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ABSTRACT

We study time-varying risk premia across international bond-
and equity markets by running predictive regressions of excess
returns. We find that the single factor of Cochrane and Piazzesi
(2005) and global factor of Dahlquist and Hasseltoft (2013)
have lost some of their predictive power in later years, but
they both individually and jointly predict excess bond returns
across countries. The deterioration of yield-based predictors
suggests that there are other important factors that drive risk
premia. Finally, our results indicate that investors’ required
risk compensation is related to international business cycles.

This thesis is a part of the MSc programme at BI Norwegian Business
School. The school takes no responsibility for the methods used, results

found, or conclusions drawn.
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1 Introduction and Motivation

For decades, the Expectation Hypothesis (EH) of the term structure of in-

terest rates has been a core hypothesis within portfolio theory, asset pricing

theory, and hedging theory. By definition, the Expectation Hypothesis states

that long-term rates are entirely determined by current- and expected future

short-rates, which restricts risk premium to be zero or at least constant over

time. Thus, the theory rejects the existence of time-varying risk premia. In

this thesis, we will focus on predictability of bond risk premia by running re-

gressions of excess returns on term structure-related variables such as yields,

spot rates, and forward rates. Excess return predictability and time-varying

risk premia are two sides of the same coin, both violating the Expectations

Hypothesis (Veronesi, 2016), hence, obtaining significant slope coefficients in

such regressions are essentially evidence of time-varying risk premia.

It is beyond us to derive new and improved models on this topic. However,

we seek to test predictability of bond risk premia for a chosen set of

economies and study drivers of yield dynamics from an international

perspective by running regressions containing combinations of well-known

factors that evidently describe bond return variations. First, we will consider

running classic Fama and Bliss (1987, (FB)) regressions and Cochrane and

Piazzesi (2005, (CP)) regressions on the US economy to test whether their

methodologies still hold in modern financial data. Then, we will extend their

research to account for additional countries and test whether risk premia is

predictable outside the US. Further, our empirical analysis on international

bond risk premia will be built on Dahlquist and Hasseltoft (2013) who

provided evidence for time-varying risk premia across four international

markets. Finally, we study whether factors from bond risk premia

incorporates any predictive information about local stock markets.

1
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From an academic perspective, studying bond risk premia is interesting as it

is closely linked to why required risk compensation varies over time. The topic

has gained increased interest over the last decade with an ever-growing body

of literature approaching the topic from different angles. Seminal publications

such as Fama and Bliss (1987), Cochrane and Piazzesi (2005) and Dahlquist

and Hasseltoft (2013), suggests that an investor, on average, can expect profits

through long-term investments in bonds and funding the strategy through

short-term borrowings. Further, institutional investors such as asset managers

or fixed income portfolio managers can use bond risk premia to know whether

they should have shorter or longer duration in their portfolio. A high-risk

premium tells us that we should invest in longer-term bonds, and vice versa.

Other uses of studying bond risk premia extend to monetary policy and se-

curity comparison. Central banks shape the future expectations of interest

rates through short-term rates which ultimately affect bond premia, and in-

vestors use it to get a better perspective on where they could expect better

risk-adjusted returns, and what asset classes to outweigh respectively to others.

Both institutional and non-institutional investors can benefit from this.

In summary, we wish to test:

(1) Excess return predictability on US government bonds for updated data

motivated by Cochrane and Piazzesi (2005).

(2) Test predictability of international risk premia by applying the methodol-

ogy of Dahlquist and Hasseltoft (2013).

(3) Test whether term structure factors for bond return predictability also

contain predictive power for stock returns.

2
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2 Related Literature

The Expectations Hypothesis is a classic term structure theory that was first

introduced by Frederick R. Macaulay in 1938 (Sangvinatsos, 2010). The hy-

pothesis states that the current forward rates reflect the future expected short-

term rates, and thus restrict the liquidity premium to be either zero or constant

over time. However, literature that documents the failure of the Expectation

Hypothesis goes back to the 1980s. Fama and Bliss (1987) and Campbell and

Shiller (1991) found that forward rates did not predict future short rates on

a one-year horizon, but rather forecasts excess returns as well as changes in

interest rates at longer horizons.

The approach of regressing excess returns on forward rates as predictive vari-

ables was later adopted by Cochrane and Piazzesi (2005) who strengthened

the evidence against the Expectation Hypothesis by defining a single factor

of multiple US bond yields rather than single yields with specific maturities.

Interestingly, this single factor (CP factor) is almost uncaptured by the three

classical principal components (level, slope and curvature) which seems to ex-

plain almost all variation in yields (e.g. Litterman and Scheinkman (1991)).

This conclusion raised the question on how factors based on interest rates can

explain so much of the variation in risk premia while having such a small

effect on the cross-section of yields. Duffee (2011) challenged this common

belief that term structure dynamics are driven by factors represented as func-

tions of yields. He found a hidden factor that goes unrecognized in standard

term structure models that offsets the effects of risk premia and thereby the

expectation of future interest rates, which leaves the three principal compo-

nents largely unaffected. This implies that there are certain elements within

future bond returns that seem to be unrelated interest rates. This was fur-

ther documented by Ludvigson and Ng (2009) who found that macroeconomic

3
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fundamentals in the US, in addition to yield-based factors, contain important

forecasting power for bond returns.

While the majority of literature shows highly significant and robust results

for the US, the international evidence is mixed. For instance, Hardouvelis

(1994) and Bekaert and Hodrick (2001) found little evidence against the Ex-

pectation Hypothesis internationally, whereas Dahlquist and Hasseltoft (2013)

found that country-specific factors and a common global factor both individ-

ually and jointly predict international risk premia. Wright (2011) found indi-

cations of a declining global risk premia since the 1990s through decomposing

cross-sections of international yields and portrays this result as a consequence

of uncertainty in monetary policy and inflation.

Although the term structure of interest rates embodies the foundation of finan-

cial markets, the literature that links equity market returns to bond returns

has been limited, but increasing over the last decades. Fama and French (1989)

found that three factors (Fama & French Three-Factor Model) can predict re-

turns on stocks and bonds, implying that variations in returns are common

across securities. Cooper and Priestley (2009) found that the output gap,

a macroeconomic factor for the US, also contains predictable information on

both equity and bond risk premia. Koijen et al. (2017) studies the relation-

ship between macroeconomic risk and investors’ required risk compensation

and found that the both the single factor of Cochrane and Piazzesi (2005)

and the slope of the yield curve are leading indicators of business cycle turn-

ing points. Additionally, they found that these factors are highly positively

correlated with value stock returns but uncorrelated with returns on growth

stocks.

Since the majority of literature concerning the term structure of interest rates

has been centered on the US economy, less is known about other economies.

Our thesis contributes to the literature by reviewing and extending influential

4
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papers to account for multiple countries, provide updated estimates and link

these results to relevant financial theories.

5
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3 Data

In this section we describe the data that we use, sources used for data collec-

tion, and some descriptive statistics that are relevant for our further investi-

gation throughout this paper.

3.1 Government Bond Data

We have gathered data sets of monthly (end of month) zero-coupon yields or

prices for the US, Germany, Japan, Switzerland, and the UK. Our analysis

requires data on one- to five-year maturity bonds for the respective countries.

US zero-coupon bond data is from The Center of Research in Security Prices

(CRSP). For the remaining countries, most of the data is from Wright (2011),

up until mid-2009, and has thus been supplemented with data from Global

Financial Data (2021) from 2009 up until the end of 2020.

Country Source Data Range # obs. Methodology

USA CRSP 1952.06-2020.12 823 Fama-Bliss

Japan Wright (2011) 1985.01-2009.05 293 Svensson

Germany Wright (2011) 1973.01-2009.05 437 Svensson

UK Wright (2011) 1979.01-2009.05 365 Spline

Switzerland Wright (2011) 1988.01-2009.05 257 Svensson

Japan2 Global Financial Data (2021) 2009.06-2020.12 139 Bootstrap

Germany2 Global Financial Data (2021) 2009.06-2020.12 139 Svensson

UK2 Global Financial Data (2021) 2009.06-2020.12 139 Spline

Switzerland2 Global Financial Data (2021) 2009.06-2020.12 139 Svensson

Table 1. Government bond yields, data sources, range and estimation method.

Table 1 shows country-specific data sources of zero-coupon yields. Since data is

gathered from different sources depending on what period the yields are from,

the top half of the table shows data ranges that are used for replicating, while

the bottom half shows data sets that are used to extend the data and conduct

further analysis. In addition to showing resources used, the table also gives us

6
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an overview of the data range for each data set, number of observations, and

the estimation method used for each set of zero-coupon yields.

3.2 GDP Data

Data on country-specific GDP comes from OECD Quarterly National Accounts

Database. The data set includes PPP-adjusted quarterly GDP data for all of

our countries. Monthly GDP data is obtained by holding the GDP constant

in each quarter. This is needed when we construct a global return-forecasting

factor as in Dahlquist and Hasseltoft (2013).

Figure 1. Relative GDP weights 1960.01 - 2020.12 for United States, Germany, UK,
Japan and Switzerland

Figure 1 shows the relative PPP-adjusted GDP weights for each country for

the entire GDP sample collected. The size of the US gross domestic product

dominates the other economies, while Japan, Germany, and the UK are some-

what similar in size (10-20%), with Japan bearing the most weight over time.

Switzerland is the smallest economy in this sample, hovering steadly around 2

percent for the entire period.

