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Abstract. Factor models (FM) are now widely used for forecasting with large

set of time series. Another class of models, which can be easily estimated and used

in a large dimensional setting, is multivariate autoregressive models (MAR), where

independent autoregressive processes are assumed for the series in the panel. When

applied to big data, the estimation, model selection and combination of both models

can be time consuming. We assume both FM and MAR models are misspecified and

provide a scoring rule which can be evaluated on an initial training sample to either

select or combine the models in forecasting exercises on the whole sample. Some

numerical illustrations are provided both on simulated data and on well known large

economic datasets. The empirical results show that the frequency of the true positive

signals is larger when FM and MAR forecasting performances differ substantially

and it decreases as the horizon increases.

Keywords: Factor models, Large datasets, Multivariate autoregressive models,

Forecasting, Scoring rules, VAR models.

JEL: C32, C52, C53.
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1 Introduction

The recent fast growth in (real-time) big data allows researchers to model and predict

variables of interest more accurately and suggests that there are large potential gains

from using a big set of variables instead of a single univariate time series models in

many inference applications. Consequently, new big databases have been developed

and studied for economic problems, see, for example, Choi and Varian (2012);

Varian (2014); Varian and Scott (2014); Einav and Levin (2014). Some leading

examples in macroeconomics are Stock and Watson (2002, 2005); Bańbura et al.

(2010); Koop and Korobilis (2013); Stock and Watson (2012). However, there are

many issues still open when working with big datasets, including high-dimensional

modeling and lack of inference efficiency. We refer to Granger (1998) for an early

discussion of these issues, and to Litterman (1980); Sims and Zha (1998); Koop

(2013) for a discussion from a Bayesian perspective.

Various papers advocated the use of regularization techniques to deal with

the overparameterization and overfitting issues such as Lasso and Bayesian Lasso

(Park and Casella, 2008; Hsu et al., 2008), adaptive Lasso, and elastic net and

adaptive elastic net (Zou and Hastie, 2005; Zou and Zhang, 2009; Gefang, 2014).

Other approaches consider stochastic search variable selection (George et al., 2008;

Korobilis, 2013) graphical models (Ahelgebey et al., 2016a,b; Bianchi et al., 2019),

random projections (Koop et al., 2017), Bayesian nonparametrics (Bassetti et al.,

2014), Bayesian nonparametrics Lasso and spike-and-slab priors (Billio et al., 2019;

Bassetti et al., 2020), hierarchical prior modelling (Billio et al., 2016). Other

approaches rely on various forms of prior restrictions on the parameters (see,

e.g. Koop, 2013; Koop and Korobilis, 2013; Korobilis, 2016). Finally, forecast

combinations are also often applied to deal with large datasets, see, for

example, (Stock and Watson, 2004; Raftery et al., 2010; Koop and Korobilis, 2012;

Groen et al., 2013; Conflitti et al., 2015; Casarin et al., 2015).

In this paper we focus on two simple models that are widely used in forecasting:

factor models (see, e.g. Stock and Watson, 2002, 2004, 2005; Bańbura et al.,

2010; Stock and Watson, 2014, 2012), with reduced number of factors (FM), and

multivariate autoregressive models (MAR), where no interaction is assumed between
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the series in the panel, (e.g., see Penny and Harrison, 2006; Hytti et al., 2006). MAR

models have been successfully used in various fields such as ecology (Ives et al.,

2003) and neuroimaging (Harrison and Friston, 2003) and revealed their potential

when applied to large set of time series. We refer to Gabriel Fagan (2006) for the

use of time series models by the European Central Banks and to Reinsel (1983);

Carriero et al. (2016); Cubadda and Guardabascio (2017) for extensions and recent

applications to economics. In order to obtain some theoretical results and having in

mind applications to very large set of time series, in this paper we will focus on a

parsimonious specification of MAR. We assume a diagonal MAR model where lagged

interactions among variables are excluded (Marcellino et al., 2006). The model is

very simple and can be extended along various directions, for example by including,

lagged interactions, exogenous covariates and interaction between covariates.

We derive a scoring rule for FM and MAR models. Various scoring rules

have been proposed in the literature (Mitchell and Hall, 2005; Gneiting and Raftery,

2007; Gneiting and Ranjan, 2011, 2013; Lerch et al., 2016), but in order to preserve

some analytical tractability of the comparison we consider mean square errors

(MSEs) of the vectors of point forecasts generated with the two models. MSEs

are the forecast error second moments and their trace is often used to evaluate

the forecast accuracy. See Hendry and Martinez (2017) for a discussion and an

alternative proposal in term of MSE determinants.

We expect that the use of a reduced number of factors in the FM model and of

prior parameter restrictions in the MAR model, may lead to model misspecification.

Thus, in this paper we follow some forecast analysis studies, see, e.g.,Schorfheide

(2005), and score the two models under the assumption they are misspecified.

