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Abstract

We develop a model of oligopolistic competition under imperfect monitoring
and dynamic observable demand. Efficient symmetric equilibria feature dis-
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evidence for the theoretical predictions of our model in historical Organization
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Bayesian vector autoregressive model of the global oil market. The evidence
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1 Introduction

The origin and propagation of shocks to the price of crude oil and on to the
wider economy has been a subject of long-standing interest and lively debate
(Hamilton 1985, Kilian 2009, Baumeister and Hamilton 2019a). To develop
empirical models of the global oil market an assumption has to be made,
among others, on the market behavior of oil producers in the Organization
of Petroleum Exporting Countries (OPEC). Members of OPEC are endowed
with considerable market power, strive actively to increase their profits by
coordinating output restraint, and face no legal constraints on doing so. Yet
empirical evidence suggests output coordination has been only partially suc-
cessful and that OPEC’s conduct varies considerably over time.1 In this paper
we study the implication of strategic behavior in an infinitely repeated game of
oligopolistic quantity competition in which players (OPEC members) coordi-
nate on a symmetric profit-maximizing public equilibrium in an environment
with variable current- and future expected demand, capacity constraints to
output and imperfect monitoring. The model predicts that under symmetric
efficient equilibria supply correspondences are subject to regime-switching and
that observed behavior may potentially deviate persistently from the average.
We then provide evidence of such behavior in the data and show that empiri-
cally accounting for regime-switching overturns the conclusion that OPEC is
passive with respect to price developments.

The conventional approach in the empirical macroeconomic literature is
to assume that global oil supply is well-approximated by a stationary, linear
process, e.g. Kilian (2009) and Baumeister and Hamilton (2019a). While our
model of dynamic quantity competition does admit such behavior, we show
that optimal symmetric equilibria imply price-quantity relationships that are
non-linear along two dimensions.

First, OPEC’s aggregate production alternates between a reward- and pun-
ishment phases. In the reward phase output is restrained and prices are raised
relative to the static Nash equilibrium benchmark. Conversely, in the punish-
ment phase output is elevated and prices are lower than the static benchmark.
Optimal equilibria are generally characterized by persistent and disciplined

1For example, concluding their review of OPEC’s output policies and past modeling
efforts, Fattouh and Mahadeva (2013) write that “[the] evolution of OPEC behavior indicates
that OPEC’s conduct is not constant. [...] This also explains the failure of empirical studies
to reach more concrete conclusions: Although some [models] may fit the data quite well
in specific time periods, they fail miserably in [others]. Hence, this review emphasizes the
importance of relying on dynamic models that allow for changes in OPEC behavior.” See
also the concluding remarks in Griffin (1985).
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reward phases that are disrupted by rare but severe output wars. Switches be-
tween reward- and punishment phases are manifested empirically by pro- and
countercyclical supply regimes, where OPEC’s output respectively moderates-
and exacerbates price fluctuations.

Second, conditional on past- and current market conditions, shifts in ex-
pected future profitability cause persistent deviations from average behavior.
The expectation of falling demand raises the value of deviating from jointly
profit-maximizing production relative to the losses sustained during a future
output war. OPEC’s optimal response is then to reduce cartel discipline in
the cooperative regime and increase the frequency of punishments. The re-
duction in anticipated future losses sustained under punishment may yield
highly non-linear and even non-monotonic price-quantity relationships within
regimes.2

Our theoretical analysis motivates two empirical research questions: Is
there evidence in the data that OPEC behaves strategically, manifested by
non-linear price-quantity relationships? Second, does the non-linearity affect
structural inference of aggregate dynamic properties of supply and demand?
In particular, do standard oil market models underestimate the link between
quantities supplied and prices?

These questions are investigated with a Markov switching Bayesian vector
autoregressive model (MS-BVAR) adapted from Kilian (2009). This model
has three variables, OPEC output, a global demand indicator and the real
price of oil and is estimated using monthly data from 1985–2019. A natural
benchmark is provided by a BVAR without regime-switching that is otherwise
identical. The dynamics in each regime are governed by a distinct covariance
matrix. Contemporary structural oil market models are typically identified
through restrictions on the contemporaneous responses of variables to struc-
tural shocks obtained by transformations of the (reduced form) covariance
matrices. Strategic competition is predicted to yield substantial and persis-
tent switches in covariances and may therefore have a considerable impact on
structural inference.

