
BI Norwegian Business School - campus Oslo

GRA 19703
Master Thesis

Thesis Master of Science

False positive reduction endeavors with automated feature 
engineering

Navn: Fabian Thorsen, Adrian Kopperud

Start: 15.01.2021 09.00

Finish: 01.07.2021 12.00



 
 

 
 

False positive reduction endeavors 
with automated feature engineering 

 

An empirical study to reduce false positives in fraud detection systems 

 

Adrian Kopperud and Fabian Thorsen 

Supervisor: Alfonso Irarrazabal 

 

Master thesis, Master of Science in Business Analytics 

 

 

 
This thesis is a part of the MSc program at BI Norwegian Business School. The 

school takes no responsibility for the methods used, results found, or conclusions 
drawn.

09916150989568GRA 19703



i 
 

Acknowledgement 
 
This thesis is a part of BI Norwegian Business School´s Business Analytics Master of 

Science degree. Throughout our studies and past year we have gotten great support. 

We would first like to thank our supervisor Alfonso Irarrazabal, for his great advice 

and guidance in difficult periods. Your valuable advice made us question the 

important aspects of this thesis, enhancing our work greatly.  

Second, we would like to thank our lecturer John Chandler Johnson for his valuable 

knowledge and motivating ways of teaching. You provided us with both tools and 

motivation to be best equipped for this thesis. 

Lastly, we would like to thank friends and family for their love, support and 

discussions. We could not have done it without you. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

09916150989568GRA 19703



ii 
 

Abstract 
Credit card fraud has been a problem for decades, and with the booming trend of 

online shopping fraud losses expected to rise for every year to come. Fraud detection 

systems often generate more false positives than true positives in order to attain a 

higher detection level of fraudulent transactions. These false positives have plagued 

the fraud detection industry for years as they are expensive to investigate and require 

extensive manual labor. 

An automated feature engineering approach was implemented to address the problem 

of high false positives while at the same time conserving most of the true positives. 

We generate a high feature space (1750 features) of rich features without manual 

intervention other than specifying the primitives. In addition, a feature reduction 

method is implemented to retain the features with the highest predictive power to 

counteract the dimensionality problem of the method. 

To compare our results, there were two additional datasets created for benchmarking 

purposes. The first dataset only included the cleaned original features, referred to as 

the baseline. In the second dataset, we generated manual features from the original 

data to reproduce the situation of a domain expert. The proposed solution was tested 

with the XGBoost to quantify the effect of the automated feature engineering on the 

reduction of false positives and was compared to the benchmarking datasets.    

Our analysis of the results shows that automated feature engineering can improve 

false positives by 84% while managing to retain 89% of the true positives compared 

to the baseline dataset. In addition, we find no significant difference between 

automated and manual feature engineering on the discarding of false positives, and 

both methods are equally good. However, the results suggest that an automated 

approach can cut down feature engineering time a lot while providing richer features 

than manual feature engineering, suggesting a potential for bottom-line savings by 

reducing the number of domain experts and improved efficiency in the analytical life 

cycle.  
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1. INTRODUCTION AND 
MOTIVATION 
 

This research investigates how automated feature engineering affects one of the main 

problems encountered in anomaly detection, namely the false positive problem. Our 

thesis uses sophisticated machine learning methods and feature engineering to rank 

three different models on how well they reduce false positives. Our research domain 

is within the e-commerce sector and we will apply our methods to transactional data. 

Due to the increased development of online solutions and technologies, online fraud 

has increased rapidly over the last decade. With the help of the COVID-19 pandemic, 

a new digital norm has emerged from the disruption of regular routines. Thus, 

businesses are being forced to expedite digital transformation more than ever before, 

with consumer patterns booming within online shopping. Such a revolution however, 

does come with certain drawbacks. A recent report from 2020 showed that 4 out of 5 

banks and financial institutions had a massive increase in fraud losses last year 

(FICO, 2020), and it is expected that the worldwide loss of credit card fraud will 

increase from $27.85 billion to $40.63 billion within the next five years (The Nilson 

Report, 2019).  

It is often the case that fraudulent transactions are reported when the customer 

contacts the credit card company. However, the banks cannot rely on all their 

customers to report fraud. To detect fraudulent transactions and crimes committed by 

fraudsters, banks rely on a heavy amount of data to identify and learn customer 

patterns in order to predict fraud using detection systems. 

Predicting fraud is nothing new and has been around for a long time. There are 

multiple defined supervised methods in the literature to help solve fraud (Brause et 

al., 1999), (Aleskerov et al., 1997). However, spotting fraudulent transactions is a 

challenging task due to multiple reasons. For example, imbalanced data is a big 

challenge as a large portion of the data is genuine transactions and only a tiny fraction 

fraudulent (Makki et al., 2019). A second major problem is concept drift. The 
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constantly changing consumer pattern can be a challenge for the model, requiring 

consistent updates of the expert rules to keep the model relevant (Gama et al., 2014).  

However, there has been little research in reducing the false positives, which has 

plagued the banking industry for years (Pascual, Marchini, 2018). For example, in 

2017, 1 out of 15 consumers were affected by false positives, and adults below the 

age of 35 will most likely drop a credit card company when being declined upon 

purchase (Pascual, Marchini, 2018). As a result, high numbers of false positives 

benefit no one, and analysts have pointed out that it may cost more for the online 

merchant and banks than the gain from predicting fraud itself. Furthermore, 

merchants reported that 32% of customers stopped shopping with them after the 

decline from a false positive (Bannett, 2017) 

 

 

Figure 1.1: Illustration of a common practice in today's method for reducing false 

positives 

11.1 Illustration of a common practice in today's method for reducing false positives 
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From Figure 1.1 do we illustrate how e-commerce companies mitigate the problem of 

false positives today (Carcillo et al., 2018), (Ingenico Inc,  2020). The process 

consists of a multi-step method where the transactions are ranked through the scoring 

of different predefined rules.  

The merchant can create their own rules through a deny list, containing blocked IP 

addresses and blocked regions, to name a few. This process works as a standalone 

filter that either declines or approves the purchase directly based on the satisfaction of 

the conditions.  

The expert rules are feature engineering on historical data performed by domain 

experts. These features have the goal of scoring a transaction based on previous 

purchase patterns. An algorithm is used to output the predicted score based on the 

attributes of the transaction. This filter can work on top of the merchant-specified 

rules.  

Suppose the transaction score is above a certain threshold. In that case, it is forwarded 

to a security center usually located in the company where fraud agents will judge the 

transaction to either approve or decline. This method is an incredibly time-consuming 

and costly way to reduce the false positives as we need many agents to investigate 

“flagged” transactions. Additionally, the expert rules in place need to be constantly 

updated by domain experts to reflect the change in customer activity patterns (Milo et 

al. 2016). Moreover, this method is error-prone and biased based on the competency 

of the domain expert, the data scientist that manually creates the expert features. This 

could potentially lead to poor performance and a higher false-positive rate.  

Over the last five years, new advancement has been made in supervised learning and 

other AI areas, and a weave of new methods has become available. An example of 

such advancement is within feature engineering, more precisely the possibility to 

automate the feature engineering process, a process previously known to be very 

time-consuming. This is an exciting field as machine learning models rely heavily on 

the input features, and even slight configuration to the raw features can have a 

significant impact (Domingos, 2012).  
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The inefficiency of today’s methods and little research in the field of new tools made 

available over the last years motivates us to explore an automated approach to 

generate new features in order to test if we can reduce the number of false positives. 

Our hypothesis is that manual feature engineering is a much more exhaustive and 

error-prone way of creating expert rules due to it being both performed manually and 

it is time-consuming. Thus, automating this process could potentially decrease the 

false positives and reduce the number of fraud agents, saving the credit card company 

and merchant an extensive amount of costs. Furthermore, we think it is beneficial that 

expert rules are updated by an automatic method since the pattern of today’s 

customers is in a consistent change. Doing so could save a lot of time which goes to 

update the rules from false positives and concept drift that can be allocated to 

improve the model or other places in the pipeline where resources are needed.  

1.1 Fraud 
 

Before diving deeper into our problem we define what “fraud” is.  The Oxford 

dictionary interprets fraud as a “wrongful or criminal act that is intended to result in 

financial personal gain”. In literature, we have multiple forms of fraud, but we will 

focus on online fraud in this thesis (Jain et al., 2019). In the domain of online 

shopping fraud, fraudsters commit the crime remotely through mail non-receipt card 

fraud, false merchant websites (phishing), credit card id theft and account takeover to 

mention a few (Jain et al., 2019). These methods contribute to a vast amount of losses 

each year, as identified in the introduction. 

To mitigate these losses, detector systems are implemented as described in Figure 

1.1, which classify fraudulent transactions from genuine transactions. When a 

detector system “flags” a transaction, it blocks the purchase of a customer and sets off 

an alarm in the security center of the bank. A fraud agent will then decide whether the 

transaction was actual fraud or not, based on some investigation. Commonly this 

investigation will be conducted through the agent calling the customer or collecting 

more information about the transaction to make a judgment.  
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A transaction classified as fraud after an investigation is considered the truth and is 

referred to as positives. On the contrary, transactions classified as genuine after 

investigation are referred to as negatives. The domain experts change the 

classification of the model based on the outcome of the investigation. In this thesis, 

do we look at offline data from such a detector system. Thus, the target class is fixed 

and cannot be updated by an agent like in a real-world scenario. We will look at the 

binary classification problem, and four types of cases are defined.  

● True Negative (TN) are transactions that generate no alerts and are legit. 

There is a significant share of these observations than positives, thus creating 

an imbalance in the data.  

● True Positives (TP) are positive transactions classified as fraudulent by the 

detector and validated by the agent. In a normal environment there are only a 

few of these compared to the number of negatives.  

● False Negatives (FN) are positives not detected by the system. The cost of 

these undetected transactions can be high for the credit card company. 

Customers may notice the fraud by themselves and report it to the credit card 

company. 

● False Positives (FP) are negatives classified as fraud by the detector and 

subsequently, have the agent's investigation concluded that it was a genuine 

transaction. Thus, the customer has gotten their purchase declined even if it 

was a legit purchase. It is difficult to estimate the cost of one false alert as this 

can be company specific. However, many false positives can create huge 

losses for both the credit card company and the merchant. Moreover, it will be 

beneficial to minimize these types of cases. 
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1.2 Automated Feature Engineering 
 

Automated feature engineering has the aim of generating informative and 

discriminative features from the raw data. In general, feature engineering requires 

human insight, usually referred to as domain experts, to understand the data at hand. 

Thus, it is a complicated process to automate and there are only a handful of 

frameworks that support the automation of features today. This thesis will apply the 

Featuretool approach, which we will do a short introduction for below.  

Featuretool is an open-source Python library that automatically generates a large set 

of interpretable features from a single or set of relational tables. The framework can 

generate new features through Deep feature synthesis (DFS) that uses dataset 

relationships, data types and other underlying factors to enhance and extract more 

information from the pre-existing features. DFS mainly uses mathematical operations 

called Primitives to generate these features. These primitives are generally nested 

mathematical operations such as sum, standard deviation or averages. The type of 

feature created is generally a function of the dataset architecture meaning that several 

relational datasets may generate different features than a single dataset.  

Featuretools bring a significant amount of out-of-the-box functionality such as 

variable type inference and default parameters that let you quickly generate features 

without much work. Nevertheless, there is some prep work that needs to be done in 

order for the library to use DFS to generate features. First, defining the entities and 

relationships among the entities is required to know what datasets are mutated. 

Entities are simply data tables, either one or more, that contain a set of features and 

observations. Relationships among the entities may be predefined such as in RDBMS 

systems where tables are connected through ID features or keys.  

Second, Featuretools needs information on the data types of each feature that is being 

transformed. This may be inferred directly by the algorithm but is suggested to be 

done manually as the automatic procedure is not very technical and cannot detect 

categorical features. The last operation needed to be done before the features can be 

generated is specifying the types of primitives to be used when running DFS. This 

depends on the types of relationships and data types present in the problems, as some 
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primitives only function when there are multiple tables with relationships. Lastly, the 

DFS algorithm needs to be run in order to generate the new features. This part of the 

procedure is similar to running most ML models in python.  

DFS is a complicated method that uses the relationships among observations to 

calculate new features (Kanter, Veeramachaneni, 2015). This is another reason why 

certain primitive operations can only be done when there are multiple entities joined 

through relationships. Another complex task DFS performs is known as primitive 

stacking where multiple primitives are done in succession, creating one or more 

particularly deep features. A feature such as MAX(MEAN(TransactionAmt)) is an 

example of this, and the number of primitives used in the creation is known as depth. 

Featuretools also thrive when exposed to time series data as the new dimension opens 

up the opportunity to create features dependent on time as opposed to static datasets. 

