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Abstract

In-line quality control is a crucial and increasingly constraining activity, in parti-
cular in high technology manufacturing. In this paper, we study a single metrology
tool assigned to control the production quality of multiple heterogeneous machines.
We introduce, model and study the tradeoff between the quality loss resulting from
the sampling policy, and the quality loss induced by delays in the metrology queue.
An iterative approach is proposed to optimize sampling periods using the solution of
a relaxed problem which assumes full synchronization between production and metro-
logy, and which has been previously formalized and solved. Based on computational
and simulation results, and a prediction model, the paper ends with recommendations
to better manage metrology capacity utilization under various levels of variability.
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1 Introduction

For some time now, both operation managers and researchers have identified the need to
integrate metrology (also called inspection, control or measurement) operations, usually
dictated by quality requirements, to their operational and economical environment (see
Goyal et al. (1993) for a review). For instance, Gilenson et al. (2015) propose to balance
between quality and throughput. Several examples of economic optimization of Statistical
Process Control (SPC) can be found in Sultan and Rahim (1997). Bouslah et al. (2016)
study the aspects of controlling related to preventive maintenance. In all these domains,
the metrology capacity and the queue forming at the metrology tool (any facility or ma-
chine performing inspection operations) are seldom considered. A counterexample may be
found in Tang (1991) that solves a non-linear integer program to determine, among other
variables, the number and location of inspection tools in a transfer line modeled as a queu-
eing network. We will make use of similar ideas in this work, where we aim at modeling
and proposing an approach that takes into account the impact of the queue in metrology
on the risk when production continues while the product to be measured waits in front of
the metrology tool.

The relative lack of interest for quality-inspection capacitated problems may be ex-
plained by the traditionally low cost of and limited space taken by metrology tools. This
state of affairs is quickly changing and various manufacturing sectors increasingly depend
on complex, expensive and large metrology tools to control their process. The most pro-
minent example is certainly in semiconductor manufacturing, where the seemingly never-
ending race for smaller pitch in technology challenges the ability of quality control to follow
up. The frequency and the sensibility of controlling production processes, and the cost of
equipment have turned metrology into a high utilization area, and managers are struggling
to achieve what they see as the required level of control (see Colledani and Tolio (2011),
Bettayeb et al. (2012), Nduhura-Munga et al. (2012), Lee et al. (2003), Shanoun et al.
(2011) and the review in Nduhura-Munga et al. (2013)).

In contrast, the literature on management of congestion on production machines is
abundant. Several researchers have proposed to control the level of utilization of production
systems in order to coordinate between lead times, release times and service levels. For
example, Hendry et al. (1998) and Kingsman and Hendry (2002) show how Work Load
Control (WLC) planning systems are beneficial to lead time and thus to service level in
make-to-order plants. Zäpfel and Missbauer (1993) discuss the pertinence of aggregate
models to determine the parameters of a WLC planning system. In another vein, Orcun
et al. (2009) tackle the non linear dependence between workload and lead times by using
clearing functions, and provide a release schedule designed to reach a target service level.
Again, to the best of our knowledge, while widely accepted for production, these concepts
have not been applied to quality control. The reason for this may lie in the fact that
postponing the arrival time of a product to the metrology tool usually affects the level
of quality control. But this is only true under the premise of a low utilization and of
a reasonably low waiting time at the metrology tool. As pointed out in Dauzere-Péres
et al. (2010) and Rodriguez-Verjan et al. (2013), products that wait too long in the queue
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for inspection may lose their relevance even under sole quality considerations when new
products become available, that are more representative of the current machine status.
Closely related is the work of Nemoto et al. (2000) that evaluate the benefits of shorter
cycle times to quality due to a shorter feedback loop.

There is ample evidence that variability is one of the main reasons for a production
system to perform considerably worse than expected in terms of throughput and flow
time (and consequently service level). The behavior of any service or queuing system is
determined by the arrival and service processes. In manufacturing systems, it is customary
to characterize the station of interest by the two first moments of the inter-arrival time
(inter-departure time of the feeding stations) and of the processing time. And so, reducing
the line variability is usually achieved by either smoothing the Work-In-Process (WIP) flow,
or tackling the process time variability. Because it is in most cases stable, and dictated
by technological requirements, the process time on production machines offers a poorer
potential in that regard, and most of the managers’ efforts naturally target the WIP flow
by means of scheduling, dispatching, maintenance scheduling, etc. This is only true for
machinery. When human labor is involved, process times may vary widely (especially since
breaks are involved). In that regard, note that quality control (metrology) is sometimes one
of the last operations in plants that can still be found operated by workers. Because of its
tremendous impact on production system performances, numerous researchers have studied
ways to model and predict variability (see among others Colledani et al. (2010), Manitz
and Tempelmeier (2012), Gershwin (1993), Li and Meerkov (2000), Tan (1999), Assaf
et al. (2014) He et al. (2007)). Others like Kalir and Sarin (2009) or Assaf et al. (2014)
propose ways to mitigate it, the first paper by coordinating the pace of the machines in
the production line, and the second one by using the exceeding capacity on non-bottleneck
operations to perform more setups, thus breaking large WIP packets into smaller ones.
But again, to the best of our knowledge, metrology has drawn little attention so far in that
respect, although there is a major difference between production and metrology operations,
i.e. metrology operations are usually not mandatory.

