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A B S T R A C T

An important and poorly understood question when communities consider wind power investments is whether
the local population will benefit financially. I examine the effect of wind power investment on wages in rural
counties in the US. I combine quarterly panel data on wages with data on all wind power plant investments
larger than 1 megawatt (MW). Using a Bayesian multilevel model estimated by MCMC, I estimate a significant
positive effect, with a magnitude consistent with a 2% permanent increase in wages following an investment
in a large wind farm of 400 MW. However, this effect has large geographic and socioeconomic variation.
Counties with low employment tend to see little impact on wages from wind power, potentially because slack
in the labor market prevents wages from rising. From a policy perspective, these results are most relevant for
local regulators and planners, who seek to balance the benefits and costs of wind farms to the community.
This research indicates that wind farms can provide, on average, a modest boost to local wages, with some
areas seeing an out-sized effect.

1. Introduction

Wind turbines and wind farms have in the last decade become a
significant source of economic investment in rural and small-metro
counties. The cost of wind power fell by 75 percent between 1984
and 2015 and is cost competitive in many locations in the US without
subsidies (Trancik, 2015). Wind power has moved from being a niche
and highly subsidized generation found mostly in rich states, to a
competitive form of power generation that now makes up a significant
portion of generation in states with substantial rural areas such as
Iowa, South Dakota, Texas, and Wyoming. Decreasing costs and wider
penetration has also meant that the wind power industry is playing a
growing role in the US labor market as a whole. The US Department
of Energy (DOE) estimates that as of 2015, the wind power industry
supported approximately 100,000 jobs. The DOE further extrapolates
that if wind power penetration continues to grow, the industry could
support up to 600,000 jobs by 2050.1

The effects of wind power, and more generally renewable energy
on economic growth and labor markets has been an active topic of
research, especially in northern Europe where generous subsidies led
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1 https://www.energy.gov/downloads/2017-us-energy-and-employment-report.
2 The Bakken formation in North Dakota and Montana, The Marcellus in the north-east, and the Barnett in Texas.

to early and sustained investment in renewable energy (Lehr et al.,
2008, 2012). Studies of the US have been more sparse (Haerer and
Pratson, 2015; Brown et al., 2012; Wei et al., 2010). A common element
of these studies is that they tend to be aggregated to the regional
or national level, without considering the geographic and spatial dis-
tribution of economic effects. The results are often based on large
scale, computational input–output models calibrated to aggregated data
on investments and penetration, but highly dependent on modeling
assumptions. To my knowledge, nation-wide empirical studies of the
local economic effects of wind power investments are largely absent
from the literature.

Comparisons can be made to the local economic effects of another
recent energy boom. The shale oil and gas boom, driven by technologi-
cal advances in ‘‘fracking’’ (Gold, 2014) also primarily affected rural
areas in the major petroleum-containing formations in the US.2 Ko-
marek (2016), Weber (2012) and Brown (2014) all find substantial
increases in employment and wages in counties that experienced a
boom in oil and gas extraction. Importantly though, these economic
and labor market effects often retreat or disappear as oil and gas wells
run dry.
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Wind turbines, on the other hand, tend to have a mechanical life of
over 20 years. More so, older wind power sites tend to get re-powered
– that is the turbines get replaced by newer, more efficient turbines –
as the wind resources and transmission infrastructure make such sites
ideal for continued investment (Mauritzen, 2014). Thus, even though
we might hypothesize that the local economic effects of wind power are
less than that of exploiting oil and gas deposits, there is good reason to
believe that the effects may be more permanent in nature.

A related literature analyses the effect of natural resources on
the geography of industrialization. Michielsen (2013) finds that the
existence of coal and gas deposits tends to have a significant effect on
the geographical location of energy-intensive industry. This suggests
a potentially long-term mechanism for the economic effects of wind
power on economic development. If the geographic concentration of
wind power in a certain area leads to locally cheaper electricity prices,
this could attract energy intensive industry. However, in this article I
focus on a time scale of years, rather than decades, and such a long-term
mechanism is unlikely to be at play in the results I present.

Instead, the hypothesis that I wish to test in this article is whether
investments in wind power farms, which happen primarily in rural
communities, have a direct, permanent and measurable impact on
the economic well-being of the local residents of that community, as
measured by average wages.

In order to test this hypothesis, I use data from the Energy Infor-
mation Agency form 860 on all wind power installations over 1 MW in
the United States and match it with quarterly wage and employment
data from the Bureau of Labor Statistics Quarterly Census to estimate
the effect of wind power investments on wages.

In trying to estimate the effect of wind power on local wages, I need
to take into account a high degree of heterogeneity among counties.
I wish to estimate separate wage trend curves for each county, and
allow for varying (‘‘random’’) effects for wind power investment. This
allows for both disaggregation of results, as well as making the model
robust to outliers and improving predictive performance of the model
— a property called regularization or ‘‘partial pooling’’ (Gelman et al.,
2013). Such a multilevel (alternatively called a hierarchical or mixed-
effects model) can be estimated by maximum likelihood (Bates et al.,
2015). However, this can become computationally cumbersome with
multiple hierarchies, which I make use of in this article. In addition,
under maximum likelihood the data are often assumed to be normally
distributed for computational reasons, which may not always be a real-
istic assumption. Instead, I estimate the model using Bayesian Markov
Chain Monte-Carlo (MCMC). A full technical description of Bayesian
methods, multilevel models and MCMC is well beyond the scope of this
article. Instead I refer to McElreath (2015) and Kruschke (2014), which
provide good introductions to Bayesian methods and multilevel models,
while a more technical treatment can be found in Gelman et al. (2013).

The results indicate that wind power investments have a modest
but significant effect on wages. A large 400-megawatt (MW) wind
farm – approximately the capacity of 100–150 modern turbines – leads
to a median permanent increase in wages of 2.0% in rural counties.
However, this median figure masks large variation across geographies,
with a few states with large penetrations of wind power showing
significantly higher local effects on wages. In addition, I show that
the effect of wind power investments on wages varies based on the
socioeconomic status of counties. Wages in counties that are designated
as having low levels of employment appear to benefit little from wind
power investments. This is consistent with economic theory, which
would suggest that the increased economic activity from investments
would push up wages in areas where there is little slack in the labor
market. I also estimate state-by-state coefficients, and these also show
out-sized effects in states where wind power investments happen in
counties with particularly low unemployment.