Our new model-specific scoring rule for FM and MAR models indicates that the

forecasting performances of the models depend crucially on the parameters setting

of data generating process. More specifically, the goodness of the forecasting depends

on the level of simultaneous or lagged dependence between the series. The proposed

scoring rule is well suited for big data applications since it can be used on a

initial set of observations to choose the forecasting model on the remaining set of

data. It can be generalized to models that include autoregressive and factor models

features, such as the multivariate index-augmented autoregression (MIAAR) models

4



of Cubadda and Guardabascio (2019). Also, the scoring rule can be applied to

combine forecasts as well (e.g., see Bates and Granger, 1969; Diebold and Pauly,

1987, 1990; Geweke and Amisano, 2010). See also Kapetanios et al. (2015);

Bassetti et al. (2018) for generalized combination schemes and Billio et al. (2013);

Pettenuzzo and Ravazzolo (2016) for forecast combination based on time-varying

weights.

We provide an illustration of the theoretical results and study the reliability of the

proposed scoring rule through some simulation experiments and three applications to

widely used datasets. The first database includes the quarterly Stock and Watson

(2004) series; the second one the monthly McCracken and Ng (2015) series; the

third one a set of cross-country series downloaded from Bloomberg which represent

a three-country extension (EU, US and Japan) of the previous two datasets. We

find that our scoring rule provides detects ex-ante the more accurate model in all

these exercises. The reliability of the proposed scoring rule increases when accuracy

differs substantially across models and it decreases as the horizon increases.

The paper is organized as follows. Section 2 introduces some notation and the

models discussed in this paper. Section 3 derives the scoring rule. Section 4 applies

the proposed scoring rule to simulation exercises. Section 5 exhibits some empirical

results on well studied macroeconomic datasets. Section 6 concludes.

2 Forecasting models

We introduce some notation and define the factor (FM), vector autoregressive (VAR)

and independent multivariate autoregressive (MAR) models used in this paper.

Let {xt}t≥0 be a n-dimensional real-value random process. In what follows, we

assume the process is weak stationary and has zero mean and variance-covariance

matrix E(xtx
′
t) = ΓX and auto-covariance function E(xtx

′
t+j) = ΓX,j , j ∈ Z with

ΓX,j = Γ′
X,−j.

We denote with ai and λi, i = 1, . . . , n, the eigenvectors and eigenvalues,

respectively of ΓX such that

ΓXai = λiai. (1)
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Let A be the orthogonal matrix with the normalized eigenvectors ai, i = 1, . . . , n,

in its columns and Λ the diagonal matrix with the eigenvalues λi, i = 1, . . . , n on

the main diagonal, where we assume the eigenvalues are in a decreasing order, i.e.

λ1 ≥ λ2 ≥ . . . ≥ λn. It follows that the decomposition

ΓXA = AΛ (2)

holds true.

Under suitable conditions, the process {xt}t≥0 can always be represented by

using a set of factors fn,t = (f1,t, . . . , fn,t)
′ and a factor loadings matrix A such that

xt = Afn,t, t = 1, 2, . . . , T. (3)

In order to obtain a representation of {xt}t≥0 on a lower dimensional space, we

use the subset fk,t = (f1,t, . . . , fk,t)
′ of the first k latent factors in fn,t, with k < n,

and assume that the factors have an autoregressive dynamics. In our empirical

applications the k factors are used to forecast n∗ < n variables of interest, whereas

our theoretical results are presented for n∗ = n, for the sake of simplicity and without

loss of generality. Our FM model is defined by:

xt = Akfk,t + ξt (4)

fk,t = Φkfk,t−1 + ηk,t, ηk,t ∼ WN(0,Σk) (5)

t = 1, . . . , T , where Ak is submatrix of A such that A = (Ak|An−k), {ξt}t≥1

is an idiosyncratic component with E(ξt) = 0, Cov(ξt, ξs) = 0, t 6= s and

V(ξt) = Σξ,t, and WN(0,Σk) denotes a white noise process with mean 0 and

variance-covariance matrix Σk. Furthermore, we assume the factors fk,t admit the

infinite MA representation

fk,t =
∞∑

j=0

Ψk,jηk,t−j. (6)

In the forecasting practice the factors fk,t are first extracted and then predicted out

of sample with a dynamic model (e.g. a VAR model). Predictions are then used
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to generate forecasts for xt. The regression model xt = (In ⊗ f ′k,t)βk + ξ̃t is usually

employed to recover relationship between dependent variables and the factors.

Remark 1. We shall notice that this model does not allow for extracting further

information from the data than the one encoded in the matrix Ak. The least square

estimator β̂k of βk is equal to vec (A′
k) (see Appendix A). Thus the forecasting

performance depends crucially on the predictability of the factors and the choice

of the reduced number of factors k to use for forecasting the n∗ variables of interest.

