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Abstract  

 

In this thesis, loan eligibility prediction is explored and analyzed by 

investigating five different prediction models. The goal for the prediction 

models is to accurately predict whether a bank loan is approved or 

disapproved. The dataset utilized for this thesis is retrieved from kaggel, and is 

referred to as “bank loan data”. It contains about 100.000 rows of various loan 

applications, with the predictor variable available. Throughout this thesis, we 

will investigate five supervised learning algorithms, more specifically, Support 

Vector Machine, K-Nearest Neighbors, Decision Tree, Logistic Regression, 

and Stochastic Gradient Descent. The results are evaluated using various 

performance measures, and is compared to similar research within the same 

topic.   
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1. Introduction 

  

It is fairly common that financial banks around the world perform various 

internal tasks manually. This may be very time consuming and can yield high 

cost in the long run. However, these types of applications and data are heavily 

number based, which means that it’s also prone to Machine Learning. More 

often than not, banks utilize manual labor when it comes to loan eligibility i.e 

approval/disapproval. This is a process that is very eligible for Machine 

Learning and automatization, because of its numeric nature. We wanted to 

investigate this topic further, and dive deep into the models and algorithms that 

surround this specific subject. 

  

The loan application process has had a drastic change in the last decades. For 

many years, people who needed a loan had to first go to a bank, speak with a 

loan officer about possible credit options, fill out an application, spend days 

looking for all required paperwork, and then wait for the approval (Hope, 

2020). The approval could take weeks since the verification was primarily 

done manually. Nowadays, borrowers don’t need to have personal contact with 

a bank representative to get a loan. It all starts online, where borrowers can fill 

out an application and get immediate approval. The loan approvals are 

generally calculated with the metrics loan-to-value ratio and/or debt-to-income 

ratio, where each country has different ratios of acceptance. With the 

advancement in technology, predictive analytics have become more important 

and accessible. Predictive analytics uses algorithms, data, and machine 

learning techniques to analyze the likelihood of a future outcome based on 

historical data, which can help banks identify patterns of characteristics that 

are likely to default (SAS, n.d.). 

With the rise of big data, the improvements in data availability, technology, 

data analysis, and customer relationship management skyrocket. Businesses 

can now save their consumer data in their data warehouses and do their data 

analysis in-house, thanks to advancements in technology and lower computing 
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power costs. Data in massive amounts can offer invaluable insights and a 

competitive edge if the right technological and organizational resources 

support them (Côrte-Real et al., 2017). Most organizations are currently 

collecting and storing data that can be used in statistical software to help them 

better understand their consumer base and forecast future behavior. For 

example, with access to modern analysis tools, banks can move from the 

generally loan-to-value ratio debt-to-income ratio calculation to predicting loan 

defaults ahead of time. 

If these banks could acquire a reliable and stable machine learning model to 

correctly predict whether a bank loan application should be granted or not, 

there is potentially a lot of time and money to be saved in the long run. If this 

process is automated, banks could focus their workforce on other important 

aspects within the company. This would ultimately enhance the productivity 

and efficiency within the company.  In recent years, Machine Learning (ML) 

and automation has become a new standard for both small businesses and 

corporations, who want to develop further into the world of technology.  

 

Our goal is to create and compare various ML models and algorithms 

connected to this automated process, and describe the benefits and 

disadvantages connected to the various combinations. We will first compare 

our individual results to each other for binary classification in loan eligibility, 

before comparing it to previous research within the same research topic.  

 

This thesis is not only applicable for binary classification in loan eligibility, 

and can also be utilized for other binary classification problems. By 

investigating the method section, one might be able to capture valuable 

information that might help picking the most fitting algorithm for their specific 

situation.  
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1.1 Motivation for research 

  

Our thesis focuses on comparing various Machine Learning algorithms and 

models for loan eligibility prediction. This can be applicable to other binary 

classification problems as well. The reasoning for choosing this topic is as 

follows: 

  

-    This thesis will provide valuable information for 

individuals/companies who want to develop a binary classification 

model for loan eligibility. 

-    Limited research and empirical studies for comparative studies in 

this specific area. 

-    Gain valuable insight into each algorithm and the inner workings of 

each model. 

 

1.2 Research question 

  

Our thesis dives into each relevant algorithm and discusses each model, how it 

operates and behaves, and the various results. We will elaborately compare and 

discuss the results before we discuss various aspects of our thesis. We will also 

make a comparison to other research. 

  

Our research question is as follows: 

  

” For a chosen set of machine learning algorithms, which algorithm 

demonstrates the best performance in loan eligibility classification prediction 

with regards to several model evaluation metrics?”       

 

In order to answer this question, we will train, tune and test five Machine 

Learning algorithms and compare the performance of those algorithms to each 

other. In addition, we will compare those models to other related research 
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within the same topic as well.                                                                                                                      



1.3 Thesis structure 

 

Figure 1 represents the structure of our thesis, where the first part includes an 

introduction to the study and motivation for research. The second part 

introduces the thesis problem and research question. The third part represents 

the data used for this thesis, the pre-processing steps, feature engineering, data 

splitting, and unbalanced classes. For the fourth section, we will go through 

each algorithm of our choice and discuss the model, tuning, and the individual 

results. For the results section, we will compare the results and models from 

the latter section. Finally, we will discuss various aspects of this thesis, such as 

strengths and weaknesses, the impact this has on the banking industry, and 

some further research of applying a loan eligibility prediction model. 

 

Figure 1 Structure for the thesis 
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2 Research methodology 

 

The research methodology for our thesis is split into four main parts. First, we 

explain why we select these specific machine learning techniques to predict 

loan approvals. The next part describes various performance measures used to 

evaluate the algorithms, such as accuracy, recall, and precision, making it 

possible to rank the different algorithms. The third main part describes the 

different features in the data set and the data preprocessing used to transform 

the raw data into a valuable and efficient format. Where we first in the data 

preprocessing explain the necessary data cleaning processes and feature 

engineering. Further, we use the variance inflation factor to test the data set for 

multicollinearity. Another technique used is feature scaling which standardizes 

the independent features. In addition, we utilize a synthetic minority 

upsampling technique to deal with imbalances in our dataset. Lastly, we 

explain the train validation test split, which prevents the model from 

overfitting and accurately evaluating the model. The last part describes how 

the different machine learning algorithms operate. Moreover, we discuss the 

different hyperparameters and their representative optimal values. In the end, 

we evaluate the model's results.  

 

2.1 Selection of algorithms 

Table 1 lists and shortly describes the predictive algorithm commonly 

employed in the literature on machine learning methods for loan approval 

(Teply, P., & Polena, M. 2020).  In addition, we wanted to include something 

different than supervised learning to see how it affected the results. Hence, we 

choose to add a Stochastic gradient descent algorithm, which is also used in the 

literature of loan approval (Nabende et al., 2019). Each classification technique 

will be detailed in chapter 3, with a focus on their unique hyperparameters. 
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Table 1 Selection of algorithms 

Machine learning algorithms Description 

Decision trees The data is partitioned via a series of 

branching processes. 