These results are not ex-ante obvious. Investments in wind power
will of course have an impact on economic growth and lead to job
creation in the manufacturing, installation and maintenance of the

turbines. They will also generate revenues for land-owners who either
lease land for wind turbines or own the turbines directly, sometimes
through a cooperative structure. However, it is not immediately clear
how and to what extent these economic effects influence the local labor
market and wages.

Unlike investments in typically labor-intensive industry, like a man-
ufacturing plant, fully built out wind power plants employ few people.
For many locations, it may make sense to employ skilled labor from
outside the county hosting a wind power plant for both the initial
build-out as well as subsequent maintenance and repair. Because wind
turbine maintenance and repair is a skilled occupation, even if an in-
county job is created, it is not clear to what extent this would lead to a
net-increase in employment as opposed to a skilled worker moving from
one position to another. In this article, I therefore start out with the
assumption that the effect of a wind power plant on net employment is
negligible. This is supported by a preliminary analysis, as well as results
from the main analysis.

Without a significant employment effect, wind power investments’
impact on wages are likely indirect; through the flow of income accu-
mulating to land-owners, local ownership stakes in the plant or through
extra tax revenue to the local governments. But the role that this flow
of income will have on local wages is ex-ante unclear. Ownership
of agricultural land is to a growing extent concentrated and held by
corporations or individuals who are not located in the same county
or even state (Nickerson et al., 2012). The income from wind turbines
may, in many cases, end up flowing completely out of the county.

Importantly, wind power investments are not necessarily perceived
as net positive by local communities. Wind farms can impose significant
non-financial costs such as altered views, noise, and disruption of local
wildlife. These costs can lead to conflicts around planned investments,
which have been analyzed extensively in the planning and environmen-
tal policy literature (Fast, 2015; Fast et al., 2016; Walker et al., 2014).
In particular, Christidis et al. (2017) and Wolsink (2007) emphasize the
role of inequality and fairness in the distribution of benefits as sources
of conflict. Conflict and opposition tend to happen in communities
where the benefits of wind power are seen to be concentrated or flow
mainly to outsiders. In this context, establishing the local wage effects
of investments becomes an important part of the planning process. If
wind power investments are known to have a broad-based effect on
local wages in a county, this could be an important factor in gaining
local acceptance.

This article informs renewable energy policy and planning by sug-
gesting a distributive effect of wind power investments. Wind power
investments appear to modestly press up wages in rural counties. This
should inform local planning decisions on whether and to what degree
to allow wind power investments in a local community. This article
should also encourage discussion and future research on how more
of the benefits of wind power can flow to the local communities that
host the investments. For example, ownership structures such as co-
operatives, which are widely used in Denmark as well as in some
US states, could lead to both a more direct flow of benefits to host
communities as well as a way of gaining local acceptance for wind
power.

2. Identifying the effects of wind power investments

Establishing a causal treatment effect of industrial investments on
labor markets has typically been difficult. Industrial investments are
generally endogenous to local labor markets – that is, firms take into
account the local labor market when making an investment decision.
Industrial investments are also heterogeneous in nature – they differ
substantially by size, character and labor-intensity. Comparing different
investments in different locations is challenging. Finally, industrial
investments are often made in large labor markets where the total
effects are difficult to estimate in aggregated data.
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Table 1
Rural Urban Continuum Codes obtained from the Department of Agriculture Economic

Research Service (ERS) are aggregated into three broader categories.
County Rural–Urban Continuum Codes (RUCC)

1 Counties in metro areas of 1 million population or more
2 Counties in metro areas of 250,000 to 1 million population
3 Counties in metro areas of fewer than 250,000 population
4 Urban population of 20,000 or more, adjacent to a metro area
5 Urban population of 20,000 or more, not adjacent to a metro area
6 Urban population of 2500 to 19,999, adjacent to a metro area
7 Urban population of 2500 to 19,999, not adjacent to a metro area
8 Completely rural or less than 2500 urban population, adjacent to a metro

area
9 Completely rural or less than 2500 urban population, not adjacent to a

metro area

Aggregated categories

1 Metro counties (1, 2, 3)
2 Non-metro with urban population, adjacent to a metro area (4, 6)
3 Completely rural, or small urban population not adjacent to metro area. (5,

7, 8, 9)

For the purposes of measuring the effect of industrial investments
on labor markets, wind power has three attractive properties. First,
wind power is largely standardized, and scale is straight-forward to
measure. A wind farm is measured in terms of capacity (Megawatts
(MW)). Second, out of spatial necessity, investments in wind turbines
tend to happen away from large population centers. Modern land-based
wind turbines are often over 80 m tall with blade-lengths of over 100
m.3 The majority of wind power in the United States is built in rural
counties, making it plausible to measure aggregated effects on labor
markets. Finally, wind power investments are largely exogenous to
labor market conditions. The reason is that the most important factor in
the profitability of a wind farm is the average wind speed of a location,
something that tends to be unrelated to the labor market.

Despite the importance of wind speed in wind power investment
decisions, labor market outcomes and investment in wind power could
plausibly be partly endogenously determined. On the margin, counties
more likely to attract wind power projects could, for example, have
the necessary transmission infrastructure in place, or have local govern-
ments that are more investment friendly, with stream-lined processes
for permits and approvals. These unobserved variables could also be
correlated with labor market outcomes, biasing the estimates.

In order to control for such potential sources of bias, I use a panel
of data with 30 quarterly observations on labor market outcomes for
rural counties in the United States. Making use of the flexibility of the
Bayesian multilevel model, intercepts and trends for wages are allowed
to vary by county, taking into account local variation. I then compare
outcomes before and after a wind power investment. In addition, I con-
trol for several county-level variables such as agricultural land values
and total electric generating capacity, that may have a confounding
effect. From this multilevel model I can estimate an average treatment
effect of wind power investment across counties while allowing for
varying intercepts and trends by county.