In a former publication (Dauzère-Pérès et al. (2016a)), we formalize a problem for a ma-
nufacturing cell where a unique metrology tool controls several heterogeneous production
machines. An approach is proposed to determine the sampling periods (the number of pro-
ducts produced between two consecutive inspections) for the different production machines
such as to minimize the expected product scrap or rework rate. Production machines are
characterized by their failure rate, their throughput rate, and their consumption of the
metrology capacity. The resulting problem can be formulated as an optimization problem
where the goal is to minimize the expected product loss happening between the machine
failure and its detection, subject to the constraint of the metrology capacity, the decision
variables being the sampling periods of production machines. The problem was refor-
mulated as a Multiple Choice Knapsack Problem (MCKP), for which we proposed several
heuristics based on the work of Sinha and Zoltners (1979) and Pisinger (1995). In Dauzère-
Pérès et al. (2016b), we generalize the problem by considering multiple identical metrology
tools. In the new problem, decision variables include both the assignment of production
machines to metrology tools, and the sampling periods.
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In this former body of work, the assumption was made of an immediate answer from
the metrology tool, and that production can be synchronized with metrology, and thus
that metrology capacity can be fully exploited. More often than not, this is not the case.
The variability in the availability of production machines, the fact that production times
may differ from one operation to another, and that measurement times are variable make
the coordination between arrivals to the metrology operation almost impossible.

Moreover, it is not reasonable to assume that production machines can be stopped or
slowed down, and thus production capacity lost, to ensure synchronization of the arrival of
products to the metrology tool. As a result, a queue is forming in front of the metrology
tool that either impacts production capacity if the production machine waits for the answer
from metrology before resuming its activity or impacts quality if, like it is usually the case,
production continues in parallel with the product to be measured waiting in front of or
being processed on the metrology tool.

In an effort to draw applicable conclusions, in this work, we extend former results to
incorporate the quality loss due to the wait and measurement duration at the metrology
tool.

In the next section, we formalize the problem at hand. In Section 3, a solution approach
is proposed whose performance is then evaluated in Section 4. Finally, in Section 5, we
provide managerial insights to evaluate the pertinence of certain level of metrology tool
utilization for various industrial scenarios.

2 Mathematical modeling

The general problem and the notations are introduced in Section 2.1, and the contributions
in Dauzère-Pérès et al. (2016a) relevant to the present paper are recalled in Section 2.2.
Then, our problem with delays in the metrology queue is modeled in Section 2.3.

2.1 Problem description

A group of unreliable production machines send their products to be measured on a uni-
que metrology tool. Each production machine follows its own sampling policy, i.e. each
production machine has a sampling period, which is the number of products produced on
the machine between two consecutive measures.

The following notations are used in the paper:

• R: Number of production machines,

• TPr: Throughput rate of production machine r,

• TMr: Throughput rate of the metrology tool when inspecting products from r,

• pr: Failure probability (Bernoulli experiment) of production machine r each time it
performs a product and if the previous product was good,
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• SPr: Sampling period of production machine r,

• λr = TPr

SPr
: Inspection rate of machine r, i.e. the rate at which lots are sent to the

metrology tool,

• SPmax: Upper limit for SPr over which the risk on production quality is deemed
unacceptable by quality managers,

• S = {SPr; r = 1, · · · , R}: Set of sampling periods.

Note that, if machine r fails, then all following products processed on r are assumed to
be defective, i.e. the conditional probability that a product is defective if the previous pro-
duct is defective is equal to 1. When the product sent to metrology is found defective, the
production machine is stopped and repaired after which normal production and inspection
cycles resume. Although during repair, no products are sent by the production machine
to metrology, we assume these events to be rare enough so that they do not require to be
modeled in the metrology utilization.

An alternative approach in practice is to recompute the sampling periods for the re-
maining machines while one (ore more) machine is being repaired.

We assume the production of a machine in good condition to be perfect, while the
production of a defective machine is fully reworked or scrapped.

This assumption is realistic in some industrial settings, such as semiconductor manufac-
turing, for quality constraints. However, it is possible to extend the analysis in this paper
by using a fixed ratio of products that are reworked or scrapped. We also assume there
is no difference between the value of products on the different machines. This assumption
can be relaxed in our analysis by using a different weight for each production machine asso-
ciated to the average values of the products performed on the machine. The objective is to
minimize the rate at which defective products are produced over all production machines.