We find robust evidence for the existence of pro- and countercyclical regimes
in OPEC output. The empirical model suggests that OPEC’s change in behav-
ior moderates or exacerbates price fluctuations. In contrast, the single-regime
BVAR suggests that OPEC is on average passive with respect to price de-
velopments. We corroborate our identified pro-and countercyclical regimes

2This property is reflected in the observation by Sadek Boussena, OPEC conference
president 1989-1990, that “OPEC is strong when prices are weak, and weak when prices are
strong”. See Bret-Rouzaut and Favennec (2011).
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with historical accounts, contemporaneous analysis by the International En-
ergy Agency (IEA), and inferred price expectations from futures contracts.
Our identified regimes are consistent with all three sources of evidence, sug-
gesting that our model –albeit simple– is not merely capturing extraneous
correlations.

Finally, our results suggests the fundamental dynamics of OPEC’s behavior
has not been constant throughout the sample. Like previous studies, we find
that the 1985–1999 period is marked by low cartel discipline with frequent
switches between regimes and low confidence in regime classification. The
evidence suggests that post-1999 countercyclical regimes were longer and more
disciplined while the procyclical regime became shorter and more intense.

This paper contributes to three strands of literature. We join in a long-
standing effort to apply models of imperfect competition to shed light on
OPEC behavior. A closely related work is Rauscher (1992), who analyzes
OPEC’s supply when cartel discipline is exogenously assumed proportional to
underlying current demand. Other notable contributions are Salant (1976),
Hnyilicza and Pindyck (1976), Huppmann (2013), Nakov and Nuño (2013),
Behar and Ritz (2017), and Jaakkola (2019). The common theme in these con-
tributions is that a representative OPEC producer competes inter-temporally
with a non-OPEC fringe. However, the non-cooperative aspects of OPEC
members’ interaction are not modeled and variation in cartel discipline is ab-
sent or exogenously imposed. In contrast we consider a model where OPEC’s
output is jointly and endogenously determined by current and future expected
conditions in an explicitly non-cooperative setting.

Our analysis contributes to the literature on time-varying oil market dy-
namics, identification of global supply and demand shocks, and regime-switching
techniques in econometrics. A closely related analysis is Almoguera, Dou-
glas, and Herrera (2011) who test for regime shifts in OPEC output using a
switching simultaneous equation model (SEM) adapted from Porter (1983).
In contrast, our paper combines theoretical advances with a fully dynamic
econometric methodology and yields novel results. Unlike their static SEM
framework, the dynamic properties of our MS-BVAR readily inform the struc-
tural vector autoregression (SVAR) models currently used in the literature.
Nevertheless, we reach similar conclusions for most of the 1985–1998 time pe-
riod in which our studies overlap. However, in contrast to their findings, our
analysis provides evidence that OPEC’s dynamic pattern of behavior shifted
post-1998. Another related contribution is Ratti and Vespignani (2015), who
document a structural break in OPEC’s response to market developments in
the first quarter of 1997 using an SVAR model based on Kilian (2009). In
a time-varying parameter (TVP) VAR framework, Baumeister and Peersman
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(2013) finds that the increase- and decrease in oil price and production volatil-
ity may plausibly be explained by a substantial reduction in the demand and
supply elasticities leading up to 1985, the start of our sample. Using high-
frequency data, Känzig (Forthcoming) identifies an OPEC oil supply news
shock and finds that these shocks have statistically and economically signifi-
cant effects. Our paper complements this analysis by shedding light on how
strategic competition between OPEC members shapes the underlying process
generating these shocks in the data.