3. Data

I combine data from three sources. Data on investments in wind
energy plants are from the US Energy Information Agency (EIA) form
860.4 This data provides yearly information on every power plant and
planned power plant with capacity of over 1 MW in the United States.
Data are at the generator level. Variables include the date of first

3 The wingspan of a 747 jumbo-jet is approximately 60 m.
4 https://www.eia.gov/electricity/data/eia860/.

operation, size of generator, county of generator, ownership, and grid
connection.

Data on quarterly county-level labor market outcomes are from the
Bureau of Labor Statistics (BLS) Quarterly Census of Employment and
Wages.5 Variables include average weekly wages and employment for
each of the 3223 US counties.

I classify the counties based on the US Department of Agricul-
ture’s Economic Research Service (ERS) Rural–Urban Continuum Codes
(RUCC)6 from 2013. County designations are updated every 10 years
based on decennial Census data. RUCC codes go from 1–9, as defined in
Table 1. In order to simplify the analysis, I aggregate the designations
into three broader categories, which are also shown in the lower pane
of the table. The aggregated categories are meant to separate out metro
areas and counties adjacent to metro areas from those that consist
of rural areas and small towns not directly connected to a big city
economy. From now on I will simply refer to these three categories
as ‘‘Metro’’, ‘‘Adjacent metro’’ and ‘‘Rural’’.

Many recent analyses of the US labor market have used Commuting
Zones, as developed by Tolbert and Sizer (1996), as the geographic
unit. Commuting Zones approximate the labor markets associated with
metro areas which often stretch across metropolitan and suburban
counties. I do not, however, make use of Commuting Zones as I am
explicitly concerned with rural and small-town counties not adjacent
to metro areas.

Additional data on county population and agricultural land values
was obtained from the ERS.7 These variables can clearly change over
time; however, they are only available at 10-year intervals, with the
most recent year being 2013. In the analysis, these variables then
appear as time-invariant county-level variables.

The upper pane of Fig. 1 shows the distribution of counties by rural–
urban indicator. The lower pane of the figure shows the distribution of
operating wind power plants. Rural counties have clearly seen a large
share of wind power investments. Fig. 3 shows that rural counties have
been the location of nearly half the total wind power capacity and
that capacity additions in rural areas more than doubled in the period
studied.

Comparing the distribution of wind power in Fig. 1 to a map of
average wind resources produced by the US National Renewable Energy
Laboratory (NREL) in Fig. 2 gives a visual impression of the high
correlation between wind resources and the geographic investment
decision. As mentioned, the most important factor in determining
the profitability of a wind turbine is the average wind speed of the
turbine location. The physical relationship between power generation
and average wind speed is approximately cubic.8 Average wind speed
is then a dominating factor in the geographic investment decision and,
arguably, exogenous to economic and labor market variables.

The upper pane of Fig. 4 shows that employment in non-metro
areas has been largely stagnant since 2009 compared to metro areas.
As the lower panel shows, however, wage growth has been similar in
both rural and metro areas, though rural wages fell more during the
preceding recession.

A summary of the variables used in the models is presented Table 2.
Variables for county average weekly wage, employment and cumulative
installed wind power varies both by county and quarterly observation
with a total of approximately 32,000 observations. The four county-
level variables are fixed over time with a total of 1049 observations
consisting of the rural counties in our sample.

5 https://www.bls.gov/cew/.
6 https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/.
7 https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-

tenure/farmland-value/.
8 A simplified equation for wind power output can be written 𝑃 =

𝑘𝐶𝑝
1
2
𝜌𝐴𝑉 3, where 𝑃 = Power output (kW), 𝐶𝑝 = Maximum power coefficient,

𝜌 = Air density (𝑘𝑔∕𝑚3), 𝐴 = Rotor swept area (𝑚2) V = wind speed (m/s), 𝑘
= a constant (MacKay, 2016).

https://www.eia.gov/electricity/data/eia860/
https://www.bls.gov/cew/
https://www.ers.usda.gov/data-products/rural-urban-continuum-codes/
https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-tenure/farmland-value/
https://www.ers.usda.gov/topics/farm-economy/land-use-land-value-tenure/farmland-value/
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Fig. 1. The upper pane of the figure shows the distribution of counties by the rural–urban indicator. The lower pane shows the distribution of wind power plants across the US.
Wind power plants tend to be concentrated in rural counties.

Fig. 2. The National Renewable Energy Laboratory’s wind resources map. Wind power investments, as shown in Fig. 1, are concentrated in the wind-rich spine of the US running
from Texas up through North Dakota. Wind power investment decisions can to a certain extent be seen as exogenous.
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Fig. 3. Almost half of all wind turbine capacity is located in rural areas. Wind power
capacity more than doubled in the period studied.

Fig. 4. Employment growth in non-metro counties has lagged significantly behind
employment in metro counties. Average wage growth, has, however been similar
between metro and non-metro counties, through from a lower absolute level.

Table 2
Summary of variables used in the analysis.

Variable Symbol N Mean St. Dev.

Observation level

Average weekly wage Wages 32,807 644.51 147.27
Quarterly employment Employment 32,807 12,145.17 12,303.72
Cumulative installed wind power Capacity 32,807 15.21 91.11

County level

Low employment county (1/0) low_employment 1049 0.36 0.48
County population (2010 Census) Population 1049 12,205.95 10,124.27
Average agricultural land value agg_land_value 1049 2432.94 1818.58
Total electric generating capacity gen_cap 1049 129.98 382.89

Notably, the mean cumulative installed wind power is shown to
have a mean of approximately 15 MW, while the standard deviation is
approximately 91 MW. This reflects the fact that most counties have no
wind power capacity throughout the period studied, while a few have
large build-outs of capacity, sometimes of several hundred mega-watts,
leading to a large standard deviation.

4. A hierarchical model of wages and wind power investment

In the model the response variable is wages in county 𝑐 at time 𝑡,
𝑤𝑎𝑔𝑒𝑐,𝑡. This variable is transformed by subtracting the overall mean

of the series and dividing the standard deviation. All other continuous
variables are transformed in a similar manner. This transformation
allows for the interpretation of results free from units. Dividing by
the standard deviation also maintains coherence when comparing
coefficients to binary variables (Gelman and Hill, 2006). These transfor-
mations have the added benefit of aiding the convergence of the MCMC
algorithm (Gelman et al., 2013). Binary variables are not transformed.