The sampling periods SPr, ∀ r = 1, . . . , R, are the problem decision variables. They
determine both the throughput of bad products from production machine r, and its share
in the consumption of the metrology tool capacity, which is denoted by gr(SPr) where
gr(SPr) = λr

TMr
.

2.2 Problem with synchronization of production machines

A sampling period on production machine r is a series of SPr Bernoulli experiments. A
failure occurring during the production of the first product in the sampling period results in
SPr bad products (the number of products until the next inspection takes place). Similarly,
a failure occurring during the production of the second product in the sampling period
results in SPr − 1 products being reworked or scrapped, and so on. A failure occurring
immediately prior an inspection will yield only one bad product. The expected number of
bad products from machine r in a sampling period is therefore given by:

SPrpr + (SPr − 1)(1− pr)pr + · · ·+ 1(1− pr)SPr−1pr = pr

SPr−1∑
i=0

(SPr − i)(1− pr)i (1)
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Because λr is the arrival rate of products from machine r to the metrology tool, the
expected rate of bad products on machine r with sampling period SPr, called Product
Loss, is equal to:

PLr(SPr) = λr · pr ·
SPr−1∑
i=0

(SPr − i)(1− pr)i (2)

Note that, in (2), PLr only depends on the sampling period SPr of machine r, and
thus can be computed a priori for each possible value of SPr. In Section 2.3, when delays
in the metrology queue are considered, we show that the product loss related to machine
r depends on the sampling periods of all machines, i.e. of S.

It is possible to formalize the problem as the Integer Linear Program (ILP) below by
introducing a binary variable usr which is equal to 1 if the selected sampling period for
machine r is equal to s, and 0 otherwise.

min
R∑
r=1

SPmax∑
s=1

PLr(s)u
s
r (3)

s.t.
R∑
r=1

SPmax∑
s=1

gr(s)u
s
r ≤ 1 (4)

SPmax∑
s=1

usr = 1, r = 1, . . . , R (5)

usr ∈ {0, 1}, r = 1, . . . , R; s = 1, . . . , SPmax (6)

Constraint (4) ensures that the metrology capacity is satisfied, and Constraints (5) that
one and only one sampling period s is selected for each machine r.

To solve the ILP above efficiently, Heuristic H2/3 in Dauzère-Pérès et al. (2016a) is
proposed, which will be used within the solution approach proposed in Section 3.

2.3 Problem with delays in metrology queue

Differently than in Dauzère-Pérès et al. (2016a), we now consider that a queue is forming
at the metrology tool that delays its response (see Figure 1). As defined earlier, the arrival
rate of products from machine r to the metrology tool is λr, and so the total arrival rate
to the metrology tool is:

λ(S) ,
R∑
r=1

λr

Consequently, the expected proportion of the production waiting to be checked at
the metrology tool coming from machine r is λr/λ(S). The expected service rate at the
metrology tool is the weighted harmonic mean of rates TMr for the different production
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Figure 1: Sampling periods and metrology capacity

machines:

µ(S) ,

R∑
r=1

λr

R∑
r=1

λr
TMr

(7)

Let us assume that, due to the lack of synchronization between production machines
but also to the workshop inherent variability, both the inter-arrival time to the metrology
tool and the service time on the metrology tool are sampled from general distributions.
With the expected traffic intensity, which measures the congestion of the system, defined
as

ρ(S) ,
λ(S)

µ(S)
=

R∑
r=1

λr
TMr

,

the expected sojourn time of lots sent to metrology is given by Kingman’s approximation
(see Kingman (1962)) for G/G/1 queues:

W (S) ≈ 1

µ(S)

[(
ρ(S)

1− ρ(S)

)(
c2a + c2s

2

)
+ 1

]
(8)

where ca and cs are the coefficients of variation of the inter-arrival time and of the service
time, respectively.

The number of products produced on machine r between two inspections is equal to SPr
when there is no machine failure, i.e. with probability (1−pr)SPr . However, differently from
the analysis in Section 2.2, a failure occurring when processing any of the SPr products
also results in a number of bad products dW (S) · TPre produced during the time W (S)
spent in the queue by the product sent to be measured.
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An inspection period begins with machine r performing properly (either from a negative
inspection or the end of a repair) and ends either with the next inspection or by a machine
stoppage. The inspection period duration is SPr/TPr when production is good, i.e. with
probability (1−pr)SPr . The inspection period duration is (SPr +dW (S) ·TPre)/TPr when
a failure occurs, i.e. with probability 1 − (1 − pr)

SPr . The expected inspection period
duration is therefore:

(1− pr)SPr · SPr
TPr

+ (1− (1− pr)SPr) · SPr + dW (S) · TPre
TPr

=
SPr + (1− (1− pr)SPr) · dW (S) · TPre

TPr
(9)

And the average arrival rate of production from machine r to the metrology until r is
stopped because of a failure is given by:

TPr
SPr + (1− (1− pr)SPr) · dW (S) · TPre

(10)

Following which, the overall expected rate of defective products, i.e. the product
loss, of machine r under an inspection policy using the set of sampling periods S =
{SP1, . . . , SPR}, is the average arrival rate of production from machine r until stoppage
(10) multiplied by the sum of the expected product loss between two inspections (1) and
the expected product loss during the inspection sojourn time (1−(1−pr)SPr)·dW (S)·TPre,
i.e.:

PLr(S) =

TPr ·
[
pr ·

SPr−1∑
i=0

(SPr − i)(1− pr)i + (1− (1− pr)SPr) · dW (S) · TPre
]

SPr + (1− (1− pr)SPr) · dW (S) · TPre
(11)

The total expected product loss from a set of sampling periods S is given by:

PL(S) =
R∑
r=1

PLr(S) (12)

Note that, because PLr depends on the set of all sampling periods and not only on the
sampling period of machine r, PL(S) is not separable by production machine.

The optimization problem (P) can be written as follows:

min PL(S)
s.t.
R∑
r=1

gr(SPr) < 1

SPr ∈ {1, . . . , SPmax}, r = 1, . . . , R
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Note that without variability, i.e. if c2a + c2s = 0, then W (S) = 1
µ(S) with (8). However,

in this special, extreme case, using (8) is no longer relevant since products of different
machines are no longer interconnected through a common queue, making an approximation
for the sojourn time unnecessary. Hence, the sojourn time of each product is separable
and is equal to 1

TMr
, which should replace W (S) in (11). Even in this case, (12) is larger

than (2).
As already mentioned, due to the loss associated with products produced during the

additional sojourn time in the inspection queue of products to be measured, the target
function in the optimization problem (P) is not separable per production machine, and
Heuristic H2/3 in Dauzère-Pérès et al. (2016a) is not directly applicable, i.e. it is not
possible to write the problem as the ILP presented in Section 2.2. However, in the next
section, we propose a solution approach based on Heuristic H2/3 to solve (P).

3 Solution approach

In a variable environment where no synchronization is possible between the metrology
availability and the arrival of products to be measured, the expression of PL(S) shows that
there is a tradeoff between the benefits associated with decreasing the sampling periods
of the different production machines and the product loss due to the resulting waiting
at the metrology tool. As an example of such a tradeoff, Figure 2 presents, for a given
set of parameters to be introduced in Section 4, the evolution of the optimal value of the
product loss PL(S) as a function of the allowed metrology utilization. For each level of
metrology utilization, a set of optimal sampling periods was determined, and the resulting
product loss calculated. Using the metrology tool to its full capacity leads to an infinite
queue, and thus to losing all products on a machine when there is a failure. Reducing the
metrology tool utilization by increasing the sampling periods helps to get faster answers
from the metrology tool, but potentially at the expense of a larger product loss because less
products are inspected. This tradeoff is an integral part of the cost of quality of processes,
that includes prevention costs, appraisal costs and internal and external failure costs.

Let us simplify the problem by hierarchically considering the questions of the right
level of utilization for the metrology tool and of the sampling period for each production
machine. Our approach iteratively uses the solution of a modified version of the Integer
Linear Program (ILP) recalled in Section 2.2 and solved in Dauzère-Pérès et al. (2016a).
This ILP, denoted IP(c,W ), where c is the capacity limitation and W is a given queue
sojourn time, is written below.

min
R∑
r=1

SPmax∑
s=1

PLr(s,W )usr

s.t.
R∑
r=1

SPmax∑
s=1

gr(s)u
s
r ≤ c

9



0

1000

2000

3000

4000

5000

6000

7000

8000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Metrology Utilization

Product Loss

Figure 2: Product Loss as a function of metrology utilization, R = 10, pmax = 0.05,
TPmin = 900, RTP/TMr = 10, v = 0.8.

SPmax∑
s=1

usr = 1, r = 1, . . . , R

usr ∈ {0, 1}, r = 1, . . . , R; s = 1, . . . , SPmax

where

PLr(s,W ) =

TPr ·
[
pr ·

s−1∑
i=0

(s− i)(1− pr)i + (1− (1− pr)s) · dW · TPre
]

s+ (1− (1− pr)s) · dW · TPre
. (13)

PLr(s,W ) in (13) corresponds to PLr(S) in (11), where W (S) is fixed to W and s is
chosen as the sampling rate SPr of machine r. Note that SPr = s if usr = 1 in IP(c,W ).