Support Vector Machines Fitting hyperplane in an N-

dimensional space that distinctly 

classifies the data points 

K-Nearest Neighbors Stores all available cases and 

classifies new cases based on a 

similarity measure. 

Logistic regression Is used to model the probability of a 

certain class or event 

Stochastic gradient descent Optimization method to find a local 

minimum of a function 

 

 

2.2 Performance measures 

 

One typical way to evaluate the performance of a model in binary 

classification is to use a confusion matrix. The instance of accepted loan 

approval is defined as positive and rejected loan approvals as negative. The 

potential outcomes are then true positive (TP) if the model correctly predicts 

approved loans and false positive (FP) if rejected loan approvals are predicted 

as approved loans. True negative (TN) if rejected loan approvals are correctly 

predicted, and false-negative (FN) if accepted loan approvals have been 

predicted as rejected loan approvals, as illustrated in figure 2. 
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Figure 2 Confusion matrix 

 

Figure 2. «Confusion Matrix », (n.d.). 

Several metrics can be derived from a confusion matrix. The most frequent 

metric is accuracy, which is the fraction of predictions the model predicted 

correctly. Accuracy is calculated by (2.2.1) (Google, n.d.). 

 

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

 

(2.2.1) 

 

In terms of business sense, the goal is to balance the cost of losing money on 

non-performing consumers and the opportunity cost of losing a potentially 

profitable customer (Huilgol, 2021). As a result, it's crucial to investigate how 

alternative strategies affect recall and precision since recall measures how 

many accepted loan approvals the model captures. In contrast, precision refers 

to the possible opportunity cost. Recall and precision are defined in function 

2.2.2 and 2.2.3. 

 𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

(2.2.2) 

09984930963285GRA 19703



 

8 
 

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

(2.2.3) 

 

2.3 Data collection 

  

Our data is composed of two datasets, “borrower_table.csv” and 

“loan_table.csv”. It is collected from Kaggle (Bank Loan Data, 2020) and 

contains 101.100 rows of various loan applications collected by the given 

bank.  There are two datasets which are named “borrower_table.csv” and 

“loan_table.csv”. “borrower_table.csv” contains various features (12) based on 

the borrower/applicant, and the “loan_table.csv” dataset contains five features 

including the purpose of the loan, whether the loan was granted or not, and 

whether the loan is repaid or not.  We can merge these two datasets together in 

order to create one complete dataset. In addition, these datasets are fairly new 

and unused, and date back to June 2020. Below in figure 3 is metadata for the 

combined bank loan dataset.  

  

Figure 3 Feature description 
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The original datasets had the following features: 

-    loan_id: an identification number representing a loan application 

-    is_first_loan: whether it’s the appliers first loan or not (0/1) 

-    fully_repaid_previous_loans: whether the applicant has repaid its 

previous loans or not. 

-    currently_repaing_previous_loans: whether the applicant is 

currently repaying other/previous loans. 

-    total_credit_card_limit: the applicant's current credit card limit. 

-    avg_percentage_credit_card_limit_used_last_year: the average 

percentage utilized on the credit card limit by the applicant the 

previous year. 

-    saving_amount: the appliers savings amount 

-    checking_amount: the appliers checking amount 

-    is_employed: whether the applier is employed or not 

-    yearly_salary: the appliers yearly salary 

-    age: the appliers age 

-    dependent number: Undisclosed feature 

-    loan_purpose: what is the purpose of the given loan 

-    date: submission date for application 

-    loan_granted: whether the given loan is granted or not 

-    loan_repaid: whether the given loan is repaid or not. 

2.4 Pre-Processing: 

 

In the upcoming section, we will discuss our preprocessing steps in order to 

prepare our data for training. We will discuss our data cleaning, which includes 

removal of NaN values, feature exclusions, multicollinearity and variable 

inflation factor, feature engineering, feature scaling, how we tackle the 

imbalanced classes, and finally the data splitting process.  

 

 

 

09984930963285GRA 19703



 

10 
 

2.4.1 Data cleaning: 

  

2.4.1.1 NaN values in “loan_repaid”: 

 

The dataset needed to be cleaned and prepared before implementing it into our 

various ML algorithms. The first order of operation was to investigate our 

target variable “loan_repaid”. It is quickly noticed that our target variable 

contained a great amount of NaN values, with a count of 53446 instances. This 

occurs because there are several instances of customers not being granted a 

loan from the bank, which results in that there is no loan to repay for that 

instance. Since our models are binary classification, either 1 or 0, the NaN 

instances needed to be corrected. However, since our original dataset was 

decently sized, we decided to remove those rows while maintaining the 

integrity of the dataset.  

 

2.4.1.2 Feature exclusions: 

  

-    The column “date” is removed because of its low variance. After 

investigating this aspect, we couldn't find any indications that time of 

year affects whether a loan is granted or not. Therefore, we can 

confidently conclude that this feature doesn’t affect the results in any 

way.  

-    The feature “is_employed” is excluded because a customer can not 

have any yearly salary if they’re not employed. Therefore, if yearly 

salary equals 0, then their employment status would reflect the same 

result. 

-    "avg_percentage_credit_card_limit_used_last_year” and 

"fully_repaid_previous_loans" is excluded due to multicollinearity. 

See the upcoming chapter for in depth information.  
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2.4.2 Multicollinearity 

 

Multicollinearity occurs in situations where there are high intercorrelations 

between two or more independent variables. In our case, there is a strong 

intercorrelation between "avg_percentage_credit_card_limit_used_last_year” 

and a handful of other features in our dataset. While 

"fully_repaid_previous_loans" and “is_first_loan” are directly intercorrelated. 

This can be confirmed from the variable inflation factor before and after 

removal of those features (Figure 4 and Figure 5).  

 

Figure 4 VIF score original dataset 

 

 

Between these two, we decided to remove "fully_repaid_previous_loans" 

because “is_first_loan” is a better explanatory variable explained by a higher 

feature importance, as shown in table 2. The feature importance scores below 

are gathered from our decision tree model.   

 

Table 2 Feature Importance 

Feature name: Feature importance score: 

“fully_repaid_previous_loan” 0.00300 

“is_first_loan” 0.01135 

 

One might argue that multicollinearity is more applicable to algorithms in a 

multiple regression model. However, we claim that one should always be 

concerned about this aspect, regardless of the model being linear or not. Let’s 
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say we have a random forest algorithm with a set of linearly correlated 

features. The random selection within the tree might select collinear features 

that often result in a weak selection. This can add up the further we work down 

our nodes, therefore affecting the results negatively (Allison, 2019). We want 

to avoid features being highly correlated with each other. We must preserve the 

value of interdependence between our features, which will result in not 

meddling with the standard error of the regression coefficient 

(Multicollinearity, n.d.). 

