω (ξ ) and Σ (ξ )) is a function of λ. However, this plays no role for inference procedures that make
use of standardized (pivotal) statistics, so long as both Σ (ξ ) and Ω (ξ ) can be consistently estimated from their sample
analogues. That is,

NT1
(
β̂
(ξ )
MM − β0

)′ [
Σ (ξ )Ω (ξ ) (Σ (ξ ))′]−1 (

β̂
(ξ )
MM − β0

)
d

−→ χ2
K . (40)

The result of Theorem 1 indicates that β̂
(ξ )
MM is the only available estimator in the literature that does not suffer from

incidental parameter bias in any dimension (with the ‘‘delete-one’’ implementation, where required). In particular, our
approach does not suffer from bias of order O(T−1) (the so-called ‘‘Nickell bias’’), because it is based on the Method of
Moments with quasi-differenced moment conditions. In contrast, Nickell bias is typical in least-squares type estimators
for models with weakly exogenous regressors. Moreover, our approach does not suffer from bias of order O(N−1), because
the U-statistic formulation that we employ allows us to avoid numerical estimation of {ft}Tt=1. For this reason no explicit
restrictions on the relative diagonal expansion rates of N and T are imposed. In comparison, popular large T procedures
accommodating a factor structure, such as the so-called PC and CCE estimators, not only have bias terms that are of order
O(T−1), but they are also subject to bias terms of order O(N−1); see Moon and Weidner (2017), Juodis et al. (2021),
and Juodis (2020a). On the other hand, the quasi-differencing transformation embedded in our approach implies extra
computational complexity relative to both PC and CCE.

3.4. Limit theory for stacked estimating equations

In the fixed-T literature of panels with common factors, existing GMM estimators employ stacked moment conditions,
such that the total number of instruments used in estimation increases with T , see e.g. Ahn et al. (2013), Robertson and
Sarafidis (2015) and Juodis and Sarafidis (2020), among others. This strategy is essential because the number of parameters
to be estimated is of order O(T ).18 To the best of our knowledge, there are no theoretical results available in this literature
that allow T → ∞.

In what follows we use our approach to study the setup where the number of estimating equations increases with the
sample size, in particular, at the rate of O(T ).

For both linear and nonlinear approaches, we define the estimator that makes use of stacked estimating equations as
the solution of the following minimization problem:

β̂
(ξ )
MMT = argmin

β∈Θ

(
1
T1

T1∑
t=1

(
m(ξ )

t (β)
)′

m(ξ )
t (β)

)
, (41)

17 Having said that, in most applications we have in mind, NT > T . Note that for simplicity, we drop the T subscript from NT and simply use N
ereafter.
18 Therefore, averaging of moment conditions is not feasible in their framework.
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or ξ ∈ {L;NL} and m(ξ )
t (β) as defined in Eq. (17). Here we use the β̂

(ξ )
MMT notation to emphasize that the number of

stimating equations employed is of order O(T ). Moreover, unlike Theorem 1 we do not use the ‘‘delete-one’’ construction
n f̂i,t because (as we show later on) the ‘‘many-instruments bias’’ that arises, is in general of the same order as that of
he incidental parameters bias associated with the approximation of ft from NT observations.

emark 8 (Weighting of Stacked Estimating Equations). In line with existing literature of GMM estimation with many
moment conditions (see e.g. Han and Phillips, 2006 and Newey and Windmeijer, 2009), the above estimator is unweighted,
i.e. it corresponds to optimizing an objective function with an identity matrix as a ‘‘weighting’’ matrix. There are several
reasons for this choice. To begin with, consistent estimation of the optimal weighting matrix can be practically infeasible
due to incidental parameters. In particular, while the optimal weighting matrix is typically easy to compute when T is
ixed, this is not the case when T is large, as one needs to take the inverse of the variance matrix of the moment conditions,
hich is of order O(T ) in the present setup. Thus, as it is well appreciated in the literature on high dimensional covariance
atrices, the ratio T/N plays a major role for consistent estimation of the corresponding covariance (and precision)
atrices in the large T case.19 Secondly, high dimensional covariance matrices can often be subject to singularities.
nfortunately, the use of a generalized inverse will not solve the problem in the GMM framework.20 Finally, we note
hat in principle it is possible to come up with alternative, suboptimal choices for the weighting matrix, the structure
f which depends on unknown parameters of fixed dimension. However, such strategy has impact for local and global
dentification, as these depend explicitly on a particular choice of the weighting matrix.

Analogously to Eq. (34) we expand the estimating equations as follows:

m(ξ )
t (β) = m(ξ )

t (β0) +

(
Γ

(ξ )
t +

1
2

K∑
k=1

H
(ξ )
t,k(βk − β0,k)

)
(β − β0), (42)

here all matrices are defined accordingly. Since we consider an increasing number of estimating equations, all regularity
onditions imposed in Section 3.3 need to be appropriately modified to accommodate this setup.
Define γ (ξ )

t =

(
vec(m(ξ )

t (β0))′, vec(Γ
(ξ )
t )′, vec(H

(ξ )
t,1)

′, . . . , vec(H
(ξ )
t,K )

′

)′

.

Assumption 3.5 (Local Identification: Stacked). For each ξ = {L;NL}, Γ (ξ )
MMT = plimN,T→∞ T−1

1∑T1
t=1

(
Γ

(ξ )
t

)′

Γ
(ξ )
t is F-measurable with rk[Γ (ξ )

MMT ] = K a.s.

Assumption 3.6 (Global Identification: Stacked). The parameter space Θ ⊂ RK is compact and contains β0 in its interior.
plimN,T→∞ T−1

1
∑T1

t=1 γ
(ξ )
t

(
γ
(ξ )
t

)′

is F-measurable, and bounded a.s. Let G(NL)(β) = plimN,T→∞ T−1
1
∑T1

t=1 m
(NL)
t (β)′m(NL)

t (β)
for all β ∈ Θ . β0 is identified on Θ such that: G(NL)(β) = 0D iff β = β0 a.s.

Assumption 3.7 (Asymptotics: Stacked). NT is a non-decreasing function of T such that NT → ∞ as T → ∞ and
T/NT → ρ ∈ [0; ∞).

Assumption 3.7 is more restrictive than Assumption 3.4 and ensures that the ‘‘many moments’’ bias is not explosive
as N, T → ∞. Such condition is standard in the literature (e.g. Bekker, 1994, Han and Phillips, 2006, and Newey and
Windmeijer, 2009).

Let

Γ (ξ )
t = lim

N→∞

EF
[
Γ

(ξ )
t

]
, (43)

e the ‘‘expected Jacobian’’ matrix at time t . For example, for the linear approach the above matrix takes the form

Γ (L)
t = EF [qi,tλdi ]

(
ft EF [z i,tx′

i,t+1] − ft+1 EF [z i,tx′

i,t ]
)
. (44)

The modified influence function associated with the ‘‘many moments’’ setup is given by

µ
(ξ )MMT
i,T =

1
T1

T1∑
t=1

(
Γ (ξ )

t

)′

µ
(ξ )
i,t . (45)

19 The same holds true for estimators that make use of O(T 2) moment conditions, which become naturally available in panels with weakly
exogenous regressors. For instance, Lee et al. (2017) show that consistent estimation of the optimal weighting matrix generally requires T 3/N →

ρ ∈ [0; ∞). Notably, when the objective function involves O(T 2) moment conditions, the use of a non-optimal weighting matrix may result in an
inconsistent GMM estimator (Alvarez and Arellano, 2003).
20 In fact, such practice bears adverse implications for local and global identification, see Satchachai and Schmidt (2008) for more details.
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iven the above definition, we assume that the following variance–covariance matrix

Ω (ξ )
MMT = plim

T→∞

EF

[
T1µ

(ξ )MMT
i,T

(
µ

(ξ )MMT
i,T

)′
]
, (46)

is well defined, a.s. finite and F-measurable. Note that because ED[µ
(ξ )
i,t ] = 0D and all Γ (ξ )

t are F-measurable, it follows
directly that

ED
[
µ

(ξ )MMT
i,T

]
=

1
T1

T1∑
t=1

ED

[(
Γ (ξ )

t

)′

µ
(ξ )
i,t

]
=

1
T1

T1∑
t=1

(
Γ (ξ )

t

)′

ED
[
µ

(ξ )
i,t

]
= 0K . (47)

Hence the ‘‘many-moments’’ influence function µ(ξ )MMT
i,T inherits the conditional mean and mixing properties from the

original version based on ‘‘averaging’’ of the estimating equations.21 The main result of this section is presented in
Theorem 2.

Theorem 2. Suppose that rk
[
Ω (ξ )

MMT

]
= K a.s. and Assumption 3.5–3.7 hold true, while Assumption 3.1 holds with r = 8.

hen, for ξ = {L;NL}:√
NT1

(
β̂
(ξ )
MMT − β0 −

1
N
b(ξ )
T ,F

)
⇒

(
Γ (ξ )

MMT

)−1 (
Ω (ξ )

MMT

)1/2
ψMMT (F − stably), (48)

here Ω (ξ )
MMT , defined in Eq. (46), is independent of ψMMT ∼ N(0K , IK ).

roof. See Appendix A. □

The F-measurable bias term b(ξ )
T ,F generally consists of two terms:

b(ξ )
T ,F = b(ξ )IP

T ,F + b(ξ )MMT
T ,F , (49)

.e. the ‘‘incidental parameters’’ component, b(ξ )IP
T ,F , which is zero for the nonlinear approach as well as the linear approach

ith the ‘‘delete-one’’ correction, and the ‘‘many moments’’ component, b(ξ )MMT
T ,F , which is non-zero in general. In particular,

s it is the case with all standard problems entailing an increasing number of moment conditions, b(ξ )MMT
T ,F is determined by

he correlation structure between Γ (ξ )
t µ

(ξ )
i,t and the (individual-specific) influence functions associated with the Jacobian

atrix of the estimating equations.
In principle the ‘‘many moments’’ component of the bias can be removed by means of higher order JIVE-type correction

e.g. Angrist et al., 1999). In the present case such correction would require the use of a U-statistic of degree 4, which
s akin to network models such as those of Graham (2017) and Jochmans (2017). Alternatively, one can use the two-
ample/split-sample approach, as proposed in Angrist and Krueger (1995) and Chernozhukov et al. (2018). In practice,
imulation evidence reported in Section 6 suggests that the bias appears to be almost negligible.

. Extensions

.1. Additional restrictions: Lack of serial correlation

So far we have restricted our attention to situations where the instrument vector z i,t is given/known. However, under
uitable restrictions on the DGP in Eq. (1) an additional set of instruments (moment conditions) can be considered. For
xample, if εi,t is serially uncorrelated, i.e.

EF [εi,tεi,s] = 0; ∀t ̸= s, (50)

n additional set of moment conditions is available for estimation of β. An assumption of this type is commonly used for
ixed T inference in models with weakly exogenous regressors, such as when xi,t contains a lagged dependent variable
see Arellano, 2003). For T large, Eq. (50) can be extended accordingly.

In specific, if condition Eq. (50) is satisfied, then for each time period t the following variable can be used as instrument

hi,t (β) = yi,t+s − x′

i,t+sβ, (51)

or s = −t+1, . . . ,−1, 2, . . . , T −t . Here we use the notation hi,t (β) to differentiate between known instruments z i,t , and
‘unknown’’ ones. In the additive error components structure, the moment conditions in Eq. (51) are usually attributed
o Ahn and Schmidt (1995). Ahn et al. (2001) also discuss such moment conditions for a model with a single common
actor.

21 Notice that one of the implications of Assumption 3.1 is ∥Γ
(ξ )

∥ < Ξ ,∀t .
t

12
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Observe that hi,t (β) is a function of the idiosyncratic and factor components. For example, for s = −1,

hi,t (β0) = λift−1 + εi,t−1. (52)

ence, it is clearly seen that both components determine the asymptotic distribution of any estimator that utilizes moment
onditions of this type. Identification issues aside, all previous theoretical results accommodate hi,t (β)-type instruments
mong z i,t from Eq. (51).

.2. Multiple factors

So far we have assumed for ease of exposition that the number of factors is known and is set equal to L = 1. In what
ollows we consider the generalization of our framework to the case of multiple factors:

yi,t = β′xi,t + λ′

if t + εi,t , (53)

here both λi and f t are L-dimensional vectors.
To see how our approach can be extended, consider the following shorthand notation: y i,s:t , for s ≤ t , denotes vectors

f the form y i,s:t =
(
yi,s, . . . , yi,t

)′. Stacking the (yi,t+1, . . . , yi,t+L) observations together leads to

y ′

i,t+1:t+L = β′X i,t+1:t+L + λ′

iF t+1:t+L + ε′

i,t+1:t+L, (54)

where F t+1:t+L = (f t+1, . . . , f t+L) is [L × L]. Let |F t+1:t+L| denote the determinant of F t+1:t+L and let F+

t+1:t+L denote the
corresponding adjoint matrix, such that F t+1:t+LF+

t+1:t+L = |F t+1:t+L|. Then, analogously to the model with L = 1, the FQD
transformation is given by

|F t+1:t+L|(yi,t − β′xi,t ) − (y ′

i,t+1:t+L − β′X i,t+1:t+L)F+

t+1:t+Lf t = |F t+1:t+L|εi,t − ε′

i,t+1:t+LF
+

t+1:t+Lf t , (55)

for t = 1, . . . , T − L, since

|F t+1:t+L|f t − F t+1:t+LF+

t+1:t+Lf t = |F t+1:t+L|f t − |F t+1:t+L|f t = 0L. (56)

Similarly to the single factor case, in general the estimating equations will take the form of a nonlinear U-statistic of degree
L+1, as both |F t+1:t+L| and F+

t+1:t+Lf t are products of averages. This holds true unless there exists an L-dimensional vector
d i,t such that

d i,t = Λd
i f t + εdi,t; EF [εdi,s|qi,t ] = 0L, (57)

for s ≥ t , where Λd
i is [L × L].22 In this case the corresponding estimator remains linear in β irrespective of the number

of factors.
Note that identification of β with multiple factors requires that T is strictly larger than L. This condition, which is only

relevant for T fixed, is similar to that in other fixed T GMM or least-squares estimators available in the literature, see
e.g. Remark 1 in Juodis and Sarafidis (2020) and Assumptions T-C in Westerlund et al. (2019).