The evidence of time-varying cartel discipline in our findings informs a
lively and ongoing debate on the identification of supply and demand shocks in
the global oil market, see Hamilton (1985), Kilian (2009), Kilian and Murphy
(2014), Caldara, Cavallo, and Iacoviello (2019), Baumeister and Hamilton
(2019a) Baumeister and Hamilton (2019b), Bjørnland (2019), among others.
Our results suggest that traditionally estimated, constant supply elasticities,
by measuring average behavior over distinct pro- and countercyclical regimes,
are biased towards zero. The traditional approach will generally find that
OPEC is passive on average, a result that does not describe the observed
pattern of persistent regime-contingent responses. Our analysis suggests that
ignoring regime switching will therefore underestimate the impact of supply
developments. Thus our paper joins a burgeoning literature applying regime
switching econometrics in macroeconomic research, see for example, Lo and
Piger (2005), Auerbach and Gorodnichenko (2012), Billio et al. (2016), and
Bjørnland, Larsen, and Maih (2018).

We proceed as follows. In Section 2 we consider the stylized facts of OPEC’s
time-varying behavior and briefly review the salient properties of their strate-
gic environment to motivate our model. Section 3 presents the model and
solution concept. Empirical predictions on market dynamics under strategic
competition are stated in Section 4. We introduce the MS-BVAR and evalu-
ate evidence for our predictions in Sections 5 and 6, respectively. Section 7
presents robustness exercises of our empirical results. We conclude and discuss
avenues for future research in Section 8.

2 OPEC’s market power and time-varying be-

havior

A handful of oil companies, mainly but not exclusively the nationalized oil pro-
ducers of OPEC member nations, are widely viewed as enjoying considerable
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market power.3 The evidence reported in the literature suggests that OPEC’s
member states have systematically restrained production, but that the extent
of collusion is less than perfect and that their conduct is temporally unstable.
Various econometric techniques have been applied to explicitly estimate the
time-variation in supply behavior. These include regression switching models,
unit-root econometrics, structural estimation of dynamic Stackelberg compe-
tition with non-OPEC firms, sample splitting, and time-varying parameter
models.4 All the aforementioned contributions find persistent time-variation
in OPEC behavior.5

For a stylized illustration of OPEC’s time-varying behavior, consider Fig-
ure 1, plotting twelve-month changes in monthly OPEC crude oil output and
log real crude oil prices between January 1985 and December 2019.6 We have
highlighted by shaded bars four significant episodes of oil price drops: 1986,
1997-1998, 2008-2009, and 2014-16. Measured across the entire 1985-2019 sam-
ple, OPEC output and price growth are linearly uncorrelated. However, this
masks significant and sign-varying correlation in sub-samples. Between 2002
and 2014, OPEC’s output and price changes are strongly and positively cor-
related. Particularly, during the price collapse accompanying the 2008 global
financial crisis, OPEC rapidly restricted, and only gradually increased output.
Contrast this to their actions during the 1986, 1997 and 2014 episodes, where
OPEC production sharply increases in the face of collapsing prices, with the
correlation becoming negative.

We formalize OPEC’s time-varying behavior in a model of oligopolistic
quantity competition with imperfect monitoring, dynamic residual demand,
and capacity constraints. The remainder of this section briefly motivates our

3OPEC members produce at lower cost, higher capacity, and greater flexibility rela-
tive to their competitors, and thus may unilaterally affect equilibrium prices. Al-Qahtani,
Balistreri, and Dahl (2008) comprehensively review the evidence of cartel behavior accu-
mulated up to 2008. Among others, empirical studies that reject both the price-taking and
price-setting hypotheses of OPEC behavior in favor of a dominant firm, competitive fringe
set-up are Alhajji and Huettner (2000), Spilimbergo (2001), Hansen and Lindholt (2008),
and Golombek, Irarrazabal, and Ma (2018). See also Huppmann and Holz (2015).

4See Almoguera, Douglas, and Herrera (2011), Barros, Gil-Alana, and Payne (2011),
Baumeister and Peersman (2013), Kolodzeij and Kaufmann (2014), Huppmann and Holz
(2012), Ratti and Vespignani (2015) respectively. See also Dees et al. (2007).