  

Both features mentioned above have a high variance inflation factor (VIF), 

which measures the amount of multicollinearity. In general, a variance 

inflation factor above 10 is considered high correlation and could be a red flag 

(Bock, 2020), which our dataset has as shown in figure 4. However, as we can 

see from figure 5, when we remove the mentioned features from our dataset, 

the VIF scores balances out: 

 

  

Figure 5 VIF score after removing features dataset 
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2.4.3 Feature engineering: 

 

The feature “Loan_purpose” is non-numeric, and states the purpose of the 

given loan with text. Since this feature is non-numeric, it can create confusion 

within our machine learning models and algorithms. The various selections 

within the loan purpose are: investment, home, business, emergency funds, and 

other. In order to bypass this string, we have created numerical values that will 

replace the string conditions. In other words, we replace the text with 

numerical values. After this process was completed, we currently stand with 

(Table 3): 

 

Table 3 Feature engineering 

Loan_purpose Numerical values  

Other 1 

Emergency_funds 2 

Business 3 

Home 4 

Investment  5 

 

  

2.4.4 Feature scaling 

In our given dataset, there are numerous features that vary in magnitude and 

scope. We wanted to bring all the features within similar standing, so that one 

specific feature does not influence our model too much compared to other 

features. For instance, if one feature contains large numbers, combined with a 

high standard deviation, it might affect the model to a larger degree compared 

to other features that might be smaller numbers with minor deviations. This 

preprocessing step can be the difference between a strong machine learning 

model, and a fragile and inaccurate model (Gupta, 2020). Two techniques 
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dominate this market, and those are normalization and standardization (Roy, 

2020). We have utilized a standardization technique due to the fact that it 

transforms our data to have a zero mean and a variance of 1 and gives our 

dataset a standard normal distribution. In addition, it makes our data unitless. 

This scaling technique transforms our features to a range between [-1,1] 

(Gupta, 2020). 

  

Standard scores are calculated by: 

 𝑧 =  
𝑥 −  𝜇

𝜎
 

 

(2.4.4.1) 

 

Generally speaking, machine learning algorithms only capture numbers, and 

don't know what the numbers represent. If one of the given features contains 

large numbers, while other features hold lower numbers, then it might make an 

underlying assumption that larger numbers are of higher importance. We want 

each feature to be at a level playing field (Roy, 2020). 

 

2.4.5 Imbalanced class 

  

When examining our original dataset, we see a case of imbalanced data. As 

mentioned in the data description, there are 16948 cases where the given loan 

is paid fully, which results in 36% of the original dataset. However, we have a 

larger counterpart of 30706 instances where the loan is not paid fully, which 

results in 64% of the dataset, as shown in figure 6. This results in an imbalance 

within our class with a ratio of approximately 1:3. Therefore, we can see a 

moderately unbalanced dataset. Considering the number of cases where the 

loan is not paid in full, we decided to implement a synthetic minority 

oversampling technique, also known as SMOTE, to increase the number of 

cases where the loan is repaid to match the number of loans that are not repaid 

(Bownlee, 2020). 
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Figure 6 Count of target variable 

 

 

 

When investigating the data, more specifically the independent variable (y), 

there were too few examples in the minority class for the model to efficiently 

learn the decision boundary.  SMOTE operates by picking examples located 

close to the feature space rather than in the data space.  It draws a line between 

those examples and creates a new sample at a point along that given line 

(Brownlee, 2020). 

  

More specifically, SMOTE starts by selecting a minority class instance at 

random and then finds its k-nearest neighbors. It picks one of those neighbors 

and creates a synthetic instance by connecting those two examples to form a 

line segment in the feature space. The synthetic instances are generated as a 

convex combination for the two chosen instances (Brownlee, 2020b). 

 

2.4.6 Data splitting 

 

As a standard when dealing with prediction algorithms, we have to create a 

training dataset, possibly a validation dataset, and a test dataset. For valuation 

purposes, we decided to make a validation dataset. Instead of utilizing the 

common 80% training and 20% test data split, we performed a split of 60% 
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training and a 40% test data split. Furthermore, we split the test data once more 

into a validation set and a test set. In summary, we now have a 60% training 

dataset, a 20% validation dataset, and a 20% holdout dataset. This was 

performed in python by utilizing the sklearn package, more specifically, the 

train_test_split function (Sklearn.Model_selection.Train_test_split — Scikit-

Learn 0.24.2 Documentation, n.d.). This function takes random partitions for 

the two subsets, and creates the two sets based on our test size of choice, and 

the random state (Splitting Datasets With the Sklearn Train_test_split 

Function, 2019). The previous step is repeated in order to create the validation 

set. We utilize this type of split (60/20/20) because it enables us to check 

whether the model overfits or underfits and it allows us to accurately evaluate 

the model. In addition, the validation set can be utilized to test various 

hyperparameter values.  

 

3 Method section 

  

In this section, we will present and dive deep into our algorithms of choice. We 

will discuss in general how the algorithms operate, the process of optimizing 

the hyperparameters and their outcome, and the various results of the models. 

In addition, we will talk about some features and techniques that are consistent 

throughout every model. The given Python scripts for each model can be found 

on GitHub (Ruud & Boen, 2021).  

 

3.1 Supervised learning 

  

As mentioned earlier, we will go through five algorithms and compare them. 

Four of these algorithms have something in common, which is that they are 

supervised learning algorithms. Supervised learning is defined by its utilization 

of a labeled dataset that trains algorithms in order to classify data or predict 

outcomes precisely. The prediction variable in our thesis is “loan_repaid”.  The 

dataset is already classified, and the algorithm is "learning" from our data. 
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When input data is inserted into our model, the algorithm regulates its weights 

in order to fit the model to the data (IBM, 2021).  

  

3.2 Common notations 

  

Throughout this thesis, we mention our X and y with regards to the Machine 

Learning algorithms and models. Most models are described as learning a 

target function (𝑓) that best maps the given input variables (X) to our 

output/predictor variable (y). The ultimate goal is to make accurate predictions 

in the future (y) with new examples of input variables (X) (Brownlee, 2019).  

 𝑦 = 𝑓(𝑥) 
 

(3.2.1) 

 

3.3 Technique for Optimizing Hyperparameters  

  

A hyperparameter is a parameter whose value is used to control the 

learning process (Wikipedia, 2021). Tuning hyperparameters is considered 

a difficult task to perform in machine learning, where the goal is to find the 

optimal hyperparameters. A machine learning model contains a heap of 

various parameters that ultimately decide the accuracy of the model.  

Therefore, it can be extremely important to locate the optimal values for 

the model hyperparameters. The hyperparameters vary from algorithm to 

algorithm, as various models require diverse types of tuning. We want to 

search the hyperparameter space in order to find a set of values that will 

optimize our model architecture (Mujtaba, 2021). 

  

One possibility is to try all the different values when it comes to 

hyperparameters in order to find the ideal combination. However, this is a 

tedious process, and therefore, we have utilized SK-learn's automated 

procedure called GridSearchCV (Sklearn.Model_selection.GridSearchCV 
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— Scikit-Learn 0.24.2 Documentation, n.d.). This function loops through 

our predefined hyperparameters and fits our estimators on our training set. 

  

GridSeachCV explores every combination from the values passed in the 

dictionary. Thereafter, it evaluates our model for any given combination 

using the cross-validation method. We utilized a 10-fold cross-validation 

strategy.  After GridSearchCV is finished, we receive our model scores for 

every combination of hyperparameter values, and we can choose the 

combination that gives the best model performance. This was performed on 

the training dataset.  