1.3 Goal and Research Question  
 

Following our motivation and description of the problem in previous sections, this 

thesis explores an automated approach to generate interpretable features to discard as 

much of the false positives (FP) as possible in today’s detection systems. Many 

companies use domain experts to manually update and engineer features to maintain 

the relevancy of the fraud detector. As previously mentioned, we see this method as 

limited and biased towards the competency of the domain experts as there may be 

features or relationships that are not thought of that could have a higher predictive 

power.  

This project will develop new features through Deep feature synthesis (DFS). We 

will explore many of its functionalities to achieve a rich collection of features that 

could help the model generalize better. The function will create random features in a 

higher feature space, thus creating more opportunities for the detector to learn. 

Unfortunately, discarding FP could result in discarding true positives (TP), which is 

not desirable. Therefore, a good trade-off is necessary between reducing FP and 

maintaining TP, which is essential for all banks based on their respective thresholds.   
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Based on the goal outlines above will we formulate the following two research 

questions: 

RQ 1: Do automated feature engineering decrease the FPR rate in fraud detection 

systems compared to doing no feature engineering. 

RQ 2: Does automated feature engineering better decrease the FPR in the fraud 

detection system than a manual feature engineering approach? 

This thesis focuses on implementing a new technique to automate the feature 

engineering process to reduce the number of false positives. This thesis focus is not to 

aid domain experts. However, this approach could be helpful to those creating expert 

rules as we will look at differences and benefits with automated compared to manual 

engineering of features in RQ 2.  
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2. RELATED WORK 
 

Fraud detection has been around since the 90's. The first systems were very restricted 

boundaries in the form of expert conditions and could collect, process, and store data. 

These conditions check for specific attributes, such as if the card was used in a 

different country or the transaction amount was more significant than some threshold. 

The transaction was then blocked based on if these conditions were satisfied.  

In 2011, a detailed comparison of methods within fraud prediction was published 

(Bhattacharyya et al., 2011). Here the Support Vector Machine (SVM), Random 

Forest, and Logistic Regression were compared within the credit card fraud domain. 

The study concluded that the Random Forest approach had the best accuracy and 

fewer false positives, followed by Logistic Regression and SVM.  

In July 2019, the imbalanced class and concept drift problem was addressed (Devika 

et al., 2019). The paper's focus was to create a novel learning approach to address the 

concept drift and imbalanced class challenge in fraud detection. The paper's outcome 

was successful, and they managed to demonstrate the imbalanced class problem and 

concept drift in a real-world problem. An interesting resultas it identified and 

resolved two of the most common fraud detection problems; adapting to new fraud 

methods and the challenge of imbalanced data.  

Another research paper published in January 2019 (Jain et al., 2019) introduced the 

concept of fraud related to the e-commerce sector. The paper explained all the 

different ways fraud could be conducted; stolen credit cards, mail non-receipt card 

fraud and account takeover, to mention a few. In addition, there were various 

methods listed for how one could detect fraudulent transactions. These methods 

include ANNs, Bayesian Network (BNN), K- Nearest Neighbor (KNN), Decision 

Trees and SVM. As a result, they found out that ANNs returned both the highest 

accuracy and the lowest false-positive rates compared to other methods. The KNN, 

Logistic Regression, Decision Trees, and BNN returned a medium false positive rate, 

and the SVM on the other had the highest observed false-positive rate. The Drawback 

of the ANN method was the high cost of training the model, followed by KNN, SVM 
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and Decision Trees, which all placed somewhere in the middle in terms of training 

costs. The Logistic Regression approach was the least expensive model to train.  

In 2017 Cornell University published a highly relevant article for our thesis (Wedge 

et al., 2017). This research presented an automated feature engineering approach to 

cope with the false positive problem in the fraud detection system. The reduction of 

false positives demonstrated that a lot of genuine transactions were falsely classified 

as fraudulent. The paper used the Featuretools approach to derive the features based 

on the historical transaction data automatically. In total, 237 features were generated 

for each transaction, and a tree-based classifier was used in the study. The model was 

tested on a massive dataset from a banking corporation and was compared to their 

existing detector solution in the bank. The model was tested on an unseen dataset of 

1.852 million card transactions. The result of the automated feature engineered model 

was a stunning 54% cut down in false positives. Such a drop in false positives 

provided estimated savings of 190.000 Euros. They also investigated the possibility 

of deploying the model under streaming computation in a real-world situation. We 

think it is vital for further research and validation based on the promising results from 

this study on automated feature engineering.   

Baader & Krcmar (2018) proposed a red flag approach combined with process 

mining to reduce the false positives in the domain of internal fraud detection. The red 

flag approach gives hints or indications of fraudulent activity by scanning the dataset 

for a "fraud pattern". On top of this method, they apply process mining to recreate the 

as-is business process to visualize the information across the organization in the form 

of a user interface. Their framework was applied to a purchase-to-pay business 

process (P2P). P2P handles the purchase of goods to the payment of the vendor of an 

organization. Their method aimed to detect internal financial fraud and supplier 

procurement fraud, while maintaining a low false-positive rate. Their method was 

prosperous compared to other studies, and they achieved an FPR of 0.37% and a TPR 

of 48.38%.   

So far, we have found that neural network methods outperform other machine 

learning approaches in terms of reducing false positives. This could be because deep 

learning models automatically operate directly on the raw data at a higher 
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representation level. However, such a performance comes with certain drawbacks. 

The construction and choices of these deep learning models are almost impossible to 

interpret for humans, and the models are very costly to train (Jain et al., 2019). On the 

contrary, machine learning algorithms understand operations that are native to 

humans, such as and, if, or operations. Furthermore, algorithms such as XGBoost, 

Random Rorest, Gaussian Naïve Bayes and Logistic Regression have shown 

promising results in terms of performance and implementation cost which have been 

shown in the literature (Jain et al., 2019), (Bhattacharyya et al., 2011), (Wedge et al., 

2017), (Goyal et al., 2020). Thus, these algorithms are good model candidates to help 

us answer our research questions.  

It was hard to find previous research that discussed reduction methods of false 

positives, which we see as crucial for a well-working detection system. Instead, many 

articles discuss how accuracy could be improved, selecting the best models and 

optimizing the hyperparameters for best results (Dornadula, Geetha, 2019), (Xuan et 

al., 2018), (Lakshmi, Deepthi, 2018). Additionally, several articles look at the benefit 

of how domain experts could decrease the false positive based on their experience 

and competency (Whitrow et al., 2009). However, over the recent years, techniques 

such as automated feature engineering have become available, and multiple studies 

have been conducted on the application within different domains (Kanter, 

Veeramachaneni, 2015), (Wedge et al., 2017), (Lucas et al., 2019). These studies 

have shown that the automation of feature engineering both increased performance 

and reduced development time, and some suggested that it outperformed the domain 

experts.  

Based on our analysis of various articles in the literature, we observe that little 

research has been done in the field of false-positive reduction. We identified only two 

articles within this field (Wedge et al., 2018), (Baader, Krcmr, 2018). Because 

automated feature engineering has shown promising results in many domains, we find 

it interesting to implement this technique to extract useful features that could 

potentially reduce false positives. Furthermore, will we extend and validate work 

already done (Wedge et al., 2017) and supplement this narrow field with a 

comparison between manual and automated feature engineering effect on false 

positives, which has not previously been attempted to the best of our knowledge.  
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Trivedi et al. (2020) recently introduced a comparison study of machine learning 

methods within credit card fraud detection. Here the goal was to analyze the different 

algorithms and their performance in credit card fraud detection. Model's tested 

include Random Forest, BNN, Logistic Regression, SVM, KNN, GBM, to mention a 

few. The study was conducted on a dataset of European cardholders. On average, the 

algorithms return an FPR of 4.3% (Trivedi et al., 2020). For our paper, is this finding 

interesting before going into the experiment as it can be viewed as a benchmark.   
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3. DATA PROCESSING  
 

This chapter is divided into two parts. The first section presents how we collected our 

data and selected the relevant features for our experiment. The second chapter is the 

most detailed and includes preprocessing and transformation. Here we describe how 

we created the three different datasets for our experiment described in the 

transformation section. This section is the most essential aspect of this chapter to 

answer our research question.  

Figure 3.1 illustrates our data collection and preprocessing architecture. These are the 

first two stages of our methodology that will be continued in chapter 4.  

23.1 Selection and preprocessing architecture 

 

Figure 3.1: Selection and preprocessing architecture 
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3.1 Data Collection and Selection 
 

Our dataset was collected from Kaggle on the 01 of December 2020. Kaggle is a 

website where companies with various problems publish datasets through 

competitions where data scientists compete in creating the best performing models. 

The data collected was from a fraud detection competition held in 2019 by VESTA 

Corporation. VESTA is an e-commerce and credit card company that provides a 

labeled dataset and an unlabeled dataset from their detection system. We choose only 

to use the labeled dataset in our research, containing approximately 590.000 rows and 

two tables.  

The transaction table contains 394 features while the identity table consists of 41 

features, amounting to 435 features. The transaction table provides information on the 

product bought and the type of card used in the transaction. Furthermore, we are 

provided with a timed delta in the format of seconds between each transaction, along 

with the address and associated email address. In addition to these features there are 

many masked features included with no explanation due to privacy reasons. They 

provided extensive amount rich features to compensate for features that could not be 

included in the dataset. The identity table includes digital signatures, IP and proxy-

related information, and other features related to the customer's identity. VESTA 

provided the start date of the data which started on 2017-12-01.  

We chose this dataset because it was the only available dataset we could find from a 

banking domain with raw features and not pre-engineered features, often being PCA 

computations of original features. The decision of using the dataset was based on the 

amount of features and its large number of observations. Although the dataset 

contains a mix of pre-engineered and natural features, we find it sufficient to use the 

most naturally occurring features to best ensure reproducibility, thus discarding most 

of the pre-engineered features. Based on our research questions it was important to 

include a lot of raw features in our baseline model. We merged both the identity and 

the transaction table based on the unique “TransactionID” key.  

We filtered out the VESTA rich features (denoted V_xx) because they were pre-

engineered features combined from provided and not provided features. Based on our 
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research question, we only include the raw and masked features. The engineered 

features could potentially leak information from other features already included 

which could potentially invalidate our research. Appendix 1 includes a description of 

all the raw features from our baseline dataset.  

3.2 Data Cleaning  
 

“Pre-processing is an important step in the machine learning process. The pre-

processing step is necessary to resolve several types of problems including noisy 

data, redundancy data, and missing data values” (Kotsiantis et al., 2006) 

This section will follow general changes to the data table as it is where the 

information converges to become the data we will train our model on, finally. The 

aim is to remove all redundant information and clean up the data through the 

imputation of missing values, remove outliers, categorical encoding and correct 

structural errors, to mention a few. The primary purpose is to detect inaccurate, 

inconsistent, and irrelevant data and modify or delete this useless information to form 

a dataset that provides quality to the other modeling steps down the value chain 

(Agarwal, 2015).  

First, we overview the data structure and patterns through an exploratory data 

analysis (EDA). Second, we cleaned the raw features by removing irrelevant and 

redundant information present in the data. The python code for all our work is 

included in Appendix 2.   
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3.2.1 Removing Redundant Information 
3 3.2 Distribution of dist1 and dist2 

Dist1 and dist 2 

 

Figure 3.2: Distribution of dist1 and dist2 

The dist features describe the distance between different objects such as zip-code, IP 

address and phone area. As shown in Figure 3.2 the dist1 feature contains more 

information than dist2, which could be explained by the fact that dist2 has 45% more 

missing values than dist1. As a result of the amount of missing data in dist2, it was 

deleted from the table. One argument for the removal is that we get more accurate 

data and results (Kotsiantis et al., 2006). In Appendix 3, we included an extensive 

analysis of the missing data we base this judgment on.  

TransactionID 

The identification variable (TransactionID) we used to merge the two tables is 

removed from the dataset as this variable is no longer needed for our modeling part.  

3.2.2 Missing Values 
The missing data is one of the common problems found in data today. Imputing the 

missing values makes the analysis more manageable by making the dataset complete 

as it eliminates the problem of handling complex patterns of missingness (Chhabra et 

al., 2019). 
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There are several ways to eliminate missing values in the data. A data science article 

proposed the following methods (Badr, 2019) 

● Mean imputation. Calculate the mean of the non-missing values and use this 

to impute the missing value observations. This method only works for 

numerical data.  

● Zero/ constant approach. Impute missing values with a new value different 

from all other values. This method can be used for both categorical and 

numerical features. A drawback is that it can introduce bias to the data. 

● Imputation using deep learning. This method can impute missing values 

using the other features in the dataset to predict the missing feature. This 

method works well for both categorical and numerical features. A drawback is 

that this solution is prolonged and time-consuming.  

4 3.3 Missing data percentage by features 

 

Figure 3.3: Missing data percentage by features  

As shown in Figure 3.3, our data have a substantial number of missing values, 

especially in the identification features that have on average 80% missing values in 

each feature. Due to our lack of domain expertise, we find it hard to conclude if these 

values are missing at random or if there is a reason for the data to be missing. 