̂𝑤𝑎𝑔𝑒𝑐,𝑡 =
𝑤𝑎𝑔𝑒𝑐,𝑡 − 𝑚𝑒𝑎𝑛(𝑤𝑎𝑔𝑒𝑐,𝑡)

𝑠𝑡𝑑(𝑤𝑎𝑔𝑒𝑐,𝑡)
(1)

The likelihood of each response is modeled as a normal random
variable with mean �̂�𝑐,𝑡 and standard deviation 𝜎𝑦 as shown in Eq. (2).

̂𝑤𝑎𝑔𝑒𝑐,𝑡 ∼ 𝑁(�̂�𝑐,𝑡, 𝜎𝑦) (2)

Eq. (3) describes the model at the observation level. The fitted val-
ues for wages are modeled as an intercept term, 𝛼𝑐 , and a trend or slope
term 𝛽0𝑐 . The covariates include an indicator for the period, 𝑝𝑒𝑟𝑖𝑜𝑑𝑐,𝑡
in quarterly intervals. The estimated parameter 𝛽0𝑐 then represents a
linear time trend on the wages. As the 𝑐 indexing indicates, these terms
are allowed to vary by county. This leads to the estimation of over
1000 intercept and slope parameters — one for each rural county.
However, each of the 𝛼𝑐 and 𝛽0𝑐 parameters are modeled as coming from
a higher-level (or ‘‘meta’’) distribution as shown in Eqs. (4).

The hierarchical form of the model then allows each of the county-
level coefficients and intercepts to be decomposed into a pooled av-
erage effect, as well as an idiosyncratic county-level random-effect. In
a traditional model, a single average intercept and trend term might
be estimated across all counties - a so called fully pooled estimation.
With a multilevel model, we can allow intercept and trend terms to
vary at the county level, while still being ‘‘partially’’ pooled by way of
modeling each county-level parameter as coming from a higher-level
distribution (Gelman and Hill, 2006).

This structure allows for inference on average effects, while control-
ling for geographic variation and naturally taking into account issues of
multiple comparisons through parameter shrinkage. In practical terms,
this leads to a compromise between the aims of modeling and con-
trolling for the variation in each county that could otherwise bias the
coefficient on the wind power term, and avoiding over-fitting the data,
which tends to lead to poor out-of-sample inference and prediction. For
more in-depth discussions of hierarchical models9 and partial pooling I
refer to Gelman and Hill (2006) and McElreath (2015).

A vector of quarterly dummy variables, 𝐪𝐮𝐚𝐫𝐭𝐞𝐫𝐭 are included to
control for seasonality, as rural counties tend to have a high proportion
of seasonal workers, which in turn leads to seasonality in the wage data.

The variable 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐,𝑡 indicates the total wind power capacity in
a county 𝑐 in period 𝑡. The parameter 𝛽1 is then the coefficient of
interest, representing the permanent average employment effects of a
wind power investment. Fig. 5 shows a simplified illustrative diagram
of the model for wages over time with a wind power investment at time
𝑡.

Plausibly, the build-out stage of a wind farm could drive up wages
temporarily, with wage-levels thereafter falling back to trend. I there-
fore tested specifications that included a term for the size of the
installation in the quarters of the build-out. This term was consistently
estimated to be centered around zero, and I therefore dropped it from
the final specification presented here.

Finally, 𝐗𝐜 represents a matrix of county-level covariates that do not
vary with time.

�̂�𝑐,𝑡 = 𝛼𝑐 + 𝛽0𝑐 𝑝𝑒𝑟𝑖𝑜𝑑𝑐,𝑡 + 𝛽1𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐,𝑡 + 𝐪𝐭𝐫 + 𝜁𝐗𝐜 (3)

𝛼𝑐 ∼ 𝑁(𝜇𝛼 , 𝜎𝛼) (4)

𝛽0𝑐 ∼ 𝑁(𝜇𝛽0 , 𝜎𝛽
0
)

9 Hierarchical models are also referred to as random effects models,
multilevel models, and in the case of linear models: linear mixed models.
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Fig. 5. The diagram illustrates the observation level equations for each county.

5. Model fitting with Bayesian MCMC

I use Bayesian Markov Chain Monte-Carlo (MCMC) simulation to
fit the model using the Stan probabilistic programming language (Stan
Development Team, 2014), which utilizes Hamiltonian MCMC (see
MacKay (2003, ch. 30)) and a No-U-Turn Sampler (Homan and Gelman,
2014) for efficient sampling in high-dimensional probability space.

Weakly informative Cauchy priors10 are assigned to the parame-
ters of the higher-level distributions as shown in Eqs. (5) The mean
terms, 𝜇, for the distribution of the 𝛼𝑐 and 𝛽0𝑐 parameters are assigned
Cauchy priors with a location parameter of 0 and a scale parameter
of 2.5. The corresponding variance terms, 𝜎, are assigned half-Cauchy
priors11 with location parameter 0, and scale parameter of 5. Weakly
informative priors have the effect of focusing the initial draws of the
MCMC algorithm to reasonable values of the parameters, with the fatter
tails of the Cauchy distribution, as opposed to a normal distribution,
allowing for a non-negligible probability of outliers. The priors do not,
however, impose any strong assumption of prior information on the
model results. Use of the Cauchy prior distribution also allows for
inference in the case of complete separation by covariates (Gelman,
2006).

𝜇𝛼 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0, 2.5) (5)

𝜇𝛽0 ∼ 𝐶𝑎𝑢𝑐ℎ𝑦(0, 2.5)

𝜎𝛼 ∼ ℎ𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0, 5)

𝜎𝛽
0
∼ ℎ𝑎𝑙𝑓 − 𝐶𝑎𝑢𝑐ℎ𝑦(0, 5)

The Hamiltonian MCMC routine was run with four chains and 3000
iterations. Gelman–Rubin convergence statistics (�̂�) of close to 1 indi-
cated convergence of the simulation to the target probability (Gelman
et al., 2013).