Let L0 denote the true number of factors. The value of L0 can be determined using a BIC information criterion, as in Ahn
et al. (2013) and Robertson et al. (2018). In particular, define

BIC (ξ )(L) = NT1 QNT (β̂
(ξ )
MM (L)) − ln(NT1) b(L), (58)

where QNT (β̂
(ξ )
MM (L)) is the value of the GMM objective function based on averaged estimating equations and evaluated at

β̂
(ξ )
MM (L), β̂

(ξ )
MM (L) denotes the estimate of β using L factors, and b(L) is a penalty function that equals a constant times the

degrees of freedom of the model. Note that b(L) is strictly decreasing in L.23 Let

L̂ = argmin
L=0,...,Lmax

BIC (ξ )(L), (59)

where Lmax is such that L0 ≤ Lmax. L̂ is consistent, i.e. as N, T → ∞, L̂
p

−→ L0. To see this, let L− and L+ denote any two
values for L such that L− < L0 and L+ > L0. Dropping the superscript (ξ ), we have

PD
[
BIC(L0) − BIC(L+) > 0

]
= PD

[
NT1

(
QNT (β̂(L0)) − QNT (β̂(L+))

)
+ ln(NT1)

(
b(L+) − b(L0)

)
> 0

]
≤ PD

[
NT1

(
QNT β̂(L0)

)
+ ln(NT1)

(
b(L+) − b(L0)

)
> 0

]
→ 0, (60)

22 Alternatively, one can combine a single variable di,t with L weights, qi,t , see Juodis and Sarafidis (2020) for more details.
23 Alternatively, the second term on the right-hand side of Eq. (58) can be set equal to h(NT1)b(L), where h(NT1) = ln (ln(NT1)). Such choice is
alid given that h(NT1) satisfies h(NT1) → ∞ and h(NT1)/(NT1) → 0, as N, T1 → ∞. See Geweke and Meese (1981) and Bai and Ng (2002) for more
etails.
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ince the first term is chi-squared distributed by Theorem 1, and thus it is OP (1), whereas the second term diverges to
∞. On the other hand,

PD
[
BIC(L0) − BIC(L−) > 0

]
= PD

[(
QNT (β̂(L0)) − QNT (β̂(L−))

)
+

ln(NT1)
NT1

(
b(L−) − b(L0)

)
> 0

]
→ 0, (61)

ecause the first term converges to a fixed negative number (since QNT (β̂(L0)) → 0 and QNT (β̂(L−)) → c , 0 < c < ∞),
hereas the second term converges to zero. The same BIC expression is valid for T fixed as well, because the first term

n (60) remains bounded, whereas the first term in (61) behaves as before.
Note that a similar BIC method can also be used for the GMM estimator based on stacked estimating equations. In

articular, as it is already pointed out by Ahn et al. (2013), the overidentifying restrictions test statistic computed with
non-optimal weighting matrix is a weighted average of independent chi-squared variables, and thereby it remains
ounded.24

. Inference and identification

.1. Variance matrix estimation

Asymptotically valid inference requires consistent estimation of Γ (ξ ) and Ω (ξ ) for the averaged equations, and Γ (ξ )
MMT

nd Ω (ξ )
MMT for the stacked equations. As with any standard GMM problem, Γ (ξ ) and Γ (ξ )

MMT can be estimated based on
he corresponding sample analogues evaluated at any consistent estimator of β0. In particular, for either β̂ = β̂MM or
= β̂MMT , we suggest

Γ̂
(ξ )

(̂β) =

[
∂m̃

(ξ )
(β)/∂β′

]
β=β̂

, (62)

nd

Γ̂
(ξ )
MMT (̂β) =

1
T1

T1∑
t=1

(
Γ

(ξ )
t (̂β)

)′

Γ
(ξ )
t (̂β); Γ

(ξ )
t (̂β) =

[
∂m(ξ )

t (β)/∂β′

]
β=β̂

. (63)

Next, we discuss consistent estimation of Ω (ξ ) and Ω (ξ )
MMT . As a building block for this, we consider estimation of the

ndividual components of µ(ξ)i,t , as given by Eq. (19), i.e.

µ
(ξ )
i,t = EF [qi,tλ

(ξ )
i ]z i,t

(
ft+1εi,t − ftεi,t+1

)
− EF [z i,tλi]qi,t

(
ft+1ε

(ξ )
i,t − ftε

(ξ )
i,t+1

)
, (64)

for ξ ∈ {L,NL}. Set

ε̂i,t = yi,t − x′

i,t β̂; ε̂
(NL)
i,t = ε̂i,t; ε̂

(L)
i,t = di,t , (65)

here β̂ is either β̂MM or β̂MMT . While ε̂i,t is not a suitable estimate for εi,t directly, it remains a valid plug-in estimate in
he term ft+1εi,t − ftεi,t+1. That is, assuming both ft and ft+1 are known, it is straightforward to see that ft+1̂εi,t − ft ε̂i,t+1
s a suitable estimate for ft+1εi,t − ftεi,t+1. The same result holds for the expression involving εdi,t ; that is, ε̂di,t is a valid
plug-in estimate in ft+1ε

d
i,t − ftεdi,t+1.

In practice, neither ft or ft+1, nor EF [qi,tλ
(ξ )
i ] and EF [z i,tλi] are observed. However, separate estimation of these

components is not necessary as all expressions involved in the estimation of Ω (ξ ) and Ω (ξ )
MMT are multiplicative in these

components.
Define g (ξ )

(q),t,s = EF [qi,tλ
(ξ )
i ]fs and g (z),t,s = EF [z i,tλi]fs for t = 1, . . . , T1 and s = {t; t + 1}. The plug-in estimates of

these quantities can be constructed as follows:

ĝ (ξ )
(q),t,s =

1
N

N∑
j=1

qj,td
(ξ )
j,s ; ĝ (z),t,s =

1
N

N∑
j=1

z j,t ε̂j,s. (66)

ntuitively, this is justified because for any t = 1, . . . , T , we have ĝ (ξ )
(q),t,s = g (ξ )

(q),t,s +OP (N−1/2). That is, ĝ (ξ )
(q),t,s is a consistent

stimator for g (ξ )
(q),t,s as N → ∞. The same result holds for ĝ (z),t,s.

24 However, certain restrictions on the convergence rate of N, T → ∞ are required. See Theorem 3 for more details.
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Hence, the plug-in analogue of Eq. (64) is of the form:

µ̂
(ξ )
i,t = z i,t

(̂
g (ξ )
(q),t,t+1̂εi,t − ĝ (ξ )

(q),t,t ε̂i,t+1

)
− qi,t

(̂
g (z),t,t+1̂ε

(ξ )
i,t − ĝ (z),t,t ε̂

(ξ )
i,t+1

)
.

This plug-in expression can be used directly to consistently estimate Ω (ξ ). We consider the following (centered) estimator
of Ω (ξ )25:

Ω̂
(ξ )

(̂β) =
1

NT1

N∑
i=1

⎛⎝( T∑
t=1

(
µ̂

(ξ )
i,t −

1
N

N∑
i=1

µ̂
(ξ )
i,t

))(
T∑

t=1

(
µ̂

(ξ )
i,t −

1
N

N∑
i=1

µ̂
(ξ )
i,t

))′
⎞⎠ . (67)

For the approach with stacked estimating equations, let

µ̂
(ξ ),MMT
i,t =

(
Γ

(ξ )
t (̂β)

)′

µ̂
(ξ )
i,t . (68)

he corresponding plug-in estimator is given by

Ω̂
(ξ )
MMT (̂β) =

1
NT1

N∑
i=1

⎛⎝( T∑
t=1

(
µ̂

(ξ ),MMT
i,t −

1
N

N∑
i=1

µ̂
(ξ ),MMT
i,t

))(
T∑

t=1

(
µ̂

(ξ ),MMT
i,t −

1
N

N∑
i=1

µ̂
(ξ ),MMT
i,t

))′
⎞⎠ . (69)

When T is fixed, it is straightforward to show consistency of the proposed plug-in estimators Ω̂
(ξ )

(̂β) and Ω̂
(ξ )
MMT (̂β).

On the other hand, a new proof is required for the case where T is large. This is the subject of the following theorem:

Theorem 3. Let β̂ be such that
√
NT
(̂
β − β0

)
= OP (1). Then under the same set of assumptions used in Theorem 1 with

r = 8, we have

Ω̂
(L)
(̂β) = Ω (L)

+ oP (1), given T/N2
→ 0. (70)

Ω̂
(NL)

(̂β) = Ω (NL)
+ oP (1). (71)

roof. See Appendix A. □

We note that the restriction T/N2
→ 0 is required only if ĝ is obtained without a ‘‘delete-one’’ correction, where ĝ

denotes the vector that collects all ĝ (z),t,t , ĝ (z),t,t+1, ĝ
(ξ )
(q),t,t and ĝ (ξ )

(q),t,t+1 terms, for t = 1, . . . , T1, with the corresponding
true parameters denoted by g0; otherwise, this restriction can be dropped. The nonlinear estimator does not require such
restriction even in the absence of a ‘‘delete-one’’ correction for ĝ . The consistency result for Ω̂

(ξ )
MMT (̂β) is similar to that in

Theorem 3 albeit at the expense of many additional, asymptotically negligible remainder terms. To save space, we refrain
from providing further details.

As an alternative to the asymptotic approximation, one can use the cross-sectional bootstrap as in Kapetanios (2008)
or Galvao and Kato (2014), as the estimating equations are asymptotically linear in µ(ξ )

i,t . However, while it is reasonable
to expect that this bootstrap approach works in our setup, we do not attempt to prove formally the asymptotic validity
of it.

5.2. Identification

As it is usually the case with GMM approaches in general, consistency and asymptotic normality of the proposed
estimator requires that β is locally and globally identified from a given set of moment conditions. We start this section
by demonstrating the possibility that identification could fail when the model is estimated based on averaged estimating
equations but it could still be achieved when the model is estimated based on stacked estimating equations; the reverse
is not true. In other words, when it comes to identification of β0, one cannot do worse by using stacked moments as
opposed to averaged ones. This is summarized in the following proposition:

Proposition 1. Under the assumptions employed in Theorem 2, as well as strict stationarity of the underlying time-series
mixing process, the class of globally and locally identified models based on averaged estimating equations is no larger than that
based on stacked estimating equations.

Proof. See Appendix A. □

In what follows we shall discuss local identification first, followed by global identification for the nonlinear approach.

25 The centered estimator of Ω (ξ ) is considered mostly to improve power properties of all test statistics under alternative hypotheses, especially
in combination with identification robust inference procedures discussed in Section S.3 of the Supplementary Appendix.
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.2.1. Local identification
Local identification crucially depends on the properties of either Γ (ξ ) (the limiting Jacobian matrix) for the averaged

estimating equations, or matrix Γ (ξ )
MMT for the stacked estimating equations. In particular, if the full rank condition in

Assumptions 3.2 and 3.5 fails, the results provided in Section 3 are invalidated, at least partially. In what follows, we
analyze stylized special cases and discuss necessary and sufficient conditions to ensure local identification.

Linear Approach
We consider the original model in Eq. (1) with K = 1:

yi,t = βxi,t + λift + εi,t . (72)

It is straightforward to show that the ‘‘expected Jacobian matrix’’ at time t is given by

Γ (L)
t = EF [qi,tλdi ]

(
ft EF [z i,txi,t+1] − ft+1 EF [z i,txi,t ]

)
. (73)

The expression above is non-zero when EF [qi,tλdi ] ̸= 0 (relevant weight) and either EF [z i,txi,t+1] ̸= 0D or EF [z i,txi,t ] ̸= 0D
(relevant instruments). When xi,t is also driven by a common shock, the former condition on its own is sufficient to ensure
Γ (L)

t ̸= 0. To see this, let xi,t = πif xt + εxi,t , where πi is independent of εxi,t . Setting z i,t = xi,t and qi,t = xi,t−1, which implies
that xi,t is treated as weakly exogenous, we obtain

Γ (L)
t = EF [λdi πi] EF [π2

i ]
(
f xt−1ft f

x
t f

x
t+1 − f xt−1ft+1g2

t

)
+ EF [λdi πi]

(
f xt−1ft EF [εxi,tε

x
i,t+1] − f xt−1ft+1 EF [(εxi,t )

2
]
)
. (74)

In the case where f xt = ft , the first term in the above expression equals zero. However, the second term remains non-zero
a.s., so long as {ft}Tt=1 are stochastic with a continuous distribution (or non-zero constants).

Remark 9 (Comparison with the Fixed T GMM Literature). Similar conditions are required to ensure local identification of
β using alternative (fixed T ) GMM approaches that treat the factors as parameters. For instance, one can show that the
Jacobian matrix at period t for the QLD GMM estimator of Ahn et al. (2013) involves terms of the form f xs fT , s ≤ t , which
remain non-zero so long as {f xt }

T
t=1 and {ft}Tt=1 are stochastic with a continuous distribution.

Consider identification of this model with f xt = ft and T → ∞. We focus on averaged estimating equations first. The
limiting Jacobian matrix Γ (L)

= plimN,T→∞ T−1
1
∑T1

t=1 Γ
(L)
t is given by

Γ (L)
= EF [λdi πi] (E[ft−1ft ]γx(1) − E[ft−1ft+1]γx(0)) . (75)

where γx(k) = E[εxi,tε
x
i,t−k]. Thus, provided that EF [λdi πi] ̸= 0, identification requires that the factor is serially correlated

(assuming E[ft ] = 0). Such restriction is natural in the present context because otherwise lagged values of predetermined
regressors (either in levels or first differences) are already valid instruments, even without differencing away the common
factor component of the error term. That is, absence of serial correlation in ft implies that there exists xi,t such that
E[xi,t (λifs+εi,s)] = 0 for some t < s. Thus for instance, in the pure AR(1) model without quasi-differencing, the Anderson–
Hsiao IV estimator with instruments based on appropriate lagged values of endogenous regressors, remains consistent
for T large. Similarly, Arellano–Bond type moment conditions remain valid without any transformation that removes the
factor component. Clearly, this is a trivial case.