7
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3.3 Stock Data

We collect value-weighted stock returns for each country that we use in our

analysis of stock return predictability. For the US, end-of-month stock returns

are for firms listed on NYSE, AMEX and NASDAQ, and are gathered from

CRSP (2021b). Data for the other countries is from French (2021)’s Data

Library. French estimate these with raw data from Morgan Stanley Capital

International for 1975 to 2006 and from Bloomberg for 2007 to the present.

Country Source Data Range # obs. Description

USA CRSP 1960.01-2020.12 723 Value-weighted

Japan French (2021) 1975.01-2020.12 552 Value-weighted

Germany French (2021) 1975.01-2020.12 552 Value-weighted

UK French (2021) 1975.01-2020.12 552 Value-weighted

Switzerland French (2021) 1975.01-2020.12 552 Value-weighted

Table 2. International returns data sources, range, number of observations and methodol-
ogy. All data from French library is formed by book-to-market (B/M); earnings-price (E/P);
cash earnings to price (CE/P); and dividend yield (D/P).

8
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3.4 Descriptive Statistics

International bond yield summary statistics for our selected countries are sum-

marized in Table 3. The yield curve is upward sloping across maturities, and

short-term bonds tend to be less volatile than long term bonds. We also see

that yields are highly correlated across maturities and perfectly correlated for

longer term bonds in all of the countries.

Maturity Mean Std.dev. I. II. III. IV. V. VI. VII. VIII. IX. X.

US 1 2.94 2.31 1.00 1.00 0.89 0.78 0.58 0.74

2 3.19 3.32 0.99 1.00 1.00 0.92 0.83 0.65 0.81

3 3.43 2.28 0.98 1.00 1.00 1.00 0.93 0.87 0.72 0.85

4 3.65 2.24 0.96 0.99 1.00 1.00 1.00 0.94 0.90 0.77 0.88

5 3.82 2.18 0.95 0.98 0.99 1.00 1.00 1.00 0.95 0.92 0.80 0.90

UK 1 3.89 3.30 1.00 0.89 1.00 0.94 0.78 0.90

2 3.99 3.23 1.00 1.00 0.92 1.00 0.96 0.80 0.93

3 4.13 3.17 0.99 1.00 1.00 0.93 1.00 0.97 0.83 0.95

4 4.26 3.10 0.98 0.99 1.00 1.00 0.94 1.00 0.98 0.86 0.96

5 4.36 3.04 0.97 0.99 1.00 1.00 1.00 0.95 1.00 0.98 0.89 0.97

GER 1 2.73 2.83 1.00 0.78 0.94 1.00 0.82 0.97

2 2.86 2.82 1.00 1.00 0.83 0.96 1.00 0.84 0.98

3 3.02 2.81 0.99 1.00 1.00 0.87 0.97 1.00 0.85 0.99

4 3.19 2.79 0.98 0.99 1.00 1.00 0.90 0.98 1.00 0.86 0.99

5 3.34 2.77 0.97 0.99 1.00 1.00 1.00 0.92 0.98 1.00 0.88 0.99

JP 1 0.91 1.83 1.00 0.58 0.78 0.82 1.00 0.90

2 1.00 1.80 1.00 1.00 0.65 0.80 0.84 1.00 0.88

3 1.13 1.81 0.99 1.00 1.00 0.72 0.83 0.85 1.00 0.88

4 1.27 1.82 0.98 0.99 1.00 1.00 0.77 0.86 0.86 1.00 0.88

5 1.39 1.84 0.96 0.98 0.99 1.00 1.00 0.80 0.89 0.88 1.00 0.89

CHE 1 1.75 2.38 1.00 0.74 0.90 0.97 0.90 1.00

2 1.74 2.23 0.99 1.00 0.81 0.93 0.98 0.88 1.00

3 1.82 2.16 0.98 1.00 1.00 0.85 0.95 0.99 0.88 1.00

4 1.93 2.12 0.97 0.99 1.00 1.00 0.88 0.96 0.99 0.88 1.00

5 2.06 2.09 0.96 0.98 0.99 1.00 1.00 0.90 0.97 0.99 0.89 1.00

Table 3. International Bond Yield Statistics 1990.01 - 2020.12. Column I-X presents cor-
relations, I-V on yields between different maturities and VI-X on yields with same maturities
but across countries.(VI. US; VII. UK; VIII. Germany; IX. Japan; X. Switzerland)

In general, we find highly positive correlations across countries suggesting that

country-specific yields follow each other closely. While correlations of yields

are higher among European countries, we find the lowest correlation between

Japan and the US.

9
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4 Predictive Regressions

To test for time-varying risk premia, we will use insights from previous research

on the literature of bond return predictability, in particular Fama and Bliss

(1987), Cochrane and Piazzesi (2005), and Dahlquist and Hasseltoft (2013).

Their methodologies involve running predictability regressions of future real-

ized bond returns in excess of risk-free rates which are regressed on variables

related to the term structure of interest rates. By replicating their methodolo-

gies and extend the literature with updated datasets, we study whether their

models still can be applied for bond risk premia predictability. By doing so, we

can conclude on our research question on whether the results of these articles

are still valid, and simultaneously, whether the market expectations contain

important information about long-term bond yields.

4.1 Bond Returns

Fama and Bliss (1987) provided several contributions to the literature by

studying whether forward rates could contain important information about

excess return predictability. They use the spread between forward rates and

the corresponding spot rates as their explanatory variables. As this publica-

tion mark the foundation of this methodology, we consider it a natural starting

point when exploring time-varying risk premia.

Fama and Bliss (1987) define the log yield, y
(n)
c,t , and the log forward rate, f

(n)
c,t

for country c as:

y
(n)
c,t = − 1

n
p
(n)
c,t and f

(n)
c,t = p

(n−1)
c,t − p(n)c,t (1)

where p
(n)
c,t is the log price of the n-year zero coupon bond at time t.

The log holding return is defined as the difference in log price

r
(n)
c,t+1 = p

(n−1)
c,t+1 − p

(n)
c,t . (2)

10
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and they use this to define the one-year excess log return as:

rx
(n)
c,t+1 = r

(n)
c,t+1 − y

(1)
c,t ⇐⇒ rx

(n)
c,t+1 = p

(n−1)
c,t+1 − p

(n)
c,t − y

(1)
c,t (3)

which corresponds to the difference between the holding period return from

holding a security for one year and the yield for that corresponding year.

By regressing the one-year excess return of bonds with different maturities on

the spread between one-year forward rates and the one-year spot rate (forward-

spot spread), they aim to determine whether the forward rate incorporates

information about risk premia required by investors.

rxnc,t+1 = an + βn
c (fn

c,t − y1c,t) + εnc,t+1 (4)

If βn
c is different from 1.0, then the forward-spot spread observed at period t

contains information about the one-year spot rate, making it predictable.

(1964.01-2003.12) (1964.01-2020.12) (1999.01-2020.12)

Maturity β
(n)
c R2 β

(n)
c R2 β

(n)
c R2

2 0.99 0.16 0.80 0.11 -0.09 0.00

(0.26) (0.26) (0.56)

3 1.35 0.17 1.07 0.12 0.20 0.01

(0.35) (0.34) (0.62)

4 1.61 0.18 1.28 0.14 0.31 0.01

(0.45) (0.40) (0.57)

5 1.27 0.09 1.03 0.07 0.44 0.03

(0.58) (0.43) (0.54)

Table 4. Fama-Bliss Regression. We use Newey-West standard errors accounting for
conditional heteroskedasticity and serial correlation up to 12 lags in parantheses.

Fama and Bliss (1987) found evidence that the forward-spot spread signifi-

cantly forecasts the one-year excess return for n-year bonds, and thereby es-

tablishing evidence against the EH. The same methodology was later applied

by Cochrane and Piazzesi (2005) with a data set spanning from 1964 to 2003

who drew the same conclusion, with R2 up to 18 percent. Through replica-

11
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tion, we manage to obtain the same results as Cochrane and Piazzesi (2005)

and extend this to include data up to December 2020 (mid column) and test

whether the results hold for more recent years (right side column). Table 4

summarizes the results.

Starting the sample from 1964, we find that the Fama-Bliss results still hold

even when we extend the sample size to include more recent data, but these

results are slightly weakened compared to what Cochrane and Piazzesi (2005)

found. Why is it the case for the extended sample? The last column in

Table 4 suggests that the significance has disappeared for the last two decades,

implying that the forward-spot spread no longer can predict risk premia and

thereby fails to reject the EH. Thus, as we extend the data sample, we also

capture the periods where the model performs poorly which explains why we

observe weaker significance for our full sample (1964-2020). There are two

potential explanations for these weak estimates: either the sample is too short

to permit the model from detecting predictability, or the model just does not

fit well with modern financial data. Although the latter sounds more likely, we

will test this by comparing it to the single factor model derived by Cochrane

and Piazzesi (2005). Their model became the new benchmark for predictive

regression models, as it managed to double the explanatory power of traditional

predictability regressions.

12
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4.2 Single-factor model

Cochrane and Piazzesi (2005) propose a new predictor of bond risk premia.

They define a single factor as a single linear combination of forward rates that is

able to predict the one-year excess return on one- to five-year maturity bonds.