6. The effect of wind power investment on wages

In this section I present results from four specifications of the
hierarchical model of wind power investments on wages. In Table 3
I present an overview of the symbols used in the specifications.

The first and simplest specification can be written as in Eq. (6). 𝛼𝑐
and 𝛽0𝑐 are the intercept and slope terms for the wage trend for each

10 The Cauchy distribution is a t-distribution with 1 degree of freedom.
11 Cauchy priors with support over the positive range.

Table 3
Definitions and descriptions of model symbols.

Symbol Description Specification

�̂�𝑐,𝑡 Mean of the response variable, wages in quarter (t) and
county (c)

1–4

𝜎𝑦 Standard deviation of response variable, wages 1–4
𝑎𝑐 Intercept term, varies by county (c) 1–4
𝛽0𝑐 Slope parameter on wage trend, varies by county 1–4
𝐪𝐭𝐫 Vector of quarterly dummy variables 1–4
𝛽1 Parameter on wind power capacity 1
𝛽1𝑙𝑒𝑚𝑝 Parameter on wind power capacity, varies by low

employment status
2–3

𝛽1𝑠𝑡𝑎𝑡𝑒 Parameter on wind power capacity, varies by state 4
𝛽2 Parameter on county employment 3–4
𝜁0 Parameter on county population 1–4
𝜁1 Parameter on county agricultural land value 2–4
𝜁2 Parameter on county total power generation capacity 2–4
𝜇𝛼 Location parameter on distribution of 𝛼𝑐 parameters 1–4
𝜇𝛽0 Location parameter on distribution of 𝛽0𝑐 parameters 1–4
𝜇𝛽1 Location parameter on distribution of 𝛽1𝑠𝑡𝑎𝑡𝑒 4
𝜎𝛼 Scale parameter on distribution of 𝛼𝑐 parameters 1–4
𝜎𝛽0 Scale parameter on distribution of 𝛽0𝑐 parameters 1–4
𝜎𝛽1 Scale parameter on distribution of 𝛽1𝑠𝑡𝑎𝑡𝑒 4

Table 4
Summary of results for specification 1.

Mean se_mean sd 2.5% 97.5%

𝜇𝛼 −0.088 0.003 0.026 −0.143 −0.040
𝜇𝛽0 0.248 0.000 0.005 0.238 0.257
𝜎𝛼 0.869 0.002 0.020 0.829 0.910
𝜎𝛽0 0.150 0.000 0.004 0.143 0.158
𝛽1 0.020 0.000 0.004 0.012 0.029
qtr[1] 0.294 0.000 0.005 0.284 0.304
qtr[2] −0.002 0.000 0.005 −0.012 0.008
qtr[3] 0.014 0.000 0.005 0.004 0.025
𝜁0 0.099 0.003 0.026 0.049 0.150
𝜎𝑦 0.336 0.000 0.001 0.334 0.339

county and are given higher-level distributions as discussed above. The
distribution of 𝛽1 represents the effect of wind power capacity addi-
tions, 𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 over all counties. In this specification I include county
population, 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐 , where 𝜁0 is the coefficient, as the only county-
level controlling variable. Population is an important controlling vari-
able since it may confound the estimated coefficient on capacity. Higher
populations may be a sign of a stronger overall economy with higher
wages at the same time as a county with a higher population may also
attract more wind power investments both because of larger demand
for power and because of the larger labor market pool.

�̂�𝑐,𝑡 = 𝛼𝑐 + 𝐪𝐭𝐫 + 𝛽0𝑐 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑐,𝑡 + 𝛽1𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐,𝑡 + 𝜁0𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐 (6)

The summary of results for the specification are shown in Table 4.
Including summaries for all of the county level 𝛼𝑐 and 𝛽0𝑐 parameters
is impractical, so instead I show the estimated mean and standard
deviation values of the higher-level distributions: 𝜇𝛼 , 𝜎𝛼 , 𝜇𝛽0 , 𝜎𝛽0 . The
parameter distribution of interest however is 𝛽1. The distribution is
estimated with a mean of 0.020, with 95% of the probability mass lying
between 0.012 and 0.029. The probability density of the parameter is
shown in Fig. 6.

Interpreted at the median value of the distribution, a one standard
deviation increase in wind power capacity in a county will tend to
increase wages by 0.02 standard deviations. This is an economically
modest estimate. Interpreting this for a county with mean wages, even
the building of a relatively large wind farm with a capacity of 400
MW (about 100–150 modern wind turbines) would be expected to raise
average weekly wages by roughly 2%. Yet, as we will see, this overall
estimate masks significant underlying variation.

̂𝑦𝑐,𝑡 = 𝛼𝑐 + 𝐪𝐭𝐫 + 𝛽0𝑐 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑐,𝑡 + 𝛽1𝑙𝑒𝑚𝑝𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐,𝑡
+ 𝜁0𝑐 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐 + 𝜁1𝑎𝑔𝑔𝐿𝑎𝑛𝑑𝑉 𝑎𝑙𝑢𝑒𝑐 + 𝜁2𝑔𝑒𝑛𝐶𝑎𝑝𝑐

(7)



Energy Policy 142 (2020) 111489

7

J. Mauritzen

Table 5
Summary of results for specification 2.

Mean se_mean sd 2.5% 97.5%

𝜇𝛼 −0.089 0.004 0.028 −0.139 −0.034
𝜇𝑏𝑒𝑡𝑎0 0.248 0.000 0.005 0.238 0.258
𝜎𝛼 0.832 0.001 0.017 0.798 0.867
𝜎𝛽0 0.150 0.000 0.004 0.143 0.158
𝛽1𝑙𝑒𝑚𝑝=𝐹𝑎𝑙𝑠𝑒 0.020 0.000 0.004 0.012 0.028
𝛽1𝑙𝑒𝑚𝑝=𝑇 𝑟𝑢𝑒 −0.007 0.001 0.024 −0.054 0.040
qtr[1] 0.294 0.000 0.005 0.284 0.304
qtr[2] −0.002 0.000 0.005 −0.012 0.008
qtr[3] 0.014 0.000 0.005 0.004 0.025
𝜁0 0.086 0.004 0.027 0.028 0.136
𝜁1 −0.023 0.003 0.026 −0.076 0.027
𝜁2 0.241 0.002 0.028 0.189 0.296
𝜎𝑦 0.336 0.000 0.001 0.334 0.339