Remark 10 (Inference with Reduced Convergence Rate). It is important to emphasize that even if E[ft−1ft ] = E[ft−1ft+1] = 0,
β
(L)
MM remains consistent, albeit its rate of convergence falls to

√
N . Specifically, from

√
TΓ (L)

= EF [λdi πi]

(
1

√
T

T1∑
t=2

ft−1ftγx(1) −
1

√
T

T1∑
t=2

ft−1ft+1γx(0)

)
+ OP (T−1/2), (76)

t is clear that
√
TΓ (L) follows a normal asymptotic distribution as T → ∞, as normality is guaranteed by the mixing

estriction of Assumption 3.1. Notably, since
√
TΓ (L) and ψ ∼ N(0D, ID) are asymptotically independent, which is implied

y Assumption 3.1(d), inference remains valid without knowledge of the convergence rate of the estimator (either
√
NT

r
√
N). Thus from a practical point of view, there is no need to know the convergence rate of the estimator in this case

in order to conduct asymptotically valid inferences.

Remark 11 (Connection with Literature on Weak Identification). The above identification result differs qualitatively from
he weak-identification setup in Staiger and Stock (1997), where failure of local identification may lead to inconsistent
arameter estimates. By contrast, in the present setup, the restriction E[ft−1ft ] = E[ft−1ft+1] = 0 represents a case of
emi-weak identification (see e.g. Antoine and Renault, 2009). This is because so long as EF [λdi πi] ̸= 0, Γ (L) diverges from
ero at a slower rate than O((NT )−1/2), which is indeed tantamount to semi-weak identification.
16
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When one restricts attention to time-invariant weights, qi, it turns out that identification requires E[ft ] ̸= 0. When this
estriction is violated, the estimator becomes

√
N-consistent. As it is the case with time-varying weights, this does not

affect inferences because the usual standardized tests remain valid.
Next we consider local identification for the stacked estimating equations within the linear approach. Here

Assumption 3.5 is the necessary condition ensuring that Γ (L)
MMT is of full rank. In the case where f xt = ft , we have

Γ (L)
MMT =

(
EF [πiλ

d
i ]
)2 (

E[f 2t−1f
2
t ]γ 2

x (1) + E[f 2t−1f
2
t+1]γ

2
x (0) − 2 E[f 2t−1ft ft+1]γx(0)γx(1)

)
> 0. (77)

rovided EF [λdi πi] ̸= 0, it is clear that identification relies purely on fourth-order cross-moments of unobserved factors.
herefore, β̂

(L)
MMT remains

√
NT -consistent even in the absence of serial correlation in ft . This result is consistent with

Proposition 1.

Nonlinear Approach
We consider a model with a single regressor, as in Eq. (72). It is straightforward to show that the ‘‘expected Jacobian

matrix’’ at time t is given by

Γ (NL)
t = EF [qi,tλi]

(
ft EF [z i,txi,t+1] − ft+1 EF [z i,txi,t ]

)
+ EF [z i,tλi]

(
ft+1 EF [xi,tqi,t ] − ft EF [xi,t+1qi,t ]

)
. (78)

Clearly, while EF [z i,txi,t+1] = EF [z i,txi,t ] = 0D implies lack of identification for the linear approach, this is not
necessarily true for the nonlinear one. On the other hand, the condition of relevance of weights (EF [qi,tλi] ̸= 0) remains
crucial. To illustrate this point, let xi,t , z i,t and qi,t be as in the linear approach before. Thus, in this case Γ (NL)

t reduces to

Γ (NL)
t = EF [λiπi]

(
ft−1ft EF [εxi,tε

x
i,t+1] + ft ft+1 EF [εxi,tε

x
i,t−1]

)
− EF [λiπi]

(
ft−1ft+1 EF

[(
εxi,t
)2]

+ f 2t EF [εxi,t−1ε
x
i,t+1]

)
. (79)

Therefore, for Γ (NL)
t ̸= 0 a.s., it is required that EF [πiλi] ̸= 0. In practice, this is a mild restriction because otherwise xi,t

becomes strictly exogenous with respect to the factor component and so the standard OLS estimator remains consistent
for T fixed. Notice also that this restriction mirrors the high-level Assumption BA.4-1 in Ahn et al. (2013), which states
that the regressors are correlated with the factor loadings in the error term. Thus, for xi,t = πif xt + εxi,t , their Assumption
BA.4-1 implies EF [λiπi] ̸= 0.

For T large, local identification based on averaged estimating equations requires serial correlation in ft , while this is
not the case for stacked moment conditions. Such result is identical to that already discussed for the linear approach.
Therefore, we refrain from providing any details.

5.2.2. Global identification
The majority of the panel data literature with common factors takes it for granted that the moment conditions globally

identify the parameters of interest. This is despite the fact that when the parameter space Θ is sufficiently large, global
identification might fail for nonlinear moment conditions, which are typically employed by existing GMM procedures.26

As before, we focus on the single regressor case and study asymptotic properties of

m(NL)
t (β) = lim

N→∞

EF [m(NL)
t (β)]. (80)

ince the moment conditions are at most quadratic, we obtain

m(NL)
t (β) = (β − β0)

(
Γ (NL)

t +
1
2
H (NL)

t (β − β0)
)
. (81)

rom the above expression it is clear the β = β0 is always a solution, as it should be, given that the model is not mis-
pecified. Furthermore, a second solution exists if and only if Γ (NL)

t and H (NL)
t are linearly dependent. We investigate this

possibility below using a similar example as in the previous section.
Let xi,t = πif xt + εxi,t . To study over-identification we set z i,t = (xi,t , xi,t−1)′ and qi,t = xi,t−2. In this case, the expected

Jacobian matrix at time t becomes

Γ (NL)
t = EF [πiλi]A1,t , (82)

while

H (NL)
t = −2

(
EF [π2

i ]A2,t + A3,t
)
, (83)

where A1,t , A2,t and A3,t are defined in Appendix A.1. As it turns out in this specific DGP, Γ (NL)
t and H (NL)

t are linearly
independent unless f xt = ft and at the same time εxi,t is serially uncorrelated; in the former case A1,t = A2,t , whereas in

26 See e.g. Hayakawa (2016). As per usual, this issue is alleviated when D > K (overidentified case) because it becomes less likely that the same
pseudo-true value β ∈ Θ satisfies all moment conditions.
∗
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he latter case A3,t = 0. Both restrictions combined imply that

Γ (NL)
t = −

1
2
EF [πiλi]

EF [π2
i ]

H (NL)
t . (84)

n this case, global identification requires EF [πiλi] = 0; otherwise, the second (pseudo-true) value of β equals27

β∗ = β0 +
EF [πiλi]

EF [π2
i ]
. (85)

emark 12 (Global Identification with Stacked Estimating Equations). Eq. (84) holds for each t . Therefore, global identifica-
ion fails regardless of whether one makes use of averaged or stacked estimating equations.

Although the above observation might seem to be pessimistic at first glance, we note that it only applies to the case
here f xt = ft and there exists lack of serial correlation in εxi,t ; the latter implies that, conditional on common shocks, xi,t

s independent over t , which is unlikely in many empirically relevant scenarios. Moreover, the aforementioned lack of
lobal identification can be easily overcome if multiple weights are employed. For instance, given two weights q(1)i,t and
(2)
i,t corresponding to different variables altogether, it is sufficient for global identification that EF [q(1)i,t λi] ̸= EF [q(2)i,t λi].
uch condition is likely to be satisfied when at least one weight is time-varying.

emark 13 (Identification for the Panel AR(1) Model). Section S.4 of the Supplementary Appendix discusses local and global
dentification for the AR(1) model. An important outcome is that the use of time-invariant weights alone may not be
ufficient for global identification when T is large. For this reason, we advise using at least one time-varying weight for
ore general models, especially with predetermined regressors.

. Finite sample evidence

.1. Setup

We focus on a setup that generalizes the model studied in Section 5 and consider the following DGP:

yi,t = βxi,t + ui,t; ui,t = λift + εi,t;

xi,t = αxi,t−1 + δyi,t−1 + πift + εxi,t;

di,t = λdi ft + εdi,t;

ft = µf + f ∗

t ; f ∗

t = αf f ∗

t−1 +

√
1 − α2

f ε
f
t ;

λi = µλ + λ∗

i ; πi = µπ + φλ∗

i +

√
1 − φ2π∗

i ; λdi = µλd + φλ∗

i +

√
1 − φ2λ∗d

i , (86)

for t = −6, . . . , T . Following existing literature (e.g. Juodis and Sarafidis, 2018), all dynamic processes are initialized in
the recent past, such that

yi,−7 = λif−7 + εi,−7; xi,−7 = πif−7 + εxi,−7; f−7 = µf + ε
f
−7.

All stochastic quantities are drawn in each replication. The individual-specific time-invariant variables, vi = (λ∗

i , π
∗

i ,

λ∗d
i )′, are mutually independent standard normal variates. However, the factor loadings are allowed to be correlated, with

correlation coefficient given by φ. Similarly, all time-varying error components are mutually independent standard normal
variates, except for εi,t , the variance of which is determined by the proportion of the variation of the total error, ui,t , that
is due to the purely idiosyncratic disturbance, εi,t . In particular, motivated by Norkutė et al. (2021), we consider

ϑ =
var

(
εi,t
)

var
(
ui,t
) =

σ 2
ε

σ 2
u

=
σ 2
ε

µf σ
2
λ + µλσ

2
f + σ 2

f σ
2
λ + σ 2

ε

. (87)

Solving in terms of σ 2
ε yields

σ 2
ε =

(
µf σ

2
λ + µλσ

2
f + σ 2

f σ
2
λ

) ϑ

1 − ϑ
. (88)

ollowing Norkutė et al. (2021), we set ϑ ∈ {1/4; 3/4}; in the former (latter) case, 25% (75%) of the variation in ui,t is due to
the variation in εi,t . We specify µλ = 0 so that this parameter does not affect the variance of εi,t through the computation
of ϑ . Moreover, we specify µπ = −1 and µλd = 1, which implies that the rank condition for CCE (as well as for the
linear GMM estimators) is satisfied. We fix α = αf = 0.5 and δ = 0.4. φ alternates such that φ = {0; 0.5; 1}, whereas

27 This result is qualitatively similar to the global identification failure studied in Juodis (2018), where it was also shown that if the regressor is
spanned only by f , identification fails for linear pseudo panel data models with common (cohort-specific) shocks.
t
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imulation results, N = 200.
Designs L-GMM L-GMM-S NL-GMM NL-GMM-S BC-QMLE BC-CCE

T ϑ µf φ Bias RMSE t J Bias RMSE t Bias RMSE t J Bias RMSE t Bias RMSE t Bias RMSE t

10 .25 2 0 .024 .278 .048 .034 .010 .247 .033 .017 .302 .067 .031 −.051 .256 .056 −.099 .209 .122 −.108 3.36 .580
20 .25 2 0 .013 .255 .054 .037 .013 .208 .035 .005 .274 .075 .033 −.042 .224 .049 −.059 .136 .090 .048 1.66 .421
50 .25 2 0 .008 .234 .051 .036 .026 .182 .034 .002 .227 .080 .038 −.023 .194 .040 −.031 .102 .070 .195 .787 .196

10 .25 2 1 .047 .301 .061 .072 .192 .505 .059 .047 .322 .064 .085 −.049 .377 .080 −.206 .437 .169 −.184 3.45 .602
20 .25 2 1 .023 .253 .051 .046 .253 .502 .055 .032 .254 .054 .062 −.001 .310 .086 −.111 .217 .110 −.026 1.60 .391
50 .25 2 1 .001 .230 .049 .043 .371 .594 .091 .008 .236 .050 .057 .064 .316 .095 −.065 .151 .077 .193 .775 .195

10 .75 2 0 .051 .935 .043 .026 .031 .724 .039 .122 .757 .055 .036 −.070 .688 .058 −8.02 1.04 .727 −.203 13.5 .773
20 .75 2 0 .037 .803 .044 .032 .000 .599 .038 .066 .777 .061 .033 −.070 .602 .045 −.783 1.59 .352 .136 6.07 .626
50 .75 2 0 .002 .751 .046 .033 .004 .514 .036 .036 .718 .063 .034 −.039 .529 .041 −.295 .437 .200 .870 2.42 .391

10 .75 2 1 .149 .853 .074 .046 .166 .719 .038 .380 1.02 .139 .131 .150 .710 .070 −1.92 11.2 .987 −.545 13.6 .785
20 .75 2 1 .097 .773 .060 .046 .242 .673 .046 .295 .973 .110 .104 .236 .665 .073 −4.74 5.55 .810 .025 6.09 .641
50 .75 2 1 .039 .702 .057 .049 .374 .710 .063 .173 .832 .081 .091 .371 .700 .097 −.734 .995 .359 .923 2.46 .395

10 .25 0 0 .011 .494 .045 .036 .001 .349 .037 .007 .383 .026 .055 −.033 .348 .074 −.008 .176 .068 .037 1.42 .471
20 .25 0 0 −.003 .446 .052 .036 .004 .329 .040 .003 .376 .024 .050 −.050 .327 .073 −.002 .146 .061 .136 .672 .293
50 .25 0 0 .008 .402 .056 .040 .013 .342 .042 .001 .375 .025 .055 −.078 .344 .074 −.002 .131 .056 −.008 .361 .124

10 .25 0 1 .033 .635 .057 .058 .048 .744 .050 .022 .589 .040 .052 −.163 .639 .191 −.011 .213 .085 .390 1.38 .468
20 .25 0 1 .023 .662 .049 .048 .081 .844 .048 .018 .613 .040 .054 −.240 .672 .209 .004 .183 .069 .142 .686 .301
50 .25 0 1 .000 .742 .047 .045 .135 .991 .042 .013 .688 .046 .048 −.321 .729 .221 −.003 .167 .065 −.004 .373 .133

10 .75 0 0 .024 1.27 .053 .029 −.013 .811 .040 .020 .901 .039 .026 −.127 .832 .054 −.140 .762 .126 2.79 7.59 .717
20 .75 0 0 .051 1.29 .047 .031 .002 .804 .046 .012 .889 .034 .026 −.151 .827 .050 −.018 .443 .080 1.12 3.26 .546
50 .75 0 0 .024 1.08 .062 .030 .009 .794 .041 .003 .882 .031 .028 −.186 .839 .054 −.009 .361 .054 .219 1.31 .273

10 .75 0 1 .030 1.23 .054 .045 .049 .972 .044 .049 1.24 .046 .080 −.215 1.02 .053 −.473 1.64 .276 2.78 7.50 .717
20 .75 0 1 .046 1.29 .055 .041 .061 1.03 .038 .048 1.09 .043 .070 −.242 1.03 .052 −.086 .613 .130 1.06 3.27 .533
50 .75 0 1 −.009 1.25 .051 .044 .126 1.17 .038 .040 .989 .045 .071 −.166 1.11 .054 −.012 .483 .077 .269 1.28 .251

Notes. The results are based on 4000 Monte Carlo draws. ‘‘Bias’’ corresponds to the mean bias, multiplied by
√
NT ; ‘‘RMSE’’ denotes the Root Mean

quared Error, multiplied by
√
NT ; ‘‘t’’ denotes the empirical rejection frequencies of the Wald test-statistic under the null H0 : β = 1, whereas

‘J’’ corresponds to the empirical rejection frequencies of the overidentifying restrictions test statistic (where applicable). In both cases the nominal
evel is set at 5%. ‘‘L-GMM’’ and ‘‘NL-GMM’’ make use of averaged moment conditions and are defined in Eq. (33); ‘‘L-GMM-S’’ and ‘‘NL-GMM-S’’ are
he counterparts based on stacked moment conditions and they are defined in Eq. (41). ϑ denotes the proportion of the variation of the total error
hat is due to the purely idiosyncratic disturbance, and is defined in Eq. (87). µf denotes the expected value of ft . In all designs presented, we fix
λ = 0, µπ = −1, µλd = 1, α = αf = 0.5 and δ = 0.4, where α (αf ) denotes the autoregressive parameter in the DGP for xi,t (ft ), while δ denotes
he coefficient of the lagged value of yi,t in the DGP for xi,t .

f = {0; 2}. When µf = 0, identification of β is feasible only by using time-varying weights; for µf = 2 both time-
nvariant and time-varying weights can be informative. Finally, we consider N = {50; 200; 500} and T = {10; 20; 50}.
he number of replications equals 4000 for each design.

