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Abstract

Rescheduling trains in dense railway systems to cope in real time with

limited disturbances is a challenging problem with multiple conflicting objec-

tives and various types of decisions. Based on the French railway system in

the Paris region, this paper proposes an approach combining multi-objective

optimization, to select rescheduling decisions, and macroscopic simulation,

to compute the objectives associated to these decisions. Possible decisions

include canceling or short-turning trains and skipping or adding stops. Three

main objectives are optimized to propose multiple solutions to the decision

makers: The recovery time, the quality of service for passengers and the

number of decisions. Two greedy heuristics are presented whose results

on actual data are compared with a full enumeration method. The multi-

objective feature of the approach is also analyzed. The implementation and

successful validation in real life of a decision-support tool, that is now im-

plemented, is discussed.
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1. Introduction

The Paris area covers only 2% of the French territory, but is home to

18% of the French population. More than 10 million public transportation

trips are performed each day in the Paris region. SNCF Transilien is a

major operator of Paris suburban trains, carrying daily more than 3.5 million

commuters. As the number of passengers is increasing by 3% each year since

2000, trains have been added, leading to a congested situation with up to 32

trains per hour on the busiest part of the infrastructure. Daily operations of

the Transilien network are difficult, and a minor incident, such as a longer

stop at a station when many passengers want to board a train, can cause

a delay. Due to the congested network, buffer times are short and a small

delay during running, dwell or turning times rapidly propagates along the

line, and to other lines via shared resources. Various actions are applied by

dispatchers, in real time, to adjust plans to the traffic.

Transilien is a railway system: Tracks can be shared with other railway

operators, drivers and rolling-stock are shared between Transilien lines and

different services (trains with different stopping patterns) exist on each line.

Yet, Transilien is a mass transit system, with characteristics close to sub-

ways: The frequency is very high (up to one train every two minutes on

some lines) and commuters do not aim for a certain train but board the first

train serving their destination station. Operational actions such as canceling

a train or skipping a stop can thus be taken without severely deteriorating

the quality of service offered to passengers, as long as the anticipation of

an action allows operators and passengers to be informed of the associated

changes.

Many stakeholders are involved in the Transilien transit system, mak-

ing the decision-making process complex. The Paris region transportation

authority defines a number of performance criteria, the most important one

being the number of delayed passengers. The infrastructure manager goal is

that each train respects its scheduled path without delay. Passengers expect

frequent and comfortable trains with a reliable service, whatever the train

path, the rolling-stock unit or the driver. Transilien must combine these

different objectives while maximizing its operational efficiency and reducing

its costs.
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During real time operations, Transilien decision makers need to quickly

determine the best actions from a system-wide perspective. In Altazin et al.

(2017), we propose an Integer Linear Programming model to optimize both

the recovery time and a relatively simple passenger criterion with only type

of actions: Stop skipping. The model was validated on industrial data and

was useful for showing the potential of a rescheduling tool to decision mak-

ers. Endorsed by Transilien, the research was pursued to overcome the

limitations of the first model by developing the novel approach presented in

this paper and to support the development of a real time decision support

tool. In particular, more actions had to be integrated, the approach had to

be fast enough to propose actions in real time, and the passenger criterion

had to consider the reaction of passengers to the operational actions. It

was also essential to tackle the problem with a multi-objective approach, as

decision makers need to have multiple solutions to choose from, associated

to different trade-offs on the evaluation criteria. This paper proposes an

optimization-simulation approach that tries to answer these requirements,

presents numerical experiments on actual data and discusses the success-

ful real-life experiments conducted with decision makers using the decision

support tool, that led to the actual implementation integration of the tool.

A recent review covering the literature related to our problem, i.e. reschedul-

ing approaches both in railway systems and in public transportation systems,

can be found in Altazin et al. (2017). We summarize here how our work is

positioned, provide some of the references in Altazin et al. (2017) and discuss

some newer papers. Compared to research on the train dispatching prob-

lem, also known as train path rescheduling (see for example Meng and Zhou

(2014) and Samà et al. (2016)), trains cannot be rerouted or reordered in

our problem because overtaking is not allowed with the track layout. We are

considering reservicing actions that modify the traffic plan (adding or skip-

ping stops, canceling trains, short-turning trains) that are included in some

train dispatching approaches, such as Sato et al. (2013), Veelenturf et al.

(2016) and Ghaemi et al. (2018), but not in the context of dense railway

systems. Compared to research on the delay management problem (see for

example Dollevoet et al. (2015), Corman et al. (2017) and Schön and König

(2018)), our approach does not consider passenger connections since we fo-

cus on rapid transit systems with high frequencies. As in the research on

the rolling-stock rescheduling problem (see for example Kroon et al. (2015)

and Cadarso et al. (2013)), we are considering rolling-stock that is a crit-

ical resource because of the short turning times in rapid transit systems.
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However, we only deal with small disturbances, usually causing less than

10-minute delays and no blockage, and other types of decisions and more

objectives are considered. Compared to research on the crew rescheduling

problem, we assumes that drivers operate the same rolling-stock unit during

the rescheduling horizon, that is limited to a few hours. The above men-

tioned problems are on conventional railway systems. Because the Transilien

system has a high frequency of trains, short distances between stations, short

turning times for rolling-stock and overtaking or rerouting trains is not al-

lowed, reservicing decisions commonly used in subway or in bus traffic are

considered. Rescheduling in public transport systems is often referred to as

real time control strategies (see for example Eberlein et al. (1999), Eberlein

et al. (1998), Gao et al. (2016) and Nesheli and Ceder (2015)). However, our

problem is different, because of the additional constraints associated to the

infrastructure and the rolling-stock and because multiple objectives have to

be considered, whereas the objective is usually only focusing on passengers

in public transit. More recently, Veelenturf et al. (2017), Wagenaar et al.

