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A B S T R A C T   

This article presents results from a randomized controlled eco-driving experiment with differential treatment 
between two groups of truck drivers in Norway. Using data from in-vehicle devices, we investigate whether eco- 
driving interventions (a course, active monthly follow-ups, and non-monetary incentives) reduce fuel con-
sumption by inducing more efficient driving behavior for drivers in a treatment group, compared to a control 
group. Hereby, we consider persistence of effects over time and the relative importance of eco-driving factors, 
while controlling for fixed vehicles, routes, drivers, and weather. 

We find significant fuel consumption reductions, persisting over a longer period of time than in most previous 
studies (where effects fade or disappear), that weather conditions are important, and evidence of an ‘eco-driving 
learning curve’. This might result from monthly follow-ups and driver rewards. Further, we find spill-over effects 
through significant fuel savings for drivers in the control group (undergoing no interventions). These are likely 
the result of them becoming aware that ‘something eco-driving related’ is going on. 

Our analysis suggests that improvements on engine and gear management contribute most to fuel savings. We 
estimate the potential for fuel savings to lie between 5.2 and 7.5% (lower bound, control group) and 9% (upper 
bound, treatment group). This implies a potential for significant cost savings and emission reductions, which 
might to some extent be scalable and transferable to other settings. As such, eco-driving may play one part in 
reducing emissions from road freight, for which much-needed emission reductions are challenging to achieve, 
especially in the shorter run.   

1. Introduction 

Climate change is one of the major issues of our time, and tackling it 
requires large efforts across different economic sectors. A key and 
common feature for pathways in which global warming is limited to 
1.5 ◦C, is that sizable emission cuts from transport are indispensable [1]. 
In addition, and following from the notion of a global carbon budget, 
emission cuts from transport have to take place urgently, because 
delaying them, even just a few years, has detrimental effects (see e.g. 
[1,2,3,4]). 

Within transport, a segment identified as particularly challenging is 
freight transport by road [3,5]. Already, road freight stands for about 
50% of all global diesel consumption and is a major driver of emissions 
[6]. More importantly, however, both diesel consumption and CO2 
emissions are projected to keep increasing strongly over the coming 
decades, with road freight surpassing passenger cars as the world’s 

largest oil consuming sector [4,6]. Besides its climate impact, fuel con-
sumption within road freight is also an important consideration from a 
cost perspective: depending on the size of the freight vehicle and the 
transport segment (e.g. distribution or long-haul), fuel expenses can 
easily make up 30% of per-km costs, wages excluded [7]. The above 
illustrates that reductions in fuel consumption are desirable both for 
freight operators and society as a whole. 

Reducing fuel consumption from road freight, however, is not 
straightforward. This is due to the sector’s high expected demand 
growth and fossil fuel dependency [5], alongside a lagging uptake of low 
and zero emission technologies relative to the passenger car, van and bus 
segments; particularly when it comes to electric propulsion [7]. This 
lagging uptake is attributed to the demanding requirements set by 
freight transport (e.g. regarding driving range, engine power, and 
tradeoffs between vehicle weight, payload and charging needs), and 
which have thus far yielded high investment costs. Also the market 
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availability of electric propulsion trucks, particularly in heavier classes, 
has so far been very limited and largely consisted of converted diesel 
trucks rather than series-produced vehicles [3,5,6]. Whilst these barriers 
are expected to be resolved in the medium- to longer term, they imply 
that for road freight, the achievement of emissions reductions at scale 
will take time [8]. The same goes for other promising developments 
(such as e-highways, platooning and connected and automated vehicles 
(e.g. [3,6,9]). Also many other determinants of fuel consumption are 
largely given in the short- to medium term and/or beyond the control of 
transport operators and their drivers, with main examples including 
vehicle characteristics, road infrastructure, traffic and driving condi-
tions, and load rates [10,11]. 

One of the main remaining determinants of fuel consumption is 
driving behavior [12]. Compared to other determinants of fuel con-
sumption, driving behavior can be influenced more immediately, 
through the concept of eco-driving. Stimulating eco-driving is further 
regarded as low-cost and scalable approach [12,13,14,15,16,17], and in 
the present research studied in the context of trucks and truck drivers, 
through an eco-driving experiment carried out in Norway (see ‘Present 
research’). 

Besides the particular challenge of reducing emissions from road 
freight, focusing on eco-driving for truck drivers is also warranted for 
other reasons. Although a number of studies have been performed on 
effects of eco-driving interventions for drivers of passenger cars (and 
buses), the number of studies regarding eco-driving within freight 
transport and for heavy-duty vehicles (HDVs) has been more limited 
[18,19,20,21]. Relative to drivers of passenger cars, professional truck 
drivers further spend much more time and kilometres behind the wheel, 
and fuel consumption per kilometre is also considerably higher both per 
km and in total for HDVs [22]. This implies that the same relative 
improvement in fuel efficiency yields larger absolute savings for truck 
drivers in terms of diesel, costs, and emissions [18]. Hence, a euro spent 
on eco-driving training is potentially (much) more cost effective for 
truck drivers than for passenger car drivers. 

2. Literature review and theoretical background 

2.1. Eco-driving: Concept and strategies 

Definitions of eco-driving vary in scope, and the broadest definitions 
encompass factors that affect fuel consumption and which can be 
addressed either prior to, during, or post trips [8,13]. Most eco-driving 
studies and initiatives, however, focus on factors which can be addressed 
while driving, and which can be controlled directly through driving 
behavior [17,23]. 

In its core, driving can be divided into acceleration, cruising, and 
braking. During each of these stages, fuel consumption is affected by 
how the driver operates the vehicle [10]. Simply put, eco-driving theory 
recognizes that most drivers operate vehicles in a way that is sub- 
optimal for fuel efficiency [10] and provides insights into how driving 
behavior can be improved to minimize tank-to-wheel energy losses, fuel 
consumption, and emissions [19,24]. In general terms, eco-driving is 
often described as the adoption of a less aggressive or smoother driving 
style (e.g. [13,14,16,18,19,25]), and the main eco-driving strategies 
include driving at a moderate, constant speed, anticipating traffic, 
gentle acceleration and deceleration, optimizing gear changes, mini-
mizing unnecessary braking and stops, and avoiding unnecessary idling 
[8,10,13,17,18,19,20,22,25,26,27,28,29,30]. Because these definitions 
are not standardized and strategies are interrelated, overlap, and may 
have somewhat different optimums under different road conditions 
[16,31], eco-driving strategies should be viewed somewhat generically. 

Looking at the different strategies, limiting unnecessary idling is one 
of the most intuitive, as idling uses fuel without contributing to vehicle 
movement (e.g. [17,19,29]). With regard to speed choice, the eco- 
driving rationale is that vehicles have an optimal speed or speed range 
in which they are most fuel efficient. This optimum varies between 

vehicles and is also dependent on topography and driving conditions, 
but tends to lie at around 70–80 km/h for trucks [17,19]. In most cases, 
it is therefore advisable to drive at a moderate pace and to avoid over- 
speeding [10]. Fuel consumption is further lower when maintaining 
steady speeds, which can be achieved either manually or through the use 
of cruise control [17,18,19,25]. 

Better anticipation, or ‘planning ahead’ is pointed out as eco-driving 
strategy because it helps avoid unnecessary braking and stopping, and 
thereby reduces the amount of energy that is lost [10,26,28,30]. Looking 
further ahead also allows the accelerator pedal to be released earlier, 
meaning that the vehicle can roll on using its existing momentum, rather 
than through additional fuel consumption that is later wasted in braking 
[10]. Better anticipation can also be seen as a way to reduce fuel inef-
ficient ‘stop-and-go’-driving [13]. 

The rationale behind optimal gear use, and particularly shifting up 
early, is that fuel consumption is lower when appropriate speeds are 
achieved at low RPM (revolutions per minute) (e.g. 
[16,18,22,25,26,27,29]). Similarly, eco-driving theory recognizes that 
hard acceleration and braking result in higher energy losses than mild or 
smoother operation, making the latter preferable from a fuel efficiency 
perspective (e.g. [8,14,16,19,27,28,30]). 

For many of the above eco-driving strategies, connected and auto-
mated vehicles could in the medium- to long term reduce much of to-
day’s suboptimal human performance, both by excelling at situational 
awareness and by more accurately following the most energy-efficient 
driving trajectory in any situation [24, p.558]. Until this is technologi-
cally and financially feasible, and implemented at scale, however, eco- 
driving may contribute to reduce the gap to optimal vehicle operation, 
albeit within human limitations. 