Therefore, we impute the missing numerical features with a zero/constant approach, 

filling the missing numerical values with a number significantly different from any 

other value in the dataset (Bhaya, 2017). This imputation was done because of the 
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average high percentage rate of missing data. On the contrary, dropping them could 

potentially lead to loss of fundamental observations and feature-specific information, 

something we did not want.  

The choice of method to impute missing values varies and depends on what kind of 

data you have, and there is no defined rule for this process. We are aware that using a 

constant-value approach to fill the missing values has its limitations and may not be 

ideal. In this specific case, it does not make sense to fill the missing values with the 

feature mean or use deep learning to predict the input value based on other similar 

features because the missing value percentage is too high on average.  

The categorical features are imputed the same way. If the number of missing values is 

vast, it can be replaced with a new category (Kumar, 2020). We therefore impute all 

categorical features with a new category, “None” for each feature.  

3.2.3 Outliers 
5 3.4 Boxplot of TransactionAmt 

Outliers are defined as values that excessively deviate from the feature mean 

(Kotsiantis et al., 2006). The transaction amount (TransactionAmt) is such a feature 

in our dataset, most likely due to special-case transactions or fat finger errors. There 

were in total three observations, none of them fraudulent that were above the 

threshold of 10000. We remove the outlying values from the dataset.                     

                                                           

Figure 3.4: Boxplot of TransactionAmt 
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3.2.4 Categorical Features  
6 3.5 Device Info before and after mapping 

“Unlike quantitative attributes, categorical attributes typically have no natural 

ordering or distance between values that fit quantitative definitions of outliers. One 

key data cleaning problem with categorical data is the mapping of different category 

names to a uniform namespace. E.g., a “razor” in one data set may be called a 

“shaver” in another.” (Hellerstein, 2008).  

We used EDA to identify structural errors and inefficient categorical variables with 

many categories where only a few are essential. We apply feature mapping and 

regrouping on those premises to make the feature more susceptible to provide 

information a machine learning algorithm can learn from. 

The method applied was to merge all the few observations into one category called 

“others”, thus making the feature less complex. We have illustrated below how we 

did the feature mapping of the categorical features.  

Device Infoafter mapping 

 

Figure 3.5: Device Info before and after mapping 

The device_info feature had multiple categories of the same name. For example, the 

iPhone (IOS) had multiple categories with different software versions. We grouped 

all software systems with the same name into one group for each provider.   
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The same mapping and reorganization were done to the following features; 

 ID_30, ID_31, ID_33, card6, P_emaildomain and R_emaildomain.  

We have attached the preprocessing of these categorical features and illustration in 

Appendix 7.   

3.2.4.1 Categorical Encoding 
 

Most machine learning models cannot handle categorical features directly as text, and 

thus we need to transform them into numerical values. The different model’s 

performance varies based on what kind of algorithm we use. (Cerda et al., 2018) 

In addition, it is crucial to understand what kind of categorical variables you are 

working with. As nominal categories have no order and label encoding could be 

inefficient, the model could misunderstand and treat the nominal values as a hierarchy 

or ordering (Shaikh, R. 2018). 

From the data science article on categorical encoding (Yadav, 2019), was the 

following methods presented to encode text into numeric values.  

● Label encoding is a simple approach to convert each value in a column to a 

number. This method uses number sequencing, meaning that different values 

will have a number assigned in a sequential order starting on 0. Thus, this 

approach is best for ordinal categorical features as an algorithm may 

misinterpret the data by hierarchy or order (0 < 1 < 2). Therefore, is this 

method not optimal for nominal values with no specific categorical order.  

● One-Hot Encoding solves the misinterpretation that the numeric values have 

some kind of order to them. This method converts each category into its 

unique column with a 1/0 value. The row with the first column value will 

have the value 1, and the rest will be assigned 0. The drawback of this feature 

is that it can create a vast feature space for highly cardinal categorical 

features. This can lead to “the curse of dimensionality” and increase the model 

calculation time.  
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We faced multiple challenges when implementing a suitable method to encode our 

categorical features. The first major problem was detecting if the feature was either 

nominal or ordinal as most of the meaning of the categorical features was masked and 

not appropriately explained. The second problem was high cardinality for several of 

the categorical features. For example, the categorical feature card1 had 12 000 

different categories, making it impossible to encode with a one-hot encoding method. 

The feature space would destroy the model performance and potentially introduce the 

“curse of dimensionality”.  

Based on theory, the most beneficial solution would be one-hot encoding. However, 

the high cardinality present in multiple categorical features made it difficult for us to 

use this approach. This is because it gives rise to several other problems, such as the 

risk of blowing up the feature space and fighting the curse of dimensionality, leading 

to potential overfitting or worse performance for the model (Cerda et al., 2018).  

As a result of the problems we faced, we implemented a trial-and-error approach, 

testing both methods. First, we implemented a count encoding strategy to reduce the 

cardinality for the highly cardinal features, which was transformed into numeric 

variables. Then we applied one-hot encoding to the remaining categorical features. 

After the one-hot encoding, we ran a PCA to reduce the dimensionality of the sparse 

matrix produced. Finally, we tested the method with an algorithm to get the AUC 

score and compared the results to a model that used the label encoding approach.  

The outcome was that the label encoding method outperformed the one-hot encoding 

method significantly. Thus, we decided to go with the label encoding method even 

though the method has its limitations. We base our choice on the increased 

performance with label encoding and on the premise that we used a trial-and-error 

approach to see what works the best for our data.  
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3.2.5 Time Series Train/ Test Split 
 

A general step in machine learning is to split the data into train and test sets. It is a 

crucial process as it is the only way to validate how the model will perform on unseen 

data. After separating the training dataset, we use this chunk to train, validate and 

tune the model. Furthermore, it is essential to know what data you have and choose a 

split method accordingly (Grootendorst, 2019). 

Most commonly, we want an even distribution of fraudulent patterns in both the 

training and test dataset. We do not want patterns present in the test data which are 

not present in the training data, as it is hard for a machine learning model to predict a 

pattern it has never been exposed to or trained on. Thus, patterns present in test data 

should also be present in the training dataset. In python, do we achieve this by using a 

stratified split.  

Since we have time-series data in our thesis, we most likely have a fraudulent pattern 

that have developed over time as new fraud methods have emerged, also referred to 

as concept drift in literature (Devika et al., 2019). If we deployed a stratified split, we 

would most likely get good results that reflect our model's predictive power. 

However, we would indirectly leak information concerning the target through the 

training process as it spreads information from all periods across all the datasets. 

Since we want the experiment to be as realistic as possible, we do not have 

transactions from the same period in both the training and test dataset. This is because 

a model that knows the former will naturally predict the latter well, returning too 

optimistic test scores and not generalize well to real-world applications (Miyaki, 

2019). 

We split based on periods since we are working with time series. The test data will be 

the last 20% of the period, and the train will include 80% of the data before. There are 

limitations to our approach as our model will predict on blind test data, potentially 

leading to lower accuracy and performance than doing the split more traditional with 

a stratified split. Nevertheless, this does not mean that our results would be invalid, 

but it could make our results less accurate.  
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In Figure 3.6 we illustrate how we split our data and we can see how the fraudulent 

activity drops in the testing period. This can indicate that we have a change in activity 

or fraud pattern, making it harder to model, and we may expect the model to have less 

accurate results than what is expected. In our case, we continue with this approach 

while being familiar with its limitations.  

7 3.6 Train/test split of the dataset 

 

Figure 3.6:  Train/test split of the dataset  
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3.3 Feature Engineering 
 

“The function of mathematical modification to the value of a feature which extracts 

more value than in its original state summarizes the goal of transformation” 

(Osborne, 2002). From this paper, two forms of transformations are identified. 

1. Change in the original feature  

2. New features created from existing features.  

In this section, we define all three datasets used in this experiment and all datasets 

have the cleaned raw data in common. For our two baselines, no feature engineering 

and manual feature engineering will be applied. Finally, automated feature 

engineering in the form of DFS will be applied to a clean dataset which later will be 

evaluated against the two baseline datasets in the result chapter where we will 

quantify the overall performance of automated feature engineering.  

3.3.1 Dataset 1 – Baseline 
 

Our baseline dataset will only contain a clean copy of the natural raw features 

available directly from customer interaction when making a purchase. This dataset 

will be used as a benchmark against the automated engineering method to answer our 

research questions.  

3.3.2 Dataset 2 – Manual Feature Engineering 
 

For this dataset we use the baseline as the foundation for further feature engineering. 

We craft new features based on the features present in the cleaned baseline. The goal 

is to build new features based on our knowledge, attempting to recreate how a domain 

expert would craft new features by hand.  
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Change in original features 

TransactionDT 

TransactionDT was initially given as the number of seconds, and we transformed this 

feature into a DateTime feature based on the starting date of 2017-12-01. The credit 

card company that provided the original dataset also provided this date.  

New features created from existing features 

Date Features 

From the DateTime feature, do we create additional time-based features. We generate 

the following features; weekdays, hour of the day, day of the month and month of the 

year.  

High risk and low risk feature 

From the EDA, we find that most fraudulent transactions happened from 05:00 at 

night to 10:00 in the morning. In Figure 3.7, we illustrated that time of day strongly 

depends on whether the transaction is fraudulent. The grey trendline represents the 

amount of fraud while the bars represent transaction activity.   

8 3.7 Most frequent transaction hours of the day 

 
Figure 3.7: Most frequent transaction hours of the day  

 

A binary feature was created which is 1 if the time of day is between 05:00 and 

10:00, and 0 otherwise. 
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 TransactionAmt  

From the transaction amount we generate two additional features.  First, the 

transaction amount is highly skewed. Thus, we transform the TransactionAmt into a 

new feature taking the log of the transaction amount.  

Second, we create an additional 

feature which only extracts the 

decimal number from the 

TransactionAmt. This could be 

useful as the EDA showed that the 

mean fraud is higher for transactions 

with three decimal points, as 

illustrated in Figure 3.8.  

                                                                        Figure 3.8: Mean fraud by decimals 

9 3.8 Mean fraud by decimals 

Random aggregation of some essential features 

We implemented a random aggregate method on the different card types with the 

transaction amount (TransactionAmt), including various max, min, skew, var, and std 

operations.  

Count encoding 

Count encoding is sometimes used for replacing highly cardinal categorical features. 

It is performed by replacing the categorical value with its count of instances. In our 

case we had multiple card features with high cardinality. For example, Card1 has 

over 12 000 categories as previously mentioned. Hence, this method transforms the 

categorical features to a numerical format and can have helpful information for the 

model to learn. We apply count encoding for the features card1 to card6. 
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3.3.3 Dataset 3 – Automated Feature Engineering 

This section provides a detailed description of how we implemented automated 

feature engineering through a python library called Featuretools on the baseline 

dataset to create new features. This approach can be used for both a set of related 

tables and single tables. In our research, we focus on how Featuretools perform on a 

single table. 

Entity set and entities 

We start by creating an entity set for the transaction table. The entity set can be 

interpreted as the contained table(s) data structure and allow us to group multiple 

tables if we have more than one table. We specify each entity for the entity set where 

an entity being one data table. In our case, we have one table but want to split the 

transaction amount (TransactionAmt) into a single table to use aggregation over the 

entire transaction table. Thus, we create two entities in the fraud entity set, the 

transaction_table and the amount_table. 

 

Figure 3.9: Output of entity set 

From Figure 3.9, we can see that we manage to create the entity set Fraud which 

holds the entity transaction_table and amount_table. The corresponding dimensions 

of the dataset are listed. Since we split out the transaction amount to form a new table 

for the purpose of aggregation, we have to specify the relationship between the two 

tables as seen in the output. 

103.9 Output of entity set 
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Specification of variable type 

We had to specify what kind of features were categorical, time-based and numerical 

in each entity set. The default setting of Featuretools is to specify all features as 

numeric unless we input otherwise. Since we had many categorical features, did we 

update the entity information with the correct specification. The time delta 

(TransactionDT) was specified as the time index to create new features based on the 

time. 

Feature Primitives 

Featuretools operate using primitives. Primitives are operations that are applied to our 

dataset in order to generate new features. There are two forms of primitives. 

Aggregation primitives’ groups features from all related data tables to form 

one main table. Operations such as max, min, st.deviation and skew are a few 

examples of operators to choose from. 

Transformation primitives are applied to multiple features in a single data 

table. Operations such as the difference between two features or absolute 

value are some examples of transformative operations. 

Our primary focus is on the transformative primitives in our experiment, but we also 

include aggregation primitives for the TransactionAmt feature. Commonly are 

transformation primitives applied for single tables. Multiple tables are usually 

aggregation primitives applied to aggregate the information from all tables into one 

entity before transformation primitives are applied to the entire table.  