5See also Dvir and Rogoff (2009) and Dvir and Rogoff (2014) who consider very long-run
variation in market power, studying samples that predate the formation of OPEC.

6Monthly data on crude oil production is from the International Energy Agency’s
Monthly Oil Data Service. To construct a real oil price series we have deflated the U.S.
refiner’s acquisition cost of crude oil imports from the U.S. Energy Information Adminis-
tration with the average all-item U.S. CPI from the Federal Reserve Bank of St. Louis data
service (FRED).
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(b) 2002 - 2019

Figure 1: Log real oil prices. OPEC crude oil output, millions of barrels per
day. Twelve-month change. January 1985 to December 2019. Highlighted
historical episodes: 1986 and 1997 output wars, global financial crisis of 2008,
and the 2014-2016 price fall. Source: International Energy Agency Monthly
Oil Data Statistics, U.S. Energy Information Administration, Federal Reserve
Bank of St. Louis (FRED).
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model specification and equilibrium selection criterion.
Imperfect monitoring is viewed as the likely fundamental cause behind in-

tentional market flooding by OPEC members. The idea is that OPEC agree-
ments which successfully restrict total production create an incentive for indi-
vidual producers to cheat.7 But since OPEC members do not perfectly observe
each others’ actions, they cannot know with certainty whether an unexpected,
adverse price development resulted from out-of-equilibrium play or not. In-
centive compatibility is maintained by equilibrium path punishments.8 The
incidence of such punishments, or output wars, has directed attention in the
literature to imperfect monitoring models as a salient framework capturing an
important property of OPEC’s strategic environment.910

The standard reference model of oligopolistic competition under imper-
fect monitoring is due to Green and Porter (1984). This framework features
an environment with static observable demand and no capacity constraint to
output. Yet persistent changes to commodity demand and fixed short-run
production capacity are widely viewed as empirically important features of
the oil market and have the theoretical potential to alter producer behavior.11

7For the purposes of this paper, the identity of oligopolistic firms is held fixed. The
question of which companies join oligopolistic agreements may be an avenue of future re-
search. For example Rosneft, a nationalized Russian oil company, is a plausible non-OPEC
candidate for a dominant producer. It has been reported that the Russian government as-
sisted in coordinating output cuts with OPEC following the 2014 price fall, leading to the
so-called “OPEC+” format, see e.g. “Russia, Saudi Arabia agree OPEC+ format should be
extended”, accessed August 21 2018 from www.reuters.com.

8This is a general result in the theory of repeated games under imperfect monitoring.
See for instance Mailath and Samuelson 2006 pp. 233.

9See the discussions in Barsky and Kilian (2004) Almoguera, Douglas, and Herrera
(2011), and Fattouh and Mahadeva (2013). The idea is that data on crude output is of
varying quality and available after a long lag. The imperfect monitoring of OPEC’s out-
put is publicly and transparently endorsed by the International Energy Agency (IEA), see
“OPEC Crude Production” in the IEA glossary, accessed October 12 2018 from www.iea.org.
The following statement by Neil Atkinson, chief analyst at IEA, is illustrating: “OPEC, [ac-
counting] for about one-third of global oil output, is a “big black hole [in terms of data],”
Mr. Atkinson said. Wary of disclosure that could lead to embarrassments like owning up
to cheating on agreed production ceilings, the OPEC member states have not “produced
or published reliably transparent data for [many] years.” See “Satellites Aid the Chase for
Better Information on Oil Supplies”, accessed October 12 2018 from www.nytimes.com.

10Market analysts and historians have argued that the steep price declines in 1986 and
1997 were explicitly due to intentional market flooding by leading OPEC producers aimed
to punish quota violations by other OPEC members. See the accounts in Noreng (2006),
Downey (2008), Yergin (2011), and also Coll (2012).