(2017) and Zhu and Goverde (2019), as in Kroon et al. (2015), also consider

passenger objectives by modeling the dynamic flows of passengers. Wage-

naar et al. (2017) propose a rolling-stock rescheduling model that allows for

dead-heading trips to limit the number of deleted trains for relatively large

disruptions. Veelenturf et al. (2017) introduce a rolling-stock rescheduling

approach where stops can be added in some stations to minimize the impact

on passengers. Gao et al. (2017) propose a retiming model, and thus the

stopping and travel times, for small disturbances (at most 5 minutes). Their

goal is to minimize the gap between the planned timetable and the actual

timetable. Dollevoet et al. (2017) propose an iterative framework allowing

to reschedule the timetable as well as rolling-stock and crew assignments

in case of large disruptions. The number of services that have to be can-

celed or delayed is minimized, thus minimizing the gap with the original

schedule. Canca et al. (2016) use short-turning to increase the frequency in

congested area when a disruption causes a passenger overload in trains and

on platforms. Their goal is to minimize the passenger waiting time. Zhu

and Goverde (2019) propose various rescheduling actions, including changing

the stopping pattern, short-turning and cancelling trains, and adjusting the

rolling-stock circulation in case of large disruptions. Their approach aims

at minimizing passenger delays. Jiang et al. (2019) describe an approach al-

lowing stop-skipping and passenger inflow control (i.e. restraining passenger

access to the platform) to minimize the discomfort of passengers in an over-
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crowded urban line. In terms of schedule design, Shang et al. (2018) propose

a stop-skipping model to ensure passenger equity in an oversaturated urban

rail transit network, minimizing the number of passengers who suffer the

maximum number of missed trains because the train is fully occupied when

serving their origin station. Nielsen et al. (2012) propose a rolling-stock

rescheduling approach in case of disruptions, with a rolling horizon to cope

with the evolution of the situation in real time. Recently, van der Hurk

et al. (2018) consider large disruptions, and propose an approach combining

optimization and simulation to reschedule the rolling stock and to propose

route advice to passengers.

To summarize and to our knowledge, our problem is the only one that

combines various types of rescheduling decisions in dense railway systems

that have to be taken in real time while considering rolling-stock constraints

and various objectives. Another difference of our work with most of the

previous literature is that we explicitly consider a multi-objective analysis

to provide multiple solutions to the decision makers. In terms of approach,

Corman et al. (2017), Dollevoet et al. (2017), van der Hurk et al. (2018)

and Zhu and Goverde (2019) are probably the closest to the one we pro-

pose, but with significant differences in terms of the possible decisions, the

objectives and the constraints. Indeed, we believe our work has interesting

new characteristics, such as a multi-objective process and analysis, different

operational actions and the implementation of a real-time decision support

system with experiments during traffic on an important line in the Paris

area.

The reservicing actions we are considering are canceling trains, adding

and skipping stops and short-turning trains. Various objectives are opti-

mized, the two main ones being the recovery time and the quality of service

for passengers. The passenger flows are modeled using Origin-Destination

data, and both the waiting time and the in-vehicle time are computed. To

model the impact of all these actions and the flows of passengers, we chose

an approach combining an optimization module and a simulation module.

The simulation module is used to evaluate the operational actions selected

by the optimization module, in particular to estimate the passenger flows

through the railway system.

The paper is structured as follows. The considered rescheduling prob-

lem is described in Section 2. In Section 3 the optimization-simulation

approach is presented. In Section 4, computational results of the approach

on actual instances of SNCF Transilien are discussed. Section 5 first briefly
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presents the characteristics of the decision support tool, and then some qual-

itative and quantitative feedback from real-life experiments conducted on a

Transilien line. Finally, conclusions and directions for further research are

provided in Section 6.

2. Problem description and modeling

2.1. General description

The real time rescheduling problem considered in this work is an ex-

tended and more realistic version of the problem described in Altazin et al.

(2017). The modeling we propose is rather generic since it was defined based

on the Transilien lines, and thus should fit many lines in other large cities.

The network consists of one track for each direction. There is one platform

in most served stations, the capacity of terminal stations and stations with

more than one platform is considered to be infinite. Trains cannot overtake

each other, and some lines have several branches. The frequency of trains

on each line is between 4 and 20 trains per hour during peak hours, and can

be lower during off-peak periods.

A limited rescheduling horizon of 1.5 to 2.5 hours is considered. In case

of small disturbances, typically causing less than 20 minutes of delay, various

reservicing actions can be taken: Cancelling trains, short-turning trains in

stations with the necessary infrastructure, skipping or adding stops. Note

that only stop skipping was allowed in Altazin et al. (2017). The types

of decisions considered in our approach can rather easily be modified, by

adding or removing possible decisions. In this paper, we call a “decision”

the implementation of a given action on the service of trains, compared with

the reference situation of merely keeping the (possibly delayed) theoretical

service. Hence, the reference situation corresponds to the “no decision”

case, even if it is a well-considered choice. A time margin can be added

for each type of decisions, for instance stop-skipping is usually only allowed

for trains departing more than 10 minutes after the rescheduling time, so

that passengers can be warned on time and change their itinerary. The

running and dwell times of trains in the theoretical schedule are considered

as minimal values for train operations. Headway constraints between trains

running consecutively on the same track (i.e. in the same direction), are

considered as well.

The rolling-stock schedule is considered through minimal turning time

constraints at terminal stations between trains using the same rolling-stock

6



unit. The capacity of rolling-stock units are considered in the simulation

module of our approach. We assume that drivers operate the same rolling-

stock units during the rescheduling horizon.

2.2. Problem modeling

We model railway operations at macroscopic level as a directed graph,

where N is the set of nodes corresponding to events of trains: Departures

from a station, arrivals at a station or transits through a station. Arcs of

the graph on set A can correspond to two types of links between events:

(1) Operations, particularly running between stations, dwelling at a sta-

tion or turning at a terminal station, or (2) Headway constraints between

two trains running consecutively on the same infrastructure. A duration

is associated with each arc, corresponding to the minimum time between

the two linked events: Running or dwell time, minimum headway between

consecutive trains or minimum turning time.

An illustrative example is provided in Figure 1. Trains t1 and t3 are

consecutively running from station A to station D, passing through station

B and stopping at station C. Train t2 runs in the opposite direction with

the same stopping pattern. Trains t1 and t2 are using the same rolling-stock

unit. Plain arcs correspond to run and dwell time constraints between two

consecutive events e and e′ of a train. Thus, de1e2 , de2e3 , and de4e5 , are

minimal running times between events e1 and e2, e2 and e3, and e4 and

e5 respectively. Similarly, de3e4 is the minimal dwelling time at station C

between events e3 and e4. The dotted arc represents the turning time of

the rolling-stock unit between arrival of train t1 at its terminal Station D,

represented by event e5, and the departure of t2 from Station D, represented

by event e6. Hence, de5e6 corresponds to the minimal turning time between

e5 and e6 required to turn the rolling-stock unit. The dashed arcs represent

headway constraints between trains t1 and t3 that run in the same direction.