The single factor (CP factor) is constructed by estimating linear combinations

of yields and forward rates for each country c:

CP
(n)
c,t = γT

c,tfc,t (5)

where γc and fc,t represents the below vectors:

γc = [γc,0 γc,1 γc,2 γc,3 γc,4 γc,5 ]T (6)

fc,t =
[
1 y

(1)
c,t f

(2)
c,t f

(3)
c,t f

(4)
c,t f

(5)
c,t

]T
(7)

Gammas are slope coefficients that are estimated by regressing average excess

returns across all maturities on the one-year yield and the four one-year forward

rates. This regression is as below:

r̄x
(n)
c,t+1 = γc,0 + γc,1y

(1)
c,t + γc,2f

(2)
c,t + . . .+ γc,5f

(5)
c,t + ε̄c,t+1 (8)

where,

r̄xc,t+1 =
1

4

5∑
n=2

rx
(n)
c,t+1, n = 2, 3, 4, 5 (9)

If we rewrite this in vector form, we get:

r̄xc,t+1 = γT
c fc,t + ε̄c,t+1 (10)

13
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Having estimated the CP factor, γT
c,tfc,t, Cochrane and Piazzesi (2005) esti-

mate factor loadings, b
(n)
c , for each forward rate by regressing annual excess

returns for all n-year maturity bonds on the CP factor, as below:

rx
(n)
c,t+1 = b(n)c

(
γc,0 + γc,1y

(1)
c,t + γc,2f

(2)
c,t + . . .+ γc,5f

(5)
c,t

)
+ ε

(n)
c,t+1 (11)

Where the left-hand side represents a vector of two-to-five-year annual excess

returns. Which can be written in vector form as:

rx
(n)
c,t+1 = b(n)c

(
γT
c fc,t

)
+ ε

(n)
c,t+1 , n = 2, 3, 4, 5 (12)

The single factor model is a tool used to describe expected excess returns over

multiple maturities in terms of one single factor and is based on the results of

an unrestricted regression of annual excess returns on the same set of yields

and forward rates:

rx
(n)
c,t+1 = β

(n)
c,0 + β

(n)
c,1 y

(1)
c,t + β

(n)
c,2 f

(2)
c,t + . . .+ β

(n)
c,5 f

(5)
c,t + ε

(n)
c,t+1 (13)

Cochrane and Piazzesi (2005) found that this unrestricted regression yields

slope parameters that follow a tent-shaped pattern across maturities, on which

they concluded that forward rates incorporate predictive information about

one-year excess returns at all maturities, and that longer maturities only have

greater loadings.

(a) USA 1964.01 - 2003.12 (b) USA 1964.01 - 2020.12

Figure 2. Single factor regression coefficients subject to (13) and (11)
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The left side of Figure 2 presents the results of equation (11) and (13) using

the same sample as Cochrane and Piazzesi (2005). The tent-shape to the

bottom left in Figure 2 is given by the product of factor loading, b
(n)
c , and the

gamma coefficients, γT
c , and captures almost exactly the parameters from the

unrestricted regression (13). Due to the similarities between the restricted and

unrestricted regressions Cochrane and Piazzesi speculate on whether the single

factor is a state variable1 However, although the models provide parameters

that are equal individually, they find that they are not jointly equal to each

other - That is, bc,nγ
T
c 6= βc, thereby rejecting this hypothesis.

When extending the sample to December 2020, we find that the tent shape is

no longer present due to the two-year maturity coefficient (right side of Figure

2). There might be multiple reasons for this result. Dai et al. (2004) argue that

the distinctive tent-shape in the findings of Cochrane and Piazzesi (2005) is not

a robust feature of zero coupon bond yields. Dai et al. (2004) state that these

very different patterns could be explained by even minor variations in the zero

yields caused by different degrees of smoothing from the spline methodologies.

As we see from our extended sample the pattern load positively on the three-

and four-year forward rates, and slightly negative on two- and five-year forward

rates producing more of a wave-shaped pattern. This pattern, and others, are

also found in Dai et al. (2004) where they estimate four different data sets

of zero-coupon bond yields derived from the same set of underlying coupon

bond prices and run the same regression as we conducted above (tent shape

regression). Their slope coefficients can be found in Figure 7 in the Appendix.

1A variable that can forecast changes in the distribution of future returns (such as wealth,
consumption, ect.), that ultimately affects the investor’s consumption-portfolio decision.
(Cochrane, 2009)

15

09969750994090GRA 19703



Panel A: Estimates of the return-forecasting factor r̄xc,t+1 = γT
c fc,t + ε̄c,t+1

γ0 γ1 γ2 γ3 γ4 γ5 R2

1964.01 - 2003.12 -3.24 -2.14 0.81 3.00 0.80 -2.08 0.35

1964.01 - 2020.12 -0.75 -1.39 -0.16 1.68 1.20 -1.20 0.20

1975.01 - 2009.12 -1.03 -1.35 -0.53 3.03 0.85 -1.81 0.23

1999.01 - 2020.12 -0.95 0.77 -2.21 1.18 0.76 0.11 0.15

Panel B: Restricted bond regression rx
(n)
c,t+1 = bc,n

(
γT
c fc,t

)
+ ε

(n)
c,t+1

1964.01-2003.12 1964.01-2020.12 1975.01-2009.12 1999.01-2020.12

Maturity b
(n)
c R2 b

(n)
c R2 b

(n)
c R2 b

(n)
c R2

2 0.47 0.31 0.45 0.17 0.47 0.19 0.39 0.14

[14.55] [10.35] [11.93] [6.13]

3 0.87 0.34 0.85 0.19 0.87 0.22 0.84 0.16

[40.14] [27.78] [29.85] [13.48]

4 1.24 0.37 1.25 0.22 1.25 0.25 1.23 0.15

[84.70] [61.49] [65.68] [59.45]

5 1.43 0.34 1.45 0.20 1.41 0.21 1.54 0.14

[35.52] [25.61] [26.03] [13.89]

Table 5. Estimates Of The Single-Factor Model. The 1-percent, 5-percent and 10-percent
critical values for χ2(5) are 15.1, 11.1, and 9.2. [ ] provides the test statistics using GMM
standard errors. Regressions are run using both Hansen-Hodrick with twelve lags to accout
for the overlapping data, and Newey-West with eighteen lags to handle conditional heterose-
cedasticity and serial correlation.

We examine the performance of the single factor model for four samples rep-

resenting different time periods. The results are found in Table 5. The first

row in Panel A and the left column in Panel B are pure replications of the

result from the original paper and is included to compare the models’ signif-

icance over time (note that differences in values from the original paper are

due to data differences - we get identical results when we use same data). In

line with what we found for our FB regression, we find that the performance

of the single factor changes over time and that it seems to have lost some of

its explanatory power since it was first introduced. Even so, for much of our

sample, it provides estimates that are far greater than the 1 percent critical

value. Considering Panel B, both the second and the third column shows very

significant parameter estimates, where the two-year bond has somewhat weak-

ened in significance relative to longer-maturity bonds. This is interesting as it
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explains the changes in the tent shape presented to the lower right in Figure

2 - The tent shape seems to prevail for all maturities except for the two-year

bond.

Even though the parameter values remain relatively intact across sub-samples,

the significance seems to fade when we shorten the data to only cover the last

two decades. The forward rates still jointly predict average excess holding pe-

riod return with a Chi-square statistic of 23.90 which also exceeds the 1 percent

critical value, but looking at each bond separately, we see that the significance

weakens both for individual parameters and jointly for each maturity. The fact

that we find similar weakening performance tendencies between the CP fac-

tor and the forward-spot spread of Fama and Bliss suggests that modern risk

premia is less explained by the term structure. One potential explanation to

our results was suggested by Sekkel (2011) who related a weakening CP factor

during the 2007 financial crisis to extraordinary monetary policy implementa-

tions and changes in liquidity funding that might go unrecognized by the CP

factor. Nevertheless, the CP factor still outperforms the forward-spot spread

which is most likely related to the factor contain more information about the

term structure than the forward-spot spread does.

To summarize, we successfully replicate the methodology of Cochrane and

Piazzesi (2005) and use different subsamples to test model performance for

different periods and assess updated evidence of time-varying risk premia in

the US. We have documented that both the forward-spot spread and CP factor

significantly predict excess returns for our full sample (1964-2020), but that

their performance weakens compared to when they were first introduced, which

provides an answer to our first research question. However, although the model

has lost some of its predictive power in recent data, the result outputs are still

significant and thereby also still relevant, and we can confidently continue to

extend our analysis.
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4.3 Introducing Lags

Taking the single factor one step further, Cochrane and Piazzesi (2005) find

that adding multiple lags of forward rates provides extra explanatory power.

We run the regression by normalizing the alpha coefficients to
∑k

j=0 αj = 1,

such that the gammas are unaffected, and then regress the average excess

holding period return on the CP factor:

r̄xt+1 = αc,0(γ
Tfc,t−(1/12)) + . . .+ αc,k(γTfc,t−(k/12)) + ε̄c,t+1 (14)

By rearranging the variables from the regression above we can rewrite this as:

r̄xt+1 = γT [αc,0fc,t−(1/12) + αc,1fc,t−(2/12) + . . .+ αc,kfc,t−(k/12)] + ε̄c,t+1 (15)

Using these alpha estimates, the second step involves running a second re-

gression on excess return for all maturities. Equation 15 introduces another

single variable, alpha, for every new lag applied to the regression, and tests

them jointly. Table 6 presents the results of eq. 15. In addition to finding

that the R2 increases for each additional lag, they find that adding lags gives

a minor right shift to gamma coefficients, which is due to the factor not being

Markovian2. The fact that the CP factor is not Markovian implies that auto-

correlation disturbs the parameter values and ultimately affects the pattern of

coefficients. This makes it hard to add a large number of lags to our model as

this will ruin the tent-shape. They find that the increase in R2 is most severe

up to the third lag before it stabilizes at approximately 45 percent for addi-

tional lags. However, due to the increasing number of parameters for every

lag, we consider the adjusted R2 in Table 6 below.