The differences between the problem in Dauzère-Pérès et al. (2016a) and IP(c,W ) are
the capacity (1 vs. c) and (13) which determines the product loss for production machine
r under an assumption of delays in metrology independent from S.

The objective function in IP(c,W ) is separable when W is given, since PLr(s,W )
can be precomputed for each s and each r, which allows a good solution to be found in
a competitive time using Heuristic H2/3 in Dauzère-Pérès et al. (2016a). The Product
Balancing Heuristic (PLB) presented in Algorithm 1 iteratively solves IP(c,W ), starting
with a capacity of 1, until PL(S) no longer decreases. In each iteration k, a first set Sk of
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sampling periods is found in Step 4 assuming no waiting time at the metrology tool, i.e.
W = 0. The algorithm then iteratively looks for better values of Sk, by updating W in
Step 11 each time a new set S is determined in Step 10, and up to ten iterations. In our
experiments, much fewer iterations are usually needed for the product loss to converge or
to cycle. This is why Steps 15 and 16 are introduced. The product loss is computed in Step
12 and the best set of sampling periods Sk at iteration k is updated in Step 14. Finally,
the capacity is set in Step 19 to a value slightly smaller than the utilization resulting from
Sk, in order to trigger a new solution in the next iteration.

Algorithm 1 Product Loss Balancing (PLB) Heuristic

1: Set c0 = 1, k = 0 (iteration number), and ε to a very small value
2: repeat
3: k ← k + 1
4: Determine Sk by solving IP(ck, 0) using H2/3 from Dauzère-Pérès et al. (2016a)
5: W = W (Sk) (using (8))
6: Calculate PL(Sk) (using (12))
7: i = 0
8: repeat
9: i← i+ 1

10: Determine S by solving IP(ck,W ) using H2/3 from Dauzère-Pérès et al. (2016a)
11: W = W (S) (using (8))
12: Calculate PL(S) (using (12))
13: if PL(S) < PL(Sk) then
14: Sk ← S
15: else if PL(S) = PL(Sk) then
16: i = 10
17: end if
18: until i = 10
19: ck+1 =

∑R
r=1 g(SP k

r )− ε where Sk = {SP k
1 , . . . , SP

k
R}

20: until PL(Sk) > PL(Sk−1)
21: Return Sk−1,

∑R
r=1 g(SP k−1

r ), and PL(Sk−1)

The value of ε is chosen small enough so that, if there is more than one solution between
the solutions obtained with ck−1 and ck, it does not offer any meaningful difference with
either of them. In the numerical experiments of the following section, ε = 0.001.

4 Computational analysis

Section 4.1 presents how the experiments were designed. Section 4.2 shows how a simulation
was conducted to study the variability related to the lack of synchronization between
production machines in a deterministic setting. Finally, the numerical results are presented
and discussed in Section 4.3.
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4.1 Structure of the experiments

The behavior of the algorithm presented in Section 3 is studied using a rather large set
of scenarios to generate test instances that correspond to replications of the scenarios.
Each scenario is defined by a given range for each of the problem parameters, and 10
instances are created for each scenario by randomly generating the parameters within the
specified ranges. The number of production machines R is chosen in the set {10, 20, 40}.
We did not consider scenarios with too few machines because the number of production
machines is in practice often quite large (here are some examples in a semiconductor
manufacturing facility: 1 metrology tool for 10 production machines, 3 metrology tools for
about 80 production machines and 2 metrology tools for about 40 production machines).
The parameters for each of the production machines are determined as follows. The failure
probabilities pr are generated from a uniform distribution U [pmin, pmax], where pmax is
chosen in the set {0.05, 0.2} and pmin is kept constant (pmin = 0.01). The throughput rate
TPr is generated from a distribution U [TPmin, TPmax], where TPmax = 1, 000 and TPmin
is chosen in the set {100, 900}. The measurement rate TMr is determined using the ratio
R·TP
TMr

chosen from the set {5, 10, 30}, where TP is the average throughput rate for the
considered scenario.

The variability factor is more complex to handle in the framework of this experimenta-
tion since it is affected by the choice of sampling periods, and by the problem parameters.
Let us denote by v2 the variability factor in Kingman’s approximation (Kingman (1962))(
v2 = c2a+c

2
s

2

)
. In Hopp and Spearman (2011), the coefficient of variation (and incidentally

v) is classified as “Low Variability” if it is smaller than 0.75, “Medium Variability” if it is
between 0.75 and 1.33, and “High Variability” if it is larger than 1.33.

