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We test a statistical arbitrage trading strategy, pairs trading, using daily closing 
prices covering the period 2000 – 2019. Stocks are clustered using an 

unsupervised machine learning approach and cointegrated stocks from each 
cluster are then paired. The strategy does not prove to be profitable on S&P500 
stocks once adjusted for transaction costs. Conversely, the strategy appears to 

be profitable on the OSE obtaining annualized excess returns of 22% and a 
Sharpe Ratio of 0.84 after adjusting for both explicit and implicit transaction 

costs. We investigate whether a difference in the liquidity can explain why the 
strategy is more profitable on OSE, and provide evidence suggesting that pairs 

trading profits are closely related to the liquidity of the stocks traded. 
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1. Introduction and Motivation 
1.1 Background 
Modern quantitative finance and trading are often said to be dominated by 

mathematicians, statisticians, physicists, and computer engineers. In the US equity 

markets, traditional fundamental investors are believed to account for only ten 

percent of the trading volume (JP Morgan, 2019). With rapid advancements within 

data analysis and computing power in the last decades, we have seen a similar 

growth within quantitative trading, leading to new strategies and improvements to 

existing strategies. 

 

The concept of pairs trading dates back to the 1950s when Alfred Winslow Jones 

employed the idea of relative value arbitrage in the world’s first hedge fund. The 

strategy was later developed by a team of mathematicians, physicists, and data 

scientists at Morgan Stanley in the mid-1980s. The initial proprietary nature of the 

strategy, which falls under the category of statistical arbitrage strategies, made it a 

popular research topic. Several papers have been published since the early 2000s.  

 

The notion of pairs trading is fairly simple. It entails the buying and selling of two 

highly correlated securities, exploiting short-term deviations in the relative price 

between them. As the financial markets are subject to disruptive technological 

changes, we observe researchers applying more sophisticated versions of these 

trading strategies. While machine learning itself is not a new concept, literature on 

its application in statistical arbitrage trading is limited and needs to be further 

explored. We build on existing literature and employ an unsupervised clustering 

algorithm to identify stocks with similar risk characteristics suitable for pairs 

trading.  

 

While the current literature is mainly centered around the question of whether pairs 

trading is still a profitable trading strategy, we are particularly interested in how the 

strategy performs in markets with different characteristics regarding liquidity and 

size. We specifically study and compare our findings in the US and the Norwegian 

equity market, with focus on how the market liquidity affects the profitability of the 

strategy.  
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1.2 Hypothesis  
In this paper, we study the profitability of a statistical arbitrage trading strategy with 

the implementation of machine learning through empirical research. We start by 

formulating the following hypothesis: 

 

𝐻!:	𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	 
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠 
 

𝐻": 𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 
𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠 
 

We are particularly interested in how liquidity affects the returns of this strategy 

and study the performance in both the US and the Norwegian stock market as the 

two markets are quite different in terms of liquidity. Based on this, we can formulate 

the following hypothesis: 

 
𝐻!:	𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 
 
𝐻": 𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 
 

 

1.3 Contribution 
We explore the use of unsupervised machine learning in pairs trading, a field that 

is not widely researched. Further, this paper study the performance of the same pairs 

trading strategy in two markets with different characteristics. This type of analysis 

does not appear to exist within the most common literature in this field, and is usful 

to shed some light on how the strategy performs under varuous conditions, such as 

market liquidity. Finally, the use of machine learning techniques on statistical 

arbitrage in the Norwegian equity market is not something that is heavily covered 

in existing literature. This paper paper therefore helps to fill this gap of missing 

research.  
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2. Theoretical Framework 
This chapter introduces the theoretical framework that the paper builds on. We start 

by briefly covering the concept of market efficiency before introducing the 

Arbitrage Pricing Theory. Both serve an important role when discussing the concept 

of statistical arbitrage and its theoretical implications.  

 

2.1 Market Efficiency 
Financial time series are notoriously difficult to model and predict due to its 

inherent characteristics and nature. Kendall and Hill (1953) discovered, to their 

surprise, that they were unable to identify any predictable patterns in stock prices, 

leading to the conclusion that prices were as likely to go up as there were to go 

down. Researchers soon realized that these findings are evidence of a well-

functioning and efficient market (Bodie et al., 2018). If prices are determined 

rationally by investors, only new information will lead to price changes. By 

definition, new information must be impossible to predict. Stock prices are thus 

expected to follow a random walk, meaning that price changes should be random 

and unpredictable1. 

 

An efficient market is one in which prices always fully reflect all available 

information (Fama, 1970). Eugene Fama (1970) specifies three forms of efficiency: 

weak, semi-strong, and strong form efficiency. In the weak form efficiency, the 

market prices reflect all historical price information. In such environments, 

predictive tools based on the analysis of historical data would fail. Semi-strong 

form efficiency assumes that prices reflect all publicly available information, 

implying that no abnormal returns can be earned by analyzing public financial data 

and relevant news. In a strong form efficient market, prices reflect all public and 

private information, such that no entity with monopolistic information of the 

respective asset profits from that information (Fama, 1970). The inability to predict 

stock prices assumed in the Efficient Market Hypothesis (EMH) implies that active 

trading does not result in greater returns than a passive market portfolio. Statistical 

arbitrage traders who seek to profit from relative mispricings by doing a frequent 

number of trades in many securities simultaneously would only generate significant 

 
1 In reality, stock prices may actually follow a submartingale with positive expected price changes 
as compensation for time value of money and systematic risk. 
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transaction costs (TC) while failing to outperform the market. Assuming that EMH 

holds, the Capital Asset Pricing Model (CAPM) states that one should not be 

compensated for idiosyncratic risk, only systematic risk. Looking at the CAPM 

formula: 

𝔼[𝑅#] = 𝑅$ + 𝛽# ∗ (𝔼[𝑅%] − 𝑅$) (2.1) 
  
𝛽# represents the systematic risk that cannot be reduced through diversification. The 

expected returns of a security rely on the risk-free rate and the riskiness of the 

investment. Most statistical arbitrage trading strategies are market neutral, 

implying no systematic risk related to the investment and 𝛽# = 0. Thus, the CAPM 

suggests that: 

𝔼[𝑅#] = 𝑅$ (2.2) 
 
Statistical arbitrage should not be able to generate abnormal returns, i.e., returns in 

excess of what the CAPM predicts as it states that there should be no compensation 

for idiosyncratic risk. 

 

Grossman & Stiglitz (1980) introduce a framework aimed at redefining the notion 

of efficient markets, arguing that in the case where EMH holds and information is 

costly, there is no equilibrium and competitive markets break down. They 

distinguish between informed (arbitrageurs) and uninformed market participants. 

The uninformed can expend resources to become informed, but since gaining 

information is costly, they should receive some compensation. As informed 

individuals trade based on their insights, information is conveyed to the uninformed 

through the price of the traded security.  

 

Their model consists of two assets: a safe asset yielding the return 𝑅 and a risky 

asset yielding a return of 𝑢. The return 𝑢 is defined by: 

 
𝑢 = 𝜃 + 𝜖 (2.3) 

 
where both 𝜃 and 𝜖 are random variables, but 𝜃 is observable at cost 𝑐 while 𝜖 is 

not observable. The informed will be able to observe 𝜃, which is the true value of 

the risky asset, while the uninformed will only be able to observe the price of the 

asset. The informed traders will adjust their demand for the asset based on 𝜃 and 

the risky asset’s price 𝑃 while the demand of the uninformed is only subject to P. 

An equilibrium can be described by the price function: 
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𝑃&(𝜃, 𝑥) (2.4) 
 

where 𝑥 is the supply of the risky asset and 𝜆 is a given percentage of informed 

traders. They further argue that the price system reveals information to the 

uninformed but in an imperfect fashion. More specifically, the price system reveals 

the signal: 

𝑤& 	≡ 𝜃 −
𝛼𝜎'(

𝜆 (𝑥 − 𝔼(𝑥∗)) (2.5) 

 
where 𝛼 is the coefficient of absolute risk aversion. For any given 𝜃 it follows that 

the price system reveals a noisy version of the asset’s true value. An important 

implication of their theory is that if we assume the EMH holds, competitive markets 

will break down. Once 𝜎'( = 0, 𝑤& and the price of the risky asset reflects all 

existing information. As all information is observable through the price P, the 

informed traders no longer have the need to pay 𝑐 to observe 𝜃 as he will do just as 

well as the uninformed who does not pay for the information. Because all informed 

traders will share this opinion, this cannot be an equilibrium. Opposite, if the entire 

fraction is uninformed, there will be an incentive to become informed as this will 

be profitable, which does not represent an equilibrium. It follows that there will 

have to be a fraction of informed traders between 0 and 1 depending on the cost of 

information, how informative the price system is (noise), and how informative the 

information obtained by the informed is.  

 

The observation that statistical arbitrage is a widely used trading strategy where 

traders expense a significant amount to gain access to information suggests that this 

framework bears a close resemblance to the dynamics of the real world. The theory 

predicts that the market prices might not reflect all relevant information, 

specifically the type of information that is costly to obtain and privately possessed. 

This implies that for stocks whose price does not reflect all available information, 

the risk-adjusted return will be higher than that of other assets. This paper explores 

the use of machine learning in the process of identifying pairs to trade, a technique 

that may be able to extract such costly information that is not reflected in the prices. 

Given that these methods have become more prevalent in recent years, we should 

expect their ability to obtain this information to decline as time passes.  

10182321005176GRA 19703
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2.2 Arbitrage Pricing Theory 
Arbitrage occurs when an investor can earn a risk-free profit without making a net 

investment (Bodie et al., 2018). More specifically, the investor is simultaneously 

buying and selling a security, exploiting a mispricing in the market. According to 

the Law of One Price (LOP), two assets with identical cash flows should have the 

same price in the market. Arbitrageurs enforce the LOP by exploiting deviations 

from the implied market price, buying the “undervalued” security, and selling the 

“overpriced” security. The selling- and buying pressure will force the price of the 

two securities to converge until the arbitrage opportunity is eliminated. 

 

In order to exploit mispricing in traded securities, we need a framework that lets us 

identify deviations from their fair market price, thus leading to arbitrage 

opportunities. The Arbitrage Pricing Theory (APT) was developed by  Ross (1976) 

as an alternative to the CAPM. The theory introduces the idea that an asset’s 

expected return can be modeled as a linear function of several systematic risk 

factors. These factors can be economic indicators such as GDP growth and changes 

in inflation which will impact the risk of the asset, depending on the level of 

exposure to the factor and thus the expected return. An important implication is that 

any deviation from the expected price as determined by APT represents a temporary 

mispricing that will be arbitraged away by market participants such that its price is 

corrected, and the arbitrage opportunity ceases to exist. More specifically, the 

excess return of risky assets can be expressed as: 

 

𝑟# = 𝛽*,# +Q𝛽#,,𝐹, + 𝜖#

-

,."

	 (2.6) 

where: 

𝛽!,# is a constant for asset 𝑖	

𝐹, is a systematic risk factor	

𝛽#,, is the sensitivity of asset 𝑖 to factor 𝑗, called factor loading 	

𝜖# is the risky assets idiosyncratic shock with mean zero. 

 

If investors require compensation for taking certain types of risk (𝐹,), it follows that 

their expected return should be a compensation for their exposure to these risks. 

This also means that we can interpret the alpha obtained by regressing returns on 

these factors as risk-adjusted returns. Common systematic risk factors are for 
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example those proposed in the three-factor model (Fama & French, 1993), such as 

𝑟% − 𝑟$, 𝑆𝑀𝐵, and 𝐻𝑀𝐿.	𝐻𝑀𝐿 refers to the return of stocks with high book-to-

market ratios in excess of the return of stocks with low book-to-market ratios. 

Similarly, the SMB factor refers to the return of stocks with low market 

capitalization in excess of the return of stocks with high market capitalization. In 

the general case, 𝔼X𝐹,Y = 0, and we can express excess returns as: 

 

𝔼(𝑟#) = 𝛽!,# =Q𝛽#,, × 𝜆,

-

,."

 (2.7) 

 
where 𝜆, is an expression for prices of risk, i.e., the expected returns of risk factors. 

Suppose we have a factor 𝑋 such that 𝐹" = 𝑅/ − 𝔼(𝑅/) where 𝔼(𝑅/) = 𝜆/ such 

that:  

𝔼(𝑟#) = 𝛽!,# = 𝛽#,/ × 𝜆/ (2.8) 
 
When pursuing a statistical arbitrage trading strategy, stocks that tend to move 

together are traded. Therefore, it is not unreasonable to argue that these stocks have 

similar exposure to the risk factors - that is, they have the same betas. According to 

the APT, it follows from equation (2.8) that they should also have the same 𝛽! and 

hence the same expected excess return. As a pairs trading strategy entails buying 

one of the stocks and shorting the other, the expected excess returns are actually 

zero in the case that APT holds true. 

 

𝑟% − 𝑟$ is a factor representing the market risk premium and is similar to what we 

have in the traditional CAPM, which can be considered a special case of the APT 

where the only risk factor is the systematic market risk. In simple terms, we can 

express 𝐹" as:  

𝐹" = X𝑅% − 𝑅$Y − 𝔼XR0 − 𝑅$Y (2.9) 
 
Excess return can followingly be defined as: 

 
𝑟# = 𝑅# − 𝑅$ = 𝛽!,# + 𝛽# × 𝐹" + 𝜖# (2.10) 

 
Assuming that markets are efficient, 𝔼(𝐹") = 0: 

 
𝔼(𝑟#) = 𝛽!,# = 𝛽# × 𝔼X𝑅% − 𝑅$Y (2.11) 
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Again, in the event that the APT and the CAPM hold true, a statistical arbitrage 

strategy would produce zero excess returns. Another important implication of the 

APT is the assumption that idiosyncratic risk is diversifiable. This means that when 

trading a single pair, while the returns are neutral to the priced risks (𝐹,), the trader 

will be exposed to the idiosyncratic risk of the securities. If the trader instead holds 

a well-diversified portfolio of pairs, the idiosyncratic risk will be negligible 

considering the portfolio as a whole.  
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3. Existing Literature on Statistical Arbitrage 
This chapter reviews existing literature on statistical arbitrage and pairs trading. We 

briefly cover the origins of statistical arbitrage trading and its development, before 

introducing some of the main results found by researchers. Finally, the chapter 

covers research specifically concerning liquidity and how it relates to pairs trading 

profits.  

 

3.1 Statistical arbitrage  
Statistical arbitrage is believed to have been formalized as a concept at Morgan 

Stanley in the 1980s and has become a widely used strategy among banks, hedge 

funds, and proprietary trading desks. Today, Statistical Arbitrage is an umbrella 

term covering various quantitative trading strategies based on statistical and 

mathematical models, and where the trades are automatically executed by 

algorithms.  

 

In contrast to the original concept of arbitrage, statistical arbitrage does not offer 

entirely risk-free profits. As discussed in chapter 2.2, the returns from statistical 

arbitrage are directly linked to the idiosyncratic risk that remains. This means that 

it can only be thought of as an arbitrage if the pair traded is part of a well-diversified 

portfolio where the idiosyncratic risk is diversified away. A pair trade in isolation 

can, however, be very risky as one is exposed to events such as M&A activity, 

defaults, or macroeconomic events, often referred to as fundamental risk (Do & 

Faff, 2010). The most notable example in this regard is the former hedge fund Long 

Term Capital Management (LTCM) which utilized statistical arbitrage trading 

strategies and significantly leveraged a few correlated bets. Following Russia’s 

default on foreign debt in 1998, the fund nearly collapsed and stood to set off a 

global financial crisis. LTCM was eventually bailed out by some of the largest Wall 

Street banks and shut down in 2000.  

 

The concept of statistical arbitrage opportunities was first introduced by 

Bondarenko (2003) and defined as “a zero-cost trading strategy for which (i) the 

expected payoff is positive, and (ii) the conditional expected payoff in each final 

state of the economy is nonnegative”. In other words, a statistical arbitrage 

opportunity can result in a negative payoff; however, the average expected payoff 
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in each final state must be nonnegative. According to Becker (2012), the concept 

often refers to “highly technical short-term mean reversion strategies involving a 

large number of securities, very short holding periods and substantial 

computational, trading, and IT infrastructure”. The strategies are usually market 

neutral with a zero beta to the market and often involve some trading signal based 

on a mean-reverting relationship between securities. More formally, statistical 

arbitrage strategies attempt to exploit some mispricing where price relationships are 

true in expectations in the long run (Becker, 2012):   

 
𝔼(𝑋 × 𝑁) > 0 (3.1) 

 
where 𝑋 denotes the payoff matrix, and 𝑁 denotes the quantities involved. The 

average payoff will also have to be nonnegative in the final state: 

 

Q(𝑋# × 𝑁#) ≥ 0
1

#.!

	 (3.2) 

 
The is the time-dimension of statistical arbitrage trading. The idiosyncratic risk can 

also be diversified away by doing countless trades, meaning that equation (3.2) 

should always hold as the number of trades (𝑁#) tends to infinity.  

 

After nearly two decades of high profits, returns have almost diminished for 

standard statistical arbitrage strategies (Pole, 2007). This does not come as a 

surprise considering the rapid technological development and increased computing 

power seen during the same period. This does, however, not imply that no statistical 

arbitrage strategy is unprofitable today, but rather that the strategies and underlying 

algorithms have become more complex as the technology needed has become 

available to a broader audience. This observed development can be interpreted in 

light of the framework of Grossman and Stiglitz (1980), where they distinguish 

between informed and uninformed market participants. The informed has spent 

money to gather information, which is costly, and profits from trading with the 

uninformed. As technology develops, statistical arbitrage strategies become 

available to a larger population (i.e., information is cheaper, and more people can 

access it). Thus, statistical arbitrage opportunities should have been diminishing 

over time.  
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3.2 Pairs trading 
Pairs Trading is likely the most widely used statistical arbitrage trading strategy and 

is said to be the predecessor of statistical arbitrage trading strategies. The concept 

of pairs trading itself is relatively simple: find two securities that historically have 

been highly correlated and monitor the price difference (spread) between them. If 

the spread widens, you short the “winner” and buy the “loser” in anticipation that 

the spread converges and thus make a profit. An attractive feature of the strategy is 

the market neutrality, meaning that profits can be made regardless of how the 

market moves. While this concept has been around for a long time, it was Nunzio 

Tartaglia, a quant at Morgan Stanley, that put together a team of highly skilled 

mathematicians, physicists, and computer scientists in the search for profitable 

quantitative trading strategies based purely on algorithms with minimal human 

intervention (Gatev et al., 2006). Among these was a version of the pairs trading 

strategy, which proved to be highly profitable for the group. 

 

While the strategy itself is relatively simple, extensive research has been done on 

how these pairs should be selected and how the trading signals should be 

constructed. While Gatev et al. (2006) introduced a distance approach based on 

their interaction with traders, the cointegration approach has also become popular 

among researchers. A large portion of the research on the subject concerns pairs 

trading with single stocks, but the concept is also applied to other asset classes such 

as commodities, fixed income securities, ETFs, cryptocurrencies, and derivatives. 

Similarly, the strategy can also be used to trade on temporary mispricings between 

indices and a basket of index constituents.  

 

3.3 Literature on pairs trading  
The widely cited study from Gatev et al. (1999;2006) use daily closing prices in the 

period 1962 – 2002 and find that pairs trading in liquid US stocks has delivered 

annualized excess returns of 11% for the top 5-20 pairs portfolios when accounting 

for trading costs and fees. The authors apply a distance approach to identify pairs 

that tend to be highly correlated. They use a 12-month formation period where pairs 

are matched followed by 6 months of trading - a setup that appears to be the norm 

in much of the research on this topic. Their trading rule builds on a relatively simple 

rule specifying that a position is opened if the spread between a pair of securities 
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diverges by more than two standard deviations from its historical mean. Gatev et 

al. (2006) also implement a one-day waiting period form receiving theiur trading 

signal to actually trading to account for the implied bid-ask spread . By opening and 

closing a position the day after they are signaled to trade, the average monthly 

excess returns drop by roughly 36%, but are still positive and significant. Although 

providing robust results, they also find the strategy to be less profitable in recent 

years. One explanation could be an increased activity from hedge funds and other 

traders pursuing the strategy, however, the paper argues that the abnormal returns 

are a compensation for risk given to arbitrageurs for enforcing the “Law of One 

Price” (LOP). Findings support this statement as the raw returns have fallen but the 

risk-adjusted returns are consistent throughout the period.  

