
BI Norwegian Business School - campus Oslo

GRA 19703
Master Thesis

Thesis Master of Science

A Comparative Study in Binary Classification for Loan
Eligibility Prediction

Navn: Mikkel Ruud, Halvor Bøen Nilsen

Start: 15.01.2021 09.00

Finish: 01.07.2021 12.00

i

Abstract

In this thesis, loan eligibility prediction is explored and analyzed by

investigating five different prediction models. The goal for the prediction

models is to accurately predict whether a bank loan is approved or

disapproved. The dataset utilized for this thesis is retrieved from kaggel, and is

referred to as “bank loan data”. It contains about 100.000 rows of various loan

applications, with the predictor variable available. Throughout this thesis, we

will investigate five supervised learning algorithms, more specifically, Support

Vector Machine, K-Nearest Neighbors, Decision Tree, Logistic Regression,

and Stochastic Gradient Descent. The results are evaluated using various

performance measures, and is compared to similar research within the same

topic.

09984930963285GRA 19703

ii

Acknowledgments

We have truly enjoyed working on this thesis throughout this semester. Both

contributors have cooperated well, while building on each other's strengths and

weaknesses. We would like to thank our supervisor Mass Soldal Lund, who

has helped and guided us through this thesis. In the end, it's been a great

experience, and we wouldn't trade it for anything.

09984930963285GRA 19703

iii

Table of Contents

Contents
Abstract i

Acknowledgments ii

List of Figures v

List of Tables vi

1. Introduction 1

1.1 Motivation for research 3

1.2 Research question 3

1.3 Thesis structure 4

2 Research methodology 5

2.1 Selection of algorithms 5

2.2 Performance measures 6

2.3 Data collection 8

2.4 Pre-Processing: 9

2.4.1 Data cleaning: 10

2.4.1.1 NaN values in “loan_repaid”: 10

2.4.1.2 Feature exclusions: 10

2.4.2 Multicollinearity 11

2.4.3 Feature engineering: 13

2.4.4 Feature scaling 13

2.4.5 Imbalanced class 14

2.4.6 Data splitting 15

3 Method section 16

3.1 Supervised learning 16

3.2 Common notations 17

3.3 Technique for Optimizing Hyperparameters 17

3.4 Support Vector machine 18

3.4.1 Hyperparameters tuning 19

3.4.2 Results 21

3.5 Logistic regression 23

3.5.1 Hyperparameters tuning 24

3.5.2 Results 26

3.6 K-Nearest Neighbors 28

3.6.1 Hyperparameters tuning 29

09984930963285GRA 19703

iv

3.6.2 Results 31

3.7 Decision Tree Classifier 32

3.7.1 Pruning 34

3.7.2 Hyperparameters tuning 34

3.7.3 Results 35

3.8 Stochastic gradient descent 37

3.8.1 Hyperparameters tuning 38

3.8.2 Results 39

4 Comparing Results and Additional Findings 41

5 Discussion and Conclusion 43

5.1 Related Work 43

5.2 Summary 45

5.2 Impact on the banking industry 46

5.3 Further research 47

6 Bibliography 49

09984930963285GRA 19703

v

List of Figures

Figure 1 Structure for the thesis .. 4

Figure 2 Confusion matrix ... 7

Figure 3 Feature description ... 8

Figure 4 VIF score original dataset ... 11

Figure 5 VIF score after removing features dataset 12

Figure 6 Count of target variable... 15

Figure 7 Optimal Hyperplane .. 19

Figure 8 Confusion matrix on test dataset ... 23

Figure 9 Illustration of logistic regression .. 23

Figure 10 Confusion matrix from test dataset.. 28

Figure 11 Illustration on how the KNN algorithm work 28

Figure 12 Overfitting using small number of neighbors 30

Figure 13 Confusion matrix test dataset .. 32

Figure 14 Illustrated a decision tree with one split ... 33

Figure 15 Confusion matrix test dataset .. 37

Figure 16 Illustrates the movement of the gradient through the iterations 38

Figure 17 Confusion matrix on test dataset ... 41

09984930963285GRA 19703

vi

List of Tables

Table 1 Selection of algorithms ... 6

Table 2 Feature Importance .. 11

Table 3 Feature engineering ... 13

Table 4 SVM Hyperparameters... 20

Table 5 Performance score on validation dataset without tuning................... 21

Table 6 Performance score on validation dataset with tuning 22

Table 7 Performance score on test dataset with tuning 22

Table 8 Logistical regression Hyperparameters .. 25

Table 9 Performance scores on validation dataset without tuning 26

Table 10 Performance score on validation dataset with tuning 26

Table 11 Performance score on test dataset... 27

Table 12 Result from the GridsearchCV ... 27

Table 13 KNN Hyperparameters ... 30

Table 14 Performance score on validation dataset without tuning 31

Table 15 Performance score on validation dataset with tuning 31

Table 16 Performance score on test dataset... 32

Table 17 Decision tree Hyperparameters .. 35

Table 18 Performance score on validation dataset without tuning 35

Table 19 Performance score on validation dataset with tuning 36

Table 20 Performance score on test dataset... 36

Table 21 SGD Hyperparameters ... 39

Table 22 Performance score on validation dataset without tuning 39

Table 23 Performance score on validation dataset with tuning 40

Table 24 Performance score on test dataset... 40

Table 25 Accuracy from the algorithms ... 41

Table 26 Accuracy comparison of previous research 45

09984930963285GRA 19703

1

1. Introduction

It is fairly common that financial banks around the world perform various

internal tasks manually. This may be very time consuming and can yield high

cost in the long run. However, these types of applications and data are heavily

number based, which means that it’s also prone to Machine Learning. More

often than not, banks utilize manual labor when it comes to loan eligibility i.e

approval/disapproval. This is a process that is very eligible for Machine

Learning and automatization, because of its numeric nature. We wanted to

investigate this topic further, and dive deep into the models and algorithms that

surround this specific subject.

The loan application process has had a drastic change in the last decades. For

many years, people who needed a loan had to first go to a bank, speak with a

loan officer about possible credit options, fill out an application, spend days

looking for all required paperwork, and then wait for the approval (Hope,

2020). The approval could take weeks since the verification was primarily

done manually. Nowadays, borrowers don’t need to have personal contact with

a bank representative to get a loan. It all starts online, where borrowers can fill

out an application and get immediate approval. The loan approvals are

generally calculated with the metrics loan-to-value ratio and/or debt-to-income

ratio, where each country has different ratios of acceptance. With the

advancement in technology, predictive analytics have become more important

and accessible. Predictive analytics uses algorithms, data, and machine

learning techniques to analyze the likelihood of a future outcome based on

historical data, which can help banks identify patterns of characteristics that

are likely to default (SAS, n.d.).

With the rise of big data, the improvements in data availability, technology,

data analysis, and customer relationship management skyrocket. Businesses

can now save their consumer data in their data warehouses and do their data

analysis in-house, thanks to advancements in technology and lower computing

09984930963285GRA 19703

2

power costs. Data in massive amounts can offer invaluable insights and a

competitive edge if the right technological and organizational resources

support them (Côrte-Real et al., 2017). Most organizations are currently

collecting and storing data that can be used in statistical software to help them

better understand their consumer base and forecast future behavior. For

example, with access to modern analysis tools, banks can move from the

generally loan-to-value ratio debt-to-income ratio calculation to predicting loan

defaults ahead of time.

If these banks could acquire a reliable and stable machine learning model to

correctly predict whether a bank loan application should be granted or not,

there is potentially a lot of time and money to be saved in the long run. If this

process is automated, banks could focus their workforce on other important

aspects within the company. This would ultimately enhance the productivity

and efficiency within the company. In recent years, Machine Learning (ML)

and automation has become a new standard for both small businesses and

corporations, who want to develop further into the world of technology.

Our goal is to create and compare various ML models and algorithms

connected to this automated process, and describe the benefits and

disadvantages connected to the various combinations. We will first compare

our individual results to each other for binary classification in loan eligibility,

before comparing it to previous research within the same research topic.

This thesis is not only applicable for binary classification in loan eligibility,

and can also be utilized for other binary classification problems. By

investigating the method section, one might be able to capture valuable

information that might help picking the most fitting algorithm for their specific

situation.

09984930963285GRA 19703

3

1.1 Motivation for research

Our thesis focuses on comparing various Machine Learning algorithms and

models for loan eligibility prediction. This can be applicable to other binary

classification problems as well. The reasoning for choosing this topic is as

follows:

- This thesis will provide valuable information for

individuals/companies who want to develop a binary classification

model for loan eligibility.

- Limited research and empirical studies for comparative studies in

this specific area.

- Gain valuable insight into each algorithm and the inner workings of

each model.

1.2 Research question

Our thesis dives into each relevant algorithm and discusses each model, how it

operates and behaves, and the various results. We will elaborately compare and

discuss the results before we discuss various aspects of our thesis. We will also

make a comparison to other research.

Our research question is as follows:

” For a chosen set of machine learning algorithms, which algorithm

demonstrates the best performance in loan eligibility classification prediction

with regards to several model evaluation metrics?”

In order to answer this question, we will train, tune and test five Machine

Learning algorithms and compare the performance of those algorithms to each

other. In addition, we will compare those models to other related research

09984930963285GRA 19703

4

within the same topic as well.

1.3 Thesis structure

Figure 1 represents the structure of our thesis, where the first part includes an

introduction to the study and motivation for research. The second part

introduces the thesis problem and research question. The third part represents

the data used for this thesis, the pre-processing steps, feature engineering, data

splitting, and unbalanced classes. For the fourth section, we will go through

each algorithm of our choice and discuss the model, tuning, and the individual

results. For the results section, we will compare the results and models from

the latter section. Finally, we will discuss various aspects of this thesis, such as

strengths and weaknesses, the impact this has on the banking industry, and

some further research of applying a loan eligibility prediction model.

