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MULTIPLE-MEMBERSHIP SURVIVAL ANALYSIS – 1 

Multiple-Membership Survival Analysis and its Applications in Organizational 

Behavior and Management Research 

 

ABSTRACT  

Multilevel paradigms have permeated organizational research in recent years, greatly advancing 

our understanding of organizational behavior and management decisions. Despite the 

advancements made in multilevel modeling, taking into account complex hierarchical structures 

in data remains challenging. This is particularly the case for models used for predicting the 

occurrence and timing of events and decisions—often referred to as survival models. In this 

study, the authors construct a multilevel survival model that takes into account subjects being 

nested in multiple environments—known as a multiple-membership structure. Through this 

article, the authors provide a step-by-step guide to building a multiple-membership survival 

model, illustrating each step with an application on a real-life large scale archival dataset. Easy 

to use R code is provided for each model building step. The article concludes with an illustration 

of potential applications of the model to answer alternative research questions in the 

organizational behavior and management fields.  

 

Keywords: multilevel, multiple membership, survival analysis, events, early-career 

turnover 
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Multiple-Membership Survival Analysis and its Applications in Organizational 

Behavior and Management Research 

 

The analysis and prediction of events constitutes a major segment of organizational behavior 

and management research (Morita, Lee, & Mowday, 1989, 1993). In addition, most research 

that focuses on events as outcomes are not only interested in whether an event occurs, but also 

in when it occurs or how long it takes to occur (Morgeson, Mitchell, & Liu, 2015; Morita et al., 

1993). Examining research questions that take into account the temporal dimension of an event 

(i.e., its timing and/or duration; Morgeson et al., 2015) typically requires the use of survival 

analysis techniques, also known as event-history analysis in sociology, duration analysis in 

economics, and reliability analysis in engineering (Morita et al., 1989, 1993). Survival analysis 

techniques can be applied to any phenomenon that can be conceptualized as the occurrence of 

an event on a timescale, whether it is calendar time or elapsed time since a previous event, or 

the start date of an observation period or study. 

Examples of events (and their timing) that have been studied extensively in the field of 

organizational behavior are turnover in relation to different career stages (Allen, Hancock, 

Vardaman, & McKee, 2014; Cheramie, Sturman, & Walsh, 2007; Griffeth, Hom, & Gaertner, 

2000; Kammeyer-Mueller, Wanberg, Rubenstein, & Song, 2013; Nyberg, 2010); time to re-

employment (Wanberg, Hough, & Song, 2002); employee promotion order and speed (Barnett 

& Miner, 1992; Claussen, Grohsjean, Luger, & Probst, 2014); and occurrence and duration of 

psychological contract breaches  (Eckerd, Boyer, Qi, Eckerd, & Hill, 2016; Griep, Vantilborgh, 

Baillien, & Pepermans, 2016; Solinger, Hofmans, Bal, & Jansen, 2016; Vantilborgh, Bidee, 

Pepermans, Griep, & Hofmans, 2016). More ‘macro’ examples from the management and 

strategy field are the speed at which organizations adapt to an industry versus disappear from it 

(Uzunca, 2018); the speed of success of new business ventures (Bakker & Shepherd, 2017; 
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Eisenhardt & Schoonhoven, 1990); and the speed of product innovation and new product 

adoption rates (Kessler & Chakrabarti, 1996; Schoonhoven, Eisenhardt, & Lyman, 1990). 

In their work on Event System Theory, Morgeson and his colleagues (2015) state that, 

even though events can and do occur at different levels of an organization—from the micro 

employee level, to the team or department level, to the organizational level and even to the 

broader macro levels such as sectors and markets—, scholars have largely failed to understand 

the multilevel nature of both predictors and outcomes of the events. While Morgeson et al. 

(2015) focus primarily on events as antecedent to organizational behavior and change, they also 

acknowledge that events often trigger subsequent events. The latter might have a similar or 

distinct nature from the former; an unexpected but interesting job offer can cause an employee 

to quit their current job, for instance, or a co-worker quitting their job can cause another 

employee to quit their job as well—a phenomenon referred to as turnover contagion (Felps et 

al., 2009). Event System Theory, thus, allows for both the study of events as antecedents to 

behavioral reactions and as relevant outcomes driven by processes occurring at multiple levels 

of an organization. In the present paper, we propose that an integration of survival analysis and 

multilevel modeling is necessary to come to a better understanding of (the temporal nature of) 

events in organizational behavior and management research, as requested by Morgeson et al. 

(2015). Moreover, we also address the common issue of multiple membership—where lower-

level units (e.g., individual respondents) are nested in different higher-level units (e.g., teams 

or organizations) simultaneously or sequentially—something that is more often than not 

ignored in both multilevel modeling and in survival analysis (Mathieu & Chen, 2011). 

To the best of our knowledge, to date, no published organizational behavior and 

management research has applied multiple-membership survival analysis. In fact, the most 

promising advances so far have been made in other scientific fields, most notably veterinary 

medicine  (e.g., Elghafghuf, Dufour, Reyher, Dohoo, & Stryhn, 2014a; Elghafghuf & Stryhn, 
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2017; Elghafghuf, Stryhn, & Waldner, 2014b). Such studies have analyzed, for instance, the 

(literal) survival of heifer cows ‘nested’ in several different barns and veterinary clinics 

(Duchateau & Janssen, 2008). Although the field of veterinary medicine is unallied to the 

disciplines of organizational behavior and management, applying the underlying models to our 

field is actually not that big of a leap—cows, then, become employees, and barns and clinics 

become departments and organizations. The goal of this article is to outline a step-by-step 

approach to the application of multiple-membership survival models in organizational behavior 

and management research. Since an excellent introduction to, and discussion of survival 

regression for management researchers published by Morita et al. (1989, 1993) is available for 

reference, throughout the rest of the paper we will assume some degree of familiarity with 

survival analysis on the part of the reader.  

The intended contribution of this article therefore lies in demonstrating the applicability 

of multiple-membership survival analysis techniques to our field. To encourage broad 

readership, we build our model starting from a count regression model1 (Blevins, Tsang, & 

Spain, 2015), which we assume is a relatively familiar technique to researchers in 

organizational behavior and management research. Computational details and mathematical 

derivations are placed in the supplementary materials of this article for the convenience of 

readers interested in the methodological specifications.  

The article has a tutorial-like format, which outlines the step-by-step process required to 

build a multiple-membership survival model. The detailed tutorial-like format of the article 

illustrates procedural nuances (e.g., how to prepare and (re)structure datasets to allow for a 

count regression approach) by using concrete examples and sample data. We also offer 

guidelines for interpretation and visualization of model results. 

Following the example of Bliese and Ployhart (2002), we encourage the readers to adopt 

the model proposed in this article by using the underlying R code (provided herewith), using 
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the survival package (Therneau & Grambsch, 2000), the mgcv package (Wood, 2017; Wood, 

Goude, & Shaw, 2015) and the brms package (Bürkner, 2017) that uses STAN at the back-end 

to run estimation procedures. Both R (R Core Team, 2017) and STAN software (Carpenter et 

al., 2017) are available online free of charge. Finally, we use a large archival dataset on 

occupational turnover of 1,642 early-career teachers (spanning five years after the start of their 

teaching career) working in 1,038 different schools over time, to demonstrate different aspects 

of our model. 

This dataset is particularly useful to illustrate our modeling process due to its specific 

characteristics: (i) it contains archival, objective measures of events (i.e., leaving the teaching 

profession) over an extended period of time; (ii) it has a multiple-membership data structure 

(i.e., individuals teaching at multiple schools simultaneously, which is often required in early 

career teaching to achieve a full-time appointment; Sun & Pan, 2014), objectively observed 

from government records; and (iii) the teachers’ membership intensity for a given school (both 

in terms of teaching there at all and in terms of teaching hours relative to other schools) in many 

cases varies over time, as early-career teachers often start off as substitutes who are not 

guaranteed an (equally large) assignment in the next term (Clandinin et al., 2015). Although 

readers might consider early-career attrition a niche topic from a content point of view, from a 

methodological viewpoint and for the purposes of this article, we consider teachers as being 

both theoretically and empirically equivalent to employees more generally, and schools to 

organizations or teams. For macro researchers, the teacher-level data could be equated to 

organizations, while the school level could be reframed as sectors or markets. We discuss both 

potential micro and macro research applications of our model in the Discussion. However, it is 

noteworthy that these examples are in no way intended to constitute an exhaustive list of 

potential applications. Instead, they represent active research areas in the fields of 
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organizational behavior and strategic management that we argue would benefit from using the 

proposed methodology.  