2.2. Eco-driving analysis and interventions 

Eco-driving has been researched in several settings. To date, the 
main approaches for stimulating eco-driving have been training pro-
grams and driver support systems [10,17,28,32,33]. Training programs 
usually consist of knowledge-based training, but can also include prac-
tical training or combine both elements [17]. Driver support systems 
usually revolve around providing drivers with eco-driving feedback, 
either as part of stand-alone interventions or as follow-ups to training 
sessions. Feedback can be given in real-time, through in-vehicle devices, 
shortly after trips (e.g. through online portals), or with a longer time lag 
between trip and feedback [10,20,33]. Other related and partially 
overlapping approaches to eco-driving stimulation include information 
campaigns and gamification initiatives [12,13]. Research methods 
evaluating the effects of eco-driving interventions, in turn, have pre-
dominantly consisted of laboratory or simulator studies, field trials (on- 
road driving on test tracks or real-world routes), and numerical 
modelling [14,17]. 

2.3. Effects of eco-driving on fuel consumption 

Both eco-driving training and in-vehicle devices have shown to result 
in rapid and significant improvements in driving behavior, with esti-
mates on fuel efficiency improvements varying between 1 and 40%, 
depending on the study [14,16,17,18,34]. While most of these estimates 
stem from studies involving drivers of passenger cars and buses, the 
fewer studies on freight vehicles suggest that results are similar for truck 
drivers (e.g. [11]). In a review, Boriboonsomsin [19] finds that for larger 
truck studies, eco-driving interventions usually yield fuel efficiency 
improvements of between 5 and 15%. 

Although effects of eco-driving interventions thus tend to be signif-
icant and often considerable in the short term after an intervention, 
effects are found to fade markedly or even disappear in a longer run as a 
result of drivers returning towards previous behavior 
[8,12,13,14,16,17,26,35,32,36,37]. This decline is seen both after eco- 
driving training and in studies using in-vehicle devices [17], although 
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its extent is dependent on the quality and nature of interventions, and 
whether or not interventions are followed up with reinforcements [13]. 
Thus, with some exceptions (e.g. [22]), the challenge seems to be to 
make behavioral changes from eco-driving interventions more 
permanent. 

At the same time, it should be noted that both effects and persistence 
vary considerably between individuals [18,26,29]. In some cases, 
driving behavior has for example been seen not only to improve 
immediately after an eco-driving intervention, but to follow a progres-
sive trend or ‘learning curve’. This has been observed both for individual 
drivers and driver groups, although in the latter case, effects wore off in 
the longer term [18,29]. Other reasons for exercising caution when 
comparing results across studies are the often considerable differences in 
methodology, vehicles, type of eco-driving interventions, evaluation 
settings (e.g. closed course vs real routes), drivers, baseline driving 
behavior, and other sample characteristics [19,20]. Fuel efficiency im-
provements found in field trials are for example typically smaller than 
what modelling and laboratory tests would suggest [14,16,17]. This 
implies either an untapped potential [17] or suggests that achieving 
major results is difficult in practice. Several studies point out that the 
simplified and artificial setting of laboratory and modelling studies may 
not adequately reflect real-world driving, and thereby overestimate the 
fuel saving potential (e.g. [17,18,22]). Examples of oversimplification 
include inadequate representation of real-world traffic conditions and 
road state, noting that different driving behavior is optimal under 
different conditions [31], and the dependency of laboratory and 
modelling results on congestion assumptions [14]. Also stress levels and 
safety risks may be significantly higher in real traffic and limit a driver’s 
focus on driving fuel efficiently [17,31]. More generally, it is noted that 
modelling results tend to be less accurate and reliable, and may lack 
external validity [17,27]. 

2.4. Fuel savings contributions of different eco-driving strategies 

In terms of contributions of different eco-driving strategies to fuel 
savings, results too, are difficult to compare directly, amongst others due 
to the lack of consistent definitions of eco-driving strategies between 
studies, as well as the overlap and interrelations between strategies [16]. 

Nevertheless, some overarching insights can be inferred. Bor-
iboonsomsin [19] points to fuel ‘waste’ for typical trucks being 33% due 
to speeding, 25% due to hard acceleration, 20% due to idling, 16% due 
to hard turns, and 6% due to hard braking. Based on a summary of 
multiple studies, Huang et al. [17, p. 600] conclude that ‘acceleration 
and deceleration’ is the most important eco-driving factor, with im-
provements yielding a fuel savings potential of between 3.5 and 40%. 
Driving speed, in turn, could reduce fuel consumption by 2–29%, while 
reductions in idling could contribute between 6 and 20%. In another 
summary, Sivak and Schoettle [25] find that effects from reducing idling 
vary, that overspeeding can increase fuel consumption by 30%, not 
using cruise control by 7% (under highway conditions), and aggressive 
driving styles by 20–30%. 

Schall and Mohnen [29, p. 292] conclude that both optimal speed 
choices and less aggressive driving styles (through acceleration and 
deceleration behavior) can improve fuel efficiency by 10%, while 
holding speeds constant and anticipating stops can give an 8% 
improvement and reductions in idling an improvement of between 4 and 
10%. As such, the authors point out speed and driving aggressiveness as 
the most important factors, but note that effects may vary, depending on 
specific circumstances. 

Finally, from a truck field study by Walnum and Simonsen [11], it 
can be derived that among different eco-driving factors, driving with 
high engine loads is most detrimental for fuel efficiency, while driving in 
the highest gear has the largest positive influence. This is followed by 
idling and high speeds (negative effects) and coasting (positive effects). 
Increased use of cruise control and automatic gear shift have relatively 
smaller, but positive effects on fuel efficiency. From the above, 

improvements in speed choice and acceleration/deceleration behavior 
seem to be the main contributors to fuel reduction, followed by avoiding 
unnecessary idling. 

2.5. Reinforcing and maintaining effects of eco-driving interventions 

Existing studies suggest that eco-driving interventions limited to 
training are not sufficient to sustain long-term effects, and that the main 
challenge seems to be to make behavioral changes from eco-driving 
interventions both more permanent and large enough [13,16,26]. 
Indeed, several studies point out that the repetitive and habitual nature 
of driving implies that purely information-based approaches are likely to 
have a limited impact and that some form of reinforcement or long-term 
driver support is required after completion of eco-driving training (e.g. 
[8,12,19,27]). Several approaches have therefore been proposed aimed 
at incentivizing and/or reinforcing eco-driving behavior. These include 
different forms of feedback and driver support after training, as well as 
different types of reward incentives [8,19,27,32]. 

With regard to feedback, a number of approaches have been tried, 
spanning from real-time feedback using in-vehicle devices or online 
feedback directly after trips, to regular feedback at varying intervals 
[12,16,34]. Both regular feedback and different types of in-vehicle 
feedback have been shown to be effective tools for reinforcing eco- 
driving behavior, and evidence suggests that instantaneous feedback 
might be somewhat more effective to maintain eco-driving behavior 
[16,34,38]. However, instantaneous feedback is also associated with 
driver distraction [16]. 

Reward incentives, in turn, have been proposed to address the 
behavioral aspect of driving [32], and it is recognized that monetary and 
non-monetary rewards may have different effects, because they tend to 
impact motivation and behavior in different ways [27]. Using reward 
incentives as a reinforcement for energy conservation behavior has 
demonstrated mixed results [27]. For eco-driving specifically, non- 
monetary rewards have been shown to give stronger effects than mon-
etary rewards, but still with attenuation of effects over time [29]. 

2.6. Moderating factors 

When evaluating effects of eco-driving interventions, one moder-
ating factor that should be considered is weather. Fuel consumption is 
affected by weather conditions such as ambient temperature, precipi-
tation, air pressure, etc. Generally, precipitation increases fuel con-
sumption, amongst others by increasing friction, while fuel consumption 
is lower at higher ambient temperatures, up to a certain optimum 
[11,27,28,39]. An illustration of the importance of weather is provided 
by Allison and Stanton [16], who discuss a study which found significant 
fuel consumption reductions both in the short and a longer term after an 
eco-driving intervention, but when data were reanalyzed controlling for 
temperature, evidence for a long-term effect was no longer significant. 

The strength and effects of eco-driving initiatives and strategies are 
further thought to be influenced by a range of driver and situational 
characteristics, such as gender, age, driving experience, pressure expe-
rienced under driving, knowledge, and attitudes [33,39]. Eco-driving 
incentives and motivation may for example be stronger in private set-
tings than when driving for an employer [33,40]. Positive attitudes to 
the environment, as well as attitudes towards, knowledge about, and 
perceived usefulness and satisfaction from eco-driving, may also posi-
tively affect results [33,40]. With regard to driving experience, theo-
retical eco-driving training has been found to be more effective for 
inexperienced drivers than for experienced drivers, whose ingrained 
habits are thought to be more difficult to change through training [37]. 
In another study, it was found that new drivers with eco-driving as part 
of their mandatory license training had a better understanding of eco- 
driving techniques than experienced drivers who lacked this training, 
and also converted this understanding to more efficient driving in 
practice [40]. As addressed later, most of the latter factors fall beyond 
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the scope of the present article. 