Figure 1 Structure for the thesis

09984930963285GRA 19703

5

2 Research methodology

The research methodology for our thesis is split into four main parts. First, we

explain why we select these specific machine learning techniques to predict

loan approvals. The next part describes various performance measures used to

evaluate the algorithms, such as accuracy, recall, and precision, making it

possible to rank the different algorithms. The third main part describes the

different features in the data set and the data preprocessing used to transform

the raw data into a valuable and efficient format. Where we first in the data

preprocessing explain the necessary data cleaning processes and feature

engineering. Further, we use the variance inflation factor to test the data set for

multicollinearity. Another technique used is feature scaling which standardizes

the independent features. In addition, we utilize a synthetic minority

upsampling technique to deal with imbalances in our dataset. Lastly, we

explain the train validation test split, which prevents the model from

overfitting and accurately evaluating the model. The last part describes how

the different machine learning algorithms operate. Moreover, we discuss the

different hyperparameters and their representative optimal values. In the end,

we evaluate the model's results.

2.1 Selection of algorithms

Table 1 lists and shortly describes the predictive algorithm commonly

employed in the literature on machine learning methods for loan approval

(Teply, P., & Polena, M. 2020). In addition, we wanted to include something

different than supervised learning to see how it affected the results. Hence, we

choose to add a Stochastic gradient descent algorithm, which is also used in the

literature of loan approval (Nabende et al., 2019). Each classification technique

will be detailed in chapter 3, with a focus on their unique hyperparameters.

09984930963285GRA 19703

6

Table 1 Selection of algorithms

Machine learning algorithms Description

Decision trees The data is partitioned via a series of

branching processes.

Support Vector Machines Fitting hyperplane in an N-

dimensional space that distinctly

classifies the data points

K-Nearest Neighbors Stores all available cases and

classifies new cases based on a

similarity measure.

Logistic regression Is used to model the probability of a

certain class or event

Stochastic gradient descent Optimization method to find a local

minimum of a function

2.2 Performance measures

One typical way to evaluate the performance of a model in binary

classification is to use a confusion matrix. The instance of accepted loan

approval is defined as positive and rejected loan approvals as negative. The

potential outcomes are then true positive (TP) if the model correctly predicts

approved loans and false positive (FP) if rejected loan approvals are predicted

as approved loans. True negative (TN) if rejected loan approvals are correctly

predicted, and false-negative (FN) if accepted loan approvals have been

predicted as rejected loan approvals, as illustrated in figure 2.

09984930963285GRA 19703

7

Figure 2 Confusion matrix

Figure 2. «Confusion Matrix », (n.d.).

Several metrics can be derived from a confusion matrix. The most frequent

metric is accuracy, which is the fraction of predictions the model predicted

correctly. Accuracy is calculated by (2.2.1) (Google, n.d.).

 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁

(2.2.1)

In terms of business sense, the goal is to balance the cost of losing money on

non-performing consumers and the opportunity cost of losing a potentially

profitable customer (Huilgol, 2021). As a result, it's crucial to investigate how

alternative strategies affect recall and precision since recall measures how

many accepted loan approvals the model captures. In contrast, precision refers

to the possible opportunity cost. Recall and precision are defined in function

2.2.2 and 2.2.3.

 𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(2.2.2)

09984930963285GRA 19703

8

 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(2.2.3)

2.3 Data collection

Our data is composed of two datasets, “borrower_table.csv” and

“loan_table.csv”. It is collected from Kaggle (Bank Loan Data, 2020) and

contains 101.100 rows of various loan applications collected by the given

bank. There are two datasets which are named “borrower_table.csv” and

“loan_table.csv”. “borrower_table.csv” contains various features (12) based on

the borrower/applicant, and the “loan_table.csv” dataset contains five features

including the purpose of the loan, whether the loan was granted or not, and

whether the loan is repaid or not. We can merge these two datasets together in

order to create one complete dataset. In addition, these datasets are fairly new

and unused, and date back to June 2020. Below in figure 3 is metadata for the

combined bank loan dataset.

Figure 3 Feature description

09984930963285GRA 19703

9

The original datasets had the following features:

- loan_id: an identification number representing a loan application

- is_first_loan: whether it’s the appliers first loan or not (0/1)

- fully_repaid_previous_loans: whether the applicant has repaid its

previous loans or not.

- currently_repaing_previous_loans: whether the applicant is

currently repaying other/previous loans.

- total_credit_card_limit: the applicant's current credit card limit.

- avg_percentage_credit_card_limit_used_last_year: the average

percentage utilized on the credit card limit by the applicant the

previous year.

- saving_amount: the appliers savings amount

- checking_amount: the appliers checking amount

- is_employed: whether the applier is employed or not

- yearly_salary: the appliers yearly salary

- age: the appliers age

- dependent number: Undisclosed feature

- loan_purpose: what is the purpose of the given loan

- date: submission date for application

- loan_granted: whether the given loan is granted or not

- loan_repaid: whether the given loan is repaid or not.

2.4 Pre-Processing:

In the upcoming section, we will discuss our preprocessing steps in order to

prepare our data for training. We will discuss our data cleaning, which includes

removal of NaN values, feature exclusions, multicollinearity and variable

inflation factor, feature engineering, feature scaling, how we tackle the

imbalanced classes, and finally the data splitting process.

09984930963285GRA 19703

10

2.4.1 Data cleaning:

2.4.1.1 NaN values in “loan_repaid”:

The dataset needed to be cleaned and prepared before implementing it into our

various ML algorithms. The first order of operation was to investigate our

target variable “loan_repaid”. It is quickly noticed that our target variable

contained a great amount of NaN values, with a count of 53446 instances. This

occurs because there are several instances of customers not being granted a

loan from the bank, which results in that there is no loan to repay for that

instance. Since our models are binary classification, either 1 or 0, the NaN

instances needed to be corrected. However, since our original dataset was

decently sized, we decided to remove those rows while maintaining the

integrity of the dataset.

2.4.1.2 Feature exclusions:

- The column “date” is removed because of its low variance. After

investigating this aspect, we couldn't find any indications that time of

year affects whether a loan is granted or not. Therefore, we can

confidently conclude that this feature doesn’t affect the results in any

way.

- The feature “is_employed” is excluded because a customer can not

have any yearly salary if they’re not employed. Therefore, if yearly

salary equals 0, then their employment status would reflect the same

result.

- "avg_percentage_credit_card_limit_used_last_year” and

"fully_repaid_previous_loans" is excluded due to multicollinearity.

See the upcoming chapter for in depth information.

09984930963285GRA 19703

11

2.4.2 Multicollinearity

Multicollinearity occurs in situations where there are high intercorrelations

between two or more independent variables. In our case, there is a strong

intercorrelation between "avg_percentage_credit_card_limit_used_last_year”

and a handful of other features in our dataset. While

"fully_repaid_previous_loans" and “is_first_loan” are directly intercorrelated.

This can be confirmed from the variable inflation factor before and after

removal of those features (Figure 4 and Figure 5).

Figure 4 VIF score original dataset

Between these two, we decided to remove "fully_repaid_previous_loans"

because “is_first_loan” is a better explanatory variable explained by a higher

feature importance, as shown in table 2. The feature importance scores below

are gathered from our decision tree model.

Table 2 Feature Importance

Feature name: Feature importance score:

“fully_repaid_previous_loan” 0.00300

“is_first_loan” 0.01135

One might argue that multicollinearity is more applicable to algorithms in a

multiple regression model. However, we claim that one should always be

concerned about this aspect, regardless of the model being linear or not. Let’s

09984930963285GRA 19703

12

say we have a random forest algorithm with a set of linearly correlated

features. The random selection within the tree might select collinear features

that often result in a weak selection. This can add up the further we work down

our nodes, therefore affecting the results negatively (Allison, 2019). We want

to avoid features being highly correlated with each other. We must preserve the

value of interdependence between our features, which will result in not

meddling with the standard error of the regression coefficient

(Multicollinearity, n.d.).

Both features mentioned above have a high variance inflation factor (VIF),

which measures the amount of multicollinearity. In general, a variance

inflation factor above 10 is considered high correlation and could be a red flag

(Bock, 2020), which our dataset has as shown in figure 4. However, as we can

see from figure 5, when we remove the mentioned features from our dataset,

the VIF scores balances out:

Figure 5 VIF score after removing features dataset

09984930963285GRA 19703

13

2.4.3 Feature engineering:

The feature “Loan_purpose” is non-numeric, and states the purpose of the

given loan with text. Since this feature is non-numeric, it can create confusion

within our machine learning models and algorithms. The various selections

within the loan purpose are: investment, home, business, emergency funds, and

other. In order to bypass this string, we have created numerical values that will

replace the string conditions. In other words, we replace the text with

numerical values. After this process was completed, we currently stand with

(Table 3):

Table 3 Feature engineering

Loan_purpose Numerical values

Other 1

Emergency_funds 2

Business 3

Home 4

Investment 5

2.4.4 Feature scaling

In our given dataset, there are numerous features that vary in magnitude and

scope. We wanted to bring all the features within similar standing, so that one

specific feature does not influence our model too much compared to other

features. For instance, if one feature contains large numbers, combined with a

high standard deviation, it might affect the model to a larger degree compared

to other features that might be smaller numbers with minor deviations. This

preprocessing step can be the difference between a strong machine learning

model, and a fragile and inaccurate model (Gupta, 2020). Two techniques

09984930963285GRA 19703

14

dominate this market, and those are normalization and standardization (Roy,

2020). We have utilized a standardization technique due to the fact that it

transforms our data to have a zero mean and a variance of 1 and gives our

dataset a standard normal distribution. In addition, it makes our data unitless.

This scaling technique transforms our features to a range between [-1,1]

(Gupta, 2020).

Standard scores are calculated by:

 𝑧 =
𝑥 − 𝜇

𝜎

(2.4.4.1)

Generally speaking, machine learning algorithms only capture numbers, and

don't know what the numbers represent. If one of the given features contains

large numbers, while other features hold lower numbers, then it might make an

underlying assumption that larger numbers are of higher importance. We want

each feature to be at a level playing field (Roy, 2020).