.2. Comments

We study the performance of all GMM estimators developed in the present paper. In particular, we present results
or the two-step linear and nonlinear estimators based on averaged estimating equations, denoted as ‘‘L-GMM’’ and ‘‘NL-
MM’’, which are defined in Eq. (33) with ξ = L and ξ = NL respectively. We also present results for ‘‘L-GMM-S’’
nd ‘‘NL-GMM-S’’, which denote the linear and nonlinear GMM counterparts based on stacked estimating equations and
re defined in Eq. (41). As a benchmark, we also consider two popular least-squares methods, namely the bias-corrected
MLE estimator (BC-QMLE) of Moon and Weidner (2017) and the bias-corrected CCE estimator (BC-CCE) of Pesaran (2006)
nd Chudik and Pesaran (2015a). The results are reported in Tables 1–3 in terms of mean bias and RMSE (both multiplied
y

√
NT ), as well as rejection frequencies of the t-test statistic. For the GMM estimators based on averaged moment

conditions, we also report results on the overidentifying restrictions J-test statistic. For both test statistics, nominal size
s set equal to 5%.

All GMM estimators are implemented using two instruments in each time period, z i,t = (xi,t , xi,t−1)′, and three sets of
weights qi,t = (1, xi,t−1, xi,t−2)′. The time-invariant weight is used for both instruments, while the time-varying weights
are used in pairs such that for zi,t = xi,t we set qi,t = xi,t−1, whereas for zi,t = xi,t−1 we set qi,t = xi,t−2. Thus the total
number of moment conditions employed for the estimators that make use of averaged (stacked) estimating equations
equals 4 (4T ). Starting values for the nonlinear GMM estimators are based on the estimates provided by the linear GMM
estimators, as well as the two-step (FIVU) GMM estimator developed by Robertson and Sarafidis (2015).

The CCE estimator approximates the factors using cross-sectional averages of all observables, namely (yi,t , xi,t , di,t )′.
Thus, given our GDP the rank condition is always satisfied. In order to account for the time-series bias due to weak
exogeneity of the regressor, we follow the suggestion by Chudik and Pesaran (2015a) and Juodis et al. (2021) and
19
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imulation results, N = 50.
Designs L-GMM L-GMM-S NL-GMM NL-GMM-S BC-QMLE BC-CCE

T ϑ µf φ Bias RMSE t J Bias RMSE t Bias RMSE t J Bias RMSE t Bias RMSE t Bias RMSE t

10 .25 2 0 .034 .307 .067 .024 .039 .255 .026 .020 .278 .079 .017 −.030 .257 .066 −.052 .188 .091 −.110 2.29 .425
20 .25 2 0 .022 .278 .068 .020 .030 .212 .028 .013 .271 .095 .015 −.031 .220 .067 −.030 .126 .069 −.042 1.20 .260
50 .25 2 0 .014 .279 .073 .022 .048 .191 .029 .018 .236 .087 .017 −.009 .195 .056 −.019 .102 .067 .023 .694 .147

10 .25 2 1 .069 .325 .094 .072 .377 .592 .114 .089 .346 .113 .100 .088 .379 .149 −.146 .424 .117 −.031 2.23 .408
20 .25 2 1 .035 .281 .071 .045 .489 .685 .135 .061 .315 .103 .083 .149 .366 .180 −.060 .193 .066 −.060 1.22 .269
50 .25 2 1 −.003 .261 .068 .046 .694 .902 .168 .027 .282 .084 .059 .267 .385 .265 −.037 .144 .067 .027 .706 .156

10 .75 2 0 .068 .932 .062 .013 .011 .767 .029 .112 .659 .067 .016 −.120 .633 .082 −3.99 5.43 .610 −.159 7.24 .608
20 .75 2 0 .023 .941 .065 .017 .017 .588 .028 .093 .747 .072 .018 −.076 .540 .076 −.672 1.60 .243 .002 3.54 .431
50 .75 2 0 .031 .888 .067 .018 .035 .512 .027 .041 .822 .068 .019 −.022 .486 .063 −.162 .382 .142 .418 1.79 .249

10 .75 2 1 .160 .814 .100 .040 .353 .746 .064 .361 .800 .167 .114 .313 .683 .266 −5.13 5.74 .902 −.251 7.27 .610
20 .75 2 1 .089 .781 .091 .035 .454 .780 .078 .355 .862 .153 .091 .420 .725 .315 −2.29 3.14 .585 −.083 3.56 .436
50 .75 2 1 .063 .754 .083 .038 .690 .965 .102 .309 .934 .131 .082 .662 .914 .382 −.429 .858 .195 .411 1.77 .249

10 .25 0 0 .009 .529 .058 .017 .001 .350 .026 .007 .335 .021 .023 −.105 .346 .080 −.002 .173 .073 .155 1.06 .373
20 .25 0 0 .013 .555 .064 .021 .004 .348 .026 −.001 .380 .014 .020 −.111 .342 .077 −.004 .147 .057 .023 .554 .209
50 .25 0 0 .008 .468 .063 .027 .021 .363 .026 .008 .423 .019 .026 −.119 .358 .086 −.004 .132 .058 −.061 .369 .128

10 .25 0 1 .027 .666 .070 .038 .105 .656 .049 .012 .581 .045 .084 −.203 .523 .259 −.010 .211 .078 .149 1.06 .373
20 .25 0 1 .031 .699 .063 .035 .147 .741 .039 .008 .604 .038 .077 −.223 .572 .316 −.005 .181 .063 .037 .580 .238
50 .25 0 1 .036 .819 .059 .036 .284 .923 .045 .011 .590 .038 .078 −.212 .617 .308 .000 .160 .058 −.054 .395 .148

10 .75 0 0 .018 1.42 .061 .020 −.032 .816 .030 .023 .842 .015 .012 −.287 .826 .066 −.124 .714 .107 1.25 4.22 .540
20 .75 0 0 .000 1.39 .073 .020 −.012 .798 .038 .039 .849 .012 .015 −.259 .808 .068 −.028 .428 .077 .455 1.95 .347
50 .75 0 0 −.011 1.28 .071 .021 .000 .832 .033 .016 .667 .014 .017 −.221 .825 .052 −.009 .367 .062 .094 .984 .153

10 .75 0 1 .051 1.31 .080 .035 .100 .896 .038 .125 1.08 .044 .028 −.169 .890 .084 −.229 1.15 .225 1.23 4.07 .532
20 .75 0 1 .037 1.41 .069 .035 .140 .947 .034 .140 1.33 .041 .037 −.110 .889 .084 −.041 .610 .117 .418 1.92 .331
50 .75 0 1 .043 1.58 .071 .037 .274 1.09 .038 .224 1.48 .035 .036 .053 .965 .102 −.006 .477 .076 .071 .976 .151

Notes. See Table 1.

Table 3
Simulation results, N = 500.
Designs L-GMM L-GMM-S NL-GMM NL-GMM-S BC-QMLE BC-CCE

T ϑ µf φ Bias RMSE t J Bias RMSE t Bias RMSE t J Bias RMSE t Bias RMSE t Bias RMSE t

10 .25 2 0 .026 .279 .048 .044 .009 .256 .038 .021 .279 .065 .064 −.047 .262 .052 −.143 .253 .181 −.039 5.09 .715
20 .25 2 0 .009 .247 .050 .043 .013 .209 .041 .008 .259 .071 .056 −.039 .220 .046 −.088 .155 .133 −.026 2.29 .540
50 .25 2 0 .007 .230 .053 .044 .012 .178 .038 .006 .198 .070 .055 −.040 .197 .043 −.051 .109 .093 .326 .957 .298

10 .25 2 1 .028 .291 .053 .075 .109 .475 .047 .026 .270 .044 .072 −.121 .406 .062 −.324 .551 .289 −.073 5.01 .720
20 .25 2 1 .013 .240 .049 .051 .140 .435 .044 .013 .235 .047 .061 −.099 .355 .065 −.177 .271 .200 −.114 2.31 .546
50 .25 2 1 .005 .220 .041 .050 .208 .435 .062 .006 .210 .041 .058 −.026 .317 .076 −.096 .167 .114 .307 .969 .288

10 .75 2 0 .044 .863 .046 .038 −.027 .708 .039 .519 .856 .058 .067 −.127 .742 .047 −12.8 15.7 .808 −.174 2.91 .853
20 .75 2 0 .017 .768 .044 .036 −.003 .581 .041 .057 .643 .044 .053 −.083 .612 .044 −1.08 1.87 .626 −.163 9.20 .745
50 .75 2 0 −.004 .712 .046 .039 .011 .510 .036 .022 .577 .051 .056 −.043 .535 .046 −.460 .556 .376 1.45 3.38 .548

10 .75 2 1 .149 .876 .066 .059 .116 .711 .038 .335 1.01 .094 .069 .072 .713 .057 −17.3 17.5 .996 −.990 2.93 .852
20 .75 2 1 .049 .739 .054 .045 .138 .624 .035 .232 .783 .063 .061 .113 .622 .054 −7.46 8.43 .924 .285 9.20 .748
50 .75 2 1 .032 .683 .049 .044 .214 .597 .045 .131 .507 .043 .067 .208 .597 .058 −1.12 1.32 .644 1.55 3.41 .556

10 .25 0 0 .009 .468 .049 .059 .011 .362 .042 .004 .372 .063 .062 .003 .362 .075 −.017 .176 .071 .632 1.96 .584
20 .25 0 0 −.001 .450 .051 .054 .006 .337 .043 .000 .356 .061 .059 −.007 .338 .077 −.001 .147 .058 .264 .901 .405
50 .25 0 0 −.003 .405 .052 .054 .003 .341 .049 .000 .341 .060 .056 −.016 .342 .072 .001 .130 .056 .035 .406 .161

10 .25 0 1 .005 .648 .044 .068 .028 .763 .040 .002 .623 .055 .053 −.058 .709 .131 −.022 .225 .092 .678 1.99 .613
20 .25 0 1 .007 .636 .048 .050 .025 .870 .046 .001 .745 .051 .054 −.113 .798 .153 −.012 .179 .065 .215 .892 .401
50 .25 0 1 .008 .711 .048 .049 .112 1.01 .041 .001 .784 .051 .058 −.157 .866 .152 .000 .160 .059 .040 .399 .168

10 .75 0 0 .007 1.20 .046 .044 −.004 .812 .045 .002 .833 .052 .058 −.032 .816 .053 −.190 1.02 .187 4.33 11.4 .823
20 .75 0 0 −.025 1.20 .043 .044 −.019 .799 .047 .000 .847 .050 .058 −.068 .814 .046 −.048 .459 .086 1.66 4.98 .664
50 .75 0 0 .010 1.01 .048 .048 −.004 .782 .049 .000 .855 .050 .063 −.102 .821 .047 .002 .362 .052 .441 1.79 .395

10 .75 0 1 .011 1.27 .061 .051 −.007 .990 .049 .006 1.21 .052 .078 −.149 1.02 .052 −.709 2.14 .332 4.36 11.6 .810
20 .75 0 1 .033 1.21 .050 .049 .083 1.08 .050 .004 1.16 .051 .075 −.127 1.07 .049 −.109 .675 .152 1.76 5.04 .662
50 .75 0 1 −.010 1.22 .047 .049 .076 1.19 .043 .000 1.17 .050 .074 −.218 1.14 .051 −.029 .470 .076 .428 1.77 .399

Notes. See Table 1.

we implement the half-panel jackknife approach of Dhaene and Jochmans (2015). Motivated by the empirical findings
of Juodis et al. (2021), we do not attempt to correct for the Op(1/N) bias of the CCE estimator. On the other hand, the
BC-QMLE estimator is implemented using the analytical bias-correction result given by Corollary 4.5 in Moon and Weidner
20
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2017).28 The choice of the bandwidth, B, is based on the Monte Carlo results presented in Tables 1–2 in Moon andWeidner
2017); thus, we set B = {3, 4, 5} for T = {10, 20, 50} respectively.

.3. Results

At first we focus on the results corresponding to N = 200, reported in Table 1.29

• (Estimation) The linear GMM estimator based on averaged moment conditions, L-GMM, has negligible bias in all
designs. A similar result holds for the remaining GMM estimators, albeit the bias is occasionally slightly larger in
magnitude. For instance, for T = 10, ϑ = 0.75, µf = 2 and φ = 1 the finite-sample bias (multiplied by

√
NT ) of

NL-GMM equals 0.374, which implies an average estimate of β roughly equal to 1.004. In the majority of designs, the
bias of BC-QMLE and BC-CCE is larger in magnitude than that of GMM. For BC-QMLE the bias exacerbates when T is
relatively small, µf = 2 and ϑ = 0.75, in which case most of the variation in the total error is due to the idiosyncratic
error component. This result is not surprising, and it is tantamount to saying that numerical estimation of the factors
(and factor loadings) requires a large enough signal coming from the factor component of the error. However, we
note that the bias of BC-QMLE diminishes quickly as T grows. On the other hand, for BC-CCE the bias manifests
mainly when T is relatively small, ϑ = 0.75 but µf = 0. As with BC-QMLE, the bias of the estimator tends to
diminish in samples with larger values of T .
In regards to RMSE, the performance of linear and nonlinear GMM is similar. Typically, for small values of T GMM
estimators with stacked moment conditions have smaller dispersion than their counterparts that are based on
averaged moment conditions. This implies that unless there are substantial differences in bias, L-GMM-S and NL-
GMM-S tend to achieve a smaller RMSE value compared to L-GMM and NL-GMM. However, for T = 50 such
differences mostly disappear. BC-QMLE performs best in terms of RMSE, unless T is small and/or the bias of
the estimator is very large. BC-CCE appears to have a substantially larger dispersion compared to the remaining
estimators, unless T = 50. Therefore, BC-CCE typically performs less well in terms of RMSE, even in those cases
where the bias of the estimator is small.