Furthermore, we specify what type of transformation and aggregation primitives we 

want to apply from a list of available primitives. Based on our data and the 

information present in the table(s), we choose to use the following set of primitives to 

be applied to our entity set. 

 

 

09916150989568GRA 19703



29 
 

1 3.1 Primitives applied in Featuretool (DFS) 

Primitive Type Description 

Divide numeric Transformation Divided numeric features 

Multiply numeric Transformation Multiply numeric features 

Diff Transformation Compute the difference 

between the value in 

feature and the previous 

item in that feature 

Hour Transformation Determine the hour value 

from the timedelta 

Day Transformation Determine the day value 

from the timedelta 

Month Transformation Determine the month of 

the year from the 

timedelta 

Week Transformation Determine the week of the 

year from the timedelta 

Time since Transformation Calculate the time from 

one transaction to another 

using the  timedelta 

Is weekend Transformation Return boolean value of 

true/false if the timedelta 

falls on a weekend 
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Time since previous Transformation 

  

  

Compute the time since 

the previous transaction 

using the timedelta 

Max Aggregation Calculate the highest 

value 

Min Aggregation Calculate smallest value 

Median Aggregation Determine the 

middlemost number in the 

feature 

Mean Aggregation Compute the average for 

the feature 

Table 3.1: Primitives applied in Featuretools (DFS) 

 

As a result of limited domain knowledge of the raw features, we let Featuretools run 

primitives on all our features without specifying any limits. An attribute of 

Featuretools is that we can specify which feature we want to perform the operations 

on, but by default will a primitive that is selected be applied to all features in the 

entity set.  

However, we specify what features we want to apply the multiplication primitive on 

since we do not have enough computing power to create all the interactions.  

We implement multiplication to the following randomly selected raw features; 

TransactionAmt, dist1, D2, D4, D10, C1, C5, C6, C11 and C13. 
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Deep Feature Synthesis 

After specifying all details required to use Featuretools we run the DFS, binding 

everything we have specified up to this point. DFS uses primitive stacking in order to 

generate the deep features. The depth is defined as the number of primitives that are 

used to make a new feature. An example of this is that if we took the absolute value 

of one feature and multiplied it with another feature, the newly generated feature 

would have a depth of two because two primitives are used. An example of such a 

feature is; TransactionDT*(ABSOLUTE(TransactionAmt)). In our experiment we use 

a depth of two. 

Simple preprocessing was applied after the DFS. Single value features were removed 

as they had low variance and no predictive power. Additionally, we impute new 

missing values that have arisen, and label encodes newly generated boolean 

categorical features to a numeric format.  

 

Figure 3.10: Output from the DFS function 

From Figure 3.10 have we illustrated the output after running DFS on our dataset. It 

took us only two and a half minutes to generate 1750 features, fast and efficient.  

3.3.4 Feature Scaling  
11 3.10 Output from DFS function 

A common practice within supervised learning is to scale and normalize the different 

features to the same range. For example, transaction amount would have a higher 

interval of values than age. Normalization will help ensure that all the features are in 

the same range. Some learning algorithms are sensitive to scaling, whereas others are 

not.  

In our case we do not normalize the dataset for Naïve Bayes, Logistic Regression or 

the tree-based ensemble methods which are not sensitive to variance in the data 

(Thenraj, 2020). Furthermore, it is proven in research that the accuracy of the 
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XGBoost becomes worse when normalizing rather than using the raw data (Borkin et 

al., 2019). 

3.4 Reduction Methods 
Feature selection is an essential topic in classification as it may have a considerable 

effect on the accuracy of the classifier (Karabulut et al.,  2012).  We add another layer 

of complexity to our supervised methods when doing feature engineering because of 

the dimensionality problem. It is vital to realize the trade-off between model 

complexity (number of features) and accuracy. A reduction in features increases 

accuracy and performance because the excess features can be noise (Belkin et al., 

2019). Automated feature engineering generated an exhaustive amount of new 

features as previously shown. To reduce dimensionality, we attempt to implement 

various reduction methods described below (Koehrsen, 2018).  

 

● Collinear feature selection is a deterministic method that finds collinear 

features in the dataset. For each pair of collinear features, the method 

identifies and deletes one of them. We specify a threshold for collinearity for 

where we want the model to delete features.    

● Zero important feature selection is a non-deterministic method that uses 

gradient boosting to assess the feature importance of each feature in the data. 

In a tree-based model, these features are not used to split any nodes, and thus 

we can remove them without losing model performance.  

● Low importance removal builds on the zero-importance feature selection 

method. It finds the lowest important features which do not contribute to the 

total importance based on a predefined threshold. For example, we set a 

threshold to find how many features we need to achieve a certain amount of 

variance in the data. This is a trade-off between complexity and variance, an 

important topic within supervised learning.  

• PCA is a dimensionality reduction method that aims to enhance strong 

patterns in data. Through the use of a technique called eigenvalue 

decomposition, PCA aims to create features that maximize the information 

captured, while also keeping the dimensions to a minimum.  
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We first attempted to implement PCA to the data, but it was impossible to fit in 

memory due to the large size of the dataset. Secondly, we tried to implement different 

batch sizes to the PCA to control memory usage. We see a significant dip in model 

performance from this method and a significant increase in the false positives, thus 

resulting in the discarding of this method.  

Going further, we tried to implement another reduction technique called zero 

importance feature selection. This method uses an implemented algorithm for feature 

selection, typically a decision tree algorithm and in our case it was based on 

XGBoost. Implementing this algorithm we managed to cut down from 1750 variables 

to 400. However, at the cost of a significantly lower area under the curve (AUC), 

potentially due to the high correlation that can misguide the feature ranking for these 

algorithms (Tolosi, Lengauer, 2011). 

Going further, we implement a cut-off to remove highly correlated features. Through 

this method, we drop the highly correlated features above our pre-set threshold of 0.9 

(90% correlation). From the literature, it can be shown that algorithms such as 

Random Forest or gradient boosting models can generate misleading feature ranking 

when the training dataset contains large groups of correlated features (Tolosi, 

Lengauer, 2011). This method was also addressed in other research (Haixiang et al., 

2017), where collinearity was reduced through removing highly correlated features. 

On the contrary, it can be argued as a naïve method to drop all highly correlated 

features above a certain threshold as there may be good relationships or features we 

lose among all the noise. In our case, this method was the only way to reduce the 

features to go ahead with other selection methods, but we are aware of the limitation 

this method could possess.  

After cutting down the feature space with the correlation method, we were left with 

around 700 features. At this point we implemented the zero important feature selector 

again. Additionally, we implemented low importance removal to keep the variables 

that explain 98% of the total variation in the data, leaving us with 306 features. 

Appendix 6 illustrates the cut-off graph for the number of features to keep.   
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Our selection methods were performed on a trial-and-error approach to see which 

method worked the best for our automated feature engineering dataset as there is no 

“silver bullet” method for feature selection (Jović et al., 2015). We select our method 

based on the AUC score and number of false positives by trying different approaches, 

making us choose the most beneficial method based on performance gain.  An 

important notion is that we only perform reduction techniques to the automated 

engineered data for our experiment because the manual and baseline dataset has a 

much lower feature space.   

3.5 Class Imbalance Problem 
12 3.11 Target class (isFraud) distribution 

Imbalanced target class 

“A dataset is imbalanced if the classes are not approximately equally represented.” 

(Chawla et al., 2002) 

 

   Figure 3.11: Target class (isFraud) distribution 

As for most fraud datasets, we encountered the problem of class imbalance illustrated 

in Figure 3.11. After the preprocessing, fraudulent transactions accounted for no more 

than 3.67% of the observations in the data. Most supervised algorithms learn best 

when the target class is equally distributed. When there is a high imbalance, the 

algorithms tend to be biased towards the majority class and predict almost none of the 

observations from the minority group. If none of the fraudulent transactions were 
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predicted would the model still return an accuracy of 96%, falsely suggesting that the 

model is performing exceptionally well.  

3.5.1 Handling Class Imbalance Problem 
13 3.12 Illustration of SMOTE 

 

Figure 3.12: Illustration of SMOTE (Walimbe, 2017).  

 

SMOTE is an oversampling technique that uses information about the already known 

anomalies and attempts to generate new observations of the minority class up to a 

given percentage (often a 50/50 distribution). This way, the model fits the data to 

reflect the underlying information better and more accurately detect actual anomalies. 

A typical outcome for highly imbalanced data when not using a sampling technique is 

that the model may believe that the minority class is an outlier.  

The feature that makes SMOTE different from other over-sampling techniques that 

use replacement is that new observations are generated using nearest neighbor 

techniques to the minority class (Chawla et al., 2002). This way, the new 

observations are related to the central sample and no outliers are generated, thus 

lowering the risk of inducing any overfit from adding new observations (Liang et al., 

2020).  

We apply SMOTE after preprocessing to combat the problem of class imbalance, as 

shown in research. By not implementing any sampling strategy, the result will be 

inaccurate and not reflect the actual patterns in the data (Caldeira et al., 2014). 

Research has shown that datasets with many observations have better accuracy 

(Elreedy, Atiya, 2019). SMOTE is performed as the last step before modeling and is 

only applied to the training data. The complete Python code can be found in 

Appendix 2 
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4. RESEARCH METHODOLOGY 
 

This chapter is divided into two parts. The first section presents the theoretical 

framework for the supervised algorithm and how we selected the model to use in our 

evaluation. The second section includes what kind of metrics we used to evaluate the 

performance of the different models.  

In Figure 4.1, we have illustrated the architecture for this chapter. This chapter will 

introduce the last part of our methodology, which makes us quantify and interpret the 

results from automated feature engineering.  

14 4.1 Model and evaluation architecture 

 

Figure 4.1:  Model and evaluation architecture 

4.1 Machine Learning  
 

Machine learning can be grouped into four categories; Supervised Learning, Semi-

Supervised Learning, Unsupervised Learning and Reinforcement Learning 

(Pedregosa et al., 2019). For this thesis, we only consider supervised learning. 

For this experiment, our goal is to identify a supervised model that can be used to 

evaluate if additional features generated by automated feature engineering would 

make a difference in discarding false positives. The target feature can either be 
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classified as "0", a genuine transaction, or "1", a fraudulent transaction. It is essential 

to choose a supervised method that adapts well to our data's characteristics and can 

generalize to perform well for new, unseen data. 

Different machine learning models serve different purposes and make different 

assumptions about data. Based on the previous application within related literature, 

we choose to include four different models in our test (Jain et al., 2019) (Wedge et 

al., 2017). The following section introduces each of the algorithms evaluated. 

4.1.1 Logistic Regression 
 

The Logistic Regression model was evaluated for our experiment as it performed on a 

moderate level concerning the reduction of false positives and had the lowest training 

costs of all the tested models (Jain et al., 2019).  

The Logistic Regression method is standard within classical statistics and is 

considered one of the best methods for a binary classification problem (Geron, 2019). 

The Logistic Regression is based upon the logistical probability function described by 

Equation 4.1.  

In detail, the model assumes that for each potential outcome of the dependent variable 

(y), the probability of y = 1, is P and y = 0 is equal to (1 – P).  

𝑃𝑃(𝑋𝑋) = 𝑒𝑒(𝑏𝑏0+ 𝑏𝑏1𝑋𝑋1) 
1+ 𝑒𝑒(𝑏𝑏0+ 𝑏𝑏1𝑋𝑋1)   (4.1) 

𝑙𝑙𝑙𝑙𝑙𝑙 � 𝑃𝑃(𝑋𝑋)
1−𝑃𝑃(𝑋𝑋)

� = 𝑏𝑏0 +  𝑏𝑏1𝑋𝑋1  (4.2) 

Consider an example; if we attempt to predict if there will be rain tomorrow, the 

outcome is limited to the number of potential outcomes (the number of classes). In 

this case, the outcome is either rain (y = 1) or there will not rain (y = 0), namely a 

binary classification problem. When the logistical regression model estimates the 

probability of an event, it transforms the problem into a categorical form based on a 

threshold value being 0.5 as default (For example, "1" if the probability > 0.5, and "0" 

if the probability is < 0.5) (Hosmer, Lemeshow, 2000).  
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The logistical regression coefficient must be estimated using maximum likelihood 

estimation (MLE) (Brownlee, 2016), which is illustrated in Equation 4.2. The idea 

behind MLE is to find the coefficient of β0 and β1, such that the probability predicted  

�̂�𝑝(𝑥𝑥𝑖𝑖), using Equation 4.1 corresponds to the observed probability in our data (James 

et al., 2019).  

Logistic Regression is one of the simplest and fastest algorithms to implement and 

train in machine learning and can be viewed as a baseline for many classification 

problems. The low variance makes it less prone to overfit where the classes are 

clearly separated. Moreover, the model can generalize to multiple classification 

problems instead of binary, and it does not consider the distribution of the classes 

within the feature space. The main drawback of the model is the risk of overfitting 

when many of the features in the training data are highly correlated. (Howbert, 2012).  