 

B. Do & Faff (2010) replicate the study of Gatev et al. (1999;2006) and find similar 

results. They extend the original sample and find that the trend of decline in 

profitability has continued in recent years. However, the authors find that higher 

hedge fund activity and increased efficiency are only partly responsible for the 

declining profits, arguing that worsening arbitrage risk accounts for as much as 70 

percent of the decline in profits. Arbitrage risks refer to fundamental risk, noise-

trader risk, and synchronization risk. Fundamental risk involves unexpected events 

affecting the individual securities and thus the spread. In contrast, noise-trader risk 

refers to traders’ behaviour that may seem irrational to other market participants, 

but in reality can be exaplined by several factors. An example would be a trader 

that requires liquidity and is forced to liquidate some positions. This might widen 

the spread between a pair and deter arbitrage activity. Synchronization risks address 

the issue of the timing of arbitrageurs and how fast a mispricing is corrected. 

Interestingly, they also report that pairs trading profits are particularly strong in 

periods of market turmoil, such as the financial crisis in 2007-2009.  

 

In their analysis, Engle and Granger (1987) observe that some variables tend to 

exhibit a long-term relationship. Followingly, they went on to formalize a test to 

identify whether variables are cointegrated, i.e., whether there exists a long-term 

relationship between variables. Based on Engle and Granger’s work, Vidyamurthy 

(2004) constructed the cointegration framework for pairs trading. Vidyamurthy did 

not present any empirical results in his book, but other researchers widely use his 

approach. Caldeira & Moura (2013) obtain annual excess returns before TC of 
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16.38% and an SR of 1.34 when performing a cointegration-based pairs trading 

strategy in the timespan 2005-2012 on the Sao Paulo stock exchange. Similarly, 

Rad et al. (2016) apply the cointegration method on the US equity market in the 

timespan 1962-2014. They obtain annual excess returns of 10.69% and an SR of 

0.77 before TC. The alphas were both positive and statistically significant at a 1% 

levelin the two studies. Even though the strategy shows robustness given the long 

trading horizon, they both observe a slight decline in trading opportunities in more 

recent years. However, when comparing the cointegration method to the distance 

method, they find that cointegration is superior during turbulent market conditions.  

 

Clegg & Krauss (2018) obtain annual excess returns of 12% after TC in the US 

stock market. Findings suggest that a Partial Cointegration (PCI) method, which is 

a weakening cointegration where one allows the residuals to contain a mean-

reverting and a random-walk component (Clegg & Krauss, 2018), outperforms 

distance-based pairs trading used by Gatev et al. (2006). Similar to the previous 

studies, the authors also found that performance has declined over the years, which 

they argue is due to advancements in pairs trading research.  

 

Following technological developments and increased application of data science in 

finance, trading models and pairs trading strategies have become more complex. 

Machine Learning is becoming increasingly popular as the method is well suited 

for handling large quantities of data and may discover patterns not evident to the 

naked eye. Avellaneda & Lee (2008) use a Principal Component Analysis (PCA) 

to extract common risk factors from their universe of securities, allowing for an 

efficient way to identify potential pairs. The authors find that a PCA strategy on 

sector ETFs in the US equities market produces an average annual Sharpe ratio (SR) 

of 1.44 after TC over the period 1997 to 2007, although with a lower level of 

profitability in later years. Building on the PCA approach used by Avellaneda and 

Lee (2008), Sarmento and Horta (2020) use a PCA to extract common risk factors 

from their universe of securities, which they further feed into a clustering algorithm, 

making it easier to find potentially profitable pairs. This has proven to be 

advantageous as the authors obtain an annual SR of 3.79 and 86% profitable pairs 

when clustering, and an annual SR of 3.58 and 79% profitable pairs when 

performing no clustering (all results before TC), reflecting the robustness of 

machine learning tools in pairs trading. 
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3.4 Impact of liquidity on pairs trading profits 
Understanding the market dynamics is crucial for any investor or trader. Naturally, 

there are differences between stock markets in different countries concerning size, 

liquidity, regulations, laws, etc. A typical feature of a pairs trading strategy is a 

relatively high frequency of opening and closing positions, relying on many but 

small returns each time. Thus, it is particularly important to have the ability to trade 

at observed prices without heavily impacting the market. Næs et al. (2008) 

expressed that “A market is said to be liquid if traders can quickly buy or sell large 

numbers of shares at low transaction costs with little price impact”. This means that 

there exist four dimensions to liquidity. 1) The pace at which one can open/close a 

position, 2) the volume that can be traded, 3) the size of the spreads and fees, and 

4) to which degree the respective stock prices are impacted by a trade. When 

researching the development of the Oslo Stock Exchange (OSE) liquidity in the 

timespan 1980-2007, Næs et al. (2008) find significant improvements over the 

years when testing for all four dimensions. There were considerable differences in 

firms depending on their market capitalization, where small-cap firms had the 

biggest improvements in liquidity. In the OSE, the relative bid-ask spreads have 

declined slightly in the last decades before stabilizing at roughly 4% in the 2000s 

(Naes et al., 2011). Even though this implies that the Norwegian stock market is 

becoming more liquid, the spreads are still large compared to the US stock market. 

The average NYSE relative bid-ask spreads in the early 2000s was 1.6% (Naes et 

al., 2011) indicating a clear difference in market liquidity.  

 

It is reasonable to assume that the market liquidity could influence the actual 

performance of a pairs trading strategy. A theoretical study might assume that 

orders can be executed at the observed closing prices. In reality, both the depth of 

the order book and the bid-ask spread could significantly impact your trading 

profits. Another aspect is that temporary mispricing in the market is likely to be 

corrected slower in an illiquid market than in highly liquid markets. As less liquid 

markets tend to have larger spreads between bid and ask quotes, it could also be the 

case that what appears to be mispricing, in reality, reflects higher trading costs. 

Broussard and Vaihekoski (2012) study the profitability in the Finnish stock 

market, which is assumed to be less liquid than the US market. They found that the 

strategy delivered annual excess returns of 49.6% before TC using a fully invested 

portfolio and no lag. Even when adding a one-day lag, due to implications that may 
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arise in low liquidity markets, they found annual excess returns of 11.9%, which is 

higher than what Gatev found (8.9%). Comparing that to what Gatev found in the 

US with no lag (15.7%), they see major benefits of the larger bid-ask spreads “that 

can cause a spread bounce resulting in jumps in the closing price which may be 

reversed the following day”.  

 

The empirical results support our hypothesis that the implementation of pairs 

trading in low-liquidity markets could be more profitable due to a higher frequency 

of relative mispricings and slower price convergence. If the Norwegian stock 

market is much less liquid than the S&P500, as we anticipate, we should expect 

some of these effects found in previous studies to present also in the Norwegian 

market. 
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4. Methodology 
This chapter discusses the data used in our analysis and the methods used to 

implement a pairs trading strategy using an unsupervised machine learning 

approach. Chapter 4.1 provides an overview of the research design and each stage 

in the process. All computations are done using Python, and a copy of the code can 

be found in appendix C1 and C2.  

 

4.1 Research design 
Figure 4.1 provides an overview of our research design comprised of five stages. 

The process begins with stage 1, where we use a principal component analysis to 

reduce the dimensions of our dataset. The principal components (PCs) are used as 

input in the clustering algorithm applied in stage 2. The goal of the clustering 

algorithm is to group the stocks in our dataset in such a way that stocks with similar 

systematic risk are grouped together and form what we call a “cluster”. Once stage 

2 is completed and clusters are formed, we move to stage 3 where we try to identify 

pairs of stocks that exhibit a mean-reverting relationship. This is done by testing all 

pairs in each cluster for cointegration. Once we have identified the cointegrated 

pairs in our clusters, we continue to stage 4 where we implement the pairs trading 

strategy on the cointegrated pairs from each cluster on in-sample data and measure 

the performance. Finally, we test the strategy using the identified pairs on out-of-

sample data to simulate the performance of the strategy. The returns are then 

analyzed and adjusted for both explicit and implicit transaction costs. 

  

Figure 4.1: Research design overview

 

 

Illustration of research design with all stages noted. Stage 1 to 5 is performed 
for all 37 periods from 2001 to 2019. 
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4.2 Data  
The first step in our study is to import and process the data. We use daily closing 

prices adjusted for corporate events such as dividends and stock splits as these 

events may distort price history and produce false trading signals. Our universe is 

limited to stocks that have been listed on the S&P500 and the Oslo Stock Exchange 

(OSE) in the sample period. The sample period runs from 2000 to 2019 and covers 

a period where there have been significant developments within statistical arbitrage 

trading. The data on US securities is gathered from CRSP, while the OSE data is 

provided by Oslo Børs Informasjon (OBI). Once imported, we clean the data for 

missing values to facilitate further computations. The number of securities in the 

data varies over time, and the OSE goes from having 216 stocks in 2000 to 237 in 

2019 while the S&P500 has approximately 500, meaning that potential pairs to 

trade will vary. We will use Python as our primary tool for processing data and 

performing computations. Python is particularly well suited for machine learning 

techniques because of the broad access to various libraries and frameworks suitable 

for machine learning and other statistical techniques.  

 

4.4 Principal Component Analysis 
According to the Arbitrage Pricing Theory, securities containing the same 

systematic risk should offer the same return. This provides us with a trading 

framework where deviations from the expected return can be exploited before being 

corrected by the market. To find the underlying risk factors for each security, we 

implement a PCA where the PCs will serve as a proxy for systematic risk factors. 

These principal components will later be used as input in the clustering algorithm 

(Stage 2), meaning that stocks that appear to share the same systematic risk factors 

will be put in the same cluster.   

 

PCA is a common statistical technique that reduces the dimensionality of the dataset 

while preserving as much variability as possible. In practice, we want to obtain the 

important information from the dataset, create new orthogonal variables referred to 

as principal components, and then observe similarities between the variables. Our 

PCA framework builds upon the work of Marco Avellaneda and Jeong-Hyun Lee	

(2010).	To utilize a PCA, we use historical stock price data on a cross section of 𝑁 
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stocks going back 𝑀 days. In line with Avellaneda and Lee (2010), we assume that 

the cross section is identical to the investment universe. We define the stocks return 

data 𝑅#2 on a given date 𝑡! going back 𝑀 + 1 days, from the daily stock price 𝑃# 

for a stock 𝑖 at time 𝑡 as a matrix: 

 

𝑅#2 =
𝑃#(4!5(25")74) − 𝑃#(4!5274)

𝑃#(4!5274)
,			𝑘 = 1,…𝑀, 𝑖 = 1,…𝑁, Δ𝑡 = 1/252 (4.3) 

 
We assure that the variables are measured on the same scale. As some stocks vary 

more than others, it is helpful to standardize the returns in the following matrix: 

 

𝑌#2 =
𝑅#2 − 𝑅h#

𝜎h#
	 (4.4) 

where 

𝑅h# =
1
𝑀Q𝑅#2

8

2."

 (4.5) 

and 

𝜎h#( =
1

𝑀 − 1Q(𝑅#2 −
8

2."

𝑅h#)( (4.6) 

 
In the evaluation of price co-movements, the application of PCA on the return 

series is favorable since the return correlation matrix 𝜌#, is more informative. Price 

series might expose spurious correlations due to underlying time trends. The 

correlation matrix is computed as: 

𝜌#, =
1

𝑀 − 1Q𝑌#2𝑌,2 ,
8

2."

 (4.7) 

 
To obtain the PCs, we must find the eigenvectors and eigenvalues. The eigenvectors 

represent the maximum variance directions, while the eigenvalues assess the 

respective directions variance. There are two main ways to determine these, either 

by a Singular Value Decomposition (SVD) or by an eigen-decomposition. In our 

methodology, we will use the SVD due to its mathematical properties, such as 

giving the best approximation (least square sense) of any rectangular matrix by 

another rectangular matrix having the same dimensions but smaller rank (Abdi & 

Williams, 2010). We embed the normalized return series for all the stocks in the 

respective market in the matrix 𝐴, which is through SVD computed as: 

 
𝐴 = 𝑈𝑆𝑉9 (4.8) 
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𝑈 is an orthogonal matrix comprised of the left singular vectors, 𝑉 is a transposed 

orthogonal matrix comprised of the right singular vectors, and 𝑆 is a nonnegative 

diagonal matrix and consists of singular values (eigenvalues) sorted in a descending 

manner from the highest variance values to the lowest (𝜎" ≥ 𝜎( ≥ ⋯	≥ 𝜎- ≥ 0). 

By multiplying the matrix 𝐴 with its transposed matrix 𝐴9, we attain 𝐴9𝐴 =

𝑉𝑆(𝑉9. The former computed correlation matrix 𝜌#, (4.7) has the property of being 

symmetrical to 𝐴9𝐴, making it possible to discover the eigenvectors and 

eigenvalues. The next step is to create a new subspace corresponding to the PCs: 

 

𝐹, =Q𝜙#
,𝑅#2

:

#."

 (4.9) 

 
The principal components, 𝐹,, can be seen as the systematic risk factors for the 

securities in our dataset, outlined in the APT chapter, equation (2.6). These will 

serve as inputs in our clustering algorithm.  

 

By reducing the dimensionality of the dataset, some information gets lost in the 

process. There are different ways to select the number of PCs that explain a 

satisfactory level of variability. Avellaneda & Lee (2010) selected the number of 

components that explained 55% of the total variance, which naturally varies over 

time with different datasets. By deciding on a lower explanation level, you sacrifice 

some information for a simpler data description. Sarmento & Horta (2019) argue 

that it actually is favorable to give up some information as the likelihood of finding 

irrelevant features increases with the number of principal component dimensions. 

 

Contrary to Avellaneda and Lee’s method of predefining the explanation level and 

then choosing the corresponding number of components, James et al. (2013) 

describe an ad hoc method of eyeballing a scree plot (with cumulative variance 

explained on the y-axis and number of principle components on the x-axis) and 

choose the number of components where the marginal proportion of variance 

explained is small. Some researchers argue that selecting the point of the “elbow” 

of the scree plot is sufficient even though it often leads to few components and thus 

a somewhat low explanation level. Since an unsupervised learning algorithm will 

be applied to the PCA output, we should also consider the challenges posed by 

dimensionality (Sarmento & Horta, 2020). Using a higher number of PCs increases 
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the chances of identifying features in the data that are not relevant. Further, the 

volume caused by adding more dimensions increases exponentially, causing points 

in the data to appear very distant from each other, and the clustering algorithm will 

not prove as efficient (Bellman, 1966). In this paper, we will base our decision on 

the ad hoc method implied by James et al. (2013), making sure that we choose a 

number that explains a fair amount of the variance while still avoiding having too 

many dimensions. 

 
4.5 Unsupervised Machine Learning 
Supervised learning is a common form of machine learning where an algorithm is 

used to learn a mapping function so that it is able to predict the output when being 

fed with input data. We call this supervised learning as we know the answers from 

the training data and then teach the algorithm what is correct. Unsupervised 

Learning is a different machine learning technique where one looks for patterns in 

the data with no pre-existing labels. As we cannot teach the algorithm what the 

correct answers should be, it will have to model the underlying structure of the data 

on its own. Unsupervised learning is often grouped into two methods: clustering 

and association. Clustering is used for problems where one would like to discover 

groups within the data, which can be helpful for discovering stocks that have similar 

systematic risk. Our goal is to classify the stocks into clusters, based on the PCs 

obtained in Stage 1, before looking for pairs displaying a strong mean-reverting 

relationship within these clusters. We believe that unsupervised learning will prove 

valuable in grouping stocks as it removes as much human interference as possible, 

reducing the risk of human error or bias that might affect our results.  

 

4.5.1 Density Based Spatial Clustering Applications with Noise 

Once we have extracted the principal components, 𝐹,, for all our securities, we seek 

to cluster them such that securities with similar risk factors are grouped together, 

making it easier to discover highly correlated pairs. The DBSCAN is a clustering 

algorithm proposed by Ester et al. in 1996, which is designed to discover clusters 

of arbitrary shapes. The most widely used clustering algorithm is the K-Means; 

however, the DBSCAN offers a few advantages such as its ability to handle outliers 

(noise) efficiently, and the number of clusters need not be specified in advance. 
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DBSCAN requires two input parameters. 1) Eps: Specifies the distance required 

between two points for them to be considered in the same cluster, i.e., the radius 

around a given point. If the distance between two points is equal to or lower than 

the Eps, they are considered neighbors. 2) MinPts: The minimum number of data 

points needed to form a cluster (dense region).  

 

The DBCAN starts with an arbitrary point and will classify nearby points as a core 

point, border point, or outlier. Core point: A point is considered a core point if there 

are at least MinPts within its area with radius Epsilon. Border point: A point is 

considered a border point if it is within Epsilon radius of a Core Point, but there are 

less than MinPts within its own area. Outlier: A point is considered an outlier if it 

is not classified as a core point nor reachable from any other core points by Epsilon. 

If there are enough neighboring points wrt. MinPts, a cluster is formed, and the 

algorithm iterates the process for all other points. Figure 4.2 illustrates the process 

of the DBSCAN algorithm.  

 

When using DBSCAN, it is essential to correctly specify the input parameters to 

obtain useful output. This requires knowledge of the dataset as the parameters 

should be specified according to the user’s needs, although some methods can guide 

the user in the right direction. For 2-dimensional data, the default value for MinPts 

is set to 4 (Ester et al., 1996). For lower-dimensional data, MinPts is usually set to 

 

Figure 4.2: DBSCAN process  

 

 

Illustration of the DBSCAN process with MinPts = 4. Panel A: The algorithm 
identifies a core point c, a border point p1, an outlier p2. Panel B: point p1 is 
identified as a new core point and p3 is identified as a new border point. Panel 
C: As p3 does not have enough neighboring points within the radius 𝜖 it is not 
classified as a core point. 
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be greater than or equal to the number of dimensions in the data. For higher 

dimension data, a general rule of thumb is to set MinPts equal to two times the 

number of dimensions in your dataset and subtract one (Sander et al., 1998). As a 

small MinPts will produce more clusters from noise, it should not be set too small, 

but neither too high as it might fail to detect any clusters. The Eps is chosen in an 

ad hoc fashion that creates meaningful clusters throughout the years in the study.  

 

4.5.2 t-Distributed Stochastic Neighbor Embedding 

To better understand the clusters discovered by the DBSCAN algorithm, we can 

visualize the output. t-Distributed Stochastic Neighbor Embedding (t-SNE) is an 

unsupervised non-linear technique often used to visualize data of higher dimensions 

as it lets us plot the data on a two-dimensional map. The method differs from 

traditional linear methods like PCA as it seeks to keep the low-dimensional 

representation of close data points instead of preserving the representation of 

dissimilar data points (van der Maaten & Hinton, 2008). 