• (Inference) For the linear GMM estimators, the size of the t-test is close to its nominal value in all cases, albeit
‘‘L-GMM-S’’ occasionally exhibits some minor downward size distortions. The nonlinear GMM estimators perform
satisfactorily as well, with some occasional upward distortions the reflect the finite-sample bias observed in
the corresponding designs. BC-QMLE and BC-CCE exhibit severe size distortions in most designs. However, these
distortions become smaller with higher values of T , although for BC-CCE empirical size often exceeds 20% even
when T = 50.30 Thus in general, inference appears to be more reliable for GMM estimators.
In terms of the rejection frequencies of the J-test statistic, which is only applicable to GMM based on averaged
moment conditions, the performance is satisfactory with only minor size distortions observed.

The results for N = 50 and N = 500 are plausible and in accordance with the aforementioned observations for
N = 200. As expected, the performance of all estimators improves (deteriorates) with larger (smaller) values of N . For
N = 50, BC-QMLE dominates in terms of RMSE even in cases where T is small, unless it has a very large bias. On the
other hand, for N = 500 the performance of GMM and BC-QMLE is of similar magnitude. In general, in comparison
to least-squares based procedures, the performance of the GMM estimators appears to be stable and satisfactory across
different designs.

7. Concluding remarks

This paper puts forward a novel Method of Moments approach for factor-augmented panels, which is consistent for
any value of T . Our approach is motivated by the increasing availability of panels in which the value of T is not negligible.
Currently, existing fixed T GMM procedures require estimation of O(T ) nuisance parameters in order to control for the
unobserved factors. Consequently, theoretical analysis of such methods becomes intractable even for moderate values of
T .

The proposed approach gives rise to estimators that are free from incidental parameters by construction. In particular,
we combine two key elements: (i) a quasi-differencing transformation that removes the unobserved factor loadings from
he error; and (ii) an approximation of the unknown factors, based either on observed data or on the composite error term
f the model. The latter has an exact factor structure once evaluated at the true value of the slope parameters. Essentially,
hese two elements allow us to estimate explicitly a fixed number of parameters, regardless of the size of N or T .

We put forward two alternative GMM estimators; one is based on a constant number of ‘‘averaged moment conditions’’
la Anderson and Hsiao (1982), whereas the other one makes use of ‘‘stacked moment conditions’’, the total number
f which increases at the rate of O(T ). We demonstrate that the former estimator is consistent and asymptotically

28 We are grateful to Martin Weidner for providing to us the computational algorithm for the BC-QMLE estimator.
29 To save space, we do not present results for the intermediate case φ = 0.5 below. These results are available upon request.
30 For this reason, it is recommended to use bootstrap-based inference for CCE, as suggested in Juodis et al. (2021) in order to fix some of these
distortions.
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ixed-normal as N → ∞ for any value of T . The latter remains consistent and asymptotically mixed-normal, although,
nsurprisingly, it can be subject to an asymptotic bias proportional to T/N due to the use of ‘‘many moment conditions’’.
The proposed approach can be extended to a wide range of models, motivated by either the micro- or macro-

econometric literature. These include non-parametric models (e.g. Su and Jin, 2012), models with spatial dependence
(Kuersteiner and Prucha, 2020), unit root tests (Robertson et al., 2018), smooth transition and structural breaks (Qian and
Su, 2016), inference in partially identified panels with common factors (e.g. Hong et al., 2019), to mention only a few.

Appendix A. Proofs

A.1. Definition of matrices in the main text

The matrices A1,t , A2,t and A3,t , introduced in Section 5.2.2 of the main text, are defined as follows:

A1,t =

[
f xt−2ft EF [εxi,tε

x
i,t+1] + f xt ft+1 EF [εxi,t−2ε

x
i,t ] − f xt−2ft+1 EF [(εxi,t )

2
] − f xt ft EF [εxi,t−2ε

x
i,t+1]

f xt−2ft EF [εxi,t−1ε
x
i,t+1] + f xt−1ft+1 EF [εxi,t−2ε

x
i,t ] − f xt−2ft+1 EF [εxi,t−1ε

x
i,t ] − f xt−1ft EF [εxi,t−2ε

x
i,t+1]

]
; (A.1)

A2,t =

[
f xt−2f

x
t EF [εxi,tε

x
i,t+1] + f xt f

x
t+1 EF [εxi,t−2ε

x
i,t ] − f xt−2f

x
t+1 EF [(εxi,t )

2
] − f xt f

x
t EF [εxi,t−2ε

x
i,t+1]

f xt−2f
x
t EF [εxi,t−1ε

x
i,t+1] + f xt−1f

x
t+1 EF [εxi,t−2ε

x
i,t ] − f xt−2f

x
t+1 EF [εxi,t−1ε

x
i,t ] − f xt−1f

x
t EF [εxi,t−2ε

x
i,t+1]

]
; (A.2)

A3,t =

[
EF [εxi,t−2ε

x
i,t ] EF [εxi,tε

x
i,t+1] − EF [εxi,t−2ε

x
i,t+1] EF [(εxi,t )

2
]

EF [εxi,t−2ε
x
i,t ] EF [εxi,t−1ε

x
i,t+1] − EF [εxi,t−2ε

x
i,t+1] EF [εxi,t−1ε

x
i,t ]

]
. (A.3)

A1,t represents the Jacobian matrix of the moment conditions at time t , divided by the scalar EF [πiλi], for the model
considered in Section 5.2.2. A2,t and A3,t enter into the Hessian matrix of the moment conditions for the same model.

A.2. Notation

Before proceeding with derivations define:

∆f ε
(ξ )
i,t+1 = ftε

(ξ )
i,t+1 − ft+1ε

(ξ )
i,t , (A.4)

ξ ∈ {L;NL}, where ε(L)i,s = εdi,s, ε
(NL)
i,s = εi,s, for s = {t; t + 1}.

A.3. Auxiliary lemmas

Lemma 2. Let {ψi,t}
N,T
i=1,t=1 and {ζi,t}

N,T
i=1,t=1 be two F conditionally independent random sequences such that: (i) ED[ψi,t ] = 0,

and ED[ζi,t ] = 0; (ii) EF [|ψi,t |
2
] < Ξ and ED[|ζi,t |

2+δ
] < Ξ , δ > 0; (iii) {ζi,t}

N,T
i=1,t=1 is a D-conditional α-mixing sequence

satisfying
∑

∞

m=0 αi(m)1−
2

2+δ . Then for all (i, j) with i ̸= j:

ED[ψi,tζj,t ] = 0, (A.5)

ED

⎡⎣( 1
√
T

T∑
t=1

ψi,tζj,t

)2
⎤⎦ < Ξ , (A.6)

for some finite constant Ξ .

Lemma 3. Let {ψi,t}
N,T
i=1,t=1 be F conditionally independent random sequences such that EF [ψi,t ] = 0 and EF [|ψi,t |

r
] < Ξ .

Then, as N, T → ∞ with T/N → ρ ∈ [0; ∞),

√
NT

1
T

T∑
t=1

(ψ t )
r
= oP (1), (A.7)

for r ∈ {3; 4}, where ψ t = N−1∑N
i=1 ψi,t .

Remark 14. Using the generalized Hölder’s inequality, this conclusion applies to any collection of random variables
(ψ (1)

i,t , ψ
(2)
i,t , ψ

(3)
i,t , ψ

(4)
i,t ).
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P
s

N

C

T

roof of Lemma 2. The first claim follows immediately by conditional F independence and ED[ζi,t ] = 0. As for the
econd claim, observe that:

ED

⎡⎣( 1
√
T

T∑
t=1

ψi,tζj,t

)2
⎤⎦ =

⏐⏐⏐⏐⏐⏐ED
⎡⎣( 1

√
T

T∑
t=1

ψi,tζj,t

)2
⎤⎦⏐⏐⏐⏐⏐⏐

=

⏐⏐⏐⏐⏐ 1T
T∑

t=1

T∑
s=1

ED[ψi,tζj,tψi,sζj,s]

⏐⏐⏐⏐⏐
=

⏐⏐⏐⏐⏐ 1T
T∑

t=1

T∑
s=1

ED[ψi,tψi,s] ED[ζj,tζj,s]

⏐⏐⏐⏐⏐
≤

1
T

T∑
t=1

T∑
s=1

Ξ
⏐⏐ED[ζj,tζj,s]

⏐⏐
< ΞC . (A.8)

Here in the third line we make use of conditional independence. The fourth line follows from the triangle inequality
and application of the Cauchy–Schwarz inequality using the moment restriction on ED[|ψi,t |

2
] < Ξ . Finally, the last line

follows by the Davydov’s inequality, where C is a constant that depends on α(m) and ED[|ζi,t |
4+δ

] only. □

Proof of Lemma 3. We prove this result using the Markov’s inequality. In particular, it is sufficient to show that

EF

[⏐⏐⏐⏐⏐√NT
1
T

T∑
t=1

(ψ t )
r

⏐⏐⏐⏐⏐
]

→ 0, (A.9)

as N, T → ∞. To show this we will make use of several known inequalities. In particular, by the triangle inequality:

EF

[⏐⏐⏐⏐⏐√NT
1
T

T∑
t=1

(ψ t )
r

⏐⏐⏐⏐⏐
]

≤ (NT )1/2
1
T

T∑
t=1

EF [|ψ t |
r
]. (A.10)

ext, observe that because EF [ψi,t ] = 0 and EF [|ψi,t |
r
] < Ξ the Rosenthal’s inequality is applicable so that:

EF [|ψ t |
r
] ≤ ΞN−r/2. (A.11)

ollecting all terms:

EF

[⏐⏐⏐⏐⏐√NT
1
T

T∑
t=1

(ψ t )
r

⏐⏐⏐⏐⏐
]

≤ Ξ

(
T
N

) 1
2

N−
(r−2)

2 . (A.12)

he conclusion follows immediately after imposing the condition on T/N , as r > 2. □

A.4. Averaged moment conditions

Proof of Lemma 1. The estimating equations can be written as follows:

m(ξ )
t (β) =

1
N2

N∑
i=1

N∑
j=1

[
w

(ξ )
j,t,t+1z i,t

(
yi,t − β′xi,t

)
− w

(ξ )
j,t,tz i,t

(
yi,t+1 − β′xi,t+1

)]
, (A.13)

where

w
(ξ )
i,t,t = qi,t

(
λ
(ξ )
i ft + ε

(ξ )
i,t

)
; w

(ξ )
i,t,t+1 = qi,t

(
λ
(ξ )
i ft+1 + ε

(ξ )
i,t+1

)
,

with λ(L)i = λdi , λ
(NL)
i = λi, ε

(L)
i,t = εdi,t and ε

(NL)
i,t = εi,t . Evaluating (A.13) at β0, we can expand this expression as

m(ξ )
t (β0) =

1
N2

N∑
i=1

N∑
j=1

(
w

(ξ )
j,t,t+1z i,t

(
εi,t + λift

)
− w

(ξ )
j,t,tz i,t

(
εi,t+1 + λift+1

))

=
1
N2

N∑(
w

(ξ )
i,t,t+1z i,t

(
εi,t + λift

)
− w

(ξ )
i,t,tz i,t

(
εi,t+1 + λift+1

))

i=1
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r

w
i

e

H

+
1
N2

N∑
i=1

N∑
j̸=i

(
w

(ξ )
j,t,t+1z i,t

(
εi,t + λift

)
− w

(ξ )
j,t,tz i,t

(
εi,t+1 + λift+1

))
= m(ξ )(1)

t + m(ξ )(2)
t . (A.14)

Let us consider the expectation of the second component first:

ED[m(ξ )(2)
t ] =

1
N2

N∑
i=1

N∑
j̸=i

(
ED[w

(ξ )
j,t,t+1] ED[z i,t

(
εi,t + λift

)
] − ED[w

(ξ )
j,t,t ] ED[z i,t

(
εi,t+1 + λift+1

)
]

)
=

1
N2

N∑
i=1

N∑
j̸=i

(
ED[qj,tλ

(ξ )
j ft+1] ED[z i,tλift ] − ED[qj,tλ

(ξ )
j ft ] ED[z i,tλift+1]

)
=

1
N2

N∑
i=1

N∑
j̸=i

ft ft+1

(
ED[qj,tλ

(ξ )
j ] ED[z i,tλi] − ED[qj,tλ

(ξ )
j ] ED[z i,tλi]

)
= 0D, (A.15)

ecalling that Dt = D. The first equality makes use of the random sampling assumption, whereas for the second equality

e use (Appendix A.4), together with Assumption 3.1 (d). The existence (and boundedness)
o
f ED[z i,tλi] and ED[qj,tλ

(ξ )
i ]

s guaranteed by Assumption 3.1 (b). Finally, the last two equalities follow by measurability of ft with respect to D.
Next, we turn our attention to the first component, which contains all ‘‘own’’ terms i = j. Using Eq. (Appendix A.4) we

xpand m(ξ )(1)
t as follows:

m(ξ )(1)
t =

8∑
s=1

m(ξ )(1.s)
t , (A.16)

where

m(ξ )(1.1)
t =

1
N2

N∑
i=1

qi,tλ
(ξ )
i ft+1z i,tεi,t; m(ξ )(1.2)

t =
1
N2

N∑
i=1

qi,tλ
(ξ )
i ft+1z i,tλift;

m(ξ )(1.3)
t =

1
N2

N∑
i=1

qi,tε
(ξ )
i,t+1z i,tεi,t; m(ξ )(1.4)

t =
1
N2

N∑
i=1

qi,tε
(ξ )
i,t+1z i,tλift;

m(ξ )(1.5)
t = −

1
N2

N∑
i=1

qi,tλ
(ξ )
i ftz i,tεi,t+1; m(ξ )(1.6)

t = −
1
N2

N∑
i=1

qi,tλ
(ξ )
i ftz i,tλift+1;

m(ξ )(1.7)
t = −

1
N2

N∑
i=1

qi,tε
(ξ )
i,t z i,tεi,t+1; m(ξ )(1.8)

t = −
1
N2

N∑
i=1

qi,tε
(ξ )
i,t z i,tλift+1.