2A Markov Process is a stochastic process where only the present value is relevant for
predicting the future. Neither the historical values nor the path up to the present is
relevant - Hull (2012). Thus, no autocorrelation applies in the process
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Panel A: γ estimates

Maturity const y(1) f (2) f (3) f (4) f (5) R2

0 -0.75 -1.39 -0.16 1.68 1.20 -1.20 0.20
(-0.73) (-3.21) (-0.23) (2.33) (2.69) (-2.55)

1 -0.67 -1.45 -0.22 1.78 1.72 -1.72 0.23
(-0.66) (-2.89) (-0.23) (1.69) (3.08) (-2.70)

2 -0.70 -1.46 -0.13 1.38 2.32 -2.01 0.23
(-0.68) (-2.65) (-0.12) (1.19) (3.48) (-2.74)

3 -0.74 -1.42 -0.15 1.14 2.75 -2.21 0.24
(-0.76) (-2.39) (-0.12) (0.89) (3.94) (-2.78)

4 -0.76 -1.40 -0.16 1.04 2.90 -2.28 0.24
(-0.72) (-2.30) (-0.12) (0.77) (4.01) (-2.79)

Panel B: α estimates for different lags

Lags α0 α1 α2 α3 α4 R2(adj.)

0 1.00 0.20
(5.00)

1 0.53 0.47 0.22
(4.87) (3.56)

2 0.41 0.30 0.29 0.23
(4.45) (3.96) (2.70)

3 0.31 0.27 0.21 0.21 0.24
(3.08) (4.14) (2.95) (1.89)

4 0.30 0.24 0.20 0.18 0.07 0.24
(3.18) (3.80) (3.03) (2.39) (0.70)

Table 6. Regression 15 estimates on 1964.01 - 2020.12 data. ”()” provides the test statistics
using Newey-West standard errors with twelve lags to handle conditional heterosecedasticity
and serial correlation.

Cochrane and Piazzesi (2005) found that additional lags increase the R2 from

35 percent to 44 percent, implying that there is additional forecasting power

in lagged forward rates. We draw the same conclusion for our subsamples.

Our R2s are generally lower than what Cochrane and Piazzesi (2005) found

which should not be too surprising given our conclusion in section 4.2 about

the weakening of the single-factor model, but all of them are higher than they

were without lags. However, as one continues to introduce more lags, the alpha

estimates become less significant.

We see from Panel B in Table 6 that the last coefficient for lags exceeding the

third lag is not significant at a 5 percent confidence level, making the model

less attractive beyond this number of lags. Nevertheless, p-values for joint

significance are still far below the 1 percent critical value for all our tested
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lags, which is up to seven lags. However, it seems reasonable to restrict the

number of lags to the point where they no longer are significant, especially

when the additional parameters do not contribute to a better model fit.

4.4 FB regressions & CP factors for non-US countries

We apply the methodologies of Fama and Bliss (1987) and Cochrane and Pi-

azzesi (2005) on data for other economies to test how well these models predict

excess returns for Germany, UK, Switzerland, and Japan. First, we run the

FB regressions:

n 2 3 4 5

Country β
(n)
c R2 β

(n)
c R2 β

(n)
c R2 β

(n)
c R2

Germany 0.34 0.02 0.62 0.04 0.83* 0.06 1.02** 0.08

UK 0.43 0.04 0.79** 0.12 0.99*** 0.15 1.04*** 0.15

US -0.09 0.00 0.20 0.01 0.31 0.01 0.44 0.03

Switzerland 0.27 0.02 0.58 0.06 0.83** 0.07 1.04*** 0.08

Japan 0.90*** 0.44 1.10*** 0.42 1.24*** 0.37 1.24*** 0.32

Table 7. Fama-Bliss regression estimates 1999.01 - 2020.12 corresponding to regression
4.Significance is indicated by ’*’, where ***, ** and * indicate p-values lower than the 1%,
5% and 10% significance levels respectively.

Table 7 represents the results. While the model no longer provides significant

estimates for the US, we find significant parameters for the non-US countries,

but primarily for longer maturities. While the European countries receive

somewhat similar estimates, Japan is the only country that is subject to sta-

tistically significant coefficients across all maturities. Furthermore, high R2s

suggests that much of the variation in Japan’s bond returns are explained

by variations in yields, implying that the forward-spot spread is a significant

driver of risk premia. Hence, our result for Japan disagrees with previous

conclusions on FB regressions as we find that the forward-spot spread can be

applied for non-US economies.
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CP factors

Germany UK US CHE JPN

n b
(n)
c R2 b

(n)
c R2 b

(n)
c R2 b

(n)
c R2 b

(n)
c R2

2 0.35 0.07 0.36 0.13 0.39 0.14 0.35 0.24 0.34 0.60
[5.09] [4.67] [6.13] [5.07] [21.80]

3 0.78 0.09 0.82 0.20 0.84 0.16 0.80 0.28 0.76 0.55
[13.45] [13.79] [13.48] [14.73] [41.83]

4 1.22 0.09 1.23 0.23 1.23 0.15 1.24 0.27 1.23 0.49
[92.77] [59.29] [59.45] [55.86] [134.49]

5 1.64 0.09 1.58 0.23 1.54 0.14 1.61 0.23 1.67 0.45
[14.18] [13.42] [13.89] [15.55] [59.31]

Table 8. Estimates Of The Single-Factor Model for additional countries. This table pro-
vides estimates for data covreing 1999.01-2020.12. The 1-percent, 5-percent and 10-percent
critical values for χ2(5) are 15.1, 11.1, and 9.2. [ ] provides the test statistics using GMM
standard errors. Regressions are run using both Hansen-Hodrick with twelve lags to accout
for the overlapping data, and Newey-West with eighteen lags to handle conditional heterose-
cedasticity and serial correlation.

Now considering the CP factor - How well does the single factor model hold

outside the US? Table 8 presents our results for the 1999-2020 sample which,

as discussed earlier, tends to provides the weakest parameter estimates for the

US (results for 1975-2020 and 1988-2020 can be found in 16 and 17 in the

Appendix). However, the results are clear; the CP factor works well for all

countries. The parameter significance also seems to be fairly equal and follows

the same pattern across maturities and their values still increase smoothly with

maturities. One concern lies with the insignificant two-year bond which is far

below the 10-percent critical value, indicating that the two-year forward rate

does a poor job in explaining one-year excess returns, one year from now.

Additionally, our CP factor results for Japan are similar to the FB regressions

- Japan has at least double R2 values and far greater Chi-stats than any of

the other countries for all maturities. These results are even larger than what

Cochrane and Piazzesi found for the US. The fact that Japan’s CP factor

performs so well relative to the US and Europe might indicate an inverse

relationship between risk premia in the respective economies. Figure 3 plots

the CP factors (or local factors) for all five countries. The grey areas represent

economic contractions. In Figure 3e we find lower sample variance for Japan
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than in any other country with values ranging between approximately 1.8 (in

2000 and 2007-2009) to -0.25 (in 2017). Another interesting remark is that

while the CP factor seems to increase in periods of financial contractions for

most countries, we find that the risk premia shrinks in Japan. This contradicts

general academic evidence which suggests that risk premia on nominal bonds

tend to increase in recessions due to economic uncertainty, which arguably will

make investors require more compensation. Other reasons for this opposing

trend might lie in market inefficiencies or irrational investor behavior, which

according to behavioral finance, occurs when there are expectational errors in

bond returns that deviate from rational expectations (Veronesi, 2016).

(a) US (b) UK

(c) GER (d) CHE

(e) JAP

Figure 3. Local CP factors (in %) for US, Germany, UK, Switzerland, and Japan,
1999.01 - 2020.12. The blue-shaded areas indicate economic contractions gathered from
NBER (2021) for the US and Economic Cycle Research Institute (2021) for the remaining
countries.
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The application of lags to the model has a various impact for each country

(see Table 19 in the appendix). For our 1999.01-2020.12 sample, we only find

significant parameters with one additional lag for US and Switzerland. While

the US does not gain additional explanatory power, we find that the R2 for

Switzerland increases from 0.26 to 0.29. By extending the sample to cover

data back to 1975 we find significant alpha estimates for both Germany and

the US. The higher significance stems from the fact that the sample includes a

period where the CP factor performed very well. While the benefits of lagged

variables only have a marginal impact on German parameters, we find that

the adjusted R2 for the US increases to 0.34 with five lags.

4.5 Summary - CP factors and FB regressions

Up to this point, we have managed to replicate the predictive regression ap-

proach of both Fama and Bliss (1987) and Cochrane and Piazzesi (2005) and

extend their methodologies to account for multiple countries and updated data.

We found that the forward spot-spread factor has lost almost all predictive

power for US bond returns in modern data, but that it performes well in

Japan with R2 up to 44 percent. For the US, the CP factor still incorporates

predictive power for excess bond returns although it too has weakened over

time. We find the CP factor also weakens over time for all non-US countries

except forn Japan who receives significant coefficient estimates and R2 up to

60 percent. Additionally, depending on the data sample, we find that adding

lags to the single factor model provides a new set of results for each country

implying large variations in performance for different periods. For our 1975-

2020 sample, US and Germany receive increased predictive power, while for the

1999-2020 sample, only the US has significant lags. This finding suggests that

there are other factors that drive risk premia that go uncaptured by the term

structure, such as extraordinary monetary policy and liquidity risk (Sekkel,

2011).
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4.6 The Global CP factor

Having established the importance of the CP factor and the existence of time-

varying risk prima for other economies than the US, our next step is to study

the international bond risk premia following the procedure of Dahlquist and

Hasseltoft (2013). The increased integration of world financial markets and

the fact that bond risk premia seem to be positively correlated across coun-

tries makes it interesting to define a global common factor that might explain

international risk premia. They contribute to the literature and extend the

work of Cochrane and Piazzesi (2005) by defining a global CP factor (GCP

factor hereafter) as a GDP-weighted average of each local CP factor for every

period t.