Multiple Memberships: Problematization 

The multilevel paradigm has permeated organizational behavior and management theory 

and methods in recent years, greatly advancing our understanding of organizational behavior 

(Mathieu & Chen, 2011) while at the same time revealing additional challenges that continue 

to plague multilevel research (Aguinis, Boyd, Pierce, & Short, 2011; Hitt, Beamish, Jackson, 

& Mathieu, 2007; Morgeson et al., 2015). Specifically, multilevel models—also known as 

hierarchical or mixed-effects models—allow researchers to adhere to the prescription of 

statistical theory that inference should take into account how a study was designed, and how 

the data was collected (Cafri, Hedeker, & Aarons, 2015; Gelman & Hill, 2006; Goldstein, 2011; 

Hox, 2010; Snijders & Bosker, 2012; Sun & Pan, 2014; Zappa & Lomi, 2015). To this end, 

multilevel modeling encourages a more realistic modeling of behavior and strategic 

management decisions by taking into account specific contexts that influence the concerned 

behavior or the decision (Scott, Simonoff, & Marx, 2013). Here, the underlying assumption is 

that individuals or organizations within the same context (e.g., employees within the same team 

or organizations operating in the same industry or sector) will make more similar decisions than 

individuals or organizations embedded in different contexts, given that actors within the same 

context influence each other, while simultaneously facing similar context-specific 

circumstances. The consequences of ignoring such non-independence of observations include; 

attribution errors (Ross, 1977), ecological fallacies (Robinson, 1950), and biased standard 

errors (Bliese & Hanges, 2004), which distort researchers’ ability to make valid inferences and 

predict behavior in a precise manner (Bliese & Hanges, 2004; Gelman & Hill, 2006; Goldstein, 

2011; Hox, 2010; Snijders & Bosker, 2012). 
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The current multilevel paradigm has as a central assumption that each lower-level unit is 

a member of only one higher-level unit—i.e., the classical ‘pure’ hierarchical nesting 

assumption— which is likely to misrepresent the reality of most organizational contexts (Hitt 

et al., 2007; Mathieu & Chen, 2011). For instance, O’Leary, Mortensen and Woolley (2011) 

observed that individual employees often work in multiple teams simultaneously. The 

implication thereof is that each team context is likely to influence the behavior and decision-

making of each of its members (see, for instance, Chen et al.’s 2019 study on how leadership 

style experienced in one team can spill over to individual performance in another team). The 

influence of each team context can be proportional to the time an employee spends working in 

that team. At the more macro level, organizations can operate in multiple industries 

simultaneously (Bakker & Shepherd, 2017; Uzunca, 2018), or belong to so-called ‘hybrid’ 

strategic groups, each with their own strategic recipe (e.g., DeSarbo & Grewal, 2008). Such 

multiple-membership data structures thus violate the pure nesting assumption, for which the 

current methodological toolbox of organizational behavior and management has not yet 

provided a satisfying solution. 

A commonly applied solution is the selection of a single ‘principal’ higher-level unit, 

which will most likely be the environment where the membership intensity (in terms of time or 

salience) is the highest. This approach, however, creates more conceptual problems than it is 

able to solve. For instance, the selection not only becomes arbitrary when there are ‘tied’ 

memberships, it also omits a great deal of potential variance. Imagine an employee who works 

in four teams and spends 30% of the total working time in Team A, 30% in Team B, 20% in 

Team C and the remaining 20% in Team D. Following the most commonly used approach, the 

employee will be assumed to be part of either Team A or Team B, which potentially represent 

fundamentally different contexts. Consequently, 70% of the total working time of this employee 

is not accounted for but assumed to be spent in the principal team as well. Additionally, all 
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teams with minority memberships are ignored, thereby omitting the contextual information that 

could be used to understand the employee’s behavior. Serious potential for bias is thus 

introduced in the team-level effects since the total effect of omitted teams gets ascribed to the 

remaining higher-order units in an analytically intractable way (Cafri et al., 2015; Mathieu & 

Chen, 2011). The team-level variance is further reduced in case entire teams become omitted 

from the analysis, which occurs if none of the employees spend the majority of their working 

time in those specific teams.  

To complicate matters further, a subject’s (multiple-)group membership can change over 

time (Aguinis et al., 2011). Such changes can arise when either subjects switch groups (Mathieu 

& Chen, 2011) or when the population of groups changes (i.e., new teams emerging, teams 

changing size and/or composition, or teams disappearing over time). To avoid succumbing to 

attribution bias while interpreting the employee’s behavior, the multilevel structure should thus 

be allowed to vary over time.  

Mathieu and Chen (2011: 625) correctly state that “these different membership dynamics 

would wreak havoc with traditional multilevel theories and analytic techniques”. A series of 

simulation studies (Chung & Beretvas, 2012; Grady & Beretvas, 2010; Luo & Kwok, 2012; 

Meyers & Beretvas, 2006; Smith & Beretvas, 2014, 2017) have shown that failure to recognize 

and appropriately specify the hierarchical structure in a given dataset leads to invalid inference, 

such as inaccurate standard errors of regression coefficients and biased higher-order unit effects 

(called random effects in multilevel models).  

In sum, analyzing (survival) data where the subjects of interest—whether they are 

employees or organizations—are subjected to a multitude of different environments requires 

more advanced techniques. As multiple-membership data structures arise when lower-level 

units are either simultaneously or sequentially members of multiple higher-level units, such 

techniques should ideally be able to take all environments into account simultaneously and 



MULTIPLE-MEMBERSHIP SURVIVAL ANALYSIS – 9 

allow for dynamic membership (Grady & Beretvas, 2010; Lamote et al., 2013; Smith & 

Beretvas, 2017; Sun & Pan, 2014).  

An Introduction to Multiple-Membership Survival Analysis 

In this section, we conceptualize our multiple-membership survival model and show 

how it can be useful to answer research questions that  imply or require multiple-membership 

data structures. In what follows, we will first explain how this model can be estimated using a 

count regression alternative. To this end, we start by explaining how to restructure survival data 

using our sample dataset of teachers, to demonstrate the count regression approach and the 

modeling of time-varying information. We then build the multiple-membership survival model 

by expanding on the survival regression approach.  

Data Manipulation 

Table 1 shows what most survival data looks like in practice. In the upper half of Table 

1, information that was observed only once during a specified period in time is recorded. For 

each subject (ID), the last time the corresponding subject was observed (Time) is listed. This 

time may correspond to either an ‘event’ time (Event = 1; the subject had experienced the event 

during the study/observation period) or a ‘censoring’ time (Event = 0; the subject had not 

experienced the event at the end of the study/observation period). The lower half of Table 1 

shows time-varying information—i.e., information that had been recorded at multiple times 

during the study/observation period. Notice that this time-varying information includes both 

covariate information and membership information. In case the membership structure for a 

subject is assumed to be time-invariant—that is, if there is no way in which subjects can change 

their membership or their intensity of participation in each of their environments—, we can as 

easily record this information in the time-invariant data format. Notice that each subject appears 

multiple times in this dataset, namely as many times as there is a change in the value of a 

covariate or a membership. In our example, each subject participates in at most six2 different 
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environments (see S#-columns for environment identifiers; e.g., identification codes) during 

the specified period. The membership weights (see W#-columns) indicate how much working 

time each subject spends in each of these environments, proportional to the total amount of 

working time.  

--- INSERT TABLE 1 ABOUT HERE --- 

In the data example, the membership information is allowed to vary over time in several 

ways: (i) the higher-level units may change (e.g., subject 1 – time 13: environment E is traded 

for environment F); (ii) the number of higher-level units may change (e.g., subject 1 – time 7: 

environments C and D are added to the membership set, taking the total number of 

environments from two to four); and (iii) the membership intensity may change (e.g., 

subject 1 – times 1 to 6: the proportion of total working time spent in each environment varies). 

Note that, in this data example, the total number of environments in the membership set is not 

always equal to six—the maximum number of environments observed in the dataset. Therefore, 

nonexistent memberships are imputed as ‘missing’ membership observations for the sole 

purpose of working with a complete matrix. In the analysis procedure, the missing memberships 

are ignored and only the right number of environments in each subject-period observation is 

taken into account.  

In order to take time-varying information into account in survival models, we should 

merge and convert our dataset into a stacked-form dataset, also called the ‘long-format’. To this 

end, we need to split our time dimension into intervals. Usually, the time horizon is split into 

as many intervals as there are unique event times, but smaller time increments are possible too, 

for example when covariates change between two distinct event times. In R, we can use the 

function survSplit from the survival-package (Moore, 2016; Therneau & Grambsch, 2000) to 

organize our dataset in the long format: 

> survSplit(Surv(time,event)~.,data=eventdata,cut=1:60,start='tstart', 

end='tstop') 
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Upon running this command, the survival information contained in our sample dataset 

(data=eventdata) will be split up into sixty intervals (we take the number of intervals equal 

to the number of observed months in our sample dataset). Each interval will now start (tstart) 

where the previous interval ended (tstop). Thus, each row will now correspond to a certain 

time-interval in which the subject could have been observed in the dataset. Congruent with 

traditional survival analysis, as soon as a subject experiences the event of interest  (i.e., event 

equals 1), the subject will not occur in the dataset any longer. Time-varying information can 

now be merged with the long-format dataset containing the same survival information, using 

the subject identifiers and the time-stamped information in both datasets (code provided in 

Appendix 1). Table 2 shows a simplified version of the resulting dataset in the long-format, 

which can be used for regression modeling with time-varying information. Sample descriptives 

of the sample dataset can be found in Table 3.  

 --- INSERT TABLE 2 ABOUT HERE --- 

--- INSERT TABLE 3 ABOUT HERE --- 

Now that we have transformed our data into a long-format, we can start applying survival 

analysis techniques to predict the occurrence and timing of the event of interest using both 

time-invariant and time-varying information on the subject.  

Survival Model: Proportional Hazards Regression 

In survival analysis, one is mostly interested in the hazard rate or the ‘instantaneous event 

rate’, denoted as 𝜆(𝑡) , which represents the probability of experiencing the event exactly at 

time t, assuming that the event has not yet been experienced in the past. As such, this analysis 

aims to explain and predict the probability of experiencing the event-of-interest at each moment 

in time. For instance, it allows us to very specifically analyze the probability of an employee 

quitting his or her job in the organization after 12 months, provided that the employee has not 

already left the organization.  
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The most frequently used model to explain and predict the hazard function is the 

proportional hazards model (Duchateau & Janssen, 2008), which is specified as  

𝜆𝑖 (𝑡) = 𝜆0 (𝑡) ∙ exp(𝜂𝑖 ) (1) 

𝜂𝑖 = 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝛽𝑘𝑥𝑘 (2) 

In short, 𝜆0(𝑡) represents the baseline hazard which functions as an intercept. However, instead 

of being a constant term, as is common in linear regression, the baseline hazard is now a 

function of time, reflecting how the instantaneous event rate changes over time for all subjects. 

The influence of the covariates on this baseline hazard is captured by the hazard ratio, exp(𝜂𝑖 ), 

which contains the linear predictor 𝜂𝑖 . This linear predictor is specified as a linear regression-

like function of all covariates.  

Consider, now, a proportional hazards model with time-varying covariates. In the long-

format of our data, we can count the number of events—which is maximally one in standard 

survival modeling—for each subject-period observation (i.e., each row in the long-format data). 