4.1.2 Naïve Bayes 
 

Bayes theorem 

The Naïve Bayes method is based on Bayes Theorem, a formula illustrated in 

Equation 4.3 that determines the probability by estimating the frequency of values 

and a mix of values in the previously collected data. Moreover, it provides the 

probability of an event happening, given the probability of another event that already 

occurred (Tan et al., 2013).   

 𝑃𝑃(𝑌𝑌|𝑋𝑋) =  𝑃𝑃(𝑋𝑋|𝑌𝑌) 𝑃𝑃(𝑌𝑌)
𝑃𝑃(𝑋𝑋)

   (4.3) 

Bayes theorem is commonly used to solve classification problems and thus we 

evaluate its performance on our dataset in this thesis. We let X denote a set of 

attributes, and Y denote the class. P(Y) is the prior probability calculated from the 

training dataset by the fraction of data associated with each class. We then define the 

class conditional probability denoted P(X|Y). Finally, we need to learn P(Y|X), 

which is the posterior probabilities for all X and Y combinations based on 

information drawn from the training data. However, it is not a straightforward task 

estimating P(X|Y). Thus, we introduce the Naïve Bayes to solve this issue.   
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Naïve Bayes Classifier  

The Naïve Bayes classifier uses prior knowledge of the classes combined with new 

information gathered from the data. The approach can be considered a relatively 

simple method but may still outperform the more advanced classification methods. 

Another key attribute is the speed and accuracy when applied to a large dataset (Han 

et al., 2011).  

Naïve Bayes classifier has conditional independent assumptions, meaning it assumes 

conditional independence between the attribute values P(Xi|Y). Based on this 

assumption, we calculate P(X|Y) using Equation 4.4 with much less effort than 

Equation 4.3.  

𝑃𝑃(𝑋𝑋) =  𝑃𝑃(𝑌𝑌)𝜋𝜋𝑖𝑖=1 
𝑓𝑓 𝑃𝑃(𝑋𝑋𝑖𝑖|𝑌𝑌)
𝑃𝑃(𝑋𝑋)

  (4.4) 

f superscript - the number of features. 

Because the machine learning classifier is supervised, both probabilities P(Y) the 

prior, and P(Xi|Y) the attribute probabilities can easily be calculated by counting the 

occurrences from the training data.  

𝑃𝑃(𝑌𝑌) = 1

�2𝜋𝜋𝜎𝜎𝑦𝑦2
 𝑒𝑒𝑥𝑥𝑝𝑝

− 
(𝑋𝑋𝑖𝑖− 𝜇𝜇𝑦𝑦)2

2𝜋𝜋𝜎𝜎𝑦𝑦2     (4.5) 

There exist many forms of Naïve Bayes, and among these, the Gaussian Naïve Bayes 

is one of the most popular methods. Compared to the Naïve Bayes, Gaussian Naïve 

Bayes assume that each feature's likelihood obeys the normal distribution rule (Tan et 

al., 2013). Equation 4.5 illustrates how this is calculated. 

The Gaussian Naïve Bayes makes classification easier as it only uses the mean and 

standard deviation from the training data. Furthermore, the advantage of the classifier 

is that it works better with less data than other methods, and it provides faster 

computational time. Additionally, Gaussian Naïve Bayes is limited when dealing with 

highly correlated features as it assumes independence (Vadapalli, 2020)  
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4.1.3 Random Forest 
15 4.2 Random Forest Voting Scheme 

Bagging 

Bagging is an ensemble technique also referred to as Bootstrap Aggregation. This 

technique reduces the predictions' variance by combining multiple model predictions 

on different sub-samples of the same dataset. One item is chosen as part of the 

sampling volume and the item is then introduced back to the original dataset so it 

may be chosen in the next pass. After repeating this process multiple times, we get 

many different models on different volumes. We combine all these learners through a 

deterministic averaging process in the end.  

Random Forest 

Random Forest is a classifier consisting of many single decision trees. It uses bagging 

(Bootstrap Aggregation) and randomness when constructing individual trees to build 

an uncorrelated forest of trees. The combination of all the tree's single predictions is 

aggregated into one result which is more accurate than the individual decision of the 

predictions from a single tree. All the individual trees in the Random Forest return a 

class prediction and can be trained in parallel. The class with the most votes from all 

the trees combined becomes the model prediction. Figure 4.2 illustrates this case, here 

class 0 has six votes, and class 1 has three, and thus will the final prediction become 0 

for the model (Yiu, 2019).  

 

Figure 4.2: Random Forest Voting Scheme 

In general, performance increases with RF since the variance is reduced through 

combining low-correlation decision trees. Additionally, the data is partitioned at 
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random in each split and not by any measure of information gain contributing to 

further randomness.  

Furthermore, Random Forest requires very few parameters. There are only two 

parameters that need consideration; the number of trees to grow and the number of 

variables to consider at each node. It is worth mentioning that the default settings 

tend to perform so well that it hardly needs any parameter tuning (Bentéjac et al., 

2019). 

4.1.4 XGBoost 
 

Boosting 

Boosting involves using multiple weak learners (i.e. decision trees and similar) to 

create one strong learner that can return a better result than each individual learner. 

The main difference compared to the bagging method mentioned above is how the 

elements are weighted and chosen. Bagging operates with equal-weighted elements, 

meaning they have the same probability of appearing again, while boosting increases 

the weight for misclassified data, encouraging the model to learn complex patterns 

better.  The boosting method trains the weak learner sequentially.  Thus, each learner 

tries to do a better job than their predecessor by adding more weight so the next 

hypothesis is more likely to classify the sample correctly. Lastly, the final prediction 

is the weighted average of all sequential predictors (James et al., 2013). 

XGBoost 

XGBoost is short for eXtreme Gradient Boosting. The method is an advanced form of 

gradient boosting published by Chen and Guestrin (Tianqi, Guestrin, 2016). XGBoost 

tries to combine weak learners to create a strong learner, much like the boosting 

method above. During the learning process, weak learners are generated. At each 

stage the weak learner calculates the value or class label and returns a loss (difference 

between the actual value and the predicted value). The magnitude of the loss creates a 

new weak learner, which again trains on the remaining errors. This process continues 

until a threshold is met. Moreover, this process is referred to as gradient descent 

optimization, where the gradient boosting name comes from.  
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The benefit of the XGBoost is that it has better regularization than normal gradient 

boosting, reducing overfitting. Since XGBoost allows for parallel processing through 

GPU, it is much faster than the normal gradient boosting (Brownlee, 2016). 

Moreover, a normal gradient boosting is a greedy algorithm since it stops splitting the 

node when encountering a negative loss. XGBoost on the other hand stops splitting 

when it reaches the predefined limit of max depth. A helpful attribute built into the 

XGBoost is cross-validation, making it better at determining the number boosting 

rounds. It is important to note that when using XGBoost, a range of hyperparameters 

needs to be tuned to achieve the desired results, a potential downside compared 

alongside algorithms such as Random Forest and Logistic Regression. 

4.2 Model Selection 

4.2.1 Cross-validation  
 

Cross-Validation (CV) is a statistical method used to estimate the performance and 

skill of the ML model (Brownlee, 2018). It is a commonly used tool to assess and 

select different ML models for a given classification problem.   

Since we deal with time-series data in our thesis, we implement a time series split 

with the k-fold method. For example, if the dataset contains [1, 2, 3, 4, 5] and we do a 

k-fold CV with a time series split, we would follow these rules (Shrivastava, 2020).  

● Every test set contains unique observations. 

● Observations from the training set occur before their corresponding test set. In 

other words, the test data must be ahead of time compared to the training data.  

For example, we get the following if a dataset contains five observations. 

- Training: [1] test [2], 

- Training [1, 2] test [3] 

- Training [1, 2, 3] test [4] 

- Training [1, 2, 3, 4] test [5] 

By averaging the k-fold’s, we get the average of the performance metric used, 

for example, AUC.  
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Figure 4.3: K-fold CV with time series split  

16 4.3 K-fold CV with time series split 

In Figure 4.3, we illustrate how cross-validation could be performed.  

Keeping our research question in mind, the mission is to find a model that could work 

as a tool to quantify the results from using automated feature engineering, to see how 

this approach affects the FPR. Therefore, k-fold cross-validation was implemented to 

select the model which best fitted our raw data.  

Our CV makes different Receiver Operating Characteristics (ROC) curves based on 

different folds from the training data. Next, we average all the folds to get the mean 

AUC, an excellent metric for validating and comparing different models (Forman, 

Scholz, 2010). 

The reason for performing the ROC validation was the massive imbalance in the 

dataset. Other more standard and straightforward metrics such as accuracy, recall, and 

precision could potentially be misleading, which will be explained more extensively 

in the section of model evaluation.   

None of the models applied in the CV will be tuned. That way, we ensure the 

performance is out of the box performance for all models. A notation, the cross-

validation was only performed on the baseline dataset. This way, we could select the 

model for use in the rest of the evaluation.  
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4.3 Model Tuning 
 

For machine learning models one can generally say that discovering the optimal 

tuned parameters is both time-consuming and computationally exhaustive. Applying 

gradient boosting methods requires a lot of parameters tuning as the default 

parameters of XGBoost are not optimal. In gradient boosting, the number of boosted 

trees, learning rate, and the maximum depth of the trees make the model more robust. 

Not paying attention to the parameters can make wrongful conclusions from the 

model training as it may be overfitted and unable to learn. The parameters can be 

divided into two groups; hyperparameters and consistent parameters.  

Consistent parameters 

Some parameters stay constant through the whole training process and are usually 

training specific and chosen based on your objective goal and what we want to 

predict. In particular, we need to specify a binary loss function. In addition, 

specifying what type of hardware we want to run the model on is essential. Some 

models run on GPU and others on processors. Through the use of GPU parallel 

processing, the runtime is drastically reduced.  

Hyperparameters 

Hyperparameters are parameters that control the model and may have a substantial 

impact on performance. As machine learning models get more sophisticated, the 

number of hyperparameters to tune increases. Ideally, a hyperparameter optimization 

method like grid-search would be applied to find the best parameter configuration 

since this method finds the global optima. Due to grid-search being a brute force 

algorithm, employing it requires extensive computational powers. Only people with 

supercomputers could perform such a task (Chollet, Allaire, 2018), and thus sub-

optimal for our purpose. As a result, suitable tuning methods have increased as there 

are many methods to choose from when tuning a model rather than using grid-search. 

Essentially, the tuning algorithm can be seen as an optimization tool trying to 

decrease the loss as much as possible. The decrease happens when an optimizer loops 
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over multiple values of different hyperparameters and reports the lowest loss of all 

the combinations it tried at the end of the search (Bissuel, 2019). 

4.3.1 Tuning Gradient Boosting Machine 
 

Consistent Parameters 

We use the XGBoost library in python to build a well-performing model. For the 

constant parameters, there is only “boosting” we need to specify. This parameter is 

set to gbtree, which is the gradient descent of tree types that penalize complexity.  

Hyperparameters 

We utilize Bayesian Optimization to tune the XGBoost model. The reason for 

choosing this method is the ability to include more features to tune and its low 

computation time. We were limited by using standard computers for this experiment 

and could not use other methods such as Grid-Search or Randomized-Search. 

Bayesian Optimization considers past evaluation when choosing which 

hyperparameter set to evaluate in the next iteration. It then chooses the combination 

in an informed way which makes it able to focus on the parameter space which is 

believed to bring the most promising validation score. In other words, the Bayesian 

optimizer makes “bets” on which mix of hyperparameters are more likely to achieve 

the best objective function until it has reached the pre-specified limit of iterations 

(Kapil, 2019). Consequently, this method requires fewer iterations than other 

methods because it disregards areas of the parameters space it believes will not bring 

any extra performance to the evaluation. It also provides faster results than similar 

methods and surpasses human experts at selecting hyperparameters (Snoek et al., 

2012).  

Methods such as Grid-Search and Randomized-Search use much time to evaluate 

different hyperparameters completely uninformed of previous iterations it has made. 

This forces the methods to spend a lot more time and a considerable amount of 

computing power evaluating inferior hyperparameters (Koehrsen, 2018). 
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The hyperparameters tuned for the XGBoost models are: 

1. Number of estimators (N_estimators) 

2. Max tree depth (max_depth) 

3. Learning rate (learning_rate) 

4. Minimum child weight (min_child_weight) 

5. Colsample by tree (colsample_bytree) 

4.3.2 Controlling for Parameters 
 

In our experiment, model settings are controlled for both constant parameters and 

hyperparameters. We only tune the model for the baseline dataset, and the best 

parameters will then be applied to all models. We find this beneficial because we get 

a more accurate image of the isolated effect automated feature engineering has on the 

FPR. If we had different hyperparameters for each model, it could potentially return 

too optimistic results regarding automated feature engineering, naturally something 

we do not want.  
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4.4 Model Evaluation 
 

4.4.1 Bias-Variance Dilemma 
 

One key decision to make when working with machine learning is how to validate 

your models. Validation gives you insight into the model but can also return 

reasonable indications for how unbiased and generalized the performance is.  