 

The t-SNE algorithm measures the similarity between data points using the 

Euclidian distances of each point to all other points, assigning a higher value to 

similar pairs. The distances are then converted to conditional probabilities 

representing the similarity of two points. We use this to determine the probability 

of two points being neighbors and the conditional probability 𝑝;𝑗<𝑖= is given by: 

𝑝;𝑗<𝑖= =
exp	(−‖𝑥# − 𝑥,r

(
/2𝜎#(	)

∑ exp	(−‖𝑥# − 𝑥,r
(/2𝜎#()	2>#

 (4.10) 

 
where 𝑥#and 𝑥, represents datapoints, in our case the principal components serving 

as risk factors, and 𝜎# is the variance of the Gaussian distribution. This is then used 

to calculate the joint probability function: 

 

𝑝#, =
𝑝;𝑗<𝑖=	+	𝑝;𝑖<𝑗=

2𝑛  (4.11) 

 
The next step is to project our dataset onto a lower-dimensional space with 𝑘 

dimensions, setting 𝑘 = 2	in our case. This is done by taking the low-dimensional 

counterparts of the high dimensional data points, 𝑦# and 𝑦,, and computing a similar 

conditional probability using a t-distribution instead of a Gaussian distribution 

given by: 
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𝑞;𝑗<𝑖= =
exp	(−r𝑦# − 𝑦,r

(
)

∑ exp	(−‖𝑦# − 𝑦2‖2>#
()

 (4.12) 

 
We want the new data points to yield similar map points in the lower dimensional 

map; therefore, we seek to minimize the distance between 𝑝;𝑗<𝑖= and 𝑞;𝑗<𝑖= using 

the Kullback-Leibler divergence given by: 

 

𝐾𝐿(𝑃#‖𝑄#) =Q𝑝;𝑗<𝑖=𝑙𝑜𝑔
𝑝;𝑗<𝑖=
𝑞_(𝑗|𝑖)

#,,

	 (4.13) 

 
Where P and Q represent conditional probability distributions over the given data 

points 𝑥# and 𝑦#. Finally, the algorithm requires us to choose the standard deviation, 

𝜎#, of the Gaussian distribution by specifying a fixed perplexity. According to van 

der Maaten and Hinton (2008), perplexity can be thought of as a “smooth measure 

of the effective number of neighbors”. The value will typically vary between 5 and 

50. 

 

4.8 Discovering mean-reverting relationships 
Once clusters are identified, we will look for pairs exhibiting a mean-reverting 

relationship within each cluster. This chapter discusses the most common 

techniques and how they can help us identify potentially profitable pairs to trade. 

 
4.8.1 The Distance Approach 

Following the study of Gatev et al. (2006), the distance approach gained recognition 

among researchers. The approach was developed after discussions with traders 

about how they implemented this trading strategy, where the sum of squared diff-

erences between normalized price series is minimized. More specifically, the 

authors construct a cumulative total return index for each stock over their formation 

period. Each stock is then matched with another security that minimizes the sum of 

Euclidean Squared Distances (SSD) between the two normalized time series. The 

average SSD can be expressed as: 

 

𝑆𝑆𝐷hhhhh@",@# =
1
𝑇QX𝑃#,4 − 𝑃,,4Y

(
9

4."

 (4.14) 

 
An optimal pair is found by minimizing equation (4.12), which implies that a pair 

with a spread of zero would be optimal. However, Sarmento & Horta (2019) argues 
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that this method is counterintuitive as an ideal pair would actually exhibit high 

spread variance and strong mean-reverting properties. 

 
4.8.2 Cointegration Approach 

The cointegration approach may offer a more robust approach to identify mean-

reverting relationships as it allows us to discover long-term relationships between 

securities. We will therefore be using cointegration in our framework to identify 

pairs within each of the clusters formed.  

 

In order to describe cointegration, it is necessary to introduce the concept of 

stationarity. Stationarity describes a time series whose probability distributions do 

not change over time and can be described formally as a stochastic process 

{𝑥4: 𝑡 = 1,2, … } which is stationary if for every instance of 𝑡, the joint distribution 

of (𝑥4$ , 𝑥4% , … , 𝑥4&) is equal to the joint distribution of (𝑥4$AB , 𝑥4%AB , … , 𝑥4&AB) for 

integers ℎ ≥ 1 (Wooldridge, 2015). In contrast, a non-stationary time series 

violates the above requirement with means and variances varying over time 

(Hendry & Juselius, 2000). We usually say that a time series is weak stationary if 

the two first moments are constant over time, i.e., the series has a constant mean 

and variance for all periods.  

 

Cointegration was formally introduced by Engle & Granger (1987) and is widely 

used by practitioners in finance and economics to identify long-term relationships 

between a set of variables. Generally, time series are said to be cointegrated when 

they are integrated of order 1, 𝐼(1), while a linear combination of the series is 𝐼(0) 

(Wooldridge, 2015). Saramento & Horta (2020) offer the following formal 

definition: Two time series, 𝑦4, and 𝑥4, which are 𝐼(1), are cointegrated if there 

exist coefficients 𝜇 and 𝛽 such that: 

 
𝑦4 − 𝛽𝑥4 = 𝑢4 + 𝜇, (4.15) 

 
where 𝑢4 is a stationary time series. This approach lets us create stationary time 

series from our stock prices by calculating the spread between two stocks that are 

𝐼(1). As stationary time series tend to fluctuate around its mean with a constant 

variance, we can exploit short-term deviations in the spread and bet that the spread 

will converge back to its mean.  
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There are several ways to test for cointegration. In this paper, we follow the widely 

used Engle-Granger two-step test to identify pairs that are cointegrated. First, by 

applying an Augmented Dickey-Fuller (ADF) test, we observe whether 𝑦4 and 𝑥4 

are non-stationary (has a unit root). If this holds true, we run an Ordinary Least 

Squares (OLS) regression on equation (4.15). Lastly, with an ADF test, we observe 

a potential unit root in the residuals. To conclude on the existence of a cointegrating 

relationship, we formulate the following hypothesis test: 

 
𝐻!: 𝑇ℎ𝑒𝑟𝑒	𝑖𝑠	𝑎	𝑢𝑛𝑖𝑡	𝑟𝑜𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

𝐻": 𝑇ℎ𝑒𝑟𝑒	𝑖𝑠	𝑛𝑜	𝑢𝑛𝑖𝑡	𝑟𝑜𝑜𝑡	𝑖𝑛	𝑡ℎ𝑒	𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 

 
If the P-value is < 0.05, we reject the null hypothesis. Thus, the residual series are 

stationary, and the respective securities are cointegrated.  

 

4.9 Trading execution 
After filtering the stocks in our universe and identifying pairs exhibiting a mean-

reverting relationship, i.e., cointegrated pairs, we must define when and how trades 

should be placed. This usually involves setting a threshold level that will trigger a 

trade. 

 

4.9.1 Signal generation 

Gatev et al. (2006) propose a simple threshold-based trading model based on the 

divergence of the observed spread between two securities. More specifically, if the 

spread diverges by more than two standard deviations from the mean measured in 

the formation period, a trade is placed. The trade is closed once the spread 

converges and the prices cross. We apply a similar trading rule where we define the 

spread between the two stocks forming a pair: 

 

𝑆4 =
𝑌4 − 𝑋4
𝑌4

 (4.16) 

 
𝑌4 and 𝑋4 are the two different securities. We further compute a 𝑧-score, measuring 

the distance to the mean in units of standard deviation Caldeira (2013): 

 

𝑧4 =
𝑆4 − 𝜇4
𝜎4

 (4.17) 
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Instead of using the observed mean from the formation period, we apply a 20-day 

moving average. We will use the 𝑧-score to determine when positions should be 

opened, using a threshold of two standard deviations as an upper and lower bound. 

If the observed spread exceeds the threshold, one of the securities in the pair is said 

to be “significantly” overpriced relative to the other security, and a bet is taken that 

the relative value will converge towards the long-term equilibrium.  

 

z-score > 2: Enter a short spread trade  

z-score < -2: Enter a long spread trade  

 
Once a trade is opened, we will keep the position open until the sign of the 𝑧-score 

is reversed, similar to the approach employed by Gatev et al. (2006). Figure 4.3 

illustrates the trading setup and execution using a randomly chosen pair from our 

universe in the first formation period (January 2000 to January 2001).  

 

Figure 4.3: Pairs trading example 

 

 

Example of a pair that is found to be cointegrated in the formation period running from 
January 2000 to January 2001. The top chart shows the stock prices of the two securities 
and the blue line plots the cumulative return that the strategy would obtain. The middle 
chart plots the z-score based on the 20 day moving average spread and the thresholds 
of +/- two standard deviations. The bottom chart shows the positions that would be 
held by this strategy. +1 indicates a long spread position, -1 indicates a short spread 
position, while 0 indicates that no position is open.  
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4.9.2 Formation and trading period 

Testing a trading strategy on historical data requires a formation period where the 

algorithm is trained and a testing period where we observe the performance of the 

strategy out-of-sample. There is no single answer as to how long the formation and 

the testing periods should be. Still, since we are using the cointegration approach, 

we should ensure that the formation period contains enough data for a cointegrating 

relationship to be identified. Gatev et al. (1999;2006) use a 12-month formation 

period followed by 6 months of trading in their original study, and we will be using 

a similar setup in this study (figure 4.4). Our data runs from 2000 to 2019, resulting 

in 37 formation- and trading periods for both markets. 

 

Figure 4.4: Formation and trading setup

 

  

4.9.3 Computing returns 

As the strategy involves taking both a long and a short position, where the long leg 

of the trade is financed by the short leg, calculating the returns may not be entirely 

intuitive. The payoffs can be thought of as a string of randomly distributed cash 

flows incurred at different points in time. A positive cash flow will occur once a 

successful trade is closed, which may happen multiple times for each pair. Open 

positions that are not closed by the end of the trading period will only incur a cash 

flow at the last trading day based on the closing prices. Because the return is 

computed on long and short positions on one dollar invested, Gatev et al. (2006) 

argue that the payoffs have the interpretation of excess returns. They further suggest 

two measures of excess return: return on committed capital and return on actual 

employed capital. Return on committed capital takes the sum of all payoffs and 

divides it by the total number of identified pairs in the portfolio. As this approach 

is fairly conservative and may not represent the capital sourcing of a hedge fund, 

Illustration of the rolling formation and trading setup. In the formation period, the stocks 
are clustered and tested for cointegration. In the trading period, the identified pairs from 
the formation period are traded according to our prespecified thresholds.  
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they argue that the return on actual capital employed seems like a more appropriate 

measure as this divides the sum of the payoffs by the number of pairs opened during 

the trading period: 

𝑟C =
∑ 𝐶𝐹#-
#."

𝐿 + 𝜏𝑆  (4.16) 

 
𝐿 and 𝑆 are the amounts placed in the long and short leg, respectively. 𝜏 refers to 

the fraction of capital required (margin) required by the broker for the short 

position. This requirement will vary based on the volatility and liquidity of the 

individual security, but we will, similar to Hoel (2013), set 𝜏 = 1, giving us a more 

conservative return estimate.  

 

4.9.4 Transaction costs 

Bearing in mind the liquidity sensitiveness of our study, we pay particular attention 

to transaction costs and attempt to obtain a realistic estimate of the costs that a trader 

would incur when applying this strategy. In their research on trading costs, Do & 

Faff (2011) find that most earlier studies fail to adequately adjust strategy 

performance for costs, thus leading to a “material upward bias”. We follow Do & 

Faff’s approach with three main components of costs: commissions, short selling 

fees, and market impact.  

 

The nature of pairs trading implies that commissions accrue two times when 

opening a position and two times when closing the position, hence two roundtrips 

of costs. Fees charged for short selling accrue only for the security that is, in relative 

terms, overpriced. Commissions and short selling fees are explicit trading costs and 

are generally easy to observe. Based on an analysis of historical data, we set the 

commission per trade to 5 bps and the annual short-selling fee to 450 bps. To 

compute the short-selling expenses per trade, we convert the annual fee into a daily 

fee of 1.79 bps. To get the total cost, the average number of days we hold a position 

open is multiplied by the daily short-selling fee and added to the fixed commission. 

The implicit trading costs are slightly harder to estimate, and we apply two methods 

to increase the reliability of the estimates: 

1) Apply a one-day lag both when opening and closing the positions to estimate the 

implied bid-ask spread in the market.  

2) Adjust for relative bid-ask spreads to simulate a “worst-case” scenario of trading 

costs.  
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The first approach is related to the bid-ask bounce as described by Jegadeesh & 

Titman (1993). Any movements in the stock prices observed are potentially due to 

movements in the bid-ask quotes. Once the spread between a pair converges, we 

are more likely to trade on an ask quote for the “winner” and the bid quote for the 

“loser”. Since we are implicitly buying at bid-quotes and selling at ask-quotes, with 

the opposite case for the unwinding of the position, there is a chance that our returns 

are biased upwards. The second approach serves as a conservative measure of 

profitability that stresses the robustness to transaction costs. While this estimate 

might be a bit too conservative, we argue that it is interesting to observe whether 

the strategy would survive this worst-case estimate of costs.  

 

4.10 Assessing performance of the strategy 
To assess the performance, we study the excess returns generated by the strategy 

and the risk profile of these returns. We can measure the Sharpe Ratio (SR) as 

defined by William F. Sharpe (1966): 

 
𝑆𝑅 = 	

𝑟C	 − 𝑟$
𝜎C

 

 
(4.17) 

where 𝑟C is the return of the portfolio, 𝑟$ is the risk-free rate and 𝜎C is the observed 

standard deviation of the portfolio. Because the pairs trading strategy being tested 

is dollar neutral, we do not subtract the risk-free rate when computing the SR. The 

SR measures the return obtained per unit of risk, as defined by the standard 

deviation. A higher SR generally means higher risk-adjusted returns. Similar to 

Gatev et al. (2006), we control for traditional risk factors to explore the strategy’s 

systematic risk exposure. This will give us an estimate of the strategy’s ability to 

generate returns not captured by the most common factors, in other words, the risk-

adjusted returns. More specifically, we will be using the three-factor model of Fama 

& French (1993) and Carhart’s (1997) momentum factor: 

 
𝛼 = 𝛽"(𝑚𝑘𝑡 − 𝑟𝑓) + 𝛽((𝑆𝑀𝐵) + 𝛽D(𝐻𝑀𝐿) + 𝛽E(𝑈𝑀𝐷) (4.18) 

 
where 𝛼 represents the risk-adjusted returns obtained by the strategy.  
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4.11 Liquidity 
To comment on the liquidity of the two markets, we apply measuring tools building 

on the works of Næs et al. (2008). As a proxy for liquidity, we apply one order-

based measure using current available (ex-ante) liquidity and one trade-based 

measure using realized (ex-post) liquidity. For the order-based measure, we observe 

the relative spreads (in percent) at closing as: 

 

𝑆 =
𝑃FG2 − 𝑃H#I

1
2 (𝑃FG2 + 𝑃H#I)

 (4.1) 

 
where 𝑃FG2 	𝑎𝑛𝑑	𝑃H#I represents the “best” quoted prices in the order book. 

 

To assess liquidity via trade-measures, we will compute the turnover as: 

 

𝑇 =
𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑠	𝑡𝑟𝑎𝑑𝑒𝑑

𝑁𝑢𝑚𝑏𝑒𝑟	𝑜𝑓	𝑠ℎ𝑎𝑟𝑒𝑠	𝑜𝑢𝑡𝑠𝑡𝑎𝑛𝑑𝑖𝑛𝑔 (4.2) 

 

As we are interested in the effect of liquidity on the strategy’s profits, we will use 

these measures to determine the overall liquidity in the two markets studied. 

Additionally, we use the observed relative bid-ask spread to construct separate 

portfolios containing stocks with the highest and lowest liquidity. This analysis is 

covered in chapter 5.4.  
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5. Results and Analysis 
This section discusses the results obtained when studying the strategy in both the 

US and Norwegian stock market. We start by discussing the output of the 

dimensionality reduction technique, PCA, and the unsupervised clustering 

algorithm before describing the results obtained by the model. The section proceeds 

to assess the liquidity of the two markets, followed by an in-depth analysis of how 

market liquidity affects the profitability of the strategy. Finally, we discuss the 

robostness of the strategy to both explicit and implicit transaction costs.  

 
5. 1 Number of Principal Components 
After running the PCA algorithm for every formation period on our data, we begin 

by studying the proportion of variance explained by each of the principal 

components as well as the cumulative explained variance. Panel A in figure 5.1 

takes the number of principal components on the x-axis and the corresponding 

proportion of variance explained on the y-axis. We see that the first component 

explains the greatest proportion of the variance in both the S&P500 and the OSE 

data and that the additional proportion of explained variance for the following 

components quickly becomes marginal.  

 
Figure 5.1: PCA output 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The figure contains a graphical representation of the proportion of variance explained per 
number of principal component as well as the cumulative explained variance for the 
S&P500 and OSE respectively. The figure is chosen to best portray the average results of 
each formation period.The figure is constructed for illustration purposes only, and is chosen 
to best portray the average results of each formation period in our results. 
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Panel B in figure 5.1 presents the number of principal components on the x-axis, 

and the corresponding cumulative variance explained on the y-axis. Using the ad 

hoc approach described in chapter 4.4, we decide to use 20 PCs for the S&P500 

data and 7 for the OSE data, ensuring that we have enough components to capture 

a sufficient amount of variance in the data while limiting the number of dimensions. 

The chosen number of components capture on average roughly 45% - 55% of the 

variance, similar to what Avellaneda (2008) used as predefined variance when 

selecting the number of PCs. To be consistent in our research, we hold the number 

of principal components constant throughout all formation periods.  

 

To optimize the output of the clustering tool, we want to choose the number of 

components that produce the most meaningful clusters. We are interested in 

knowing how the number of PCs used affects the output of the DBSCAN and run 

a sensitivity analysis stressing the number of PCs on cluster characteristics. Table 

5.1 summarizes the cluster statistics as we vary the number of principal 

components. Throughout the sensitivity analysis, the 𝜖 is held constant at 0.6 for 

the OSE and at 1.0 for the S&P500. We observe clear variation in clusters formed, 

and thus the number of stocks in each cluster, as PC change. The trend is similar 

for both markets: too many or too few components produce fewer clusters. As we 

aim to let the algorithm form meaningful clusters, we seek a balance between 

clusters formed and the number of stocks in each cluster.  

 
Table 5.1: Cluster characteristics 

 

A: S&P500         
Principal Components 10 15 18 20 22 25 30 45 
Number of clusters 3 3.75 3.80 3.81 3.54 2.30 1.14 0 
Unique stocks in each cluster 172 73 34 20 15 10 7 0 
Cointegrated pairs in each cluster 3681 614 188 66 32 17 10 0 
   Of which are unique stocks 125 49 23 14 9 7 5 0 
B: OSE         
Principal Components 4 6 7 8 10 12 15 25 

Number of clusters 1.24 1.32 1.35 1.31 1.19 0.97 0.59 0 
Unique stocks in each cluster 105 86 75 68 79 23 9 0 
Cointegrated pairs in each cluster 971 720 588 464 150 86 34 0 
   Of which are unique stocks 86 69 57 47 37 27 16 0          

The table contains cluster characteristics stressed by number of principal components.   
The values are gathered from the formation periods in the timespan 2000-2019 and then 
averaged. The colored columns represent the characteristics related to our chosen number 
of components. 
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We find that 7 components in the OSE and 20 components in the S&P500 on 

average produce the most clusters while maintaining a similar number of potential 

stocks to trade per period. 

 
5.2 Cluster discovery 
Looking at the US data, we observe that we on average identify between three and 

four clusters each period, with one period having as many as ten unique clusters. 

This clearly differs from the OSE data where we on average identify between one 

and two clusters in every formation period, with the highest number of clusters in 

a period being three. The size of each cluster varies, but on average, there are 2895 

pairs in each cluster for the US data and 8479 for the OSE data (before checking 

for cointegration). In figure 5.2, we plot a few of the clusters using t-SNE on the 

DBSCAN results to visualize the output of the clustering algorithm, and we clearly 

see that clusters form in areas of higher density. This also works as a sanity check 

for the DBSCAN uoutput, as we want to see that both the t-SNE and the DBSCAN 

are able to find our clusters.  

 

Figure 5.2: t-SNE plots of clusters 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

t-SNE plots of some of the clusters formed by the stocks in the US market and the 
Norwegian market. Each color represents different clusters while the gray dots are 
unclustered stocks. 
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To further investigate the output of the DBSCAN algorithm, we examine one 

arbitrary cluster from each of the two datasets in detail. The two clusters shown in 

figure 5.3 are both formed in the formation period running from January 2001 

through December 2001. The cluster formed by the S&P500 data is entirely made 

up of stocks related to the energy industry and contains 22 unique stocks. When 

paired, several of these stocks are cointegrated at the 5% level, implying that a long-

term relationship between them may exist (indicated by grey connecting lines 

between points in figure 5.3). The cluster formed by the OSE data is roughly the 

same size but are less concentrated, meaning that it is formed by stocks from several 

different industries. It is worth noting that a cointegrating relationship is found 

between several pairs, also pairs made up of stocks belonging to various industries. 