The event rate can then be computed by dividing the number of observed events for the subject 

by the length of the time interval at hand. Hence, the counting process of events over time 

enables us to use a count regression technique to estimate the proportional hazards regression 

(Moore, 2016; see Appendix 2 for mathematical details). To show this equivalence empirically, 

we estimate the model using the standard coxph function, available in the survival package: 

> coxph(Surv(tstart,tstop,event)~StartAge+factor(Gender)+WrkHours+ 

factor(Contract)+...,data,ties=’breslow’) 

The argument ties=’breslow’ is included by default to correct the estimation for tied event 

times (i.e., events happening at the same time).  

Alternatively, we can use the count regression approach, which can be estimated using 

the bam function available from the mgcv package (bam is a large-dataset alternative function 

for gam, so results are identical; Wood et al., 2015): 
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> bam(event~offset(log(tstop-tstart))+s(tstop,k=60)+StartAge+ 

factor(Gender)+WrkHours+factor(Contract)+...,data,family=’poisson’, 

discrete=TRUE, nthreads=2) 

The arguments discrete=TRUE and nthreads=2 are included with the sole purpose of speeding 

up the estimation procedure. Notice that the event indicator (event) is regressed on: (i) the 

logarithm of the time duration of each interval as an offset, offset(log(tstop-tstart))— 

the regression coefficient of this offset term is set to one (by default) which turns the event 

indicator into an event rate over time; (ii) a smooth and flexible baseline hazard function (which 

will be discussed later), and (iii) all covariates, which include both time-invariant and time-

varying covariates. Selected results from this analysis are presented in Table 4.  

--- INSERT TABLE 4 ABOUT HERE --- 

The results in Table 4 show that the coefficients of the traditional proportional hazards 

(coxph) model and the count regression alternative (bam) model are not very different from 

each other. Hence, the count regression alternative is a valuable (and perhaps more accessible) 

alternative technique for survival analysis. The coefficients, which can be interpreted as hazard 

ratios after exponentially transforming them, are in line with expectations.  

One important aspect of the interpretation of a hazard regression model is that covariate 

effects indicate increases or decreases of the event rate. However, they do not give any 

information about the shape of the event rate over time. This information is captured by the 

baseline hazard. Hence, to fully understand the hazard regression model, the specification of 

the baseline hazard function should be taken into consideration.  

Survival Model: Specification of the Baseline Hazard  

The baseline hazard in a hazard regression model is represented by a function of time, 

which means that this functional form/shape needs to be appropriately specified. 

Misspecification of the baseline hazard function has been shown to result in (severely) 

inconsistent estimates of the regression coefficients (Duchateau & Janssen, 2008), which lead 
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researchers to wrong conclusions. However, there exist multiple alternatives for specifying the 

baseline hazard.  

The first alternative is that researchers make an assumption about a parametric 

distribution for the underlying baseline hazard. Each distribution implies a different shape of 

the hazard function. Popular distributions are the Weibull, Exponential, Log-Normal, Log-

Logistic, Gamma, Pareto, Gompertz distributions, and many more (Duchateau & Janssen, 2008; 

Moore, 2016). Unfortunately, in practice, a single parametric distribution often fails to fit the 

baseline hazard nicely to (finite) sample data. Therefore, as second alternative, the hazard 

distribution is often left unspecified and replaced by a non-parametric (data-driven) estimate. 

The proportional hazard model then becomes the ‘semi-parametric’ model by Cox (1972). A 

last—and preferred—alternative is the estimation of a smooth and flexible baseline hazard 

function. Instead of estimating either a specific baseline hazard for each time interval—which 

results in a piecewise constant hazard (see Moore, 2016)—, or using a fourth-order polynomial 

of time (e.g., Elghafghuf et al., 2014a; Elghafghuf et al., 2014b), we use a smoothing spline of 

time, s(tstop,k=60). We allow a high degree of flexibility or smoothness—this can be 

achieved by setting the hyperparameter k close to the number of  distinct observation times 

(Hastie, Tibshirani, & Friedman, 2009)—, which yields a function which is similar to the non-

parametric baseline hazard of a traditional Cox model. However, a smooth spline function 

yields a smooth trajectory over time which is more interpretable (and usable for predictions) on 

times where no true events are observed than a discontinuous staircase function yielded by a 

Cox model (see Figure 1).  

--- INSERT FIGURE 1 ABOUT HERE --- 

In some cases it is reasonable to assume that the baseline hazard will be 

(disproportionally) different for different clusters in the data. For instance, male and female 

subjects have a fundamentally different baseline job attrition pattern. A survival model can take 
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this into account by stratifying the baseline hazard, which means that different baseline hazards 

are estimated for each cluster. In R, this can be achieved using the following code, which 

estimates different baseline hazards for male and female subjects:  

> coxph(Surv(tstart,tstop,event)~strata(Gender)+StartAge+WrkHours+ 

factor(Contract)+...,data,ties=’breslow’) 

> bam(event~offset(log(tstop-tstart))+s(tstop,k=60,by=factor(Gender))+ 

StartAge+WrkHours+factor(Contract)+...,data,family=’poisson’,discrete=TRUE,

nthread=2) 

In the regression output (not shown) there is no parameter of gender anymore, since the effect 

is entirely taken into account by estimation of different gender-specific baseline hazard 

functions.  

We have now shown how the traditional survival model can be correctly and flexibly 

estimated using a count regression technique. Unfortunately, the proportional hazards model 

still fails to take the multilevel data structure of our sample data into account. At this point in 

our model, all subjects are assumed to be independent, even though in reality participation in 

any common environment creates a degree of non-independence among subjects. This means 

that there exists correlation between the event times of subjects nested in the same environment. 

To account for this non-independence, multilevel analytical techniques should be adopted—in 

survival analysis, these are called frailty models (Duchateau & Janssen, 2008). 

Frailty Models 

Traditionally, multilevel models quantify the (higher-level) environment’s influence on 

the outcome of each of the subjects that participate in the environment. For instance, if turnover 

is the event of interest, the likelihood of employees quitting their jobs is likely to vary between 

organizations, due to differences in work climate, work-conditions or promotion opportunities, 

among many other factors. Nonetheless, all employees within the same organizational 

environment share the same frailty or risk factor, since they are exposed to the same 
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organizational conditions. In this way, the event rates of employees are non-independent. 

Taking the unobserved environmental influence into account solves the non-independence 

problem. The (multilevel) frailty model (Duchateau & Janssen, 2008) is a straightforward 

extension of the well-established multilevel models to survival regression, which can be 

specified as 

𝜆𝑖𝑗 (𝑡) = 𝜆0 (𝑡) ∙ exp(𝜂𝑖𝑗 + 𝑤𝑗 ) (3) 

where 𝜆𝑖𝑗 (𝑡) expresses the hazard function for subject i in environment j, which consists of a 

baseline hazard, 𝜆0(𝑡), and a hazard ratio, exp(𝜂𝑖𝑗 + 𝑤𝑗 ), which now contains both a linear 

predictor, 𝜂𝑖𝑗, and the unobserved environmental influence, 𝑤𝑗. Usually, it is assumed that this 

environmental influence is random across environments—hence, the term random effects—and 

that these influences follow a Gaussian (normal) distribution (Gelman & Hill, 2006; Goldstein, 

2011; Hox, 2010; Scott et al., 2013; Snijders & Bosker, 2012). The interpretation of this random 

effect is intuitive: individuals in an environment with an environmental effect larger than zero 

(i.e., 𝑤𝑗 > 0) will have a higher hazard and are, thus, more ‘frail’. In such an environment, 

subjects have a higher risk of experiencing the event. Conversely, individuals within an 

environment with an environmental effect smaller than zero (i.e., 𝑤𝑗 < 0) are, in general, better 

able to ‘resist’ the event of interest.  

The estimation of frailty models in R is a straightforward extension of the previous 

models, using the following commands:  

> coxph(Surv(tstart,tstop,event)~StartAge+factor(Gender)+WrkHours+ 

factor(Contract)+...+frailty(GROUP,dist=’Gaussian’,method=’REML’), 

data,ties=’breslow’) 

> bam(event~offset(log(tstop-tstart))+s(tstop,k=60)+StartAge+ 

factor(Gender)+WrkHours+factor(Contract)+...+s(GROUP,bs=’re’), 

data,family=’poisson’,discrete=TRUE,nthreads=2) 
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In short, we add a frailty term, specifying the nesting variable GROUP, which takes the 

identification number of the environment to which the subject belongs. In the bam model, 

however, the random effect/frailty distribution is by default Gaussian. It  is important to note 

that a factor variable has to be used as grouping variable, which can be easily accomplished by 

running the following code before fitting the model:  

> data$GROUP<-factor(data$GROUP) 

In the coxph model, we specify that our frailty term must follow a Gaussian (normal) 

distribution. Otherwise, the frailty term follows the default distribution, which is the gamma 

distribution (Duchateau & Janssen, 2008). In this article, we chose the normal distribution to 

ease the explanations and to maximize the congruence with more established multilevel models.   

Frailty Models: Comparing Different Alternatives 

In multilevel analysis, it is an ongoing challenge to identify the most salient higher-order 

unit to study (Mathieu & Chen, 2011). This identification may not always be very 

straightforward as boundaries between higher-order units are not always clearly defined. For 

instance, work teams can be formed based on (i) a project in which multiple employees are 

collaborating; (ii) having a common supervisor or leader; (iii) a shared area of expertise; or (iv) 

strong social network ties among colleagues. Since it is likely that these different ways of 

identifying subjects’ work teams may not result in the same team structures, it could raise 

ambiguity about the most appropriate higher-level unit to model (Ashforth, Harrison, & Corley, 

2008; Rousseau, 1998; Wright, 2009). Anecdotally, many organizational behavior researchers 

have experienced firsthand that self- versus organization-reported team structures often differ, 

creating challenges for multilevel survey design. This issue may even require a solution where 

multiple higher-order units have to be taken into account (Chen et al., 2019).  