Bias is the case where the model makes assumptions that are far from reality. This 

could happen using the wrong learning algorithm, which is different from the 

relationship between the dependent and independent features. A high bias model will 

not learn the underlying pattern of the training data and therefore return a high loss 

during training and validation. For example, a linear model is less flexible to more 

complicated problems and thus often results in poor performance for more complex 

problems. Bias is popularly referred to as the state of underfitting.  

Variance is the case where the error is caused by fluctuation in the training data. 

Ideally, do we want the model to perform the same regardless of the data the model 

has trained on. However, this may not be the case if the model is too sensitive and 

captures random patterns that only appear in the training data. Thus, variance occurs 

when the learning function varies significantly with the data used for training. This 

state is referred to as overfitting. 

Mean squared error/ Total error represents the general noise in the data resulting 

from zero important features or randomness. This error can be reduced during the 

preprocessing stage.  

The bias-variance tradeoff is the level of bias and variance in the underlying model. 

A complex model usually has high variance and low bias and can for example be a 

tree model. On the contrary, a low complex model has low variance but high bias and 

can be a regression for example. A model cannot be both high and low on 

complexity, therefore is called a trade-off between bias and variance.  

Figure 4.4 can we see how bias and variance change based on the complexity of the 

model. There is usually an optimal model complexity that minimizes the square error 
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by balancing bias and variance (Doroundi, 2020). Finding the equilibrium is often a 

difficult task due to the underlying target function being unknown, and it would not 

be possible to estimate the exact bias and variance errors (Singh, 2018). 

 

Figure 4.4: Illustration of bias-variance tradeoff (Hulgol, 2020).  

17 4.4 Illustration of bias-variance tradeoff 

How can we deal with over- and underfitting, and how to detect it? 

K-fold cross-validation is an excellent way to investigate the bias-variance tradeoff 

and also ensure that the model has a low error. It is vital to choose the proper value of 

K so the testing procedure returns the best possible estimation of K.  

To assess the bias-variance characteristics with the k-fold cross-validation, we check 

the error output with each calculated fold being one error. We find the bias from the 

mean of all the k-fold errors. To check for variance do we compute the standard 

deviation of the errors. A resulting high number indicates that the performance 

overfits the data greatly, something we do not want.  

To deal with the overfitting we employ techniques such as feature reduction. 

Manually removing irrelevant features by removing collinear features and applying 

regularization methods can help the model generalize better. Another approach would 

be adding more trees to the Random Forest or the gradient boosting model, which 

could potentially help.  
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In our case, we include a gradient boosting model that is robust against bias and 

variance. The prediction from the gradient boosting model is the weighted average 

predictions yielded from multiple weak learners where the best model iteration with 

the lowest variance is chosen of all the weak models (Bühlmann, 2012), thus 

contributing to tackling high variance. Additionally, the error prediction is reduced by 

focusing on the bad predictions and then modeling them better in the next iteration, 

thus reducing the bias.  

Another important consideration is the presence of imbalanced data. The reduction of 

bias requires equal representation of all group outcomes. As discussed in the data 

processing chapter this was solved by implementing an up-sampling technique 

(SMOTE) to balance the target class for the train data.   

4.4.2 Performance Measures 
 

In our research, AUC is implemented to evaluate the classifiers. We look at the 

change in FPs (ΔFP) and the change in TPs (ΔTP) as performance measures for 

evaluating how the different datasets impact the model in the domain of false 

positives. In supervised learning literature, standard metrics are accuracy, precision, 

recall and F1. However, in our case these performance metrics are not a good fit as 

we are dealing with highly unbalanced data. In this domain there are a few positive 

targets per million transactions. Consider a situation with 10 positives and 1 million 

transactions. If the algorithm classified every transaction as “normal” the accuracy 

metric would be above 99%. This is not a helpful detector as it detects none of the 

fraudulent transactions. On the contrary, if the classifier detects all the 10 positives 

but has 200 FPs, then the precision of that model would be 0.024, which may be seen 

as a bad result at first sight but the model can still be good. Recent research also 

supports this claim that precision, accuracy, recall, and F1 score should be avoided as 

they could be biased when classes are highly unbalanced (Luque et al., 2019).  

The Confusion matrix returns the output of a machine learning classifier for binary 

or multi-class problems. It is helpful to get an overview of model performance by 

looking at the difference between predicted and actual values. In most cases it is used 
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for further calculations of the FPR, TPR, accuracy, precision, recall and F1 score. 

Appendix 5 includes a brief description of the measures not applied but have context.  

Confusion Matrix 0 (Predicted Negative) 1 (Predicted Positive) 

0 (Actual Negative) True Negative (TN) 

Classified as not fraud 

and was not fraud.  

False Positive (FP) 

Classified as fraud but 

was not fraud 

1 (Actual Positive) False Negative (FN) 

Classified as not fraud but 

was fraud 

True Positive (TP)  

Classified as fraud and 

was fraud 

Table 4.1: The confusion matrix scheme 

2 4.1 The confusion matrix scheme 

The difference in FPs and TPs 

It is beneficial to know the difference between the FPs and TPs after implementing 

the new feature compared to the initial baseline. The differences are estimated as 

described in Equations 4.6 and 4.7. The subscripts F and B denote the FPs and TPs 

from the manual and automated engineering (F), and the FP’s and TPs from the 

baseline (B). Note that the difference can be either negative or zero.  

  ∆𝐹𝐹𝑃𝑃 = 𝐹𝐹𝑃𝑃𝐹𝐹 −  𝐹𝐹𝑃𝑃𝐵𝐵  (4.6)                    ∆𝑇𝑇𝑃𝑃 = 𝑇𝑇𝑃𝑃𝐹𝐹 −  𝑇𝑇𝑃𝑃𝐵𝐵 (4.7) 

 

False Positive rate (FPR) and True positive rate (TPR) 

After computing the confusion matrix from both the manual and automated feature 

engineered models we compare the FPR and the TPR rate. This metric comparison 

works as if the different models formed a single model. The metrics are described in 

Equations 4.8 and 4.9.  

𝐹𝐹𝑃𝑃𝐹𝐹 = 𝐹𝐹𝑃𝑃
𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃

      (4.8)          𝑇𝑇𝑃𝑃𝐹𝐹 =  𝑇𝑇𝑃𝑃
𝑇𝑇𝑃𝑃+𝐹𝐹𝑇𝑇

  (4.9) 

 

09916150989568GRA 19703



51 
 

ROC and the TPR/ FPR tradeoff 

The ROC curve can be used to illustrate the classifier performance in the domain with 

unbalanced data (Fawcett, 2006) and (Phua et al., 2004). The x-axis represents the 

FPR and the y-axis the TPR. Since each dimension of the graph has a strict ratio, it 

does not depend on the class distribution. Thus, the plot does not change as the class 

distribution changes (Fawcett, 2006). In addition, it can be said that ROC curves 

examine a single classifier for multiple classification thresholds. 

                                                                                                    

Figure 4.5 is an example of an AUC with two classifiers (Fawcett, 2006). We see that 

the curved line represents the 

different thresholds between TPR and 

FPR. The shaded area under the line 

is represented as the AUC. The 

diagonal line represents the random 

chance and has an AUC of 0.5. In 

other words, a model which follows 

the diagonal is no better in detecting 

something than a random flip of a 

coin.  Thus, a working model will 

have a higher AUC than 0.5.  

                                                                   Figure 4.5: ROC curve of two classes 

18 4.5 ROC curve of two classes4 

AUC  

AUC is a single scalar value that is transformed from the ROC performance (Fawcett, 

2006). The measure is a portion of the unit square and always has a range between 0 

to 1. The better the AUC, the better is the model performance and ability to 

distinguish between negative and positive classes. As a reference for future results, an 

AUC between 0.90 and 1 is usually considered an excellent result, while between 

0.50 and 0.60 are considered failures (Hanley, McNeil, 1982).                                                
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Matthews Correlation Coefficient 

Matthews Correlation Coefficient (MCC) considers all four values in the confusion 

matrix. The measure takes values ranging from -1 to 1, where 0 means that the 

classifier is no better than a random flip of a coin. A value of -1 means a negative 

correlation, thus misclassification, and 1 means a perfect classifier. The Matthew 

measure is applied because it is perfectly symmetric and no class is more important 

than others. Hence, it can be seen as a more reliable statistical measure which only 

produces a higher score if the prediction obtained performs well in all four categories 

of the confusion matrix (Chicco, Jurman, 2020).  

We choose to use MCC as recent studies have shown that this method was the best 

metric for highly imbalanced classes (Luque et al., 2019). As a reference for future 

result comparison, we find that 0.30 - 0.39 is a moderate positive relationship, 0.40 - 

0.60 strong positive relationship and 0.70 or higher is a solid positive relationship 

(Powers, 2011). This metric is described in Equation 4.10.  

 

𝑀𝑀𝑀𝑀𝑀𝑀 =  𝑇𝑇𝑃𝑃 𝑥𝑥 𝑇𝑇𝑇𝑇−𝐹𝐹𝑃𝑃 𝑥𝑥 𝐹𝐹𝑇𝑇
�(𝑇𝑇𝑃𝑃+𝐹𝐹𝑃𝑃)(𝑇𝑇𝑃𝑃+𝐹𝐹𝑇𝑇)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑃𝑃)(𝑇𝑇𝑇𝑇+𝐹𝐹𝑇𝑇)

   (4.10) 
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5. RESULTS  
 

We have created three datasets to be compared against each other to conclude the 

viability of the automated feature engineering framework and its effect on the false 

positives compared to the baseline and manual engineered features.  

This chapter will first choose which algorithm to use in our evaluation part, and this 

is done through a model selection process using CV. This way we can evaluate 

different models to make sure generalization and performance is equally good for 

out-of-sample use, and to be sure that the selected model is optimized. The test 

partition remained untouched through the whole model selection, tuning and training 

phase. Secondly, we go through the experimental setup for the chosen model. Finally, 

we will go through the result for each dataset and make a comparison between the 

results.  
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5.1 Model Selection 
19 5.1 ROC-AUC  10-fold CV with time series split 

The first stage of the evaluation was to find which ML model that best fit our data. 

We calculate the ROC-AUC of all the four candidate models from out-of-box 

performance (no tuning). Using 10-fold cross-validation on the clean baseline data we 

receive the following results: 

  

  

Figure 5.1:  ROC-AUC  10-fold CV with time series split 

From Figure 5.1 Random Forest and XGBoost demonstrate to be two worthy 

contenders as they have the highest AUC score on average compared to the four 

models. We can see that the different thresholds between FPR and TPR are better for 

these two, indicating that they have an overall lower FPR, which is what we want to 

see. Based on the results from the CV alone we choose XGBoost as the model to use 

in our experiment due to it having the highest AUC of 0.88, indicating that in 88% of 

cases it can distinguish between the two classes.  
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5.2 Experimental Settings for the Benchmark Model  
 

To evaluate the performance, we implement the model selected from the cross-

validation stage. This model will be used as a reference to evaluate how the additional 

features generated by the automated approach influence false positives compared to 

the two other methods.  

XGBoost was tuned according to the features in the baseline data, and we keep these 

hyperparameters constant for all models. We control for the hyperparameters to keep 

consistency and comparability throughout the research. Additionally, we only utilize 

one algorithm in the evaluation phase as our goal was to explore additional features' 

effects on FPR, rather than different algorithm effects on performance. Our 

benchmark model has the following setup.  

3 5.1 Experimental settings for the XGB model 

Machine learning model: 

XGBoost 

Input features: 

Baseline – 81 features 

Manual engineering – 124 features 

Automated engineering – 306 features 

Total amount of observations: 

(455 832) Original 

(911 664) Upsampled using SMOTE 

Hyperparameter Tuning: 

Bayesian optimization for XGBoost (Appendix 4 contains the optimized values) 

Objective: 

Binary 
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Loss: 

AUC 

Early stopping: 

200 rounds 

Regularization: 

L1 

Table 5.1: Experimental settings for the XGB model  

Summarizing Table 5.1; the model was first fed the preprocessed training data before 

adding the engineered features from each manual and automated method separately.  

SMOTE was applied to the datasets in order to reduce the majority class bias. Using 

Bayesian optimization the model was trained and validated with the best combination 

of parameters to optimize the tree structure.  

Furthermore, regularization measures to control for overfitting as previously 

discussed are implemented. Early stopping avoids overfitting by monitoring the 

performance of the test data. When the model does not improve after a fixed number 

of iterations the training is stopped. The L1 regularization is controlled through the 

alpha constant. We tried multiple values through a trial-error approach for the best 

results.  