This is in line with our hypothesis that an unsupervised machine learning technique 

might be able to uncover patterns not necessarily obvious at first glance. We 

observe that the OSE cluster contains quite a few stocks from both the financial 

industry and the shipping industry. This might reflect the fact that many Norwegian 

banks historically have had significant exposure to the shipping industry, although 

this is not something we can conclude.  

 
Figure 5.3: Example of clusters with validated pairs 

 

 

 

 

 

 

 

 

 

 

 

 

It is worth noting that after formation period 18 (2009), the algorithm struggles to 

form more than one cluster in the OSE dataset (figure 5.4). Instead of forming 

several clusters with fewer stocks in each cluster, it forms one big cluster 

comprising several stocks and only removes outliers. Generally, it is not a problem;  

Financials: 9   Shipping: 8   Industrials: 12 Energy: 25 

t-SNE plots of some cluster from each of the two markets for illustrational purposes. Each 
point represents a stock while a grey line between two points mean that they are 
cointegrated. The cluster from the S&P500 stocks contains only stocks related to the energy 
industry. The cluster from the OSE data is less concentrated and contains stocks related to 
several industries.  
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Number of clusters formed in each formation period in the two markets. The algorithm 
seems to be working well in the beginning and in the end if the sample period for the 
S&P500 data. The trend is different on the OSE data and we see that the algorithm is 
struggling to make more than one cluster after formation period 17 (2008).  

Figure 5.4: Number of clusters identified 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
however, the effect of the DBSCAN declines when the inputs are no longer the best 

fit for the respective period. We observe that this is a minor pitfall of the “one size 

fits all” idea of applying the same inputs over the entireness of the sample period. 

For the purpose of this study, comparing the same strategy on two different markets, 

we are not necessarily exploring new ways to optimize the strategy. Nevertheless, 

if we were to optimize the model, we observe that applying a time-varying EPS that 

tests each period separately could improve the potential of the DBSCAN. 

 

5.3 Strategy performance 
We begin by looking at how the strategy performs on the S&P500 and OSE 

separately, and comment on the distribution of excess returns and its risk 

characteristics. 

 
5.3.1 Pairs trading on the S&P500 
Panel A in Table 5.2 summarizes the descriptive statistics of the excess returns 

before TC and the systematic risk of the strategy in the US. Statistics are computed 

for different portfolios containing the 𝑛 number of pairs with the highest Sharpe 

Ratio from the formation period, as well as a portfolio containing all cointegrated 

pairs in each cluster. The first rows show that the top 5 pairs on average deliver 
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excess returns of 8.32% per year (t-statistic of 2.84) while the top 20 pairs on 

average generate annualized excess returns of 10.58% (t-statistic of 4.61), 

suggesting that pairs trading in the US stock market is profitable (Figure 5.5). This 

is almost identical to what Gatev et al. (2006) found on average in 1962-2002. 

Looking at the distribution of the excess returns, we see diversification benefits 

from trading on several pairs as the standard deviation decreases when adding more 

pairs to the portfolio. This is consistent with the idea that pairs trading is only 

considered a form of arbitrage when trading on many pairs simultaneously. 

Comparing the greatest daily loss and gain for the top 5 portfolio and the portfolio 

including all pairs, we observe that the maximum daily loss is lower, and the 

maximum daily gain is larger for the portfolio containing more pairs. This trend is 

also evidenced by the increased positive skewness for the portfolios containing 

more pairs.  

 

Figure 5.5: Strategy performance on the S&P500 

 

 
 

 

 

 

Cumulative excess return for portfolios containing the top 5, 10, 20 and all pairs 
from 2001 to 2019. 
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Table 5.2: Summary of descriptive statistics and systematic risk of pairs 
trading in US equities 
 

Pairs portfolio Top 5 Top 10 Top 20 All 
A: Daily excess return 
distribution 

    

Average excess return  0.00033 0.00033 0.00042 0.00036 

Annualized excess return 0.08316 0.08316 0.10584 0.09072 

t-Statistic 2.84731 3.29851 4.61972 4.90302 

P-value 0.00443 0.00097 0.00000 0.00000 

Excess return distribution     

     Median 0.00000 0.00000 0.00000 0.00000 

     Standard deviation 0.00791 0.00687 0.00617 0.00501 

     Skewness 0.64727 0.47832 1.37969 1.38413 

     Kurtosis 11.41694 21.28843 24.95730 27.50951 

     Minimum -0.05467 -0.09028 -0.06072 -0.04615 

     Maximum 0.07452 0.07452 0.07938 0.06258 
     

B: Systematic risk of pairs 
trading  

    

Annualized Sharpe Ratio 0.66 0.77 1.07 1.14 

Intercept 0.00030 0.00030 0.00040 0.00040 
 (2.89800)*** (3.32600)*** (4.64800)*** (4.89900)*** 

Market -0.02020 -0.01040 -0.00650 0.00180 
 (-1.89500)* (-1.12100) (-0.78300) (0.27300) 

SMB 0.04380 0.04840 0.05790 0.04870 
 (2.12600)** (2.70600)*** (3.60700)*** (3.74200)*** 

HML -0.04370 -0.04360 -0.04640 -0.04120 
 (-2.25300)** (-2.58600)*** (-3.07000)*** (-3.35900)*** 

Momentum -0.02330 -0.02400 -0.03540 -0.02440 
 (-1.71600)* (-2.03800)** (-3.34700)*** (-2.84100)*** 

R2 0.00300 0.00400 0.00700 0.00700 

 

 

 

 

 

Summary statistics of the daily excess returns on the portfolios of pairs between January 
2001 and July 2019 containing 4662 observations. Trades are made according to the 
prespecified rule where trades are opened once the spread between two cointegrated stocks 
in the same cluster deviate by more than two standard deviations, measured over a 20-
day rolling window (Panel A). Top “n” portfolios consists of the “n” number of pairs with 
the highest reported Sharpe Ratio in the formation period. Panel B presents a summary 
of the strategy’s risk characteristics with daily returns regressed on the Fama & French 
(1993) three factor model and Carharts (1997) Momentum factor. 
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Panel B summarizes the risk characteristics associated with the pairs trading 

strategy. With a declining standard deviation and relatively stable excess returns as 

we add more pairs to the portfolio, the Sharpe Ratio is positively correlated to the 

number of pairs in the portfolio. The portfolio containing all pairs delivered an 

annualized SR of 1.14. In the same period, the S&P500 index obtained an 

annualized SR of 0.26, suggesting that the strategy has a more attractive risk profile 

than the overall stock market (Figure A1 in appendix). To assess the systematic risk 

of the strategy, we regress the daily excess returns on the three factors of Fama & 

French (1993) and the momentum factor as constructed by Carhart (1997). Overall, 

the four risk factors appear to explain a relatively small portion of the excess returns 

with a very low R squared. The risk-adjusted returns are all significant and lower 

than the excess returns, except for the portfolio containing all pairs which has a 

slightly higher risk-adjusted return than raw excess returns. 

 

As expected, being a market-neutral strategy, the exposure to the market premium 

is small, and the estimates’ sign is shifting. Although small, the exposure to both 

the SMB and HML factors appears to be positive and significant for all portfolios. 

The exposure to the momentum factor is negative and statistically significant. This 

does not come as a surprise as pairs trading is a contrarian trading strategy where 

one in many cases will short stocks that have performed well recently and buy 

stocks that have underperformed, opposite of what a momentum strategy would do. 

 
5.3.2 Pairs trading on the OSE 

Panel A in Table 5.3 summarizes the descriptive statistics of the excess returns and 

the systematic risk of the strategy on securities traded on OSE. Statistics are 

computed in the same manner as for the US equities above, presenting trading 

results for the 𝑛 pairs with the highest Sharpe Ratio in the formation period. The 

top 5, 10, and 20 portfolios generate on average 46.87%, 48.34%, and 46.12% 

excess returns per year before TC, and the observed returns are all significantly 

different from zero at a 1% level. In addition, the portfolio where all cointegrated 

stocks in each cluster are traded delivers annualized excess returns of 24.19% (t-

stat of 6.15), which is clearly lower than the concentrated portfolios (Figure 5.6). 

Still, the results suggest that Pairs Trading on the OSE is profitable and even more 

profitable than on the S&P500 exchange.  
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Figure 5.6: Strategy performance on the OSE 

 
 
Panel B summarizes the risk characteristics associated with the pairs trading 

strategy on OSE. Similar to the US results, we observe diversification benefits as 

the standard deviation decreases, also reflected by the decline in maximum gain or 

loss in a day by adding more potential trading pairs in the portfolio. Not 

surprisingly, as the average excess returns remain stable, the Sharpe Ratios 

experience an almost linear upward trend from an annualized SR before TC of 1.28 

in the top 5 to an SR of 1.90 in the top 20. Even though the standard deviation is 

lowest for the portfolio containing all possible pairs, the average excess returns are 

lower, resulting in an annualized SR of 1.43. Again, we regress the daily excess 

returns on the three factors of Fama & French (1993) and Carharts (1997) 

momentum factor to assess the systematic risk of the strategy. The risk factors’ 

coefficients are in general similar to those in the US, both in terms of size and signs; 

however, the regression produces much fewer significant results implying that these 

factors cannot properly explain the return we obtain at OSE. The risk-adjusted 

returns are all positive and significant at a 1% level, and the portfolio containing all 

cointegrated pairs obtain higher risk-adjusted returns than raw excess returns also 

in this case. The R2 is very low, ranging from 0.002-0.005, implying that the risk 

factors generally fail to explain the returns obtained by the strategy.  

Cumulative excess return for portfolios containing the top 5, 10, 20 and all pairs 
from 2001 to 2019. 
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Table 5.3: Summary of descriptive statistics and systematic risk of pairs 
trading in Norwegian equities 

 

Pairs portfolio Top 5 Top 10 Top 20 All 
A: Excess return distribution    

Average daily excess 
return  0.00186 0.00192 0.00183 0.00096 

Annualized excess return 0.46872 0.48384 0.46116 0.24192 

t-Statistic 5.48480 6.78365 8.18620 6.15468 

P-value 0.00000 0.00000 0.00000 0.00000 

Excess return distribution    

     Median 0.00000 0.00000 0.00000 0.00000 

     Standard deviation 0.02312 0.01927 0.01526 0.01066 

     Skewness 0.62709 0.37796 0.74100 0.12691 

     Kurtosis 15.39224 9.05495 11.31566 16.28963 

     Minimum -0.18488 -0.12301 -0.11293 -0.11293 

     Maximum 0.27059 0.21724 0.18203 0.09332 
     

B: Risk Characteristics    

Annualized Sharpe Ratio 1.28 1.58 1.90 1.43 

Intercept 0.00180 0.00180 0.00170 0.00100 
 (5.24400)*** (6.33800)*** (7.73100)*** (6.18900)*** 

Market -0.04250 -0.08970 -0.07480 -0.00170 
 (-1.03600) (-2.62000)*** (-2.75800)*** (-0.08800) 

SMB 0.09720 0.04840 0.05790 0.04870 
 (2.11800)** (-0.18500) (-0.50200) (0.29500) 

HML -0.01910 -0.05730 -0.02120 0.00660 
 (-0.54500) (-1.96300)** (-0.91600) (0.40900) 

Momentum -0.05010 -0.03070 -0.03660 -0.04120 

 (-1.63000) (-1.19800) (-1.80700)* (-
2.90700)*** 

R2 0.00500 0.00400 0.00300 0.00200 

Summary statistics of the daily excess returns on OSE for various portfolios of pairs 
between January 2001 and July 2019 containing 4662 observations. Trades are made 
according to the prespecified rule where trades are opened once the spread between 
two cointegrated stocks in the same cluster deviate by more than two standard 
deviations, measured over a 20-day rolling window (Panel A). Top “n” portfolios 
consists of the “n” number of pairs with the highest reported Sharpe Ratio in the 
formation period. Panel B presents a summary of the strategy’s risk characteristics 
with daily returns regressed on the Fama & French (1993) three factor model and 
Carharts (1997) Momentum factor. 
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Chart displaying the relative bid-ask spread measured at closing for both the S&P500 
and OSE from 2000 through 2020. 

5.4 Market liquidity  
This chapters looks at the liquidity in the two markets covered in this study. We 

begin by studying the overall historical liquidity in the markets using the two 

measures covered in chapter 4.11. We proceed to sort stocks based on their 

measured liquidity, and measure the performance of the strategy when trading at 

the most liquid and the least liquid stocks separately. We do this to analyse how the 

liquidity of the stocks traded impact the strategy performance.   

 

5.4.1 Liquidity on the S&P500 and OSE 

To help us understand the difference in profitability in the two markets using the 

strategy, we examine the overall market liquidity looking at both an order-based 

measure (relative spread) and a trade-based measure (turnover). Given that the 

S&P500 index consists of large US companies while the OSE data includes all 

companies listed on OSE, we should expect to see a difference in liquidity in the 

two datasets.  

 

The average relative bid-ask spread for the S&P500 stocks in the period 2000 – 

2019 is 0.30%, while for the OSE stocks, the average relative spread in the same 

period is 2.78%. Looking at figure 5.7, we observe a downwards sloping trend for 

OSE, while the average spread at S&P500 appears to have been relatively stable 

since 2004. In both markets, there were large spikes around periods of market 

turmoil, such as the global financial crisis in 2008.  

 
Figure 5.7: Relative bid-ask spread on the S&P500 and OSE 
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Additionally, we examine the average turnover in the two markets. Panel A and B 

in figure 5.8 display the average turnover in the two markets calculated as the daily 

number of shares traded divided by the number of shares outstanding. Again, we 

observe considerable differences between the two markets with a much higher 

turnover on the S&P500 than on the OSE, averaging at 1035% and 0.3%, 

respectively. In the period considered, the turnover appears to have declined on the 

OSE, while on the S&P500 it has increased. 

 
Figure 5.8: Turnover on the S&P500 and OSE 
 
 

         

 

 

 

 

 

 

 

Based on these measures, stocks listed at OSE appear to be less liquid in terms of 

both orders-based and trade-based measures. This increases our suspicion that the 

difference in market liquidity could help us explain why pairs trading appears to be 

much more profitable at OSE than on the S&P500.  

 

5.4.2 Trading on the most liquid and the least liquid stocks  

To further investigate the effect of liquidity on pairs trading profits, we want to 

observe the performance of the strategy when trading only on the least liquid stocks 

and the most liquid stocks, separately. As a measure of liquidity we use the 

observed relative bid-ask spread. At the end of very formation period, the average 

daily relative spread is computed and we use this information to construct separate 

portfolios containing stocks with the highest and lowest spread which will be traded 

in the following six months. Specifically, we select the 30th percentile of stocks that 

had the highest relative spread and the 30th percentile of stocks that had lowest 

relative spread in the formation period. We measure the spread and construct new 

portfolios after each formation period and for each of the two markets. We do not 

Panel A and B shows the average turnover (equal weighted) on the S&P500 and OSE 
respectively in the period 2000 – 2020, calculated as the number of shares traded divided 
by the number of shares outstanding. 
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Cumulative excess returns from the portfolios trading on the most liquid stocks and the 
portfolios trading on the least liquid stocks on the S&P500 and OSE. Stocks are sorted 
by the relative spread. The top and bottom 30th percentile are used to construct portfolios. 

run the clustering algorithm but test for cointegration and trade according to the 

same rule as before. Table A3 in the appendix summarizes the excess return 

distribution for the constructed portfolios. The excess returns obtained by trading 

on stocks with the highest spread evidently outperform those obtained by trading 

on the stocks with lowest spread (figure 5.9). The difference is more prominent on 

the OSE, where the difference in average daily excess return between the two 

portfolios is 26 bps compared to 8 bps for the S&P500 portfolios. The portfolio 

trading on the least liquid stocks on OSE obtains statistically significant annualized 

excess returns of 67.36% over the 20-year long period (before TC) with an 

annualized SR of 1.82. Contrary, when trading on the most liquid stocks on OSE, 

the annualized excess returns are close to zero and not statistically significant. The 

excess returns on the portfolios trading stocks on the S&P500 are all statistically 

significant at the 1% level. The “top spread” portfolio returns 29.36% annually 

compared to 8.54% for the “bottom spread” portfolio. These results indicate that 

the profitability of pairs trading might be linked to the liquidity of the traded stocks, 

which potentially explains why pairs trading seems to be more profitable on OSE 

than on the S&P500. It may also be the case that the larger bid-ask spread increases 

the upward bias of returns because of a bid-ask bounce, and that the extra profits 

are, in reality, eaten up by the costs of trading illiquid stocks.   

 
Figure 5.9: Performance of the least liquid and most liquid stocks 
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5.5 Trading costs 
As mentioned previously, we make the distinction between explicit and implicit 

transaction costs. In this chapter, we adjust for both explicit and implicit TC that a 

trader would incur when pursuing the strategy. The implicit costs are difficult to 

measure precisely, and we therefore apply one standard estimate as well as one 

“worst-case scenario” estimate to stress the results. First, we add a 1-day lag from 

we receive our trading signal until we trade to obtain an estimate of the implied bid-

ask spread in the respective markets. Second, to simulate a worst-case scenario, we 

directly impose a TC equal to the average relative bid-ask spread in each respective 

market. This approach assumes that we must cross the order book and pay the bid-

ask spread on every transaction. Other implementation costs, such as slippage, are 

not considered in this study.  

 

5.5.1 Robustness to explicit transaction costs 

We begin by testing whether the results obtained in chapters 5.3.1 and 5.3.2 are 

robust to explicit TC, including commission and short selling fees. For both the 

S&P500 and OSE portfolios, the average number of days a portfolio is held open is 

roughly nine days. Combined with the fixed commission of 5 bps gives us a total 

TC of 36.11 bps per trade (two roundtrips with short-selling fees). Table A1 in the 

appendix section shows that the average daily excess returns are close to zero and 

not statistically significant for any of the S&P500 portfolios once adjusted for 

explicit TC. It is worth noting that pairs trading is a strategy with a relatively high 

frequency of trades, meaning that the returns will be highly susceptible to the 

estimate of TC. We observe that while the results before TC are similar to what 

previous studies find, we obtain much poorer results after TC. A potential 

explanation could be the frequency of trades made, which is considerably higher 

than for example Gatev et al. (2006). On OSE, we observe slightly reduced excess 

returns for all portfolios. The average annualized excess returns decrease by 7.71 

percentage points (pp) for the top 5 portfolio, and 8.44 pp for the portfolio 

containing all pairs (Table A2). We argue that the reason why loss from TC 

increases with the size of the portfolio is that more trades are executed, leading to 

additional roundtrips of costs. Nevertheless, the excess returns are still positive with 

the average annualized excess return for the “top” portfolios being 41.08%. The 

returns are statistically significant at the 1% level for all OSE portfolios.  
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5.5.2 Adjusting for bid-ask spreads 

As discussed in chapter 4.11, the returns obtained may be biased upwards because 

of the bid-ask bounce. To adjust for this effect, we test the strategy’s performance 

with one day delay from the time we receive the trading signal to a position is taken, 

both when opening and closing a position. The average daily excess returns on the 

top 20 portfolio drop by 0.72 bps and 6.89 bps for the S&P500 and OSE, 

respectively, compared to the results obtained when only including explicit TC 

(Table 5.4). The daily excess returns from the S&P500 are still close to zero and 

not statistically significant.  These results corresponds to a drop in the annual excess 

return from 2.34% to 0.53% on the S&P500, and from 39.39% to 22.02% on the 

OSE, which provides us with an estimate of the average bid-ask spread and hence 

the implicit TC. Thus, the results suggest that a substantial part of the excess returns 

on OSE may be driven by the bid-ask bounce, although it is difficult to measure 

how much of the decline is due to actual price convergence. We observe that the 

decline is greater on the OSE, which may be due to the higher bid-ask spread, 

causing bid-ask bounces of greater magnitude. The annualized sharpe ratio is still 

relatively high at 0.84 for the top 20 portfolio. Although the excess returns on OSE 

are lower than before applying the 1 day lag, they are all still positive and 

statistically significant at the 1% level, indicating that the trading strategy survives 

this estimate of explicit and implicit TC.  