 

3.4 Support Vector machine 

  

A support vector machine is a supervised machine learning model that utilizes 

classification algorithms in order to classify the data. The idea behind the 

support vector machine is relatively simple. It creates a hyperplane within the 

data that classifies the data into approved or rejected bank loans. 

  

The way a support vector machine model works is that it finds a separating line 

or a so-called hyperplane that divides the data into two classes. Once that line 

is decided, it’s essential to find the best or optimal line to increase the model's 

accuracy and avoid false positives and false negatives in our confusion matrix 

(Gandhi, 2018). However, there are infinite potential lines that will help 

separate our two classes, so how does the support vector machine find the most 

effective hyperplane? Within machine learning in general, we want to find a 

generalized separator to isolate our two groups of classes (Gandhi, 2018). 

  

Once we have this general line that separates the data, we will need to find the 

two points closest to that given line. These points are called support vectors, 

and we calculate the distance between these two support vectors and our 

original line (Gandhi, 2018). The objective for this model is to maximize this 

margin that separates the support vectors, i.e find the optimal hyperplane. The 
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support vector machine model attempts to create a decision boundary where 

the distance between the support vectors is as wide as possible. There are two 

goals that we were looking for when building this model: setting a larger 

margin and lowering our misclassification rate to the best of our ability, as 

shown in figure 7 (ale, 2020). 

 

Figure 7 Optimal Hyperplane 

 

Figure 7 “Optimal hyperplane using SVM algorithm” 2020, by Bhosale.  

 

3.4.1 Hyperparameters tuning 

 

The parameters of interest when it comes to tuning the Support Vector 

Machine model are C and gamma, as shown in table 4. As mentioned earlier in 

this section, we want to get as large a margin as possible while also lowering 

the misclassification rate. However, these two aspects might sound 

contradictory. If we increase our margin, it leads to a higher misclassification 

rate and vice versa. It’s here the parameter C comes into play. Proper choice of 

C and gamma is crucial for the performance of our model (Yıldırım, 2020). 
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Table 4 SVM Hyperparameters 

Hyperparameter Default value Search space Optimized 

values 

C 1.0 0.1, 1, 10, 100, 

1000 

1.0 

Gamma “scale” 1, 0.1, 0.01, 0.001, 

0.0001 

1.0 

 

 

 

Parameter C 

 

The larger our C value is, the smaller our margin becomes. We want to find the 

optimal margin to receive the best results for our testing set. On the opposite 

side, the smaller our C value is, the larger is the margin. In theory, the C 

parameter tells the Support Vector Machine how willing we are to misclassify 

each training example. It is difficult to manually find the optimal C value since 

you must run the model numerous times to find the lowest misclassification 

rate (Yıldırım, 2020). In addition, when the C parameter is large, the model 

tries to fit all the classifiers correctly, which can lead to a curved or wiggly 

decision boundary. If this boundary is directly imported into our testing data, it 

will most likely not yield good results because the points will be in different 

positions, and the customized decision boundary is not applicable to that data. 

This would most likely result in overfitting, and we want to create a 

generalized model that can fit in several situations and datasets. This is where 

GridSearchCV will help us enormously. 

 

  

Gamma 

 

The gamma parameter controls the distance of influence of a single training 

point. If we have a high gamma value, the points need to be tight to one 

another in order to be considered in the same class. With a low gamma value, 

the points don’t need to be close to each other in order to be regarded within 
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the same class (Yıldırım, 2020). We needed to avoid a high gamma value since 

that most likely will result in overfitting. 

 

  

Kernel 

 

There are three major kernel functions that are available for our support vector 

machine model. Kernel functions are techniques used to take our data as input 

and convert it into the necessary form of processing data. It is a set of 

mathematical functions used in support vector machines, and it creates an 

opening to manipulate the data. We decided to use the Radial Basis Function 

(RBF) because it is the most generalized form of kernelization and has a strong 

similarity to the gaussian distribution (Sreenivasa, 2020). Furthermore, it is 

suitable for our model because gamma is a parameter that needs to be highly 

considered to avoid overfitting in our data.  

  

3.4.2 Results 

 

In order to measure the performance of the Support Vector Machine algorithm, 

we initially ran the model without any hyperparameter tuning on the validation 

set. The default hyperparameter values for the SVM algorithm is C=1.0 and 

gamma=” scale”. When gamma is passed with “scale” it utilizes 1/ (n_features 

* X.var()) as its value (Sklearn.Svm.SVC — Scikit-Learn 0.24.2 

Documentation, n.d.). With these default values, we received an accuracy score 

of 0.9256, which is considered a fairly good score. In addition, recall and 

precision have been calculated as shown in table 5.  

  

Table 5 Performance score on validation dataset without tuning 

Performance measure: Score: 

Accuracy: 0.9256 

Precision: 0.9558 

Recall:  0.8936 
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After tuning the SVM hyperparameters, we received our optimal values of C = 

1.0 and Gamma = 1.0. When these values were inserted into the given model, 

we received an accuracy score of 0.9321, which is a small increase from the 

first result. For our additional performance measure, we received the following 

after utilizing the optimal hyperparameters. See table 6.  

 

Table 6 Performance score on validation dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9321 

Precision: 0.9543 

Recall: 0.9086 

 

When running the optimized algorithm on our unseen test data, we receive 

similar scores, with no indication of over/underfitting. For accuracy, the score 

is 0.914 on the test dataset, which is fairly consistent with the scores from our 

previous paragraphs. Below are the performance measures and a confusion 

matrix for our optimized algorithm on the test dataset. See table 7 and figure 8.  

 

Table 7 Performance score on test dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9140 

Precision: 0.9517 

Recall: 0.9119 
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Figure 8 Confusion matrix on test dataset

 

 

 

3.5 Logistic regression 

  

Logistic regression is a supervised machine learning classification algorithm 

used to predict a given target variable, and the model is dichotomous. It is a 

very common and simple machine learning algorithm that predicts P(Y=1) as a 

function of X. At its core, logistic regression is driven by the logistic function, 

also called the sigmoid function. It is an S-shaped curve that transforms a real 

number into a value between 0 and 1 (Swaminathan, 2019). 

  

Figure 9 Illustration of logistic regression 

  

Figure 9 “logistic function” 2020c, by Brownlee. 
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The logistic function is given by: 

 𝑓(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)
 

 

(3.5.1) 

 

In the given function above, the 𝑓(𝑥) signifies the probability of our predictor 

variable. 𝛽𝑜 represents the linear regression intercept, while𝛽1  is the 

multiplication of the regression coefficient by various values of the predictor 

variable (Brownlee, 2020c). 

 

If the output of the given function is more than 0.5, it will be classified as 

“eligible”, and if the function output is less than 0.5, it will be classified as 

“non-eligible”. The function works almost like a percentage calculation. If our 

output is 0.80, then there is an 80 percent chance that the loanee is eligible for 

the given loan. However, we are not predicting probabilities. The probability 

prediction is transformed into binary values (0 or 1) (Brownlee, 2020c). 