As there is only one track per direction, and one platform per direction in

each station, only one train can dwell at a time. Thus, train t3 cannot arrive

at Station C (event e13) before train t1 has left the station (event e4) since

there is a minimal headway time he4e13 .

The operational actions that are considered change the graph structure.

If the stop at station C is skipped for train t2, events e7 and e8 are merged

into a single passage event and the arc durations from and to this new

event are modified to consider the saved breaking and acceleration times.

Conversely, adding a stop in station B would result in splitting e9 into two
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events for arrival and departure and lengthening arc durations to model the

extra time for breaking and acceleration. Canceling a train means removing

its nodes, running and dwelling arcs, and adjusting the headway arcs, while

short-turning train t1 in station C means deleting events e4, e5, e6 and e7,

and connecting e3 and e8 with a dotted arc for the rolling-stock turning

operation.

Station A Station B Station C Station D

e1 e2 e3 e4 e5

e6e7e8e9e10

e11 e12 e13 e14 e15

t1

t2

t3

de1e2 de2e3

de2e12

de3e4

de4e13

de4e5

de5e6

Figure 1: Event-activity graph with 3 trains running on a line serving 4 stations

The notations used in this paper for parameters and variables are de-

tailed below.

Parameters:
N : Set of nodes modeling events e of a train at a location in the

original schedule (departure, arrival or passing),
A : Set of arcs,
se : Time at which event e is originally scheduled,
de′e : Minimal duration of the running, dwelling or turning operation

between events e′ and e such that (e′, e) ∈ A,
mRT : Tolerance margin to define if an event is delayed,
α : Weight of the waiting time of passengers compared to their in-

vehicle time in the calculation of the Quality of Service QS.

Variables:
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Pe : Rescheduled time of event e,
De : 1, if event e ∈ N is late compared to its original schedule (i.e.

Pe > se), and 0 otherwise,
RT : Recovery time, i.e. maximum time before which rescheduled times

of events are different from scheduled times,
QS : Quality of Service for passengers, detailed below.

2.3. Evaluation criteria

This problem has three main objectives:

1. Minimize the recovery time, i.e. recover the original schedule as fast

as possible to ensure the performance of the railway system,

2. Minimize the inconvenience for passengers, by minimizing the waiting

time and in-vehicle time of passengers,

3. Minimize the number of proposed actions. Limiting the number of

actions also ensure that the solution can be implemented in real time.

An important goal is to allow the decision makers to choose from various

rescheduling solutions with trade-offs on the criteria. All non dominated

solutions are thus stored in order to select one or more solutions to present to

the decision makers. We use Pareto (Pareto and Bonnet (1963)) dominance

to build the set of non dominated solutions (see Section 3.3).

The recovery time is determined by the rescheduled time of the latest

delayed event. An event is delayed if the difference between its planned time

and its rescheduled time is larger than a given tolerance margin mRT :

∀e ∈ N De ≥ (Pe − se −mRT )/M (1)
RT ≥ PeDe (2)

where M is a sufficiently large coefficient so that the right-hand side of (1) is

always smaller than 1 when Pe is larger than se +mRT . In our experiments,

mRT was set to to 2 minutes, although this value can be adjusted to the

railway line and the period in the day.

The quality of service QS for passengers is characterized by two dura-

tions: The waiting time at the origin station to board a train serving the

destination station and which is not already full, and the in-vehicle time

until the destination station. Data on Origin-Destination (OD) trips of pas-

sengers are used, and passengers are assumed to arrive regularly and con-

tinuously at stations since the frequency of trains is important. An arrival

rate of passengers in each station for each destination at each time slot is
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derived from passenger counting data. The capacity of trains is considered,

i.e. some passengers may have to wait for another train if the first train to

serve their destination station is full. The quality of service QS, which must

be minimized to maximize the quality of service, is calculated as follows:

QS =
∑

All passengers

α ∗Waiting time + In-vehicle time (3)

Note that a much simpler modeling of the quality of service was used in

Altazin et al. (2017). Based on the research on waiting time perceptions

(see recently Fan et al. (2016)), we set α to 2 in our experiments, i.e. one

minute of waiting time is perceived as 2 minutes of in-vehicle time.

The number of proposed operational decisions is also minimized, to limit

their impact for passengers and to ensure that the solution can be imple-

mented by the decision makers. Finally, as secondary criteria, the number

of delayed events and sum of delays are minimized to ensure the consistency

of the solution. These criteria ensure that, if two solutions have the same

values for RT , QS and the same number of proposed decisions, the solution

with the smallest sum of delays and the smallest number of delayed events

is the returned solution.

Our approach aims at proposing Pareto-optimal solutions. Yet, a guiding

function, which is a weighted combination of the five criteria, is used in the

heuristics described in Section 3 to generate non-dominated solutions.

3. An optimization-simulation approach

3.1. Overview of the approach

In order to integrate more operational actions and better model pas-

senger flows than in Altazin et al. (2017), but also to determine multiple

rescheduling scenarios to propose to decision makers, we chose to develop a

multi-objective optimization-simulation approach. The approach is a two-

step process, as shown on Figure 2: (1) Generation of a set of non-dominated

solutions and (2) Selection of a limited number of solutions in this set.

The generation of the set of non-dominated solutions is an iterative pro-

cess between an algorithm enumerating decision scenarios and the simula-

tion module. The simulation module propagates both delays and passengers

through the event-activity graph, to compute the various criteria used to

evaluate the decision scenarios.
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Because the approach is modular, new heuristics could be added to gen-

erate solutions, or another simulation module could be used to evaluate the

decision scenarios.

Generation of a set of non-dominated solutions

Preprocessing

decisions

Generation

of solutions

Simulation

of solutions

Storage

of non-

dominated

solutions

Selection of

non-dominated

solutions

Figure 2: Optimization steps

3.2. Generation of a set of non-dominated solutions

3.2.1. Preprocessing decisions

Preprocessing the possible decisions allows the number of decisions that

can actually be applied to be significantly reduced. We assume that deci-

sions concerning trains and events that will not be affected by delays that

already occurred at the rescheduling date should not help to recover faster.