 

We also apply the 1-day lag and the explicit TC estimate to the “top spread” 

portfolios constructed in chapter 5.4.2 and observe that even the most illiquid stocks 

on OSE survives the transaction costs (Table A4). The average annualized excess 

returns decline by 14.87 percentage points from 67.36% to 52.49%. While the drop 

in excess returns are quite large, the excess returns are still very high and 

statistically significant at the 1% level. For the S&P500 top spread portfolio, the 

annualized excess returns drop from 29.48% to 2.09%. It is interesting to see that 

the returns obtained on the OSE survives the estimated explicit and implicit costs 

while the returns obtained on the S&P500 disappear using these estimates. A 

possible explanation could be that even the least liquid stocks in the S&P500 are 

still more liquid than most of the OSE stocks, although we cannot conclude that this 

is causing the difference.  
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We recall from the definition of liquid markets that an important factor is being able 

to trade large numbers of shares with little price impact. After observing the 

evidenced inferior liquidity at the OSE, measured in turnover and spreads relative 

to the S&P500, we expect that the possibility to trade at observed prices heavily 

depends on the size of the trades. Given the difficult task of adequately accounting 

for this, we argue that applying the 1-day delay also provides a fitting estimate of 

the execution price because the trader might not be able to fill an order at the exact 

market close. It should also be noted that while the portfolio trading on the least 

liquid stocks on OSE perfoms very well, the volume that can be traded is likely to 

be very limited.  

 
Table 5.4: Summary of descriptive statistics and risk characteristics of 
pairs trading with 1-day lag and explicit TC 
 
Pairs portfolio Top 5 Top 10 Top 20 All 
A: S&P500 Daily excess return distribution 
with 1 day lag and explicit TC 
Average excess return 0.00023 0.00007 0.00002 0.00001 
Annualized excess return 0.05796 0.01764 0.00504 0.00252 
t-Statistic 2.13060 0.77774 0.25933 0.22251 
pvalue 0.03317 0.43676 0.79539 0.82393 
Excess return distribution     
     Median 0.00000 0.00000 0.00000 0.00000 
     Standard deviation 0.00722 0.00618 0.00541 0.00419 
     Skewness 1.70128 2.19739 3.01913 1.19975 
     Kurtosis 26.03100 40.47192 63.01301 23.25694 
     Minimum -0.04826 -0.04351 -0.04351 -0.04351 
     Maximum 0.11149 0.11944 0.11944 0.05289 
Annualized Sharpe ratio 0.51 0.18 0.06 0.04 
     
B: OSE Daily excess return distribution 
with 1 day lag and explicit TC     
Average excess return 0.00123 0.00109 0.00087 0.00075 
Annualized excess return 0.30895 0.27367 0.22025 0.18900 
t-Statistic 3.33290 3.75884 3.62494 4.81246 
p-value 0.00087 0.00017 0.00029 0.00000 
Excess return distribution     
     Median 0.00000 0.00000 0.00000 0.00000 
     Standard deviation 0.02512 0.01972 0.01647 0.01064 
     Skewness 2.21012 0.01662 -0.21437 0.08400 
     Kurtosis 53.03421 22.03774 14.43742 16.75985 
     Minimum -0.36398 -0.25299 -0.17157 -0.11654 
     Maximum 0.42244 0.27067 0.14072 0.09300 
Annualized Sharpe ratio 0.77 0.87 0.84 1.12 

 

Summary statistics of the daily excess returns applying the same strategy as before but 
with 1 day lag on the opening and closing of positions.  
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While applying a 1-day lag might give us a decent estimate of trading costs in the 

sample, we also run the strategy without the 1-day lag but instead adding the 

observed average relative bid-ask spread as a transaction cost on each trade 

executed. This gives us an idea of how robust the returns are to a “worst-case” 

scenario where the bid-ask spread is paid on every transaction. We see from table 

A4 in the appendix section that this adjustment leads to negative excess returns for 

most of the S&P500 portfolios, which were barely positive when we adjusted for 

explicit TC earlier. None of the excess returns are statistically significant, and we 

argue that when considering all transaction costs, the strategy is not profitable on 

the S&P500. Similarly, adding the relative spread on the OSE stocks eliminates 

most of the profits that were left after adjusting for the explicit TC only. The top 5 

and top 10 portfolios obtain positive excess returns, but neither are statistically 

significant. The portfolio trading on all pairs actually generates significant negative 

excess returns. Interestingly, the method applied does not seem to make much of a 

difference on the S&P500 portfolios, while the returns on the OSE are highly 

sensitive to the method used to estimate implicit TC (Figure 5.10). This is likely a 

result of higher trading activity than the other portfolio combined with a much 

higher observed relative spread on the OSE than for the S&P500 portfolios.  

 

Figure 5.10: Strategy performance after TC 

 

 

Plot showing the cumulative excess returns when applying the estimated transaction 
costs and two different measures of bid-ask spreads. 
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The estimates obtained by using the 1-day lag approach may be more realistic, but 

it is interesting to observe how robust the returns are to the “worst-case” estimate. 

While the excess returns are close to zero for the S&P500 portfolios irrespective of 

which method is applied, the OSE portfolios obtain positive and statistically 

significant returns when adjusting for explicit TC and applying a 1-day lag to 

simulate the implied bid-ask spread. On the other hand, applying the observed bid-

ask spread as an additional transaction cost suggest that the cost of trading at OSE 

eats up the excess returns generated by the strategy. Most previous studies appear 

to use the 1-day lag as an estimate of the bid-ask spreads, and we emphasize these 

results as we believe they gives us the most realistic representation of trading costs 

as well as it facilitates comparison of results with previous studies.  

 
5.6 Summary of results and theoretical implications 
In chapter 1.2, we outlined the following hypotheses which are tested separately for 

the two markets in our study: 

  

𝐻!:	𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑑𝑜𝑒𝑠	𝑛𝑜𝑡	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	 
𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠 
 

𝐻": 𝐴	𝑝𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑠𝑡𝑟𝑎𝑡𝑒𝑔𝑦	𝑢𝑠𝑖𝑛𝑔	𝑚𝑎𝑐ℎ𝑖𝑛𝑒	𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔	𝑝𝑟𝑜𝑑𝑢𝑐𝑒	𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒	 
𝑒𝑥𝑐𝑒𝑠𝑠	𝑟𝑒𝑡𝑢𝑟𝑛𝑠 
 

We find that a pairs trading strategy using machine learning is not able to generate 

positive excess returns on the S&P500 once adjusted for TCs, and we therefore fail 

to reject the null hypothesis for the US market. When trading at OSE however, we 

are able to generate positive and statistically significant excess returns after 

adjusting for TCs; thus, we reject the null hypothesis and claim that pairs trading 

using a machine learning approach produce positive excess returns on the OSE. 

Further, we outlined two additional hypotheses:  

 

𝐻!:	𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑛𝑜𝑡	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 
 
𝐻": 𝑃𝑎𝑖𝑟𝑠	𝑡𝑟𝑎𝑑𝑖𝑛𝑔	𝑖𝑠	𝑚𝑜𝑟𝑒	𝑝𝑟𝑜𝑓𝑖𝑡𝑎𝑏𝑙𝑒	𝑖𝑛	𝑚𝑎𝑟𝑘𝑒𝑡𝑠	𝑤𝑖𝑡ℎ	𝑙𝑜𝑤𝑒𝑟	𝑙𝑖𝑞𝑢𝑖𝑑𝑖𝑡𝑦 
 

In our analysis, we prove that the OSE is far less liquid than the S&P500. As we 

find the strategy to be more profitable on the OSE than the S&P500, we reject the 

null hypothesis and claim that pairs trading is more profitable in markets with lower 
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liquidity. To back up this hypothesis, we go on to show that applying the pairs 

trading strategy on the least liquid stocks yields significantly higher excess returns 

than when applied to the most liquid stocks before adjusting for TC. This is the case 

for both the S&P500 and OSE, which again suggest that market liquidity is an 

essential driver of profitability. To address the concern that what looks like larger 

profits may represent higher trading costs, we adjust for the implied bid-ask spread 

and still obtain positive and significant results when trading on the OSE.  Using a 

more aggressive worst-case estimate of the impact of the bid-ask spread, our returns 

are however eliminated. Still, we argue that the probability of this worst-case 

estimate to occur is low, and base our conclusion on the less aggressive estimate 

using a 1-day lag.  

 

We also adjust for the implied bid-ask spread using a 1 da lag on the portfolios 

trading on the least liquid stocks in each of the two markets. The returns from the 

S&P500 stocks with the highest spread are eliminated, while the OSE portfolio still 

obtain significantly positive excess returns.  

 

Analyzing the results in light of our theoretical point of departure, we are able to 

comment on a few interesting observations. While we are able to produce positive 

excess returns on the S&P500 before TC, most of these returns are eliminated once 

adjusted for TC using a conservative estimate. This indicates that the US markets 

exhibit a weak form efficiency and that we are not able to exploit any inefficiencies 

or mispricings. Even when trading on the least liquid stocks, the market seems to 

be relatively efficient and the strategy does not produce positive results. The 

strategy proves to be more profitable on the OSE, suggesting that there might be 

some inefficiencies that we are able to exploit in this market that is much less traded 

than the S&P500. Going back to the framework by Grossman & Stiglitz (1980), it 

appears that the unsupervised learning model is able to extract information of value 

on OSE but not on the S&P500. A possible explanation could be that there are a 

much larger fraction of informed traders on the S&P500 than on OSE, resulting in 

lower returns in the former market. Another interesting observation is that the 

profitability does not appear to be time dependant in the sample period, contrary to 

most literature that reports declining profits in recent years. This is not in line with 

our expectations that a machine learning approach would be able to produce higher 

returns in the past where such techniques were not widely available. 
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5.7 Caveats 
This analysis is exposed to a few pitfalls that are worth mentioning. We assume that 

we can trade on closing prices when implementing the trading strategy, presenting 

us with a “look-ahead bias”. While it is not entirely unreasonable to assume that we 

can execute our order on the exact closing price, we should note that this may not 

always be the case in the “real world”, and the slippage costs could potentially be 

significant. Further, some of the stocks included on OSE are relatively illiquid and 

rarely traded, meaning that we have a few missing values in the dataset on days that 

no trades were made. As we chose to backfill these empty data points with the 

previous day’s close (unless there are more than ten days without data, in which 

case we remove the stock from the dataset), we assume that we could trade on the 

previous price, which might not always be the case. Gatev et al. (2006) addressed 

this concern and did not find it to be a major issue in the obtained results. Another 

problem with illiquid stocks is that it can be difficult to find shares available to 

borrow so that the stock can be shorted. While this is not a concern for stocks 

included in the S&P500, it is likely an issue for many of the illiquid stocks at OSE. 
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6. Conclusion 
We prove that an unsupervised machine learning algorithm is able to identify stocks 

that are similar in terms of risk and often linked to the same industry, making them 

good candidates for pairs trading. Additionally, the algorithm form clusters with 

stocks from different industries which still prove to be cointegrated. This suggests 

that unsupervised machine learning does help us discover patterns that are not 

entirely intuitive. Our results have shown that a simple pairs trading strategy 

building on an unsupervised machine learning approach does not generate sufficient 

excess returns to cover a conservative estimate of explicit transaction costs on the 

S&P500. Conversely, the same trading strategy appears to be profitable on OSE 

even when adjusting for both explicit and implicit transaction costs. We have shown 

that the profitability of pairs trading appears to be closely related to the market 

liquidity of the stocks that are traded, which might explain why the trading strategy 

appears to be more profitable at OSE.  

 

7. Further Research 
The output of the clustering algorithm indicates that keeping the parameters fixed 

throughout all periods might not be optimal. Further research should investigate 

whether non-constant parameters impact the clustering and thus the profitability of 

the strategy. Additionally, the application of other clustering techniques such as 

OPTICS in the context of pairs trading requires additional research. While this 

study makes an effort to determine the profitability of a pairs trading strategy in two 

markets with different liquidity, further analysis on the actual costs of applying the 

strategy on illiquid stocks is required. Further, we only compare two different 

markets, and expanding the data to cover additional markets could potentially 

increase the validity of the results.  
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Appendix 
 
Figure A1: Top 20 pairs S&P500  

 

 
 
 
Figure A2: Top 20 pairs OSE 

 

 
 
 

Summary of strategy performance for the top 20 portfolio on S&P500. The cumulative 
strategy return is compared with the return of the S&P500 index in the top left chart.  

Summary of strategy performance for the top 20 portfolio on the OSE. The cumulative 
strategy return is compared with the return of the OSEBX index in the top left chart.  
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Table A1: S&P500 results with explicit TC  
 
Pairs portfolio Top 5 Top 10 Top 20 All 
A: Excess return 
distribution     
Average excess return 0.00002 0.00003 0.00009 0.00003 

Annualized excess return 0.00605 0.00630 0.02344 0.00630 

t-Statistic 0.21580 0.26925 1.14699 0.38215 

pvalue 0.82915 0.78775 0.25144 0.70237 

Excess return distribution     
Median 0.00000 0.00000 0.00000 0.00000 

Standard deviation 0.00745 0.00633 0.00551 0.00450 

Skewness 0.15589 0.44111 0.78204 0.79083 

Kurtosis 9.73473 12.42605 16.84887 19.09057 

Minimum -0.05467 -0.04748 -0.04351 -0.04351 

Maximum 0.07091 0.07091 0.07091 0.05289 

     
B: Systematic risk of 
pairs trading     
Sharpe Ratio 0.00322 0.00395 0.01688 0.00556 

Intercept 0.00007 0.00003 0.00009 0.00002 

 (0.64500) (0.29200) (1.13600) (0.34300) 

Market -0.01890 -0.00340 0.00580 0.01310 

 (-1.87000)* (-0.39600) (0.78400) (2.17000)** 

SMB 0.01340 0.03790 0.04400 0.03140 

 (0.68300) (2.30100)** (3.07000)*** (2.69100)*** 

HML -0.02710 -0.02830 -0.02060 -0.02580 

 (-1.47200) (-1.82400)* (-1.52500) (-2.34600)** 

Momentum -0.03170 -0.03700 -0.04020 -0.03200 

 (-2.46600)** (-3.40900)*** (-4.25900)*** (-4.15800)*** 

R2 0.00200 0.00400 0.00700 0.00900 
 
 
 
 
 
 
 
 
 

Panel A: Summary statistics of the daily excess returns applying the strategy on the 
S&P500 but adjusted for standard transaction cost such as commissions and short selling 
fees. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed 
against Fama-French three factor model and Carhart’s momentum factor.  
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Table A2: OSE results with explicit TC 

 
 
 
 
 
 
 
 

Pairs portfolio Top 5 Top 10 Top 20 All 
A: Excess return 
distribution     

Average excess return 0.00163 0.00169 0.00156 0.00072 

Annualized excess return 0.41177 0.42664 0.39388 0.18043 

t-Statistic 4.98742 6.07211 7.01941 4.60163 

p-value 0.00000 0.00000 0.00000 0.00000 

Excess return distribution     

   Median 0.00000 0.00000 0.00000 0.00000 

   Standard deviation 0.02237 0.01904 0.01520 0.01062 

   Skewness 0.67228 0.38684 0.64957 0.08351 

   Kurtosis 16.40217 9.20571 11.51896 16.56312 

   Minimum -0.18488 -0.12482 -0.11293 -0.11293 

   Maximum 0.27059 0.21724 0.18203 0.09326 

     
B: Systematic risk of pairs 
trading     

Sharpe ratio 0.07305 0.08894 0.10281 0.06741 

Intercept 0.00160 0.00160 0.00140 0.00070 

 (4.85600)*** (5.70600)*** (6.44900)*** (4.69200)*** 

Market -0.01360 -0.07420 -0.06840 0.00170 

 (-0.34100) (-2.19300)** (-2.56800)*** (0.09100) 

SMB 0.10080 -0.01030 -0.01260 0.00490 

 (2.26800)** (-0.27300) (-0.42300) (0.23400) 

HML 0.00370 -0.03900 -0.01030 0.01590 

 (0.10800) (-1.35300) (-0.45200) (0.98600) 

Momentum -0.04790 -0.03280 -0.03440 -0.04460 

 (-1.61100) (-1.29600) (-1.72600)** (-3.15500)*** 

R2 0.00400 0.00200 0.00300 0.00200 
Panel A: Summary statistics of the daily excess returns applying the strategy on the OSE 
but adjusted for standard transaction cost such as commissions and short selling fees. Panel 
B: Summary of risk profile of the obtained returns. Daily returns regressed against Fama-
French three factor model and Carhart’s momentum factor.  
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Table A3: Performance on Bottom and Top spread portfolios 
 

 S&P500 OSE 

A: Bottom spread portfolio   
Average excess return 0.00034 0.00004 

Annualized excess return 0.08568 0.01008 

t-Statistic 3.62283 0.16730 

p-value 0.00029 0.86714 

Excess return distribution   
     Median 0.00000 0.00000 

     Standard deviation 0.00638 0.01532 

     Skewness 1.69139 -0.23631 

     Kurtosis 21.02821 14.98725 

     Minimum -0.04615 -0.18605 

     Maximum 0.08895 0.12610 

Annualized Sharpe Ratio 0.85 0.04 

   
B: Top spread portfolio   
Average excess return 0.00117 0.00267 

Annualized excess return 0.29484 0.67284 

t-Statistic 5.82546 7.83020 

p-value 0.00000 0.00000 

Excess return distribution   
     Median 0.00000 0.00000 

     Standard deviation 0.01366 0.02331 

     Skewness 0.51067 0.85283 

     Kurtosis 9.35137 10.35755 

     Minimum -0.11031 -0.16418 

     Maximum 0.11193 0.27856 

Annualized Sharpe Ratio 1.36 1.82 
 
 
 
 
 
 
 
 
 
 

The table summarize the excess returns and its distribution for the portfolios containing 
the 30% most liquid stocks and the portfolios containing the 30% least liquid stocks for 
both the S&P500 and OSE, measured by the relative bid-ask spread.  
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Table A4: Performance on Bottom and Top spread portfolios with 1 day 
lag and including explicit TC 
 

 S&P500 OSE 
A: Bottom spread portfolio inc. 1 day  
lag and explicit TC  
Average excess return 0.00005 0.00003 
Annualized excess return 0.01310 0.00781 
t-Statistic 0.59829 0.09267 
pvalue 0.54967 0.92617 
Excess return distribution:   
   Median 0.00000 0.00000 
   Standard deviation 0.00594 0.02272 
   Skewness 1.71382 3.06829 
   Kurtosis 23.29081 158.90822 
   Minimum -0.04544 -0.39856 
   Maximum 0.08193 0.58065 
Annualized Sharpe Ratio 0.13362 0.02166 

   
B: Top spread portfolio inc. 1 day  
lag and explicit TC  
Average excess return 0.00008 0.00208 
Annualized excess return 0.02092 0.52492 
t-Statistic 0.70225 4.49086 
pvalue 0.48256 0.00001 
Excess return distribution:   
   Median 0.00000 0.00000 
   Standard deviation 0.00807 0.03168 
   Skewness 1.05147 0.82808 
   Kurtosis 10.93792 12.94110 
   Minimum -0.04891 -0.24811 
   Maximum 0.07218 0.38182 
Annualized Sharpe Ratio 0.16319 1.04393 

 
 
 
 
 

The table summarize the excess returns and its distribution for the portfolios containing 
the top and bottom 30th percentile of stocks sorted by their liquidity. The relative bid-
ask spread is used as a measure of liquidity.   
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Table A5: S&P500 Performance with explicit TC and relative BA-spread  
 
Pairs portfolio Top 5 Top 10 Top 20 All 
A: Excess return 
distribution     
Average excess return -0.00005 -0.00005 0.00001 -0.00006 