It is easily seen that m(ξ )(1.2)
t + m(ξ )(1.6)

t = 0. Moreover, for the nonlinear estimator specifically, we also have

m(NL)(1.1)
t + m(NL)(1.8)

t = 0D; (A.17)
m(NL)(1.3)

t + m(NL)(1.7)
t = 0D; (A.18)

m(NL)(1.4)
t + m(NL)(1.5)

t = 0D. (A.19)

ence, in this case m(NL)(1)
t = 0D.

On the other hand, for the linear the remaining 6 terms have non-negligible expectations. At the same time one can
show that all conditional and unconditional expectations are well defined. Take m(L)(1.3)

t as an example. For each row of
m(L)(1.3)(p)

t , p = 1, . . . ,D, we have

EF [|m(L)(1.3)(p)
t |] ≤

1
N2

N∑
i=1

EF [|qi,tεdi,t+1z
(p)
i,t εi,t |] ≤

1
N2

N∑
i=1

Ξ = N−1Ξ = O(N−1), (A.20)

where the second inequality follows from the generalized Hölder’s inequality and the fact that all elements have a finite
4 + δ moment. Boundedness of conditional expectations also implies that the corresponding unconditional expectations
are bounded. Similarly, it can be shown that EF [|m(L)(1.s)(p)

t |] = O(N−1) for s = 1, 4, 5, 7, 8, p = 1, . . . ,D. Combining all
terms together, we obtain

E[m(L)(1)
] = O(N−1). (A.21)
t
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D

Notice that some of these expectations are zero if one restricts attention to time-invariant (strictly exogenous) weights.
For example:

ED
[
m(L)(1.1)

t

]
=

1
N2

N∑
i=1

ED
[
qiλdi ft+1z i,t ED[εi,t |z i,t , vi]

]
= 0D; (A.22)

ED
[
m(L)(1.5)

t

]
= −

1
N2

N∑
i=1

ED
[
qiλdi ftz i,t ED[εi,t+1|z i,t , vi]

]
= 0D. □ (A.23)

Proof of Theorem 1. We break down the proof of this theorem into four distinct steps:

1. Establish negligibility of the bias term;
2. Derive the leading term of the asymptotic expansion;
3. Show consistency of the estimator;
4. Derive asymptotic distribution of the estimator.

To avoid notational clutter, we set D = K = 1, unless specified otherwise. In what follows we extensively use the mixing
inequalities due to Davydov and Yokoyama, see e.g. Section 1.4 in Doukhan (1994).

Step 1. Using the decomposition in Lemma 1 we express:

m̃
(ξ )

(β0) = m̃
(ξ )(1)

+ m̃
(ξ )(2)

. (A.24)

ue to the fact that we use the jackknifed version of the objective function, the first component m̃
(ξ )(1)

containing
own-terms i = j is zero by construction.

Step 2. Expand

m̃
(ξ )(2)

=

8∑
s=1

m̃
(ξ )(2.s)

, (A.25)

where

m̃
(ξ )(2.1)

=
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j ft+1z i,tεi,t; m̃

(ξ )(2.2)
=

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j ft+1z i,tλift;

m̃
(ξ )(2.3)

=
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tε
(ξ )
j,t+1z i,tεi,t; m̃

(ξ )(2.4)
=

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tε
(ξ )
j,t+1z i,tλift;

m̃
(ξ )(2.5)

= −
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j ftz i,tεi,t+1; m̃

(ξ )(2.6)
= −

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j ftz i,tλift+1;

m̃
(ξ )(2.7)

= −
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tε
(ξ )
j,t z i,tεi,t+1; m̃

(ξ )(2.8)
= −

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tε
(ξ )
j,t z i,tλift+1.

Clearly, m̃
(ξ )(2.2)

+ m̃
(ξ )(2.6)

= 0. We combine the remaining 6 terms into three distinct pairs:

m̃
(ξ )(2.1+2.5)

= −
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j z i,t∆f εi,t+1; (A.26)

m̃
(ξ )(2.3+2.7)

=
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

z i,t
(
qj,tε

(ξ )
j,t+1εi,t − qj,tεdj,tεi,t+1

)
; (A.27)

m̃
(ξ )(2.4+2.8)

=
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

λiz i,tqj,t∆f ε
(ξ )
j,t+1 =

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

λjz j,tqi,t∆f ε
(ξ )
i,t+1. (A.28)

Firstly, we have

m̃
(ξ )(2.1+2.5)

= −
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,tλ
(ξ )
j z i,t∆f εi,t+1

= −
1

NN1T1

N∑ N∑ T1∑
EF [qj,tλ

(ξ )
j ]z i,t∆f εi,t+1 −

1
NN1T1

N∑ N∑ T1∑
∆g (ξ )

(q),j,tz i,t∆f εi,t+1
i=1 j̸=i t=1 i=1 j̸=i t=1
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= −
1

NT1

N∑
i=1

T1∑
t=1

EF [qi,tλ
(ξ )
i ]z i,t∆f εi,t+1 −

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

∆g (ξ )
(q),j,tz i,t∆f εi,t+1

= m̃
(ξ )(2.1+2.5)
(1) + m̃

(ξ )(2.1+2.5)
(2) . (A.29)

Here we define∆g (ξ )
(q),j,t = qj,tλ

(ξ )
j −EF [qj,tλ

(ξ )
j ]. We show that once scaled by

√
NT1 the second component is asymptotically

negligible, i.e.√
NT1 m̃

(ξ )(2.1+2.5)
(2) = oP (1). (A.30)

To show this we will make use of Lemma 2. In particular, as EF [∆g (ξ )
(q),j,t ] = 0 and

ED
[
z i,t∆f εi,t+1

]
= ED

[
z i,t ED[∆f εi,t+1|vi, z i,t ]

]
= 0, (A.31)

the first assertion of that lemma holds. To make use of the second result we note that m̃
(ξ )(2.1+2.5)
(2) can be symmetrized as

follows:

m̃
(ξ )(2.1+2.5)
(2) =

1
NN1

√
T1

N∑
i=2

(q(ξ )(1)
i,N + q(ξ )(2)

i,N ) =
1

NN1
√
T1

N∑
i=2

∑
j<i

(q(ξ )(1)
i,j + q(ξ )(2)

i,j ) =
1

NN1
√
T1

N∑
i=2

∑
j<i

q(ξ )
i,j . (A.32)

Here we define

q(ξ )(1)
i,j =

1
T1

T1∑
t=1

z i,t∆f εi,t+1∆g (ξ )
(q),j,t; (A.33)

q(ξ )(2)
i,j =

1
T1

T1∑
t=1

z j,t∆f εj,t+1∆g (ξ )
(q),i,t . (A.34)

Moreover, irrespective of the value for T it follows that ED[q(ξ )(1)
i,N q(ξ )(1)

j,N ] = 0 and ED[q(ξ )(2)
i,N q(ξ )(2)

j,N ] = 0 for i ̸= j. Next, we
argue that√

NT1 m̃
(ξ )(2.1+2.5)
(2) =

1

N1
√
N

N∑
i=2

∑
j<i

q(ξ )
i,j = oP (1). (A.35)

In particular, consider the variance of q(ξ )(1)
i,N (the corresponding result for q(ξ )(2)

i,N follows analogously):

Σ q(ξ )(1),N = ED

⎡⎣( 1
N

N∑
i=2

q(ξ )(1)
i,N

)2
⎤⎦ =

1
N2

N∑
i=2

ED

⎡⎢⎣
⎛⎝∑

j<i

q(ξ )(1)
i,j

⎞⎠2
⎤⎥⎦ =

1
N2

N∑
i=2

∑
j<i

ED

[(
q(ξ )(1)
i,j

)2]
, (A.36)

where the final equality holds by conditional independence. It remains to show that under our assumptions ED

[(
q(ξ )(1)
i,j

)2]
are bounded by some constant Ξ . Observe that for all (i, j) we have

q(ξ )(1)
i,j =

1
√
T1

T1∑
t=1

(z i,t∆f εi,t+1)∆g (ξ )
(q),j,t =

1
√
T1

T1∑
t=1

ζi,tψ
(ξ )
j,t ; (A.37)

q(ξ )(2)
i,j =

1
√
T1

T1∑
t=1

(z j,t∆f εj,t+1)∆g (ξ )
(q),i,t =

1
√
T1

T1∑
t=1

ζj,tψ
(ξ )
i,t . (A.38)

Here ψ (ξ )
j,t = ∆g (ξ )

(q),j,t by Assumption 3.1 satisfies EF [ψ
(ξ )
j,t ] = 0 and ED[|ψ

(ξ )
j,t |

2
] < Ξ . Moreover, ζi,t = z i,t∆f εi,t+1 satisfies

ED[ζi,t ] = 0 and ED[|ζi,t |
2+δ

] < Ξ . In addition, by assumption ζi,t is a conditional mixing sequence with µ = 3(r + δ)/δ

and r = 4. Thus, as all elements have a finite 4 + δ moment, by Lemma 2 it follows that ED

[(
q(ξ )(1)
i,j

)2]
< Ξ .

The remaining two components can be analyzed analogously. In particular:√
NT1 m̃

(ξ )(2.3+2.7)
=

1
N1

√
NT1

N∑
i=1

N∑
j̸=i

T1∑
t=1

qj,t
(
ε
(ξ )
j,t+1z i,tεi,t − ε

(ξ )
j,t z i,tεi,t+1

)
= oP (1), (A.39)

by conditional independence between (i, j) and the fact that all i and j random variables have zero expectations conditional
on D.
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Finally, we consider m̃
(ξ )(2.4+2.8)

. As previously, we define the following random variable ∆g (z),j,t = z j,tλj − EF [z j,tλj],
uch that m̃

(ξ )(2.4+2.8)
can be expanded as follows:

m̃
(ξ )(2.4+2.8)

=
1

NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

λjz j,tqi,t∆f ε
(ξ )
i,t+1

=
1

NT1

N∑
i=1

T1∑
t=1

EF [z i,tλj]qi,t∆f ε
(ξ )
i,t+1 +

1
NN1T1

N∑
i=1

N∑
j̸=i

T1∑
t=1

∆g (z),j,tqi,t∆f ε
(ξ )
i,t+1

= m̃
(ξ )(2.4+2.8)
(1) + m̃

(ξ )(2.4+2.8)
(2) . (A.40)

Since the second component has mean-zero, one can use identical steps to those used previously in establishing that
m̃

(ξ )(2.4+2.8)
(2) is negligible. In particular, we have

√
NT1 m̃

(ξ )(2.4+2.8)
=

1
√
NT1

N∑
i=1

T1∑
t=1

EF [z i,tλj]qi,t∆f ε
(ξ )
i,t+1 + oP (1)

=
1

√
NT1

N∑
i=1

T1∑
t=1

EF [z i,tλj]qi,t∆f ε
(ξ )
i,t+1 + oP (1). (A.41)

Collecting all terms:√
NT1 m̃

(ξ )
(β0) =

1
√
NT1

N∑
i=1

T1∑
t=1

EF [qi,tλ
(ξ )
i ]z i,t

(
ft+1εi,t − ftεi,t+1

)
−

1
√
NT1

N∑
i=1

T1∑
t=1

EF [z i,tλi]qi,t
(
ft+1ε

(ξ )
i,t − ftε

(ξ )
i,t+1

)
+ oP (1)

=
1

√
N

N∑
i=1

√
T1µ

(ξ )
i,T + oP (1). (A.42)

Next we establish F stable convergence of the leading term in
√
NT1 m̃

(ξ )
(β0). Denote by Di the σ -field generated by

(F ∨ {Υ j}
i
j=1 ∨ {Kj}

i
j=1), where Υ j and vj are defined in Assumption 3.1. Then {

√
T1µ

(ξ )
i,T ,Di : i ≥ 1} is a Martingale

Difference sequence (element-wise), as by Assumption 3.1 all unit-specific variables are independent conditionally on F .
Also, let

Ω (ξ )
T =

1
N

N∑
i=1

E
[
T1µ

(ξ )
i,T

(
µ

(ξ )
i,T

)′

|Di−1

]
= EF

[
T1µ

(ξ )
i,T

(
µ

(ξ )
i,T

)′
]
, (A.43)

and Ω (ξ )
= plimT→∞ Ω (ξ )

T . Using Theorem 3.2. and Corollary 3.1 in Hall and Heyde (1980) in conjunction with the
Cramér-Wold device, yields√

NT1 m̃
(ξ )

(β0) ⇒
(
Ω (ξ ))1/2 ψ (stably), (A.44)

here ψ ∼ N(0D, ID). This result holds provided that each element µ(ξ )(p)
i,T for p = 1, . . . ,D of µ(ξ )

i,T satisfies the conditional
Lindeberg’s condition:

N−1
N∑
i=1

EF [|
√
T 1µ

(ξ )(p)
i,T |

2
I(|

√
T 1µ

(ξ )(p)
i,T | >

√
Nε)], for all ε > 0. (A.45)

Given that the conditional Lyapunov’s condition implies the conditional Lindeberg’s condition, it is sufficient that
EF [|

√
T 1µ

(ξ )(p)
i,T |

2+δ
] < ∞ for some arbitrary δ > 0. In our case this moment bound can be directly verified using

Yokoyama’s inequality for zero mean conditional mixing processes. Furthermore, by construction stable convergence
implies F-stable convergence.

Step 3. The proof of consistency is fairly standard along the lines of Newey and McFadden (1994). Sufficient conditions
are satisfied based on uniform convergence and global identification over a compact set Θ by Assumption 3.3.