For the second specification, as shown in Eq. (7), I make a few small
but important changes. First, I add two additional county-level control
variables. In addition to the county population, I add the variable for
agricultural land value, 𝑎𝑔𝑔𝐿𝑎𝑛𝑑𝑉 𝑎𝑙𝑢𝑒𝑐 with coefficient 𝜁1, which may
affect both the decision to invest in a wind farm and the wages in a
county and could therefore potentially confound the results. In addi-
tion, I include an indicator for the total amount of power generation
capacity in the county, excluding wind power, 𝑔𝑒𝑛𝐶𝑎𝑝𝑐 with coefficient
𝜁2. The reason for including this variable is that wind power siting
decisions are likely related to the availability of transmission and other
electric power infrastructure. This could plausibly also be correlated to
wages in a county and could confound the results on the wind power
capacity variable. Large amounts of electric power infrastructure could
both be a sign that a county is economically prosperous as well as
attractive to wind power investors.

Finally, in this specification I allow the coefficient on wind power
capacity additions to vary by an indicator for whether a county is high-
or low-employment, as classified by the US Department of Agriculture.
Thus, the coefficient on wind power capacity additions is now written
𝛽1𝑙𝑒𝑚𝑝. The idea that is being tested here is that the effect of extra wind
power investment on wages in a county may be dependent on the
existing economic conditions in that county.

The summary of the results for the specification can be found in
Table 5. Fig. 7 shows the density of the coefficients on the wind
power capacity variable over low- and high-employment counties. For
high-employment counties, the coefficient is again centered around
0.02, with 95% of the probability between 0.012 and 0.028 standard
deviations. However, for low-employment counties, the distribution is
estimated to be relatively flat and centered around zero. In other words,
little correlation can be found between wind power investments and
wages in counties designated as low employment.

These results are consistent with what economic theory might sug-
gest. Increased economic activity due to a wind farm investment will
only tend to press up wages in counties with little slack in their
labor markets. While this article focuses on wages, it is important to
note that it is plausible that counties with high unemployment may
still benefit economically through job-creation, without this necessarily
being reflected in average wages.

A notable omission of the former two specifications is a variable
for employment. As noted, the estimated wage effect of wind power
could potentially be through increased employment pressing up wages.
In that case, including employment in the regression should reduce
the magnitude of the coefficient. In the third specification, as shown
in Eq. (8), we include quarterly data on employment, 𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑐,𝑡, for
each county as a controlling variable, with a coefficient 𝛽2. Otherwise,
specification 3 is identical to specification 2.

̂𝑦𝑐,𝑡 = 𝛼𝑐 + 𝐪𝐭𝐫 + 𝛽0𝑐 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑐,𝑡 + 𝛽1𝑙𝑒𝑚𝑝𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑐,𝑡 + 𝛽2𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑐,𝑡 (8)

+ 𝜁0𝑐 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐 + 𝜁1𝑎𝑔𝑔𝐿𝑎𝑛𝑑𝑉 𝑎𝑙𝑢𝑒𝑐 + 𝜁2𝑔𝑒𝑛𝐶𝑎𝑝𝑐

Table 6
Summary of results for specification 3.

Mean se_mean sd 2.5% 97.5%

𝜇𝛼 −0.087 0.003 0.023 −0.142 −0.047
𝜇𝛽0 0.241 0.000 0.005 0.231 0.250
𝜎𝛼 0.780 0.001 0.017 0.750 0.815
𝜎𝛽0 0.141 0.000 0.004 0.134 0.148
𝛽1𝑙𝑒𝑚𝑝=𝐹𝑎𝑙𝑠𝑒 0.021 0.000 0.004 0.013 0.029
𝛽1𝑙𝑒𝑚𝑝=𝑇 𝑟𝑢𝑒 −0.015 0.001 0.024 −0.061 0.032
𝛽2 0.702 0.001 0.019 0.665 0.740
𝑞𝑡𝑟[1] 0.298 0.000 0.005 0.288 0.308
𝑞𝑡𝑟[2] 0.019 0.000 0.005 0.009 0.029
𝑞𝑡𝑟[3] 0.013 0.000 0.005 0.003 0.023
𝜁0 −0.544 0.003 0.032 −0.603 −0.482
𝜁1 −0.038 0.003 0.025 −0.086 0.010
𝜁2 0.217 0.002 0.025 0.171 0.266
𝜎𝑦 0.331 0.000 0.001 0.328 0.333

Fig. 6. Distribution of 𝛽1 under specification 1.

Fig. 7. Distribution of 𝛽1 distributions varying by counties classified as low
employment and high employment from specification 2.

A summary of the results from specification 3 can be found in
Table 6. The coefficient on the employment variable, 𝛽2 is positive and
economically significant. The mean of the estimated distribution is 0.7,
with 95% of the probability falling between 0.65 and 0.74. Interpreted
at the mean of the distribution, a one standard deviation change in
employment will tend to increase wage by 0.7 standard deviations.
As we might expect, there is a strong general relationship between
employment and wages. Yet, it appears that wind power investment’s
effect on wages is through another mechanism. The inclusion of wages
as a controlling variable hardly changes the distribution of the 𝛽1

parameters. In other words, the effect of wind power investments on
wages appears to be independent of employment.

The fourth and final specification allows for a higher degree of
variation in the 𝛽1 parameter by allowing the coefficient to vary by
state. This specification accounts for variation in the effects of a wind
power investment by state, due to factors such as differences in typical
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Fig. 8. The map shows county-level unemployment for 2012 in Texas. Rural counties
in the north and north west panhandle, where much of the wind power lies, have
particularly low unemployment rates.
Source: US Bureau of Labor Statistics Local Area Unemployment Statistics, https://data.
bls.gov/lausmap/showMap.jsp.

ownership structure, typical size of investments as well as the economic
conditions of the state.

Specification 4 can be written as in Eq. (9), where the only change
from specification 3 is that the 𝛽1 parameter is now indexed with 𝑠𝑡𝑎𝑡𝑒
representing the 42 states that contain rural counties that experienced
at least one wind power investment in the period studied.