GCPt =
C∑
c=1

wc,tCPc,t (16)

Where wc,t is the weighted GDP-average of country

c = [US,DEU,UK, JP,CHE] for every period t: wc,t = GDPc,t∑C
c=1 GDPc,t

. The

average weights for each country in our sample are 0.57 for the US, 0.13 for

Germany, 0.09 for UK, 0.19 for Japan, and 0.02 for Switzerland.3 Dahlquist

and Hasseltoft (2013) found that a global CP factor is highly correlated with

the US bond risk premia and international business cycles, and that

increased correlations between the local factors and the global factor over the

last decades indicate a stronger integration across markets. Additionally,

they find that R2s are equal or somewhat higher for the European countries

than their corresponding CP factors provide. Another key observation is that

the correlation with US risk premia suggests that shocks to the US will have

greater predictive power on non-US countries’ risk premia. For the US, the

R2 remains relatively unaffected to the results provided by the CP factor,

which makes it natural to assume that non-US countries incorporate less

important information for US risk premia prediction.

3Figure 1 show these weights over time.
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Before running the regressions, we analyze the relationship between the global

factor and the local factors for US, UK, and Germany.

Figure 4. 24-month rolling correlations between CPUS, CPDE, CPUK and GCP
Estimated on 1975.01 - 2020.12 data

Figure 4 plots a 24-month rolling correlation between the GCP factor and

each country’s local factor. By definition, the GCP factor is a function of the

underlying local factors, and we must bear in mind that this representation is

a simplification as it represents a world with only three countries in it. The

high correlation between the US and the global factor is due to the greater

weighting of the US economy. Unsurprisingly, this strong relationship between

the global factor and the US local factor also implies that they follow each

other closely over time, relative to UK and Germany. Figure 5 plots the GCP

and CP factors over time. The plot suggests that the only major difference

between the US local factor and the GCP factor seems to be their volatility

(the US local factor goes both higher and lower, but the patterns are the same).

We run both CP- and GCP regressions for our 1975-2020 sample, and 1988-

20204 sample to test the model for recent data. One implication of running two

separate regressions with both different samples and a different composition

of countries is that they produce different global and local factors.

4We use both the sample 1975-2020 and 1988-2020 because there is no data on government
bond yields for Japan and Switzerland going back to 1975. 1988-2020 includes testing for
all the countries we wish to test for.
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Figure 5. CPUS, CPDE, CPUK and the global CP factor 1975.01 - 2020.12

Germany UK US Global

1975-2009
Germany 1.00
UK 0.14 1.00
US 0.24 0.06 1.00
Global 0.40 0.20 0.98 1.00

Table 9. Correlation between local and Global CP factors, 1975 - 2009

Germany Japan Switzerland UK US Global

1988-2020
Germany 1.00
Japan 0.52 1.00
Switzerland 0.58 0.59 1.00
UK 0.54 0.10 0.36 1.00
US 0.67 0.62 0.61 0.38 1.00
Global 0.77 0.68 0.67 0.50 0.98 1.00

Table 10. Correlation between local and Global CP factors (all countries), 1988 - 2020

Gamma coefficients are estimated on the entire sample and will affect the local

factors which ultimately affect the GCP factors. Additionally, introducing

other countries to the model will both affect the weights and the local factor

on which the GCP factor is based. Thus, the GCP can be altered in many ways

based on what you are studying. On the other hand, by running the regression
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for multiple periods, we can assess information about when the model performs

well and when it performs worse. Once we can trace model performance over

time, we might uncover other elements that drive risk premia. For instance,

Dahlquist and Hasseltoft (2013) found that the global factor tends to increase

in US recessions. Additionally, Figure 3 suggests that local risk premia tend

to increase in recessions, which is in line with rational risk-aversion theory 5

We start running our regressions on our full sample (1975-2020) analysis which

includes Germany, UK, and the US. The average GDP weights are 0.17 for

Germany, 0.12 for UK and 0.71 for US. We regress country-specific excess

return on the GCP factor to assess the magnitude of explanatory power of the

factor internationally:

rxnc,t+12 = anc + bnc,GCPGCPt + εnc,t+12 (17)

Table 11 presents the results. When we compare the results from regression

(17) to each country’s corresponding local factor, we find that the global factor

does not provide any additional explanatory power for UK or US.

Local and Global CP regressions

Germany UK US

n b
(n)
c,CP R2 b

(n)
c,GCP R2 b

(n)
c,CP R2 b

(n)
c,GCP R2 b

(n)
c,CP R2 b

(n)
c,GCP R2

2 0.41 0.09 0.55 0.22 0.41 0.08 0.42 0.09 0.45 0.16 0.58 0.16

(0.09) (0.08) (0.10) (0.13) (0.09) (0.15)

3 0.84 0.11 1.01 0.21 0.84 0.11 0.77 0.09 0.86 0.18 1.14 0.18

(0.17) (0.15) (0.19) (0.23) (0.17) (0.32)

4 1.21 0.12 1.37 0.20 1.22 0.11 1.10 0.09 1.25 0.20 1.66 0.19

(0.24) (0.23) (0.28) (0.31) (0.23) (0.46)

5 1.53 0.12 1.66 0.19 1.53 0.10 1.42 0.10 1.43 0.17 1.91 0.17

(0.30) (0.31) (0.35) (0.38) (0.28) (0.59)

Table 11. Table illustrates the CP- and GCP regressions for data covering 1975.01 -
2020.12. We use Newey-West standard errors accounting for conditional heteroskedasticity
and serial correlation up to twelve lags are presented in paranthesis.

5Rational risk theory suggests that risk compensation moves countercyclically to investors’
well-being, implying that it is low in good times, and high in bad times (Stambaugh, 1988),
(Fama and French, 1989).
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However, the global factor roughly doubles the R2 for Germany with a similar

level of significance as the local factors. All parameters are highly significant

with p-values far below the 1 percent significance level. For this composition of

countries, the US economy drives a large portion of the global factor, implying

that the US ultimately will carry great predictive power internationally. Con-

sidering that we use a longer data set than Dahlquist and Hasseltoft (2013),

we confirm that their results still apply as our results are similar - The GCP

factor is a significant predictor of international risk premia.

Next, we consider the second sample from 1988-2020, thereby including Japan

and Switzerland. Results are presented in Table 12.

Local factors

Germany UK US CHE JPN

n b
(n)
c,CP R2 b

(n)
c,CP R2 b

(n)
c,CP R2 b

(n)
c,CP R2 b

(n)
c,CP R2

2 0.34 0.05 0.42 0.15 0.44 0.10 0.40 0.20 0.36 0.24

(0.15) (0.10) (0.12) (0.10) (0.08)

3 0.79 0.08 0.85 0.16 0.85 0.09 0.81 0.24 0.81 0.29

(0.28) (0.20) (0.22) (0.16) (0.15)

4 1.23 0.10 1.21 0.15 1.24 0.10 1.21 0.24 1.23 0.31

(0.39) (0.29) (0.29) (0.20) (0.19)

5 1.64 0.11 1.52 0.14 1.47 0.08 1.57 0.24 1.60 0.32

(0.47) (0.36) (0.33) (0.23) (0.23)

Global factors

Germany UK US CHE JPN

n b
(n)
c,GCP R2 b

(n)
c,GCP R2 b

(n)
c,GCP R2 b

(n)
c,GCP R2 b

(n)
c,GCP R2

2 0.55 0.11 0.60 0.09 0.50 0.08 0.51 0.07 0.60 0.23

(0.18) (0.25) (0.23) (0.23) (0.16)

3 1.12 0.12 1.09 0.09 0.92 0.07 0.99 0.09 1.33 0.27

(0.35) (0.44) (0.43) (0.39) (0.32)

4 1.56 0.12 1.45 0.08 1.32 0.07 1.36 0.09 1.98 0.28

(0.47) (0.57) (0.62) (0.51) (0.44)

5 1.88 0.10 1.73 0.07 1.58 0.07 1.65 0.09 2.57 0.29

(0.56) (0.67) (0.77) (0.61) (0.53)

Table 12. Estimates Of the local and global factor model for additional countries. The table
provides estimates for data covering 1988.01-2020.12. Regressions are run using Newey-
West with twelve lags to handle conditional heterosecedasticity and serial correlation.
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Compared to our results in Table 11, we see that a general weakening in ex-

planatory power from the global factor, combined with higher standard errors.

For the US and Germany, the R2s from equation (17) are roughly half of what

they were in the full sample, while they remain almost unchanged for the UK.

Local factors are also explaining less in both Germany and the US for this

sample, while it captures more of the excess return variance for the UK.

Results for Switzerland are similar to those of the UK - the local factor is

superior to the global factor with much larger R2s for all maturities, indicating

that risk premia for this period has been driven much more by local factors.

For Japan we get somewhat similar results for both the local and the global

factor where both are highly significant and have very high R2s. Again, our

estimate for Japan far exceeds the significance of any other country, implying

that risk premia in Japan is largely driven by term structure dynamics.

Finding that both the local and the global factors are driving country-specific

risk premia, we extend the model and test local factors and the global factor

jointly. We orthogonalize the local factor onto the global factor by using the

residuals as the ”true” local factors, to prevent changes in the global estimates

by removing any variable relation. This is essentially a two-step approach.