A simulation with no operational decision applied is run to determine the

events affected by delays. Following this simulation, some decisions are

removed from the set of possible decisions. Cancelling, short-turning and

stop-skipping decisions for trains or events not impacted by the initial delays

is no longer possible. Yet, stop-adding decisions remain possible as adding

a stop at a station aims at improving the quality of service for passengers

boarding or alighting at this station and not at improving the recovery time

(it can even cause a delay because of the dwell time in station and the

breaking and acceleration times before and after the stop). The schedule of

trains not impacted by initial delays is thus not fixed and can be impacted

by decisions made on other trains and by stop-adding decisions.

This preprocessing significantly reduces the number of possible decisions.

On the test instances used in Section 4, the number of decisions is reduced by

78% on average, and up to 84%. The generation and simulation of decision

scenarios are thus facilitated and accelerated.

3.2.2. Generation of decision scenarios

Each solution is a decision scenario with one or several proposed deci-

sions, and a set of indicators to evaluate the scenario. Evaluation indicators
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are computed through simulation, but decision scenarios must be build be-

forehand. We implemented two greedy heuristics, to quickly and efficiently

determine some scenarios in order to generate a set of non-dominated solu-

tions, and a full enumeration method enumerating all possible solutions, to

analyze the quality of solutions provided by the heuristics.

The heuristics have been designed following an analysis of the results

obtained with the Full Enumeration method (FE). The logic of the heuristics

is based on trying to find, at each step, the decision that improves the criteria

the most. Their performance, which is compared to the one of the full

enumeration method, is presented in Section 4. The heuristics are guided

by a weighted sum of the five criteria presented in Section 2.3. The weights

of the different criteria were set following a series of tests. A proposed

decision must guarantee a significant gain on the recovery time. In the case

of an added stop, the recovery time must not be degraded and the quality

of service for passengers should be sufficiently improved.

Full Enumeration method (FE). It implicitly enumerates all possible deci-

sion scenarios through a depth-first exploration of the decision tree. Each

level of the decision tree corresponds to all solutions with the same number

of decisions applied: Nodes at the first level include all solutions with only

one decision applied, and so on. All feasible solutions are evaluated. This

exact method is computationally expensive and thus impossible to use in real

time in most cases, yet it helps to estimate the performance of heuristics

through numerical experiments.

Heuristic Add. This greedy heuristic determines which decision, applied

alone, minimizes the objective function. This decision is then activated,

and the second decision that minimize the objective function is determined,

and so on. Two stopping conditions are used: (1) The maximal number of

proposed decisions is reached, or (2) the objective function is not decreased

by applying one more decision.

This heuristic, that provides a local optimum very quickly, is described

in Algorithm 1. The set of authorized decisions following the preprocessing

is designated D. Function activate(d) sets decision d to 1 when function

deactivate(d) set it to 0. Function feasible(sol) checks that the solution sol is

feasible, as explained later in this section. Function addNonDominated(sol)

compares solution sol with saved non-dominated solutions and updates the

set of non-dominated solutions accordingly (see at the end of this section).
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Algorithm 1 Heuristic Add(initSol)

D: Set of possible decisions
sol ← initSol
bestSol ← sol
betterSol ← true
objectiveMin ← +∞
while sol.nbActiveDecisions <nbDecisionsMax and betterSol is true do

betterSol ← false
for Decision d ∈ D do

sol.activate(d)
if feasible(sol) is true then

sol.simulate
addNonDominated(sol)
if sol.objective <objectiveMin then

objectiveMin ← sol.objective
bestSol ← sol
betterSol ← true

end if
end if
sol.deactivate(d)

end for
sol ← bestSol
sol.nbActiveDecisions ← sol.nbActiveDecisions + 1

end while
return bestObj
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Heuristic Add-3-Branches. This heuristic is an extension of Heuristic Add.

At the first step, the three best decisions applied alone are kept, and three

different search branches, i.e. three instances of Heuristic Add, are launched,

as shown in Algorithm 2. Three local optima are thus determined.

Feasibility of a scenario. The feasibility of a scenario built by the full enu-

meration method or by a heuristic must be checked before its simulation.

When applying a decision, others become inapplicable. No decision can be

taken on a canceled train. Trains can only be short-turned once, so if the

beginning of a train has been skipped due to a previous short-turning, the

train has to reach its terminal station. The service of a short-turned train

cannot be changed. These measures are necessary to maintain an adequate

quality of service for passengers. They can be deactivated through a pa-

rameter. Another parameter sets the maximal number of simultaneously

proposed decisions for a scenario.

3.2.3. Simulation module

Each feasible decision scenario generated by the optimization module is

evaluated through simulation. For each scenario, the event-activity graph

corresponding to the proposed decisions is built. The time of each event is

first computed, and passengers are then assigned to the train they should

take. The times of the events prior to the rescheduling date are known and

the times of the events subsequent to this date have to be fixed. Delays ex-

isting at the rescheduling date are propagated through the graph to compute

the times of all events after the rescheduling date.

To set the time of an event, all its incoming arcs are considered. If

the times of the first events of these arcs are not yet computed, they are

computed. Once first events of all incoming arcs are set, the time of the

event is computed according to the most stringent arc: If event e has two

incoming arcs, say a running arc from the same train at the previous station

and a headway arc from the previous train at the same station, both previous

event times and arc durations (here, running time and headway) are taken

into account to compute the earliest time at which event e could occur, while

respecting the infrastructure constraints. The following calculation is thus

done for each event e ∈ N :

Pe = max
∀e′∈N ; (e′,e)∈A

(Pe′ + de′e)

Once the simulated time for each event is computed, passengers are
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Algorithm 2 Heuristic Add-3-Branches(initSol)

D: set of possible decisions
sol, bestSol1, bestSol2, bestSol3 ← initSol
bestObj1, bestObj2, bestObj3 ← initSol.objective
for Decision d ∈ D do

sol.activate(d)
if feasible(sol) is true then

sol.simulate
addNonDominated(sol)
if sol.objective <bestObj3 then

if sol.objective <bestObj2 then
if sol.objective <bestObj1 then

bestSol3 ← bestSol2
bestObj3 ← bestObj2
bestSol2 ← bestSol1
bestObj2 ← bestObj1
bestSol1 ← sol
bestObj1 ← sol.objective

else
bestSol3 ← bestSol2
bestObj3 ← bestObj2
bestSol2 ← sol
bestObj2 ← sol.objective

end if
else

bestSol3 ← sol
bestObj3 ← sol.objective

end if
end if

end if
sol.deactivate(d)

end for
bestSol1 ← Add(bestSol1)
bestSol2 ← Add(bestSol2)
bestSol3 ← Add(bestSol3)
return bestSol1, bestSol2, bestSol3
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assigned to the trains they should board to calculate their waiting time at

the origin station and their in-vehicle time. Passengers are gathered by OD

(Origin-Destination). The number of passengers in each OD is known for

each one-hour time slot. We consider a uniform and constant arrival of

passengers at the station in a time slot.