Annualized excess return -0.01210 -0.01361 0.00227 -0.01512 

t-Statistic -0.43665 -0.58213 0.11314 -0.90302 

p-value 0.66238 0.56051 0.90993 0.36656 
Excess return 
distribution:     
   Median 0.00000 0.00000 0.00000 0.00000 

   Standard deviation 0.00751 0.00634 0.00552 0.00451 

   Skewness 0.30682 0.40876 0.73320 0.75858 

   Kurtosis 9.26784 12.16502 16.47296 18.99981 

   Minimum -0.05467 -0.04748 -0.04351 -0.04351 

   Maximum 0.06978 0.06978 0.06978 0.05289 

     
B: Risk characteristics of 
pairs trading     
Sharpe Ratio -0.00639 -0.00851 0.00163 -0.01329 

Intercept -0.00004 -0.00005 0.00001 -0.00006 

 (-0.39100) (-0.55800) (0.64500) (-0.94500) 

Market -0.01070 -0.00380 -0.01890 0.01300 

 (-1.06300) (-0.44100) (-1.87000)* (2.14500)** 

SMB 0.03260 0.03750 0.01340 0.03110 

 (1.66400)* (2.27000)** (0.68300) (2.65500)*** 

HML -0.03440 -0.02830 -0.02710 -0.02610 

 (-1.86800)* (-1.81700)* (-1.47200) (-2.36300)** 

Momentum -0.03760 -0.03700 -0.03170 -0.03200 

 (-2.91800)*** (-3.40300)*** (-2.46600)** (-4.14400)*** 

R2 0.00300 0.00400 0.00200 0.00900 
 
 
 
 
 
 
 
 
 
 
 

Panel A: Summary statistics of the daily excess returns applying the same pairs trading 
strategy as before but adjusted for standard transaction and average relative bid ask 
spreads. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed 
against Fama-French three factor model and Carhart’s momentum factor.  
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Table A6: OSE Performance with explicit TC and relative BA-spread  
 
Pairs portfolio Top 5 Top 10 Top 20 All 

A: Excess return distribution     
Average excess return 0.00015 0.00003 -0.00022 -0.00094 

Annualized excess return 0.03755 0.00731 -0.05645 -0.23587 

t-Statistic 0.44500 0.10192 0.99915 5.86567 

pvalue 0.65634 0.91883 0.31777 0.00000 

Excess return distribution     
Median 0.00000 0.00000 0.00000 0.00000 

Standard deviation 0.02279 0.01946 0.01533 0.01090 

Skewness 0.53614 0.21687 0.41488 -0.31438 

Kurtosis 15.76179 9.07968 11.74605 16.18632 

Minimum -0.18488 -0.13571 -0.11293 -0.11293 

Maximum 0.27059 0.21724 0.18203 0.09288 

     
B: Systematic risk of pairs 
trading 0.10377 0.02365 -0.23197 -1.36317 

Sharpe ratio 0.00654 0.00149 -0.01461 -0.08587 

Intercept 0.00010 -0.00005 -0.00030 -0.00090 

 (0.40000) (-0.16000) (-1.28100) (-5.58600) 

Market 0.00120 -0.06160 -0.05420 0.01540 

 (0.03000) (-1.77900) (-1.98900)* (0.79200) 

SMB 0.11840 0.00440 0.00240 0.02130 

 (2.61400)*** (0.11300) (0.08000) (0.98200) 

HML 0.00830 -0.03380 0.00140 0.02190 

 (0.24000) (-1.14600) (0.06200) (1.32400) 

Momentum -0.04310 -0.02550 -0.02840 -0.04260 

 (-1.42400) (-0.98600) (-1.39300) (-2.93900) 

R2 0.00400 0.00200 0.00300 0.00200 
 
 
 
C1: Python code for the strategy 
C2: Python code for constructing spread portfolios 
 

Panel A: Summary statistics of the daily excess returns applying the same pairs trading 
strategy as before but adjusted for standard transaction and average relative bid ask 
spreads. Panel B: Summary of risk profile of the obtained returns. Daily returns regressed 
against Fama-French three factor model and Carhart’s momentum factor.  
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#importing modules
import pandas as pd
import numpy as np
import pandas_datareader as web
import matplotlib.pyplot as plt
import datetime as datetime
import seaborn as sns
import matplotlib.cm as cm
import statsmodels.api as sm
from sklearn import linear_model
from sklearn.cluster import KMeans, DBSCAN
from sklearn.decomposition import PCA
from sklearn.manifold import TSNE
from sklearn import preprocessing
from statsmodels.tsa.stattools import coint
from statsmodels.tsa.stattools import adfuller
import statsmodels.regression.linear_model as rg
from scipy import stats
import statsmodels.api as sm
import statsmodels.tsa.stattools as ts
from statsmodels.api import add_constant
import os

#Import data 
crsp_data = pd.read_csv('CRSP_data_FIXED.csv', index_col=0, sep=',')

# Import benchmarks
oslo_bors_benchmark_index = pd.read_csv(\
                            'Oslo_bors_benchmark_index.csv', index_col=0,\
                            sep=',', encoding='latin-1')
oslo_bors_benchmark_index.index = \
    pd.to_datetime(oslo_bors_benchmark_index.index, format='%Y%m%d')    

SP500_index = pd.read_csv('SP500_benchmark_index.csv', index_col=0, sep=','\
                          , encoding='latin-1')
SP500_index.index = pd.to_datetime(SP500_index.index, format='%Y%m%d')

# Calculate cumulative return on benchmarks
oslo_bors_benchmark_index['return'] = \
    oslo_bors_benchmark_index['Oslo BĂ¸rs Benchmark Index_GI'].pct_change()
oslo_bors_benchmark_index['cumulative return'] = \
    np.cumprod(1+oslo_bors_benchmark_index['return'])-1
oslo_bors_benchmark_index.fillna(0)

SP500_index.index = pd.to_datetime(SP500_index.index, format='%Y%m%d')
SP500_index['cum_ret'] =  np.cumprod(1+SP500_index['sprtrn'])-1

#%%
#-------------------------------------------------------------------------------------------------
# Create FORMATION period datasets with daily stock prices
#-------------------------------------------------------------------------------------------------

list_of_formation_datasets_prices = []
y = 0
while y < (5040-126):
    temp = crsp_data.iloc[y:y+252]
    list_of_formation_datasets_prices.append(temp)
    y += 126
    
list_of_formation_datasets_prices.pop()
list_of_formation_datasets_prices.pop()

C1 Python code for the strategy
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#-------------------------------------------------------------------------------------------------
# Create TRADING period datasets with daily stock prices
#-------------------------------------------------------------------------------------------------

list_of_trading_datasets_prices = []
y = 0
while y < (5040-126):
    temp = crsp_data.iloc[y:y+126]
    list_of_trading_datasets_prices.append(temp)
    y += 126
    
list_of_trading_datasets_prices.pop(0)
list_of_trading_datasets_prices.pop(0)

#-------------------------------------------------------------------------------------------------
# Clean data for missing values
#-------------------------------------------------------------------------------------------------
    
# for formation datasets
for dataset in list_of_formation_datasets_prices:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_formation_datasets_prices:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_formation_datasets_prices:
    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
   

# for trading datasets:
for dataset in list_of_trading_datasets_prices:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_datasets_prices:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_trading_datasets_prices:
    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
    

# Make sure we have the same securities in the formation and trading period. 
# Remove securities that are not present in both periods

common_tickers = []
for i in range(len(list_of_formation_datasets_prices)):
    common_cols = list_of_formation_datasets_prices[i].drop([col for col in\
                  list_of_formation_datasets_prices[i].columns if col in\
                  list_of_formation_datasets_prices[i].columns and col not in\
                  list_of_trading_datasets_prices[i].columns], axis = 1)

    common_tickers.append(common_cols)

for i in range(len(list_of_formation_datasets_prices)):
    list_of_formation_datasets_prices[i] = list_of_formation_datasets_prices[i]\
    [common_tickers[i].columns]
    list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i]\
    [common_tickers[i].columns]

# Calculating returns from closing prices
list_of_training_returns = []
for dataset in list_of_formation_datasets_prices:
    stock_returns = dataset.pct_change()
    list_of_training_returns.append(stock_returns)
    

C1 Python code for the strategy
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for dataset in list_of_training_returns:
    dataset.iloc[0:1] = 0
    
list_of_trading_returns = []
for dataset in list_of_trading_datasets_prices:
    stock_returns = dataset.pct_change()
    list_of_trading_returns.append(stock_returns)
    
for dataset in list_of_trading_returns:
    dataset.iloc[0:1] = 0
    
#%%

#-------------------------------------------------------------------------------------------------
# PCA
#-------------------------------------------------------------------------------------------------
extracted_pca_data = []
for dataset in list_of_training_returns:
    pca = PCA(n_components = 20) # nr. of components is set to 12
    pca.fit(dataset)
    pca.explained_variance_ratio_.cumsum() # determine nr . of components
    print('The shape of the array after PCA is : ', pca.components_.T.shape) 
    extracted_data = preprocessing.StandardScaler().\
    fit_transform(pca.components_.T) 
    print ('The shape of the array is now:', extracted_data.shape)
    extracted_pca_data.append(extracted_data)

    PC_values = np.arange(pca.n_components_) + 1
    plt.plot(PC_values, pca.explained_variance_ratio_, 'ro-', linewidth=2)
    plt.title('Scree Plot')
    plt.xlabel('Principal Component')
    plt.ylabel('Proportion of Variance Explained')
    plt.title('Scree Plot for US data')
    plt.show()
    plt.close()
    
    plt.plot(np.cumsum(pca.explained_variance_ratio_), color = 'blue')
    plt.xlabel('number of components')
    plt.ylabel('cumulative explained variance');
    plt.title('Cumulative Scree Plot for US data')
    plt.show()

#-------------------------------------------------------------------------------------------------
# DBSCAN
#-------------------------------------------------------------------------------------------------
extracted_DBSCAN_data = []
extracted_labels = []
extracted_clustered_series = []
extracted_clustered_series_all = []
extracted_labels = []
extracted_ticker_count_reduced = []
extracted_n_clusters = []
    
for i in range(len(extracted_pca_data)):    
    clustering = DBSCAN(eps=1, min_samples=4) 
    # eps = 1 for SP500, eps = 0.6 for OSE
    print(clustering)
    clustering.fit(extracted_pca_data[i])
    labels =clustering.labels_
    extracted_labels.append(labels)
    n_clusters_ = len(set(labels)) - (1 if -1 in labels else 0) 
    print ('\nClusters discovered : %d' % n_clusters_ ) 
    extracted_n_clusters.append(n_clusters_)
    clustered = clustering.labels_ 
    extracted_DBSCAN_data.append(clustered)

C1 Python code for the strategy
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#Add ticker name to clustered stocks
for i in range(len(list_of_training_returns)):
    clustered_series = pd.Series(index = list_of_training_returns[i].columns,\
                       data=extracted_DBSCAN_data[i])
    extracted_clustered_series_all.append(clustered_series)
    clustered_series = clustered_series[clustered_series != -1]
    extracted_clustered_series.append(clustered_series)
        
    CLUSTER_SIZE_LIMIT = 200
    counts = clustered_series.value_counts()
    ticker_count_reduced = counts[(counts>1) & counts<=CLUSTER_SIZE_LIMIT]
    extracted_ticker_count_reduced.append(ticker_count_reduced)
    print('Clusters formed: %d' % len(ticker_count_reduced))
    print('Pairs to evaluate: %d' % (ticker_count_reduced*\
                                     (ticker_count_reduced-1)).sum())
      
        
#%%

#Plot multidimension dataset of returns into 2D
#This creates a t-SNE plot of all stocks with clusters noted
for i in range(36):
    extracted_data_tsne = TSNE(learning_rate=500, perplexity=18, \
                       random_state=1337).fit_transform(extracted_pca_data[i])

    #PLOT
    plt.figure(1, facecolor='white', figsize=(10,6))
    plt.clf()
    #plt.axis('off')
    
    #unclustered in the background
    plt.scatter(
        extracted_data_tsne[(extracted_clustered_series_all[i]==-1).values, 0],
        extracted_data_tsne[(extracted_clustered_series_all[i]==-1).values, 1],
        s=120, 
        alpha=0.2,
        c='grey'
        )
   
    #clustered
    plt.scatter(
        extracted_data_tsne[(extracted_labels[i]!=-1), 0], 
        extracted_data_tsne[(extracted_labels[i]!=-1), 1],
        s=120,
        alpha=0.85, 
        c=extracted_labels[i][extracted_labels[i]!=-1],
        cmap=cm.cool,
        edgecolors = 'grey'
        )
    
    plt.title('T-SNE of DBSCAN clusters for US data', fontsize = 20)
    plt.xlabel('Dimension 1', fontsize = 12)
    plt.ylabel('Dimension 2', fontsize = 12)
    plt.show()

#%% 
#-------------------------------------------------------------------------------------------------
# This part prepares the data for performing a cointegration test on all pairs
# in each cluster
#-------------------------------------------------------------------------------------------------
# Get the number of stocks in each cluster
extracted_counts = []
for i in range(len(extracted_clustered_series)):
    counts = extracted_clustered_series[i].value_counts()
    extracted_counts.append(counts)

C1 Python code for the strategy
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extracted_clusters_vis_list = []
for i in range(len(extracted_counts)):
    clusters_vis_list = list(extracted_counts[i][(extracted_counts[i]<500) & \
                                         (extracted_counts[i]>1)].index[::-1])
    extracted_clusters_vis_list.append(clusters_vis_list)

extracted_training_new = []
for dataset in list_of_training_returns:
    training_new_draft = ((dataset + 1).cumprod()-1)
    training_new = training_new_draft[0:252]
    extracted_training_new.append(training_new)

# Create a list to use as x-axis in plot:
x=list(range(1,253))

# Plot the stock time series for all clusters
extracted_tickers_list = []
for i in range(len(extracted_clusters_vis_list)):
    temp = extracted_clustered_series[i]
    tickers2 = temp[temp==0]
    tickers1 = temp[temp==1]
    tickers3 = temp[temp==2]
    tickers4 = temp[temp==3]
    tickers5 = temp[temp==4]
    tickers6 = temp[temp==5]
    tickers7 = temp[temp==6]
    tickers8 = temp[temp==7]
    tickers9 = temp[temp==8]
    tickers10 = temp[temp==9]
    tickers11 = temp[temp==10]
    tickers12 = temp[temp==11]
    tickers13 = temp[temp==12]
    tickers14 = temp[temp==13]
    tickers15 = temp[temp==14]
    
   # tickers4 = temp[temp ==[]]
    if list(tickers1)!=[]:
        extracted_tickers_list.append(tickers1)
    if list(tickers2)!=[]:
        extracted_tickers_list.append(tickers2)
    if list(tickers3)!=[]:
        extracted_tickers_list.append(tickers3)
    if list(tickers4)!=[]:
        extracted_tickers_list.append(tickers4)
    if list(tickers5)!=[]:
        extracted_tickers_list.append(tickers5)
    if list(tickers6)!=[]:
        extracted_tickers_list.append(tickers6)
    if list(tickers7)!=[]:
        extracted_tickers_list.append(tickers7)
    if list(tickers8)!=[]:
        extracted_tickers_list.append(tickers8)
    if list(tickers9)!=[]:
        extracted_tickers_list.append(tickers9)
    if list(tickers10)!=[]:
        extracted_tickers_list.append(tickers10)
    if list(tickers11)!=[]:
        extracted_tickers_list.append(tickers11)
    if list(tickers12)!=[]:
        extracted_tickers_list.append(tickers12)
    if list(tickers13)!=[]:
        extracted_tickers_list.append(tickers13)
    if list(tickers14)!=[]:
        extracted_tickers_list.append(tickers14)
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    if list(tickers15)!=[]:
        extracted_tickers_list.append(tickers15)
        
    if list(tickers1) == [] and list(tickers2) == [] and list(tickers3) == []\
        and list(tickers4) == [] and list(tickers5) == [] and \
        list(tickers6) == [] and list(tickers7) == [] and list(tickers8) == []\
        and list(tickers9) == [] and list(tickers10) == [] and \
        list(tickers11) == [] and list(tickers12) == [] and \
        list(tickers13) == [] and list(tickers14) == [] and \
        list(tickers15) == []:
        extracted_tickers_list.append([])

#%% 
#-------------------------------------------------------------------------------------------------
# Setting up cointegration test
#-------------------------------------------------------------------------------------------------
# COINTEGRATION TEST (From Larkin (2017))
def cointegrated_stocks(data, significance=0.05):
    n = data.shape[1] # gives us the number of stocks in cluster
    score_matrix = np.zeros((n, n)) # creates an n*n array of zeros
    pvalue_matrix = np.ones((n, n)) 
    # ^ this array will be updated with cointegration p-values
    keys = data.keys() # store the ticker symbol of stocks
    pairs = [] # create an empty list
    
    for i in range(n):
        for j in range(i+1, n):
            S1 = data[keys[i]]
            S2 = data[keys[j]]
    
            result = coint(S1, S2) # no intercept needed
            score = result[0] # store result index[0]
            pvalue = result[1]
            score_matrix[i, j] = score
            pvalue_matrix[i, j] = pvalue
    
            if pvalue < significance:
                pairs.append((keys[i], keys[j]))
    return score_matrix, pvalue_matrix, pairs 

# Create a new index to allow for several clusters in each formaiton period
new_index = []
for i in range(len(extracted_counts)):
    x = i
    if len(extracted_counts[i]) == 2:
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 3:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 4:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 5:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 6:
        new_index.append(x)
        new_index.append(x)
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        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 7:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 8:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 9:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 10:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 11:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 12:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
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        new_index.append(x)
    elif len(extracted_counts[i]) == 13:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 14:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    elif len(extracted_counts[i]) == 15:
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
        new_index.append(x)
    else:
        new_index.append(x) 

#-------------------------------------------------------------------------------------------------
# Loop through formation periods to find cointegrated pairs in each cluster
#-------------------------------------------------------------------------------------------------
cluster_dictionary = {}
score_matrix_list = []
pvalue_matrix_list = []
pairs_list = []

count = 0

for i in range(0, len(new_index)):
    
    if len(extracted_tickers_list[i]) == 0:
        count += 1
        print(i)
        continue
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    period = new_index[i]
    print(period)

    stock_ticks = extracted_tickers_list[count]
    print(stock_ticks)# An index list of all stocks in cluster
    print(list_of_formation_datasets_prices[period].columns)
    score_matrix, pvalue_matrix, pairs = cointegrated_stocks\
        (list_of_formation_datasets_prices[period][stock_ticks.index]
    )
    score_matrix_list.append(score_matrix)
    pvalue_matrix_list.append(pvalue_matrix)
    pairs_list.append(pairs)
    
    cluster_dictionary[i] = {}
    cluster_dictionary[i]['period'] = period
    cluster_dictionary[i]['score_matrix'] = score_matrix
    cluster_dictionary[i]['pvalue_matrix'] = pvalue_matrix
    cluster_dictionary[i]['pairs'] = pairs
    
    count += 1

potential_pairs = []
for clust in cluster_dictionary.keys():
    potential_pairs = cluster_dictionary[clust]['pairs']
    
    print('The following pairs will be traded in this period:')
    print(set(cluster_dictionary[clust]['pairs']))
    
    print('We found %d pairs.' % len(potential_pairs))
    print('In those pairs, there are %d unique tickers.' % \
          len(np.unique(potential_pairs)))
    
    potential_pairs.extend(cluster_dictionary[clust]['pairs'])

#-------------------------------------------------------------------------------------------------
# Plot a cluster with cointegrated pairs noted
#-------------------------------------------------------------------------------------------------    
Cluster = extracted_clustered_series[1][extracted_clustered_series[1]==0]
our_pairs = cluster_dictionary[3]['pairs']

stocks = list(np.unique(our_pairs))
X_df = pd.DataFrame(index=list_of_training_returns[1].T.index, \
                    data=extracted_pca_data[1])

stocks = list(np.unique(our_pairs))
X_pairs = X_df.loc[Cluster.index]