The 42 estimated 𝛽1 distributions are assigned a higher-level distri-
bution with a normal prior with mean 𝜇𝛽1 and standard deviation 𝜎𝛽1 ,
as shown in Eq. (10). As with the 𝛼 and 𝛽0 distributions, assigning a
higher-level distribution allows for partial pooling of the information
in the data across states in order to avoid undue influence from outlier
groups – especially from states with few wind power investments – and
to generally avoid over-fitting the data.

A summary of results are shown in Table 7, while a visual summary
of the state-varying 𝛽1 distributions is shown in Fig. 10 with accompa-
nying Table 8. The state-level coefficients are estimated with relatively
high uncertainty, but most are in the range of the overall estimate
from the previous specifications. However, there is sizeable variation.
Notably, Texas and Wyoming – both states with large amounts of wind
power – have coefficients that are centered close to 0.10. Interpreted
at the median, this would imply that a medium- to large-sized wind
farm of 200 MW on average permanently increases wages by 5% in
these states. Ex-ante, it is not clear why the economic effects should
be substantially higher in these states. However, Figs. 8 and 9 show
that county unemployment in the Texas panhandle (north-west) and
eastern Wyoming – both areas with heavy wind power investments (see
Fig. 1) – had particularly low unemployment rates in the period studied.
Thus, the results for these states are consistent with the results from the
previous specifications: That wind power investments press up wages
in counties where there is little slack in the labor market. The results
underline that the wage effects of a wind power plant will likely vary
substantially based on the socioeconomic conditions of the county as
well as the size and ownership structure of the investment.

It is worth noting that the state-level results motivate the use of
the Bayesian multilevel model in the first place. Since the priors on
the meta-parameters in the aggregated model have heavy tails, they
allow for outlying observations without unduly affecting estimates of
the central tendency (mean or median). In this way, the results from the
two states are not driving the results seen from the aggregated model.

Iowa is also a notable state, with a mean coefficient of .022 that
is estimated with relatively high precision. This is likely explained by
the fact that Iowa is a heavily rural and agricultural-based state that
also has the highest wind power penetration in the country. Every rural
county in Iowa has experienced significant wind power investments
over the course of the period studied, and thus Iowa provides a high

Fig. 9. The map shows county-level unemployment for 2012 in Wyoming. Rural
counties in the east and south east, where much of the wind power lies, have
particularly low unemployment rates.
Source: US Bureau of Labor Statistics Local Area Unemployment Statistics, https://data.
bls.gov/lausmap/showMap.jsp.

Table 7
Summary of results for specification 4.

Mean se_mean sd 2.5% 97.5%

𝜇𝛼 −0.086 0.004 0.022 −0.127 −0.044
𝜇𝛽0 0.241 0.000 0.005 0.232 0.250
𝜎𝛼 0.782 0.002 0.018 0.746 0.816
𝜎𝛽0 0.140 0.000 0.004 0.134 0.148
𝜇𝛽1 0.010 0.001 0.018 −0.027 0.044
𝜎𝛽1 0.060 0.001 0.014 0.037 0.094
𝛽2 0.701 0.001 0.019 0.665 0.737
𝑞𝑡𝑟[1] 0.298 0.000 0.005 0.288 0.308
𝑞𝑡𝑟[2] 0.019 0.000 0.005 0.009 0.029
𝑞𝑡𝑟[3] 0.013 0.000 0.005 0.003 0.023
𝜁0 −0.540 0.004 0.030 −0.600 −0.478
𝜁1 −0.035 0.004 0.026 −0.083 0.018
𝜁2 0.227 0.002 0.024 0.181 0.273
𝜎𝑦 0.330 0.000 0.001 0.328 0.333

number of relevant observations. In this way, Iowa serves as a relatively
pure test case for the effects of wind power on rural counties. Iowa’s
state-level coefficient of .022 lends supports to the overall estimate on
the 𝛽1 coefficient of .02 from the previous specifications.

𝑦𝑖 = 𝛼𝑐 + 𝐪𝐭𝐫 + 𝛽0𝑐 ∗ 𝑝𝑒𝑟𝑖𝑜𝑑𝑖 + 𝛽1𝑠𝑡𝑎𝑡𝑒𝑐𝑎𝑝𝑎𝑐𝑖𝑡𝑦𝑖 + 𝛽2𝑒𝑚𝑝𝑙𝑜𝑦𝑚𝑒𝑛𝑡𝑖 (9)
+ 𝜁0𝑐 𝑝𝑜𝑝𝑢𝑙𝑎𝑡𝑖𝑜𝑛𝑐 + 𝜁1𝑎𝑔𝑔𝐿𝑎𝑛𝑑𝑉 𝑎𝑙𝑢𝑒𝑐 + 𝜁2𝑔𝑒𝑛𝐶𝑎𝑝𝑐

𝛽1𝑠𝑡𝑎𝑡𝑒 ∼ 𝑁(𝜇𝛽1 , 𝜎𝛽
1
) (10)

7. Conclusion and policy implications

In summary, I find that wind power investments in rural counties
have a positive but modest overall effect on wages. Interpreting from
the median of the estimated distribution, a large wind farm located
in a rural county is estimated to raise wages by 2%, though this
median value masks substantial variation across US states. The effect
on wages also does not appear to translate to counties designated by
the Department of Agriculture as being low employment counties.

The effect of wind power plants on wages is unlikely to be through
a net increase in employment. Instead, the effect is more plausibly
explained through the flow of income to the county that accumulates
due to lease payments, ownership stakes from the wind turbines or
increased revenue to the local government. Why such a mechanism fails
to materialize in low employment counties is not directly clear from the
analysis. However, economic theory would suggest that investments in
counties with slack in their labor markets will not experience upwards

https://data.bls.gov/lausmap/showMap.jsp
https://data.bls.gov/lausmap/showMap.jsp
https://data.bls.gov/lausmap/showMap.jsp
https://data.bls.gov/lausmap/showMap.jsp
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Fig. 10. Summary of the 𝛽1 distribution varying by state. The point represents the median value of the estimated distribution. The lines represent the range between the 10th
and 90th percentile.