At each stop e of a train t at a station, the concerned ODs are determined

according to the next stops of train t. For each of these ODs, the number of

passengers arriving at the station since the last stop of a train tprecOD serving

the OD is computed, and this number is added to the number of passengers,

if there are any, who could not board train tprecOD because it was already full.

Figure 3 illustrates the number of passengers wishing to reach a given

destination in the origin station over time. The arrival rate at the station

varies according to the time slot (characterized by slopes τ7−8, τ8−9 and

τ9−10). Since train t2 is already full when arriving at the station, not all

waiting passengers can board. Each group of passengers wishing to join the

same destination is then divided: Some passengers board the train while

the others wait for the following train which stops at their destination. The

number of passengers that can board depends on the ratio between the

number of passengers in each OD group and the total number of passengers

wishing to board. For example, passengers on train t3 are passengers that

arrived between t1 and t2 who could not get in t2 and passengers who arrived

since t2.

Once the assignment of passengers is completed, it is possible to compute

both the waiting times and the in-vehicle times.

Storage of non-dominated solutions. Each feasible generated scenario is sim-

ulated, and its criteria are computed. If a solution is not Pareto-dominated

by solutions of the set of non-dominated solutions, it is stored in the set.

If stored solutions are dominated by the new solution, they are removed

from the set. The set of non-dominated solutions is thus updated after each

simulation.

3.3. Selection of non-dominated solutions

Once the set of non-dominated solutions is completed, one or several

solutions has to be picked from this set. Selection criteria are first recalled,

then the selection process is described.
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Figure 3: Waiting time of passengers for a specific OD

3.3.1. Selection criteria

Based on the three main objectives introduced in Section 2.3, three cri-

teria are used to evaluate a solution:

• The recovery time,

• The quality of service for passengers,

• The number of proposed decisions.

Let us recall that the goal is to present multiple solutions with trade-offs

on these criteria to Transilien decision makers.

3.3.2. Selection process

Between one and three rescheduling solutions are proposed as follows:

1. The solution minimizing the objective function as a weighted sum of

the recovery time, the quality of service for passengers, the number and

type of proposed decisions and the number and sum of delays. The

recovery time and the quality of service for passengers are dominating

in the objective function, thus this function minimizes the recovery

time RTmin.
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2. The solution that minimizes the impact on the quality of service for

passengers with a minimal recovery time RTmin.

3. The solution that minimizes the impact on the quality of service for

passengers with a degradation threshold on the minimal recovery time

RTmin. This allows a trade-off between the recovery time and the

impact of decisions for passengers.

This selection process quickly determines interesting solutions to show

to the decision makers. It has been used for the industrial experiments at

the end of 2017 (see Section 5).

4. Numerical experiments

4.1. Test instances

The Transilien network consists of 13 train lines. Five of them are cross-

ing Paris (RER lines), along a north-south axis or an east-west axis. The

other eight lines start from a large train station in Paris or close to Paris,

and travel towards the suburbs. Most lines run on an infrastructure dedi-

cated to Transilien trains, but some lines share the infrastructure with other

SNCF long distance trains (mostly regional and intercity trains). Most of

the lines consist of several branches, and each line has its own characteristics

(platform height, length, rolling stock, train protection system, etc.). Lines

consist of double tracks, and tracks are operated in a single direction. As

lines are double-tracked, re-routing is not possible, except in specific cases

like large disruptions or maintenance works. Some stations are equipped

with a third central track, allowing trains to turn. These tracks are rarely

used to change the order of trains, except in case of large disruptions.

Frequencies widely vary depending on the type of lines (crossing Paris or

not) and the distance from Paris. Furthest stations have the lowest frequency

(two trains per hour) while, in central Paris stations, the frequency can

reach one train every two minutes during peak hours. Thus, the impact of

an operational action depends on its location: Skipping a stop in Paris has

almost no impact on the quality of service, while skipping a stop further

from Paris can result in passengers waiting for one hour.

In terms of rolling stock, Transilien trains are most of the time composed

of a locomotive and a set of coaches or two coupled units that operate as a

pair for the entire day. Here, each train is considered as one rolling-stock

unit.

18



4.2. Comparing with Altazin et al. (2017)

The first experiments with the optimization-simulation approach have

been carried out on the same instances as in Altazin et al. (2017). A delay

of a few minutes is created on one train running on a line serving 8 stations

during morning or evening peak hours, with a frequency of one train every

10 minutes in both directions. The instances cover between 1.5 and 2.5

hours of circulation. The approach can tackle any number of delays, as it is

the case in Section 5, but only one delay is created here in order to study

the performance of the approach.

The minimal turning time is set to 8 minutes, and the stop-skipping

strategy to after10 : Stops can be skipped only for trains departing at least

10 minutes after the rescheduling time.

First, only stop skipping was allowed to compare the optimization-simulation

approach and the Integer Linear Program (ILP) of Altazin et al. (2017).

The optimization-simulation approach provides a finer modeling of passen-

ger flows, and more realistic criteria for evaluating the quality of service for

passengers: The ILP only computes the maximum waiting time between

two consecutive trains. The Full Enumeration method (FE) is used in the

optimization-simulation approach, to ensure that the optimal solution is

found. Parameters of the optimization-simulation approach are set to the

same values as for the ILP, or similar values for new or different parameters.

Initial Solution Recovery Degradation of Skipped Total

delay time passengers’ stops delay

(min.) objective (min.)