The second forecasting model used in this paper is a MAR, which is defined as

xt = Φxt−1 + ηt, ηt ∼ WN(0,Ση) (7)

t = 1, 2, . . . , T , where Φ = diag{(φ1,1, . . . , φ1,n)
′} is a diagonal coefficient matrix and

Ση = diag{(σ2
1, . . . , σ

2
n)

′} is a diagonal variance-covariance matrix. We assume the

process {xt}t≥0 admits the infinite MA representation

xt =
∞∑

j=0

Ψm,jηt−j. (8)

We will compare the FM and MAR models under the assumption they are

misspecified. We assume that data generating process (DGP) for {xt}t≥0 comes

from a VAR process of the first order with infinite MA representation

xt =

∞∑

j=0

ΨX,jεt−j , εt ∼ WN(0,Σε). (9)

The difference between a MAR model and a VAR relates to the assumptions on lags

order and on Ση. Appendix A describes the linkage between a factor model and a

VAR(1) model.

3 Forecast accuracy

Let xj,t+s|t denote the s-step-ahead forecast for xt+s made at time t with a given

model j, with j ∈ {k,m}, where k indicates the factor model and m the MAR
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model. We define the mean square forecast error (MSE) as

MSE(s) = E
(
(xt+s − xj,t+s|t)(xt+s − xj,t+s|t)

′
)
, s = 1, 2, . . . (10)

The following theorems give the MSE for FM and MAR models and two useful

decompositions, which will be used to evaluate the model’s forecast accuracy. The

MSE is derived under the assumption that the data generating process is a VAR

process.

Theorem 1. Assume xt follows the model in Eq. 9. The MSE’s trace for the FM

can be decomposed as follows

tr(MSEk(s)) = tr

(
E
(
ek,t+s|te

′
k,t+s|t

)
+

s−1∑

j=0

ΨX,jΣεΨ
′
X,j

)
(11)

where ek,t+s|t = xt+s|t − xk,t+s|t.

Proof : see Appendix A.

Theorem 2. The MSE’s trace for the MAR model is

tr(MSEm(s)) = tr
(
E
(
em,t+s|te

′
m,t+s|t

))
+

n∑

j=1

σ2

j

(
1−

γ2s
j,1

σ4s
j

)
(12)

where em,t+s|t = xt+s|t − x∗
t+s|t and x∗

t+s|t is the forecast under the assumption of

MAR dynamics and γj,1 is the j-th element of the main diagonal of the MAR first

order autocorrelation matrix Γ1k = diag{(γ1,1, . . . , γn,1)′} and σ2
j is the j−th element

of the main diagonal of the covariance matrix Ση = E (ηtη
′
t).

Proof : see Appendix A.

The following properties of the factors fk,t will be used to derive the main result

of the paper. It can be shown that, under our assumption on the DGP, and the

assumption on the factor loading matrix A, the sets of factors fn,t and fk,t satisfy

the following conditions

1. E(fn,tf
′
n,t) = A′ΓXA = Λ.
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2. E(fk,tf
′
k,t) = Γk, where we defined Γk = diag{(λ1, . . . , λk)

′}.

3. E(fk,tf
′
k,t+j) = Γk,j, ∀j ∈ Z.

4. A′
kΓX,1Ak = Γk,1 and A′

kΓXAk = Γk.

We assume both FM and MAR models are misspecified and provide in the

following theorem a scoring rule which is a function of the FM and MAR parameters.

The rule can be computed on an initial training sample to either select or combine

the models on the whole sample and in out-of-sample forecasting exercises. Also,

the rule can be applied recursively in sequential forecasting exercises.

Theorem 3. Let ek,t+s|t = xt+s|t−xk,t+s|t, em,t+s = xt+s−x∗
t+s and x∗

t+s be the value

of the process under the assumption of MAR dynamics. If the following inequality

is satisfied:

tr
(
E
(
ek,t+s|te

′
k,t+s|t

))
− tr

(
E
(
em,t+s|te

′
m,t+s|t

))
≤ (13)

tr
(
(Γn,1Γ

−1

n )sΓn((Γn,1Γ
−1

n )′)s
)
−

n∑

j=1

σ2

j

γ2s
j,1

σ4s
j

then tr(MSEk(s)) ≤ tr(MSEm(s)).

Proof : see Appendix A.

The inequality shows that in the presence of misspecification one model is not

always superior to the other in terms of MSE and its forecasting performance

crucially depends on the covariance and auto-covariance structures in the series.

In the following sections, we show how to use the inequality to score the FM and

MAR models or to combine their forecasts (see Billio et al. (2013)). Our empirical

applications will show that the inequality can be successfully used in a context of

large datasets.
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4 Simulation results

We generate a dataset of 57 time series of 290 time observations each from a VAR

model of the first order

xt = Φxt−1 + εt, εt
iid
∼ WN(0,Σε) (14)

We consider two sets of experiments. In the first set we study the effect of the

correlation between idiosyncratic error terms on the reliability of the proposed

scoring rule. We assume the variance-covariance matrix is parametrized in the

variance and correlation parameters, ̺ ∈ (−1, 1) and σ2, respectively, as follows

Σε = σ2(In + ̺(ιι′ − In)) (15)

where ι = (1, . . . , 1)′ is the unit vector and In the identity matrix. As regards the

coefficients matrix, we assume

Φ = (X ′X)−1X ′Y (16)

where Y and X are two random matrices of dimension T × n with i.i.d. entries

generated from a standard normal N (0, 1). Two experiment settings are considered:

“weakly correlated noise” (̺ = 0.2), and “strongly correlated noise” (̺ = 0.7). In

all settings σ2 = 3. For each settings MAR and FM models have been estimated on

25 expanding window samples and forecasts generated for 12 steps ahead.