X_tsne = TSNE(learning_rate=50, perplexity=3, random_state=1337).\
    fit_transform(X_pairs)

plt.figure(1, facecolor='white')
plt.clf()
plt.axis('off')
for pair in our_pairs:
    ticker1 = pair[0]
    loc1 = X_pairs.index.get_loc(pair[0])
    x1, y1 = X_tsne[loc1, :]
    
    ticker2 = pair[0]
    loc2 = X_pairs.index.get_loc(pair[1])
    x2, y2 = X_tsne[loc2, :]
    
    plt.plot([x1, x2], [y1, y2], 'k-', alpha=0.2, c='gray');

plt.scatter(X_tsne[:, 0], X_tsne[:, 1], s=220, alpha=1, c=[Cluster.values], \
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            cmap=cm.Wistia, edgecolor = 'grey')
plt.title('T-SNE Visualization of validated pairs')
plt.show()

#%%
#-------------------------------------------------------------------------------------------------
# Trading setup and execution in FORMATION periods
#------------------------------------------------------------------------------------------------- 
# creating datasets for all potential pairs in the formation period containing 
#returns, spread, trading signals, positions and spread returns

pairs_datasets = []
for clust in cluster_dictionary:
    for i in range(len(set(cluster_dictionary[clust]['pairs']))):
        pair_tickers = list(cluster_dictionary[clust]['pairs'][i])
        period = cluster_dictionary[clust]['period']
        trading_pair = list_of_formation_datasets_prices[period][pair_tickers]
        #trading_pair.columns = ['S1', 'S2']
    
        trading_pair['S1_ret'] = trading_pair[pair_tickers[0]].pct_change(1)
        trading_pair.iloc[0,2] = 0
        trading_pair['S2_ret'] = trading_pair[pair_tickers[1]].pct_change(1)
        trading_pair.iloc[0,3] = 0

        # CALCULATE ROLLING Z-SCORE
        rolling_window = 20
        
        # OLS Regression (can be used to decide long/short position size)
        lm_pair = rg.OLS(trading_pair[pair_tickers[0]],\
                         trading_pair[pair_tickers[1]]).fit()
        trading_pair_b1 = lm_pair.params[0]
        
        # Create new column called pairs spread
        trading_pair['pairs_spread'] = \
            (trading_pair[pair_tickers[0]] - trading_pair[pair_tickers[1]])\
                / trading_pair[pair_tickers[1]]
        
        # Rolling 10-day covariance
        rolling_pair_cov = trading_pair.loc[:, [pair_tickers[0],\
                           pair_tickers[1]]].rolling(window=rolling_window)\
              .cov(trading_pair.loc[:, [pair_tickers[0], pair_tickers[1]]],\
                                                              pairwise=True)
        
        # Slice multi index df to single index df if pairs covariance
        idx = pd.IndexSlice
        rolling_pair_cov = rolling_pair_cov.loc[idx[:, pair_tickers[0]], \
                                                          pair_tickers[1]]
        
        # Convert Date and Stock index into date index by making stock at 
        # index level 1 intp a new column
        rolling_pair_cov = rolling_pair_cov.reset_index(level=1)
        
        # Calculate the 10-day rolling variance
        rolling_pair_var = trading_pair[pair_tickers[0]].\
                                          rolling(window=rolling_window).var()
        
        # Rolling Beta
        trading_pair['rolling_pair_b1'] = rolling_pair_cov[pair_tickers[1]] \
                                                           / rolling_pair_var
        
        # Calculation of 10-day rolling spread
        trading_pair['rolling_pair_spread'] = trading_pair['pairs_spread'].\
                                       rolling(window=rolling_window).mean()
        
        trading_pair['spread_std'] = trading_pair['pairs_spread'].\
                                        rolling(window = rolling_window).std()
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        trading_pair['rolling_Z_score'] = (trading_pair['pairs_spread'] - \
            trading_pair['rolling_pair_spread']) / trading_pair['spread_std']
        
        # TRADING SIGNAL ALGORITHM
        # z-score the day before
        trading_pair['rolling_Z_score(-1)'] = \
                                      trading_pair['rolling_Z_score'].shift(1)
         # z-score two days before
        
        trading_pair['pair_signal'] = 0
        pair_signal = 0

        # Signal generation
        for i, r in enumerate(trading_pair.iterrows()):
            if r[1]['rolling_Z_score(-1)'] > -2 and \
                                                 r[1]['rolling_Z_score'] < -2:
                pair_signal = -2
            elif r[1]['rolling_Z_score(-1)'] < -0 and \
                                                 r[1]['rolling_Z_score'] > -0:
                pair_signal = -1
            elif r[1]['rolling_Z_score(-1)'] < 2 and \
                                                  r[1]['rolling_Z_score'] > 2:
                pair_signal = 2
            elif r[1]['rolling_Z_score(-1)'] > 0 and \
                                                  r[1]['rolling_Z_score'] < 0:
                pair_signal = 1
            else:
                pair_signal = 0
            trading_pair.iloc[i, 10] = pair_signal

        # Positions: 1 = Long Spread Trade, -1 = Short Spread Trade
        trading_pair['position'] = 0
        for i, r in enumerate(trading_pair.iterrows()):
            if r[1]['pair_signal'] == -2:
                position = 1
            elif r[1]['pair_signal'] == -1:
                position = 0
            elif r[1]['pair_signal'] == 2:
                position = -1
            elif r[1]['pair_signal'] == 1:
                position = 0
            else:
                position = trading_pair['position'].iloc[i-1]
            trading_pair.iloc[i,11] = position

        # Computing returns without beta
        trading_pair['spread_returns'] = trading_pair['S1_ret'] - \
                                                        trading_pair['S2_ret']
        trading_pair['return'] = trading_pair['spread_returns'] * \
                                             trading_pair['position'].shift(1)
                                             #set this to .shift(2) to impose
                                             #a 1 day lag
        
        # checking which period the pair is from and adding it to the datasets
        trading_pair['period'] = cluster_dictionary[clust]['period']
        
        # append trading_pair to the list containing all datasets
        pairs_datasets.append(trading_pair)

#%%
#-------------------------------------------------------------------------------------------------
# Calculate the sharpe ratios for all pairs in the training periods
#-------------------------------------------------------------------------------------------------

sharpe_ratios = []
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for i in range(len(pairs_datasets)):
    pairs_datasets[i]['avg_ret'] = pairs_datasets[i]['return'].mean()
    pairs_datasets[i]['std_dev_ret'] = pairs_datasets[i]['return'].std()
    pairs_datasets[i]['SR'] = pairs_datasets[i]['avg_ret'] / \
                                              pairs_datasets[i]['std_dev_ret']

# Put all sharpe ratios in a list together with their period number
list_of_all_sharpe_ratios = []
list_of_all_periods = []
for i in range(len(pairs_datasets)):
    sharpe_ratio = pairs_datasets[i]['SR'].mean()
    period = pairs_datasets[i]['period'].mean()
    list_of_all_sharpe_ratios.append(sharpe_ratio)
    list_of_all_periods.append(period)

SR_p_merged = pd.DataFrame()
SR_p_merged['SR'] = list_of_all_sharpe_ratios
SR_p_merged['period'] = list_of_all_periods
    
# Group by highest sharpe and period
# We pick the 10 pairs with highest sharpe from each training period
groups = SR_p_merged.sort_values(['period', 'SR']).groupby('period').tail(5)
# adjust the .tail() to the number of stocks you want to trade on
groups.reset_index(inplace=True)

# Match the highest sharpe ratios with the tickers that belongs to these 
tickers_with_highest_sharpe = []

for i in range(len(groups)):
    for j in range(len(pairs_datasets)):
        if groups['SR'][i] == pairs_datasets[j]['SR'].mean() and \
                    groups['period'][i] == pairs_datasets[j]['period'].mean():
            tickers_with_highest_sharpe.append(pairs_datasets[j].iloc[:,0:21])   
            
optimal_trading_pairs = []      
for i in range(len(tickers_with_highest_sharpe)):
    print(i)
    new_trading_pair = list_of_trading_datasets_prices\
    [int(tickers_with_highest_sharpe[i]['period'].mean())]\
        [tickers_with_highest_sharpe[i].iloc[:,:2].columns]
    optimal_trading_pairs.append(new_trading_pair)

#%%
#-------------------------------------------------------------------------------------------------
# Calculate daily return when trading at every cointegrated pair in each 
# cluster every training period
#-------------------------------------------------------------------------------------------------

dataframe = pd.DataFrame()
dataframe_index = pd.DataFrame()
for i in range(len(pairs_datasets)):
    temp = pairs_datasets[i]
    temp2 = temp['return']
    temp = temp.shift(-1)[temp['position']!=0]['return']
    dataframe = pd.concat([dataframe, temp])
    dataframe_index = pd.concat([dataframe_index, temp2])
    #trading_dataframe.drop_duplicates(inplace=True)
dataframe.columns = ['return']    
    
dataframe.reset_index(inplace=True)
grouped_dataframe = dataframe.groupby('index').agg('mean')

dataframe_index.reset_index(inplace=True)
grouped_dataframe_index = dataframe_index.groupby('index').agg('mean')
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training_results = pd.DataFrame(index = grouped_dataframe_index.index, data =\
                                                  grouped_dataframe['return'])
training_results = training_results.fillna(0)

training_results['cumulative return'] = np.cumsum(training_results['return'])
training_results.reset_index(inplace=True)

plt.figure(figsize=(10,7))
plt.plot(training_results['cumulative return'], linewidth=1, color='blue')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Cumulative return for all pairs in the training periods ')
plt.show()

training_std_of_returns = training_results['return'].std()
training_average_return = training_results['return'].mean()
print('The annualized return in the training period is:', \
                                              (training_average_return * 252))
print('The annualized SR in the training period is:', \
           ((training_average_return/training_std_of_returns) * np.sqrt(252)))

#-------------------------------------------------------------------------------------------------
# Calculate the daily return on the x number of pairs with the highest sharpe 
# ratio. The x is decided by the .tail()  
#-------------------------------------------------------------------------------------------------   

highest_SR_dataframe = pd.DataFrame()
highest_SR_dataframe_index = pd.DataFrame()
for i in range(len(tickers_with_highest_sharpe)):
    temp = tickers_with_highest_sharpe[i]
    temp2 = temp['return']
    temp = temp.shift(-1)[temp['position']!=0]['return']
    highest_SR_dataframe = pd.concat([highest_SR_dataframe, temp])
    highest_SR_dataframe_index = pd.concat([highest_SR_dataframe_index,temp2])
    #trading_dataframe.drop_duplicates(inplace=True)
highest_SR_dataframe.columns = ['return']    
    
highest_SR_dataframe.reset_index(inplace=True)
grouped_highest_SR_dataframe=highest_SR_dataframe.groupby('index').agg('mean')

highest_SR_dataframe_index.reset_index(inplace=True)
grouped_highest_SR_dataframe_index = \
                       highest_SR_dataframe_index.groupby('index').agg('mean')

training_results_high_SR = pd.DataFrame(index = \
                           grouped_highest_SR_dataframe_index.index, data = \
                                      grouped_highest_SR_dataframe['return'])
training_results_high_SR = training_results_high_SR.fillna(0)

training_results_high_SR['cumulative return'] = \
                                 np.cumsum(training_results_high_SR['return'])
training_results_high_SR.reset_index(inplace=True)

plt.figure(figsize=(10,7))
plt.plot(training_results_high_SR['cumulative return'], linewidth=1, \
                                                                 color='blue')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Cumulative return for the pairs with highest sharpe ratio in the \
                                                          formation periods ')
plt.show()

training_std_of_returns_high_SR = training_results_high_SR['return'].std()
training_average_return_high_SR = training_results_high_SR['return'].mean()
print('The annualized return in the training period is:', \
                                      (training_average_return_high_SR * 252))
print('The annualized SR in the training period is:', \
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      ((training_average_return_high_SR/training_std_of_returns_high_SR) * \
                                                                np.sqrt(252)))
 
#%%        
#-------------------------------------------------------------------------------------------------
# Trading setup and execution in FORMATION periods
#-------------------------------------------------------------------------------------------------

semi_annual_spread = \
                pd.read_csv('semi_annual_liquidity.csv', index_col=0, sep=',')

commission = 0.0005
short_fee = 0.000179

optimal_pairs_datasets = []
# create new datasets for pairs that will be traded
# these are the pairs chosen in the .tail() above
for i in range(len(optimal_trading_pairs)):
        trading_pair = optimal_trading_pairs[i]
        #trading_pair.columns = ['S1', 'S2']
        trading_pair['S1_ret'] = trading_pair.iloc[:,0].pct_change(1)
        trading_pair.iloc[0,2] = 0
        trading_pair['S2_ret'] = trading_pair.iloc[:,1].pct_change(1)
        trading_pair.iloc[0,3] = 0
        pair_tickers = [trading_pair.iloc[:,0].name, \
                                                  trading_pair.iloc[:,1].name]
        
        # CALCULATE ROLLING Z-SCORE
        rolling_window = 20
        
        # OLS Regression
        lm_pair = rg.OLS(trading_pair[pair_tickers[0]], \
                                          trading_pair[pair_tickers[1]]).fit()
        trading_pair_b1 = lm_pair.params[0]
        
        # Create new column called pairs spread
        trading_pair['pairs_spread'] = \
        (trading_pair[pair_tickers[0]] - trading_pair[pair_tickers[1]]) / \
                                                 trading_pair[pair_tickers[1]]
        
        # Rolling 10-day covariance
        rolling_pair_cov = trading_pair.loc[:, [pair_tickers[0], \
                            pair_tickers[1]]].rolling(window=rolling_window)\
        .cov(trading_pair.loc[:, [pair_tickers[0], pair_tickers[1]]], \
                                                                pairwise=True)
        
        # Slice multi index df to single index df if pairs covariance
        idx = pd.IndexSlice
        rolling_pair_cov = rolling_pair_cov.loc[idx[:, pair_tickers[0]],\
                                                              pair_tickers[1]]
        
        # Convert Date and Stock index into date index by making stock at index 
        #level 1 intp a new column
        rolling_pair_cov = rolling_pair_cov.reset_index(level=1)
        
        # Calculate the 10-day rolling variance
        rolling_pair_var = trading_pair[pair_tickers[0]].\
                                          rolling(window=rolling_window).var()
        
        # Rolling Beta
        trading_pair['rolling_pair_b1'] = rolling_pair_cov[pair_tickers[1]] \
                                                           / rolling_pair_var
        
        # Calculation of 10-day rolling spread
        trading_pair['rolling_pair_spread'] = trading_pair['pairs_spread'].\
                                         rolling(window=rolling_window).mean()
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        trading_pair['spread_std'] = trading_pair['pairs_spread'].\
                                        rolling(window = rolling_window).std()

        # 10-day rolling z-score
        trading_pair['rolling_Z_score'] = (trading_pair['pairs_spread'] - \
             trading_pair['rolling_pair_spread']) / trading_pair['spread_std']

    
        # TRADING SIGNAL ALGORITHM
        # z-score the day before
        trading_pair['rolling_Z_score(-1)'] = trading_pair['rolling_Z_score']\
                                                                     .shift(1)
         # z-score two days before
        trading_pair['pair_signal'] = 0
        pair_signal = 0

        # Signal generation
        for i, r in enumerate(trading_pair.iterrows()):
            if r[1]['rolling_Z_score(-1)'] > -2 and \
                                                 r[1]['rolling_Z_score'] < -2:
                pair_signal = -2
            elif r[1]['rolling_Z_score(-1)'] < -0 and \
                                                 r[1]['rolling_Z_score'] > -0:
                pair_signal = -1
            elif r[1]['rolling_Z_score(-1)'] < 2 and \
                                                  r[1]['rolling_Z_score'] > 2:
                pair_signal = 2
            elif r[1]['rolling_Z_score(-1)'] > 0 and \
                                                  r[1]['rolling_Z_score'] < 0:
                pair_signal = 1
            else:
                pair_signal = 0
            trading_pair.iloc[i, 10] = pair_signal

        # Positions: 1 = Long Spread Trade, -1 = Short Spread Trade
        trading_pair['position'] = 0
        for i, r in enumerate(trading_pair.iterrows()):
            if r[1]['pair_signal'] == -2:
                position = 1
            elif r[1]['pair_signal'] == -1:
                position = 0
            elif r[1]['pair_signal'] == 2:
                position = -1
            elif r[1]['pair_signal'] == 1:
                position = 0
            else:
                position = trading_pair['position'].iloc[i-1]
            trading_pair.iloc[i,11] = position

        # Computing returns without beta
        trading_pair['spread_returns'] = trading_pair['S1_ret'] - \
                                                        trading_pair['S2_ret']
        trading_pair['return'] = trading_pair['spread_returns'] * \
                                             trading_pair['position'].shift(1)
                                             #set this to .shift(2) to impose
                                             #a 1 day lag
        
        # checking period
        count = 0
        for j in list_of_trading_datasets_prices:
            if sum(trading_pair.index == j.index) == len(j.index):
                trading_pair['period'] = count
                j['period'] = count
                break
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            else:
                count += 1
        
        count = 1
        prev = 0        
        TC_Op = 0
        trading_pair['TC_Op'] = 0
        for i, row in enumerate(trading_pair.iterrows()):
            if (row[1]['pair_signal'] == -2 or row[1]['pair_signal'] == 2) \
                                                                and prev == 0:
                TC_Op =  4*commission + 9 * short_fee
            else:
                TC_Op = 0
            trading_pair.iloc[i,15] = TC_Op
            prev = row[1]['position']
            count += 1
        
        TC_Cl = 0
        trading_pair['TC_Cl'] = 0
        for i, row in enumerate(trading_pair.iterrows()):
            if ((row[1]['pair_signal'] == 1 or row[1]['pair_signal'] == -1) \
                                                 and (row[1]['return'] != 0)):
                TC_Cl =  0 
            else:
                TC_Cl = 0
            trading_pair.iloc[i,16] = TC_Cl
        
        optimal_pairs_datasets.append(trading_pair)
     
for i in range(len(optimal_pairs_datasets)):
    optimal_pairs_datasets[i]['new_TC'] = \
                                   optimal_pairs_datasets[i]['TC_Op'].shift(1)
                                             #set this to .shift(2) to impose
                                             #a 1 day lag
    optimal_pairs_datasets[i]['return_inc_TC'] = optimal_pairs_datasets[i]\
                              ['return'] - optimal_pairs_datasets[i]['new_TC'] 
    
#%%    
#-------------------------------------------------------------------------------------------------
# Visualizing return of some of the optimal pairs 
#-------------------------------------------------------------------------------------------------   

for i in range(len(optimal_pairs_datasets)):
    # Create x-axis to use in plot
    x_axis=list(range(len(optimal_pairs_datasets[i])))
    optimal_pairs_datasets[i][np.isnan(optimal_pairs_datasets[i])] = 0
    
for i in range(10):    
    plt.figure(figsize=(10,7))
    optimal_pairs_datasets[i]['Cumulative return'] = \
                        np.cumprod(optimal_pairs_datasets[i]['return']+1) - 1
    optimal_pairs_datasets[i]['Cumulative return with TC'] = \
                 np.cumprod(optimal_pairs_datasets[i]['return_inc_TC']+1) - 1
    optimal_pairs_datasets[i]['Security 1 return'] = \
                        np.cumprod(optimal_pairs_datasets[i]['S1_ret']+1) - 1
    optimal_pairs_datasets[i]['Security 2 return'] = \
                        np.cumprod(optimal_pairs_datasets[i]['S2_ret']+1) - 1
    
    plt.plot(x_axis, optimal_pairs_datasets[i]['Cumulative return'], \
                                          c='blue', label = 'Strategy return')
    plt.plot(x_axis, optimal_pairs_datasets[i]['Cumulative return with TC'],\
                                        c='orange', label = 'Strategy return')
    plt.plot(x_axis, optimal_pairs_datasets[i]['Security 1 return'], \
                                               c='grey', label = 'Security 1')
    plt.plot(x_axis, optimal_pairs_datasets[i]['Security 2 return'], \
                                              c='black', label = 'Security 2')
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    plt.legend(loc='upper left')
    plt.show()        
    