2.7. Limitations of existing studies 

While interesting and relevant, most existing eco-driving studies 
exhibit one or more limitations. As pointed out above, most eco-driving 
studies have focused on drivers of passenger cars and buses, while 
studies on eco-driving within freight transport and HDVs have been 
more scarce [18,19,20,21]. Generally, most eco-driving evaluations 
have been based on comparisons of fuel efficiency pre- and post- an eco- 
driving intervention [26]. Few studies, however, have employed a 
control group [18,26,35], a gap that is especially apparent among the 
limited research on truck drivers [22]. Further, most studies are based 
on small-scale samples [22,26] and have been limited to evaluations of 
short-term benefits, while research on effects after more than a few 
months has been scarce [22,26,27,35]. Additionally, many studies have 
been based on artificial driving conditions [22], and many fewer on 
natural experiments [27]. This may reduce the external validity of re-
sults if factors independent of the driver, but with a considerable impact 
on fuel consumption, are not adequately controlled for, e.g. road ge-
ometry, vehicle type, traffic conditions, and loading factors [12]. 

2.8. Potential side-effects of eco-driving 

In addition to fuel consumption, emissions, and costs reductions, eco- 
driving is associated with side-effects related to traffic safety, vehicle 
maintenance, and driver fatigue (e.g. [31,41]). Many of the main eco- 
driving strategies overlap with strategies for safe driving [13,19,28]. 
Anticipation, driving at consistent and appropriate speeds [13], 
smoother acceleration and deceleration, fewer gear changes, and less 
braking, for example, tend to be beneficial both from a fuel efficiency 
and safety perspective [17,18]. Smoother driving may additionally 
reduce wear, and thereby expenses on maintenance and repair, and is 
associated with less stress and driver fatigue, which might be a traffic 
safety benefit in itself [18]. However, driving behavior involving less 
braking and use of high gears may also have opposite effects by reducing 
headway and vehicle control [28]. It has further been pointed out that 
while beneficial at the individual level, eco-driving behavior could yield 
opposite effects at a network level through changes in headway, speed 
and congestion [14]. Some eco-driving approaches, particularly those 
involving active in-vehicle feedback, have further raised safety concerns 
as a consequence of driver distraction (e.g. [14,16,39,42]). These po-
tential side-effects have not been a focus area in the present research, but 
are mentioned in light of some feedback which we report as part of our 
discussions. 

3. Present research 

The present research builds on a randomized controlled eco-driving 
experiment with differential treatment between two groups of truck 
drivers, working within freight distribution in the South-Eastern part of 
Norway. In short, the experiment subjected drivers in a treatment group 
to an eco-driving course, monthly eco-driving evaluations, and ‘carrots’ 
in the form of non-monetary rewards, while drivers in a control group 
were left alone. Details on the experimental design and specifics are 
described extensively in the next chapter. 

Objectives behind the experiment were to shed light on the following 
overarching research questions: 

- Do eco-driving interventions have the potential to reduce fuel con-
sumption by inducing more efficient driving behavior among truck 
drivers, and if so, to what extent?  

- Are changes in driving behavior temporary, or do they persist when 
an eco-driving course is reinforced with additional interventions?  

- Which eco-driving strategies contribute most to reductions in fuel 
consumption?  

- How are results affected by weather conditions? 

From the literature, we expect to find significant short-term im-
provements in driving behavior and fuel efficiency following an eco- 
driving course (with fuel and emissions savings likely in the 5–15% 
range). We further expect to observe considerable variation between 
individual drivers, and possibly a ‘learning curve’ with a progressive 
trend in effect strength, up to a certain peak (cfr. [18,29]). Without 
follow-ups, however, effects of the eco-driving course would be expected 
to attenuate or disappear in the longer run, likely in the course of several 
months. Both regular and non-monetary rewards could potentially 
strengthen the persistence of effects, but most likely only delay the 
fading of effects, rather than completely avoiding it (e.g. [16,29,34]). 
Due to the many ways and extents in which feedback and rewards can be 
implemented, the latter expectation is particularly uncertain. 

Of different eco-driving strategies, we expect improvements in 
behavior related to driving speed and acceleration/deceleration to yield 
the largest potential for fuel savings, followed by reduced idling. Finally, 
we expect to find significant effects of weather conditions on fuel effi-
ciency through ambient temperatures (positive relationship) and pre-
cipitation (negative relationship). 

4. Methodology 

4.1. Study design 

As mentioned, the current study, performed in 2019, was designed as 
a randomized controlled eco-driving experiment with differential 
treatment between two groups of seven truck drivers: a treatment and a 
control group. All fourteen drivers work for the same firm (a large 
Norwegian freight forwarder operating about 130 trucks), and take 
shifts driving the same regional freight distribution rounds in the South- 
Eastern part of Norway. As part of their employment, all drivers had 
previously been informed about and consented to the potential use of 
data from their employer’s fleet management system (FMS) for analyt-
ical objectives. This made it possible to use such data in the current 
experiment, and in other parts of an overarching ‘LIMCO’ research 
project, for which data utilization additionally was cleared with the 
Norwegian Centre for Research Data. 

Because of the arrangement of driving into work shifts (e.g. two 
weeks on, two weeks off), the fourteen drivers were first divided into 
‘complementary pairs’, driving the same routes and vehicle types. 
Thereafter, one driver from each pair was assigned to a control group 
and the other to a treatment group by means of random draws. 

Although the above leaves a relatively small sample size, the strength 
of this design compared to many previous studies, is that it allows an 
assessment of eco-driving in a real-world setting, while to a large extent 
controlling for the same vehicles (see also data collection), fixed routes 
(regular and predictable distribution routes, predominantly fulfilling the 
same order types for the same clients every week), and fixed drivers (the 
experimental participants). As such, the design attempts to control for 
effects of driver-independent factors which may have a considerable 
effect on fuel consumption and might otherwise lead to unfair com-
parisons between drivers [12]. 

4.1.1. Participants 
The participants in our experiment were all male, professional truck 

drivers. From information provided by the freight forwarder, we know 
that within their driver pool of ca. 225 drivers, around half is aged be-
tween 30 and 39 and another quarter between 40 and 49, while 16% of 
drivers are 50 + and 10% are aged under 30. Regarding driving expe-
rience, we were provided with a rough split-up of tenure (45% between 
0 and 3 years, 13% between 3 and 6 years and 42% with tenure of 6+
years). However, these numbers indicate tenure only at the current 
freight forwarder, disregarding truck driving experience at previous 
employers which most drivers were said to have. The freight forwarder 
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further provided information indicating an average annual mileage per 
driver of ca. 45.000 km. Because we have not had access to more 
detailed information for drivers in the experimental sample specifically, 
the above factors fall beyond the scope of the present research, as is also 
mentioned in our discussions. However, it can be noted that the freight 
forwarder has indicated that the base sample of fourteen drivers was 
intended to have a very homogeneous composition (attempting to avoid 
e.g. socio-economic differences). 

4.1.2. Experimental baseline and eco-driving course 
During the first three months of the experiment, none of the drivers 

knew that they participated in an experiment. This was done to have 
them continue their work as usual, so that driving behavior and fuel 
consumption baselines could be established both for drivers in the 
control and treatment group, and unaffected by any intervention. Three 
months into the experiment, in early April 2019, an intervention was 
arranged for the treatment group. Drivers in this group were given a 
course in eco-driving, while the control group was not. The eco-driving 
course was held by Cognia, a Norwegian supplier of the FMS-solution 
used in our experiment (details in next section). During a one evening 
session, drivers were taught eco-driving theory closely linked to the eco- 
driving strategies discussed earlier, and how they could improve their 
performance. 

4.1.3. Monthly follow-ups for the treatment group 
After the course, drivers in the treatment group started receiving 

monthly performance reports, covering a total eco-driving score, scores 
on ‘anticipation’, ‘engine and gear use’, ‘speed adaption’ and ‘idling’, 
and their respective sub-components (also explained in detail in the next 
section). Performance reports were actively followed up through indi-
vidual monthly evaluation sessions between driver and manager, and 
with focus on (further) improvement of driving behavior. 