In the second set of experiments we study the effect of the lagged dependence

between series on the reliability of our scoring rule. We assume the VAR

coefficient matrix is parametrized in the variance and causality parameters, α and

β, respectively, as follows

Φ = (αIn + β(ιι′ − In)) (17)

where α and β are such that the process is weak stationary. We consider the following

settings: α = 0.01 and α = 0.5 with β = (1 − α − 0.01)/n. The covariance matrix
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Σε is parametrized in ̺ and σ2 as in the first set of experiments, with ̺ = 0.9 and

σ2 = 3.

We evaluate the trace of the mean square error, tr(MSEj(s, i)), for all

subsamples i = 1, . . . , 25, horizons, s = 1, . . . , 12, and models j ∈ {k,m}. For

each pair (s, i), we compute the following scoring rule

C(s, i) = tr
(
Ûk − Ûm − (Γ̂n,1Γ̂

−1
n )sΓ̂n((Γ̂n,1Γ̂

−1
n )′)s

)
+

n∑

j=1

σ̂2
j

γ̂2sj,1

σ̂4s
j

obtained from the inequality in Th. 3, where we set

Uk = E
(
ek,t+s|te

′
k,t+s|t

)
, Um = E

(
em,t+s|te

′
m,t+s|t

)
.

If C < 0 then FM is underperforming MAR. In our applications, evaluating Ûm

and Ûk would require the estimation of a VAR on n variables, which might be not

feasible for large n, thus forecasting error estimates are obtained with a VAR model

on the n∗ variables of interest.

We study the reliability of the proposed scoring rule by evaluating the frequency

of the true positives and false negatives in our 25 samples. More specifically, we

count the proportion of times the ordering of the models induced by the scoring rule

C agrees with the one induced by their MSE, that is

f(s) =
1

25

25∑

i=1

I(tr(MSEk(s, i)) < tr(MSEm(s, i)))I(C(s, i) < 0) (18)

+
1

25

25∑

i=1

I(tr(MSEk(s, i)) > tr(MSEm(s, i)))I(C(s, i) > 0).

We also compute the average performance

f =
1

12

12∑

s=1

f(s). (19)

In Fig. 1 we report the frequency, f(s), (vertical axis) at different forecasting

horizons, s, (horizontal axis) for the three datasets (different rows). Our results
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show that the reliability of the scoring rule changes over the horizons and depends

crucially on the dependence structure between the series. The left plot shows that

larger simultaneous dependence, ̺ = 0.7, induces an increase in the reliability on

the short-term horizons. In the right plot, one can see that larger lagged dependence

levels, α = 0.5, has impact on both long- and short-term horizons.

INSERT FIGURE 1 HERE

5 Empirical results

We consider some well known datasets used in macroeconomics. The first one is

an extension of the Stock and Watson (2005) (SW dataset), which consists of 144

major macroeconomic time series sampled at quarterly frequency from 1959Q1 to

2011Q2. The dataset includes only revised series and not vintages of real-time

data, when data are revised. The predictors include series in 14 categories: real

output and income; employment and working hours; real retail, manufacturing

and trade sales; consumption; housing starts and sales; real inventories; orders;

stock prices; exchange rates; interest rates and spreads; money and credit quantity

aggregates; price indexes; average hourly earnings; and miscellaneous. In order to

deal with stationary series, we apply the series-specific transformation suggested in

Stock and Watson (2005).1

The second dataset is the one described in McCracken and Ng (2015) (NM

dataset). The dataset includes 120 time series sampled at monthly frequency

from September 1992 to November 2016 and covers most of the time series used

in the previous database. It exhibits some important appealing features. First, it is

updated monthly using the FRED database. Second, it is publicly accessible in an

easy manner, facilitating comparison of related research and replication of empirical

work. McCracken and Ng (2015) show that factors extracted from this dataset

share the similar predictive content as factors based on the Stock and Watson (2005)

dataset.

1As in Stock and Watson (2005), we applied both outlier-adjusted and outlier-unadjusted
versions of the series and findings are similar.
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The third dataset used is a collection of 68 macroeconomics series from

Bloomberg (BL dataset), sampled at monthly frequency from September 1993 to

November 2017 for the US, EU and Japan. Precisely, it includes 31 variables for

the US; 17 for EU; 18 for Japan; and the two exchange rates euro/yen and euro/US

dollar. The list of variables is similar to the previous databases and contains different

measures of core and headline prices; labor market variables; imports and exports;

industrial production; consumption; sales; leading indicators; and several interest

rates. See Tables 1-2 for the complete list of variables.