5.3 Experimental Setting 1 - Baseline 
The baseline dataset was created using only the raw features. The dataset was only 

cleaned and pre-processed without adding any feature-engineered variables. In total, 

the baseline dataset contains 81 features.  
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5.3.1 Results  
20 5.2 Confusion matrix of the baseline model 

 

                      Figure 5.2: Confusion matrix of the baseline model 

4 5.2 Result metrics of the baseline model 

TPR FPR AUC MCC 
45.46% 2.09% 0.87 0.43 

Table 5.2: Result metrics of the baseline model 

Our baseline yielded a surprisingly good AUC score of 0.87, indicating that our 

baseline can distinguish between the two classes in 87% of the cases. Additionally, 

we got a strong correlation score of 0.43 with the MCC metric. These scores 

combined suggest that our classifier as an entity is considered to do a good job. From 

Table 5.2 we achieve an FPR of 2.09%, which may seem small as a percentage but 

with 2387 FP values we expect it to be reduced through further feature engineering. 

Furthermore, we got a TPR of 45.46%, which is not a high value, but it may be 

affected by the threshold between FPR and TPR, set to the default of 0.5. Appendix 8 

includes a description of the details of thresholds.  

It was interesting to get such a good result without any feature engineering, and the 

results exceeded our expectations. Reflecting on these results, it may suggest that the 

model has managed to pick up on some trend in the data despite the high sparsity of 

many of the original raw features, especially with the identification features 

containing on average above 80% missing values.  
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5.4 Experimental Setting 2 - Manual Feature 
Engineering 
21 5.3 Confusion matrix of the manual model 

For our second dataset, we utilized the preprocessed baseline data and manually 

engineered new features to potentially improve the machine learning algorithm 

performance, thus decreasing the FPs. From the best of our knowledge, we leverage 

the raw features through our own insight, coupled with research done in the credit 

card domain. After the engineering process the dataset consisted of 124 features, an 

increase of 43 new features compared to the baseline.  

The process of exploring and creating the additional features by hand was an 

exhaustive task, and we used the equivalent of 30 hours in total to explore and create 

these domain-engineered features. 

5.4.1 Results 

 

Figure 5.3: Confusion matrix of the manual model 

5 5.3 Result metrics of the manual model 

TPR FPR AUC MCC 
41.28% 0.32% 0.92 0.57 

Table 5.3: Result metrics of the manual model 

 

 

6 5.4 Comparison between baseline and manual model 
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Baseline Manual Feature Engineering 
FP TP FP (Δ FP) TP (Δ TP) 

2387 1842 364 (-2023) 1677 (-165) 
Table 5.4: Comparison between baseline and manual model 

 

With respect to the results, the manual engineered model yielded an AUC of 0.92 

(which is considered excellent), a moderate increase by 5.8% compared to the 

baseline results. Furthermore, the model performed better as a whole compared to the 

baseline as the MCC increased to a correlation score of 0.58, an increase of 0.15 from 

the baseline. As shown in Table 5.3 the manual feature engineering can discard a 

huge amount of the FP (-2023), but it has a penalty of discarding TP as well (-165). 

Thus, we manage to decrease the FP compared to the baseline by 84% with the 

manual engineered approach. Looking at the results, the manual engineered model 

outperformed the baseline, suggesting that the new features give more information to 

the model, indicating that it managed to generalize better to the holdout data. 

5.5 Experimental Settings 3 - Automated Feature 
Engineering 
 

For our third dataset, we applied automated feature engineering to the baseline data.  

Our objective was to let the DFS algorithm create new features based on the raw data 

from the baseline, using the pre-selected primitives. The DFS algorithm yielded in 

total 1750 new features. Furthermore, we resolved the problem of the huge feature 

space by applying reduction techniques previously discussed in the model framework 

chapter. This left us with 306 features, an increase of 225 features compared to the 

baseline. 

The creation process of the new features was done in approximately 2.5 minutes, 

although we used the equivalent of 5 hours to learn the basics and default settings of 

Featuretools, can it be said to be highly effective especially compared to the time we 

used on manual features engineering. Note that the five hours used is a one-time 

investment and further application of the Featuretool method in the future will be 

much more efficient.  
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5.5.1 Results 
22 5.4 Confusion matrix of the automated feature engineering model 

 

Figure 5.4: Confusion matrix of the automated feature engineering model 

7 5.5 Result metrics of the automated feature engineering model 

TPR FPR AUC MCC 
40.54% 0.33% 0.92 0.57 

Table 5.5: Result metrics of the automated feature engineering model 

8 5.6 Comparison between baseline and automated feature engineering model 

Baseline Automated Feature Engineering 
FP TP FP (Δ FP) TP (Δ TP) 

2387 1842 374 (-2013) 1689 (-195) 
Table 5.6: Comparison between baseline and automated feature engineering model  

 

As shown in the above tables the automated engineered method outperforms the 

baseline on all levels. The model yields an AUC of 0.92, a moderate increase over the 

baseline by 5.8%, although an equal score compared to the manual engineering 

approach. The MCC yields a correlation score of 0.57 which is a good improvement 

over the baseline and equal compared to the manual engineered approach. These 

results indicate that the automated model performs better for all groups in the 

confusion matrix than the baseline, but similar to the performance of the manual 

engineered model. From Table 5.6, we have discarded a lot of FPs from the initial 

baseline (-2013), but we have also lost some of the TPs (-195). In total, we reduced 
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the false positives by 84% compared to the baseline results. However, this reduction 

is equal to the manual engineered approach.  

5.6 Comparison of the Results  
235.5 ROC curve comparison of the models 

 

                           Figure 5.5: ROC curve comparison of the models  

There is a clear distinction between performance of the baseline and the two other 

engineered approaches in respect to the trade-off between FPR and TPR, which can 

be seen in Tables 5.6 and 5.4. However, it is difficult to separate the two curves of the 

manual and automated engineered methods as seen in Figure 5.5 due to their almost 

perfect overlap.  

It is interesting to observe that both approaches using feature engineering, in different 

ways and scales have almost equal performance on all levels in our comparison. The 

key takeaway from the results is that both the manual and automated approach is 

superior to the baseline regarding discarding false positives. However, both methods 

have similar performance when compared. In the light of this one might say that both 

methods help the model to learn and generalize better to the holdout data. However, it 

is impossible to divide between automated and manual approaches to say that one is 

better than the other just based on the quantitative results.  
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6. CONCLUSION  

6.1 Discussion  
 

Before discussing our results, we reintroduce our research question from the 

introduction chapter.  

RQ 1: Do automated feature engineering decrease the FPR rate in fraud detection 

systems compared to doing no feature engineering? 

RQ2: Does automated feature engineering better decrease the FPR in the fraud 

detection system than a manual feature engineering approach? 

The results indicate that automated feature engineering reduced the FPs with 84% 

compared to the baseline going from an FPR of 2.09% to 0.33%. Additionally, we 

managed to preserve most of the TPs as we only discarded 11%, going from a TPR 

of 45.46% to 40.54% with the automated approach. The AUC and the MCC 

increased from 0.87 and 0.43 to 0.92 and 0.57, indicating that the automated feature 

engineering model is an overall better classifier than the baseline. When starting this 

project our hypothesis expected that the automated engineering method would 

outperform the baseline. As seen from our results, this theory holds for our 

quantitative interpretation, aligning with a positive outcome for our RQ 1, that 

automated feature engineering decreases the FPR from the baseline of not doing any 

feature engineering.   

Second, the results from automatic engineering compared to manual engineering were 

quite similar. Both methods reduced the FPs by 84%. However, the manual method 

had the edge on preserving the TPs with a drop of 9% (TPR of 41.28%) compared to 

the automated approach at 11% (TPR of 40.54%). This minimal difference could be 

caused by random variation in the data. The AUC and the MCC scores are equal for 

both methods indicating that they have an equivalent classification performance. 

Based on the results, we do not find a significant difference between the two 

approaches in terms of reducing false positives or classification performance in 

general. This was surprising as our hypothesis expected that the automated feature 
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engineering approach would have an edge on the manual engineered method. Based 

on the result from our experiment, and with RQ 2 in mind, there is no difference 

between manual and automated feature engineering in terms of decreasing the FPR.  

Our results build on existing evidence from the study presented by Cornell 

University, (Wedge et al., 2017). Their method achieved a reduction in FPs of 54% 

compared to their baseline of the study. From our results we have achieved a 

reduction of 84% in FPs. Although not all factors are equal in terms of experimental 

framework and trade-off between FPR and TPR, we argue that both results 

significantly reduced the FPs from their respective baseline using DFS.  

Furthermore, those our FPR results outperform those of Trivedi et al. (2020) 

comparison study on ML models within the fraud detection domain. Their study 

achieved on average an FPR of 4.3% from all models tested with no feature 

engineering. Our results show a FPR of 0.33% after automated feature engineering 

was applied. These results can be argued to be somewhat comparable as both 

methods are within the domain of credit card fraud detection, and show the benefit 

automated feature engineering can have when applied.  

While previous research has focused on reducing false positives from the current 

solution of a banking corporation, our thesis has tried to explore the difference 

between manual and automated feature engineering within the reduction of false 

positives. As previously discussed, our results state that the difference between the 

manual and automated methods in relation to the FPR is insignificant. However, there 

is a significant difference in the number of hours used and the number of features 

created, influencing cost and labor, making one approach more reasonable than 

another for a banking corporation.  
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24 6.1 Summary of the result from the manual and automated approach 

 

  
Figure 6.1: Summary of the result from the manual and automated approach  

 

From Figure 6.1, we can see a summary of the results of both the automated and the 

manual approaches. An important observation is the difference in development time 

and the number of features created from the two approaches.  

Engineering the manual features took a significant amount of time. We had to 

perform EDA to analyze the feature pattern of the raw data to figure out what kind of 

features would make sense to engineer. Thus, resulting in a very time-consuming 

approach to creating additional features. On the contrary, the DFS approach required 

that we specified the data source and the respective categories of the features. After 

the first pass of the data, the DFS algorithm generated a huge feature space within 2.5 

minutes, a lot less than the approximately 30 hours we used to engineer a few features 

by hand manually. About 5 hours were used to learn the Featuretool basics, but this is 

considered a one-time investment.   

Analyzing the results supports the theory that automated feature engineering is a 

better approach to reduce the false positives when taking the time it takes to perform 

manual compared to automated engineering into account. From a cost-saving 
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standpoint, the use of automated feature engineering is a significant opportunity for 

larger cost savings. At the same time, are we able to get features a domain export may 

never have thought of creating or had time to implement. Although not all the 

features generated from the DFS are helpful, as our results suggest using feature 

space reduction methods seems very effective in dealing with this. Moreover, it is 

usually better to have more features than a few as it provides the option of using 

various selection methods to retain the most relevant features to the respective 

domain.  

All of the above results should be considered when building a detection system for 

fraud prediction. As the results have shown, the DFS method is superior to the 

baseline but yields the same result as the exhaustive and time-consuming manual 

feature engineering approach. Most banking corporations utilize manual engineering 

today when updating expert rules, which are inefficient, humanly biased, and costly. 

Creating an automated pipeline may lower FPR and cut down on manual labor costs 

for companies within the financial industry as well as other sectors.  

6.2 Limitations and Further Work 
 

Although the results have shown that automated feature engineering could be helpful 

when discarding FP, there are some limitations to the solution presented, along with 

some exciting areas for further research. 

The generalizability of our results is limited to the single-table approach, as we did 

not collect data from other sources with multiple related tables. From the discussion 

earlier, the Featuretool technique works both on single and multi-table situations and 

desirably both methods should have been covered to get the complete picture of the 

potential and how it may differ working with other dataset compositions. The 

performance and results may vary based on whether we have multiple tables or just 

one single table because we apply more aggregation primitives when dealing with 

multiple tables.  

Nonetheless, from the results presented the findings validate our hypothesis for both 

of our research questions. Additionally, we touch upon the aggregation primitives by 
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splitting out the transaction amount into a separate table. Further research is needed to 

establish if there is a difference in using automated feature engineering on multiple 

related tables and single tables.  

Our knowledge and competency do have an impact on the reliability of the manually 

engineered features. Since neither of us are domain experts, there may be additional 

features that we have not thought of. We have done extensive research and created 

manual features that best fit our domain to the best of our knowledge. For further 

research, it could be interesting to include actual domain expertise to get a more 

honest picture of how the difference will unfold between automated and manual 

approaches.  

Additionally, it may be interesting pairing domain experts and machine intelligence, 

where domain experts would craft features along with automated feature engineering 

as a tool. We expect that their superior knowledge would reduce feature space as they 

know which features to apply different primitives on. In contrast, we apply primitives 

at random as we had limited competency within the domain, resulting in a high 

number of features.  

Due to the lack of computing power, we could not produce more than a certain 

amount of features with the DFS function. As Featuretools have many primitives, we 

have to choose wisely as we could not store all these features in memory. 