4.1.4. Non-monetary rewards for the treatment group 
Around 2.5 months after the eco-driving course, non-monetary 

awards were introduced to give drivers in the treatment group an 
additional performance incentive: Drivers who achieved a minimum 
monthly (total) score of 85 (out of a possible 100; see data collection) 
could earn a t-shirt or fleece jacket with respective texts ‘Certified Eco- 
driver’ and ‘Perfect Eco-driving skills’, depending on their performance. 
The use of non-monetary rewards was inspired by the eco-driving 
experiment carried out by Schall and Mohnen [27], and for which re-
sults suggested that non-monetary rewards might be a more effective 
follow-up than monetary rewards. 

4.1.5. Potential spill-overs to the control group 
While the experiment was intended to have a pure treatment group 

(with eco-driving interventions) and a pure control group (no in-
terventions), the experiment’s implementation gave rise to two potential 
sources for spill-over effects. Firstly, the non-monetary rewards for 
drivers in the treatment group may have revealed to the control group 
that some eco-driving activity was ongoing. Secondly, we were informed 
in retrospect that between August-December 2019, drivers in the control 
group were also sent an eco-driving performance report, together with 
their monthly pay check. Both these potential sources of spill-over ef-
fects are addressed in our analysis and discussion. While unintended and 
unfortunate, it is important to clarify that at no point did drivers in the 
control group receive any active follow-ups, evaluations, reviews or 
explanations of performance report contents, nor were they taught or 
given information on eco-driving, eco-driving strategies, or how to 
improve their driving behavior and scores. Because of the latter, changes 
or improvements to driving behavior are most likely associated with 
driver’s own belief of what would constitute good eco-driving behavior. 

4.2. On data collection 

Modern trucks are increasingly equipped with different sensors, 
which log data on a number of driving performance indicators. Although 
many of these indicators vary between vehicle manufacturers and 
models, examples include (comparable) data on various trip character-
istics and driving behavior (e.g. speed, distance, fuel consumption, eco- 
driving indicators, etc.), as well as other factors, such as geographical 
conditions [43]. 

Depending on ownership arrangements, owners or operators of 
trucks may have access to a variety of valuable indicators, which allow 
for the follow-up of daily, weekly and monthly behavior through scores 
on different driving performance indicators in FMS systems. In practice, 
however, relatively few organizations have so far actively started uti-
lizing logged data more than superficially, and in fact, experience in the 
overarching LIMCO project indicates that many lack active subscriptions 
to such data (which form an expense). Further, even when active sub-
scriptions are in place and information could be valuable for research on 
transport and driving behavior, a challenge remains that data from FMS 
systems are normally kept in-house. In the current experiment, however, 
cooperation with both the freight forwarder and FMS provider ensured 
access to such data. 

Overall, data collected in our study cover driving with 15 Volvo 
trucks (all 3-axled distribution trucks with closed chapel and max. 
allowed total gross weight of 27 t). Nearly all driving was done with 
seven of these trucks (all basically identical Volvo FH trucks from 2014 
with 460 HP engine and the same dimensions and characteristics), while 
the remaining eight trucks (including more near identical models from 
the same year) were only driven over very short total distances by 
participants in our experiment. Since our sample consists entirely of 
Volvo trucks, data for most indicators of interest could have been 
extracted through Volvo’s own FMS system (Dynafleet). However, for 
generalizability, repeatability, and as source for the monthly follow-ups 
with drivers from the treatment group, we chose to extract data through 
Cognia’s FMS solution, ‘Linx’. This solution is developed to be universal 
across vehicle brands, based on the least common multiple information 
from different manufacturers’ factory-fitted FMS-API, making it possible 
to capture data from a huge number of trucks and enterprises (as is 
currently done in the LIMCO project). 

In addition to direct engine performance indicators, Linx reports 
scores on four eco-driving performance indicators mentioned earlier 
(anticipation, engine and gear, speed adaption and idling), as well as a 
total score (all with possible range from 0 to 100, where 100 is best). 
Sub-components used by Linx to calculate these scores are indicated in 
Table 1. 

Data was collected for the period between January 1st and December 
31st, 2019. Data on driving behavior performance is available at the 
daily level, while GPS-tracking usually is available at a (much) higher 
time frequency. However, the frequency of GPS data from Volvo trucks 
can easily be set by the driver and therefore varies more in frequency 
than for other brands: this is for example seen for Scania trucks tracked 
in the LIMCO project. Unfortunately, GPS-data for the vehicles in the 
current sample are scarce and therefore not actively utilized in this 
study. 

4.3. Data compilation and quality 

After data collection, data quality was checked and certain outlier 
observations removed (3.2% of observations). For example, all obser-
vations where drivers had a daily driving distance below 10 km were 
excluded, because rather than covering distribution routes, such ob-
servations are typically related to the moving and rearranging of vehi-
cles. This comes with high average fuel consumption, predominantly 
influenced by starts and stops, rather than driving performance. Since 
each daily observation has the same weight in our analysis, regardless of 
the daily fuel consumption or mileage, these observations were 
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removed. Further, all observations with a total score of 0 were also 
removed, because a score of 0 as a monthly weighted average across four 
different driving performance indicators is most likely a result of an 
error. 

As complement to data collected from the vehicles, the data set was 
expanded with a number of (dummy) variables. These variables were 
constructed to indicate whether drivers were part of the treatment group 
(1) or control group (0), and whether observations were from a date 
after the eco-driving course (1) or during the baseline period (0), in 
addition to an interaction dummy (treatment group, after treatment). 
Further, we added dummy variables representing time passed after the 
eco-driving course in 6-week intervals (0–6 weeks, 6–12 weeks, etc.). 
This approach was chosen for a combination of reasons. Firstly, two 
independent providers of eco-driving tracking solutions provided feed-
back that meaningful eco-driving performance changes should be 
considered at time scales of 1–2 months (citing e.g. random variations in 
traffic, such as traffic jams, road closures, etc., and weather (see below) 
as reasons). Secondly, while we expect changes in eco-driving scores and 
fuel consumption over time, these changes may have different strength, 
direction, persistence and timing (cfr. our discussion of [18,26,29]). 
This makes it difficult to specify suitable functional forms for regression 
analyses with time as metric variable (see Section 4.4). Using time 
period dummies additionally allows us to test differences in effects at 
different intervals after treatment. 

Further, we added variables on average daily temperature, as well as 
precipitation (in mm) on the observation day. These data were collected 
from the Norwegian Meteorological Institute, for a measurement loca-
tion in Oslo (i.e. centrally located relative to the trucks’ distribution 
routes), and were intended to control for effects of weather conditions 
on fuel consumption (cfr. e.g. [16]). 

The resulting data set yielded 1,523 daily observations in total, for 
all drivers, covering the whole of 2019, and for a total driving distance of 
over 475,000 km and fuel consumption over 178,000 L of diesel. Drivers 
in the treatment group stood for 58% of both the observations and total 
mileage. Further, at 314 and 312 km, average distances driven per day 
were almost equal between the treatment and control group. This sug-
gests that distribution routes driven in practice were indeed similar 
between the two groups, as was intended and expected in the study 
design. 

Table 1 provides a summary of the most important variables in the 
data set. It should be noted that the four Linx-scores on eco-driving 
parameters are not stand-alone scores, but are derived (by Linx) from 
1 or 2 sub-parameters per score, as indicated in the table, while the total 
score in turn is derived from the four eco-driving parameters. In addition 
to parameters in the table, the data set includes amongst others ano-
nymized IDs to distinguish vehicle and driver, date, week number, pa-
rameters on weather conditions, a number of vehicle characteristics 
such as age and weight, as well as the dummy variables discussed above. 

4.4. Analysis and modeling of effects 

To analyze effects of the eco-driving intervention and follow-ups for 
the treatment group, we constructed two multivariate regression models 
with daily average fuel consumption (per 100 km) as the dependent 
variable. The reason for constructing two models is A) to measure how 
performance on different eco-driving aspects affects fuel consumption 
(the driving performance score model), and B) to investigate whether 
there is a difference between the treatment and control group before and 
after the eco-driving course takes place (the dummy model) - as outlined 
through our research questions. 

Both models were tested using different sub-specifications through 
inclusion of different independent variables. Before presenting these 
models and specifications, Table 2 illustrates correlations between fuel 
consumption, and trip-specific, vehicle-specific and driving behavior 
parameters. Correlation coefficients were calculated according to 
Spearman’s rank-order approach, as this methodology provides better 
robustness to outliers than Pearson correlations, and because underlying 
assumptions for Pearson correlations might not be met across all pairs of 
variables and all samples. The table reports correlations within three 
different sub-sets, for all observations in 2019 related to ‘driver and 
vehicle days’. The three sub-sets consist of 1) all vehicles for which the 
LIMCO project has data capture through Linx (‘the LIMCO sample’; this 
includes both vehicles of the freight forwarder in the study and vehicles 
of a range of other firms); 2) a sub-set of ‘the LIMCO sample’, limited to 
those vehicles that are owned by the freight forwarder (‘the full freight 
forwarder sample’); and 3) only those vehicles driven by drivers in 
either the treatment or control group (‘the study sample’, i.e. a subset of 
both ‘the LIMCO sample’ and ‘the full freight forwarder sample’). The 
purpose of this approach is to compare observations in the study sample 
with larger samples with more variability both for vehicles and driving 
behavior, and thereby to validate the representativeness of the study 
sample. In the table, positively correlated parameters are shaded blue, 
and negatively correlated variables are shaded in red, with shading in-
tensity representing the degree of correlation. 