One can, for instance, employ a model pitting approach (Joo, Aguinis, & Bradley, 2017) 

to fit multiple competing models and ex-post select the model which provides the best fit for 
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the data at hand. The same strategy can be adopted as a work-around for the multiple-

membership structure of our sample dataset: we can fit multiple frailty models which select 

only a single ‘principal’ higher-level unit and then compare which model fits the data best.  

To complicate matters further, there are different ways to select the ‘principal’ higher-

order unit; among other solutions, one could (i) opt for the higher-order unit with the highest 

membership weight for each time-period observation; (ii) opt for the higher-level unit in which 

the subject has spent most time throughout the career/observation time; (iii) identify the first 

higher-level unit the subject participated in, assuming that first impressions matter (most); or 

(iv) identify the last higher-level unit the subject participated in, since this is the same 

environment in which the subject had experienced the event. In Table 5, we reported the results 

of four frailty models, fitted using both the coxph code as well as the bam code.  

We can see that the traditional frailty model does not yield substantially different 

estimates than the alternative count regression model. Comparing these results with the 

parameter estimates from the traditional survival models, we can conclude that the parameter 

estimates remain somewhat unchanged and the standard errors of the parameter estimates do 

remain stable as well. Formally testing whether adding a random effect term has had an impact 

on the statistical performance is often difficult, because the null hypothesis restricts the variance 

parameter to zero, which lies on the boundary of all plausible values. The mgcv package, 

however, does provide an approximate test based on Wood (2013). Based on these tests (not 

reported) the statistical added value of the random effects is negligible.  

Apart from purely statistical motives, the main advantage of the frailty model is that, by 

using it substantive scholars can now determine what and how large the impact of a higher-

level unit is on the event rates of its members is. Without any covariates—which is what we 

call the unconditional baseline (or null) model—the higher-order effects in our sample dataset 

are normally distributed with a standard deviation ranging between .37 and .45 (depending on 
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which nesting structure we used). In approximate terms, this means that the frailties/random 

effects themselves, will range between -0.74 (i.e., –2*sd) and 0.74 (i.e., 2*sd) using a 95% 

interval. Although this might not seem to reflect a large effect size, its impact on the event rate 

is of substantial magnitude. The hazard ratio of the random effect can be computed by taking 

the exponential transformation of this effect. In doing so, the multiplicative impact on the event 

rate ranges between .48 and 2.10. In practice, this means that the probability of experiencing 

the event at each moment in time can be doubled or cut in half depending on the higher-order 

unit in which the subject is assumed to participate.  

--- INSERT TABLE 5 ABOUT HERE --- 

However, it is important to keep in mind that, at this point in the model, our higher-

order unit identification is still seriously flawed as our selection is both arbitrary and 

incomplete. Most frailty models in Table 5 only make predictions for about 720 out of 1,038 

higher-order units, due to the omission of minority-membership units. It would be safer to take 

all higher-order units into account, both for generalizability and for avoiding serious bias in 

higher-order effects (Cafri et al., 2015; Mathieu & Chen, 2011). This bias arises largely because 

the effect of omitted teams is absorbed by the principal environment, which may bias the true 

environmental effect. A compelling example of this caveat has been recently published by Chen 

and colleagues (2019) who found that for employees who are members of multiple teams 

simultaneously, negative team influences (i.e., a lower degree of empowering leadership) can 

be buffered by positive influenced in another team (i.e., a higher degree of empowering 

leadership). This finding would have gone undetected if they had neglected the fact that these 

employees were nested in multiple teams simultaneously. As a result of such unobserved 

buffering between adverse team effects, the consequences of neglecting multiple-memberships 

might even cause net environmental effects to remain entirely unobserved.  

Multiple-Membership Frailty Model 
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Articles reporting the use of a multiple-membership survival model are generally scarce 

and are certainly not yet found in the field of management or organizational behavior. To the 

best of our knowledge, at present, its applications are only found in veterinary medicine (e.g., 

studying calf mortality where calves are nested in herds, which are in turn nested in regions and 

multiple clinics; Elghafghuf et al., 2014b), epidemiology (e.g., studying marriage and childbirth 

of individuals in neighbouring regions; Manda, Feltbower, & Gilthorpe, 2012) and education 

(e.g., studying high school dropout where students have migrated between schools; Lamote et 

al., 2013). In line with these applications, the multiple-membership (shared) frailty model can 

be written as 

𝜆𝑖{𝑗}(𝑡) = 𝜆0 (𝑡) ∙ exp(𝜂𝑖 + ∑ 𝜋𝑖𝑗 𝑤𝑗

𝑗 ∈ 𝐶

) (4) 

where 𝜆𝑖{𝑗}(𝑡) is the hazard function for any subject 𝑖 nested in a subset 𝐶 of higher-order 

environments. Thus, each subject can now be nested in multiple environments at the same time. 

The total higher-level effect of the environments is expressed as a weighted sum of all the 

higher-level effects in the membership set. The weights, 𝜋𝑖𝑗, are equivalent to the intensity of 

the membership (Elghafghuf et al., 2014b). Simply put, the multiple-membership frailty model 

is equivalent to the traditional frailty model, but a single frailty term has now been replaced by 

a weighted sum of multiple frailty terms.  

Conventionally, the weights are operationalized as proportional memberships, which 

means that they sum to one for each individual, ∑ 𝜋𝑖𝑗𝑗  ∈ 𝐶(𝑖) = 1. There are many scenarios to 

assign weights in a multiple-membership model (Chung & Beretvas, 2012). Either equal 

weights can be used for all environments in the membership set, or weights can be made 

proportional to the time spent in—and, thus, exposure to—each of the environments. More 

complicated weighting schemes can be used as well (e.g., weights which take the order of 

exposure to each environment into account). Ultimately, the optimal choice of weights remains 
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unknown (Chung & Beretvas, 2012; Smith & Beretvas, 2014). The study of Smith and Beretvas 

(2014) indicates that as long as the multiple-membership structure of the data is taken into 

account, the choice of the weight pattern, given that it is based on reasonable arguments, does 

not have a high impact on the parameter estimates for both fixed and random effects.  

There are no straightforward techniques to estimate parameters for a multiple-

membership survival model using the traditional survival likelihood techniques known in our 

field. However, using the count regression alternative, we are able to specify a relat ively simple 

regression model to which we add a multiple-membership random effect (i.e., frailty), as is 

currently implemented in the brms package (Bürkner, 2017):  

> brm(event~offset(log(tstop-tstart))+s(tstop,k=60)+ 

StartAge+factor(Gender)+WrkHours+factor(Contract)+...+ 

(1|mm(S1,S2,S3,S4,S5,S6,weights=cbind(W1,W2,W3,W4,W5,W6))), 

data=data,family=poisson,chains=4,cores=4) 

In short, we use the same formulaic equation as in the previous models, except for the frailty 

term which is now specified using a (1|GROUP) format (note to readers who are familiar with 

the package lme4: brms uses the same mixed-effects notation as this package). The grouping 

factor is converted to a (weighted) sum of random effects by means of the wrapper function  

mm(). The arguments of this wrapper function are: a sequence of membership indicators (cfr. 

S#-columns in Table 1 and Table 2), followed by an optional weighting matrix. This matrix 

consists of all membership intensities (cfr. W#-colums in Table 1 and Table 2).  

The brms packages uses a Bayesian estimation procedure, sourcing the STAN software 

(Carpenter et al., 2017) at the back-end. To the best of our knowledge, there are no readily 

implemented or broadly accessible statistical tools to fit a multiple-membership model without 

the use of Bayesian Markov Chain estimations. This means that fitting a multiple-membership 

model requires a bigger (computing) time investment. Luckily, brms has implemented a quick 

and efficient estimation procedure of Hoffman and Gelman (2014). Using the chains=4 and 
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cores=4 arguments of the estimation command above, four sampling chains are estimated 

simultaneously at four cores—note that these numbers depend on the number of physical 

computing cores available in the computing device (see Bürkner, 2017)—which enhances the 

quality of our estimates, while simultaneously keeping the computing time in check. 

In the model building process, it is important to compare nested and non-nested models 

with each other so as to check whether each modeling step adds value. The brms package 

prescribes that models be compared using the Widely-Applicable Information Criterion 

(WAIC) values (Vehtari, Gelman, & Gabry, 2017; Watanabe, 2013). Information criteria 

express a penalized deviance—i.e., minus two times the log-likelihood of the model—where 

the penalty increases with model complexity, which equals the number of estimated parameters 

in the model. Since the numeric value of this deviance depends on the data at hand, information 

criteria cannot be interpreted by themselves, nor can they be judged using a threshold value. 

Their virtue, however, lies in their comparability across models (Claeskens & Hjort, 2008). In 

general, ‘lower is better’ as the model with the smallest information criteria reflects the best 

fitting model within a set of competing models. (Please note that it is not possible to compare 

different information criteria with each other; e.g., AIC cannot be compared with WAIC, since 

they result from fundamentally different estimation techniques.) WAIC can be computed for 

any fitted model using the following R-code: 

> WAIC(fittedmodel,pointwise=T)  

Multiple Memberships: Problematization Revisited  

Conceptually, the multiple-membership survival model takes all different higher-level 

units into account, which avoids the selection of a principal higher-order unit. As discussed 

earlier, the latter practice creates more problems than it solves—i.e., (i) misrepresentation of 

the higher-order nesting structure (i.e., all minority memberships are ascribed to the single, 

principal higher-order unit; (ii) multiple higher-order units are omitted from the analysis 
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altogether if none of the subjects has its principal membership in these respective higher-order 

units; and (iii) higher-order effects carry the potential of being seriously biased because the true 

higher-order effects are consolidated into the principal units’ effects. The question remains, 

however; to what extent these conceptual problems weigh on the interpretation of empirical 

findings. To provide an answer to this question, we compare the multiple-membership frailty 

model with the single frailty model identifying the first school as the principal higher-order unit 

(cfr. the third column in Table 5). (Selection of other principle higher-order units yielded 

comparable findings when a single-frailty model was applied.) The empirical results for the 

multiple-membership model can be found in the third column of Table 6.  