INSERT TABLES 1-2 HERE

For each dataset we estimate the FM and MAR models on 25 sub-samples of

increasing size. On each sub-sample we forecast n∗ variables of interest (see Tab. 3)

12 steps ahead.

INSERT FIGURE 2 HERE

The variables of interest of each dataset include both macroeconomic and

financial indicators, that is:

SW: Industrial Production; Unemployment Rate; CPI-All Items; Fed Funds Market

Rate.

NM: Real Personal Income, Industrial Production Index, Unemployment Rate,

Effective Federal Funds, and CPI-All Items.

B: Personal Consumption expenditures (US), Harmonized Index of Consumer

Price (EU), Consumer Price Index All Items (JP), Industrial

Production(US,EU,JP), 2-Years Treasury (US), 2-Years Governative Bonds

(EU, JP), and Unemployment Rate (US, EU, JP).

We report in Figure 3 the 25 sets of 12-step-ahead forecasts (red lines) for various

US variables obtained by fitting FM (first line) and MAR (second line) models on

the SW, NM and BL datasets. We report in Fig. 2 the sequences of generated

forecasts from the two models for two variables of interest, industrial production

and unemployment rate, for the twelve horizons and the three databases. Also, the

forecasts for the EU and Japan variables are reported in Figure 4.
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INSERT FIGURES 3-4 HERE

In the FM we choose the number of factors (column k in Tab. 3) such that it

is the same in all datasets and the percentage of variance explained is above the

75% (column V in Tab. 3). We evaluate the mean square error expressions given in

Th. 1-2, MSEj(s, i), for all subsamples i = 1, . . . , 25, horizons, s = 1, . . . , 12, and

models j ∈ {k,m}.

INSERT TABLE 3 HERE

The average MSE over samples and horizon is reported in Tab. 3, whereas

the horizon-specific MSE averaged over samples is reported in the first and second

column of Fig. 5.

INSERT FIGURE 5 HERE

The main evidence is that the FM performs on average less accurately than the

MAR in all three databases. The difference varies across database: average MSE

for the FM equal to 0.097 versus average MSE for MAR equal to 0.094 in the SW

database; average MSE for the FM equal to 0.039 versus average MSE for MAR

equal to 0.034 in the NM database; MSE for the FM equal to 0.021 versus average

MSE for MAR equal to 0.017 in the B database. In the NM the loss is economically

important and up to 8%; difference is smaller for the SW database where the two

models perform similarly. Looking to Fig. 5, the MAR outperforms on average

the FM mainly at short horizons in the SW and NM database. Maximum and

minimum errors of the two models are more comparable over horizons. In the case

of the Bloomberg database, MAR provides more accurate forecasts more uniformly

across horizons. Therefore, our finding is similar to recent literature on the lack

of superior forecast abilities of the FM models, when used for some variables or

forecast horizons, see, for example, Medeiros et al. (2018).

In all three cases, predictions of MAR models are less volatile and flatter than

those of the FM (e.g., see trending behaviour of the forecasts in Fig. 2). Despite

being flatter, MAR predictions are more accurate. Selected factors explain a
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large proportion of variance in the data, but this information does not translate

automatically to accurate forecasts.

For each pair (s, i), we compute the scoring rule C and the frequency of the

true positives and false negatives in our 25 samples at the 12 horizons, f(s) and

the average frequency across horizons, f (see column f in Tab. 3). In the third

column of Fig. 5 we report the frequency (vertical axis) at different forecasting

horizons (horizontal axis) for the three datasets (different rows). The scoring rule

is re-computed at each vintage with only in-sample information up to the time of

forecasting, therefore it is an ex-ante measure.

For two databases, MN and Bloomberg, the scoring rule at short and middle

horizons has a success rate above 80%. Aastveit et al. (2018) document that a

combination of factor models with different number of factors perform accurately and

their methodology could be extended with the new scoring rule. The performance

of the scoring rule decreases at longer horizons. For the SW, performance is weaker

over all horizons, but we recall from Tab. 3 that FM and MAR perform quite

similarly in this example, whereas MAR provides average forecasting gains in the

other two exercises.

INSERT FIGURE 6 HERE

Another interesting empirical finding allows us to shed some light on the

forecasting abilities of the factor models. The worse performance of FM with respect

to MARs is strictly related to the low predictability of the factors in despite of their

ability to explain a large proportion of variance of the panel of time series. As an

example we report here the results for the Bloomberg dataset. Figure 6 shows the

increase in the proportion of the explained variance when increasing the number

of factors (dashed line, left axis). In the same figure, the total adjusted R2 of the

VAR regression on the factors (averaged over horizons and variables, solid circles

line, left axis) decreases with the number of factors included, which is due to the

loss of degrees of freedoms when including new variables in the VAR. The trade-off

between loss of degrees of freedom and proportion of variance explained is reflected

by the average MSEs (averaged over horizons and variables, solid lines, right axis).