Step 4. Asymptotic distribution can be obtained by expanding the first-order conditions around the true value as in
Eq. (34):

WN,T m̃
(ξ )

(̂β) = WN,T

(
m̃

(ξ )
(β0) +

(
Γ̃

(ξ )
+

1
2

K∑
H̃

(ξ )

k (̂βk − β0,k)

)
(̂β − β0)

)
. (A.46)
k=1
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his expansion is exact because the moment conditions are at most quadratic. Our assumptions ensure that plimN,T→∞

Γ̃
(ξ )

and plimN,T→∞ H̃
(ξ )

k , are finite and F measurable. Given that convergence in probability implies convergence in
istribution, the remainder of the proof follows directly from Proposition A.2 in Kuersteiner and Prucha (2013) and an
pplication of the continuous mapping theorem. □

.5. Stacked moment conditions

roof of Theorem 2. Analogous to the corresponding proof of Theorem 1, the result of this theorem can shown based
n the following four distinct steps:

1. Analyze the bias term originating from ‘‘own’’ terms at i = j;
2. Derive the leading term of the asymptotic expansion;
3. Show consistency of the estimator;
4. Derive asymptotic distribution of the estimator.

s steps 3 and 4 are identical to those in Theorem 1, we mainly focus on steps 1 and 2. As in Theorem 1 we set K = D = 1,
but continue using the vector and matrix notation unless it creates confusion. Finally, as the derivations for the nonlinear
approach are identical to those in the linear approach, except for a larger number of negligible remainder terms, we
provide the complete proof for the linear approach only.

Notice that the Jacobian matrix at time t can be decomposed as follows:

Γ
(ξ )
t = Γ (ξ )

t +
1
N
B(ξ )
t +

1
N

N∑
i=1

–Z (ξ )(1)
i,t +

1
N2

N∑
i=1

–Z (ξ )(2)
i,t + R(ξ )

Γ ,N,t . (A.47)

Here Γ (ξ )
t is the expected Jacobian matrix as defined in Eq. (43), while B(ξ )

t is a F-measurable ‘‘bias’’ matrix. For the linear
approach this is given by:

B(L)
t = EF

[
(qi,tdi,t − EF [qi,tdi,t ])(zi,tx′

i,t+1 − EF [zi,tx′

i,t+1])
]

− EF
[
(qi,tdi,t+1 − EF [qi,tdi,t+1])(zi,tx′

i,t − EF [zi,tx′

i,t ])
]
. (A.48)

The influence functions –Z (ξ )(1)
i,t and –Z (ξ )(2)

i,t satisfy the conditional mean restriction of the form:

EF
[
–Z (ξ )(1)
i,t

]
= OZ×K ; (A.49)

EF
[
–Z (ξ )(2)
i,t

]
= OZ×K . (A.50)

However, in general it is not true that the above conditions hold conditional on D. Finally, the remainder term is of the
form:

R(ξ )
Γ ,N,t =

1
N2

C∑
c=1

N∑
i=1

N∑
i̸=j

v
(c)
i,t (w

(c)
j,t )

′, (A.51)

where EF [v
(c)
i,t ] = 0D and EF [w

(c)
i,t ] = 0K for all i = 1, . . . ,N and t = 1, . . . , T . The value of C depends on ξ ; in particular,

for ξ = L we have C = 2, while for ξ = NL, C = 4. The exact form of v(c)i,t and w(c)
i,t also depends on ξ , however these

terms are asymptotically negligible and so they can be ignored.
Next, using the proof of Lemma 1 and Theorem 1 we can similarly expand vector of estimating equations:

m(ξ )
t (β0) =

1
N
b(ξ )
t +

1
N

N∑
i=1

µ
(ξ )
i,t +

1
N2

N∑
i=1

--z (ξ )(2)i,t + r (ξ )m,N,t . (A.52)

As it was shown in Theorem 1, the leading term µ
(ξ )
i,t , satisfies:

ED
[
µ

(ξ )
i,t

]
= 0D. (A.53)

On the other hand, in general, for the other influence function only the condition EF [--z (ξ )(2)i,t ] = 0 is satisfied. Finally, the
remainder term is of the form:

r (ξ )m,N,t =
1
N2

R∑
r=1

N∑
i=1

N∑
i̸=j

o(r)
i,t u

(r)
j,t , (A.54)

here for each r = 1, . . . , R either ED[o(c)
i,t ] = 0 or ED[u(c)

i,t ] = 0 or both. This is an important distinction between
the remainder term of the estimating equations, and that of the Jacobian. In total, R = 4 irrespective of the approach
considered.
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The leading term in the asymptotic expansion of the first-order conditions is given by

l(ξ )N,T =
1
T1

T1∑
t=1

(
Γ

(ξ )
t

)′

m(ξ )
t (β0). (A.55)

his result is shown in Step 4.
We expand l(ξ )N,T into a sum of 20 distinct components as follows,

l(ξ )N,T =

5∑
ℓ1=1

4∑
ℓ2=1

l(ξ )(ℓ1.ℓ2)N,T , (A.56)

nd analyze every term individually. Here we adopt the convention that ℓ1 corresponds to the order of the element in
q. (A.47), while ℓ2 corresponds to Eq. (A.52).
The ‘‘numerator’’ of the incidental parameters bias term b(ξ )IP

T ,F is determined from:

l(ξ )(1.1)N,T =
1

NT1

T1∑
t=1

(
Γ (ξ )

t

)′

st =
1
N
s(ξ )IPT ,F . (A.57)

he leading variance term is given by:

l(ξ )(1.2)N,T =
1

NT1

N∑
i=1

T1∑
t=1

(
Γ (ξ )

t

)′

µ
(ξ )
i,t =

1
N

N∑
i=1

µ
(ξ )MMT
i,T . (A.58)

The ‘‘numerator’’ of the many-moments bias term b(ξ )MMT
T ,F is determined from the following component:

l(ξ )(3.2)N,T =
1
N

1
NT1

N∑
i=1

N∑
j=1

T1∑
t=1

(
–Z (ξ )(1)
i,t

)′

µ
(ξ )
j,t

=
1
N

1
T1

T1∑
t=1

EF

[(
–Z (ξ )(1)
i,t

)′

µ
(ξ )
j,t

]

+
1

N
√
N

1
√
N

N∑
i=1

1
T1

T1∑
t=1

((
–Z (ξ )(1)
i,t

)′

µ
(ξ )
i,t − EF

[(
–Z (ξ )(1)
i,t

)′

µ
(ξ )
i,t

])

+
1
N

1
NT1

N∑
i=1

N∑
i̸=j

T1∑
t=1

(
–Z (ξ )(1)
i,t

)′

µ
(ξ )
j,t

=
1
N
s(ξ )MMT
T ,F + oP ((NT1)−1/2). (A.59)

he final result follows upon appropriately defining s(ξ )MMT
T ,F . The negligibility of the second component is established

sing the Chebyshev’s inequality, paired with the fact that T/N → ρ ∈ [0; ∞). The negligibility of the third component
is established using the symmetrization argument used in Theorem 1. Notice that here we can use the symmetrization
argument as ED[µ

(ξ )
i,t ] = 0D.

It remains to show that all other 17 components are of order oP ((NT1)−1/2). The negligibility of the remaining
components can be directly established based on one of the following approaches:

1. using the Markov’s/Chebyshev’s inequality for the terms denoted by superscripts (1.3), (2.1), (2.2),
(2.3), (1.3), (3.3), (4.1), (4.2), (4.3), (5.1).

2. symmetrization as in Theorem 1 for the terms (1.4), (2.4).
3. Lemma 3 for the terms (3.4), (4.4), (5.2), (5.3), (5.4).

Combining everything we conclude that√
NT1

(
l(ξ )N,T −

1
N

(
s(ξ )IPT ,F + s(ξ )MMT

T ,F

))
=

1
√
N

N∑
i=1

√
T1µ

(ξ )MMT
i,T + oP (1). (A.60)

table convergence of the leading term can be established in a similar fashion as in Theorem 1.
Step 3. The proof of consistency is analogous to Theorem 1. Thus β̂

(ξ )
MMT − β0 = oP (1).

Step 4. It remains to confirm that
√
NT

(
β̂
(ξ )

− β
)

= O (1).
1 MMT 0 P
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Analogous to Steps 1–2, one can show that for all k = 1, . . . , K :√
NT1

1
T1

T1∑
t=1

(
H

(ξ )
t,k

)′

m(ξ )
t (β0) = OP (1). (A.61)

The estimator β̂ (we drop the subscript MMT, as well as the superscript (ξ ) when the notation is unambiguous) solves
he first order conditions:

1
T1

T1∑
t=1

(
Γ

(ξ )
t (̂β)

)′

m(ξ )
t (̂β) = 0D, (A.62)

here

Γ
(ξ )
t (̂β) = Γ

(ξ )
t +

K∑
k=1

H
(ξ )
t,k (̂βk − β0,k). (A.63)

ence the first order conditions can be expanded as follows:

1
T1

T1∑
t=1

(
Γ

(ξ )
t (̂β)

)′
(
m(ξ )

t (β0) +
1
2

(
Γ

(ξ )
t (̂β) + Γ

(ξ )
t

)
(̂β − β0)

)
= 0D. (A.64)

Re-arranging terms and using (A.63):

−
1
2

(
1
T1

T1∑
t=1

(
Γ

(ξ )
t (̂β)

)′ (
Γ

(ξ )
t (̂β) + Γ

(ξ )
t

))√
NT1 (̂β − β0) =

√
NT1
T1

T1∑
t=1

(
Γ

(ξ )
t

)′

m(ξ )
t (β0)

+

K∑
k=1

(̂βk − β0,k)
√
NT1
T1

T1∑
t=1

(
H

(ξ )
t,k

)′

m(ξ )
t (β0). (A.65)

otice that all products of the form

1
T1

T1∑
t=1

(Γ
(ξ )
t )′(Γ

(ξ )
t );

1
T1

T1∑
t=1

(Γ
(ξ )
t )′(H

(ξ )
t,k);

1
T1

T1∑
t=1

(H
(ξ )
t,k)

′(H
(ξ )
t,k),

ave well-defined probability limits by Assumption 3.6. This fact combined with consistency of the estimator implies that

−

(
1
T1

T1∑
t=1

(
Γ

(ξ )
t

)′

Γ
(ξ )
t + oP (1)

)√
NT1 (̂β

(ξ )
− β0) =

√
NT1
T1

T1∑
t=1

(
Γ

(ξ )
t

)′

m(ξ )
t (β0) + oP (1). (A.66)

rom here the final result follows upon defining

b(ξ )IP
T ,F =

(
Γ (ξ )

MMT

)−1
s(ξ )IPT ,F ; (A.67)

b(ξ )MMT
T ,F =

(
Γ (ξ )

MMT

)−1
s(ξ )MMT
T ,F . □ (A.68)

roof of Proposition 1. In terms of global identification, observe that

G(NL)(β) = plim
N,T→∞

1
T1

T1∑
t=1

(
m(NL)

t (β) − E[m(NL)
t (β)]

)′ (
m(NL)

t (β) − E[m(NL)
t (β)]

)
+ plim

N→∞

E[m(NL)
t (β)]′ E[m(NL)

t (β)]

= G(NL)
(1) (β) + m(NL)(β)′m(NL)(β). (A.69)

he conclusion follows by noting that G(NL)(β) ≥ m(NL)(β)′m(NL)(β), with an equality iff G(NL)
(1) (β) = 0. The proof for local

dentification is similar and therefore it is omitted. □

.6. Variance–covariance matrix estimation

roof of Theorem 3. We split this proof into two parts. At first we prove the result for ξ = L, followed by ξ = NL. As in
heorem 1 we set K = D = 1, but continue using the vector and matrix notation unless it creates confusion.
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Let ∆f xi,t+1 = ftxi,t+1 − ft+1xi,t . We use the ∆ notation (without any subscript or superscript) to denote the deviations
of the estimates from the corresponding true values, e.g. ∆̂εi,s = ε̂i,s − εi,s, ∆ĝ (z),t,s = ĝ (z),t,s − g (z),t,s, and ∆β̂ = β̂ − β0.

For both approaches:

∆̂εi,s = εi,s + λifs − x′

i,s∆β̂; (A.70)

∆ĝ (z),t,s =
1
N

N∑
i=1

(
z i,tλi − EF [z i,tλi]

)
fs +

1
N

N∑
i=1

z i,tεi,s −

(
1
N

N∑
i=1

z i,tx′

i,s

)
∆β̂. (A.71)

Define ∆g (z),i,t = z i,tλi − EF [z i,tλi], Q (zx),i,t,s = z i,tx′

i,s, Q (zε),i,t,s = z i,tεi,s, Q (z∆x),i,t,s = z i,t∆f x′

i,s, Q (z∆ε),i,t,s = z i,t∆f εi,s.
lso let ∆g (z),t , Q (zx),t,s, Q (zε),t,s and Q (z∆ε),t,s define the corresponding cross-sectional averages.