ILP FE ILP FE ILP FE ILP FE

3
S0 16 16 0 0 43 37
S∗ 16 16 0.0% 0.0% 0 0 43 37

5
S0 30 28 0 0 84 69
S∗ 23 21 1.0% 0.6% 0.8 0.4 74 64

7
S0 43 38 0 0 152 137
S∗ 32 25 3.0% 1.0% 1.6 1 132 123

10
S0 59 52 0 0 296 277
S∗ 42 34 8.0% 1.6% 4 2.2 249 245

Table 1: Comparison of the average results obtained with ILP and FE

Table 1 compares the average results obtained on five instance with the

ILP and the optimization-simulation approach that uses the Full Enumer-

ation method (FE). For each initial delay, average values of indicators are
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shown for solution S0 with no authorized decisions and optimal solution

S∗. Note that the results are similar without being identical. The models

are slightly different. For instance, the recovery time is computed from the

rescheduling date given by the user to the theoretical time of the last delayed

event in the ILP, while it is computed from the delayed time of the event

where the delay is created, to the simulated time of the last delayed event,

as constraints do not need to be linear.

The optimization-simulation approach proposes to skip less stops. Skip-

ping a stop costs the same in the objective function but does not allow the

same to be gained in the two approaches. The ILP considers a fixed gained

duration for a skipped stop, when the time gained in the optimization-

simulation approach depends on the theoretical dwell time at the station.

Less stops needs to be skipped to recover the same delay with the optimization-

simulation approach.

Impact on passengers seems to be greater with the ILP, though the values

follow the same trend for the two approaches. The ILP considers the max-

imal waiting time between two consecutive trains, weighted by the number

of passengers wanting to board or alight at the concerned station. Pas-

sengers are continuously arriving at stations in the optimization-simulation

approach, and the destination station is considered. The modeling of pas-

sengers trips is more precise and realistic in the optimization-simulation

approach.

4.3. Comparing only stop-skipping decisions with all decisions

The second series of tests aims at analyzing the interest of the new

decisions compared to only allowing only stop skipping: Adding stops, short-

turning trains and canceling trains. Heuristic Add-3-Branches (3B) is used

with the guiding objective function discussed in Section 2.3.

First, only stop skipping is activated, and then all decisions are allowed.

Parameters are set to similar values as before, 8-minute minimal turning

time and a time period to observe before applying a decision: (1) Before the

train departure for canceling the train or modifying its stopping pattern,

or (2) Before the arrival event at the concerned station in case of a short-

turning. This time period is set to 5 minutes in these tests.

Table 2 summarizes the results for both tests: Only stop-skipping de-

cisions (SS) and all decisions (AD). The results are slightly different than

those from Table 1: More stops can be skipped because of the 5-minute time

period before applying decisions, and heuristic Add-3-Branches is used.
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Initial Solution Recovery Degradation of Proposed Total

delay time passengers’ decisions delay

(min.) (min.) objective (min.)

SS AD SS AD SS AD SS AD

3
S0 16 16 0 0 37 37
S∗ 16 13 0.0% 1% 0 0.2 37 32

5
S0 28 28 0 0 69 69
S∗ 21 14 0.9% 4% 0.4 0.6 64 56

7
S0 38 38 0 0 137 137
S∗ 25 19 1.7% 13% 1.4 1.0 119 102

10
S0 52 52 0 0 277 277
S∗ 33 22 0.4% 8% 1.6 2.0 230 193

Table 2: Comparison of only stop-skipping decisions with all decisions

The recovery time is shorter when all decisions can be applied, which is

coherent. Indeed, short-turning a train consists in skipping several consec-

utive stops, which allows more time to be gained than skipping one stop.

Short-turning can also be applied on running trains, when stops can be

skipped only on trains departing at least 5 minutes after the rescheduling

date.

Yet, the degradation of the quality of service for passengers is larger.

Short-turning or canceling a train affects more passengers than a skipped

stop. Note that the impact for a 10-minute initial delay is smaller than with

a 7-minute delay. In case of a large delay, many passengers are affected in

S0 and short-turning a train will impact some passengers but shorten the

waiting time for others. The lengthening of waiting times and in-vehicle

times is thus smaller for a larger initial delay.

4.4. Analysis of heuristic performance

These last tests aim at evaluating the quality of the optimal solution S∗

proposed by the heuristics. Same instances have been ran with both heuris-

tics, Add (ADD) and Add-3-Branches (3B), with the optimal solution found

with the Full Enumeration method (FE). Table 3 presents the same indica-

tors as in previous tests, and Table 4 sums up the number of simulations

and number of non dominated solutions when using each algorithm.

Table 3 shows that the two heuristics have identical results. The local

optima reached by heuristic Add-3-Branches are thus identical to the local

optimum of heuristic Add or worse in terms of the objective function.
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Initial Sol. Recovery Degradation of Proposed Total delay
delay time passengers’ decisions (min.)
(min.) (min.) objective

FE ADD 3B FE ADD 3B FE ADD 3B FE ADD 3B

3
S0 16 16 16 0 0 0 37 37 37
S∗ 13 13 13 0.9% 0.9% 0.9% 0.2 0.2 0.2 32 32 32

5
S0 28 28 28 0 0 0 69 69 69
S∗ 14 14 14 3.7% 3.7% 3.7% 0.6 0.6 0.6 56 56 56

7
S0 38 38 38 0 0 0 137 137 137
S∗ 19 19 19 13.4% 13.4% 13.4% 1.0 1.0 1.0 102 102 102

10
S0 52 52 52 0 0 0 277 277 277
S∗ 22 22 22 8.3% 8.4% 8.4% 1.6 2.0 2.0 194 194 194

Table 3: Comparison of heuristics (ADD and 3B) with FE

Solutions minimizing the objective function S∗ are the same with the

heuristics and the full enumeration method, except for one 10-minute initial

delay instance. For this instance, the recovery times are identical, but the

solution found by FE reaches this result by proposing less decisions, and

the impact on passengers is smaller. These tests confirm the performance

of both heuristics in terms of the evaluation criteria, with a much shorter

computational time. As shown in Table 4, the full enumeration method

requires several million simulations when the heuristics need at most a few

hundreds. Some test instances require several hours of computational time,

when heuristic Add-3-Branches solves them in less than one minute.

In terms of computational time, 3 to 4 seconds are required for 1,000

simulations on a machine with an Intel Core i3-6100U processor running at

2.3GHz with 1GB of RAM allocated to the rescheduling application. This

time is reduced to 1.5 seconds on a machine with an i7-3930K processor

clocked at 4GHz, when 8GB of RAM is allocated for rescheduling.