For trip-specific parameters, the table indicates negative correlations 
between average fuel consumption and trip average speed, which is as 
expected from eco-driving theory, as average fuel consumption usually 
decreases up to an optimal speed. Fuel consumption and distance have a 
positive correlation, albeit very weak. Here, we had expected a negative 
correlation, because fuel consumption tends to be lower for long-haul 
transport than e.g. urban distribution (e.g. [3]). For the full freight 
forwarder sample and the study sample, this is likely a result of less 
variation in routes driven, with longer trips more likely taking place in 
areas with harsher driving conditions (elevation and/or winding roads, 
see also [11]). 

Of vehicle-specific parameters, several are positively correlated with 
fuel consumption for both the LIMCO sample and the full forwarder 

Table 1 
Descriptives for selected variables included in the data set.  

Variable Description Descriptives 

Average fuel consumption 
while driving 

In liters per 100 km. Only fuel consumption while 
driving. 

Avg: 36.1 L/100 km; Min: 19.1 L/100 km; Max: 59.3 L/100 km. 

Distance Distance driven in km on day of observation Avg: 313 km; Min: 13 km; Max: 673 km. 
Anticipation score (0–100 

range) 
Derived by Linx from coasting and braking 
parameters. 

Avg: 80.3; Min: 40; Max: 100Calculated based on percentage of distance spent coasting (Avg: 
16%; Min: 0%; Max: 46%) and braking score (Avg: 92.2; Min: 42; Max: 100) 

Engine & gear score 
(0–100 range) 

Derived by Linx from parameters on use of 
automatic gear and power 

Avg: 98.8; Min: 56; Max: 100Calculated based on percentage of distance using automatic gear 
(Avg: 99.4%; Min: 83%; Max: 100%) and power take-off (data on this individual component was 
missing in the data set). 

Speed adaptation score 
(0–100 range) 

Derived by Linx from parameters on (over)- 
speeding and use of cruise control 

Avg: 73.9; Min: 0; Max: 100Calculated based on percentage of distance spent speeding (Avg: 
16.4%; Min: 0%; Max: 81%) and using cruise control (Avg: 40.5%; Min: 0%; Max: 91%) 

Idling score (0–100 range) Derived by Linx from parameter on idle running Avg: 49.3; Min: 0; Max: 100Calculated based percentage of time with idle running (Avg: 23%; 
Min: 1%; Max: 97%). 

Total score (0–100 range) Calculated by Linx as weighted average of scores on 
the above four eco-driving parameters. 

Avg: 80.3; Min: 40; Max: 100  
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sample: engine power, engine displacement, vehicle front area (vehicle 
width times height in m2), the vehicle’s own weight, allowed maximum 
vehicle weight and maximum allowed gross weight for vehicle and 
trailer, and the number of axles. This is as expected, as larger and 
heavier vehicles usually consume more fuel (see e.g. [11]). However, for 
observations within this study’s sample, many of the vehicle-specific 
parameters have the opposite sign. This is most likely caused by the 
trucks in the study being very similar, resulting in too little variation to 
give plausible correlation coefficients. Vehicle age has a negative sign 
also for the LIMCO sample, opposite of what can be expected from e.g. 
engine inefficiencies increasing with age. Only for observations in the 
full freight forwarder sample do we find the expected positive correla-
tion between age and fuel consumption. 

The four eco-driving behavior indicators from Linx consist of 
different sub-parameters. From the table, we find negative correlations 
between average fuel consumption and use of automatic gear, coasting, 
braking score, and use of cruise control. This is as expected from our 
discussion on eco-driving strategies in Section 2.1. Surprisingly, we also 
find a negative correlation between (over-)speeding and fuel consump-
tion for the LIMCO sample, while for the study sample, we do find the 
expected positive correlation between (over-)speeding and fuel con-
sumption. Further, we find positive correlations between power take-off 
(PTO or engine load) and idling, with fuel consumption. This too, is as 
expected from the literature. For drivers in the study sample, we only 
have ‘engine and gear scores’, but lack separate underlying data on the 
use of PTO. In all, the correlation matrix illustrates that we can expect 
that improved driver behavior will reduce fuel consumption through 
increased focus on the use of automatic gear, cruising, braking, and 
cruise control, and less use of PTO, (over-)speeding and idling. 

4.4.1. The dummy model 
As pointed out, the main objective of the dummy model is to identify 

differences in fuel consumption between the treatment and control 
group, as well as differences before and after the eco-driving course. The 
number of independent variables in the model is increased stepwise to 
analyze partial effects of various exogenous variation and how co-
efficients are affected by controlling for additional variables, as well as 
to analyze the longer-term effects of the eco-driving course and follow- 
ups. 

In its base specification (Model I), the dummy model is constructed 
as follows: 

FCi,t = β0 +
∑3

n=1
βn*Dn,(i),(t) + εi,t [I] 

where FCi,t is driver i’s average fuel consumption on day t in liters 
per 100 km, D1,i is a dummy variable equal to 1 when a driver i is part of 
the treatment group and 0 otherwise, D2,t is a dummy variable equal to 1 
for observations occurring (t) after the eco-driving course has taken 
place and 0 otherwise, and D3;i,t is an interaction dummy equal to 1 for 
cases when both the driver i is part of the treatment group and the 
observation is for a day (t) after the eco-driving course has taken place, 
and 0 otherwise. Finally, εi,t is the random error term, while βn represent 
parameters that we seek to estimate. 

In its second specification (Model II), dummies for eco-driving course 
completion and the interaction dummy are replaced by dummies for 6- 
week intervals after course completion, while the third specification 
(Model III) adds to this two control parameters: average temperature 
and precipitation on the day of observation: 

FCi,t = β0 +
∑7

n=1
βn*Dn,(i),(t) + εi,t [II]  

Table 2 
Spearman’s correlations between average fuel consumption and different trip-specific, vehicle-specific, and driver behavior parameters, for three different sub-groups 
of vehicles and drivers. Rounded to two decimals. GW = Max. allowed vehicle gross weight. N represents number of observations in 2019 related to driver and vehicle 
days.  
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FCi,t = β0 +
∑7

n=1
βn*Dn,(i),(t) +

∑2

n=1
γn*χn,t + εi,t [III] 

where FCi,t, and dummy D1,i have the same meaning as before, while 
D2…7,t are different dummies equal to 1 for respective 6-week intervals 
after the eco-driving course (0–6; 6-12…30 + weeks) and 0 before this 
course has taken place. The variables χ1 and χ2 in Model III indicate 
average temperature and precipitation on day t, respectively. As before, 
βn (and in Model III also γn) represent the parameters we seek to 
estimate. 

The fourth specification (Model IV) is similar to Model III, but while 
using observations from both groups for the period before the eco- 
driving course, the six-week interval dummies after the eco-driving 
course are only included for the treatment group, while for the control 
group, a new dummy variable is introduced for the full period after the 
eco-driving course (D8). 

FCi,t = β0 +
∑8

n=1
βn*Dn,(i),(t) +

∑2

n=1
γn*χn,t + εi,t [IV]  

4.4.2. The driving performance score model 
The purpose of the driving performance score model is to investigate 

how changes in driving performance influence fuel consumption. 
Driving performance is measured by the four eco-driving score in-
dicators or strategies discussed in Section 4.3, and variables are trans-
formed to a logarithmic scale. This has the advantage that elasticities 
constant of scale can be deduced, and yields the following base 
specification: 

ln(FCi,t) =β0 +
∑4

n=1
βn*ln

(
χn,i,t

)
+ εi,t [A] 

where FCi,t is the driver i’s average fuel consumption on day t in liters 
per 100 km, χ1 through χ4 are a driver i’s respective Linx-scores on 
anticipation, engine and gear, speed adaptation, and idling, on day t, 
and εi,t is a random error term. βn represent the parameters we seek to 
estimate. 