 

 
0  𝑖𝑓  𝑝(𝑛𝑜𝑛 − 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒) < 0.5 

 
(3.5.2) 

 
1  𝑖𝑓  𝑝(𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒) > 0.5 

 
(3.5.3) 

 

3.5.1 Hyperparameters tuning 

 

The hyperparameters of interest in a logistic regression algorithm are C and 

penalty, as illustrated in table 8. As our previous models, we are often 

interested in the best combination of our hyperparameters, as they often work 

in tandem. 
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Table 8 Logistical regression Hyperparameters 

Hyperparameter Default 

value 

Search space Optimized 

values 

Penalty l2 l1, l2 l2 

C 1.0 np.logspace(0,4,10) 7.74 

 

Penalty 

 

This parameter is used to specify the norm used in the penalization. l2 

regularization adds an l2 penalty which is equal to the square of the magnitude 

of coefficients, while all coefficients are shrunk by the same factor (L1 Penalty 

and Sparsity in Logistic Regression — Scikit-Learn 0.24.2 Documentation, 

n.d.). 

  

C 

 

The parameter C is the inverse of regularization strength in logistic regression. 

It’s a control variable that preserves the strength of regularization by being 

inversely positioned to the lambda regulator (Charleshsliao, 2017).  In general, 

regularization is adding a penalty in order to increase the scale of parameter 

values to reduce overfitting. Thus, with a high value of C, the model inserts 

extra weight to the training data and a lower weight to the complexity penalty. 

When running our C parameter in GridSearchCV, logspace() was utilized in 

order to receive numbers that were evenly spaced on a log scale. 

(Sklearn.Linear_model.LogisticRegression — Scikit-Learn 0.24.2 

Documentation, n.d.). 

  

Our objective when optimizing our hyperparameters is minimizing the error 

between our predicted variable compared to what the dependent variable 

actually is. 
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3.5.2 Results 

  

When investigating the results for the logistic regression model, we first ran 

our validation data without any optimization. The default values for the logistic 

regression model are C =1.0 and penalty =l2, which can be found in table 8 

above. Without hyperparameter tuning, our model yielded an accuracy of 

0.9058 on the validation set, which is considered a respectable and reliable 

score.  

 

Table 9 Performance scores on validation dataset without tuning 

Performance measure: Score: 

Accuracy: 0.9058 

Precision: 0.9202 

Recall: 0.8894 

  

 

After running GridSearchCV on the logistic regression algorithm, we received 

optimal values of C = 7.742, and penalty = l2, as seen in table 8. After we 

inserted the optimal values into the logistic regression algorithm on the 

validation dataset, we received an accuracy of 0.9057 as seen in table 10. This 

is actually a minimal decrease from the default values, but it's insignificant 

because it's extremely small.  

   

Table 10  Performance score on validation dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9057 

Precision: 0.9200 

Recall: 0.8894 
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When running the optimized model on our test data, we received a similar 

score of 0.9026, while precision received a score of 0.9492 and recall with a 

score of 0.8956. See table 11.  

 

Table 11 Performance score on test dataset 

Performance measure: Score: 

Accuracy: 0.9026 

Precision: 0.9492 

Recall: 0.8956 

 

 

There were a couple of hyperparameter values that yielded the exact same 

results when tuning the training data as shown in the table below (Table 12). 

Logistic regression is a very robust algorithm. It can map many types of data in 

various forms. Therefore, tuning a logistic regression model isn't necessarily 

crucial for model performance and accuracy. The performance of the models 

stays fairly level, regardless of the hyperparameter values. 

 

Table 12 Result from the GridSearchCV 

C Penalty Params Mean test score Std test score 

7.74264 l2 “C: 7.74264”, 

“Penalty: l2” 

0.90253 0.00479 

21.5443 l2 “C: 21.5443”, 

“Penalty: l2” 

0.90253 0.00479 

59.9484 l2 “C: 59.9484”, 

“Penalty: l2” 

0.90253 0.00479 

 

 

The confusion matrix below represents the validity of our model. We can 

compare these results as if we ran the model in a real-life situation since this is 

retrieved from unseen test data. As shown in figure 10, this is a confusion 

matrix that has a good score. However, with a bit higher accuracy, we could 

09984930963285GRA 19703



 

28 
 

steer clear of some false negatives and false positives in order to avoid granting 

a loan to someone who isn't able to repay or denying a loan to a customer who 

should, in theory, be able to repay.  

 

Figure 10 Confusion matrix from test dataset 

 

 

 

3.6 K-Nearest Neighbors 

The k-nearest neighbors (KNN) are a non-parametric algorithm that can be 

used to solve classification and regression problems. Non-parametric 

algorithms do not make any strong assumptions about the form of the mapping 

function, which makes the algorithm free to learn any functional form from the 

training data (Brownlee, 2020d). This is helpful in practice since most real-

world data do not follow any mathematical theoretical assumptions. 

Figure 11 Illustration on how the KNN algorithm work 

 

Figure 11. « KNN Classification using Scikit-learn», 2018, by Navlani, A.  
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The k in the KNN algorithm, is the number of nearest neighbors, which are the 

main deciding factor in the algorithm. We will provide an example to 

understand the algorithm better. Suppose k=3 and P1 is the label that needs to 

be predicted, as shown in figure 11. First, the algorithm finds the nearest k 

neighbors to P1. This is generally done by calculating the Euclidean distance, 

which calculates the distance from P1 to all classified data points (Navlani, 

2018). 

 (𝑥,  𝑦) = √∑(𝑥𝑖

𝑛

𝑖=1

− 𝑦𝑖)2 (3.6.1) 

 

Next, the algorithm classifies P1 by majority votes of its k neighbors. Each 

neighbor votes for their class, and the class with the most votes predicts P1 

(Navlani, 2018). In our examples, P1 will be classified as Class B since class B 

has the most votes. 

 

3.6.1 Hyperparameters tuning 

The KNN algorithm has many different hyperparameters, such as the number 

of neighbors, different weights on data points, and different metrics that can be 

used for calculating the distance to each data point. We will review the number 

of neighbors since this hyperparameter is the main deciding factor. First, we 

did a GridSearchCV where we tested the accuracy of 1 to 40 neighbors. The 

GridSearchCV computed the optimal number of neighbors to be 1 with an 

accuracy of 1,00, which overfits the data. Then, to prevent the model from 

overfitting, we used the validation dataset to visualize the accuracy score of the 

training and validation dataset for different neighbors, as we see in figure 12. 
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Figure 12 Overfitting using small number of neighbors 

 

  

From figure 12, we see that the training dataset overfits when the numbers of 

neighbors are small, which means that the model learns the detail and noise in 

the training data to the extent that it negatively impacts the model on a new 

dataset (Brownlee, 2019b). When the number of neighbors is high, the model 

underfits, which means that the model cannot generalize the datasets enough 

(Brownlee, 2019b). This leads to bad performance on the data. We choose the 

smallest number of neighbors in our model to be seven since the relative 

accuracy between training and validation does not significantly lower if the 

number of neighbors increases.  Next, we did a grid search from 7 to 40 

neighbors, where the best parameter was seven neighbors, as we see in table 

13. 