    
#-------------------------------------------------------------------------------------------------
# Visualizing trading signal and positions of a few pairs
#-------------------------------------------------------------------------------------------------

for i in range(10):  
    x_axis=list(range(len(optimal_pairs_datasets[i])))
    plt.figure(figsize=(10,7))
    plt.axhline(y =2, color='green', linestyle='--', linewidth=.7, \
                                                      label='Upper threshold')
    plt.axhline(y =-2, color='red', linestyle='--', linewidth=.7, \
                                                      label='Lower threshold')
    plt.plot(x_axis, optimal_pairs_datasets[i]['rolling_Z_score'], \
                                      color='blue', alpha=.5, label='Z-score')
    plt.legend(loc='upper left')
    plt.show()
    
    plt.figure(figsize=(10,2))
    plt.plot(x_axis, optimal_pairs_datasets[i]['position'], color='black', \
                                                             label='Position')
    plt.show()

#%%
#-------------------------------------------------------------------------------------------------
# Compute sharpe ratio for every pair traded
#-------------------------------------------------------------------------------------------------
for i in range(len(optimal_pairs_datasets)):
    optimal_pairs_datasets[i]['avg_ret'] = \
                                    optimal_pairs_datasets[i]['return'].mean()
    optimal_pairs_datasets[i]['std_dev_ret'] = \
                                     optimal_pairs_datasets[i]['return'].std()
    optimal_pairs_datasets[i]['SR'] = optimal_pairs_datasets[i]['avg_ret'] \
                                    / optimal_pairs_datasets[i]['std_dev_ret']

for i in range(len(optimal_pairs_datasets)):
    optimal_pairs_datasets[i][np.isnan(optimal_pairs_datasets[i])] = 0

#%%
#-------------------------------------------------------------------------------------------------
# Compute the daily excess return in the trading periods
#-------------------------------------------------------------------------------------------------

trading_dataframe = pd.DataFrame()
trading_dataframe_index = pd.DataFrame()
for i in range(len(optimal_pairs_datasets)):
    temp = optimal_pairs_datasets[i]
    temp2 = temp['return']
    temp = temp.shift(-1)[temp['position']!=0]['return']
    trading_dataframe = pd.concat([trading_dataframe, temp])
    trading_dataframe_index = pd.concat([trading_dataframe_index, temp2])
    #trading_dataframe.drop_duplicates(inplace=True)
trading_dataframe.columns = ['return']    

temp_index = pd.read_csv('temp_index.csv', index_col=0, sep=',')

trading_dataframe.reset_index(inplace=True)
grouped_trading_dataframe = trading_dataframe.groupby('index').agg('mean')
trading_dataframe_index.reset_index(inplace=True)
grouped_trading_dataframe_index = trading_dataframe_index.groupby('index').\
                                                                   agg('mean')

trading_results = pd.DataFrame(index = grouped_trading_dataframe_index.index,\
                                   data = grouped_trading_dataframe['return'])

C1 Python code for the strategy

10182321005176GRA 19703



trading_results = trading_results.fillna(0)

# Calculate cumulative return of the strategy
trading_results['cumulative return'] = np.cumsum(trading_results['return'])
trading_results.reset_index(inplace=True)

# Calculate the strategy drawdown over the trading period
trading_results['HWM'] = trading_results['cumulative return'].cummax()
trading_results['Drawdown'] = ((1+trading_results['HWM'])-\
          (1+trading_results['cumulative return']))/(1+trading_results['HWM'])

#%%
# Fill in days or were no trades are made with zero return
test_trading_dataframe = pd.DataFrame()
for i in range(len(list_of_trading_datasets_prices)):
    temp = list_of_trading_datasets_prices[i]
    test_trading_dataframe = pd.concat([test_trading_dataframe, temp])
    
trading_results.set_index('index', inplace=True)

test_trading_results = pd.DataFrame(index = temp_index.index, \
                                   data = grouped_trading_dataframe['return'])
test_trading_results = test_trading_results.fillna(0)

test_trading_results['cumulative return'] = \
                                     np.cumsum(test_trading_results['return'])
test_trading_results.reset_index(inplace=True)

# Calculate the strategy drawdown over the trading period
test_trading_results['HWM'] = \
                            test_trading_results['cumulative return'].cummax()
test_trading_results['Drawdown'] = ((1+test_trading_results['HWM'])-\
(1+test_trading_results['cumulative return']))/(1+test_trading_results['HWM'])

#%%
#-------------------------------------------------------------------------------------------------
# Plot cumulatice return and some performance measures
#-------------------------------------------------------------------------------------------------
# Plot cumulative return of strategy and benchmark
plt.figure(figsize=(10,7))
plt.plot(x_axis, SP500_index['cumulative return'], linewidth=1, color='red', label='S&P500 Index')
plt.plot(test_trading_results['cumulative return'], linewidth=1, color='blue', label='Strategy')
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.legend(loc='upper left')
plt.title('Cumulative strategy return 2000 - 2019 vs. benchmark')
plt.show()

# Plot drawdown
plt.figure(figsize=(10,7))
plt.plot(test_trading_results['Drawdown'], linewidth=1, color = 'red')
plt.title('Strategy drawdown 2000 - 2019')
plt.show()

# Plot daily return
plt.figure(figsize=(10,7))
plt.plot(test_trading_results['return'], linewidth=1, color = 'blue')
plt.title('Strategy daily return 2000 - 2019')
plt.show()

# Plot distribution of daily returns
plt.figure(figsize=(10,7))
plt.hist(grouped_trading_dataframe['return'], color = 'blue', bins = 150)
plt.grid(color = 'black', linestyle = '--', linewidth = 0.5)
plt.title('Distribution of daily returns')
plt.show()
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#-------------------------------------------------------------------------------------------------
# Descriptive statistics
#-------------------------------------------------------------------------------------------------
trading_std_of_returns = test_trading_results['return'].std()
trading_average_return = test_trading_results['return'].mean()
print('The annualized return in the trading period is:', \
                                               (trading_average_return * 252))
print('The annualized SR in the trading period is:', \
             ((trading_average_return/trading_std_of_returns) * np.sqrt(252)))

# Additional summary statistics
test_trading_results.agg(
    {
     'return': ['mean', 'median', 'std', 'skew', 'kurtosis', 'min', 'max'],
     }
    )
# T-test to check significance of daily excess returns
stats.ttest_1samp(test_trading_results['return'], popmean=0)

#%%
#-------------------------------------------------------------------------------------------------
# Calculate the daily return and cumulative return after transaction costs
#-------------------------------------------------------------------------------------------------

grouped_trading_dataframe_index = pd.DataFrame()
grouped_trading_dataframe_index = pd.DataFrame()
trading_results_inc_TC = pd.DataFrame()
new_trading_dataframe = pd.DataFrame()
new_trading_dataframe_index = pd.DataFrame()
for i in range(len(optimal_pairs_datasets)):
    new_temp = optimal_pairs_datasets[i]
    new_temp2 = new_temp['return']
    new_temp = new_temp.shift(-1)[new_temp['position']!=0]['return_inc_TC']
    new_trading_dataframe = pd.concat([new_trading_dataframe, new_temp])
    new_trading_dataframe_index = pd.concat([new_trading_dataframe_index, \
                                                                   new_temp2])
    #trading_dataframe.drop_duplicates(inplace=True)
new_trading_dataframe.columns = ['return_inc_TC']    
new_trading_dataframe.reset_index(inplace=True)
new_grouped_trading_dataframe = new_trading_dataframe.groupby('index')\
                                                                  .agg('mean')
new_trading_dataframe_index.reset_index(inplace=True)
new_grouped_trading_dataframe_index = \
                      new_trading_dataframe_index.groupby('index').agg('mean')

trading_results_inc_TC = pd.DataFrame(index = \
                                  new_grouped_trading_dataframe_index.index,\
                        data = new_grouped_trading_dataframe['return_inc_TC'])
trading_results_inc_TC = trading_results_inc_TC.fillna(0)

# Calculate cumulative return of the strategy
trading_results_inc_TC['cumulative return'] = \
                            np.cumsum(trading_results_inc_TC['return_inc_TC'])
trading_results_inc_TC.reset_index(inplace=True)

# Calculate the strategy drawdown over the trading period
trading_results_inc_TC['HWM'] = \
                          trading_results_inc_TC['cumulative return'].cummax()
trading_results_inc_TC['Drawdown'] = ((1+trading_results_inc_TC['HWM'])-\
                            (1+trading_results_inc_TC['cumulative return']))/\
                                             (1+trading_results_inc_TC['HWM'])

#-------------------------------------------------------------------------------------------------
# Descriptive statistics
#-------------------------------------------------------------------------------------------------
trading_std_of_returns = trading_results_inc_TC['return_inc_TC'].std()
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trading_average_return = trading_results_inc_TC['return_inc_TC'].mean()
trading_SR_10 = (trading_average_return/trading_std_of_returns) 
print('The annualized return in the trading period is:',\
                                               (trading_average_return * 252))
print('The annualized SR in the trading period is:',\
             ((trading_average_return/trading_std_of_returns) * np.sqrt(252)))

# Additional Summary statistics
trading_results_inc_TC.agg(
    {
 'return_inc_TC': ['mean', 'median', 'std', 'skew', 'kurtosis', 'min', 'max'],
     }
    )

#T-test to check significance of daily excess returns
stats.ttest_1samp(trading_results_inc_TC['return_inc_TC'], popmean=0)

#%% 
#-------------------------------------------------------------------------------------------------
# Analyzing systemtic risk of strategy by regressing returns on known pricing 
# factors
#-------------------------------------------------------------------------------------------------

FF_factors_daily = pd.read_csv('FF_factors.csv', index_col=0, sep=',')
# Reset index of trading restuls dattaset
trading_results_inc_TC.set_index('index', inplace=True)
# Make sure that only the same dates are included in the pricing factor dataset
FF_factors_daily = pd.DataFrame(index = temp_index.index ,data = \
FF_factors_daily[FF_factors_daily.index.isin(trading_results_inc_TC.index)])
FF_factors_daily = FF_factors_daily.fillna(0)

factors = FF_factors_daily[['mktrf', 'smb', 'hml', 'umd']]
returns = trading_results_inc_TC['return_inc_TC']
factors = add_constant(factors)
model = sm.OLS(returns, factors)
results = model.fit()
results.summary()
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#!/usr/bin/env python3
# -*- coding: utf-8 -*-

#importing modules
import pandas as pd
import numpy as np
import pandas_datareader as web
import matplotlib.pyplot as plt
import datetime as datetime
import seaborn as sns
import matplotlib .cm as cm
from sklearn import linear_model
from sklearn . cluster import KMeans, DBSCAN
from sklearn . decomposition import PCA
from sklearn . manifold import TSNE
from sklearn import preprocessing
from statsmodels . tsa . stattools import coint
from statsmodels . tsa . stattools import adfuller
import statsmodels . regression . linear_model as rg
from scipy import stats
import statsmodels.api as sm
import statsmodels.tsa.stattools as ts

#Import data 

ose_dataset_close_2000_2019 = pd.read_csv('CRSP_data_FIXED.csv', index_col=0, sep=',')

# Import benchmark
oslo_bors_benchmark_index = pd.read_csv('Oslo_bors_benchmark_index.csv', index_col=0, sep=',', encoding='latin-1')

# Datasets containing the daily relative spread for all stocks at OSE
ose_rel_spread_close_2000_2019 = pd.read_csv('CRSP_rel_spread.csv', index_col=0, sep=',')

# Calculate cumulative return on benchmark
oslo_bors_benchmark_index['return'] = oslo_bors_benchmark_index['Oslo BĂ¸rs Benchmark Index_GI'].pct_change()
oslo_bors_benchmark_index['cumulative return'] = np.cumprod(1+oslo_bors_benchmark_index['return'])-1
oslo_bors_benchmark_index.fillna(0)

#%%
#----------------------------------------------------------------------------------------------------------
##################### Creating TRAINING period datasets : #################################################
#----------------------------------------------------------------------------------------------------------

list_of_training_datasets_prices = []

y = 0
while y < (5040-126):
    
    temp = ose_dataset_close_2000_2019.iloc[y:y+252]
    list_of_training_datasets_prices.append(temp)
    
    y += 126

list_of_training_datasets_prices.pop()
list_of_training_datasets_prices.pop()

#-----------------------------------------------------------------------------------------------------------

##################### Creating TRADING period datasets : #################################################

list_of_trading_datasets_prices = []

y = 0
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while y < (5040-126):
    
    temp = ose_dataset_close_2000_2019.iloc[y:y+126]
    list_of_trading_datasets_prices.append(temp)
    
    y += 126
    
list_of_trading_datasets_prices.pop(0)
list_of_trading_datasets_prices.pop(0)

#----------------------------------------------------------------------------------------------------------
##################### Creating spread portfolios TRAINING period  : 
#################################################
#----------------------------------------------------------------------------------------------------------
list_of_training_spread_datasets = []
y = 0
while y < (5040-126):
    
    temp = ose_rel_spread_close_2000_2019.iloc[y:y+252]
    list_of_training_spread_datasets.append(temp)
    
    y += 126
 
list_of_training_spread_datasets.pop()
list_of_training_spread_datasets.pop()

#----------------------------------------------------------------------------------------------------------
##################### Creating spread portfolios TRAINING period  : 
#################################################
#----------------------------------------------------------------------------------------------------------
list_of_trading_spread_datasets = []
y = 0
while y < (5040-126):
    
    temp = ose_rel_spread_close_2000_2019.iloc[y:y+126]
    list_of_trading_spread_datasets.append(temp)
    
    y += 126
    
    
list_of_trading_spread_datasets.pop(0)
list_of_trading_spread_datasets.pop(0)

#Removing missing values:     
# for training datasets
for dataset in list_of_training_datasets_prices:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_training_datasets_prices:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_training_datasets_prices:
    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
   

# for trading datasets:
for dataset in list_of_trading_datasets_prices:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_datasets_prices:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_trading_datasets_prices:
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    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
    
    
#### for spread portfolios ####
#Training:
for dataset in list_of_training_spread_datasets:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_training_spread_datasets:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_training_spread_datasets:
    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)
# Trading
for dataset in list_of_trading_spread_datasets:
    dataset.dropna(axis=1, how='all', thresh=None, subset=None, inplace=True)

for dataset in list_of_trading_spread_datasets:
    dataset.fillna(method = 'bfill', inplace=True, limit=10)
    
for dataset in list_of_trading_spread_datasets:
    dataset.dropna(axis=1, how='any', thresh=None, subset=None, inplace=True)

# Make sure that we have the same securities in both the training and trading period. Remove securities that are not 
# present in both periods

# --------For daily close data -------
common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_training_datasets_prices)):
    common_cols = list_of_training_datasets_prices[i].drop([col for col in list_of_training_datasets_prices[i].columns if col in 
list_of_training_datasets_prices[i].columns and col not in list_of_trading_datasets_prices[i].columns], axis = 1)

    common_tickers.append(common_cols)

for i in range(len(list_of_training_datasets_prices)):
    list_of_training_datasets_prices[i] = list_of_training_datasets_prices[i][common_tickers[i].columns]
    list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i][common_tickers[i].columns]

# -------- For spread portfolios ---------
common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_training_spread_datasets)):
    common_cols = list_of_training_spread_datasets[i].drop([col for col in list_of_training_spread_datasets[i].columns if col in 
list_of_training_spread_datasets[i].columns and col not in list_of_trading_spread_datasets[i].columns], axis = 1)

    common_tickers.append(common_cols)

for i in range(len(list_of_training_spread_datasets)):
    list_of_training_spread_datasets[i] = list_of_training_spread_datasets[i][common_tickers[i].columns]
    list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]

common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_trading_spread_datasets)):
    common_cols = list_of_trading_spread_datasets[i].drop([col for col in list_of_trading_spread_datasets[i].columns if col in 
list_of_trading_spread_datasets[i].columns and col not in list_of_trading_datasets_prices[i].columns], axis = 1)

    common_tickers.append(common_cols)
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for i in range(len(list_of_trading_spread_datasets)):
    list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]
    list_of_trading_datasets_prices[i] = list_of_trading_datasets_prices[i][common_tickers[i].columns]

common_tickers = []
common_tickers_2 = []
for i in range(len(list_of_trading_spread_datasets)):
    common_cols = list_of_trading_spread_datasets[i].drop([col for col in list_of_trading_spread_datasets[i].columns if col in 
list_of_trading_spread_datasets[i].columns and col not in list_of_training_spread_datasets[i].columns], axis = 1)

    common_tickers.append(common_cols)

for i in range(len(list_of_trading_spread_datasets)):
    list_of_trading_spread_datasets[i] = list_of_trading_spread_datasets[i][common_tickers[i].columns]
    list_of_training_spread_datasets[i] = list_of_training_spread_datasets[i][common_tickers[i].columns]

# Calculating returns from closing prices

list_of_training_returns = []
for dataset in list_of_training_datasets_prices:
    stock_returns = dataset.pct_change()
    list_of_training_returns.append(stock_returns)
    

for dataset in list_of_training_returns:
    dataset.iloc[0:2] = 0
    

list_of_trading_returns = []
for dataset in list_of_trading_datasets_prices:
    stock_returns = dataset.pct_change()
    list_of_trading_returns.append(stock_returns)
    

for dataset in list_of_trading_returns:
    dataset.iloc[0:2] = 0
    
#%%

# Create portfolios based on the size of the relative bid-ask spread in the training period

list_of_top_spreads = []
list_of_bottom_spreads = []
for i in range(len(list_of_training_spread_datasets)):
    avg_rel_spread = pd.DataFrame(list_of_training_spread_datasets[i].mean())
    avg_rel_spread.columns= ['rel_spread']
   
    top_rel_spread = avg_rel_spread.nlargest(178, 'rel_spread', keep='first') 
    list_of_top_spreads.append(top_rel_spread)
    
    bottom_rel_spread = avg_rel_spread. nsmallest(178, 'rel_spread', keep='first') 
    list_of_bottom_spreads.append(bottom_rel_spread)
    

list_of_training_bottom_spreads = []
list_of_training_top_spreads = []
for i in range(len(list_of_training_spread_datasets)):
    tickers = list(list_of_bottom_spreads[i].index.values)
    training_pairs = list_of_training_spread_datasets[i][tickers]
    list_of_training_bottom_spreads.append(training_pairs)
    
    tickers2 = list(list_of_top_spreads[i].index.values)
    training_pairs2 = list_of_training_spread_datasets[i][tickers2]
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    list_of_training_top_spreads.append(training_pairs2)
    
    
top_spreads_prices = []
bottom_spreads_prices = []
for i in range(len(list_of_training_datasets_prices)):
    pairs = list_of_training_datasets_prices[i][list_of_training_bottom_spreads[i].columns]
    bottom_spreads_prices.append(pairs)
    
    pairs2 = list_of_training_datasets_prices[i][list_of_training_top_spreads[i].columns]
    top_spreads_prices.append(pairs2)
    
top_spreads_trading_prices = []
bottom_spreads_trading_prices = []
for i in range(len(list_of_trading_datasets_prices)):
    pairs = list_of_trading_datasets_prices[i][list_of_training_bottom_spreads[i].columns]
    bottom_spreads_trading_prices.append(pairs)
    
    pairs2 = list_of_trading_datasets_prices[i][list_of_training_top_spreads[i].columns]
    top_spreads_trading_prices.append(pairs2)

top_spreads_returns = []
bottom_spreads_returns = []
for dataset in top_spreads_prices:
    returns = dataset.pct_change()
    top_spreads_returns.append(returns)

for dataset in top_spreads_returns:
    dataset.iloc[0:1] = 0

for dataset in bottom_spreads_returns:
    returns = dataset.pct_change()
    bottom_spreads_returns.append(returns)

for dataset in bottom_spreads_returns:
    dataset.iloc[0:1] = 0
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