In its second specification (Model B), the base specification is 
expanded with control parameters for average temperature (χ5;t) and 
precipitation (χ6;t) on the day (t) of observation. To enable a logarithmic 
scale, temperature (which can include negative values) is converted 
from Celsius to Kelvin. In the third specification (Model C), a further 
parameter is added for distance, (χ7,i,t, again in logarithmic trans-
formation, for driver i on day t). This can be summarized as follows: 

ln(FCi,t) =β0 +
∑6

n=1
βn*ln

(
χi,t

)
+ εi,t [B]  

ln(FCi,t) =β0 +
∑7

n=1
βn*ln

(
χi,t

)
+ εi,t [C]  

5. Results 

5.1. Developments in eco-driving and fuel consumption 

Before moving results from our regression, we first look at de-
velopments in eco-driving and fuel consumption throughout 2019. Fig. 1 
illustrates developments in the average monthly total driving perfor-
mance score (0–100) for both the treatment group and control group, i.e. 
the weighted average of the four score sub-indicators from Linx. The 
dotted curve represents drivers in the control group who participated 
throughout the entire period, i.e. excluding the drivers that quitted their 
positions and for whom data is missing towards the end of the period. 

From the figure, it can be seen that drivers in the treatment group on 
average started out from lower total scores than the control group. A 
significant increase started immediately after the eco-driving course in 
the beginning of April, for both groups of drivers, but this increase 
leveled out in May. While this increase is not unexpected for the treat-
ment group, observations for the control group are less intuitive. We 
expect the latter to be a result partially of the transition from winter to 
spring, and partially of score variation internally in the control group 
(combined with the sensitivity of group averages to relatively small 
group sizes). While we discussed potential sources of spill-overs from 
treatment to control group, these are likely first relevant after the 
introduction of rewards in June or performance reports unintentionally 
being sent out also to control group drivers, from August onwards. 

For the treatment group, a new increase is visible from May to June, 
and further on to July, while the control group had a stable score level 
until June, with a sharp increase from June to July. This distinctive 
increase can partially be explained by the fact that three of the drivers, 
whereof two with the lowest scores in the control group, quitted their 
positions from the start of July. However, the dotted line also illustrates 
that the rest of the control group had an increase in score from June to 
July, most likely a result of the differential treatment becoming visible 
because of the introduction of non-monetary awards at this time. From 
July onwards, the treatment group maintained a relatively stable 
average total score level, while scores for the control group exhibited 

Fig. 1. Development in average monthly total driving performance score for the treatment and control groups, before and after the eco-driving course in early 
April 2019. 
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more variation. The control group reached its maximum average total 
score level in August and later exhibited a seemingly temporary decrease 
in November. 

Fig. 2 presents average driving performance scores before and after 
the eco-driving course, and well as corresponding percentage changes, 
for individual drivers in both groups. 

From the figure, it is seen that all drivers in the treatment group 
increased their average total scores by 10% or more after the eco-driving 
treatment. The figure further shows that most drivers in the control 
group also increased their scores; only one driver exhibited a score 
reduction, while another maintained nearly the same average level. 

On the other hand, two of the three drivers with the highest per-
centage improvements are in the control group. While one of the drivers 
in the treatment group increased his score to nearly the maximum of 
100, this increase is from a high initial level, yielding a percentage 
change of less than 15%. The driver with the largest relative improve-
ment showed an increase in average score of nearly 40%. In line with 
several previous studies (e.g. [18,26,29]), the figure further confirms 
considerable variation between individual drivers. 

A similar illustration is given in Fig. 3, but now for average fuel 
consumption before and after the eco-driving course. 

This figure shows that two of the drivers in the treatment group had a 
slight increase in average fuel consumption in the period after treat-
ment, and one of these is the driver who achieved a nearly perfect 
average total driving score after treatment. This is a case in point, 
illustrating that fuel consumption is affected by more than eco-driving 
parameters (e.g. weather), and one reason for studying partial effects 
in more detail. All other drivers show a reduction in average fuel con-
sumption after treatment. With a reduction of nearly 15%, the largest 
reduction in average fuel consumption after treatment is found for a 
driver in the treatment group. 

5.2. Differences in fuel consumption between treatment and control group 

Table 3 summarizes regression results for different specifications of 
the dummy model, with coefficients being the β- and γ-values in the 
respective sub-specifications according to equations I, II, III and IV given 
above. 

Using these results, we further carried out a series of Wald tests 
comparing coefficients between all pairs of time period dummies, with 
the null hypothesis that coefficients are not significantly different. Re-
sults of these comparisons are presented in Table 4, for Models II, III and 
IV respectively, and indicate whether effects (change in average fuel 
consumption) are significantly different between time periods, e.g. 

indicating a learning curve, progressive increases, or effect fading (cfr. 
[18,29]). 

From Table 3, Model I has an adjusted R-squared of 0.078, i.e. 
around 8% of variation in average fuel consumption can be explained by 
the independent variables in the regression model. While this value is 
low, it is not unexpected given that fuel consumption is affected by many 
variables not included here (cfr. [10]). The positive and statistically 
significant coefficient on the treatment group dummy indicates that 
before the eco-driving course, the fuel consumption for drivers in the 
treatment group was on average 2.3 L/100 km higher than for drivers in 
the control group, who had an average fuel consumption of 37.1 L/100 
km. 

Further, fuel consumption after the eco-driving course is signifi-
cantly lower (on average 2.9 L/100 km) than before the course. 
Although the coefficient on the interaction dummy for treatment group 
and completion of the eco-driving course is negative (suggesting that the 
post-course reduction in fuel consumption is larger for drivers in the 
treatment group than in the control group), this difference is not found 
to be significantly different from zero. 

In Model II, we take a closer look at changes in fuel consumption in a 
short and a longer term. As seen from Table 3, coefficients on all vari-
ables are significant at the 99% level, and the share of variation 
explained by the model is slightly higher. In the reference (all timing 
dummies equal to zero, i.e. before the eco-driving course), fuel con-
sumption for drivers in the treatment group was on average 1.9 L/100 
km higher than for drivers in the control group. The largest reductions in 
fuel consumption are found from weeks 12 to 24 after the treatment, but 
also in the last period for which we have data (i.e. up to a whole 9 
months after the eco-driving course), we find that fuel consumption is 
lower than before the course (99% significance). Results from Wald tests 
comparing coefficients between pairs of dummies in Table 4 further 
suggest that drivers may experience a learning curve: effects between 12 
and 30 weeks after the course are namely significantly stronger than in 
the first 12 weeks (98–99% confidence). In the last time period, fuel 
consumption is still significantly lower than before the eco-driving 
course, but the effect is significantly smaller than in the peak time in-
tervals 12–24 weeks after the course (99% confidence) and 24–30 weeks 
after the course (95% significance). 

In model III, average daily temperature and precipitation (in mm) 
are included as control variables. The negative coefficient on tempera-
ture indicates that higher average temperatures might reduce fuel con-
sumption (but not significantly), while the positive and significant 
coefficient on precipitation indicates that increases in precipitation on 
average increase fuel consumption. The latter is as expected due to 

Fig. 2. Average driving performance score before and after the eco-driving course, for each driver in the treatment group (driver 1–7) and the control group (driver 
8–14), and corresponding percentage changes (right axis). 
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increased rolling resistance from rain. Remarkable is that controlling for 
weather conditions reduces the coefficient values of the short and 
longer-term changes in fuel consumption, except for the last time in-
terval, which is in winter time. Results in Table 4 show that effects are 
stronger between 12 and 30 weeks after the course than during the first 
12 weeks (95–99% significance), again suggesting a learning curve. 
After controlling for weather conditions, we further find fewer in-
dications of effects fading over time. Fuel consumption in the last time 
interval for which we have data is still found to be significantly lower 
than before the eco-driving course, and the fuel reduction effect is no 
longer significantly different from the effect in the time interval 12–18 
weeks after the course (β4), while differences compared to peak re-
ductions in the intervals 18–30 weeks after treatment (β5 and β6) become 
less statistically significant (at 95% and 90% level vs. 99% and 95% in 
Model II). 

Model IV is similar to model III, but uses only observations from the 
treatment group for the estimation of differences in effects in the long 
term, while for the control group, a new dummy variable is introduced 
for the period after the eco-driving course. The dummy for the treatment 

group still indicates that drivers in this group have a significantly higher 
initial fuel consumption than the control group. All coefficients are 
significant at the 95–99% level, except for the period 6–12 weeks after 
treatment, where fuel consumption is significantly different at the 90% 
level (for later intervals, statistically significant reductions found lie 
between 2.8 and 4.0 L/100 km). Further, both temperature and pre-
cipitation coefficients are statistically significant (95%), and have the 
same signs as in Model III. The last series of Wald test results in Table 4 
shows that for the treatment group, effects early on (0–6 weeks after the 
course, β2) are significantly different from effects in the intervals 12–30 
weeks after the treatment (95–99% confidence). Further, effects from 6 
to 12 weeks after the eco-drive course are found to be different from 
effects between 12 and 30 weeks after the course (99% significance). 
This suggests a learning curve effect specifically for drivers in the 
treatment group. However, unlike for Model II and III (including long- 
term observations for the control group) we find no statistically signif-
icant differences between effects after 12–18 weeks and later intervals, 
and hence, no evidence of fading effects for drivers in the treatment 
group. 