2.4.5 Imbalanced class

When examining our original dataset, we see a case of imbalanced data. As

mentioned in the data description, there are 16948 cases where the given loan

is paid fully, which results in 36% of the original dataset. However, we have a

larger counterpart of 30706 instances where the loan is not paid fully, which

results in 64% of the dataset, as shown in figure 6. This results in an imbalance

within our class with a ratio of approximately 1:3. Therefore, we can see a

moderately unbalanced dataset. Considering the number of cases where the

loan is not paid in full, we decided to implement a synthetic minority

oversampling technique, also known as SMOTE, to increase the number of

cases where the loan is repaid to match the number of loans that are not repaid

(Bownlee, 2020).

09984930963285GRA 19703

15

Figure 6 Count of target variable

When investigating the data, more specifically the independent variable (y),

there were too few examples in the minority class for the model to efficiently

learn the decision boundary. SMOTE operates by picking examples located

close to the feature space rather than in the data space. It draws a line between

those examples and creates a new sample at a point along that given line

(Brownlee, 2020).

More specifically, SMOTE starts by selecting a minority class instance at

random and then finds its k-nearest neighbors. It picks one of those neighbors

and creates a synthetic instance by connecting those two examples to form a

line segment in the feature space. The synthetic instances are generated as a

convex combination for the two chosen instances (Brownlee, 2020b).

2.4.6 Data splitting

As a standard when dealing with prediction algorithms, we have to create a

training dataset, possibly a validation dataset, and a test dataset. For valuation

purposes, we decided to make a validation dataset. Instead of utilizing the

common 80% training and 20% test data split, we performed a split of 60%

09984930963285GRA 19703

16

training and a 40% test data split. Furthermore, we split the test data once more

into a validation set and a test set. In summary, we now have a 60% training

dataset, a 20% validation dataset, and a 20% holdout dataset. This was

performed in python by utilizing the sklearn package, more specifically, the

train_test_split function (Sklearn.Model_selection.Train_test_split — Scikit-

Learn 0.24.2 Documentation, n.d.). This function takes random partitions for

the two subsets, and creates the two sets based on our test size of choice, and

the random state (Splitting Datasets With the Sklearn Train_test_split

Function, 2019). The previous step is repeated in order to create the validation

set. We utilize this type of split (60/20/20) because it enables us to check

whether the model overfits or underfits and it allows us to accurately evaluate

the model. In addition, the validation set can be utilized to test various

hyperparameter values.

3 Method section

In this section, we will present and dive deep into our algorithms of choice. We

will discuss in general how the algorithms operate, the process of optimizing

the hyperparameters and their outcome, and the various results of the models.

In addition, we will talk about some features and techniques that are consistent

throughout every model. The given Python scripts for each model can be found

on GitHub (Ruud & Boen, 2021).

3.1 Supervised learning

As mentioned earlier, we will go through five algorithms and compare them.

Four of these algorithms have something in common, which is that they are

supervised learning algorithms. Supervised learning is defined by its utilization

of a labeled dataset that trains algorithms in order to classify data or predict

outcomes precisely. The prediction variable in our thesis is “loan_repaid”. The

dataset is already classified, and the algorithm is "learning" from our data.

09984930963285GRA 19703

17

When input data is inserted into our model, the algorithm regulates its weights

in order to fit the model to the data (IBM, 2021).

3.2 Common notations

Throughout this thesis, we mention our X and y with regards to the Machine

Learning algorithms and models. Most models are described as learning a

target function (𝑓) that best maps the given input variables (X) to our

output/predictor variable (y). The ultimate goal is to make accurate predictions

in the future (y) with new examples of input variables (X) (Brownlee, 2019).

 𝑦 = 𝑓(𝑥)

(3.2.1)

3.3 Technique for Optimizing Hyperparameters

A hyperparameter is a parameter whose value is used to control the

learning process (Wikipedia, 2021). Tuning hyperparameters is considered

a difficult task to perform in machine learning, where the goal is to find the

optimal hyperparameters. A machine learning model contains a heap of

various parameters that ultimately decide the accuracy of the model.

Therefore, it can be extremely important to locate the optimal values for

the model hyperparameters. The hyperparameters vary from algorithm to

algorithm, as various models require diverse types of tuning. We want to

search the hyperparameter space in order to find a set of values that will

optimize our model architecture (Mujtaba, 2021).

One possibility is to try all the different values when it comes to

hyperparameters in order to find the ideal combination. However, this is a

tedious process, and therefore, we have utilized SK-learn's automated

procedure called GridSearchCV (Sklearn.Model_selection.GridSearchCV

09984930963285GRA 19703

18

— Scikit-Learn 0.24.2 Documentation, n.d.). This function loops through

our predefined hyperparameters and fits our estimators on our training set.

GridSeachCV explores every combination from the values passed in the

dictionary. Thereafter, it evaluates our model for any given combination

using the cross-validation method. We utilized a 10-fold cross-validation

strategy. After GridSearchCV is finished, we receive our model scores for

every combination of hyperparameter values, and we can choose the

combination that gives the best model performance. This was performed on

the training dataset.

3.4 Support Vector machine

A support vector machine is a supervised machine learning model that utilizes

classification algorithms in order to classify the data. The idea behind the

support vector machine is relatively simple. It creates a hyperplane within the

data that classifies the data into approved or rejected bank loans.

The way a support vector machine model works is that it finds a separating line

or a so-called hyperplane that divides the data into two classes. Once that line

is decided, it’s essential to find the best or optimal line to increase the model's

accuracy and avoid false positives and false negatives in our confusion matrix

(Gandhi, 2018). However, there are infinite potential lines that will help

separate our two classes, so how does the support vector machine find the most

effective hyperplane? Within machine learning in general, we want to find a

generalized separator to isolate our two groups of classes (Gandhi, 2018).

Once we have this general line that separates the data, we will need to find the

two points closest to that given line. These points are called support vectors,

and we calculate the distance between these two support vectors and our

original line (Gandhi, 2018). The objective for this model is to maximize this

margin that separates the support vectors, i.e find the optimal hyperplane. The

09984930963285GRA 19703

19

support vector machine model attempts to create a decision boundary where

the distance between the support vectors is as wide as possible. There are two

goals that we were looking for when building this model: setting a larger

margin and lowering our misclassification rate to the best of our ability, as

shown in figure 7 (ale, 2020).

Figure 7 Optimal Hyperplane

Figure 7 “Optimal hyperplane using SVM algorithm” 2020, by Bhosale.

3.4.1 Hyperparameters tuning

The parameters of interest when it comes to tuning the Support Vector

Machine model are C and gamma, as shown in table 4. As mentioned earlier in

this section, we want to get as large a margin as possible while also lowering

the misclassification rate. However, these two aspects might sound

contradictory. If we increase our margin, it leads to a higher misclassification

rate and vice versa. It’s here the parameter C comes into play. Proper choice of

C and gamma is crucial for the performance of our model (Yıldırım, 2020).

09984930963285GRA 19703

20

Table 4 SVM Hyperparameters

Hyperparameter Default value Search space Optimized

values

C 1.0 0.1, 1, 10, 100,

1000

1.0

Gamma “scale” 1, 0.1, 0.01, 0.001,

0.0001

1.0

Parameter C

The larger our C value is, the smaller our margin becomes. We want to find the

optimal margin to receive the best results for our testing set. On the opposite

side, the smaller our C value is, the larger is the margin. In theory, the C

parameter tells the Support Vector Machine how willing we are to misclassify

each training example. It is difficult to manually find the optimal C value since

you must run the model numerous times to find the lowest misclassification

rate (Yıldırım, 2020). In addition, when the C parameter is large, the model

tries to fit all the classifiers correctly, which can lead to a curved or wiggly

decision boundary. If this boundary is directly imported into our testing data, it

will most likely not yield good results because the points will be in different

positions, and the customized decision boundary is not applicable to that data.

This would most likely result in overfitting, and we want to create a

generalized model that can fit in several situations and datasets. This is where

GridSearchCV will help us enormously.

Gamma

The gamma parameter controls the distance of influence of a single training

point. If we have a high gamma value, the points need to be tight to one

another in order to be considered in the same class. With a low gamma value,

the points don’t need to be close to each other in order to be regarded within

09984930963285GRA 19703

21

the same class (Yıldırım, 2020). We needed to avoid a high gamma value since

that most likely will result in overfitting.

Kernel

There are three major kernel functions that are available for our support vector

machine model. Kernel functions are techniques used to take our data as input

and convert it into the necessary form of processing data. It is a set of

mathematical functions used in support vector machines, and it creates an

opening to manipulate the data. We decided to use the Radial Basis Function

(RBF) because it is the most generalized form of kernelization and has a strong

similarity to the gaussian distribution (Sreenivasa, 2020). Furthermore, it is

suitable for our model because gamma is a parameter that needs to be highly

considered to avoid overfitting in our data.

3.4.2 Results

In order to measure the performance of the Support Vector Machine algorithm,

we initially ran the model without any hyperparameter tuning on the validation

set. The default hyperparameter values for the SVM algorithm is C=1.0 and

gamma=” scale”. When gamma is passed with “scale” it utilizes 1/ (n_features

* X.var()) as its value (Sklearn.Svm.SVC — Scikit-Learn 0.24.2

Documentation, n.d.). With these default values, we received an accuracy score

of 0.9256, which is considered a fairly good score. In addition, recall and

precision have been calculated as shown in table 5.

Table 5 Performance score on validation dataset without tuning

Performance measure: Score:

Accuracy: 0.9256

Precision: 0.9558

Recall: 0.8936

09984930963285GRA 19703

22

After tuning the SVM hyperparameters, we received our optimal values of C =

1.0 and Gamma = 1.0. When these values were inserted into the given model,

we received an accuracy score of 0.9321, which is a small increase from the

first result. For our additional performance measure, we received the following

after utilizing the optimal hyperparameters. See table 6.