Table 8
Summary of the 𝛽1 distribution varying by state.

Mean se_mean sd 10% 90%

AL 0.000 0.001 0.065 −0.080 0.080
AZ 0.007 0.001 0.064 −0.071 0.084
AR 0.018 0.002 0.064 −0.060 0.099
CA 0.005 0.001 0.063 −0.072 0.084
CO −0.024 0.001 0.027 −0.059 0.010
FL 0.011 0.001 0.064 −0.069 0.089
GA 0.022 0.002 0.063 −0.057 0.101
ID 0.005 0.001 0.063 −0.076 0.082
IL 0.021 0.000 0.020 −0.005 0.047
IN 0.008 0.001 0.064 −0.070 0.087
IA 0.022 0.000 0.005 0.016 0.028
KS −0.003 0.001 0.020 −0.029 0.023
KY 0.005 0.002 0.064 −0.076 0.083
LA 0.012 0.001 0.063 −0.066 0.092
ME 0.005 0.001 0.050 −0.059 0.068
MA 0.005 0.001 0.063 −0.073 0.082
MI 0.008 0.001 0.040 −0.042 0.058
MN 0.009 0.001 0.035 −0.035 0.054
MS 0.013 0.002 0.065 −0.067 0.092
MO 0.031 0.002 0.063 −0.046 0.110
MT 0.017 0.001 0.049 −0.045 0.080
NE 0.023 0.001 0.034 −0.020 0.065
NV 0.023 0.001 0.056 −0.046 0.094
NH 0.011 0.001 0.060 −0.061 0.085
NM 0.018 0.001 0.043 −0.036 0.072
NY 0.009 0.001 0.061 −0.065 0.086
NC −0.006 0.001 0.056 −0.078 0.065
ND −0.029 0.001 0.041 −0.083 0.022
OH 0.007 0.001 0.065 −0.073 0.085
OK −0.019 0.001 0.021 −0.046 0.008
PA 0.007 0.001 0.062 −0.069 0.082
SC 0.010 0.001 0.064 −0.067 0.089
SD −0.007 0.001 0.047 −0.067 0.052
TN 0.010 0.001 0.064 −0.069 0.088
TX 0.099 0.000 0.014 0.081 0.117
UT −0.003 0.001 0.057 −0.074 0.068
VT −0.005 0.001 0.060 −0.079 0.069
VA 0.004 0.002 0.066 −0.076 0.084
WA 0.015 0.001 0.038 −0.033 0.064
WV 0.001 0.001 0.059 −0.074 0.073
WI 0.017 0.001 0.065 −0.063 0.095
WY 0.119 0.001 0.042 0.066 0.175

pressure on wages to the same degree as a county that already has full
employment.

I argue that the model setup provides adequate identification of the
causal effect of wind power investment on wages. This identification

comes partly from the exogenous nature of wind power investments,
which are heavily dependent on the average wind speeds of a location.
In addition, a panel data set with a hierarchical model setup provides
identification in the presence of unobserved variables correlated with
the probability of wind power investment. I also control for several
county-level variables that may confound the results.

Investments in energy generation and the related effects on la-
bor markets are highly relevant to current public policy debates. In
fact, they even played a significant role in the narrative of the US
presidential election of 2016.12

For wind power in particular, this research is relevant to the local
planning, approval and regulatory process which seeks to balance the
economic benefits of a wind farm to the local community with the costs.
As the planning literature reviewed earlier suggests, local opposition
to wind power plants often involves a perception that the economic
benefits do not flow broadly to the local community. This study finds
evidence that wind power plants provide a modest increase to wages
in the local communities where they are sited. This effect can vary
significantly regionally, with some areas apparently experiencing an
out-sized positive effect on wages from investments. On the other hand,
rural counties that struggle the most with unemployment appear to
benefit the least, at least in terms of higher wages. Further research
is required to fully understand the sources of this variation.

When making an industrial investment, most firms explicitly or
implicitly take into account the local labor market as a major factor.
Skilled work force, labor costs, and local demand for the product
are important factors in the expected profitability of most industrial
investments. This article highlights how the profitability of wind power
is most strongly determined by the average wind speeds of a given
location.

This provides the prospect of wind power investments serving as
an exogenous shock and setting up a type of natural experiment for
important outstanding questions about labor markets. One important
topic has been the trend of labor market ‘‘polarization’’ in the last
four decades, where employment has increased for low-skilled work
and high skilled work, but real wage growth in these two categories
has diverged, with low-skilled work actually experiencing a sustained
real wage decline (Autor, 2014; Autor and Dorn, 2013). Semi-skilled
employment, such as a turbine technician, has traditionally defined the

12 http://www.washingtonpost.com/news/energy-environment/wp/2017/
03/29/trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-
kept-experts-say.

http://www.washingtonpost.com/news/energy-environment/wp/2017/03/29/trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-kept-experts-say
http://www.washingtonpost.com/news/energy-environment/wp/2017/03/29/trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-kept-experts-say
http://www.washingtonpost.com/news/energy-environment/wp/2017/03/29/trump-promised-to-bring-back-coal-jobs-that-promise-will-not-be-kept-experts-say
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middle class. This category of employment has however stagnated in
terms of both number of jobs and wages. Whether this stagnation is
due to trade, technology or lack of necessary skills has been a active
research topic (Autor et al., 2015; Acemoglu et al., 2015). This article
only gives hints about this larger debate, though researchers making
use of more detailed register and tax data could extract more robust
insights.

8. Software and replication resources

For the analysis, I use the scientific computing environment for
python: Numpy, Scipy, IPython and Jupyter (Walt et al., 2011;
Oliphant, 2007; Perez and Granger, 2007). The package Pandas was
used for cleaning, formatting and descriptive analysis of the data
(Wes Mckinney, 2010). Figures were created using the package mat-
plotlib (Hunter, 2007) and ggplot (Wickham, 2009). The Bayesian
hierarchical model was coded and computed using the Stan probabilis-
tic programming language and engine (Stan Development Team, 2014).
Code and data used for preparation of data, descriptive analysis and
models are available upon request.
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