Fig. 3. Average fuel consumption before and after the eco-driving course, for each driver in the treatment group (driver 1–7) and the control group (driver 8–14), 
and corresponding percentage changes (right axis). 

Table 3 
Results from four different specifications of the dummy model for avg. fuel consumption (liters per 100 kms) for the treatment group and the control group, before and 
after the course, the short and long-term effects, and how weather conditions influence fuel consumption.  
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5.3. Results from the driving performance score model 

Table 5 show results from three specifications of the driving per-
formance score model, assessing how different eco-driving scores and 
weather conditions influence fuel consumption and corresponding 
elasticities. Coefficients represent the β-values in the respective sub- 
specifications according to equations A, B and C given above. 

All parameter coefficients in the three model specifications are sig-
nificant at the 99% level (except for the coefficient on rainfall in Models 
B and C, which is significant at the 90% and 95% level respectively), and 
differences stemming from introducing additional variables to the base 
specification are not large. Further, adjusted R-squared values indicate 
that between 14.5 and 17.2% of the variation in average fuel con-
sumption can be explained by the independent variables. Of the four 
driving performance factors, it can be seen that improvements in ‘engine 
and gear score’ reduce fuel consumption most, followed by improve-
ments in ‘speed adaptation score’ and ‘idling score’. These results seem 
consistent with eco-driving theory and conclusions in previous research 
(Section 2.4), although differences in definitions and score compositions 
make direct comparisons difficult. On the other hand, the coefficient for 
‘anticipation score’ has a positive sign. This implies that higher scores 
lead to increased fuel consumption, and is the opposite of what was 
expected. An explanation could be that the anticipation score is 
composed of the two variables for coasting and braking, which are 

expected to be correlated with the topography of the area where the 
truck is driving. Higher coasting scores could be related to more op-
portunities for coasting due to downhill driving on a route, but when 
such routes also imply more uphill driving, this could result in a net fuel 
consumption increase. 

Also in the driving performance score model, average temperature 
and precipitation significantly influence average fuel consumption, and 
have the expected signs (Model B and C). At the same time, temperature 
and precipitation do not influence coefficients or significance of co-
efficients on the score parameters particularly. 

In the specification of Model C, the coefficient on the parameter for 
‘distance’ has a positive sign, again contrary to what was expected. 
However, it is important to note that the study data contain a limited 
number of distribution routes. Increased fuel consumption for the 
longest routes can therefore be the result of these longer distribution 
routes to a larger extent taking place in areas with harsher topography 
and curvature than the shorter routes in the Central South-Eastern parts 
of Norway. 

Total elasticities (i.e. the sum of elasticities for the score parameters) 
of between − 0.322 and − 0.350 indicate that an increase of 10% in total 
driving performance score leads to a decrease in average fuel con-
sumption of between 3.2 and 3.5%. As was shown in Fig. 1, drivers in the 
treatment group on average increased their (rounded) total driving 
performance scores from 69 in January to March, to 89 in October to 

Table 4 
Results from Wald tests comparing coefficients between all pairs of time periods, with null hypotheses that coefficients are not significantly different, for each in-
dividual pair. Table reports test statistics (F) with corresponding degrees of freedom and p-values indicating statistical (in)significance.  

Table 5 
Results from three regression specifications of how performance on different eco-driving indicators and weather conditions influence fuel consumption, and corre-
sponding elasticities.  
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December, i.e. a score increase of 28% on average. Combining this in-
formation with the estimated elasticities indicates that the eco-driving 
intervention results in a decrease of 9.0% in average fuel consumption 
from January to December, taking into account differences in temper-
ature and precipitation. This can be interpreted as ‘upper bound po-
tential’ for savings from the eco-driving interventions in the current 
study. 

Also the control group had an increase in total score, from (rounded) 
71 in January to March, to 87 in October to December, or 23%. Cor-
recting for the drivers that quitted their positions during the summer, 
this improvement is 16%. Combining this information with the esti-
mated elasticities indicates that the reduction in average fuel con-
sumption from January to December was between 5.2% and 7.5% for 
the control group. This is despite the control group not participating in 
the eco-driving course and not receiving follow-ups, and might be the 
result of spill-overs from the treatment group. The 5.2% reduction might 
be interpreted as ‘lower bound potential’, given that eco-driving is not 
actively addressed for these drivers and driving behavior improvements 
might be induced by an indication that ‘something is going on’. Active 
follow-ups should be expected to strengthen this effect. 

The freight forwarder reports a total annual fuel consumption of 3.4 
million liters of diesel in 2018. This corresponds relatively well with the 
fuel consumption in our dataset for 2019 (2.9 million liters of which 
179,000 L by drivers in our experiment). The average score level for all 
drivers of the freight forwarder was 78 in 2019. This is below the annual 
average for both the treatment group in 2019 (85) and the control group 
(83, not corrected for drivers quitting their position, or 86 for drivers in 
the control group with continuous participation in 2019). 

As can be seen from Fig. 4, the monthly score level for drivers not 
participating in the study was more constant throughout the year than 
for the other two groups, with a peak in July. This indicates that also 
drivers at the company that weren’t part of this study might have a 
potential for improved driving behavior. However, this improvement 
potential is smaller than for the treatment group, which started from a 
lower initial score level in January. The score level of other drivers at the 
forwarder is more in line with the initial level of the control group. This 
suggests a potential for increasing total scores by between 16% and 28%, 
corresponding to a reduction in fuel consumption of between 5.2% and 
9.0%. For the freight forwarder as a whole, this would correspond to 
potential annual diesel savings of between 178 and 306 thousand liters, 
a reduction in CO2 emissions of between 454 and 779 tonnes (based on 
the Norwegian biodiesel blend-in in 2019 [7], and savings on fuel 

expenses of between 2 and 3.5 million NOK (ca. 205–350 thousand EUR 
or 230–393 thousand USD at 2019 average exchange rates and Norwe-
gian diesel prices (cfr. [7]). 

6. Discussion 

6.1. Summary of results 

In summary, our results indicate that an eco-driving course, com-
bined with active follow-ups and ‘carrots’ in the form of non-monetary 
rewards, might induce more efficient driving behavior among truck 
drivers, and thereby significantly reduce fuel consumption. Although 
considerable variation is observed between individual drivers, results 
indicate that driving behavior improves progressively up to a peak, 
suggesting an eco-driving ‘learning curve’. Results further indicate that 
effects do not disappear or fade significantly over time, and suggest that 
follow-up evaluations and non-monetary rewards may reinforce or 
strengthen effects of a theoretical eco-driving course. Based on im-
provements in driving behavior found for the treatment group, and 
potential spill-overs of effects to the control group, we estimate a po-
tential for fuel savings between a lower bound of 5.2% and an upper 
bound of 9.0% on a yearly basis (for driving in comparable settings). 

Of four driving performance factors, representing eco-driving stra-
tegies, results indicate that improvements in ‘engine and gear’ man-
agement (consisting of automatic gear use and power take-off) may 
contribute most to reductions in fuel consumption, followed by im-
provements in ‘speed and adaptation’ (consisting of cruise control use 
and avoidance of speeding) and ‘idling’ behavior. Better ‘anticipation’ 
(consisting of coasting and braking behavior) is not found to contribute 
to fuel savings, a finding that might be the result of the topography of the 
routes driven. Weather conditions are found to be significant and largely 
as expected, with lower fuel consumption at higher ambient tempera-
tures and higher fuel consumption with increased precipitation. Con-
trolling for weather also makes our finding that effects do not fade 
significantly over time, more robust. 

6.2. Implications 

Reducing emissions from road freight transport is seen as highly 
necessary and urgent, but also very challenging due to large projected 
increases in demand and the high fossil fuel dependency of road freight. 
At the same time, it is expected that large-scale adoption of both low- 

Fig. 4. Monthly averages in total score for treatment group, control group, other drivers of the freight forwarder, and on average for all drivers of the forwarder 
(treatment and control group, and others). 
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and zero-emission technologies and other solutions with considerable 
emission reduction potential (such as connected, automated vehicles, 
platooning, etc.) will take time. Also many other main determinants of 
road freight’s fuel consumption are largely given in the short- to medium 
term, or beyond the control of transport operators and their drivers. 
Inducing more fuel efficient driving behavior, eco-driving, is therefore 
often seen as one of the few veins through which fuel consumption can 
be reduced both significantly and in a shorter term [3]. In addition, eco- 
driving is regarded as a low-cost and scalable approach [13,14,17]. 
However, the effect of eco-driving initiatives tends to fade over time, 
and the challenge seems to be to make improved driving behavior more 
permanent [13,16,26]. 