Table 6 Performance score on validation dataset with tuning

Performance measure: Score:

Accuracy: 0.9321

Precision: 0.9543

Recall: 0.9086

When running the optimized algorithm on our unseen test data, we receive

similar scores, with no indication of over/underfitting. For accuracy, the score

is 0.914 on the test dataset, which is fairly consistent with the scores from our

previous paragraphs. Below are the performance measures and a confusion

matrix for our optimized algorithm on the test dataset. See table 7 and figure 8.

Table 7 Performance score on test dataset with tuning

Performance measure: Score:

Accuracy: 0.9140

Precision: 0.9517

Recall: 0.9119

09984930963285GRA 19703

23

Figure 8 Confusion matrix on test dataset

3.5 Logistic regression

Logistic regression is a supervised machine learning classification algorithm

used to predict a given target variable, and the model is dichotomous. It is a

very common and simple machine learning algorithm that predicts P(Y=1) as a

function of X. At its core, logistic regression is driven by the logistic function,

also called the sigmoid function. It is an S-shaped curve that transforms a real

number into a value between 0 and 1 (Swaminathan, 2019).

Figure 9 Illustration of logistic regression

Figure 9 “logistic function” 2020c, by Brownlee.

09984930963285GRA 19703

24

The logistic function is given by:

 𝑓(𝑥) =
1

1 + 𝑒−(𝛽0+𝛽1𝑥)

(3.5.1)

In the given function above, the 𝑓(𝑥) signifies the probability of our predictor

variable. 𝛽𝑜 represents the linear regression intercept, while𝛽1 is the

multiplication of the regression coefficient by various values of the predictor

variable (Brownlee, 2020c).

If the output of the given function is more than 0.5, it will be classified as

“eligible”, and if the function output is less than 0.5, it will be classified as

“non-eligible”. The function works almost like a percentage calculation. If our

output is 0.80, then there is an 80 percent chance that the loanee is eligible for

the given loan. However, we are not predicting probabilities. The probability

prediction is transformed into binary values (0 or 1) (Brownlee, 2020c).

0 𝑖𝑓 𝑝(𝑛𝑜𝑛 − 𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒) < 0.5

(3.5.2)

1 𝑖𝑓 𝑝(𝑒𝑙𝑖𝑔𝑖𝑏𝑙𝑒) > 0.5

(3.5.3)

3.5.1 Hyperparameters tuning

The hyperparameters of interest in a logistic regression algorithm are C and

penalty, as illustrated in table 8. As our previous models, we are often

interested in the best combination of our hyperparameters, as they often work

in tandem.

09984930963285GRA 19703

25

Table 8 Logistical regression Hyperparameters

Hyperparameter Default

value

Search space Optimized

values

Penalty l2 l1, l2 l2

C 1.0 np.logspace(0,4,10) 7.74

Penalty

This parameter is used to specify the norm used in the penalization. l2

regularization adds an l2 penalty which is equal to the square of the magnitude

of coefficients, while all coefficients are shrunk by the same factor (L1 Penalty

and Sparsity in Logistic Regression — Scikit-Learn 0.24.2 Documentation,

n.d.).

C

The parameter C is the inverse of regularization strength in logistic regression.

It’s a control variable that preserves the strength of regularization by being

inversely positioned to the lambda regulator (Charleshsliao, 2017). In general,

regularization is adding a penalty in order to increase the scale of parameter

values to reduce overfitting. Thus, with a high value of C, the model inserts

extra weight to the training data and a lower weight to the complexity penalty.

When running our C parameter in GridSearchCV, logspace() was utilized in

order to receive numbers that were evenly spaced on a log scale.

(Sklearn.Linear_model.LogisticRegression — Scikit-Learn 0.24.2

Documentation, n.d.).

Our objective when optimizing our hyperparameters is minimizing the error

between our predicted variable compared to what the dependent variable

actually is.

09984930963285GRA 19703

26

3.5.2 Results

When investigating the results for the logistic regression model, we first ran

our validation data without any optimization. The default values for the logistic

regression model are C =1.0 and penalty =l2, which can be found in table 8

above. Without hyperparameter tuning, our model yielded an accuracy of

0.9058 on the validation set, which is considered a respectable and reliable

score.

Table 9 Performance scores on validation dataset without tuning

Performance measure: Score:

Accuracy: 0.9058

Precision: 0.9202

Recall: 0.8894

After running GridSearchCV on the logistic regression algorithm, we received

optimal values of C = 7.742, and penalty = l2, as seen in table 8. After we

inserted the optimal values into the logistic regression algorithm on the

validation dataset, we received an accuracy of 0.9057 as seen in table 10. This

is actually a minimal decrease from the default values, but it's insignificant

because it's extremely small.

Table 10 Performance score on validation dataset with tuning

Performance measure: Score:

Accuracy: 0.9057

Precision: 0.9200

Recall: 0.8894

09984930963285GRA 19703

27

When running the optimized model on our test data, we received a similar

score of 0.9026, while precision received a score of 0.9492 and recall with a

score of 0.8956. See table 11.

Table 11 Performance score on test dataset

Performance measure: Score:

Accuracy: 0.9026

Precision: 0.9492

Recall: 0.8956

There were a couple of hyperparameter values that yielded the exact same

results when tuning the training data as shown in the table below (Table 12).

Logistic regression is a very robust algorithm. It can map many types of data in

various forms. Therefore, tuning a logistic regression model isn't necessarily

crucial for model performance and accuracy. The performance of the models

stays fairly level, regardless of the hyperparameter values.

Table 12 Result from the GridSearchCV

C Penalty Params Mean test score Std test score

7.74264 l2 “C: 7.74264”,

“Penalty: l2”

0.90253 0.00479

21.5443 l2 “C: 21.5443”,

“Penalty: l2”

0.90253 0.00479

59.9484 l2 “C: 59.9484”,

“Penalty: l2”

0.90253 0.00479

The confusion matrix below represents the validity of our model. We can

compare these results as if we ran the model in a real-life situation since this is

retrieved from unseen test data. As shown in figure 10, this is a confusion

matrix that has a good score. However, with a bit higher accuracy, we could

09984930963285GRA 19703

28

steer clear of some false negatives and false positives in order to avoid granting

a loan to someone who isn't able to repay or denying a loan to a customer who

should, in theory, be able to repay.

Figure 10 Confusion matrix from test dataset

3.6 K-Nearest Neighbors

The k-nearest neighbors (KNN) are a non-parametric algorithm that can be

used to solve classification and regression problems. Non-parametric

algorithms do not make any strong assumptions about the form of the mapping

function, which makes the algorithm free to learn any functional form from the

training data (Brownlee, 2020d). This is helpful in practice since most real-

world data do not follow any mathematical theoretical assumptions.

Figure 11 Illustration on how the KNN algorithm work

Figure 11. « KNN Classification using Scikit-learn», 2018, by Navlani, A.

09984930963285GRA 19703

29

The k in the KNN algorithm, is the number of nearest neighbors, which are the

main deciding factor in the algorithm. We will provide an example to

understand the algorithm better. Suppose k=3 and P1 is the label that needs to

be predicted, as shown in figure 11. First, the algorithm finds the nearest k

neighbors to P1. This is generally done by calculating the Euclidean distance,

which calculates the distance from P1 to all classified data points (Navlani,

2018).

 (𝑥, 𝑦) = √∑(𝑥𝑖

𝑛

𝑖=1

− 𝑦𝑖)2 (3.6.1)

Next, the algorithm classifies P1 by majority votes of its k neighbors. Each

neighbor votes for their class, and the class with the most votes predicts P1

(Navlani, 2018). In our examples, P1 will be classified as Class B since class B

has the most votes.

3.6.1 Hyperparameters tuning

The KNN algorithm has many different hyperparameters, such as the number

of neighbors, different weights on data points, and different metrics that can be

used for calculating the distance to each data point. We will review the number

of neighbors since this hyperparameter is the main deciding factor. First, we

did a GridSearchCV where we tested the accuracy of 1 to 40 neighbors. The

GridSearchCV computed the optimal number of neighbors to be 1 with an

accuracy of 1,00, which overfits the data. Then, to prevent the model from

overfitting, we used the validation dataset to visualize the accuracy score of the

training and validation dataset for different neighbors, as we see in figure 12.

09984930963285GRA 19703

30

Figure 12 Overfitting using small number of neighbors

From figure 12, we see that the training dataset overfits when the numbers of

neighbors are small, which means that the model learns the detail and noise in

the training data to the extent that it negatively impacts the model on a new

dataset (Brownlee, 2019b). When the number of neighbors is high, the model

underfits, which means that the model cannot generalize the datasets enough

(Brownlee, 2019b). This leads to bad performance on the data. We choose the

smallest number of neighbors in our model to be seven since the relative

accuracy between training and validation does not significantly lower if the

number of neighbors increases. Next, we did a grid search from 7 to 40

neighbors, where the best parameter was seven neighbors, as we see in table

13.

Table 13 KNN Hyperparameters

Hyperparameter Default Search

Space

Optimal

values

n_neighbors 5 7 to 40 7

09984930963285GRA 19703

31

3.6.2 Results

To measure the performance of the KNN algorithm, we first tested the KNN

algorithm on the validation dataset with no hyperparameter tuning. As

displayed in table 13, the default number of neighbors is five, which gives an

accuracy score of 0.9177. In addition, we calculate the precision and recall

score. The precision score was 0.9678, and the recall score was 0.8653, as

shown in table 14.

Table 14 Performance score on validation dataset without tuning

Performance measure: Score:

Accuracy: 0.9177

Precision: 0.9678

Recall: 0.8653

After running the GridSearchCV on the KNN model, we received the optimal

number of neighbors to be 7, as shown in table 13. As a result, the KNN model

had an accuracy of 0.9149 on the validation dataset, a precision score 0.9656,

and a recall score of 0.8616. Thus, the model had a marginal lower accuracy,

recall, and precision score, which can result from the model becoming more

generalized.