The MSEs for each variable are reported in Fig. 7.
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INSERT FIGURE 7 HERE

At all forecasting horizons the average MSE (solid lines, right axis) do not

decrease monotonically with the number of factors included. More precisely, after

reaching a minimum value when 7 factors are used, the forecasting performances of

the FM deteriorate with the number of factors. Interestingly, the increase in the

MSEs is due to a decrease in the total adjusted R2 (solid circles line) of the dynamic

model on the factors and to a consequent loss of efficiency in forecasting the factors.

Our results provide also some guidelines for improving the predictive ability

of FM models. In the forecasting regression, factors should be chosen specifically

for each predicted variable, by applying some model selection procedures, or by

estimating factor loading with regularizing techniques proposed in sparse factor

and principal component analysis (e.g., see Carvalho et al., 2008; Zou et al., 2011;

Qi et al., 2013; Lan et al., 2014; Ročkovà and George, 2016). Also horizon-specific

models could be considered and the dynamic properties accounted when extracting

the factors. We leave these issues for further research.

6 Conclusion

This paper establishes a set of conditions to be satisfied for a factor model to

overperform a multivariate autoregressive model in terms of mean square forecasting

error. The condition results in a scoring rule that can be used to select between

the two models or to combine them. Furthermore, in the paper we show the

performance of the scoring rule in simulation exercises where both the factor model

and the multivariate autoregressive model are misspecified. Then, the analysis

continues with three well-known macroeconomic datasets. The empirical results

show that the frequency of the true positive signals is larger when factor model and

the multivariate autoregressive model forecasting performances differ substantially.

It also documents that factor models are not providing more accurate forecasts

uniformly across variables and horizons.
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A Proof of the results in the paper

A.1 Proof of the result in Remark 1

Let X be the T × n sample matrix and Ak the matrix with the first k orthonormal
vectors of X , and Fk the associated T × k factor matrix such that

Fk = XAk (A.1)

The least square estimator B̂k of Bk in the regression model

X = FkBk + ξ (A.2)

is B̂k = (F ′
kFk)

−1F ′
kX which satisfies

F ′
kFkB̂k = F ′

kFk(F
′
kFk)

−1F ′
kX = F ′

kX (A.3)

from Eq. A.1 and since (F ′
kFk)

−1 = Λ−1

k one obtains

B̂k = Λ−1

k A′
kX

′X (A.4)

which implies B̂k = A′
k where Ak satisfies Eq. A.1

A.2 Linkage factor model and VAR(1) model

Let xt be a n-dimensional real-value vector, with zero mean and stationary variance-
covariance matrix. Then:

E(xtx
′
t)ai = ΓXai = λiai (A.5)

where ai and λi, i = 1, . . . , n are the eigenvectors and eigenvalues of ΓX and A is
the (n× n) orthogonal matrix with the normalized eigenvectors ai, i = 1, . . . , n, in
its columns. Then, it follows that

ΓXA = AΛ (A.6)

with Λ the diagonal matrix with the eigenvalues λi, i = 1, . . . , n. It follows that
A

′

ΓXA = Λ; ΓX = AΛA
′

.
The factors fn,t are computed as

fn,t = A
′

xt (A.7)
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and the kth factor as
fk,t = A

′

kxt (A.8)

where Ak is the matrix of the first k column of A and A
′

A = I, A
′

kAk = Ik.
Therefore, we can compute

x̃k,t = Akfk,t (A.9)

which can proxy the true xk,t. Let now assume that xt is generated by a VAR(1)
model:

xt = Φxxt−1 + ǫx,t ǫx,t ∼ i.i.d.N(0,Σǫ) (A.10)

By pre-multiplying for A
′

k, we have:

A
′

kxt = A
′

kΦxxt−1 + A
′

kǫx,t (A.11)

Fixing ǫf ,t = A
′

kǫx,t and from (A.7)

fk,t = A
′

kΦxxt−1 + ǫf ,t (A.12)

Then, we introduce ak such as

A
′

kΦx = a
′

kA
′

k (A.13)

Let multiply for Ak

A
′

kΦxAk = a
′

kA
′

kAk = a
′

k (A.14)

since A
′

kAk = Ik. Then,

fk,t = a
′

kfk,t−1 + ǫf ,t = A
′

kΦxAkfk,t−1 + ǫk,t (A.15)

By pre-multiplying for Ak and recalling x̃k,t = Akfk,t, we find the VAR(1)
representation:

x̃k,t = AkA
′

kΦxx̃k,t−1 + AkA
′

kǫx,t (A.16)

A.3 Proof of the result in Theorem 1

Let xt+s|t denote the best linear forecast under the DGP, that is

xt+s|t =

∞∑

j=0

Ψs+jεt−j , (A.17)
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then by applying the infinite MA representation of fk,t+s we obtain

xk,t+s = Akfk,t+s =

∞∑

j=0

AkΨk,jA
′
kAkηt+s−j (A.18)