 

Table 13 KNN Hyperparameters 

Hyperparameter Default Search 

Space 

Optimal 

values 

n_neighbors 5 7 to 40 7 
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3.6.2 Results 

To measure the performance of the KNN algorithm, we first tested the KNN 

algorithm on the validation dataset with no hyperparameter tuning. As 

displayed in table 13, the default number of neighbors is five, which gives an 

accuracy score of 0.9177. In addition, we calculate the precision and recall 

score. The precision score was 0.9678, and the recall score was 0.8653, as 

shown in table 14. 

 

Table 14 Performance score on validation dataset without tuning 

Performance measure: Score: 

Accuracy: 0.9177 

Precision: 0.9678 

Recall: 0.8653 

 

After running the GridSearchCV on the KNN model, we received the optimal 

number of neighbors to be 7, as shown in table 13. As a result, the KNN model 

had an accuracy of 0.9149 on the validation dataset, a precision score 0.9656, 

and a recall score of 0.8616. Thus, the model had a marginal lower accuracy, 

recall, and precision score, which can result from the model becoming more 

generalized. 

 

Table 15 Performance score on validation dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9149 

Precision: 0.9656 

Recall: 0.8616 
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The optimized model had an accuracy of 0.8972, a precision score of 0.969, 

and a recall score of 0.8671 on the test data set, as displayed in table 16. Figure 

13 displays the confusion matrix on the optimized model on the test dataset. 

  

Table 16 Performance score on test dataset 

Performance measure: Score: 

Accuracy: 0.8972 

Precision: 0.9690 

Recall: 0.8671 

 

Figure 13 Confusion matrix test dataset 

 

 

3.7 Decision Tree Classifier 

The Decision Tree Classifier algorithm creates a flowchart structured as a tree 

where the nodes represent the features, the branches show the decision rules, 

and the leaves display the outcome (Navlani, 2018). The topmost node of the 

tree is the root node, which usually is the node that maximizes the reduction in 

cross-entropy. Afterward, finding the best split combination, the data are 

partitioned into two new nodes, and the splitting process repeats on each of the 

two new nodes. This method repeats on each subset in a recursive manner 

09984930963285GRA 19703



 

33 
 

called recursive partitioning (Navlani, 2018). The recursive partitioning 

completes when the data within the subsets are sufficiently homogenous or 

another stopping criterion has been met. Figure 14 illustrated a decision tree 

with only one split. The leaf (child) nodes are "purer" than the root 

node(parent) since the share of each type is more dissimilar in the leaf node 

than in the root node, also called more homogenous (Provost & Fawcett, 2015, 

p. 53) 

  

Figure 14 Illustrated a decision tree with one split 

 

Figure 14.  From «Splitting the “write-off” sample into two segments, based on 

splitting the Balance attribute (account balance) at 50K» by Provost. F., & 

Fawcett. T, 2015, Data Science for Business, s.54, United States: O'Reilly 

Media. 

 

Several splitting rules can be used to partition the dataset. One typical method 

is information gain (IG) based on a purity measure called entropy. Entropy is 

defined as (Provost & Fawcett, 2015, p. 52): 

 

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑝1 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝1)  
− 𝑝2𝑙𝑜𝑔(𝑝2) − ⋯ 

 

(3.7.1) 
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Each 𝑝𝑖 is the fraction of examples in a given class. Entropy calculates the 

disorder of the set, ranging from minimum disorder (the set has members all 

with the same, single property) to one at maximal disorder (the properties are 

equally mixed) (Provost & Fawcett, 2015, p. 53). Disorder resembles how 

impure the set is. Information gain measures the change in entropy due to any 

amount of new information being added and are calculated by (Provost & 

Fawcett, 2015, p. 52): 

 

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) −
[𝑝(𝑐1) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐1) +  

𝑝(𝑐2) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐2) + ⋯ ]  
 

(3.7.2) 

3.7.1 Pruning 

The extensive partitioning will frequently lead to a big decision tree that will 

produce good predictions on the training set but weak predictions on the test 

set because of the decision tree's complexity. As a result, the algorithm overfits 

the training data, which could be improved with smaller tree size. Pruning is a 

technique that involves growing a tree to its full size before "cutting" off 

branches, ultimately reducing the tree's size by removing sections of the tree 

that are non-critical and redundant to classify instances (Hoare, 2020). This 

process leads to a reduction in variance at the cost of some extra bias. 

  

3.7.2 Hyperparameters tuning 

Table 17 shows the different hyperparameters we tune in our decision tree 

algorithm. The search space represents the different values tested, and optimal 

values show the result from the grid search. The criterion parameter chooses 

which function to measure the quality of a split. Ccp_alpha is the parameter 

used for pruning, as explained in the section above. Furthermore, max_depth, 

min_samples_split, and min_samples_leaf is all stopping criteria.  Max_depth 

specifies the maximum depth of the tree, min_samples_split is the minimal 

number of samples required to split a parent node, and min_samples_leaf is the 

minimal samples needed to be at a child (leaf) node (Mithrakumar, 2019). 
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Table 17 Decision tree Hyperparameters 

Hyperparameter Default Search Space Optimal values 

Criterion Gini Gini or Entropy Gini 

ccp_alpha 0.0 0 to 0.1 0.00007 

max_depth None 1 to 10 9 

min_samples_split 2 1 to 10 2 

min_samples_leaf 1 1 to 5 1 

 

3.7.3 Results 

We tested the algorithm with no hyperparameter tuning to measure the 

performance of the decision tree algorithm on the validation data set. The 

default parameters are shown in table 17. With these hyperparameters, the 

model gives an accuracy score of 0.8972, a precision score of 0.8986, and a 

recall score of 0.8971. 

 

Table 18 Performance score on validation dataset without tuning 

Performance measure: Score: 

Accuracy: 0.8972 

Precision: 0.8986 

Recall: 0.8971 
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Table 18 displays the optimized hyperparameter from the GridSearchCV. As a 

result, the model had an accuracy of 0.914, a precision score of 0.9472, and a 

recall score of 0.8781. Thus, tuning of the hyperparameters increases the 

accuracy and precision score of the model, which boosts the model's 

performance.  

 

Table 19 Performance score on validation dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9140 

Precision: 0.9472 

Recall: 0.8781 

 

The optimized model had an accuracy of 0.9006, a precision score of 0.9668, 

and a recall score of 0.8746 on the test data set. Thus, the model has nearly as 

good performance scores as the validation dataset, which indicates that the 

model has a good generalization. Below is the confusion matrix on the 

optimized model on the test dataset. 