Table 15 Performance score on validation dataset with tuning

Performance measure: Score:

Accuracy: 0.9149

Precision: 0.9656

Recall: 0.8616

09984930963285GRA 19703

32

The optimized model had an accuracy of 0.8972, a precision score of 0.969,

and a recall score of 0.8671 on the test data set, as displayed in table 16. Figure

13 displays the confusion matrix on the optimized model on the test dataset.

Table 16 Performance score on test dataset

Performance measure: Score:

Accuracy: 0.8972

Precision: 0.9690

Recall: 0.8671

Figure 13 Confusion matrix test dataset

3.7 Decision Tree Classifier

The Decision Tree Classifier algorithm creates a flowchart structured as a tree

where the nodes represent the features, the branches show the decision rules,

and the leaves display the outcome (Navlani, 2018). The topmost node of the

tree is the root node, which usually is the node that maximizes the reduction in

cross-entropy. Afterward, finding the best split combination, the data are

partitioned into two new nodes, and the splitting process repeats on each of the

two new nodes. This method repeats on each subset in a recursive manner

09984930963285GRA 19703

33

called recursive partitioning (Navlani, 2018). The recursive partitioning

completes when the data within the subsets are sufficiently homogenous or

another stopping criterion has been met. Figure 14 illustrated a decision tree

with only one split. The leaf (child) nodes are "purer" than the root

node(parent) since the share of each type is more dissimilar in the leaf node

than in the root node, also called more homogenous (Provost & Fawcett, 2015,

p. 53)

Figure 14 Illustrated a decision tree with one split

Figure 14. From «Splitting the “write-off” sample into two segments, based on

splitting the Balance attribute (account balance) at 50K» by Provost. F., &

Fawcett. T, 2015, Data Science for Business, s.54, United States: O'Reilly

Media.

Several splitting rules can be used to partition the dataset. One typical method

is information gain (IG) based on a purity measure called entropy. Entropy is

defined as (Provost & Fawcett, 2015, p. 52):

𝑒𝑛𝑡𝑟𝑜𝑝𝑦 = −𝑝1 𝑙𝑜𝑔 𝑙𝑜𝑔 (𝑝1)
− 𝑝2𝑙𝑜𝑔(𝑝2) − ⋯

(3.7.1)

09984930963285GRA 19703

34

Each 𝑝𝑖 is the fraction of examples in a given class. Entropy calculates the

disorder of the set, ranging from minimum disorder (the set has members all

with the same, single property) to one at maximal disorder (the properties are

equally mixed) (Provost & Fawcett, 2015, p. 53). Disorder resembles how

impure the set is. Information gain measures the change in entropy due to any

amount of new information being added and are calculated by (Provost &

Fawcett, 2015, p. 52):

𝐼𝐺(𝑝𝑎𝑟𝑒𝑛𝑡, 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛) = 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑝𝑎𝑟𝑒𝑛𝑡) −
[𝑝(𝑐1) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐1) +

𝑝(𝑐2) × 𝑒𝑛𝑡𝑟𝑜𝑝𝑦(𝑐2) + ⋯]

(3.7.2)

3.7.1 Pruning

The extensive partitioning will frequently lead to a big decision tree that will

produce good predictions on the training set but weak predictions on the test

set because of the decision tree's complexity. As a result, the algorithm overfits

the training data, which could be improved with smaller tree size. Pruning is a

technique that involves growing a tree to its full size before "cutting" off

branches, ultimately reducing the tree's size by removing sections of the tree

that are non-critical and redundant to classify instances (Hoare, 2020). This

process leads to a reduction in variance at the cost of some extra bias.

3.7.2 Hyperparameters tuning

Table 17 shows the different hyperparameters we tune in our decision tree

algorithm. The search space represents the different values tested, and optimal

values show the result from the grid search. The criterion parameter chooses

which function to measure the quality of a split. Ccp_alpha is the parameter

used for pruning, as explained in the section above. Furthermore, max_depth,

min_samples_split, and min_samples_leaf is all stopping criteria. Max_depth

specifies the maximum depth of the tree, min_samples_split is the minimal

number of samples required to split a parent node, and min_samples_leaf is the

minimal samples needed to be at a child (leaf) node (Mithrakumar, 2019).

09984930963285GRA 19703

35

Table 17 Decision tree Hyperparameters

Hyperparameter Default Search Space Optimal values

Criterion Gini Gini or Entropy Gini

ccp_alpha 0.0 0 to 0.1 0.00007

max_depth None 1 to 10 9

min_samples_split 2 1 to 10 2

min_samples_leaf 1 1 to 5 1

3.7.3 Results

We tested the algorithm with no hyperparameter tuning to measure the

performance of the decision tree algorithm on the validation data set. The

default parameters are shown in table 17. With these hyperparameters, the

model gives an accuracy score of 0.8972, a precision score of 0.8986, and a

recall score of 0.8971.

Table 18 Performance score on validation dataset without tuning

Performance measure: Score:

Accuracy: 0.8972

Precision: 0.8986

Recall: 0.8971

09984930963285GRA 19703

36

Table 18 displays the optimized hyperparameter from the GridSearchCV. As a

result, the model had an accuracy of 0.914, a precision score of 0.9472, and a

recall score of 0.8781. Thus, tuning of the hyperparameters increases the

accuracy and precision score of the model, which boosts the model's

performance.

Table 19 Performance score on validation dataset with tuning

Performance measure: Score:

Accuracy: 0.9140

Precision: 0.9472

Recall: 0.8781

The optimized model had an accuracy of 0.9006, a precision score of 0.9668,

and a recall score of 0.8746 on the test data set. Thus, the model has nearly as

good performance scores as the validation dataset, which indicates that the

model has a good generalization. Below is the confusion matrix on the

optimized model on the test dataset.

Table 20 Performance score on test dataset

Performance measure: Score:

Accuracy: 0.9006

Precision: 0.9668

Recall: 0.8746

09984930963285GRA 19703

37

Figure 15 Confusion matrix test dataset

3.8 Stochastic gradient descent

Stochastic gradient descent is an optimization algorithm used to find the

parameters values that minimize loss function. The algorithm has many

different loss functions, such as sum of squared residuals, mean squared error,

hinge loss, and cross-entropy function:

𝑤𝑡+1 = 𝑤𝑡 − 𝑛𝑡𝑔𝑡(𝑤𝑡)
 𝑤ℎ𝑒𝑟𝑒 𝑔𝑡(𝑤𝑡) = 𝜆𝑤𝑡 + 𝜄′(𝑤𝑡

𝑇𝑥𝑡 , 𝑦𝑡)

(3.8.1.1)

The algorithm starts with a randomly chosen point on the vector 𝑤𝑡 (Krzysztof

& Paweł, 2015). Next, it advances to the next point in the direction of the

fastest decrease of the loss function 𝑛𝑡𝑔𝑡(𝑤𝑡), where 𝜄′ is the gradient of the

loss function and 𝑛𝑡 is the learning rate that determines how large the moving

step will be (Krzysztof & Paweł, 2015). The moving step is usually big when

the point is far away from the local minimum and small when it comes close to

the local minimum, as shown in figure 16 (Stojiljković, 2021). The algorithm

stops when the moving step will be close to 0 or the maximum number of steps

is reached.

09984930963285GRA 19703

38

Figure 16 Illustrates the movement of the gradient through the iterations

 Figure 16. «Stochastic Gradient Descent », 2006, by Stojiljković, M

3.8.1 Hyperparameters tuning

In the stochastic gradient descent, we mainly analyze the loss, penalty, and

alpha hyperparameter since these are the main deciding parameters. The loss

parameter determines which loss function the algorithm will have. The penalty

is the regularization parameter added to the loss function that reduces the

model parameters towards the zero vector (Stephanie, G. 2020). Alpha is a

constant that multiplies with the penalty parameter. The higher the value of

alpha, the stronger the regularization. Alpha is also used to compute the

learning rate (sklearn, n.d.), as we see in equation 3.8.1.2.

 𝑛𝑡 =
1

𝛼(𝑡 + 𝑡0)

(3.8.1.2)

GridSearchCV computed that the best loss function is hinge loss with a penalty

of l1, limiting the size of the coefficients and the alpha to be 0.01, as we see in

table 21. When the hinge loss is used as the loss function, it gives a linear

support vector machine.

09984930963285GRA 19703

39

Table 21 SGD Hyperparameters

Hyperparameter Default Search Space Optimal values

Loss Hinge Hinge,

Modified_huber, Log,

Squared_hinge,

Perceptron

Hinge

Alpha 0.0001 0.0001, 0.001, 0.01,

0.1, 1, 10, 100

0.01

Penalty None None, l1, l2, Elasticnet l1

3.8.2 Results

We tested the algorithm with no hyperparameter tuning to measure the

performance of the Stochastic gradient descent algorithm on the validation data

set. With the default parameter values shown in table 21, the model gives an

accuracy score of 0.9038, a precision score of 0.9246, and a recall score of

0.8808.

Table 22 Performance score on validation dataset without tuning

Performance measure: Score:

Accuracy: 0.9038

Precision: 0.9246

Recall: 0.8808

09984930963285GRA 19703

40

After running the GridSearchCV on the SGD model, we received the optimal

values for the hyperparameters, as shown in table 21. As a result, the SGD

model had an accuracy of 0.9063 on the validation dataset, a precision score

0.9398, and a recall score of 0.8695. Thus, the model had a marginal higher

accuracy and precision score. In addition, the model had a slight decrease in

recall score.

Table 23 Performance score on validation dataset with tuning

Performance measure: Score:

Accuracy: 0.9063

Precision: 0.9398

Recall: 0.8695

The optimized model had an accuracy of 0.8978, a precision score of 0.9627,

and a recall score of 0.8741 on the test data set, as displayed in table 24. Thus,

the model has almost as good performance scores as the validation dataset,

which indicates that the model has a good generalization. Below is the

confusion matrix on the optimized model on the test dataset.