From the decomposition

xt+s − xk,t+s|t = et+s|t + ek,t+s|t (A.19)

where et+s|t = xt+s − xt+s|t, ek,t+s|t = xt+s|t − xk,t+s|t, it follows that

MSEk(s) = E
(
(et+s|t + ek,t+s|t)(et+s|t + ek,t+s|t)

′
)

= E
(
et+s|te

′
t+s|t

)
+ E

(
ek,t+s|te

′
k,t+s|t

)

= E

(
s−1∑

j=0

ΨX,jεt+s−jε
′
t+s−jΨ

′
X,j

)
+ E

(
ek,t+s|te

′
k,t+s|t

)

=

s−1∑

j=0

ΨX,jΣεΨ
′
X,j + E

(
ek,t+s|te

′
k,t+s|t

)

A.4 Proof of the result in Theorem 2

Decompose the MSE as follows

MSEm(s) = E
(
(xt+s − xm,t+s|t)(xt+s − xm,t+s|t)

′
)

(A.20)

= E
(
(xt+s − x∗

t+s)(xt+s − x∗
t+s)

′
)
+ E

(
(x∗

t+s − xm,t+s|t)(x
∗
t+s − xm,t+s|t)

′
)

where xm,t+s|t = Φxm,t+s−1|t = Φsxt. Assume E(ηt+1x
′
m,t) = E((xm,t+1 −

Φxm,t)x
′
m,t) = 0, as in Lütkepohl (2005), p. 34, then

Φ = E(xm,tx
′
m,t−1)E(xm,t−1x

′
m,t−1)

−1 = Γ1Σ
−1

η (A.21)

Recall that E(ηk,t+1η
′
k,t+1

) = Σk, then

Σk = Γk − Γ1kΓ
−1

k Γ−1k = Γk − Γ1kΓ
−1

k Γ
′

1k (A.22)

where Γ1k = E
(
fk,tf

′
k,t−1

)
= diag{(γ1,1, . . . , γk,1)′} is the first order autocovariance

matrix and Γk = E
(
fk,tf

′
k,t

)
the covariance matrix. By using Eq. A.21 and A.22

with k = n, we conclude that, the second term of the decomposition in Eq. A.20
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can be written as

tr
(
E
(
(x∗

t+s − xm,t+s|t)(x
∗
t+s − xm,t+s|t)

′
))

=

n∑

i=1

s−1∑

h=0

(
σ2

i −
γ2
i,1

σ2
i

φh
i

)
(A.23)

=

n∑

j=1

(
σ2

j −
γ2
j,1

σ2
j

)
1− φ2s

j

1− φ2
j

=

n∑

j=1

σ2

j −
n∑

j=1

σ2

j

γ2s
j,1

σ4s
j

.

A.5 Proof of the result in Theorem 3

From the properties of the factors given in Section 3, it follows that Φk =
E(fk,tf

′
k,t−1

)E(fk,t−1f
′
k,t−1

)−1 = Γk,1Γ
−1

k and Σk = E((fk,t−Φkfk,t−1)(fk,t−Φkfk,t−1)
′) =

Γk − Γk,1Γ
−1

k Γk,1 and the factor mean forecasting error can be written as

E((ft+s − ft+s|t)(ft+s − ft+s|t)
′) =

s−1∑

j=0

Ψk,jΣkΨ
′
k,j

=
s∑

j=0

(Γk,1Γ
−1

k )j(Γk − Γk,1Γ
−1

k Γ′
k,1)((Γk,1Γ

−1

k )j)′

= Γk +

s∑

j=1

(Γk,1Γ
−1

k )j−1Γ−1

k ((Γk,1Γ
−1

k )j−1)′ −
s∑

j=0

(Γk,1Γ
−1

k )jΓk,1Γ
−1

k Γ′
k,1((Γk,1Γ

−1

k )j)′

= Γk − (Γk,1Γ
−1

k )s−1Γk,1Γ
−1

k Γ′
k,1((Γk,1Γ

−1

k )s−1)′

= Γk − ((Γk,1Γ
−1

k )s−1Γk,1)Γ
−1

k ((Γk,1Γ
−1

k )s−1Γk,1)
′

= Γk − (Γk,1Γ
−1

k )sΓk((Γk,1Γ
−1

k )s)′.

It follows that

E((Akft+s − Akft+s|t)(Akft+s − Akft+s|t)
′) =

s−1∑

j=0

AkΨk,jΣkΨ
′
k,jA

′
k

= Ak

(
Γk − (Γk,1Γ

−1

k )sΓk(Γk,1Γ
−1

k )′s
)
A′

k.