A priori, we wanted to cover a wide range of variability factors, although some of them
are not realistic. To overcome this problem, v was first chosen from the set {0, 0.05,
0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 2}. As seen above, for each scenario, 10
instances were randomly generated, each with different values of pr and TPr. This led to
504 scenarios characterized by different sets of parameters, and a total of 5,040 different
instances. We performed the full set of experiments using heuristic PLB to determine the
set of sampling periods for each instance, knowing that some scenarios are characterized
by a variability factor that is too small to be feasible. We then studied the feasibility of
each scenario based on the resulting sojourn time computed using (8) and on the result of
a simulation described in the following section.

4.2 Simulation of sojourn times in the deterministic case

For each of the 5,040 instances, we estimated a lower bound of the sojourn time by si-
mulating a deterministic arrival process to the metrology tool from the relevant number
of production machines using the set of sampling periods S determined by heuristic PLB,
followed by a deterministic service (measurement) process, both with the scenario cha-
racteristics. The simulation is performed until 100,000 products have been sent to the
metrology tool from one production machine.
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This deterministic simulation provides an average sojourn time which represents a mi-
nimum in terms of variability. Because, in a deterministic framework, the synchronization
between departures from production machines impacts the results, 50 replications were
generated, each with different randomly generated machine starting points in time, and
the sojourn time was averaged over these replications. An instance for which the estimated
sojourn time resulting from (8) is lower than the average sojourn time of the simulation is
deemed unrealistic. For our parameters, the results showed a very low sensitivity to the sy-
nchronization (the results are very similar between the 50 simulations for a given instance),
but showed some dependence on the scenario characteristics, mainly on the number of ma-
chines. Table 1 shows, for each combination of number of machines and variability factor,
the proportion of cases in which the sojourn time estimated using (8) is larger than the
sojourn time estimated with the simulation, in both cases with the set of sampling periods
S determined using heuristic PLB.

Table 1: Lower bound for variability factor v as a function of the number of production
machines R

R
v 10 20 40
0 0% 0% 0%

0.05 0 % 0 % 0 %
0.1 0 % 0 % 0 %
0.2 0 % 0 % 0 %
0.3 0 % 0 % 0 %
0.4 36.7 % 0 % 0 %
0.5 99.2 % 95.8 % 80 %
0.6 99.2 % 96.7 % 92.5 %
0.8 100 % 99.2 % 95 %
1 100 % 100 % 95.8 %

1.2 100 % 100 % 100 %
1.4 100 % 100 % 100 %
1.6 100 % 100 % 100 %
2 100 % 100 % 100 %

Adopting a cutoff point of 95%, we conclude that only scenarios with a coefficient of
variability v ≥ 0.5 for 10 and 20 machines, and with v ≥ 0.8 for scenarios with 40 machi-
nes, i.e. 2,640 instances in total, are considered realistic. The remainder of our analysis is
based on these instances exclusively.

13



4.3 Numerical results

To first address the behavior of the solution provided by our approach, each instance is
associated to the median of the metrology capacity utilization and product loss in the
first solution, which strives to fill metrology capacity and disregards any delay in the
result, and in the solution provided by the PLB heuristic. Because the product loss rises
sometimes steeply as metrology utilization gets closer to 1, small differences in metrology
utilization sometimes lead to large differences in product loss, which is why we preferred
to use the median of the performance values of interest instead of their averages. We then
calculated the ratio of utilization (utilization optimized using PLB vs. initial utilization
with metrology capacity set to 1) and the resulting reduction in product loss (ratio of
PL(S) optimized using PLB vs. initial PL(S) with metrology capacity set to 1). In
theory, filling the metrology capacity should result in an infinite queue length, and therefore
a product loss equal to

∑R
r=1 TPr. However, in our case, because the metrology utilization

is consumed in discrete quanta, the optimization results in a variety of product loss values
depending on how close the solution is to full metrology utilization, and on the variability
factor. Figure 3 plots the product loss reduction obtained by the PLB heuristic versus the
metrology utilization ratio. We can observe a very broad range of responses from the PLB
heuristic.

In some instances, the reduction in product loss is limited (as low as 10%) while the
metrology capacity stays highly utilized (90% of the original utilization). In other extreme
cases, most of the product loss is created by the delay in metrology and reducing the
metrology utilization allows for a reduction of most of the product loss (up to about 80%
of the original product loss). Note also that the smallest utilization ratios (larger reduction
in utilization) are just above 53%, which is quite low in regular industrial settings, and
that there is no case where fully utilizing the metrology seems to make sense.

The way a specific scenario responds to a reduction in metrology utilization is related
to its characteristics in general, but we know for a fact that it depends on the variabi-
lity. Figure 4 plots the metrology utilization ratio as a function of the variability factor,
which prompts two main observations. First, the ratio decreases, which means that, unsur-
prisingly, the metrology capacity utilization should be lower as the variability increases.
Second, note that the range of metrology utilization ratios for a specific variability factor
is large enough to conclude that variability alone cannot explain a specific result.