The first step regression is given by:

CPc,t = anc + bnc,GCPGCPt + εnc,t+12 (18)

The residuals, εnc,t+12, makes up an equally sized vector as the local factors,

making them directly applicable to the second step regression:

rxnc,t+12 = anc +bnc,CPCPc,t +bnc,GCPGCPt +εnc,t+12, where CPc,t = εnc,t+12 (19)

First, we consider the sample from 1975-2020, and our results are provided in

Table 13. We find joint significance across all countries when regressing the
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local and global factors, but that the significance for the US has somewhat

weakened. Variations in bond returns for the UK and Germany are better

explained by the joint regression than by any of the univariate, but this increase

is most severe for the UK. Compared to the findings of Dahlquist and Hasseltoft

(2013) we receive consistent conclusions although our results suggest lower

explanatory power, in general.

DEU UK US

n βn
c,CP βn

c,GCP R2 βn
c,CP βn

c,GCP R2 βn
c,CP βn

c,GCP R2

2 0.21 0.55 0.24 0.32 0.42 0.14 0.10 0.58 0.16

(0.12) (0.09) (0.11) (0.13) (0.48) (0.15)

3 0.48 1.01 0.24 0.69 0.77 0.16 0.56 1.14 0.18

(0.24) (0.16) (0.19) (0.22) (0.83) (0.30)

4 0.73 1.37 0.23 0.99 1.10 0.16 0.98 1.66 0.20

(0.35) (0.24) (0.28) (0.31) (1.03) (0.44)

5 0.93 1.66 0.22 1.16 1.42 0.15 0.80 1.91 0.17

(0.46) (0.32) (0.36) (0.38) (1.27) (0.57)

Table 13. Joint regression on 1975.01 - 2020.12 data. We use Newey-West standard
errors accounting for conditional heteroskedasticity and serial correlation up to twelve lags
are presented in paranthesis.

Table 14 presents results for a shorter sample (1988.01-2020.12) where we also

include Japan and Switzerland. The conclusion is consistent with those in

Table 13 for UK, US, and Germany, but with much weaker significance for

the US who receives p-values ranging from 5.7 percent up to 8.1 percent for

the fifth maturity for both the GCP- and the joint regression. We also find

p-values that exceed the 1 percent criteria for both Switzerland and UK for

the global factor regression, where the p-value for the two-year maturity for

Switzerland goes as high as 5.6 percent. Opposingly, we find higher significance

for both Germany and Japan where all slope coefficients satisfy the 1 percent

critical value, but the German significance is still lower than they were for the

extended sample above. All joint regressions are highly significant, except for

the US.
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Countries n 2 3 4 5

DEU βnc,CP 0.12 0.44 0.81 1.20

s.e (0.22) (0.45) (0.64) (0.79)

βnc,GCP 0.55 1.12 1.56 1.88

s.e (0.20) (0.39) (0.54) (0.65)

R2 0.12 0.14 0.15 0.15

UK βnc,CP 0.42 0.76 1.04 1.25

s.e (0.26) (0.46) (0.63) (0.78)

βnc,GCP 0.60 1.09 1.45 1.73

s.e (0.28) (0.49) (0.65) (0.78)

R2 0.16 0.16 0.16 0.14

US βnc,CP 0.50 0.83 1.17 1.15

s.e (0.39) (0.68) (0.93) (1.14)

βnc,GCP 0.50 0.92 1.32 1.58

s.e (0.2) (0.48) (0.68) (0.86)

R2 0.10 0.09 0.10 0.08

CHE βnc,CP 0.45 0.78 1.06 1.32

s.e (0.19) (0.30) (0.39) (0.48)

βnc,GCP 0.51 0.99 1.36 1.65

s.e (0.26) (0.43) (0.56) (0.67)

R2 0.23 0.25 0.25 0.25

JPN βnc,CP 0.23 0.53 0.80 1.01

s.e (0.11) (0.20) (0.26) (0.30)

βnc,GCP 0.60 1.33 1.98 2.57

s.e (0.16) (0.31) (0.42) (0.50)

R2 0.27 0.33 0.34 0.35

Table 14. Joint regression for US, Germany, UK, Japan, and Switzerland.
1988.01 - 2020.12 data. We use Newey-West standard errors accounting for conditional
heteroskedasticity and serial correlation up to twelve lags are presented in paranthesis.

Consistent with our results for the CP factor earlier, we find much higher

explanatory power for Japan than we do for any of the other economies. Similar

to the UK, the global factor in itself do not perform better than the local

factor but tested jointly we find R2 values for Japan as high as 35 percent. For

Switzerland, the joint regression yields much higher explanatory power than

the global factor does alone but contributes less versus the Swiss local factor.

4.7 Summary - Global factor model

Following the procedure of Dahlquist and Hasseltoft (2013), we have managed

to replicate their results and extend this to account for more updated data

and an additional country, Japan. Similar to what we found with the CP
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factor, the GCP factor’s predictive power has somewhat weakened, but it is

still a valid model with high predictive power for some countries. We obtain

higher p-values and lower explanatory power for all countries than Dahlquist

and Hasseltoft reported in the original paper. Interestingly, while the model

reports lower R2s for some countries, we find quite the opposite for other

countries. Japan is one example where we find that both the local and the

global factor are major drivers of bond risk premia and that they jointly explain

up to 35 percent of the variation in excess returns. The fact that the model

can yield so different results might indicate that individual economies follow

very different business cycles or be affected by other factors.

4.8 Predicting Stock Returns

If stocks can be regarded as long-term bonds with an additional cash-flow risk,

a factor that can significantly estimate bond excess returns should also be

able to predict excess stock returns. For instance, Fama and French (1989)

found that the term structure of interest rates contains important information

about stock returns, implying that the risk premia we have estimated so far is

actually risk premia and not mere measurement error in bond prices. In this

section, we will test whether bond return forecasting factors can be used to

forecast stock returns internationally.

We regress one to five-year excess stock returns on the local and global factors

individually, and then jointly. Excess stock returns are constructed by cumu-

lating monthly log returns and subtracting the n-year treasury yields for each

country, c. The right-hand side variables are the local and global factors. We

will consider univariate regressions first:

sx
(n)
c,t+n = αc,0 + βc,CPCP

(n)
c,t + ε

(n)
c,t+1 (20)
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and

sx
(n)
c,t+n = αc,0 + βc,GCPGCP

(n)
c,t + ε

(n)
c,t+1 (21)

Our results for the local factor regression (eq. 20) are generally weak and

are therefore placed in Table 18 in the Appendix. Even so, the local factor

yields significant estimates for three and four-year returns for Japan, which

is the only country that has negative parameter estimates for all investment

horizons, meaning that the CP factor is negatively related to stock risk premia.

Furthermore, our results suggest that the local factor explains the two-year

returns better than the global factor for Germany, UK, and Switzerland. While

we receive highly significant estimates for the US across all investment horizons

when we use the Cochrane and Piazzesi data set (beta values are 1.49, 2.45,

2.60, 2.93 and 4.09 for one-to-five-year horizons respectively), we find much

weaker estimates for our 1988-2020 sample. This implies that the US CP

factor has lost predictive power against US equity returns.

GER UK US CHE JPN

n βnc,GCP R2 βnc,GCP R2 βnc,GCP R2 βnc,GCP R2 βnc,GCP R2

1 -0.04 0.00 2.39 0.01 0.88 0.00 4.22 0.01 -4.75 0.02

2 9.10 0.03 9.91 0.06 4.19 0.01 18.22* 0.08 -5.58 0.01

3 20.31* 0.11 17.78*** 0.16 10.78 0.06 32.11*** 0.17 -9.41 0.03

4 35.48*** 0.27 25.69*** 0.29 18.75** 0.15 49.75*** 0.30 -8.47 0.02

5 44.88*** 0.33 26.71*** 0.25 20.25* 0.14 58.80*** 0.32 -9.30 0.02

Table 15. Global factor regression on one-to-five year excess stock returns.
1988.01 - 2020.12. Significance is indicated by ’*’, where ***, ** and * indicate p-values
lower than the 1%, 5% and 10% significance levels respectively.

Results from the global factor regression (eq. 21) are provided in Table 15.

Interestingly, the results are two-folded: Estimates for Germany, UK, and

Switzerland are highly significant for longer investment horizons, while esti-

mates for the US and Japan are much weaker. Thus, international risk premia

is not a universal driver of returns in local equity markets. Additionally, the

global factor fails to provide significant results for shorter investment horizons.
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This, however, isn’t too surprising as longer holding periods returns contain

more information by construction, making them more exposed to variations

in the term structure. This is also shown by high R2 values hovering around

the 0.30 mark for the European countries. Furthermore, the parameters tend

to be highly positive for the longer investment horizons, indicating that an

increase in global bond risk premia will have a large impact on the risk premia

in local equity markets. This is in line with rational risk theory which suggests

that due to the additional cash-flow risk, equity investors will require more

compensation for additional risk than bondholders.

Finally, we consider the joint regression. As before, we orthogonalize the local

factor with respect to the global factor and use the residuals as the ”true local

factor”. The regression is as below:

sx
(n)
c,t+n = αc,0 + βc,CPCP

(n)
c,t + βc,GCPGCP

(n)
c,t + u

(n)
c,t+1 (22)

where CP
(n)
c,t = ε

(n)
c,t+1 and ε

(n)
c,t+1 are residuals from the orthogonalization. Our

results are consistent with those of the global factor regression but with slightly

higher significance and R2s (see Table 18 in the Appendix). However, our

estimates do not suggest additional evidence for stock return predictability in

the US or Japan, indicating that their stock returns are driven by factors that

are unrelated to the yield curve.