In our sample dataset, results indicate that the coefficient estimates do not differ much 

in magnitude. The standard errors of the estimates increase only marginally, which might be 

due to the big sample size of the sample dataset (i.e., more than 66,000 observations over time). 

In the higher-level part of the model (i.e., random effects), we can see that the standard deviation 

of the frailty terms decreased only marginally. This means that the single frailty model 

potentially overestimates the differences in unobserved school-level effects.  

In fact, the higher-level frailty estimates are estimated quite differently from the 

multiple-membership frailties (see Figure 2). The correlation between the frailty estimates is 

only .58 (based on 712 paired school frailty estimates, since 326 other schools were not taken 

into account in the single frailty model). In Figure 2 we can see that the single frailty model 

yields quite divergent frailty estimates, both in sign and magnitude. About 28% of all higher-

order units were found to have an opposite sign and the magnitude of the frailty were, on 

average, more than four times as large as the estimate from the multiple-membership survival 

model.  

--- INSERT FIGURE 2 ABOUT HERE --- 



MULTIPLE-MEMBERSHIP SURVIVAL ANALYSIS – 24 

We can also look at the total impact on the higher-level effect of the frailties on the event 

rate over time (i.e., for each subject-period observation in the sample dataset). For the single-

frailty model, the frailties exert their full influence at each subject-period observation in the 

sample dataset. However, for the multiple-membership model we need to compute the weighted 

sum of multiple frailties manually. This can be done by multiplying the weights with the 

respective frailties at each subject-period observation and summing them for each subject-

period observation. In Figure 3, we can see how these total higher-level effects on the event 

rate differ between both models. Again, many of total higher-level effects diverge quite strongly 

from each other. The correlation between the total effects of both models, taking all subject-

period observations into account, is only .42.  

Specifically, in the multiple-membership survival model, the total higher-level effect 

ranges between -.17 and .23, indicating that the 16% decrease or the 26% increase in the event 

rate is caused by the environment in which the subject is nested. For the single-frailty model, 

this environmental effect ranges between -.21 and .40, which indicates a 20% decrease or a 

48% increase in event rates. This may mean that in many cases, the effects of one environment 

on the event rate can be buffered by other environments. This is conceptually close to the 

observations made by Chen et al. (2019) with respect to the spill-over of leadership 

empowerment in one team on individual-level performance in another. In the most extreme 

cases where the multiple-membership model predicts a near zero total environmental effect 

(due to buffering environments), the single-frailty model can predict a nearly maximal total 

environmental effect on the event rate (i.e., a 48% increase).  

--- INSERT FIGURE 3 ABOUT HERE --- 

In sum, a single principal higher-order unit for a sample of subjects characterized by 

multiple memberships—thus ignoring all other memberships—creates both conceptual and 

empirical problems, and seriously biases the higher-level effects (i.e., frailties) as well as the 
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total environmental effects on the event rate. Hence, many researchers could draw incorrect 

conclusions with respect to the effect of the environment on the subjects event rates over time.  

Step-By-Step Guide a Multiple-Membership Survival Model 

In this section, we conduct a step-by-step estimation of a multiple-membership survival 

model. We will start with a simple hazard regression model without random effects, working 

our way up to a complete hazard regression model by adding more model complexity. At each 

step, we will compare WAIC values between models to decide whether the more complicated 

model adds value to the more parsimonious model. We will build the model using the following 

four steps: (1) adding the multiple-membership frailty terms to an empty model to check 

whether the multiple-membership data structure adequately fits the data structure; (2) adding 

subject-level covariates to the multiple-membership frailty model; (3) adding higher-level 

covariates to the multiple-membership frailty model; and, finally, (4) transforming the 

covariates’ effects into flexible fits which do not necessarily assume linear  effects.  

STEP 1: From Baseline to Frailty Model  

As a first step for progressing from a traditional survival model to a multiple-

membership survival model, we need to compare some baseline models—more specifically an 

intercept-only model without frailty terms and a multiple-membership model without 

predictors. We fit both models using the brms package: 

> No_Frailty<-brm(event~offset(log(tstop-tstart))+s(tstop,k=60), 

data=data,family=poisson,chains=4,cores=4) 

> MM_Frailty<-brm(event~offset(log(tstop-tstart))+s(tstop,k=60)+ 

(1|mm(S1,S2,S3,S4,S5,S6,weights=cbind(W1,W2,W3,W4,W5,W6))), 

data=data,family=poisson,chains=4,cores=4) 

The results of both models can be found in the two first columns of Table 6. The WAIC value 

of the multiple-membership model is lower than the model without frailty terms, which shows 

that adding the frailty terms adds more value to the model relative to the added model 
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complexity (i.e., adding 1038 higher-level effect predictions and a variance parameter 

estimate). The standard deviation of the frailty term is estimated at .43. Note that this standard 

deviation is estimated without taking any covariate information into account.  

STEP 2: Add Subject-Level Covariates 

As a second step in the modeling process, we can include subject-level covariate 

information to explain and predict the subjects’ event rates. The inclusion of covariates can 

change the estimated frailty dispersion (i.e., standard deviation). Using our sample dataset, we 

estimate the following model:  

> MMFrailty_l1cov<-brm(event~offset(log(tstop-tstart))+s(tstop,k=60)+ 

StartAge+factor(Gender)+WrkHours+factor(Contract)+ 

(1|mm(S1,S2,S3,S4,S5,S6,weights=cbind(W1,W2,W3,W4,W5,W6))), 

data=data,family=poisson,chains=4,cores=4) 

The model’s results are added in the third column of Table 6. We can see that the WAIC value 

(WAIC = 4894) is much lower than the baseline multiple-membership survival model 

(WAIC = 5240), which indicates that the covariates add valuable information to the model.  

Moreover, the coefficient estimates are quite consistent across models. We can infer 

from the coefficients that teachers who started teaching later in their career are more likely to 

leave the profession quickly since each additional year of age increases the turnover probability 

by 7%. Conversely, each additional teaching hour decreases the attrition probability by about 

11%. Tenured teachers experience a significantly lower attrition probability compared to non-

tenured teachers, who in turn have a lower attrition probability than interim teachers. No 

significant gender differences were found. With respect to the dispersion of frailty terms across 

higher-order units, we observe that adding the subject-level covariates leads to a decrease in 

standard deviation of the school-effects.  

--- INSERT TABLE 6 ABOUT HERE --- 

STEP 3: Add Environment-Level Covariates 
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In order to explain more of the higher-level variance, we can add covariates at the higher 

level. In our sample data, this means that we should add a covariate that is school-specific. Our 

archival dataset did not contain school-level predictors. However, for illustrative purposes, we 

can construct a higher-level covariate: the early-career attrition climate at the school level (Van 

Droogenbroeck, Spruyt, & Vanroelen, 2014; Wang, Hall, & Rahimi, 2015). This variable is 

constructed by calculating the proportion of early-career teachers who quit the teaching 

profession while working at the respective school (irrespective of the membership intensities 

of the teachers working in that school). 

Adding a higher-level covariate as a predictor in an ordinary multilevel model is as easy 

as appending the school-level data to the dataset and adding the covariate to the model. 

However, in a multiple-membership model, we have multiple schools to which we need to 

append the school-level covariate. Additionally, we also need to take into account that all 

memberships are weighted according to their membership intensities. Since these membership 

intensities indicate the degree of exposure to the specific school context, it is only logical that 

each school’s covariate is taken into account accordingly. In this article, we will propose one—

and, in our opinion, also the easiest—approach. At first, we append the school-level covariate 

data using each membership column (S#). Then, we multiply each higher-level covariate vector 

with the respective membership intensity vector. Finally, we sum up all the weighted school-

level covariate information to create a weighted combination of school-level covariates. We, 

then, add the higher-level covariate to the model: 

> MMFrailty_l2cov<-brm(event~offset(log(tstop-tstart))+s(tstop,k=60)+ 

StartAge+factor(Gender)+WrkHours+factor(Contract)+ECAC_schl+ 

(1|mm(S1,S2,S3,S4,S5,S6,weights=cbind(W1,W2,W3,W4,W5,W6))), 

data=data,family=poisson,chains=4,cores=4) 

The modeling results show that the WAIC value reduces further (WAIC =  4480) 

indicating that the school-level covariate again added valuable information to the model (see 
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fourth column in Table 6). All the coefficients decreased slightly in magnitude, but the 

significance and direction of the significant effects did not change. The school-level covariate 

indicates that if more colleagues quit the teaching profession at (one or more) of the schools, 

the remaining teachers in those schools will also be more likely to quit the teaching profession. 

This indicates that turnover contagion, coined by Felps et al. (2009), is also found in our sample 

data. We can also see that the standard deviation of the multiple-membership frailty terms 

decreased only slightly. This could mean that the school-level covariate does not explain a lot 

of the school-level effects in our data. Another possibility is that we may have disregarded the 

functional specification of our covariates. We tackle that possibility in the next modeling step.  

STEP 4: Add More Flexibility (Optional) 

Traditional modeling approaches model the impact of covariates on an outcome in the 

most simple, linear way by assuming that the impact of a covariate monotonically increases or 

decreases. Such an assumption thereby disregards the presence of potential inflection points 

where the effect levels out or even changes direction (Pierce & Aguinis, 2013). Hastie, 

Tibshirani and Friedman (2009) stated that non-linear effects are actually quite prevalent in real 

life, which was further confirmed by recent studies in our field (e.g., congruence in 

organizational research; Edwards & Parry, 2018; congruence in management research; 

Nikolaeva, Bhatnagar, & Ghose, 2015; 'too-much-of-a-good-thing' effects; Vergauwe, Wille, 

Hofmans, Kaiser, & De Fruyt, 2017). If potential non-linearity of effects (e.g., quadratic, cubic 

or even higher-order polynomial functions) is ignored and the relationship is specified as a 

simple linear effect, the model “may be parsimonious, but it will be wrong” (Bliese & Ployhart, 

2002: 383).  