Additionally, we could not create a feature beyond the depth of 2, as it would not 

have fit in our available memory. Even though there were limitations on 

computational power we expect that the average person or company does not have 

supercomputers, making these results somewhat generalizable for most people.  

In terms of XGBoost we would like to emphasize the limitations of tuning iterations 

for the hyperparameters. Due to the memory bottleneck as previously stated, we ran 

into computational- and time constraints. The number of iterations we ran could have 

affected the performance of the XGBoost. This indicates that there may be potential 

for further tuning of the hyperparameters. Furthermore, since XGBoost is so sensitive 

to changes in hyperparameters, results may change drastically with the optimal 

parameters, and further research with suitable supercomputers could investigate this.  
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For further research, it could be interesting to apply multiple datasets from various 

domains to see if automated feature engineering performs better in some business 

domains than others. This thesis was limited to exploring the domain of fraudulent 

transactions within e-commerce.  

It was beyond the scope of this study to compare different supervised algorithms with 

the effect of automated feature engineering on false positives. However, it could be 

interesting for further research to try multiple models and see if the result changes 

based on algorithms applied. 

6.3 Conclusion 
 

In this thesis have we considered a framework of automated feature engineering for 

ML model within e-commerce fraud detection, with the aim of reducing the number 

of false positives. What distinguishes our approach from previous studies is that we 

consider the comparison between manual and automated feature engineering. In 

addition, we implement selection methods that are compatible with many types of 

ML models. Thus, our framework is generalizable to many types of financial fraud 

detection problems and could aid domain experts and other people within the 

industry. Using a dataset consisting of e-commerce transactions, we have shown that 

our automated feature engineering framework improves the AUC by 5.8% and 

reduces the FPR by 84% from the baseline solution with no feature engineering. 

Furthermore, our comparison between the manual and automated feature engineering 

methods did not find any significant differences of the effect on FPR. However, our 

results suggested that the automated feature engineering is significantly more time 

efficient and by implementing an automated strategy the deployment time may be 

heavily reduced.  
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APPENDIX 

A1 Orginal Feature Description  
9A1 Description of orginal raw features in the dataset 

Raw feature Type Description 

TransactionDT Timeindex Time delta for a given 
reference data represented 
in seconds. 

TransactionAmt Numeric Transaction payment 
amount in USD 

ProductCD Categorical Product code for the product 
in each transaction. 

Card1 – card6 Categorical Payment card information 
such as car type, card 
category, issue bank and 
country etc 

Addr1 – addr2 Categorical Address. Could for example 
be billing region 

Dist1 – dist2 Numeric Distance between zipcode, 
billing address, IP address, 
phone areas etc 

P_emaildomain and 
R_emaildomain 

Categorical Purchaser (P) and recipient 
(R) email domain 
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M1 – M9 Categorcial The actual meaning is 
masked. But it provide 
information regarding 
match between card and 
address for example 

C1 – C14 Numeric The actual meaning is 
masked. But it provide a 
count of how many 
payments that are associated 
with the card for example. 

D1 – D15 Numeric The actual meaning is 
masked. But it can be 
thought of as time delta 
features on a numeric 
format. 

DeviceType Categorical The actual meaning is 
masked but information is 
provided from multiple 
sources of the company’s 
security partners. 

DeviceInfo Categorical The actual meaning is 
masked but information is 
provided from multiple 
sources of the company’s 
security partners. 

Id_01 – id_11 Numeric The actual meaning is 
masked. But we can think of 
these numeric features as 
proxy rating, IP address 
domain, digital signature, 
number of failed login 
attempts etc 
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Id_12 – id_38 Categorical The actual meaning is 
masked but information is 
provided from multiple 
sources of the company’s 
security partners. 

V1 – V339 Numerical VESTA engineered features 
by feature engineering. Not 
all features the V variables 
are created from are 
included as raw features in 
this dataset. 

Table A1: Description of original raw features in the dataset  

9A1 Description of original raw features in the dataset 

A2 Python Code 
All python code used in this project is included in the GitHub repository.  

https://github.com/AdrianKopperud/automatedfeatureengineering 

 

Backup 

We have attached the links to the original python files in google colab as a backup if 
something happens to the GitHub repository.  

Dataset 1 - Baseline:   

https://colab.research.google.com/drive/1W-
17PHNOsA1_RW4rM0ZQC3YATme9Z_Fg?usp=sharing 

Dataset 2 - Manual feature engineering: 
https://colab.research.google.com/drive/1lasDGYLYlmxWwmQp6wnIw5pxUHi0oZJ
g?usp=sharing 

Dataset 3 - Automated Feature Engineering:   

https://colab.research.google.com/drive/1iP9U5-
y9vWdoMESEaSgboNxCKUBdanTY?usp=sharing 

Exploratory data analysis:  

https://colab.research.google.com/drive/1jAg0S-
RMBv1uYP4_2rDJJffBlmk18pdi?usp=sharing 
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A3 Missing Data Exploration and 
Interpretation 
24A3.1 Missing data heat map of the transaction table 

 

Figure A3.1: Missing data heat map of the transaction table 

25A3.2 Missing data heat map of the identification table 

 

Figure A3.2: Missing data heat map of the identification table  

The above plot A3.1 and A3.2 can be interpreted as a heatmap where the dark fields 
describe where there is data and the light field describe where we have missing 
values. Thus, we can get a quick overview of missing patterns and which features are 
complete and who is missing.  
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Following observations were made; 

1. The observations we are making are that all the ID columns have the most 
missing values, but most of them have the same pattern of missingness.  

2. Standard information about transaction amount, ID and transaction time is 
complete.  

3. The M columns are missing almost all the data.  
4. Dist1 and dist2 are both sparse, but it seems like dist2 contains more 

information than dist1. Maybe we can drop one of them?  
5. All the C columns are complete.  
6. The D columns are sparse except for D1.  

 

A4 Tuned Hyperparameters for XGBoost 
26A4.1 Optimized hyperparameters for XGBoost 

 

Table A4.1: Optimized hyperparameters for XGBoost 

From Table A4.1 we can see that iteration seven yielded the best result out of the ten 

iterations that were performed. It was a very exhaustive and time-consuming task and 

therefore was not more than ten iterations done.  

 

 

 

 

 

 

09916150989568GRA 19703



80 
 

A5 Recall, Precision, F1-Score and Accuracy 
 

Accuracy 

Accuracy is simply defined as the number of correct predictions over the number of 

total predictions made. Using the terminology from the confusion matrix, accuracy is 

defined as the true values divided by n. A major concern using accuracy when dealing 

with imbalanced datasets is that due to the potential low number of minority targets, 

the metric may yield extremely high numbers close to 1. However, the explanation to 

this may simply be that the model only predicted 0 for each prediction. Due to this 

accuracy is generally not used when dealing with imbalance as other metrics adjust 

for this class imbalance. 

𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴𝐴 =
𝑇𝑇𝑃𝑃 +  𝑇𝑇𝑇𝑇

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃 +  𝑇𝑇𝑇𝑇 +  𝐹𝐹𝑇𝑇
 

Recall 

Recall is defined as the ratio of predicted positives over the total amount of actual 

positives. Recall is adjusted through adjustments made to the threshold value, 

discussed in the previous section on the Logistic Regression model. Although a better 

measure for use on imbalanced data, recall usually has to be measured alongside 

precision as it only measures the ratio concerning true values without taking the other 

predictions into account. The F1-score that will be discussed below is a metric that 

functions as a combination between recall and precision. 

𝐹𝐹𝑒𝑒𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑇𝑇
 

Precision 

 

As mentioned above precision is quite similar to recall but instead of measuring the 

ratio in relation to actual values, it measures the ratio of positive predictions to the 

total number of predicted positives, the sum of TP and FP.  

𝑃𝑃𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 =
𝑇𝑇𝑃𝑃

𝑇𝑇𝑃𝑃 +  𝐹𝐹𝑃𝑃
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F1-Score 

The F1-score is a metric that uses the harmonic mean of both precision and recall. 

The metric is widely popular, especially for problems with large class imbalance as it 

both takes the sensitivity to misclassifications into account and the fraction of 

positive predictions into account. Although somewhat criticized regarding the equal 

weighting scheme of precision and recall, the metric helps alleviate some of the 

problems that may be present in imbalanced datasets.  

𝐹𝐹1 =
2 ∗  (𝑃𝑃𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 ∗  𝐹𝐹𝑒𝑒𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙)
𝑃𝑃𝐴𝐴𝑒𝑒𝐴𝐴𝑃𝑃𝑃𝑃𝑃𝑃𝑙𝑙𝑃𝑃 +  𝐹𝐹𝑒𝑒𝐴𝐴𝐴𝐴𝑙𝑙𝑙𝑙

 

 

A6 Illustration of Feature Importance 
Parameters  
27A6.1 Cumulative feature importance plot of zero important features 

 

Figure A6.1: Cumulative feature importance plot of zero important features 

Figure A6.1 shows the graph which illustrates where to cut off based on non-

important features. When the line starts to flat out there is no more gain from those 
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additional features that can improve the performance. Rather it can be smart to 

remove those as they only cause our model to be more complex than it must be. 

A7 Mapping and Cleaning of Categorical 
Features 
28A7.1 ID_30 before and after mapping 

ID 30 

 

Figure A7.1: ID_30 before and after mapping 

The ID_31 feature included the different kind of operating system the customer used 

when making the transaction. There were multiple different categories for various 

editions of the same operating systems. We reduced the cardinality of id_30 through 

grouping all operating systems to their respective provider, thus creating one category 

for each provider.  D_30 before and after mapping 
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ID 3129A7.2 ID_31 before and after mapping 

 

Figure A7.2: ID_31 before and after mapping 

The ID_31 feature included what type of browser the customer used for the 

transaction. As the categories only differ on version number we chose to discard this 

information and to create categories only containing the browser name as this reduces 

the cardinality significantly 

ID 33  30A7.3 ID_33 before and after mapping 

 

Figure A7.3: ID_33 before and after mapping  

The ID_33 feature included ìnformation on the  screen size of either the phone or 

computer that the transaction was made from. We map these different screen sizes 

into 5 categories which include medium/small (mxs), large/medium (lxm), 

medium/medium (mxm), small/small (sxs) and large/large (lxl).  
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Card6 

 

Figure A7.4: Card6 before and after mapping 

The card6 feature originally contained four categories, but the two categories “charge 

card” and “debit or credit” were removed. We found that it does not make sense to 

have an own category which could be either credit or debit when those categories 

were already present. The inconsistency was removed and put into the new category 

“none” as they in total only account for 45 observations out of the complete 590.000 

observations.   

31A7.4 Card6 before and after mapping 

P_emaildomain and R_emaildomain 

 

Figure A7.5:  P_emaildomain and R_emaildomain before mapping 

32A7.5 P_emaildomain and R_emaildomain before mapping 

The P_emaildomain and R_emaildomain features included the purchase and 

recipient’s email domains. From Figure A7.5, we see over 60 different domains used 

while only a few accounts for most customers. From the plot, we can see that 
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gmail.com and hotmail.com are the most used domains. To account for all the 

redundant domain categories, we transform the original P_emaildomain and 

R_emaildomain into two new features that can be described as “the application of 

mathematical modification to the value of a variable'' to extract more information 

than in its original state (Osborne, 2002). We transformed the features into two new 

categories containing the web domain and the bin, which is the email provider name. 

Redundant domain names with low observations were mapped into a common 

category named “other”. The mapping had the aim of creating representative and 

heterogeneous categories through a simple method. Below in Figures A7.6 and A7.7, 

can we see the results.  

33A7.6 P_emaildomain_suffix and R_emaildomain_suffix after mapping     

34A7.7 P_emaildomain_bin and R_emaildomain_bin after mapping               

 

Figure A7.6: P_emaildomain_suffix and R_emaildomain_suffix after mapping 

 

Figure A7.7: P_emaildomain_bin and R_emaildomain_bin after mapping 
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A8 The Thresholds between FPR and TPR 
 

Threshold moving is another method to select the desired level between FPR and 

TPR. From the ROC curve, is it possible to optimize this relationship. By default, the 

threshold always is 0.5, meaning that a predicted probability greater than 0.5 will be 

classified as fraudulent, and a probability lower than 0.5 will be classified as genuine 

in our experiment.  

For example, a credit card company may adjust the FPR and TPR levels to achieve 

their desired strategy of minimizing FPR or maximizing TPR. By lowering the rate 

from the standard default of 0.5 will both the FPR and TPR increase. This will benefit 

in predicting more fraudulent transactions but at the same time increase FPs. On the 

contrary, moving the threshold above 0.5 will, in most cases decrease the FPR and 

decrease TPR, which will benefit lower FPs but also lower the rate of TPs.  

Threshold moving is highly relevant for a company with a cost-saving strategy where 

either FRP or TPR is more important. In our problem, we are not working with a 

specified threshold from a company and we will therefore not pay attention to moving 

this threshold and keep the default of 0.5 for our experiment.  
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