Conclusively, we find that the forecasting factors derived from bond returns

can be used to predict stock excess returns, but that these estimates are not

universally significant. While Japan and US seem to have stock returns that are

driven by factors that are unrelated to the yield curve, these predictive factors

capture a large portion of the stock excess return variation for Germany, UK,

and Switzerland.
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5 Conclusion

In this thesis, we provide empirical evidence of time-varying bond risk premia,

and thereby prove the failure of the expectation hypothesis. Our methodol-

ogy includes elements from Fama and Bliss (1987) but is mostly motivated

by findings from Cochrane and Piazzesi (2005) and Dahlquist and Hasseltoft

(2013). While we find that the procedure of Fama and Bliss (1987) no longer

holds for updated data, we prove that the CP factor still yields significant re-

sults for all our samples for the US, implying that excess bond returns are still

predictable by information incorporated in the yield curve. The results are

further strengthened when we add lagged right-hand side variables. However,

although the CP factor is still a relevant measure for the US economy, we find

that it too does not fit updated financial data as well as it did when it was

introduced in 2005.

We extend the work of Cochrane and Piazzesi (2005) by applying their method-

ology to non-US countries. Our research includes Germany, UK, Switzerland,

and Japan in addition to the US. We find evidence that the term structure

for non-US countries describes more of the time-varying risk premia than it

does for the US. This contradicts the classic FB-regressions which indicates no

predictability for non-US economies. Furthermore, the application of lagged

variables tends to yield higher R2 and more significant estimates, but the num-

ber of significant lags varies among countries. Using more recent data, Japan

received the highest R2 of up to 60 percent for two-year maturity bonds, which

tends to have the weakest parameter estimates for the other countries. This

might indicate that risk preferences not only vary over time but also across

countries.

To capture the effects of international risk premia, we follow the procedure

of Dahlquist and Hasseltoft (2013). Our results are consistent with theirs -

Both the local and the global factors are statistically significant individually
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and jointly for non-US countries, but that the global CP factor seems to only

have marginal predictability for the US. Due to the large weighting of the US

local factor in the global-factor model, we find a close relationship between the

global CP factor and the US economy.

Finally, we study the relationship between information within the term struc-

ture and the stock market returns, by running regressions of excess stock re-

turns on the local and the global factor. High explanatory power and sig-

nificance is granted primarily to the European nations for longer investment

horizons. Our results for the US are weaker than what we expected, but we

still find evidence for predictability of three-year holding period returns. Op-

posingly, stock returns for Japan seem to be uncaptured by both the lacal-

and global CP factor.

In line with most of the literature on this topic, our study only considers

in-sample regressions. Although some literature also considers out-of-sample

performance of predictive factors, the results are mixed, implying that there

are opportunities for additional research on this matter. Although we have

confirmed that the CP factor deteriorates over time, we do not provide ex-

tensive research on the reasons behind these observations. Thus, a natural

extension on the development and performance of bond risk premia models is

to include measures that are not likely to be captured by yield-oriented fac-

tors, but that are likely to determine risk premia. Such factors can be central

bank measures, credit risk, liquidity risk, government debt, and other macroe-

conomic measures, but we will leave these potential extensions to a passionate

reader.
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A Appendix

(a) USA (b) GER

(c) UK (d) JP

(e) CHE

Figure 6. Internatrional coefficient patterns for US, Germany, UK, Japan, and Switzerland
1999.01 - 2020.12 data. Derived from Eq.13 and .11
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Figure 7. Figure 2 in Dai et al. (2004)
zero-coupon yields are estimated with well-known methods in empirical studies surrounding
curve-fitting and bond yields: Unsmoothed Fama-Bliss (UFB), Smoothed Fama-Bliss (SFB),
Nelson-Siegel-Bliss (NSB) and Fisher Waggoner (FW).
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(a) US (b) GER

(c) UK (d) JP

(e) CHE

Figure 8. Bond excess returns for US, Germany, UK, Japan, and Switzerland 1988.01 -
2020.12
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(a) GCP (b) US

(c) UK (d) GER

Figure 9. Local CP factors (in %) for US, UK, Germany and the global CP factor,
1975.01 - 2009.12
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Local and Global CP regressions

Country n b
(n)
c,CP R2 b

(n)
c,GCP R2 b

(n)
c,CP b

(n)
c,GCP R2

Germany 2 0.41 0.09 0.55 0.22 0.21 0.55 0.24
(0.09) (0.08) (0.12) (0.08)

3 0.84 0.11 1.01 0.21 0.48 1.01 0.24
(0.17) (0.15) (0.24) (0.16)

4 1.21 0.12 1.37 0.20 0.73 1.37 0.23
(0.24) (0.23) (0.35) (0.24)

5 1.53 0.12 1.66 0.19 0.93 1.66 0.22
(0.30) (0.31) (0.46) (0.32)

UK 2 0.41 0.08 0.42 0.09 0.32 0.42 0.14
(0.10) (0.13) (0.11) (0.13)

3 0.84 0.11 0.77 0.09 0.69 0.77 0.16
(0.19) (0.23) (0.19) (0.22)

4 1.22 0.11 1.10 0.09 0.99 1.10 0.16
(0.28) (0.31) (0.28) (0.31)

5 1.53 0.10 1.42 0.10 1.16 1.42 0.15
(0.35) (0.38) (0.36) (0.38)

US 2 0.45 0.16 0.58 0.16 0.10 0.58 0.16
(0.09) (0.15) (0.48) (0.15)

3 0.86 0.18 1.14 0.18 0.56 1.14 0.18
(0.17) (0.32) (0.83) (0.30)

4 1.25 0.20 1.66 0.19 0.98 1.66 0.20
(0.23) (0.46) (1.03) (0.44)

5 1.43 0.17 1.91 0.17 0.80 1.91 0.17
(0.28) (0.59) (1.27) (0.57)

Table 16. This table illustrates the CP- and GCP regressions as well as the joint regres-
sions for data covering 1975.01 - 2020.12. We use Newey-West standard errors accounting
for conditional heteroskedasticity and serial correlation up to twelve lags are presented in
paranthesis.
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Local and Global CP regressions

Country n b
(n)
c,CP R2 b

(n)
c,GCP R2 b

(n)
c,CP b

(n)
c,GCP R2

US 2 0.44 0.10 0.50 0.08 0.50 0.50 0.10
(0.12) (0.23) (0.39) (0.25)

3 0.85 0.09 0.92 0.07 0.83 0.92 0.09
(0.22) (0.43) (0.68) (0.48)

4 1.24 0.10 1.32 0.07 1.17 1.32 0.10
(0.29) (0.62) (0.93) (0.68)

5 1.47 0.08 1.58 0.07 1.15 1.58 0.08
(0.33) (0.77) (1.14) (0.86)

Germany 2 0.34 0.05 0.55 0.11 0.12 0.55 0.12
(0.15) (0.18) (0.22) (0.20)

3 0.79 0.08 1.12 0.12 0.44 1.12 0.14
(0.28) (0.35) (0.45) (0.39)

4 1.23 0.10 1.56 0.12 0.81 1.56 0.15
(0.39) (0.47) (0.64) (0.54)

5 1.64 0.11 1.88 0.10 1.20 1.88 0.15
(0.47) (0.56) (0.79) (0.65)

UK 2 0.42 0.15 0.60 0.09 0.42 0.60 0.16
(0.10) (0.25) (0.26) (0.28)

3 0.85 0.16 1.09 0.09 0.76 1.09 0.16
(0.20) (0.44) (0.46) (0.49)

4 1.21 0.15 1.45 0.08 1.04 1.45 0.16
(0.29) (0.57) (0.63) (0.65)

5 1.52 0.14 1.73 0.7 1.25 1.73 0.14
(0.36) (0.67) (0.78) (0.78)

Japan 2 0.36 0.24 0.60 0.23 0.23 0.60 0.27
(0.08) (0.16) (0.11) (0.16)

3 0.81 0.29 1.33 0.27 0.53 1.33 0.33
(0.15) (0.32) (0.20) (0.31)

4 1.23 0.31 1.98 0.28 0.80 1.98 0.34
(0.19) (0.44) (0.26) (0.42)

5 1.60 0.32 2.57 0.29 1.01 2.57 0.35
(0.23) (0.53) (0.30) (0.50)

Switzerland 2 0.40 0.20 0.51 0.07 0.45 0.51 0.23
(0.10) (0.23) (0.19) (0.26)

3 0.81 0.24 0.99 0.09 0.78 0.99 0.25
(0.16) (0.39) (0.30) (0.43)

4 1.21 0.24 1.36 0.09 1.06 1.36 0.25
(0.20) (0.51) (0.39) (0.56)

5 1.57 0.24 1.65 0.09 1.32 1.65 0.25
(0.23) (0.61) (0.48) (0.67)

Table 17. Regression Estimates 1988.01 - 2020.12. We use Newey-West standard errors
accounting for conditional heteroskedasticity and serial correlation up to twelve lags are
presented in paranthesis.
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Germany

n βnc,CP R2 βnc,GCP R2 βnc,CP βnc,GCP R2

1 3.57 0.01 -0.04 0.00 4.48 -0.04 0.02
2 12.90** 0.10 9.10 0.03 11.94 9.00 0.10
3 13.16* 0.07 20.31* 0.11 7.73 20.19 0.13*
4 16.26 0.09 35.48*** 0.27 6.08 35.44 0.28**
5 9.35 0.03 44.88*** 0.33 -4.41 44.87 0.34**

United Kingdom

n βnc,CP R2 βnc,GCP R2 βnc,CP βnc,GCP R2

1 2.72 0.02 2.39 0.01 2.86 2.39 0.02
2 6.55*** 0.08 9.91 0.06 4.87 9.67 0.09**
3 10.08*** 0.16 17.78*** 0.16 6.41 17.51 0.20***
4 11.72** 0.17 25.69*** 0.29 5.03 26.02 0.31***
5 10.05 0.11 26.71*** 0.25 2.33 26.72 0.26***