In our model, adding non-linear terms is not too much of a leap forward. Recall that we 

modeled the baseline hazard function as a flexible function of time, which produced a smooth 

and flexible (non-linear) regression function over time. Hence, we can allow the effects of the 
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continuous covariates in our model—more specifically starting age, working hours and early-

career attrition climate—to be modeled using a smooth spline function, as follows:  

> MMFrailty_smooth<-brm(event~offset(log(tstop-tstart))+s(tstop,k=60)+ 

s(StartAge)+factor(Gender)+s(WrkHours)+factor(Contract)+s(ECAC_schl)+ 

(1|mm(S1,S2,S3,S4,S5,S6,weights=cbind(W1,W2,W3,W4,W5,W6))), 

data=data,family=poisson,chains=4,cores=4) 

Doing so decreases the WAIC value (WAIC = 4192), which indicates that changing the 

functional form of our covariates has improved the model fit. In the last column of Table 6, the 

model results are reported. The coefficients of the continuous covariates, which are now 

estimated by smooth functions, are hard to interpret. Essentially, the population-level effect 

gives an indication of the general direction of the effect (i.e., whether the effect on average is 

positive or negative), while the standard deviation of the smooth effect gives only an indication 

of how ‘wiggly’ the smooth effect behaves around the population-level effect. In order to be 

able to interpret the smooth functions over time, it is easier and more insightful to plot the 

smooth functions and visually explore the effects. Hence, smooth trajectories of the marginal 

effects should be plotted. These plots show the effects of each covariate along its range, often 

showing nonlinear smoothed lines. Statistical significance can be assessed using error regions 

on the plots. This can be done using the marginal_smooths function available from the brms 

package. The command for it in R is as follows:  

> marginal_smooths(MMFrailty_smooth,rug=F,ask=F)  

The resultant smooth functions are plotted in Figure 4. From these results we can see 

that our continuous covariates cannot be fitted well using a straight regression line. Instead, 

teachers who start their teaching career between the age of 20 and the age of 22 are less likely 

to leave the teaching profession quickly. After that age and up to the age of 30, starting teachers 

are more likely to quit soon. Thereafter, the impact levels out around a zero impact. Note that 

the effect of starting age is not statistically significant after the age of about 28 years. The 
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sudden increase in the grey-shaded area, which represents the 95% confidence interval, is due 

to few observations in that range of the variable.  

With respect to the number of working hours, we can observe a mild form of a ‘too-

much-of-a-good-thing’-effect for this covariate. If a teacher is not employed as a full-time 

employee (i.e., about 20 teaching hours), the probability of quitting the teaching profession is 

very high. If a teacher is employed for more hours, it has a protective effect on teachers. All 

hours that exceed full-time employment can serve as a slack or a buffer against unexpected 

changes in their employment contract (e.g., the teacher can easily give up some hours and still 

retain his or her full-time employment). However, if a teacher has to perform more than 26 

hours a week, the protective effect wanes. If the workload exceeds 35 hours a week, the smooth 

effect indicates that the workload starts to drive teachers out of the profession again. It should 

also be noted that the confidence bands indicate that beyond 27 working hours the effect is not 

significantly different from zero any more.  

Finally, if a teacher is employed in a set of schools where the total proportion of early-

career teachers who quit the profession remains under 7%, teachers are less likely to quit the 

teaching profession. Conversely, this effect is positive if the school set’s early-career attrition 

climate is characterized by more attrition. In fact, the effect becomes very large when more than 

50% of the early-career teachers leave from a given school set. The event rate of early-career 

teachers in such environments can be well above 50 times (i.e., exp(4)) as high as an early-

career teacher’s working in a very stable environment characterized by the absence of any early-

career attrition among colleagues.  

--- INSERT TABLE 6 ABOUT HERE --- 

Following these four steps allows researchers to run a multiple-membership survival 

model that is capable of (i) estimating the effect of subject-level covariates on the subjects’ 

event rate over time; (ii) estimating the effect of higher-level covariates on the subjects’ event 
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rate over time; (iii) while parsimoniously allowing these effects to be non-linear, and (iv) 

predicting a better estimate of the higher-order contextual influence on the event rate—that is, 

estimating effects that take into account all simultaneous memberships of a subject as well as 

the membership intensities.   

Discussion 

The main objective of this article has been to advance general understanding of the 

multiple-membership analysis methods used to analyze the occurrence and timing of events in 

complex organizational environments. In doing so, it adds the resulting multiple-membership 

survival model to the methodological toolbox of the field of organizational behavior and 

management. Throughout the article we have outlined a step-by-step-approach for 

implementing our methodology such that it can be used by researchers working on events 

embedded in multiple-membership data structures. Essentially, the analysis we propose 

requires two distinct steps; first, gathering traditional survival data and transforming these into 

the long-format, after which the data is be merged with both time-invariant and time-varying 

covariate information (as well as membership information); second, using a stepwise procedure 

to fit the most parsimonious and correct multiple-membership survival model and interpreting 

its results. In each of these steps, we emphasized the accessibility of the model by building the 

model from a simple count regression model and provide the estimation code for the model 

using a freely accessible, open-source software. 

Throughout this article, a sample dataset on early-career attrition among teachers was 

used to illustrate the multiple-membership survival model. However, application-wise, the 

scope of the model is much broader. As previously mentioned, both theoretically and empirically, 

teachers can be understood as being equivalent to employees (or in a macro study: organizations), 

and schools being equivalent to organizations or teams (or in a macro study: sectors or markets). In 

the next section, we will discuss several active research areas in the fields of organizational behavior 
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and strategic management that would benefit from the proposed methodology. These examples are 

in no way intended to constitute an exhaustive list of potential applications.  

Application of Multiple-Membership Survival Models to Organizational Research  

As mentioned earlier, survival analysis can be applied to any phenomenon that can be 

conceptualized as the occurrence of an event situated on a timescale, albeit calendar time, or 

time elapsed since a previous event or since the start date of a study. For instance, a study of 

the speed of finding employment in a given labor market can be operationalized as starting at 

the moment of graduation, the start of the job search, or the end of a previous employment 

period (e.g., lay-off or job loss). Additionally, many organizational contexts in our field are 

characterized by multiple-membership structures. Such nesting structures emerge when lower-

level units are simultaneously member of multiple higher-level units, which makes it relevant 

for many areas within the domain of organizational behavior and management. The application 

of some of these are discussed below.  

Micro research examples. Many contemporary organizations have a matrix structure 

where employees can belong to multiple teams (Chen et al., 2019; O'Leary et al., 2011; Zaccaro, 

Marks, & DeChurch, 2012). Additionally, different teams are usually supervised by different 

leaders, which means that data collected at the employee level can be thought of in terms of 

employees nested in multiple teams/under multiple supervisors at the same time. Any event 

prevalent at the employee level that may be driven by accumulated effects across the set of 

teams to which an employee belongs, can be analyzed using a multiple-membership survival 

model. In doing so, each team’s contribution to the probability and speed of the event occurring 

at the individual level can be estimated. We will now discuss some examples of research 

questions that could adopt this approach.  

First, the occurrence and timing of psychological contract breach (see Vantilborgh et 

al., 2016), defined as “a violation of an individual’s beliefs regarding the terms and conditions 
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of a reciprocal exchange agreement between that focal person and another party” (Rousseau, 

1989: 123). This phenomenon can be studied using our multiple-membership survival model to 

reach more accurate and valid inferences about how each team/supervisor adds to the risk and 

likelihood of a subject perceiving a psychological contract breach. Similarly, the duration of 

reactions to, and recovery from, a psychological contract breach (see Solinger et al., 2016)—

taking the moment of the breach as the starting point of analysis—could be driven by 

team/supervisor-provided resources (Griep et al., 2016).  

Second, the multiple-membership survival model can also be used in samples of 

employees working in a multi-site organization (McCabe & Trevino, 1997), by which we mean 

that the different divisions of the organization are geographically dispersed and employees’ 

tasks are spread across these divisions (Alexander, Hubers, Schwanen, Dijst, & Ettema, 2011). 

Another similar example relating to task dispersion is multi-tasking (Leroy, 2009) and its 

impact on outcome variables that can be operationalized as events—such as exhaustion, 

burnout, and organizational turnover, among others. 

 Third, in addition to multiple-membership organizational structures, we can also 

investigate individual’s decisions as nested in spatial environments (Manda et al., 2012). For 

instance, we can investigate the speed of finding a (new/first) job, which will most likely depend 

on the availability of job opportunities in the subject’s region. This (geographical) environment 

can be defined as the set of regions (e.g., municipalities, provinces or states) that are included 

in the perimeter in which an individual has searched for a job. As an extension, geographical 

regions can be characterized by different commuting times (i.e., distance to the individual) as 

well as macro-economic structural characteristics (e.g., regional unemployment rates), all of 

which can be taken into account when studying (re)employment success (Wanberg, Kanfer, 

Hamann, & Zhang, 2016).  
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Macro research examples. The multiple-membership survival model can be applied to 

decisions made by organizations (e.g., entry or withdrawal decisions in an industry or market; 

internal corporate restructuring decisions), or to events occurring at the organizational level 

(e.g., organizational defaulting, business venture success, innovation development and/or 

success) within a cooperative and/or competitive business environment. A business 

environment can be thought of as a set of competing organizations. Since every organization 

has its own market power, it can be expected that each organization influences the decisions of 

all other organizations in the same strategic group, industry or market. 