 

Table 20 Performance score on test dataset 

Performance measure: Score: 

Accuracy: 0.9006 

Precision: 0.9668 

Recall: 0.8746 
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Figure 15 Confusion matrix test dataset 

 

 

3.8 Stochastic gradient descent 

 

Stochastic gradient descent is an optimization algorithm used to find the 

parameters values that minimize loss function. The algorithm has many 

different loss functions, such as sum of squared residuals, mean squared error, 

hinge loss, and cross-entropy function: 

 

𝑤𝑡+1 = 𝑤𝑡 − 𝑛𝑡𝑔𝑡(𝑤𝑡) 
 𝑤ℎ𝑒𝑟𝑒 𝑔𝑡(𝑤𝑡) = 𝜆𝑤𝑡 + 𝜄′(𝑤𝑡

𝑇𝑥𝑡 , 𝑦𝑡) 
 

(3.8.1.1) 

 

The algorithm starts with a randomly chosen point on the vector 𝑤𝑡 (Krzysztof 

& Paweł, 2015). Next, it advances to the next point in the direction of the 

fastest decrease of the loss function  𝑛𝑡𝑔𝑡(𝑤𝑡),  where 𝜄′ is the gradient of the 

loss function and  𝑛𝑡 is the learning rate that determines how large the moving 

step will be (Krzysztof & Paweł, 2015). The moving step is usually big when 

the point is far away from the local minimum and small when it comes close to 

the local minimum, as shown in figure 16 (Stojiljković, 2021). The algorithm 

stops when the moving step will be close to 0 or the maximum number of steps 

is reached. 
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Figure 16 Illustrates the movement of the gradient through the iterations 

 

 Figure 16. «Stochastic Gradient Descent », 2006, by Stojiljković, M 

 

3.8.1 Hyperparameters tuning 

In the stochastic gradient descent, we mainly analyze the loss, penalty, and 

alpha hyperparameter since these are the main deciding parameters. The loss 

parameter determines which loss function the algorithm will have. The penalty 

is the regularization parameter added to the loss function that reduces the 

model parameters towards the zero vector (Stephanie, G. 2020). Alpha is a 

constant that multiplies with the penalty parameter. The higher the value of 

alpha, the stronger the regularization. Alpha is also used to compute the 

learning rate (sklearn, n.d.), as we see in equation 3.8.1.2. 

 𝑛𝑡 =
1

𝛼(𝑡 + 𝑡0)
 

 

(3.8.1.2) 

 

GridSearchCV computed that the best loss function is hinge loss with a penalty 

of l1, limiting the size of the coefficients and the alpha to be 0.01, as we see in 

table 21. When the hinge loss is used as the loss function, it gives a linear 

support vector machine. 
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Table 21 SGD Hyperparameters 

Hyperparameter Default Search Space Optimal values 

Loss Hinge Hinge, 

Modified_huber, Log, 

Squared_hinge, 

Perceptron 

Hinge 

Alpha 0.0001 0.0001, 0.001, 0.01, 

0.1, 1, 10, 100 

0.01 

Penalty None None, l1, l2, Elasticnet l1 

 

 

3.8.2 Results 

We tested the algorithm with no hyperparameter tuning to measure the 

performance of the Stochastic gradient descent algorithm on the validation data 

set. With the default parameter values shown in table 21, the model gives an 

accuracy score of 0.9038, a precision score of 0.9246, and a recall score of 

0.8808.  

 

Table 22 Performance score on validation dataset without tuning 

Performance measure: Score: 

Accuracy: 0.9038 

Precision: 0.9246 

Recall: 0.8808 
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After running the GridSearchCV on the SGD model, we received the optimal 

values for the hyperparameters, as shown in table 21. As a result, the SGD 

model had an accuracy of 0.9063 on the validation dataset, a precision score 

0.9398, and a recall score of 0.8695. Thus, the model had a marginal higher 

accuracy and precision score. In addition, the model had a slight decrease in 

recall score. 

  

Table 23 Performance score on validation dataset with tuning 

Performance measure: Score: 

Accuracy: 0.9063 

Precision: 0.9398 

Recall: 0.8695 

 

The optimized model had an accuracy of 0.8978, a precision score of 0.9627, 

and a recall score of 0.8741 on the test data set, as displayed in table 24. Thus, 

the model has almost as good performance scores as the validation dataset, 

which indicates that the model has a good generalization. Below is the 

confusion matrix on the optimized model on the test dataset. 

 

Table 24 Performance score on test dataset 

Performance measure: Score: 

Accuracy: 0.8978 

Precision: 0.9627 

Recall: 0.8740 
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Figure 17 Confusion matrix on test dataset 

 

 

 

 

4 Comparing Results and Additional 

Findings 

In this section, a comparison of the performance and results of our various 

machine learning algorithms will take place. In table 25, we can see the given 

scores that were received from the baseline models on the validation set, scores 

on the validation set after tuning the model, and finally, the optimized model 

utilized on the unseen test data.  

 

Table 25 Accuracy from the algorithms 

Algorithm: Accuracy: 

before 

parameter 

tuning 

Accuracy: after 

parameter 

tuning 

Accuracy: on 

testset 

SVM 0.925 0.932 0.914 

Logistic 

Regression 

0.906 0.906 0.903 

KNN 0.917 0.914 0.897 

Decision Tree 0.897 0.914 0.899 

Stochastic 

gradient descent 

0.903 0.906 

 

 

0.898 
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The Support Vector Machine model performed very well on all aspects of our 

data, such as accuracy, precision and recall. It resulted in an accuracy of 0.914 

on the unseen test data, with no signs of over-fitting. The benefit of our 

Support Vector Machine is that it effectively utilized its advantages. There is a 

clear margin of separation between our classes. In combination with the “rbf” 

kernel, it performed well on unseen data. On the other hand, a Support Vector 

Machine does not perform extremely well on very large datasets. In our case, 

the dataset is not particularly large which suits the Support Vector Machine 

algorithm. In addition, there isn’t a lot of noise in the dataset, with few 

overlapping features that help the support vector machine algorithm perform 

on top of its potential (K, 2020). Finally, a general disadvantage for support 

vector machines is that it doesn’t predict probabilities, since the algorithm 

places our data points below or above the classifying hyperplane (K, 2020), 

which is mentioned in the more detailed section about Support Vector 

Machines (Chapter 3.4).  

 

Our second best model is the logistic regression model. We received good 

overall scores for both the validation data and the unseen test data. However, 

the hyperparameter tuning didn’t excel the model in any noteworthy direction, 

with only a small increase in accuracy. Compared to our best model, the 

support vector machine, the logistic regression algorithm does, in fact, 

calculate predicted probability. In short, it learns the linear relationships that 

occur in the dataset while introducing non-linearity in the form of the sigmoid 

function (GeeksforGeeks, 2020a). In general, logistic regression is easy to 

implement, interpret, and can train efficiently and effectively on all kinds of 

data. In theory, a logistic regression algorithm does not require any 

hyperparameter tuning, as we can see from our results. Something we need to 

keep in mind when considering implementing a logistic regression model in 

Machine Learning is that the algorithm assumes linearity between our 

prediction variable and or independent variables (GeeksforGeeks, 2020a). In 

addition, even though a logistic regression model rarely overfits, it has a 

tendency to overfit in extremely high dimensional space.   
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The remaining three algorithms yielded decent results, however, based on the 

results we would choose either logistic regression or a support vector machine 

for this type of classification problem. Decision tree, even though it requires 

some fine-tuning in order to perform relatively well with an accuracy on the 

unseen test data of 0.902. KNN received an accuracy on the test data of 0.897, 

see our k-nearest-neighbors section (Chapter 3.6) for more information on 

results and reasons. In addition, we wanted to include something different 

other than supervised learning in order to see how it affected the results. 