Table 24 Performance score on test dataset

Performance measure: Score:

Accuracy: 0.8978

Precision: 0.9627

Recall: 0.8740

09984930963285GRA 19703

41

Figure 17 Confusion matrix on test dataset

4 Comparing Results and Additional

Findings

In this section, a comparison of the performance and results of our various

machine learning algorithms will take place. In table 25, we can see the given

scores that were received from the baseline models on the validation set, scores

on the validation set after tuning the model, and finally, the optimized model

utilized on the unseen test data.

Table 25 Accuracy from the algorithms

Algorithm: Accuracy:

before

parameter

tuning

Accuracy: after

parameter

tuning

Accuracy: on

testset

SVM 0.925 0.932 0.914

Logistic

Regression

0.906 0.906 0.903

KNN 0.917 0.914 0.897

Decision Tree 0.897 0.914 0.899

Stochastic

gradient descent

0.903 0.906

0.898

09984930963285GRA 19703

42

The Support Vector Machine model performed very well on all aspects of our

data, such as accuracy, precision and recall. It resulted in an accuracy of 0.914

on the unseen test data, with no signs of over-fitting. The benefit of our

Support Vector Machine is that it effectively utilized its advantages. There is a

clear margin of separation between our classes. In combination with the “rbf”

kernel, it performed well on unseen data. On the other hand, a Support Vector

Machine does not perform extremely well on very large datasets. In our case,

the dataset is not particularly large which suits the Support Vector Machine

algorithm. In addition, there isn’t a lot of noise in the dataset, with few

overlapping features that help the support vector machine algorithm perform

on top of its potential (K, 2020). Finally, a general disadvantage for support

vector machines is that it doesn’t predict probabilities, since the algorithm

places our data points below or above the classifying hyperplane (K, 2020),

which is mentioned in the more detailed section about Support Vector

Machines (Chapter 3.4).

Our second best model is the logistic regression model. We received good

overall scores for both the validation data and the unseen test data. However,

the hyperparameter tuning didn’t excel the model in any noteworthy direction,

with only a small increase in accuracy. Compared to our best model, the

support vector machine, the logistic regression algorithm does, in fact,

calculate predicted probability. In short, it learns the linear relationships that

occur in the dataset while introducing non-linearity in the form of the sigmoid

function (GeeksforGeeks, 2020a). In general, logistic regression is easy to

implement, interpret, and can train efficiently and effectively on all kinds of

data. In theory, a logistic regression algorithm does not require any

hyperparameter tuning, as we can see from our results. Something we need to

keep in mind when considering implementing a logistic regression model in

Machine Learning is that the algorithm assumes linearity between our

prediction variable and or independent variables (GeeksforGeeks, 2020a). In

addition, even though a logistic regression model rarely overfits, it has a

tendency to overfit in extremely high dimensional space.

09984930963285GRA 19703

43

The remaining three algorithms yielded decent results, however, based on the

results we would choose either logistic regression or a support vector machine

for this type of classification problem. Decision tree, even though it requires

some fine-tuning in order to perform relatively well with an accuracy on the

unseen test data of 0.902. KNN received an accuracy on the test data of 0.897,

see our k-nearest-neighbors section (Chapter 3.6) for more information on

results and reasons. In addition, we wanted to include something different

other than supervised learning in order to see how it affected the results.

Stochastic gradient descent is an optimization algorithm and received an

accuracy on the test data of 0.897, which is considered a decent score. For

more information, see the method section about SGD (Chapter 3.8).

5 Discussion and Conclusion

In the following chapter, we will discuss related work and research, answer our

thesis question, the impact on the banking industry and further research.

5.1 Related Work

Hand and Henley analyzed the different credit scoring methodologies used in

the financial industry. The techniques they list as industry standards are

logistical regression, decision tree, linear regression, and discriminant analysis

(Hand & Henley, 1997). Along with k-nearest neighbors and neural networks.

Turiel and Aste provide an extensive and in-depth look at loan acceptance and

default prediction with machine learning (Turiel & Aste, 2020). They used

logistic regression, support vector machine algorithms, and deep neural

networks. The study concluded that machine learning could improve current

credit risk models, reducing the default risk of issued loans by as much as

70%. The best default prediction algorithm was deep neural networks, and for

loan approval was logistic regression best.

09984930963285GRA 19703

44

Furthermore, Tepy and Polena investigated which classification algorithms

perform the best in peer-to-peer lending (Tepy & Polena 2020). They tested ten

different classification algorithms and ranked them on six different

performance measures. The best overall performer was logistic regression.

Other authors also found this, such as Peng, who analyzed the credit risk and

fraud risk in six different countries using eight classification methods (Peng, et

al, 2011).

Table 26 illustrates research relevant to the theses with their representative

performance accuracy for the different machine learning algorithms. As the

table shows, Support Vector Machine and Logistic regression frequently

perform relatively well, as our research also achieves.

The relative differences in predictive power between the algorithms may be

overestimated, according to Hand (Hand, 2006). This could be due to the

"reject inference" problem. One algorithm that performs well on a dataset does

not naturally perform better than other classifiers on through-the-door

population. Additionally, Hand claims that the classifier's goal should be to

maximize profit. Therefore, if a confusion matrix is utilized as an evaluation

measure, the results may differ from those obtained using the ROC AUC

metric.

09984930963285GRA 19703

45

Table 26 Accuracy comparison of previous research

 Baesens

(2003)

Peng

et al

(2011)

Bao

et al

2019

Nabende

&

Senfuma,

2019

Vieira

et al

(2019)

Fan

2020

Tepy

et al

(2020)

SVM 0.797 0.83 0.914 0.924 0.774 0.788

Decision

trees

0.77 0.817 0.842 0.888 0.765

K-NN 0.782 0.802 0.904 0.932 0.765

Logistic

regression

0.793 0.853 0.855 0.903 0.921 0.701 0.791

SGD 0.921

5.2 Summary

Our research question is as follows:

” For a chosen set of machine learning algorithms, which algorithm

demonstrates the best performance in loan eligibility classification prediction

with regards to several model evaluation metrics?”

As mentioned in chapter 4, Support Vector Machine and Logistic Regression

yielded the best results in terms of accuracy, precision, and recall for our data.

Support Vector Machine has a better potential to be accurate but also has its

limitations. On the other hand, Logistic Regression is very user-friendly, easy

to implement and interpret, and does not require any specific tuning.

09984930963285GRA 19703

46

We would argue that our results are quite similar to other related work within

the same topic. According to Turiel and Aste (Turiel & Aste, 2020), and Tepy

and Polena (Tepy & Polena 2020) their best loan approval prediction model

was Logistic Regression based on its excellent characteristics as a binary

classifier. When investigating table 26, where we illustrate the accuracy scores

of the mentioned related work, we can see a strong and clear consistency that

Support Vector Machine and Logistic Regression performs best, compared to

the other algorithms.

Our accuracies, precisions and recalls generally had very good measures

throughout this study. When compared to the related studies, we can see that

our model performance generally outperforms the other scores. This doesn't

necessarily tell us that our models are better, with more accurate tuning and

testing. It might boil down to the differences within each dataset, or that we

utilize different techniques when it comes to pre-processing, tuning, and

testing. Every performance measure is relative to the data available, baseline

model, and tuning techniques. In conclusion, we would argue that the logistic

regression model is overall best in this specific situation because of its

flexibility and user-friendliness. A Support Vector Machine can outperform the

logistic regression algorithm, but it requires more work as well.

5.2 Impact on the banking industry

The implementation of machine learning algorithms regarding loan eligibility

can have a significant effect on the banking industry. The algorithms can

reduce the staff of loan officers for banks, which lower their cost. Many

countries such as the US, Singapore, and China have already started using AI

to determine creditworthiness and streamline the loan process (Faggella, 2020),

which increases the competition in the banking industry. Furthermore, the

algorithms can help banking institutions reduce their risk. With more

personalized loans, the business and clients can get loan approvals based on

their whole financial and personal situation, not just the standard loan-to-value

ratio and/or debt-to-income ratio, which will reduce loan defaults. For

09984930963285GRA 19703

47

example, Amazon saves a huge amount of data on what products are sold,

customer's reviews on those products, the economic status of the businesses

which make those products, and the likely future demand for these products.

This information uses Amazon machine learning models to predict which

companies they should offer loans to (Faggella, 2020).

5.3 Further research

The research presented in this thesis could serve as a good starting place for

further investigation into loan eligibility. A deeper analysis of the variables

used in the models as well as creating additional variables can improve the

prediction of the models. Furthermore, other models could be added, such as

neural network algorithms, which have proven good performance in default

prediction. However, the data accessible in this thesis has some limitations

regarding the number of years covered by the data. In addition, customers'

behavior may influence the results of this research since customers in a

specific location could have different spending habits than customers in other

locations. Another approach that can be applied is if there's data available for

more extended periods and broader geography of clients, it would be

interesting to implement macroeconomic variables, leading to new insights

into the factors that influence loan eligibility and which machine learning

methods are best for this problem.

Furthermore, it would be interesting to research which performance metrics are

the most helpful for this type of issue. A cost-sensitive classification model is

another option for implementation, Where the model gives different costs to

misclassifying loan approvals. For example, the model penalizes incorrectly

classifying a loan acceptance higher than incorrectly classifying a loan

rejection. It would also be interesting to make the cost of misclassifying loans

from clients with higher credit ratings more expensive than loans from lower

ratings because customers with higher credit ratings usually take bigger loans

and are riskier for the bank. This implementation could lower the overall risk

and possibly increase the models' performance. Moreover, it would be

09984930963285GRA 19703

48

interesting to analyze which features are the most important when it comes to

predicting loan approvals.