11See for instance the Energy Information Agency: What drives crude oil prices? or the
many econometric analyses of the crude oil market cited above. The impact of variation
in current- and future expected demand on cartel discipline is studied in Rotemberg and

7

https://www.reuters.com/article/us-oil-opec-saudi-russia-format/russia-saudi-arabia-agree-opec-format-should-be-extended-idUSKBN1JB2E7
https://www.reuters.com/article/us-oil-opec-saudi-russia-format/russia-saudi-arabia-agree-opec-format-should-be-extended-idUSKBN1JB2E7
https://www.iea.org/oilmarketreport/glossary/
https://www.nytimes.com/2018/10/08/business/search-for-better-information-on-oil-supplies.html
https://www.nytimes.com/2018/10/08/business/search-for-better-information-on-oil-supplies.html
https://www.eia.gov/finance/markets/crudeoil/


We therefore impose capacity constraints and dynamic residual demand in our
model, giving it a clear short- to medium-run interpretation. Non-OPEC out-
put is not explicitly modeled, and is interpreted as competitive and subsumed
in the dynamic residual demand function.

Repeated games admit a multiplicity of equilibria with distinct behavior.
Empirical prediction are conditional on an equilibrium selection argument.
For instance, our model admits equilibria where with positive probability the
stage-game Nash quantity is played forever on the equilibrium path. However,
equilibria with such grim trigger punishments are generally sub-optimal even
ex-ante in the reward phase (Abreu, Pearce, and Stacchetti 1986). In studying
efficient symmetric equilibria we appeal to the notion that OPEC members
individually have an incentive to coordinate on behavior that maximizes their
expected profits.

3 Model of oligopolistic quantity competition

We briefly present our model of oligopolistic quantity competition. The setup
is standard, satisfying the key assumptions in Abreu, Pearce, and Stacchetti
(1990) but augmented with a Markov chain for residual demand. Parametric
restrictions are detailed in Appendix A.1.

3.1 The stage game

In each stage game G, two symmetric, dominant producers compete in homo-
geneous quantities.12 Each producer i ∈ {1, 2} chooses an output level q from
a finite action set Q ⊂ R≥0 and receives an expected payoff π : Q2 ×X → R,
where π is strictly continuous and concave in q and where X ⊂ R≥0 is the resid-
ual demand space. Producers’ can render their output unobserved at no extra
cost. The expected profits of player i are given by π(q, x)i = p(q, x)qi − c(qi)
where x ∈ X, q ∈ Q2, and inverse demand p(q, x) is inelastic with respect
to quantities, implying elastic demand. Realized prices p(q, x, θ̃) = θ̃p(q, x),
and hence also realized profits, depend on a unobserved stochastic variable
θ̃, log-normally distributed ln θ̃ ∼ N (−σ2

θ/2, σ2
θ). We further assume that the

inverse elasticity is weakly increasing in quantities, a standard property. Fi-
nally, residual demand levels are such that for every x ∈ X the stage-game
Nash equilibrium- and jointly profit-maximizing quantities qn, qm are in Q.

Saloner (1986) and Haltiwanger and Harrington Jr (1991).
12Due to symmetry the game generalizes straightforwardly to any number n > 2 of players.
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3.2 The repeated game

The repeated game G∞(δ) is played over an infinite horizon, with time indexed
by t. The common discount factor is δ ∈ (0, 1). Now gather demand levels in
a d-dimensional vector x = (x1, . . . , xd) ⊂ X where 0 ≤ x1 ≤ . . . ≤ xd < ∞.
Demand evolves as a Markov chain over x with transition matrix M which is
stationary and irreducible. Let D = {1, . . . , d} be the index set over states
and normalize M to be right-stochastic so the elements of each row m′j, j ∈ D
sum to unity,

∑d
mjs∈mj

mjs = 1. In the following, state-j- and time-t values
of endogenous variables are denoted by a j ∈ D superscript and t subscript.
The stage game proceeds as follows:

1. Demand x ∈ x is given

2. Players choose actions q ∈ Q2

3. Noise θ̃, price p(q, x, θ̃), and profits π(q, x, θ̃) are realized

3.3 Optimal equilibrium

The model has a unique, optimal symmetric equilibrium, formally derived in
Appendix A.2. For each demand state x ∈ X producers’ play either the re-
ward or punishment quantity, q(x) and q(x). Transitions between phases are
endogenously determined by observable actions and the price signal. Due to
imperfect monitoring, punishments occur on the equilibrium path and there
are therefore 2d possible states, governed by the 2d × 2d transition matrix
T . The key property of optimal equilibria is that they are necessarily ex-
treme in the sense that reward- and punishment phases yield respectively the
highest- and lowest payoffs that may be supported as equilibrium outcomes.
The optimal reward phase is generally persistent and features restrained out-
put, whereas the punishment phases are short and feature elevated output. We
refer to this distinct pattern of behavior as high-powered incentive creation.
We now turn to the salient empirical predictions of high-powered equilibria on
the dynamic patterns of quantities supplied.

4 Market dynamics under strategic competi-

tion

This section derives empirical predictions on the joint behavior of prices and
quantities in the optimal equilibrium of our model. Recall that structural in-
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ference in macroeconomic models relies on linear transformations of the covari-
ance matrix of the reduced form VAR. Consequently, structural responses are
identified under the assumption that relationships between endogenous vari-
ables are well-approximated by a linear stochastic process. Our focus is thus on
the impact of strategic competition on the reduced form covariances between
prices and quantities. We highlight two sources of non-linearity in the rela-
tionship between prices and quantities. First, there is regime-switching across
supply correspondences of the reward- and punishment phases. Second, there
may be persistent deviations from average behavior, both in the pattern of
switching and output within regimes. The strength of these non-linear effects
is generally increasing in incentive power. The consequence is that average
representations of dynamic supply behavior in linear models may be rendered
uninformative.

To fix ideas we consider an analytical expression of the covariance between
quantities and prices. Recall that the equilibrium features 2d states. Gather
reward- and punishment regimes in state 1, . . . , d and d+1, . . . , 2d respectively
and let rij denote the transition probability from state i to j. The covariance
is thus given by

Cov(p, q) =
2d∑
i=1

2d∑
j≥i

ri,j(q
i − qj)(pi − pj) (1)

with ri,j = (λitij + λjtji) where tij is an element i, j in the 2d× 2d transition
matrix T (see Equation (13) in Appendix A.2) and λi is element i in the
corresponding stationary distribution of the Markov process. Notice that the
covariance identity is straightforwardly transformed to an autocovariance by
taking the appropriate time lags.
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We decompose the covariance as

Cov(p, q) =
d∑
i=1

ri,i+d(q
i − qi+d)(pi − pi+d)︸ ︷︷ ︸

Transition between reward and punishment phases, fixed demand

+
d∑
i=1

d∑
j≥i

ri,j(q
i − qj)(pi − pj)︸ ︷︷ ︸

Demand variation, reward phase

+
d∑

i=d+1

2d∑
j≥i

ri,j(q
i − qj)(pi − pj)︸ ︷︷ ︸

Demand variation, punishment phase

+
d∑
i=1

2d−i∑
j≥d−i+1

ri,j(q
i − qj)(pi − pj)︸ ︷︷ ︸

Transition between reward and punishment phases, variable demand

(2)
where our predictions on the between- and within regime variation in covari-
ances concern the first- and second row of Equation (2), respectively. The
following proposition states that the first, second and third rows have argu-
ments with sign that is generally weakly negative, positive, and indeterminate.

Proposition 1. Covariance. Let δ → 1, σθ → 0 and x : πm ≥ πn. Then

(qi − qj)(pi − pj) ≥ 0

(qi − qj)(pi − pj) ≥ 0

(qi − qi)(pi − pi) ≤ 0

for every j ≥ i ∈ {1, . . . , d} and with strict inequality for some i.

The proof is in Appendix A.3. The intuition is as follows. The limiting
conditions ensure that supply schedules in the reward phase are monotonic
in price-quantity space. Given upward-sloping supply schedules it follows
straightforwardly that demand variation induces a weakly positive covariance
between prices and quantities. Likewise, transitions across regimes along the
demand correspondence induce a weakly negative covariance between prices
and quantities. Two corollaries follow immediately.

Corollary 1. If q = q = qn then Cov(p, q) ≥ 0.