Heuristic Add-3-Branches does not require significantly more simula-

tions than heuristic Add. Because more solutions are evaluated, more non

dominated solutions might be found with heuristic Add-3-Branches, offer-

ing more choice for the selection process. The full enumeration method

generates more non dominated solutions, yet the difference is not signifi-

cant, compared to the very large number of additional simulations that are

required.

To conclude, both heuristics provides good results, for a very strongly

reduced computational time, that allows the rescheduling approach to be

used in real time.
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Initial Number of Number of non

delay (min.) simulations dominated solutions

FE ADD 3B FE ADD 3B

3 1, 537, 090 27 27 1.0 1.0 1.0
5 1, 440, 709 34 49 3.6 2.8 2.8
7 3, 012, 378 43 94 6.6 3.8 5.6
10 6, 664, 050 60 117 8.5 5.8 7.3

Table 4: Number of simulations and non dominated solutions generated by each
algorithm

4.5. Multi-objective analysis

To assess the quality of the sets of non dominated solutions generated

by the heuristics, indicators from Jaszkiewicz (2004) and Zitzler (1999) have

been calculated on the 13 test instances generating rescheduling solutions

(the 7 other instances proposed no operational decisions).

Table 5 shows the number of solutions in the Pareto front generated by

FE and the two heuristics. As specified in Section 2.3, three criteria are used

to establish the dominance: The recovery time RT , the quality of service for

passengers QS and the number of proposed actions. As expected, heuristic

Add-3-Branches generates more non dominated solutions than heuristic Add.

FE proposes more non dominated solutions than the heuristics in most cases,

except when some of the generated solution are better and the set is smaller.

Instance Initial Number of non
delay dominated solutions

FE ADD 3B

1 3 5 4 4

2
5

4 4 4
3 4 3 3
4 6 6 6

5

7

4 4 4
6 8 6 9
7 4 3 3
8 12 5 11

9

10

5 3 3
10 13 5 10
11 5 3 4
12 18 10 11
13 2 2 2

Table 5: Number of non dominated solutions generated for 13 test instances
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Net Front Contribution (NFC)

The Net Front Contribution (NFC) is expressed as the percentage of

solutions of each set of non dominated solutions that are in the reference

front S. The reference front S is the set of non dominated solutions when

combining all sets. This indicator measures the contribution of each set to

the global set.

Table 6 presents the values of NFC for all instances, for the full enumera-

tion method and both heuristics. As expected, FE enumerates all solutions,

thus its NFC is always 100%. Heuristic Add-3-Branches has a slightly bet-

ter NFC than heuristic Add, as it browses more solutions. These results

show that the heuristics are not as good as FE, but they still provide an

interesting set of non dominated solutions. Note that the NFC of heuristics

is smaller when the initial delay is larger, and more decisions can thus be

proposed.

Instance Initial NFC
delay FE ADD 3B

1 3 100% 80% 80%

2
5

100% 100% 100%
3 100% 75% 75%
4 100% 100% 100%

5

7

100% 100% 100%
6 100% 75% 75%
7 100% 75% 75%
8 100% 33% 75%

9

10

100% 60% 60%
10 100% 38% 69%
11 100% 60% 80%
12 100% 22% 22%
13 100% 100% 100%

Table 6: Net Front Contribution (NFC) for 13 test instances

Weak-Out Performance (WOP)

The Weak-Out Performance (WOP), that evaluates the dominance be-

tween two sets of non dominated solutions, has also been calculated. The

WOP between two sets A and B is equal to 1 if A weakly dominates B, -1

if B weakly dominates A and 0 if no set weakly dominates the other. A

set A of non dominated solutions is said to weakly dominate another set of

non dominated solutions B if no solution in A is dominated by a solution in

B, and if at least one solution of A dominates a solution of B. The results
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are shown in Table 7. The full enumeration method weakly outperforms

both heuristics or no heuristic outperforms the other, and heuristic Add-3-

Branches weakly dominates heuristic Add in two cases. These results are

expected, and confirm that the sets of non dominated solutions generated

by the heuristics are about the same quality as those generated by FE.

Instance Initial WOP
delay FE-ADD FE-3B 3B-ADD

1 3 0 0 0

2
5

0 0 0
3 0 0 0
4 0 0 0

5

7

0 0 0
6 0 1 0
7 0 0 0
8 1 1 1

9

10

0 0 0
10 0 1 0
11 0 0 0
12 1 1 1
13 0 0 0

Table 7: Weak-Out Performance (WOP) for 13 test instances

Spacing

This indicator measures the average distance between consecutive solu-

tions in a set of non dominated solutions. The smaller the spacing, the more

evenly the solutions are distributed across the set.

Table 8 presents spacing values for the full enumeration method and

both heuristics. Spacing is smaller for FE on some instances, as there are

more non dominated solutions. Note that some instances have a smaller

spacing for heuristics, such as instance 11, for which the set of non dominated

solutions obtained with heuristic Add is small and not very diverse.

The maximum spread of the sets has also been calculated, showing that

the set of non dominated solutions of FE is almost always more spread

than those of the heuristics, except for instance 12, for which the optimal

solution found by FE is not found by the heuristics. In this case, the set of

non dominated solutions is less spread for FE as it is narrowed around this

optimal solution.

This multi-objective analysis has pointed out that, although the heuris-

tics provide a smaller number of non dominated solutions, the quality of
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Instance Initial Spacing
delay FE ADD 3B

1 3 1.33 0.92 0.92

2
5

0.88 0.88 0.88
3 1.93 1.43 1.43
4 1.01 1.01 1.01

5

7

0.90 0.90 0.90
6 1.22 1.58 1.96
7 1.93 1.42 1.42
8 2.23 2.06 2.01

9

10

1.74 1.46 1.46
10 1.00 0.91 1.19
11 1.58 0.86 1.26
12 1.25 2.21 2.24
13 2.96 2.96 2.96

Table 8: Spacing of the set of non dominated solutions

their sets of non dominated solutions is good enough. We thus chose to

implement this real time rescheduling approach in an operational tool.

5. Industrial validation

5.1. Presentation of the experiments

A rescheduling tool has been implemented to test the optimization-

simulation approach in real time operations and evaluate the consistency

of the proposed solutions. Decision makers from the Transilien operational

center took part in the tool design, particularly for the graphical interface

and the parameters. The home screen of the tool is a map of the consid-

ered line, with real time alerts. The tool is online, and thus connected to

real-time data on trains. Hence, when the rescheduling process is launched,

the current situation, with all trains running on the line and the current

delay of each train, is taken into account. Note that the previously applied

decisions are also taken into account. The solution S0 without actions and

the proposed rescheduling solutions to recover the multiple delays can be

compared through their recovery time and quality of service for passengers.