Firstly, in such a setting, researchers can apply the multiple-membership survival model 

to the study of market/industry entry decisions (see Uzunca, 2018). Upon entry into an industry, 

each organization is confronted with a set of incumbent organizations which are already rooted 

within the industry. By adopting the perspective of idiosyncratic competitive influences of 

incumbent firms in the competitive environment of the industry, each competitor can exert its 

own influence on the entrant’s potential to gain foothold in the targeted industry. Hence, the 

strategic decisions of an entrant firm are, in fact, influenced by this set of competitor-specific 

influences. The multiple-membership model can be used to take all ‘competing firms’ into 

account simultaneously. In a similar fashion, organizations in co-operative business 

environments may see their chances of establishing a successful  business venture change 

depending on the firms which are open to constituting a business venture.  

 Secondly, in the field of innovation, research questions are often aimed at discovering 

the antecedents of innovation speed or time needed to develop a successful innovation 

(Gittelman, 2007; Kessler & Chakrabarti, 1996), the occurrence of knowledge spillovers 

between organizations or industries (Thompson & Fox-Kean, 2005), or the adoption rates of 

new technologies (Toole, Cha, & González, 2012). In this research field,  the multiple-
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membership survival model can be used to detect industry-specific influences on the likelihood 

of developing innovations, and even geographical clustering of innovation potential .  

Limitations and Suggestions for Future Research 

Firstly, a continuing challenge of multiple-membership analysis lies in the computation 

of membership weights. In our example, the membership weights were framed as membership 

intensities and operationalized as the proportion of total working time spent in each 

organization. Even though our model implicitly accounted for mobility across higher-level 

units—by allowing time-varying membership sets and membership intensities—it leaves scope 

for an investigation that explores whether the mobility process between organizations is indeed 

driven by organizational influences. It is not unthinkable that employees who are driven towards 

attrition due to untenable organizational conditions, are more likely to become mobile, and will 

most likely want to move to organizations with a more rewarding climate. The use of 

membership transitions could add interesting information to the role of multiple memberships 

in survival models. For instance, it could allow us to study how contextual mobility might serve 

as a protective mechanism against job attrition or turnover. However, adding higher-order unit 

transition matrices still poses as a methodologically daunting task.  

Secondly, in our multiple-membership survival model the frailty terms are predicted 

using the complete dataset, which causes them to be stable over time. However, this might not 

always be a realistic assumption given that organizations are dynamic entities which can, for 

example, change their policy to prevent the occurrence of less desirable events (e.g., early-

career attrition). In our sample data, the time dimension in our data (five years) was too short 

to efficiently take time-dependent frailty terms into account. However, given survival data with 

a larger time horizon, frailty terms can be made time-specific which in turn could yield more 

insights about how the higher-order frailty factors evolve across time. 
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Thirdly, this article solely focuses on a traditional survival regression setting with a 

single, terminal event, which means that once the event has been experienced, it cannot be 

experienced again. The survival analysis discipline more generally has developed several 

extensions of this model, however, allowing for settings where (i) the same event can be 

experienced multiple times, such as promotions and successful innovations; (ii) there are 

multiple event types which can serve as terminal event—for instance turnover decisions leading 

either to internal role-transitions (i.e., other profession, same employer), inter-organizational 

mobility (i.e., same profession, changing employer), attrition (i.e., changing profession and 

employer), or retirement/lay-off (i.e., job quitting resulting in unemployment); and (iii) the 

existence of transition states between the start of the study and the terminal endpoint, for 

instance employees’ experiencing (one or several episodes of) burnout-related experiences, 

absenteeism, or counter-productive work behavior before the attrition or job change event. The 

former extension is known as recurrent event modeling (for a detailed description and 

implementation in R, see Cook & Lawless, 2007), whereas the latter two are, respectively, 

called competing risk modeling and multistate modeling (Beyersmann, Allignol, & 

Schumacher, 2012). The multiple-membership survival regression model presented in this 

article can be used for several of these extended survival regressions, due to the count regression 

set-up. However, there is an ongoing need to incorporate some of the specific assumptions 

related to these extended models into our modeling framework.  

It is our hope that other researchers will extend our model further along these lines, 

adding more relevant applications to the methodological toolbox of our field. For the time 

being, we hope that the broader use of the multiple-membership survival analysis methodology 

provided in this article will substantially improve our ability to form contextualized insights 

relating to event occurrences in the fields of organizational behavior and management.  
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Appendix 1: The Equivalence between Survival Regression and Poisson Likelihoods 

An interval-search function to link each interval with the most recent time-observation. It is 

assumed that the covariate change did occur at the start of the interval in which this change 

has been observed.  The following R-code can be used to achieve the merge of both datasets:  

> tintmerge<-function(data1,data2){ 

  search<-function(i,data1,data2,id='id',time='time'){ 

   line<-(data2[,id]==data1[i,id] &  

     data2[,time] <= data1[i,'tstop']) 

    cbind(data1[i,],tail(data2[line,c(setdiff(names(data2), 

     c('id','time')))],1)) 

  } 

  out<-lapply(1:dim(dat)[1],search,data1,data2,time='time') 

  newdat<-do.call(rbind,out) 

  return(newdat) 

} 
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Appendix 2: The Equivalence between Survival Regression and Poisson Likelihoods 

The likelihood contributions for survival regression can be written as  

ℒ𝑖 = 𝑓(𝑡𝑖 ) = 𝜆(𝑡𝑖 )𝑆(𝑡𝑖) (5) 

for those individuals experiencing the events and  

ℒ𝑖 = 𝑆(𝑡𝑖 ) (6) 

for those who did not experience the event. The combination of both parts leads to the definition 

of the full likelihood contribution  

ℒ𝑖 = [𝜆(𝑡𝑖 )𝑆(𝑡𝑖)]𝛿𝑖 [𝑆(𝑡𝑖 )]1−𝛿𝑖 (7) 

where 𝛿𝑖 is the event indicator which takes the value one if subject i has experienced the event 

and zero otherwise. Using the fact that the survival density can be expressed as  

𝑆(𝑡𝑖 ) = exp {− ∫ 𝜆(𝑠)𝑑𝑠

𝑡

0

} (8) 

we can rewrite the likelihood contribution as: 

 

ℒ𝑖 = 𝜆(𝑡)𝛿𝑖 exp {− ∫ 𝜆(𝑠)𝑑𝑠
𝑡

0
} . (9) 

For a piecewise exponential survival distribution, the time axis is partitioned in 𝐼 mutually 

exclusive and exhaustive intervals. We choose 𝐼 to be equal to 𝑄, being the total number of 

distinct observed failure times. This approach increases the flexibility of the baseline hazard 

estimation as it approximates the non-parametric baseline hazard using piecewise constant 

hazards. Let 𝑙𝑞 ≔ 𝑡𝑞 − 𝑡𝑞−1 be the interval length. Modeling the linear predictor term as 𝑥𝑖
𝑡𝛽, 

where 𝑥𝑖
𝑡 is a vector of covariates and 𝛽 is a parameter vector. Hence, we can rewrite the 

likelihood contribution of subject i, whom experienced the event or was censored in the interval 

𝑘𝑖, as:  



MULTIPLE-MEMBERSHIP SURVIVAL ANALYSIS – 39 

ℒ𝑖 (𝛽) = [𝜆0𝑞 exp(𝑥𝑖
𝑡𝛽)]

𝛿𝑖
exp {− ∫ 𝜆0𝑞𝑙𝑞 exp(𝑥𝑖

𝑡𝛽) 𝑑𝑞

𝑘𝑖

0

} (10) 

which can be rewritten as: 

ℒ𝑖 (𝛽) = ∏[𝜆0𝑞 exp(𝑥𝑖
𝑡𝛽)]

𝛿𝑖
exp{−𝜆0𝑞𝑙𝑞 exp(𝑥𝑖

𝑡𝛽)}

𝑘𝑖

𝑞=0

(11) 

The full likelihood then becomes: 

ℒ(𝛽) = ∏ ∏[𝜆0𝑞 exp(𝑥𝑖
𝑡𝛽)]

𝛿𝑖
exp{−𝜆0𝑞𝑙𝑞 exp(𝑥𝑖

𝑡𝛽)}

𝑘𝑖

𝑞=0

𝑁

𝑖=1

(12) 

ℒ(𝛽) ∝ ∏ ∏[𝜆0𝑞𝑙𝑞 exp(𝑥𝑖
𝑡𝛽)]

𝛿𝑖
exp{−𝜆0𝑞𝑙𝑞 exp(𝑥𝑖

𝑡𝛽)}

𝑘𝑖

𝑞 =0

𝑁

𝑖=1

(13) 

Since the Poisson likelihood can be written as  

ℒ(𝑦𝑖 ) = ∏
𝜆𝑦𝑖 exp(−𝜆)

𝑦𝑖 !

𝑁

𝑖=1

(14) 

the proportionality of the survival likelihood and the Poisson likelihood with the event indicator 

𝛿𝑖 as the dependent variable can be easily seen. Hence, a proportional hazards survival model 

can be estimated using a Poisson likelihood with 𝛿𝑖 as a binary outcome variable and 𝑙𝑞  as an 

offset. Rabe-Hesketh & Skrondal (2012) suggested to model the baseline hazard, 𝜆0(𝑡), as a 

smooth function of time. In practice, a fourth-order polynomial of time has been used to model 

the baseline hazard function (Elghafghuf et al., 2014a; Elghafghuf et al., 2014b). 
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Notes 

1. Herein, we rely on the established mathematical equivalence of the likelihood 

expressions of the survival model and the count regression model with a Poisson 

distribution—first established by Laird and Olivier (1981) and extended later to include 

multilevel designs (Feng, Nie, & Wolfe, 2009; Feng, Wolfe, & Port, 2005; Ma, Krewski, 

& Burnett, 2003)—to cut back on the computational details of the model. 
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Figure 1. Baseline survival function for teachers during the first five years in the profession. 

Notes: The grey staircase function indicates the (data-driven) Kaplan-Meier survival curve (equivalent to an intercept-only Cox model). The shaded area 

corresponds to the 95% confidence interval of the data-driven baseline survival.  