Through its approach and results, the present research has several 
implications for this latter challenge and future eco-driving initiatives 
and research. Although we acknowledge a number of limitations in the 
next section, our results are promising with regard to the effectiveness of 
combining eco-driving training with active follow-ups and rewards. 
While different settings might moderate results, it is not unlikely that 
significant fuel savings are achievable also at other firms and by other 
drivers, and at relatively low cost. Our research also implies that future 
interventions could benefit from designs where knowledge training is 
followed up with reinforcement mechanisms. Our research further 
provides insights into the importance of different eco-driving strategies, 
which may contribute to increased focus in eco-driving interventions 
and potentially lower the threshold for implementing such initiatives. In 
addition, if spill-overs indeed took place, this strengthens the view that 
eco-driving might be a rather low-hanging fruit. 

Compared to previous literature, a number of findings and obser-
vations are confirmed or supported. Examples include the rapid mate-
rialization of effects (e.g. [17]), the size of effects (falling within the 
5–15% fuel savings range compiled by [19]), the possibility of a 
‘learning curve’ [18,29], considerable variation between drivers 
[18,26,29], the importance of including weather, and direction of effects 
[most notably 16], and possibly the materialization of spill-overs 
(related example in [35]). To a large extent, our results also seem 
consistent with findings on the relative importance of (improvements 
on) different eco-driving factors for fuel consumption [11,17,19,25,29]. 
Different from many previous studies is that effects are not found to fade 
significantly in the longer term. While both feedback and non-monetary 
rewards have been found to be effective in reinforcing effects after eco- 
driving training [16,34,38], effects are usually still expected to fade in 
the longer term (e.g. [29]). 

In addition to contributing to the relatively limited body of literature 
on truck eco-driving, and particularly real-world studies on longer-term 
effects and reward incentives [12,26,27], our research added some new 
elements. For example, we combined real-world conditions with a 
design in which trucks, routes and drivers are relatively fixed. As 
opposed to some laboratory experiments or eco-driving evaluations on 
dedicated testing tracks, real-world examples are scarce, but needed, to 
increase external validity of results. Further, we utilize data from in-/ 
vehicle FMS-devices. Such data are currently often underutilized, but 
have a large potential for detailed future data collection and utilization 
given that FMS-devices have become a ‘standard’ in new trucks and are 
increasing rapidly in number [43]. 

6.3. Limitations, strengths and suggestions for future research 

Despite best efforts, our study revealed a number of challenges. One 
of these challenges was related to potential spill-overs of effects to the 
control group, once treatment group rewards became visible, or after 
control group drivers unintentionally started receiving feedback reports. 
This challenge implies that the control group might not fully reflect what 
would have happened without any eco-driving interventions, and 
indeed, developments in scores from drivers at other departments of the 
freight forwarder suggest that some spill-overs may have taken place. At 
the same time, spill-overs are unlikely to have affected effects for drivers 

actually undergoing eco-driving interventions. These effects could be 
regarded as ‘upper bound potential’ and provide an indication of what 
can be achieved through the interventions in our experiment. 

Further, even though our experiment aims to control for fixed routes, 
drivers, and trucks, the sign of some estimated coefficients is not as 
expected. This is particularly true for improvements on coasting and 
braking, which are generally assumed to improve fuel efficiency. We 
believe this is rather the result of some critical factors not being included 
in the analysis because of data availability issues. Examples are the lack 
of information about dynamic on-board cargo weight and the topog-
raphy and curvature of roads in areas where transports are carried out. 
Even though the selection of routine distribution routes and sample of 
trucks and drivers likely reduces these deficiencies, there will still be 
some day-to-day variations in payload, and occasional variations in 
routes. Our attempt to control for these factors as much as possible also 
put a natural limit to the sample size that could be included, which was 
exemplified by some attrition due to drivers in the control group quitting 
their position. Similarly, drivers could not be compared at the exact 
same time because distribution routes were driven in shifts. Any dif-
ferences between shifts are particularly thought to relate to weather, 
which we controlled for in our analyses. In all, eco-driving experiments 
such as the one described here must balance between the representa-
tiveness of experiments for real-life driving, the ability to control for 
external factors, availability of and access to sufficiently comprehensive 
data covering sufficiently long periods, and sample size. 

The above challenges also point out the critical moment for using 
FMS data for transport analyses, because factory-fitted FMS-APIs do not 
provide access to dynamic vehicle weight information. For information 
on actual payload, access is required also to order system data, but these 
are rarely available and not easily coupled to vehicle data. Ideally, in-
formation on driver behavior, fuel consumption, payload, and GPS data 
should be available at a high and similar frequency, i.e. usually every 
2–3 min or preferably more frequently, or at least event-based. In the 
current study, controls for topography could not be included due to the 
very low (driver-set) frequency of GPS data logging, but this challenge 
could be addressed in future studies. 

Another limitation of our research is that we were unable to consider 
several driver and situational characteristics, which are thought to 
potentially moderate effects. For example, we lacked access to sample- 
specific information on factors such as age, driving experience, 
average mileage, or eco-driving knowledge and attitudes. At the same 
time, the freight forwarder indicated that the study sample was intended 
to have a very homogeneous composition and that it was believed that 
differences between drivers would be small. 

Although our experiment did not explicitly consider potential side- 
effects of eco-driving, e.g. on safety (other than giving feedback post- 
trip, rather than in-vehicle), a few points are worth noting. Both the 
supplier of Linx and an independent other supplier of FMS solutions 
claim that eco-driving improvements in practice also yield reductions on 
maintenance and damage costs for their clients. Anecdotic evidence 
from the freight forwarder also suggests that drivers with good eco- 
driving performance have had reduced maintenance expenses, dam-
ages and other deviations (e.g. vehicle/goods damages or administrative 
breaches). For future research and experiments, it could therefore both 
be interesting and relevant to more explicitly consider eco-driving and 
traffic safety in conjunction. Further, although not explored in detail, 
observations during our analyses suggest that real-world data on fuel 
consumption from in-vehicle FMS-systems may deviate considerably 
from factors or averages often used in research and transport policy 
analyses, and as such have a potential to contribute to better calibrated 
analyses in future. The increasing prevalence of such systems might 
contribute to future studies being able to study driving behavior over 
longer time periods than before, and at larger scale. 

Finally, it is worth mentioning that right before the eco-driving 
course, drivers in the treatment group completed a survey asking them 
to characterize their own performance and prioritization of coasting, 
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speed adaptation, idling, use of cruise control, engine and gear, and 
anticipating behavior. This was done in connection with a Master Thesis 
on short-term effects of the eco-driving course, within the same project 
[44]. Although the sample size was very small, survey results suggested 
that driver perception on some eco-driving factors was closer to per-
formance scores than on other factors, but that overall, drivers over-
estimated their driving performance compared to objective score data 
(e.g. how much they used cruise control or their coasting performance). 
When the same survey was repeated towards the end of May, percep-
tions were more consistent with Linx score data, but overall still an 
overestimation of driving performance. This could suggest that some 
further effectiveness gains may be possible by further closing the gap 
between perceptions and reality (e.g. more frequent or real-time 
feedback). 

6.4. Conclusions 

Through the present research, we demonstrated that eco-driving 
training can give significant fuel savings for truck drivers, and that ef-
fects can be maintained longer than is often assumed, when training is 
combined with active monthly follow-ups and non-monetary rewards. 
We shed light on the importance of different eco-driving strategies, the 
progression of effects over time, and the importance of controlling for 
weather conditions. This is done through a real-world, or naturalistic, 
randomized controlled experiment, which contributes to the existing 
literature in several ways, including its design, controls, and use of 
reinforcement mechanisms after completion of an eco-driving course, 
but also through the way data are used. Our research points to eco- 
driving being a relatively low-hanging fruit for the road freight sector, 
for which emissions reductions are very challenging, especially in the 
short term. Until emission reduction solutions are technologically and 
economically feasible at a large enough scale, eco-driving can be a 
scalable, immediate, and not insignificant part of strategies towards 
(urgent) emissions reductions from the road freight sector. In addition, 
eco-driving interventions can yield beneficial results also from the 
financial perspective of freight operators, which contributes to eco- 
driving acceptance. 
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