A time-space diagram of each solution can then be plotted, showing the

proposed decisions and their impact on the traffic.

This tool is connected to Transilien data flows. Experiments have been

conducted during three weeks at the end of 2017, on a line with two branches:

The two blue branches of line L on Figure 4. Five trains per hour are running
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on each branch during peak hours, thus 10 trains per hour are running in

the common section. Trains from another Transilien line are running on

the same tracks on a portion of the line (red line U on Figure 4). These

trains are considered because of the headways, but no actions can be taken

on them. Tests have been carried out during the end of the morning peak

hours.

Figure 4: Map of the L line on which the experiments have been conducted

5.2. Results

The rescheduling approach was launched 302 times during the three

weeks of experiments. About half of the time, no solution was proposed

as the situation was not disturbed. When solutions were found, only one

solution was proposed in 75% of the cases and two solutions in the remaining

cases.

On average, the recovery time was reduced by 40% (35 minutes) com-

pared to solution S0. 79% of the proposed solutions had a negative impact

for passengers. The larger the delays, the more the number of proposed

solutions and decisions, and the smaller the impact was for passengers, as

noted in Section 4.3.

A total of 43 rescheduling proposals have been discussed in details with

the decision makers. Figure 5 shows the distribution of these 43 proposals.

Most of them are consistent, meaning that the tool behaved as expected,

some minors bugs have been corrected in the first days. This result is very

satisfying for a first operational implementation. Consistent solutions might

not be relevant, mainly because of characteristics not expected to be man-

aged by the tool. For instance, a short-turning requiring a long turning time

in a station, and thus occupying a track for too long. Decisions could be

proposed for a train that has a small delay or no delay, so decision makers

would wait to see the evolution of the situation before taking an action.

27



95% 44% 19%

Consistent solutions

Relevant solutions

Applied solutions

Figure 5: Distribution of discussed rescheduling solutions

These cases are still interesting as they drag the decision maker’s attention

on a train whose delays could increase in the near future.

Relevant solutions are meaningful solutions for the decision makers that

could be applied. Solutions that are relevant but not applied are lacking

data, for instance on operational actions that have already been taken, or

about driver assignments, making the proposed decisions infeasible.

8 solutions have been applied by the decision makers, meaning that at

least one of the proposed decisions has been applied, which was a pleasant

surprise. Since these experiments initially aimed at validating the consis-

tency of the rescheduling solutions, and the decision makers were not ex-

pected to actually implement the proposed rescheduling solutions. 44% rel-

evant solutions and 19% applied solutions confirmed the industrial interest

of our optimization-simulation rescheduling approach.

Solutions Number of Reduction of Degradation of Number of
solutions recovery time passengers’ decisions

min. ratio objective

Consistent 41 27 36% 3.4% 1.5
Relevant 19 30 35% 3.1% 1.5
Applied 8 32 36% 1.2% 1.3

Table 9: Average results for discussed rescheduling proposals

Table 9 shows average values of indicators for the consistent, relevant

and applied solutions. Note that applied solutions are the most efficient:

Reducing the most the recovery time while reducing the least the quality
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of service for passengers, with a few less decisions applied. These results

confirm that the evaluation criteria of our rescheduling approach are repre-

senting the criteria used by the decision makers to reschedule train traffic.

Decision makers reckoned that the graphical interface was clear and easy-

to-use and that the tool helped them in their everyday work. They appreci-

ated the alerts and the time savings brought by the rescheduling proposals,

especially when the situation was disturbed on another line they had to

manage. Most of the solutions were deemed interesting and consistent, and

they noted the interest in the long projection horizon that they could not

have without a tool. Their manager is also very enthusiastic about the tool

and would also like to use it to train new decision makers.

6. Conclusion and perspectives

Following the diagnosis of the situation in the dense railway system of the

Paris area and supported by the preliminary results in Altazin et al. (2017),

this paper proposes a multi-objective rescheduling approach for limited dis-

turbances. In order to minimize the recovery time and the impact of distur-

bances on passengers’ waiting and travel times, various operational decisions

are considered: Canceling and short-turning trains, adding and skipping

stops. An approach combining an optimization module and a simulation

module is developed to generate multiple non-dominated solutions, that are

proposed to the decision makers. Real timetables, rolling-stock assignments

and origin-destination data of passengers have been used to conduct nu-

merical experiments, showing that the approach allows the recovery time to

be significantly reduced in case of disturbances. A multi-objective analysis

has also been carried out to study the quality and diversity of the proposed

solutions. Based on these positive results, an operational rescheduling tool

connected to real time data flows has been developed in collaboration with

Transilien decision makers, and first real-life experiments were conducted

in the fall of 2017. These experiments were successful, with most of the

solutions proposed by the approach being judged as relevant, and even with

some solutions been actually applied.

This work has different perspectives. First, the data collection and visu-

alization functions of the decision support tool have been improved and ex-

tended to the six railway lines of the Paris Saint-Lazare region, for which new

experiments have been conducted in 2018. In the near future, the reschedul-

ing approach will actually be included in the Transilien traffic management
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tool, and thus be generalized to all Transilien lines. The performances of the

approach will have to be closely monitored when scaling to a larger network,

as well as the computational time. Various research avenues are also being

investigated. We are analyzing the relevance of extending our approach to

consider the assignments of drivers and to reschedule the rolling stock. More

operational actions could also be included if needed on different networks,

for instance re-ordering trains, and the capacity of terminal stations could

be refined to be more realistic. Another interesting perspective is to rethink

how transportation plans are designed, and in particular how robustness

should be ensured, based on the fact that our approach is now available to

deal with disturbances.
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Integrating train scheduling and delay management in real-time railway

traffic control. Transportation Research Part E: Logistics and Transporta-

tion Review 105, 213–239.

Dollevoet, T., Huisman, D., Kroon, L.G., Schmidt, M., Schöbel, A., 2015.
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Nielsen, L., Kroon, L.G., Maróti, G., 2012. A rolling horizon approach

for disruption management of railway rolling stock. European Journal of

Operational Research 220, 496–509.

Pareto, V., Bonnet, A., 1963. Manuel d’économie politique. Number vol.1
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