By applying the trace operator one obtains

tr
(
Ak

(
Γk − (Γk,1Γ

−1

k )sΓk(Γk,1Γ
−1

k )′s
)
A′

k

)
= tr

(
Γk − (Γk,1Γ

−1

k )sΓk(Γk,1Γ
−1

k )′s
)

=
k∑

i=1

λi − tr
(
(Γk,1Γ

−1

k )sΓk(Γk,1Γ
−1

k )′s
)
.
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since A′
kAk = Ik. Considering that for k = n

n∑

i=1

λi − tr
(
(Γn,1Γ

−1

n )sΓn(Γn,1Γ
−1

n )∗s
)
=

s−1∑

j=0

ΨX,jΣεΨ
′
X,j

and using the decomposition in Th. 1

tr(MSEk(s)) = tr
(
E
(
ek,t+s|te

′
k,t+s|t

))
+

n∑

j=1

λj − tr
(
(Γn,1Γ

−1

n )sΓn((Γn,1Γ
−1

n )s)′
)
.

Finally, since
∑n

j=1
σ2
j =

∑n

j=1
λj and applying the decomposition in Th. 2 we

obtain the inequality:

tr
(
E
(
ek,t+s|te

′
k,t+s|t

))
− tr

(
E
(
em,t+s|te

′
m,t+s|t

))

≤ tr
(
(Γn,1Γ

−1

n )sΓn((Γn,1Γ
−1

n )′)s
)
−

n∑

j=1

σ2

j

γ2s
j,1

σ4s
j

.

if and only if tr(MSEk(s)) ≤ tr(MSEm(s)).
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Table 1: Bloomberg data

Japan Exch. rates
Var. Meas. Var. Meas.

Exports m/m EUJP Change Ratio
Imports m/m EUUS Change Ratio
Unemployment %
CPI a/a
CPI core a/a
PPI a/a
Industrial production a/a
Industrial machinery a/a
PMI manufactoring level
Private consumption m/m
Real income m/m
Retail sales m/m
Consumer confidence level
2 years yield %
3 years yield %
5 years yield %
7 years yield %
10 years yield %
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Table 2: Bloomberg data

US EU
Var. Meas. Var. Meas.

Exports m/m Exports m/m
Imports m/m Imports m/m
Employment % Unemployment %
Employment (agriculture) thous HCPI a/a
Employment (private sector) thous CPI core a/a
Average wages m/m PPI a/a
PCE a/a Industrial production a/a
PCE core a/a Construction m/m
PPI a/a PMI manufactoring level
PPI core a/a ESI level
Industrial production level Leading indicator level
Industrial orders m/m Retail sales m/m
Industrial orders (durables) m/m 2 years yield %
Industrial orders m/m 3 years yield %
(durables excl. transports)
Stocks m/m 5 years yield %
Capacity % 7 years yield %
ISM (manufacturing) level 10 years yield %
New buildings m/m
Construction spending m/m
Existing home sales m/m
New home sales m/m
Government spending m/m
Real income m/m
Conference Board index level
Michigan index level
2 years yield %
3 years yield %
5 years yield %
7 years yield %
10 years yield %
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Figure 1: Scoring rule performance, f(s), measured as the frequency (vertical axis)
of a true positives and false negatives signals, over different horizons s = 1, . . . , 12
(horizontal axis). Left: first experiments set with ̺ = 0.2 (solid), ̺ = 0.7 (dashed)
and σ2 = 3. Right: second experiments set with α = 0.01 (solid), α = 0.5 (dashed),
and ̺ = 0.7 and σ2 = 3.
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Data T n n∗ k V f FM MSE MAR MSE
SW 170 144 4 17 0.807 0.337 0.097 0.094
NM 290 120 5 17 0.745 0.827 0.039 0.034
B 290 68 12 17 0.807 0.870 0.021 0.017

Table 3: Comparison between FM and MAR models on three datasets: SW, NM
and BL. T : number of observations; n: number of series; n∗: number of forecasted
variables; k: number of factors; V : proportion of variance explained by factors; f :
frequency of correctly predicted model orderings (true positives and false negatives);
MSE: average mean square error.
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Figure 4: The 25 sets of 12-step-ahead forecasts (red lines) for the EU (a) and Japan
(b) inflation (left) and interest rate (right) for the BL by applying FM (first line)
and MAR (second line) models.

34



0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12
0

0.01

0.02

0.03

0.04

0.05

0 2 4 6 8 10 12
0

0.2

0.4

0.6

0.8

1

Figure 5: Estimates of the MSE in Th. 1-2 (solid line) and 5% and 95% quantiles,
for the FM (first column) and MAR (second column) models. Ex-ante scoring
rule performance (third column) measured as the frequency (vertical axis) of a true
positive signal f(s), over different horizons s = 1, . . . , 12 (horizontal axis). Top: SW
dataset. Middle: NM dataset. Bottom: BL dataset.
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Figure 6: FM performance on the Bloomberg dataset when increasing the number
of factors included. Proportion of variance (solid red line, left axis); adjusted R2

(stars line, left axis) over number of factors considered (horizontal axis); average
MSE (black line); and horizon-specific MSEs (gray lines).
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Figure 7: FM performance on the Bloomberg dataset when increasing the number
of factors included. Proportion of variance (solid red line, left axis); adjusted R2

(stars line, left axis) over number of factors considered (horizontal axis); average
MSE (black line); and horizon-specific MSEs (gray lines).
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