The full line links the estimated survival rates from the count regression model, with an underlying smoothing-spline-based baseline hazard function.   
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Figure 2. Higher-Level (Random) Effects: Comparison between Single Frailty estimates and Multiple-Membership estimates.  

Notes: The black line corresponds to the ascendingly ranked multiple-membership random effects (1038 schools). Grey points are the random effects for the 

single-frailty model taking the first school into account (712 schools). 
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Figure 3. Total Higher-Level Effects: Comparison between Single Frailties and Multiple-Membership Frailties.  
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Figure 4. Smooth Covariate Effects on the Log-Hazard.  

Note: The shaded region represents the 95% pointwise confidence interval.  
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Table 1. Illustration of Event Data: time-invariant event data and time-varying information.   

Time-Invariant Information 

ID Time Event StartAge Gender             

1 21 1 23 0             

2 4 0 24 1             

… …                

Time-Varying Information 

ID Time  WrkHour Contract S1 S2 S3 S4 S5 S6 W1 W2 W3 W4 W5 W6 

1 0  10 Interim A B NA NA NA NA .60 .40 NA NA NA NA 

1 1  22 Interim A B NA NA NA NA .50 .50 NA NA NA NA 

1 4  19 Interim A B NA NA NA NA .47 .53 NA NA NA NA 

1 6  12 Interim A B NA NA NA NA .42 .58 NA NA NA NA 

1 7  28 Interim A B C D NA NA .18 .25 .32 .25 NA NA 

1 8  16 Interim C D NA NA NA NA .56 .44 NA NA NA NA 

1 12  20 Interim E NA NA NA NA NA 1 NA NA NA NA NA 

1 13  20 Interim F NA NA NA NA NA 1 NA NA NA NA NA 

1 18  20 Vacant F NA NA NA NA NA 1 NA NA NA NA NA 

1 19  20 Interim A B NA NA NA NA .30 .70 NA NA NA NA 

2 0  20 Interim G H NA NA NA NA .40 .60 NA NA NA NA 

2 2  12 Interim H NA NA NA NA NA 1 NA NA NA NA NA 

…                 

Notes: The values in the S#-columns (i.e., starting with an S) list the identification numbers of each  

environment and have no numerical interpretation.  

The W#-columns (i.e., starting with a W) are the proportions op total working time spent in each of the  

respective environments.  



MULTIPLE-MEMBERSHIP SURVIVAL ANALYSIS – 51 

Table 2. Illustration of Event Data in the long-format.   

ID Tstart Tstop Event StartAge Gender WrkHour Contract S1 S2 S3 S4 S5 S6 W1 W2 W3 W4 W5 W6 

1 0 1 0 23 0 10 Interim A B NA NA NA NA 0.60 0.40 NA NA NA NA 

1 1 2 0 23 0 22 Interim A B NA NA NA NA 0.50 0.50 NA NA NA NA 

1 2 3 0 23 0 22 Interim A B NA NA NA NA 0.50 0.50 NA NA NA NA 

1 3 4 0 23 0 22 Interim A B NA NA NA NA 0.50 0.50 NA NA NA NA 

1 4 5 0 23 0 19 Interim A B NA NA NA NA 0.47 0.53 NA NA NA NA 

1 5 6 0 23 0 19 Interim A B NA NA NA NA 0.47 0.53 NA NA NA NA 

1 6 7 0 23 0 12 Interim A B NA NA NA NA 0.42 0.58 NA NA NA NA 

1 7 8 0 23 0 28 Interim A B C D NA NA 0.18 0.25 0.32 0.25 NA NA 

1 8 9 0 23 0 16 Interim C D NA NA NA NA 0.56 0.44 NA NA NA NA 

1 9 10 0 23 0 16 Interim C D NA NA NA NA 0.56 0.44 NA NA NA NA 

1 10 11 0 23 0 16 Interim C D NA NA NA NA 0.56 0.44 NA NA NA NA 

1 11 12 0 23 0 16 Interim C D NA NA NA NA 0.56 0.44 NA NA NA NA 

1 12 13 0 23 0 20 Interim E NA NA NA NA NA 1.00 NA NA NA NA NA 

1 13 14 0 23 0 20 Interim F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 14 15 0 23 0 20 Interim F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 15 16 0 23 0 20 Interim F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 16 17 0 23 0 20 Interim F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 17 18 0 23 0 20 Interim F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 18 19 0 23 0 20 Vacant F NA NA NA NA NA 1.00 NA NA NA NA NA 

1 19 20 0 23 0 20 Interim A B NA NA NA NA 0.30 0.70 NA NA NA NA 

1 20 21 1 23 0 20 Interim A B NA NA NA NA 0.30 0.70 NA NA NA NA 

2 0 1 0 24 1 20 Interim G H NA NA NA NA 0.40 0.60 NA NA NA NA 

2 1 2 0 24 1 20 Interim G H NA NA NA NA 0.40 0.60 NA NA NA NA 

2 2 3 0 24 1 12 Interim H NA NA NA NA NA 1.00 NA NA NA NA NA 

2 3 4 0 24 1 12 Interim H NA NA NA NA NA 1.00 NA NA NA NA NA 

…                    
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Table 3. Descriptive Statistics and Correlations for All Turnover Predictors. 

  N M SD 1 2 3 4a 

1 Gender (ref=female) 1,642 .29 -     

2 Starting Age 1,642 23.00 2.13 .10    

3 Number of hours taught 80,357 20.60 4.74 .02 -.16   

4a Contract type: interim (ref: vacant) 80,357 .55 - -.03 

 
.02 .00  

4b Contract type: tenure (ref: vacant) 80,357 .12 - .00 -.05 .07 -.40 

Note: Correlations with an absolute magnitude of .01 or greater are significant at a 99% confidence level.  

 

 

Table 4. Hazard Regression Model: Comparison between Cox model and Count Regression. 

 Cox Model Count Regression 

Variable Estimate Std.Error Estimate Std.Error 

StartAge .069 (.016)*** .066 (.016)*** 

Gender (ref=female) -.017 (.106) -.000 (.106) 

WorkHours -.113 (.008)*** -.103 (.008)*** 

Contract type: interim (ref: vacant) .603 (.111)*** .540 (.111)*** 

Contract type: tenure (ref: vacant) -2.142 (.730)*** -2.107 (.729)*** 

Notes: p-values: ‘ ’ 0.10   ‘*’   0.05   ‘**’   0.01   ‘***’ 
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Table 5. Frailty Models: Results and Comparison between Different Nesting Structures. 

 
Most Prominent School 

(at that time) 

Most Prominent School 

(during whole career) 
First School Ever Last School 

Number of schools 958 (92.3%) 720 (69.4%) 712 (68.6%) 710 (68.4%) 

     

COXPH Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error 

StartAge .070 (.016)*** .072 (.017)*** .071 (.017)*** .071 (.017)*** 

Gender (ref=female) -.013 (.106) -.009 (.107) -.019 (.108) -.011 (.107) 

WorkHours -.114 (.008)*** -.114 (.008)*** -.114 (.008)*** -.114 (.008)*** 

Contract type: interim (ref: vacant) .600 (.112)*** .602 (.112)*** .596 (.112)*** .604 (.112)*** 

Contract type: tenure (ref: vacant) -2.144 (.730)*** -2.147 (.730)*** -2.155 (.730)*** -2.144 (.730)*** 

Standard Deviation (SD) Frailty  .255 .286 .346 .285 

Null Model: SD Frailty .427 .377 .457 .395 

AIC (REML) 6,061 6,060 6,057 6,060 

         

COUNT REGRESSION Estimate Std.Error Estimate Std.Error Estimate Std.Error Estimate Std.Error 

StartAge .071 (.016)*** .073 (.017)*** .073 (.017)*** .072 (.017)*** 

Gender (ref=female) -.010 (.106) -.007 (.107) -.015 (.108) -.008 (.107) 

Workhours -.112 (.008)*** -.112 (.008)*** -.112 (.008)*** -.112 (.008)*** 

Contract type: interim (ref: vacant) 0.612 (.111)*** .614 (.111)*** .611 (.112)*** .617 (.111)*** 

Contract type: tenure (ref: vacant) -2.218 (.721)*** -2.220 (.721)*** -2.224 (.721)*** -2.218 (.721)*** 

Standard Deviation (SD) Frailty .221 .266 .339 .283 

Null Model: SD Frailty .421 .369 .445 .414 

AIC (REML) 4,899 4,898 4,895 4,898 

Notes: p-values: ‘ ’ 0.10   ‘*’   0.05   ‘**’   0.01   ‘***’ 
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Table 6. Step-By-Step Model Building of a Multiple-Membership Survival Model. 

 No Frailty 

Multiple-

Membership 

Frailty 

MM Frailty  

 

with covariates 

MM Frailty  

 

with higher-level 

covariates 

MM Frailty  

 

with Smooth Effects  

Subject-level covariates B (SE) B (SE) B (SE) B (SE) B (SE) 

StartAge –   –   .07 (.02)*  .04 (.02)* .19 (0.40)  | SD 3.43* 

Gender (ref=female) –  –  –.01 (.10) .03 (.10) –.06 (.10) 

WorkHours –  –  –.11 (.01)* –.08 (.01)* -.10 (.35)  | SD 2.44* 

Contract type: interim (ref: vacant) –  –  .62 (.12)* .52 (.11)* .50 (.11)* 

Contract type: tenure (ref: vacant) –  –  –2.56 (.83)* –2.49 (.83)* –2.49 (.82)* 

Environment-level covariates      

Early-career Attrition Climate –  –  –  .04 (.00)* 3.85 (.90)*  | SD 10.79* 

Random Effect      

Standard Deviation (SD) Frailty –  .43 (.16)* .26 (.15)* .23 (.11)* .06 (.05) 

      

Model Fit Statistics      

WAIC 5,244 5,240 4894 4480 4192 

Notes:  ‘*’ indicates that the 95% credible interval does not contain zero.  

 