09984930963285GRA 19703

49

6 Bibliography

Ruud, M. & Boen, H. (2021, June 28). Loan-Eligiblity-Prediction. GitHub.

https://github.com/MikkeljRuud/Loan-Eligiblity-Prediction

Brownlee, J. (2019, August 12). How Machine Learning Algorithms Work

(they learn a mapping of input to output). Machine Learning

Mastery.https://machinelearningmastery.com/how-machine-learning-

algorithms-work/

IBM. (2021, May 7). Supervised Learning. www.Ibm.com.

https://www.ibm.com/cloud/learn/supervised-learning

Krzysztof, S., & Paweł, D. (2015, September 20). Stochastic Gradient Descent

with Barzilai–Borwein update step for SVM. ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S0020025515002467

Stojiljković, M. (2021, January 27). Stochastic Gradient Descent Algorithm

With Python and NumPy. Realpython. https://realpython.com/gradient-

descent-algorithm-python/

Stojiljković, M. (2021b, January 27). Stochastic Gradient Descent Algorithm

With Python and NumPy [Photo]. Realpython.

https://realpython.com/gradient-descent-algorithm-python/

09984930963285GRA 19703

https://github.com/MikkeljRuud/Loan-Eligiblity-Prediction
https://machinelearningmastery.com/how-machine-learning-algorithms-work/
https://machinelearningmastery.com/how-machine-learning-algorithms-work/
https://www.ibm.com/cloud/learn/supervised-learning
https://www.sciencedirect.com/science/article/abs/pii/S0020025515002467
https://www.sciencedirect.com/science/article/abs/pii/S0020025515002467
https://www.sciencedirect.com/science/article/abs/pii/S0020025515002467
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/
https://realpython.com/gradient-descent-algorithm-python/

50

Stephanie, G. (2020, July 7). Regularization: Simple Definition, L1 & L2

Penalties. Statistics How To. https://www.statisticshowto.com/regularization/

sklearn. (n.d.). sklearn.linear_model.SGDClassifier — scikit-learn 0.24.2

documentation. Scikit-Learn. Retrieved June 26, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html

Navlani, A. (2018, December 28). Decision Tree Classification in Python.

Datacamp. https://www.datacamp.com/community/tutorials/decision-tree-

classification-python

Navlani, A. (2018, August 2). KNN Classification using Scikit-learn.

Datacamp. https://www.datacamp.com/community/tutorials/k-nearest-

neighbor-classification-scikit-

learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroup

id=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_n

etwork=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud

-299261629574:dsa-

429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gcli

d=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5

HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE

Navlani, A. (2018). KNN Classification using Scikit-learn [Photo].

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-

classification-scikit-

learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroup

id=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_n

etwork=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud

-299261629574:dsa-

09984930963285GRA 19703

https://www.statisticshowto.com/regularization/
https://www.statisticshowto.com/regularization/
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.SGDClassifier.html
https://www.datacamp.com/community/tutorials/decision-tree-classification-python
https://www.datacamp.com/community/tutorials/decision-tree-classification-python
https://www.datacamp.com/community/tutorials/decision-tree-classification-python
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE

51

429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gcli

d=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5

HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE

Brownlee, J. (2020d, August 15). Parametric and Nonparametric Machine

Learning Algorithms. Machine Learning Mastery.

https://machinelearningmastery.com/parametric-and-nonparametric-machine-

learning-algorithms/

Brownlee, J. (2019b, August 12b). Overfitting and Underfitting With Machine

Learning Algorithms. Machine Learning Mastery.

https://machinelearningmastery.com/overfitting-and-underfitting-with-

machine-learning-algorithms/

Provost, F., & Fawcett, T. (2015). Data Science for Business. United States:

O'Reilly Media.

Hoare, J. (2020, November 19). Machine Learning: Pruning Decision Trees.

Displayr. https://www.displayr.com/machine-learning-pruning-decision-trees/

Mithrakumar, M. (2019, November 12). How to tune a Decision Tree? -

Towards Data Science. Medium. https://towardsdatascience.com/how-to-tune-

a-decision-tree-f03721801680

SAS. (n.d.). Predictive Analytics: What it is and why it matters. Retrieved June

26, 2021, from https://www.sas.com/en_us/insights/analytics/predictive-

analytics.html

09984930963285GRA 19703

https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://www.datacamp.com/community/tutorials/k-nearest-neighbor-classification-scikit-learn?utm_source=adwords_ppc&utm_campaignid=898687156&utm_adgroupid=48947256715&utm_device=c&utm_keyword=&utm_matchtype=b&utm_network=g&utm_adpostion=&utm_creative=229765585183&utm_targetid=aud-299261629574:dsa-429603003980&utm_loc_interest_ms=&utm_loc_physical_ms=9047324&gclid=CjwKCAjwtJ2FBhAuEiwAIKu19tq7P3si5w30q7pGz2NEJS4FQdtW8_9B5HmcvZMZWZIgQuLkToeMgBoCDcsQAvD_BwE
https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
https://machinelearningmastery.com/parametric-and-nonparametric-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://machinelearningmastery.com/overfitting-and-underfitting-with-machine-learning-algorithms/
https://www.displayr.com/machine-learning-pruning-decision-trees/
https://www.displayr.com/machine-learning-pruning-decision-trees/
https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680
https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680
https://towardsdatascience.com/how-to-tune-a-decision-tree-f03721801680
https://www.sas.com/en_us/insights/analytics/predictive-analytics.html
https://www.sas.com/en_us/insights/analytics/predictive-analytics.html
https://www.sas.com/en_us/insights/analytics/predictive-analytics.html

52

Hope, D. (2020, November 21). How Big Data Is Changing The Nature of

Consumer Lending. SmartData Collective.

https://www.smartdatacollective.com/how-big-data-changing-nature-of-

consumer-lending/

Côrte-Real, N., Ruivo, P., & Oliveira, T. (2017, January 1). Assessing business

value of Big Data Analytics in European firms. ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S0148296316304982

Google. (n.d.). Classification: Accuracy | Machine Learning Crash Course.

Google Developers. Retrieved June 26, 2021, from

https://developers.google.com/machine-learning/crash-

course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric

%20for,predictions%20Total%20number%20of%20predictions

Teply, P., & Polena, M. (2020, January 1). Best classification algorithms in

peer-to-peer lending. ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?ca

sa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8y

QW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ

Nabende, P., & Senfuma, S. (2019). A study of machine learning models for

predicting loan status from Ugandan loan applications. Int'l Conf. Artificial

Intelligence.

https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/ICA7034.pdf

09984930963285GRA 19703

https://www.smartdatacollective.com/how-big-data-changing-nature-of-consumer-lending/
https://www.smartdatacollective.com/how-big-data-changing-nature-of-consumer-lending/
https://www.smartdatacollective.com/how-big-data-changing-nature-of-consumer-lending/
https://www.smartdatacollective.com/how-big-data-changing-nature-of-consumer-lending/
https://www.sciencedirect.com/science/article/abs/pii/S0148296316304982
https://www.sciencedirect.com/science/article/abs/pii/S0148296316304982
https://www.sciencedirect.com/science/article/abs/pii/S0148296316304982
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric%20for,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric%20for,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric%20for,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric%20for,predictions%20Total%20number%20of%20predictions
https://developers.google.com/machine-learning/crash-course/classification/accuracy#:%7E:text=Accuracy%20is%20one%20metric%20for,predictions%20Total%20number%20of%20predictions
https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?casa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8yQW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ
https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?casa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8yQW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ
https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?casa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8yQW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ
https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?casa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8yQW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ
https://www.sciencedirect.com/science/article/abs/pii/S1062940818302262?casa_token=VhZtxmVItZYAAAAA:ffhaxzcLLt634nO2mNo1vNlPnTtphMqg8yQW2ZvTxGCd8C84ingkqsnaknD2i2Px5VjYrkYgHQ
https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/ICA7034.pdf
https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/ICA7034.pdf
https://csce.ucmss.com/cr/books/2019/LFS/CSREA2019/ICA7034.pdf

53

Huilgol, P. (2021, March 9). Precision vs. Recall – An Intuitive Guide for

Every Machine Learning Person. Analytics Vidhya.

https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-

learning/

Confusion Matrix. (n.d.). [Image]. Confusion Matrix.

https://subscription.packtpub.com/book/big_data_and_business_intelligence/9

781838555078/6/ch06lvl1sec34/confusion-matrix

Faggella, D. (2020, April 3). Artificial intelligence applications for lending and

loan management. Emerj. https://emerj.com/ai-sector-overviews/artificial-

intelligence-applications-lending-loan-management/

Hand, D. J., & Henley, W. E. (1997, September 1). Royal Statistical Society

Publications. Royal Statistical Society.

https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-

985X.1997.00078.x

Baesens, B. (2003). Developing Intelligent Systems for Credit Scoring Using

Machine Learning Techniques. [Ph.D. thesis Faculteit Economische en

Toegepaste Economische Wetebnschappen, Katholieke Universiteit, Leuven].

http://www.dataminingapps.com/wp-content/uploads/2015/04/Phd-Bart-

Baesens.pdf

09984930963285GRA 19703

https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://www.analyticsvidhya.com/blog/2020/09/precision-recall-machine-learning/
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://subscription.packtpub.com/book/big_data_and_business_intelligence/9781838555078/6/ch06lvl1sec34/confusion-matrix
https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-lending-loan-management/
https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-lending-loan-management/
https://emerj.com/ai-sector-overviews/artificial-intelligence-applications-lending-loan-management/
https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-985X.1997.00078.x
https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-985X.1997.00078.x
https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-985X.1997.00078.x
https://rss.onlinelibrary.wiley.com/doi/epdf/10.1111/j.1467-985X.1997.00078.x
http://www.dataminingapps.com/wp-content/uploads/2015/04/Phd-Bart-Baesens.pdf
http://www.dataminingapps.com/wp-content/uploads/2015/04/Phd-Bart-Baesens.pdf
http://www.dataminingapps.com/wp-content/uploads/2015/04/Phd-Bart-Baesens.pdf
http://www.dataminingapps.com/wp-content/uploads/2015/04/Phd-Bart-Baesens.pdf

54

Bao, W., Lianju, N., & Yue, K. (2019, August 15). Integration of unsupervised

and supervised machine learning algorithms for credit risk assessment.

ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S0957417419301472

Fan, S. (2020, November 4). Improved ML-Based Technique for Credit Card

Scoring in Internet Financial Risk Control. Hindawi.

https://www.hindawi.com/journals/complexity/2020/8706285/

Peng, Y., Wang, G., Kou, G., & Shibc, Y. (2011, March 1). An empirical study

of classification algorithm evaluation for financial risk prediction.

ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?ca

sa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ

6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA

Turiel, J. D., & Aste, T. (2020, May 18). Peer-to-peer loan acceptance and

default prediction with artificial intelligence. Royalsocietypublishing.

https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191649

Vieira, J. R. C., Barboza, F., Sobreiro, V. A., & Kimura, H. (2019, October 1).

Machine learning models for credit analysis improvements: Predicting low-

income families’ default. ScienceDirect.

https://www.sciencedirect.com/science/article/abs/pii/S156849461930420X

09984930963285GRA 19703

https://www.sciencedirect.com/science/article/abs/pii/S0957417419301472
https://www.sciencedirect.com/science/article/abs/pii/S0957417419301472
https://www.sciencedirect.com/science/article/abs/pii/S0957417419301472
https://www.hindawi.com/journals/complexity/2020/8706285/
https://www.hindawi.com/journals/complexity/2020/8706285/
https://www.hindawi.com/journals/complexity/2020/8706285/
https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?casa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA
https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?casa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA
https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?casa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA
https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?casa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA
https://www.sciencedirect.com/science/article/abs/pii/S1568494610003054?casa_token=fwSxDfev9ukAAAAA:CnVqJxzzpuiuEhZcKMlRbxeK06uFpu80EJ6iAu0sJzlIxjqrEuhGoRNldP92jRSdw_UJ7ZXYJA
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191649
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191649
https://royalsocietypublishing.org/doi/pdf/10.1098/rsos.191649
https://www.sciencedirect.com/science/article/abs/pii/S156849461930420X
https://www.sciencedirect.com/science/article/abs/pii/S156849461930420X
https://www.sciencedirect.com/science/article/abs/pii/S156849461930420X

55

Hand, D. J. (2006, February 1). Classifier Technology and the Illusion of

Progress. Projecteuclid. https://projecteuclid.org/journals/statistical-

science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-

Progress/10.1214/088342306000000060.full

Brownlee, J. (2020, August 15). 8 Tactics to Combat Imbalanced Classes in

Your Machine Learning Dataset. Machine Learning Mastery.

https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-

your-machine-learning-dataset/

Brownlee, J. (2020b, January 14). A Gentle Introduction to Imbalanced

Classification. Machine Learning Mastery.

https://machinelearningmastery.com/what-is-imbalanced-classification/

Roy, B. (2020, April 7). All about Feature Scaling - Towards Data Science.

Medium. https://towardsdatascience.com/all-about-feature-scaling-

bcc0ad75cb35

Multicollinearity. (n.d.). Investopedia. Retrieved May 13, 2021, from

https://www.investopedia.com/terms/m/multicollinearity.asp

09984930963285GRA 19703

https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://projecteuclid.org/journals/statistical-science/volume-21/issue-1/Classifier-Technology-and-the-Illusion-of-Progress/10.1214/088342306000000060.full
https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
https://machinelearningmastery.com/tactics-to-combat-imbalanced-classes-in-your-machine-learning-dataset/
https://machinelearningmastery.com/what-is-imbalanced-classification/
https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35
https://towardsdatascience.com/all-about-feature-scaling-bcc0ad75cb35
https://www.investopedia.com/terms/m/multicollinearity.asp

56

Gupta, M. (2020, September 2). What, When and Why Feature Scaling for

Machine Learning. Medium. Retrieved March 15, from

https://medium.com/technofunnel/what-when-why-feature-scaling-for-

machine-learning-standard-minmax-scaler-49e64c510422

Bock, T. (2020, December 9). What are Variance Inflation Factors (VIFs)? |

Displayr.com. Displayr. Retrieved April 17, from

https://www.displayr.com/variance-inflation-factors-vifs/

Bank Loan Data. (2020, January 23). Kaggle.

https://www.kaggle.com/matthew2001/bank-loan-data

Mujtaba, H. (2021, June 23). Hyperparameter Tuning with GridSearchCV.

GreatLearning Blog: Free Resources What Matters to Shape Your Career!

Retrieved May 12, from https://www.mygreatlearning.com/blog/gridsearchcv/

sklearn.model_selection.GridSearchCV — scikit-learn 0.24.2 documentation.

(n.d.). Scikit-Learn.Org. Retrieved June 28, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.ht

ml

09984930963285GRA 19703

https://medium.com/technofunnel/what-when-why-feature-scaling-for-machine-learning-standard-minmax-scaler-49e64c510422
https://medium.com/technofunnel/what-when-why-feature-scaling-for-machine-learning-standard-minmax-scaler-49e64c510422
https://www.displayr.com/variance-inflation-factors-vifs/
https://www.kaggle.com/matthew2001/bank-loan-data
https://www.mygreatlearning.com/blog/gridsearchcv/
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.GridSearchCV.html

57

Yıldırım, S. (2020, June 1). Hyperparameter Tuning for Support Vector

Machines — C and Gamma Parameters. Medium.

https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-

machines-c-and-gamma-parameters-6a5097416167

Bhosale, G. (2020, July 18). Support Vector Machines (SVM). All Geek Life.

http://www.allgeeklife.com/support-vector-machines-svm/

Bhosale, G. (2020, July 18). [Image]. Support Vector Machines (SVM). All

Geek Life. http://www.allgeeklife.com/support-vector-machines-svm/

sklearn.svm.SVC — scikit-learn 0.24.2 documentation. (n.d.). Scikit-Learn.

Retrieved June 16, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.svm.SVC.html

Swaminathan, S. (2019, January 18). Logistic Regression — Detailed

Overview - Towards Data Science. Medium.

https://towardsdatascience.com/logistic-regression-detailed-overview-

46c4da4303bc

Brownlee, J. (2020c, August 15). [Image]. Logistic Regression for Machine

Learning. Machine Learning Mastery.

https://machinelearningmastery.com/logistic-regression-for-machine-learning/

09984930963285GRA 19703

https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
https://towardsdatascience.com/hyperparameter-tuning-for-support-vector-machines-c-and-gamma-parameters-6a5097416167
http://www.allgeeklife.com/support-vector-machines-svm/
http://www.allgeeklife.com/support-vector-machines-svm/
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://towardsdatascience.com/logistic-regression-detailed-overview-46c4da4303bc
https://machinelearningmastery.com/logistic-regression-for-machine-learning/

58

Brownlee, J. (2020c, August 15). Logistic Regression for Machine Learning.

Machine Learning Mastery. https://machinelearningmastery.com/logistic-

regression-for-machine-learning/

L1 Penalty and Sparsity in Logistic Regression — scikit-learn 0.24.2

documentation. (n.d.). Scikit-Learn. Retrieved May 18, 2021, from

https://scikit-

learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html

sklearn.linear_model.LogisticRegression — scikit-learn 0.24.2 documentation.

(n.d.). Scikit-Learn. Retrieved June 28, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.ht

ml

K, D. (2020, December 26). Top 4 advantages and disadvantages of Support

Vector Machine or SVM. Medium. https://dhirajkumarblog.medium.com/top-4-

advantages-and-disadvantages-of-support-vector-machine-or-svm-

a3c06a2b107

GeeksforGeeks. (2020a, September 2). Advantages and Disadvantages of

Logistic Regression. https://www.geeksforgeeks.org/advantages-and-

disadvantages-of-logistic-regression/

09984930963285GRA 19703

https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://machinelearningmastery.com/logistic-regression-for-machine-learning/
https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
https://scikit-learn.org/stable/auto_examples/linear_model/plot_logistic_l1_l2_sparsity.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegression.html
https://dhirajkumarblog.medium.com/top-4-advantages-and-disadvantages-of-support-vector-machine-or-svm-a3c06a2b107
https://dhirajkumarblog.medium.com/top-4-advantages-and-disadvantages-of-support-vector-machine-or-svm-a3c06a2b107
https://dhirajkumarblog.medium.com/top-4-advantages-and-disadvantages-of-support-vector-machine-or-svm-a3c06a2b107
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/
https://www.geeksforgeeks.org/advantages-and-disadvantages-of-logistic-regression/

59

Allison, P. (2019, November 27). When Can You Safely Ignore

Multicollinearity? | Statistical Horizons. Statistical Horizons | Statistics

Training That Makes Sense. https://statisticalhorizons.com/multicollinearity

sklearn.model_selection.train_test_split — scikit-learn 0.24.2 documentation.

(n.d.). Scikit-Learn. Retrieved June 28, 2021, from https://scikit-

learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.ht

ml

Sreenivasa, S. (2020, October 12). Radial Basis Function (RBF) Kernel: The

Go-To Kernel. Medium. https://towardsdatascience.com/radial-basis-function-

rbf-kernel-the-go-to-kernel-acf0d22c798a

Splitting Datasets With the Sklearn train_test_split Function. (2019, November

25). BitDegree. https://www.bitdegree.org/learn/train-test-split

Wikipedia contributors. (2021, April 23). Hyperparameter (machine learning).

Wikipedia. https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)

Charleshsliao, V. A. P. B. (2017, May 20). Logistic Regression in Python to

Tune Parameter C. Charles’ Hodgepodge.

https://charleshsliao.wordpress.com/2017/05/20/logistic-regression-in-python-

to-tune-parameter-c/

09984930963285GRA 19703

https://statisticalhorizons.com/multicollinearity
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://scikit-learn.org/stable/modules/generated/sklearn.model_selection.train_test_split.html
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://towardsdatascience.com/radial-basis-function-rbf-kernel-the-go-to-kernel-acf0d22c798a
https://www.bitdegree.org/learn/train-test-split
https://en.wikipedia.org/wiki/Hyperparameter_(machine_learning)
https://charleshsliao.wordpress.com/2017/05/20/logistic-regression-in-python-to-tune-parameter-c/
https://charleshsliao.wordpress.com/2017/05/20/logistic-regression-in-python-to-tune-parameter-c/