Stochastic gradient descent is an optimization algorithm and received an 

accuracy on the test data of 0.897, which is considered a decent score. For 

more information, see the method section about SGD (Chapter 3.8).  

 

 

5 Discussion and Conclusion 

 

In the following chapter, we will discuss related work and research, answer our 

thesis question, the impact on the banking industry and further research.  

 

5.1 Related Work 

Hand and Henley analyzed the different credit scoring methodologies used in 

the financial industry. The techniques they list as industry standards are 

logistical regression, decision tree, linear regression, and discriminant analysis 

(Hand & Henley, 1997). Along with k-nearest neighbors and neural networks. 

Turiel and Aste provide an extensive and in-depth look at loan acceptance and 

default prediction with machine learning (Turiel & Aste, 2020). They used 

logistic regression, support vector machine algorithms, and deep neural 

networks. The study concluded that machine learning could improve current 

credit risk models, reducing the default risk of issued loans by as much as 

70%. The best default prediction algorithm was deep neural networks, and for 

loan approval was logistic regression best. 
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Furthermore, Tepy and Polena investigated which classification algorithms 

perform the best in peer-to-peer lending (Tepy & Polena 2020). They tested ten 

different classification algorithms and ranked them on six different 

performance measures. The best overall performer was logistic regression. 

Other authors also found this, such as Peng, who analyzed the credit risk and 

fraud risk in six different countries using eight classification methods (Peng, et 

al, 2011). 

Table 26 illustrates research relevant to the theses with their representative 

performance accuracy for the different machine learning algorithms. As the 

table shows, Support Vector Machine and Logistic regression frequently 

perform relatively well, as our research also achieves. 

The relative differences in predictive power between the algorithms may be 

overestimated, according to Hand (Hand, 2006). This could be due to the 

"reject inference" problem. One algorithm that performs well on a dataset does 

not naturally perform better than other classifiers on through-the-door 

population. Additionally, Hand claims that the classifier's goal should be to 

maximize profit. Therefore, if a confusion matrix is utilized as an evaluation 

measure, the results may differ from those obtained using the ROC AUC 

metric. 
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Table 26 Accuracy comparison of previous research 

 Baesens 

(2003) 

Peng 

et al 

(2011) 

Bao 

et al 

2019 

Nabende 

& 

Senfuma, 

2019 

Vieira 

et al 

(2019) 

Fan 

2020 

Tepy 

et al 

(2020) 

SVM 0.797 0.83 0.914  0.924 0.774 0.788 

Decision 

trees 

0.77 0.817 0.842  0.888  0.765 

K-NN 0.782 0.802 0.904 0.932   0.765 

Logistic 

regression 

0.793 0.853 0.855 0.903 0.921 0.701 0.791 

SGD    0.921    

 

 

5.2 Summary  

 

Our research question is as follows: 

  

” For a chosen set of machine learning algorithms, which algorithm 

demonstrates the best performance in loan eligibility classification prediction 

with regards to several model evaluation metrics?” 

 

As mentioned in chapter 4, Support Vector Machine and Logistic Regression 

yielded the best results in terms of accuracy, precision, and recall for our data. 

Support Vector Machine has a better potential to be accurate but also has its 

limitations. On the other hand, Logistic Regression is very user-friendly, easy 

to implement and interpret, and does not require any specific tuning.  
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We would argue that our results are quite similar to other related work within 

the same topic. According to Turiel and Aste (Turiel & Aste, 2020), and Tepy 

and Polena (Tepy & Polena 2020) their best loan approval prediction model 

was Logistic Regression based on its excellent characteristics as a binary 

classifier. When investigating table 26, where we illustrate the accuracy scores 

of the mentioned related work, we can see a strong and clear consistency that 

Support Vector Machine and Logistic Regression performs best, compared to 

the other algorithms.  

 

Our accuracies, precisions and recalls generally had very good measures 

throughout this study. When compared to the related studies, we can see that 

our model performance generally outperforms the other scores. This doesn't 

necessarily tell us that our models are better, with more accurate tuning and 

testing. It might boil down to the differences within each dataset, or that we 

utilize different techniques when it comes to pre-processing, tuning, and 

testing. Every performance measure is relative to the data available, baseline 

model, and tuning techniques. In conclusion, we would argue that the logistic 

regression model is overall best in this specific situation because of its 

flexibility and user-friendliness. A Support Vector Machine can outperform the 

logistic regression algorithm, but it requires more work as well.  

 

5.2 Impact on the banking industry 

 

The implementation of machine learning algorithms regarding loan eligibility 

can have a significant effect on the banking industry. The algorithms can 

reduce the staff of loan officers for banks, which lower their cost. Many 

countries such as the US, Singapore, and China have already started using AI 

to determine creditworthiness and streamline the loan process (Faggella, 2020), 

which increases the competition in the banking industry. Furthermore, the 

algorithms can help banking institutions reduce their risk. With more 

personalized loans, the business and clients can get loan approvals based on 

their whole financial and personal situation, not just the standard loan-to-value 

ratio and/or debt-to-income ratio, which will reduce loan defaults. For 
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example, Amazon saves a huge amount of data on what products are sold, 

customer's reviews on those products, the economic status of the businesses 

which make those products, and the likely future demand for these products. 

This information uses Amazon machine learning models to predict which 

companies they should offer loans to (Faggella, 2020). 

 

5.3 Further research 

The research presented in this thesis could serve as a good starting place for 

further investigation into loan eligibility. A deeper analysis of the variables 

used in the models as well as creating additional variables can improve the 

prediction of the models. Furthermore, other models could be added, such as 

neural network algorithms, which have proven good performance in default 

prediction. However, the data accessible in this thesis has some limitations 

regarding the number of years covered by the data. In addition, customers' 

behavior may influence the results of this research since customers in a 

specific location could have different spending habits than customers in other 

locations. Another approach that can be applied is if there's data available for 

more extended periods and broader geography of clients, it would be 

interesting to implement macroeconomic variables, leading to new insights 

into the factors that influence loan eligibility and which machine learning 

methods are best for this problem. 

Furthermore, it would be interesting to research which performance metrics are 

the most helpful for this type of issue. A cost-sensitive classification model is 

another option for implementation, Where the model gives different costs to 

misclassifying loan approvals. For example, the model penalizes incorrectly 

classifying a loan acceptance higher than incorrectly classifying a loan 

rejection. It would also be interesting to make the cost of misclassifying loans 

from clients with higher credit ratings more expensive than loans from lower 

ratings because customers with higher credit ratings usually take bigger loans 

and are riskier for the bank. This implementation could lower the overall risk 

and possibly increase the models' performance. Moreover, it would be 
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interesting to analyze which features are the most important when it comes to 

predicting loan approvals.  
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