If the equilibrium features no intertemporal incentives then stage-game
equilibria are played every period. Without transitions between reward- and
punishment phases, the first- and second rows of the covariance identity in
Equation (2) equal zero and the supply schedule induced by the stage-game
equilibrium is monotonic in price-quantity space.
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Corollary 2. Transitions (qi − qj)(pi − pj) and (qi − qj)(pi − pj) have an
indeterminate sign.

When transitions across regimes are combined with shifts in demand the
linear covariance depends on relative magnitudes that are in general ambigu-
ous.

The implication of regime-switching is that the relationship between prices
and quantities within regimes – the second row of Equation (2) – may not
be well-approximated by a regime-independent and linear supply schedule.
In particular the autocovariances will be biased towards zero if strategically
motivated changes to price and quantities – the first row of Equation (2) – are
substantial and persistent.

Prediction 1. Distinct pro- and countercyclical regimes. Strategic
competition induces a sign change in the autocovariances between prices and
quantities with Cov(p, q) ≤ 0 and Cov(p, q) ≥ 0 denoted pro- and countercycli-
cal, respectively.

We show in Appendix A.4 that this bias is generally stronger for higher-
powered equilibria. Optimal strategic competition generates persistent, dis-
ciplined reward phases disrupted by rare but severe output wars. Lower-
powered, and hence sub-optimal, equilibria feature less disciplined, persistent
cooperative phases with more frequent, shorter or less intense output wars.
The strategically induced change in market dynamics (autocovariances) will
therefore be starker under higher-powered equilibria with greater and more
persistent changes to quantities supplied. The upshot is that under higher-
powered competition a single representative supply schedule becomes an in-
creasingly ill-suited representation of quantities supplied.

We now turn to variation in behavior within regimes. The power of equilib-
rium incentives is jointly and endogenously determined by fundamental prop-
erties of the strategic environment. Appendices A.5-A.7 consider the compar-
ative statics of exogenous changes to monitoring quality σθ, demand level x,
and transition probabilities M on incentive power. The key insight is that
producers’ ability to restrain output is jointly determined by relative current-
and future expected market conditions. The implication is that evolving ex-
pectations over future profitability exert a force on quantities supplied inde-
pendent of past- and present market conditions. This effect may in principle
be arbitrarily powerful: Appendix A.8 demonstrates that for a given level
of current demand x, there exist parameters (expectations) that induce any
output level in {qm(x), . . . , qn(x)} and {qn(x), . . . , q∗} in the reward and pun-
ishment phase, respectively. Lasting changes to expected profitability induce
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(a) Cooperative (b) Cooperative

(c) Punishment (d) Punishment

Figure 2: Equilibrium prices p(q, x) vs. quantities q for a range of demand,
persistence- and signal noise parameters x2, m2, σθ. The cooperative- and
punishment phases are plotted in (a), (b) and (c), (d), respectively. Limiting
monopoly- and stage game equilibria are in black. Lighter colors indicate lower
persistence and monitoring quality.
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Figure 3: Heat map plots of approximate, reward-phase price elasticities of
supply vs demand level x2, persistence m2, and signal noise σθ. The color bar
is censored at −4, and 4.

substantial variation not only in the frequency and duration of regime-switches
(Appendix A.4) but also the slope and level of supply correspondences, mani-
fested through changes in the sign and magnitude of within-regime autocovari-
ances, the first row of Equation (2). Thus conditional on the past- and present
state of the market, constraints on incentive power yield more frequent, less
severe punishments and shorter, but less disciplined reward phases. Under
evolving market conditions we expect both patterns of regime-switching and
within-regime behavior to deviate persistently from the data sample average.

Prediction 2. Deviation from average behavior. Strategic competition
may induce variation in the frequency and duration of switches across regimes
ri,j and the autocovariances Cov(p, q) between prices and quantities within
regime, yielding persistent deviations from average covariance.

The potential for strategic competition to induce substantial changes to
within-regime behavior increases in a high-powered equilibrium as the larger
potential range of incentive power supported on the equilibrium path allows
the supply correspondence to trace out a greater range of price-quantity space.