United States

n βnc,CP R2 βnc,GCP R2 βnc,CP βnc,GCP R2

1 -1.65 0.01 0.88 0.00 -10.28 0.88 0.06**
2 0.09 0.00 4.19 0.01 -11.91 3.97 0.06
3 6.30 0.03 10.78 0.06 -5.44 10.63 0.07
4 12.33* 0.09 18.75** 0.15 -3.07 18.67 0.15
5 15.25* 0.12 20.25* 0.14 4.19 20.40 0.14

Switzerland

n βnc,CP R2 βnc,GCP R2 βnc,CP βnc,GCP R2

1 3.34 0.02 4.22 0.01 2.90 4.22 0.02
2 10.44** 0.10 18.22* 0.08 7.89 18.64 0.13**
3 12.23* 0.09 32.11*** 0.17 7.02 32.56 0.19**
4 9.75 0.05 49.75*** 0.30 1.00 49.84 0.30***
5 2.75 0.00 58.80*** 0.32 -7.16 57.69 0.34***

Japan

n βnc,CP R2 βnc,GCP R2 βnc,CP βnc,GCP R2

1 -2.02 0.01 -4.75 0.02 0.14 -4.75 0.02
2 -4.64 0.03 -5.58 0.01 -4.94 -5.45 0.03
3 -9.61*** 0.09 -9.41 0.03 -12.30 -8.74 0.10**
4 -9.64** 0.09 -8.47 0.02 -13.58 -7.06 0.10
5 -7.59 0.05 -9.30 0.02 -8.48 -8.29 0.05

Table 18. Local, Global and joint regression on excess stock returns for one-to-five year
returns. Significance are given by ’*’, where ***, ** and * represent p-values lower than
the 1%, 5% and 10% significance value. We use Newey-West standard errors accounting
for conditional heteroskedasticity and serial correlation up to twelve lags are presented in
paranthesis.
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Germany

lags const y1 f2 f3 f4 f5 R2

1.00 0.41 -0.70 -0.19 2.32 -2.54 1.31 0.09
s.e ( 0.85) ( -0.53) ( -0.06) ( 0.55) ( -0.73) ( 0.72)

2.00 0.42 -0.56 -0.60 2.83 -2.85 1.38 0.09
s.e ( 0.85) ( -0.37) ( -0.16) ( 0.53) ( -0.63) ( 0.64)

3.00 0.41 -0.58 -0.38 2.39 -2.54 1.32 0.10
s.e ( 0.86) ( -0.45) ( -0.12) ( 0.63) ( -0.83) ( 0.79)

4.00 0.37 -0.50 -0.27 1.69 -1.79 1.10 0.10
s.e ( 0.77) ( -0.42) ( -0.11) ( 0.51) ( -0.64) ( 0.74)

5.00 0.38 -0.69 0.14 2.15 -3.27 1.90 0.11
s.e ( 0.90) ( -0.60) ( 0.05) ( 0.63) ( -1.17) ( 1.28)

6.00 0.42 -0.70 0.22 2.19 -3.51 2.04 0.13
s.e ( 1.08) ( -0.75) ( 0.10) ( 0.80) ( -1.33) ( 1.39)

7.00 0.50 -0.71 0.36 1.52 -2.43 1.49 0.14
s.e ( 1.34) ( -0.94) ( 0.22) ( 0.83) ( -1.39) ( 1.34)

United Kingdom

lags const y1 f2 f3 f4 f5 R2
1.00 -0.45 -0.27 -1.49 0.19 3.25 -1.37 0.22
s.e ( -0.58) ( -0.20) ( -0.54) ( 0.08) ( 2.99) ( -1.82)

2.00 -0.49 -0.16 -1.61 0.09 3.40 -1.41 0.21
s.e ( -0.61) ( -0.10) ( -0.50) ( 0.04) ( 2.93) ( -1.72)

3.00 -0.52 -0.17 -1.47 -0.14 3.51 -1.39 0.21
s.e ( -0.65) ( -0.11) ( -0.45) ( -0.05) ( 2.89) ( -1.66)

4.00 -0.54 -0.20 -1.33 -0.33 3.59 -1.38 0.21
s.e ( -0.69) ( -0.13) ( -0.41) ( -0.12) ( 2.94) ( -1.67)

5.00 -0.60 -0.20 -1.27 -0.50 3.73 -1.39 0.22
s.e ( -0.78) ( -0.13) ( -0.37) ( -0.17) ( 2.89) ( -1.60)

6.00 -0.61 -0.19 -1.27 -0.58 3.84 -1.43 0.22
s.e ( -0.79) ( -0.12) ( -0.36) ( -0.19) ( 2.77) ( -1.61)

7.00 -0.55 -0.23 -1.25 -0.39 3.63 -1.40 0.22
s.e ( -0.71) ( -0.15) ( -0.38) ( -0.14) ( 2.87) ( -1.69)

United States

lags const y1 f2 f3 f4 f5 R2

1.00 -0.95 0.77 -2.21 1.18 0.76 0.11 0.15
1.00 ( -0.72) ( 0.71) ( -1.39) ( 0.82) ( 0.77) ( 0.18)
2.00 -0.95 0.96 -2.60 1.45 0.86 -0.04 0.16
2.00 ( -0.70) ( 0.81) ( -1.42) ( 0.95) ( 0.81) ( -0.06)
3.00 -0.95 1.16 -2.98 1.69 0.95 -0.17 0.17
3.00 ( -0.69) ( 0.92) ( -1.50) ( 1.03) ( 0.83) ( -0.23)
4.00 -0.97 1.48 -3.44 1.89 0.91 -0.15 0.19
4.00 ( -0.73) ( 1.19) ( -1.69) ( 1.07) ( 0.82) ( -0.19)
5.00 -0.84 1.77 -3.81 2.17 0.69 -0.12 0.22
5.00 ( -0.69) ( 1.66) ( -2.03) ( 1.12) ( 0.75) ( -0.16)
6.00 -0.66 1.86 -3.74 2.19 0.43 -0.03 0.23
6.00 ( -0.59) ( 1.98) ( -2.02) ( 1.04) ( 0.52) ( -0.04)
7.00 0.19 1.38 -1.82 1.06 -0.28 0.29 0.28
7.00 ( 0.23) ( 3.38) ( -1.75) ( 0.77) ( -0.73) ( 0.70)
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Switzerland

lags const y1 f2 f3 f4 f5 R2

1.00 0.07 1.11 -3.68 2.43 1.71 -1.16 0.27
s.e ( 0.10) ( 1.18) ( -0.90) ( 0.21) ( 0.10) ( -0.14)

2.00 0.05 1.39 -4.24 2.86 1.66 -1.22 0.30
s.e ( 0.07) ( 1.34) ( -0.90) ( 0.21) ( 0.09) ( -0.13)

3.00 0.00 1.47 -4.17 2.48 1.95 -1.25 0.31
s.e ( 0.00) ( 1.32) ( -0.81) ( 0.17) ( 0.09) ( -0.12)

4.00 -0.08 1.60 -4.55 3.78 -0.20 -0.11 0.32
s.e ( -0.10) ( 1.46) ( -0.91) ( 0.27) ( -0.01) ( -0.01)

5.00 -0.13 1.85 -6.00 7.89 -5.53 2.34 0.33
s.e ( -0.17) ( 1.73) ( -1.27) ( 0.59) ( -0.29) ( 0.25)

6.00 -0.16 2.02 -7.25 11.53 -10.25 4.50 0.35
s.e ( -0.21) ( 1.93) ( -1.67) ( 0.96) ( -0.60) ( 0.52)

7.00 -0.17 2.08 -7.69 12.89 -12.06 5.33 0.37
s.e ( -0.23) ( 2.02) ( -1.83) ( 1.12) ( -0.73) ( 0.63)

Japan

lags const y1 f2 f3 f4 f5 R2

1.00 0.17 0.08 1.25 0.03 0.23 -0.20 0.50
s.e ( 1.70) ( 0.12) ( 1.08) ( 0.05) ( 1.00) ( -0.92)

2.00 0.17 0.11 1.22 -0.01 0.27 -0.21 0.49
s.e ( 1.69) ( 0.16) ( 0.99) ( -0.01) ( 1.12) ( -0.95)

3.00 0.17 0.15 1.17 -0.00 0.26 -0.18 0.48
s.e ( 1.70) ( 0.21) ( 0.98) ( -0.01) ( 1.10) ( -0.85)

4.00 0.17 0.12 1.20 -0.01 0.27 -0.19 0.48
s.e ( 1.68) ( 0.17) ( 0.99) ( -0.01) ( 1.11) ( -0.90)

5.00 0.17 0.04 1.31 -0.03 0.30 -0.24 0.49
s.e ( 1.67) ( 0.05) ( 0.99) ( -0.04) ( 1.14) ( -1.05)

6.00 0.18 -0.05 1.47 -0.04 0.31 -0.28 0.49
s.e ( 1.70) ( -0.06) ( 1.02) ( -0.05) ( 1.11) ( -1.19)

7.00 0.19 -0.10 1.64 -0.11 0.31 -0.31 0.49
s.e ( 1.75) ( -0.13) ( 1.11) ( -0.13) ( 1.11) ( -1.25)

Table 19. Lagged regression on excess bond returns. We use Newey-West standard errors
accounting for conditional heteroskedasticity and serial correlation up to twelve lags are
presented in paranthesis..
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