Proof outline. Using the proof of Theorem 1 it is easy to show that:

1
N

√
T1

N∑
i=1

T1∑
t=1

µ̂
(ξ )
i,t = oP (1). (A.72)

hus, without any loss of generality, we prove this theorem for the un-centered version of the covariance matrix estimator:

Ω̂
(ξ )

(̂β) =
1
N

N∑
i=1

(
1

√
T1

T1∑
t=1

µ̂
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

µ̂
(ξ )
i,t

)′

. (A.73)

This expression can be conveniently expanded as

Ω̂
(ξ )

(̂β) = EF

⎡⎣( 1
√
T1

T1∑
t=1

µ
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

µ
(ξ )
i,t

)′
⎤⎦

+
1
N

N∑
i=1

⎡⎣( 1
√
T1

T1∑
t=1

µ
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

µ
(ξ )
i,t

)′

− EF

⎡⎣( 1
√
T1

T1∑
t=1

µ
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

µ
(ξ )
i,t

)′
⎤⎦⎤⎦+ RΩ

= Ω (ξ )
+ oP (1) + oP (1) + RΩ . (A.74)

Here the first oP (1) term is a by-product of Eq. (36), while the second oP (1) term follows from Chebyshev’s inequality.
The last term is of the form

RΩ =
1
N

N∑
i=1

(
1

√
T1

T1∑
t=1

∆µ̂
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

∆µ̂
(ξ )
i,t

)′

+
1
N

N∑
i=1

(
1

√
T1

T1∑
t=1

µ
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

∆µ̂
(ξ )
i,t

)′

+
1
N

N∑
i=1

(
1

√
T1

T1∑
t=1

∆µ̂
(ξ )
i,t

)(
1

√
T1

T1∑
t=1

µ
(ξ )
i,t

)′

. (A.75)

ere ∆µ̂(ξ )
i,t can be expressed as a sum of two distinct components∆µ̂(ξ )

i,t = (µ̃(ξ )
i,t −µ

(ξ )
i,t )+(µ̂(ξ )

i,t −µ̃
(ξ )
i,t ). The first component

denoted as ∆µ̃(ξ )
i,t ) is present purely due to the cross-sectional sampling uncertainty and is present even if β̂ = β0. The

econd component can be expanded as follows:

µ̂
(ξ )
i,t − µ̃

(ξ )
i,t = ∆̃Φ(ξ )

i,t ∆β̂ +

K∑
k=1

∆̃H (ξ )
i,t,k∆β̂∆β̂k. (A.76)

ere for the linear approach we have ∆̃H (L)
i,t,k = OZ×K ,31 as under our assumptions

E ∥
1

√
T1

T1∑
t=1

µ
(ξ )
i,t ∥ = O(1). (A.77)

o show that RΩ = oP (1) it is sufficient to show that

E ∥
1

√
T1

T1∑
t=1

∆µ̃
(ξ )
i,t ∥

2
∞

= o(1); (A.78)

31 Note that the implicit dependence on N is suppressed in the definition of all i specific variables.
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E ∥
1

√
T1

T1∑
t=1

∆̃Φ(ξ )
i,t ∥

2
max = o(NT1); (A.79)

E ∥
1

√
T1

T1∑
t=1

∆̃H (ξ )
i,t,k∥

2
max = o((NT1)2). (A.80)

hese bounds paired with Markov’s and Hölder’s inequalities (element-wise) will deliver the desired result. Here the
pecific choice of vector and matrix norms is for notational convenience and is largely inconsequential for our results as
ll matrices are finite dimensional.

inear approach: ξ = L. For the linear approach we also note that

∆̂εdi,s = λdi fs; (A.81)

∆ĝ (L)
(q),t,s =

1
N

N∑
i=1

(
qi,tλdi − EF [qi,tλdi ]

)
fs +

1
N

N∑
i=1

qi,tεdi,s. (A.82)

urthermore, let ∆g (L)
(q),i,t = qi,tλdi −EF [qi,tλdi ], and define Q (L)

(qε),i,t,s = qi,tεdi,s, Q
(L)
(q∆ε),i,t,s = qi,t∆f ε

d
i,s, whereas ∆g (L)

(q),t , Q
(L)
(qε),t,s

nd Q
(L)
(q∆ε),t,s denote the corresponding cross-sectional averages. At first we consider the deviation from the infeasible

stimator:

∆µ̃
(L)
i,t = z i,tλiQ

(L)
(q∆ε),t,t+1 − qi,tλdi Q (z∆ε)t,t+1 +∆g (z),tqi,t∆f ε

d
i,t −∆g (L)

(q),tz i,t∆f εi,t

+ Q
(L)
(qε),t,t+1z i,tεi,t − Q (zε),t,t+1qi,tε

d
i,t + Q (zε),t,tqi,tε

d
i,t+1 − Q

(L)
(qε),t,tz i,tεi,t+1

=

8∑
s=1

∆µ̃
(L)(s)
i,t . (A.83)

or the linear approach the matrix in Eq. (A.76) is of the form

∆̃Φ(L)
i,t = EF [qi,tλdi ]z i,t∆f x′

i,t+1 +∆g (L)
(q),tz i,t∆f x′

i,t+1 + Q (z∆x),t,t+1qi,tλ
d
i

+ Q
(L)
(qε),t,t+1z i,tx

′

i,t − Q
(L)
(qε),t,tz i,tx

′

i,t+1 + Q (zx),t,t+1qi,tε
d
i,t − Q (zx),t,tqi,tε

d
i,t+1

=

7∑
ℓ=1

∆̃Φ(L)(ℓ)
i,t . (A.84)

Given that ∥∆β̂∥ = OP ((NT1)−1/2) by Theorem 1 for the final result it is sufficient to show that for all s, ℓ:

E ∥
1

√
T1

T1∑
t=1

∆µ̃
(L)(s)
i,t ∥

2
∞

= o(1); (A.85)

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(ℓ)
i,t ∥

2
max = o(NT1). (A.86)

e will consider all components individually.

E ∥
1

√
T1

T∑
t=1

∆µ̃
(L)(1)
i,t ∥

2
∞

=
1

N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

N∑
k=1

E
[
λ2i z i,tz i,τqj,t∆f ε

d
j,t+1qk,τ∆f ε

d
k,τ+1

]
=

1
N2T1

T1∑
t=1

T1∑
τ=1

E
[
λ2i z i,tz i,τqi,t∆f ε

d
i,t+1qi,τ∆f ε

d
i,τ+1

]
+

1
N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

E
[
λ2i z i,tz i,τqj,t∆f ε

d
j,t+1qj,τ∆f ε

d
j,τ+1

]
= O

(
T1N−2)

+ O(N−1). (A.87)

Here in the third line we used the Law of Iterated Expectations (LIE), conditional independence and the assumption that
ED[∆f ε

d
j,t+1qj,τ ] = 0. The final line follows from Assumption 3.1 with r ≥ 6 (applied for the first component) and Lemma 2

(for the second component) as ∆f ε
d
j,t+1qj,τ is a zero-mean conditional mixing sequence. The same idea can be used for

s = 2, 5, 6, 7, 8 to show that the corresponding rates are O
(
T N−2

)
+ O(N−1).
1
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For the remaining two components the derivations need to be slightly modified.

E ∥
1

√
T1

T1∑
t=1

∆µ̃
(L)(3)
i,t ∥

2
∞

=
1

N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

N∑
k=1

E
[
qi,t∆f ε

d
i,t+1qi,τ∆f ε

d
i,τ+1∆g (z),j,t∆g (z),k,τ

]
=

1
N2T1

T1∑
t=1

T1∑
τ=1

E
[
qi,t∆f ε

d
i,t+1qi,τ∆f ε

d
i,τ+1∆g (z),i,t∆g (z),i,τ

]
+

1
N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

E
[
qi,t∆f ε

d
i,t+1qi,τ∆f ε

d
i,τ+1∆g (z),j,t∆g (z),j,τ

]
= O

(
T1N−2)

+ O(N−1). (A.88)

s with s = 1, one can use the same arguments to establish the corresponding order of magnitude, but here ∆f ε
d
i,t+1qi,τ is

he zero-mean conditional mixing sequence necessary to apply the result of Lemma 2. Notice that for this result to hold,
t is sufficient that r = 8. It is not difficult to see that the same idea can be used for s = 4. As a result,

E ∥
1

√
T1

T1∑
t=1

∆µ̃
(L)(s)
i,t ∥

2
∞

= O
(
T1N−2)

+ O(N−1) = o(1), (A.89)

for all s, provided that T1N−2
→ 0 as N, T → ∞. It is easy to see that the same proof strategy can be used to show

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(ℓ)
i,t ∥

2
max = o(1), ℓ = 4, 5. (A.90)

ll other terms need to be analyzed differently. For example,

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(1)
i,t ∥

2
max =

1
T1

T1∑
t=1

T1∑
τ=1

E[EF [qi,tλdi ]z i,t∆f xi,t+1 EF [qi,τλdi ]z i,τ∆f xi,τ+1]

= O(T1). (A.91)

oreover,

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(2)
i,t ∥

2
max =

1
N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

N∑
k=1

E
[
z i,t∆f xi,t+1z i,τ∆f xi,τ+1∆g(q),j,t∆g(q),k,τ

]
=

1
N2T1

T1∑
t=1

T1∑
τ=1

E
[
z i,t∆f xi,t+1z i,τ∆f xi,τ+1∆g(q),i,t∆g(q),i,τ

]
+

1
N2T1

T1∑
t=1

T1∑
τ=1

N∑
j=1

E
[
z i,t∆f xi,t+1z i,τ∆f xi,τ+1∆g(q),j,t∆g(q),j,τ

]
= O

(
T1N−2)

+ O(T1N−1). (A.92)

Here in the third line we used the Law of Iterated Expectations (LIE), conditional independence and the assumption
that EF [∆g(q),j,t ] = 0. The final line follows from Assumption 3.1 with r ≥ 6 for the second component. Note that as
ED[∆g(q),j,t ] ̸= 0, Lemma 2 does not apply, hence the O(T1N−1) rate for the second component.

For ℓ = 3 note that

∆̃Φ(L)(3)
i,t =

(
Q (z∆x),t,t+1 − EF [z i,t∆f xi,t+1]

)
qi,tλdi + EF [z i,t∆f xi,t+1]qi,tλdi . (A.93)

or the first part we can use the corresponding result from ℓ = 1, while for the second part the result from ℓ = 2. Thus

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(3)
i,t ∥

2
max = O(T1). (A.94)

inally, for ℓ = 6 consider a similar expansion:

∆̃Φ(L)(6)
i,t =

(
Q (zx),t,t+1 − EF [z i,txi,t+1]

)
qi,tεdi,t + EF [z i,txi,t+1]qi,tεdi,t

= ∆̃Φ(L)(6.1)
i,t + ∆̃Φ(L)(6.2)

i,t . (A.95)
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E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(6.2)
i,t ∥

2
max =

1
T1

T1∑
t=1

T1∑
τ=1

E[EF [z i,txi,t+1]qi,tεdi,t EF [z i,τxi,τ+1]qi,τ εdi,τ ]

= O(1). (A.96)

Here we use the fact that ED[EF [z i,txi,t+1]qi,tεdi,t ] = 0 and that qi,tεdi,t is a conditional mixing sequence. On the other hand,
∆̃Φ(L)(6.1)

i,t can be analyzed analogously to ∆µ̃(L)(3)
i,t . Thus,

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)(6)
i,t ∥

2
max = O(1) + O(T1N−2) + O(N−2). (A.97)

For ℓ = 7 the derivations are equivalent. As a result, we conclude that

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(L)
i,t ∥

2
max = O(T1) = o(NT1), (A.98)

s long as N → ∞.
Notice that all T1N−2 contributions originate from ‘‘own’’ terms due to the potential correlation between elements in

he estimates ĝ and all i specific random variables. Hence, if one uses individual specific estimates ĝ i then the result of
his theorem follows without the additional restriction T1N−2

→ 0.

Nonlinear approach: ξ = NL. For the nonlinear approach we note that some of the above derived results continue to hold
upon noticing that εdi,t = εi,t and λdi = λi. Moreover, at first we expand estimated quantities around the corresponding
true values:

∆̂εdi,s = εi,s + λifs − x′

i,s∆β̂; (A.99)

∆ĝ (q),t,s =
1
N

N∑
i=1

(
qi,tλi − EF [qi,tλi]

)
fs +

1
N

N∑
i=1

qi,tεi,s −

(
1
N

N∑
i=1

qi,tx′

i,s

)
∆β̂. (A.100)

Hence, the deviation from the infeasible estimator is given by

∆µ̃
(NL)
i,t = z i,tλiQ (q∆ε),t,t+1 − qi,tλiQ (z∆ε),t,t+1 +∆g (z)qi,t∆f εi,t −∆g (q)z i,t∆f εi,t

+ Q (qε),t,t+1z i,tεi,t − Q (zε),t,t+1qi,tεi,t + Q (zε),t,tqi,tεi,t+1 − Q (qε),t,tz i,tεi,t+1

= z i,tλiQ (q∆ε),i,t,t+1 − qi,tλiQ (z∆ε),i,t,t+1 +∆g (z),iqi,t∆f εi,t −∆g (q),iz i,t∆f εi,t

+ Q (qε),i,t,t+1z i,tεi,t − Q (zε),i,t,t+1qi,tεi,t + Q (zε),i,t,tqi,tεi,t+1 − Q (qε),i,t,tz i,tεi,t+1

=

8∑
s=1

∆µ̃
(NL)(s)
i,t . (A.101)

Here we use subscript i on cross-sectional averages to denote the corresponding delete-one versions, e.g.

Q (q∆ε),i,t,t+1 =
1
N

∑
j̸=i

qj,t∆f εj,t+1, (A.102)

nd so on. Because of the automatic correction for own terms, it is easy to show that

E ∥
1

√
T1

T1∑
t=1

∆µ̃
(NL)(s)
i,t ∥

2
∞

= O(N−1) = o(1), (A.103)

for all s. As a result, all contributions are asymptotically negligible without any restrictions on relative rates of N and T .
The first-order contribution in Eq. (A.76) is of the form

∆̃Φ(NL)
i,t = EF [qi,tλi]z i,t∆f x′

i,t+1 +∆g (q),tz i,t∆f x′

i,t+1 + qi,tλiQ (z∆x),t,t+1

+ Q (qε),t,t+1z i,tx
′

i,t − Q (qε),t,tz i,tx
′

i,t+1 + Q (zx),t,t+1qi,tεi,t − Q (zx),t,tqi,tεi,t+1

− EF [z i,tλi]qi,t∆f x′

i,t+1 −∆g (z),tqi,t∆f x′

i,t+1 − z i,tλiQ (q∆x),t,t+1

− Q (zε),t,t+1qi,tx
′

i,t + Q (zε),t,tqi,tx
′

i,t+1 − z i,tQ (qx),t,t+1εi,t + z i,tQ (qx),t,tεi,t+1

=

14∑
∆̃Φ(NL)(ℓ)

i,t . (A.104)

ℓ=1
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inally, consider the second-order contribution in Eq. (A.76):

∆̃H (NL)
i,t,k = z i,tx

(k)
i,t Q (qx),t,t+1 − z i,tx

(k)
i,t+1Q (qx),t,t − qi,tx

(k)
i,t Q (zx),t,t+1 + qi,tx

(k)
i,t+1Q (zx),t,t

= z i,tx
(k)
i,t Q (qx),i,t,t+1 − z i,tx

(k)
i,t+1Q (qx),i,t,t − qi,tx

(k)
i,t Q (zx),i,t,t+1 + qi,tx

(k)
i,t+1Q (zx),i,t,t

=

4∑
s=1

∆̃H (NL)(s)
i,t,k . (A.105)

sing steps similar to those used to bound ∆̃Φ(L)(s)
i,t , one can show that

E ∥
1

√
T1

T1∑
t=1

∆̃Φ(NL)
i,t ∥

2
max = O(T1) = o(NT1); (A.106)

E ∥
1

√
T1

T1∑
t=1

∆̃H (NL)
i,t,k∥

2
max = O(T1) = o(NT1). □ (A.107)

ppendix B. Supplementary data

Supplementary material related to this article can be found online at https://doi.org/10.1016/j.jeconom.2021.03.011.
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