Having established how our approach behaves in general, in the next section, we propose
to draw applicable practical guidelines from our computational results.

5 Managerial Recommendations

Is there enough information in the characteristics of a set of production machines controlled
by a single metrology tool to correctly set its capacity utilization at an adequate level in
order to minimize the product loss? This is the question we address in this section based
on our experimental results. To do so, we defined and used a prediction model, namely a
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regression tree, for the metrology utilization. The following analysis was implemented in
R 3.4.3. The scenario characteristics, namely the machine reliability (pmax), production

rate (TPmin), measurement rate relative to the production rate (R·TP
TMr

), and the variability
factor (v) were defined as potential predictors. The data are composed of 2,640 tuples, one
for each instance. Each tuple is composed by the instance parameters and the metrology
utilization giving the best solution (smallest PL) with PLB.

To properly build and test a regression tree, the following procedure was performed.
The tuples were first randomly shuffled, then randomly segregated into a training set (70%
of the tuples) and a test set (the remaining 30% of tuples). A regression tree model was
trained on the training set. Then, the quality of the model prediction was evaluated on
the test set, based on the explained variance.

We applied this procedure 20 times, among which the average and minimum of the
explained variance were 90.1% and 87.3%, respectively. In all trees, the only predictors
picked by the algorithm are the coefficient of variation and the number of machines. The
split nodes reveal that the variability factor and the number of machines are always the two
parameters yielding the largest improvement, systematically about one order of magnitude
above any other potential predictor.

The relative contribution of the two predictors is not equivalent and the coefficient
of variability is systematically twice as important as the number of machines (67% vs.
33% respectively). It also appears that the resulting trees are up to four levels deep and
share the same basic structure (splitting conditions) of their upper levels. Only the final
splits are sometimes slightly different. This allows us to postulate that, given the number
of machines served by the metrology tool and the variability factor of such a system, it
should be possible to set the level of utilization of the metrology tool to minimize the risk.

Because the model proved mostly insensitive to the random splits of the training and
test sets, and in order to derive simple recommendations for practitioners, we trained the
regression tree model with the totality of the data, requiring a maximum depth of 3. The
model itself is presented in Figure 5. In each leaf, the main characteristics of the sub-
population it represents are shown, namely the average optimal metrology utilization and
its size relative to all the tuples. Because of the limitation on the tree depth, the explained
variance is slightly lower at 85.2%.

These results allow us to provide simple recommendations to managers with a reaso-
nable level of confidence. It is especially interesting that the machine reliability, which
is typically difficult to assess in most situations, does not appear to contribute to the
characterization of optimal solutions.

The number of production machines feeding the metrology tool is an obvious metric.
The managing team is therefore left with the task of evaluating the variability coefficient
by measuring the coefficient of variation of the inter-arrival time to the metrology tool, and
of the measurement times. The regression tree shows the average value for the utilization
of each leaf, but without range of values in the leaf population. This alone does not allow
to draw applicable guidelines. In order to propose meaningful ranges of utilization, we
built 95% confidence intervals in each leaf. Without assuming any prior distribution for
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Figure 5: Prediction tree for metrology utilization

the results, the 2.5% and 97.5% percentiles were calculated for the utilization in each leaf.
We are now able to present guidelines for managers in Table 2. Each leaf in the tree is
presented as a condition rule on the two sole predictors (variability factor and number
of machines), and the recommended range of metrology utilization, corresponding to the
aforementioned percentiles, is provided.

Table 2: Recommended metrology capacity utilization

Rule 1 2 3 4 5 6 7 8
Variability factor > 1.8 1.1− 1.8 > 1.1 > 1.1 0.7− 1.1 < 0.7 0.9− 1.1 < 0.9
Number of machines < 15 < 15 15− 30 > 30 < 15 < 15 > 15 > 15
Utilization range 51%− 58% 58%− 69% 60%− 75% 68%− 81% 68%− 77% 77%− 84% 74%− 84% 79%− 88%

Table 2 prompts a few observations. Unsurprisingly, for a given number of machines,
the recommended metrology capacity utilization decreases with the variability factor. For
example, rules 2 and 5 which share the same range of number of machines (< 15) show how
a higher variability factor (between 1.1 and 1.8 for rule 2) results in a lower recommended
metrology utilization. However, it is important to keep in mind that an inbound flow of
products with low variability normally requires all production machines to produce at a
similar rate with little variability. Also, the measurement times themselves must be similar
enough and the metrology tool needs to be reliable.

The recommended capacity utilization also increases with the number of production
machines. The analysis of sojourn times presented in Section 4.2 shows how the number of
production machines impacts the variability of the inter-arrival time to the metrology tool
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(recall that the inter-departure time from each production machine r is deterministic).
But the increase of the number of production machines cannot be the reason for the
increase of the recommended capacity utilization, since the variability is fully contained
in parameter v in our formulation. Another possibility is that, with more production
machines requiring service from the metrology tool, our algorithm naturally assigns larger
sampling periods for which the metrology capacity is consumed in smaller ratios, making
it easier for the algorithm to reach a better solution to problem (P). However, the levels of
stress on the metrology tool are maintained comparable for different number of machines
by using the ratio R·TP

TMr
to determine TMr, and the sampling periods resulting from our

experiments are indeed very close, with averages of 33.8, 32.7 and 34.1 for 10, 20 and
40 machines, respectively. We found that the reason for the positive impact of a larger
number of machines on the system lies in the added flexibility offered to the algorithm,
which allows for a larger range of possible assignments of sampling periods SPr for each
scenario. Indeed, while on the average the values of the sampling periods SPr are similar
for different number of machines, the standard deviation of the sampling periods for each
scenario is fairly different, with average values of 23.2, 29.4 and 32.9 for 10, 20 and 40
machines, respectively.

For the most extreme combinations of R and v, the recommended metrology capacity
utilization drops significantly, with extreme values between 51% and 58%.

This may come as a surprise as low levels of capacity utilization, in particular for human
operators, are usually difficult to accept. This is not to say that a metrology tool that is
idle about half of the time is to be systematically ignored, but managers may well need to
acknowledge that, in some cases, this is actually the operational mode that minimizes loss
on production quality.

We propose to use these recommendations as follows in industrial settings:

• Measure the production machine characteristics, failure rates, production rates, etc.

• Observe the combined interarrival process to the metrology tool, taking into accounts
all disturbances, and calculate its coefficient of variation ca,

• Observe the mixed service time at the metrology tool taking into accounts all distur-
bances, and calculate its coefficient of variation cs,

• Calculate the overall variability factor v =
√

c2a+c
2
s

2
,

• Estimate the metrology tool capacity utilization,

• Check if, based on the number of production machines R and the variability factor
v, the metrology tool capacity utilization in use is reasonable according to Table 2,

• Scrutinize the workshop and consider adjusting the metrology tool capacity utiliza-
tion if it looks inadequate.
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Let us recall the industrial case presented in Dauzère-Pérès et al. (2016a), characterized
by 34 production machines. In this example, the recommendations would be the following:
If the variability factor v is lower than 0.9, then a metrology tool capacity utilization
between 79% and 88% can be safely reached. Any figure over that range could mean an
increased quality loss due to the products waiting in the metrology queue. Below it, the
metrology tool is probably under-utilized, and tighter quality control could be achieved.
For 0.9 < v < 1.1, a lower level of utilization is advised (74%− 84%) while, for v > 1.1 the
right metrology tool capacity utilization should be between 68% and 81%.

Finally, note that although we are able to recommend certain levels of metrology tool
utilization, this alone is in no way enough to ensure an optimal operation of the inspection
process. The metrology utilization is a direct result of the sampling periods, which means
that a seemingly adequate level of utilization can hide a set of inadequate sampling rates,
resulting in a product loss that is not optimal. The opposite, however, is not true, and
here lies the interest of our recommendations: What Table 2 does provide is a quick and
simple way for the practitioner to determine if a metrology tool has a capacity utilization
that is “wrong” and would impact production quality, regardless of the sampling periods.
In order to actually reach an optimal operational mode, a careful determination of the
sampling periods is still required, which can be obtained by using Heuristic PLB proposed
in Section 3.

6 Conclusion

In this paper, we studied the impact of variability when managing metrology capacity
with the goal of proposing guidelines to managers. After modeling how variability is
increasing the loss on production yield, an approach is presented to optimize sampling
periods and metrology capacity utilization so as to minimize product loss. This approach
uses the best algorithm proposed in Dauzère-Pérès et al. (2016a) for a given metrology
capacity. Extensive computational experiments were conducted to analyze the impact of
various key characteristics of the problem, and a prediction model was used to analyze our
computational results and define which parameters are the most important. We were then
able to derive managerial recommendations for metrology capacity utilization depending
on two parameters: The variability factor and the number of production machines.

We hope that the insights in this paper will help managers to better understand the
interest of formalizing the impact of variability on metrology capacity. Metrology being
a mandatory operation in modern high-tech manufacturing systems, defining the right
metrology capacity to assign to production machines is thus an important problem. We
also believe that Table 2 should be helpful for practitioners to define the right metrology
capacity utilization to use in approaches optimizing sampling periods such as the ones
in Bettayeb et al. (2012), Nduhura-Munga et al. (2015), Rodriguez-Verjan et al. (2015)
and Dauzère-Pérès et al. (2016a). This should lead to the definition of more complex
optimization models where the metrology capacity becomes a decision variable. Solving
the resulting models will probably require dedicated solution approaches to be developed.
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