To illustrate and help build intuition we present numerically solved equilib-
rium of a game under d = 2 states labeled 1 and 2 with corresponding demand
levels satisfying 0 < x1 < x2 < ∞. See Appendix B for table of parameter
values. The numerical solution algorithm is detailed in online Appendix G.
Figure 2 plots the corresponding supply correspondences, that is, equilibrium
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prices p(q, x) vs. total quantities q in reward- and punishment phases. The lim-
iting competitive (stage-game equilibrium) and profit-maximizing (monopoly)
actions are plotted in black and the equilibrium action in color, with lighter
colors indicating more constrained incentive creation. The (implicit) equilib-
rium price elasticity of supply is plotted in Figure 3 and provides a unit-free
measure of the supply schedule. Figure 4 plots the stationary distribution over
the four states µ, satisfying T ′µ = µ where T is the transition matrix over
phases and states. It shows that the share of time spent in the punishment
state increases in demand, and more so when monitoring is poor or expected
profitability is low. Finally, Figure 12 in Appendix C plots equilibrium in-
centive power for a range of persistence and monitoring quality parameters,
illustrating how incentive power is non-monotonic in demand but increasing
in monitoring quality and future expected profitability.

We conclude by briefly discussing non-linear supply correspondences. The
non-linearity results from the interaction of multiple non-linear effects and is
therefore challenging to characterize analytically. Intuition may be provided
by the special case with constant marginal cost- and elasticity of demand. In
that case Collie et al. (2004) shows (numerically) that supporting monopoly
quantities in equilibrium requires a higher discount factor when the inverse
elasticity of demand is greater, given a grim-trigger strategy with absorbing
punishment. But by Assumption 1 the equilibrium inverse elasticity is weakly
increasing in quantities. Because qm(x) is weakly increasing in x it follows that
the price elasticity of demand is falling in x. Thus jointly profit-maximizing
quantities require greater incentive power to sustain at higher demand levels.
Yet if incentives are sufficiently constrained by a combination of poor monitor-
ing environment, falling profitability, and capacity constraints to punishment
intensity (Appendix A.5-A.8) it may be optimal to increase cooperative quan-
tities q to sustain cooperation by reducing the one-shot deviation profit, a
point first made by Rotemberg and Saloner (1986). But an increase in q will
reduce profits π which again reduces incentive power, an effect itself increasing
in the inverse elasticity of demand and thus accentuated at high prices. The
implication is that it not possible in general to rule out highly non-linear and
even non-monotonic supply correspondences in price-quantity space.

5 A Regime-Switching Oil Market VAR Model

We evaluate evidence of regime-switching and persistent deviations from av-
erage behavior using an MS-BVAR model. To provide a natural benchmark,
we estimate a standard BVAR model using the same data and specification,
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(a) Low signal noise (b) High signal noise

(c) Low persistence (d) High persistence

Figure 4: Stationary distribution µ of the transition matrix T , Equation 13,
satisfying T ′µ = µ for d = 2, against x2 the level of residual demand in
the high-demand state. The elements µ1 = µ1, µ2 = µ2 the reward phase
and µ3 = µ1, and µ4 = µ2 the punishment phase, for low- and high demand
respectively.
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but without switching and with uninformative priors.

5.1 The Model

Consider the following reduced form VAR model

yt = µ(st) +
L∑
`=1

A`(st)yt−` + et E
[
ete
′
t st

]
= Σe(st) (3)

where yt = [ ∆qt, ∆xt, ∆ ln pt ]′ is the vector of endogenous variables, namely
the twelve-month change in OPEC production, a measure of real economic
activity and the twelve-month change in the log real price of oil. The vec-
tor µ contains intercepts and et are the reduced form errors with a positive
semi-definite and symmetric covariance matrix Σe. Our sample runs over the
1985:M01–2019:M12 time period. See Figure 15 in Appendix C for a plot of
the standardized raw data. A description of the data and sources can be found
in Appendix D.

Our model differs from Kilian (2009) in three respects. Firstly, the esti-
mated parameters µ, {A`}L`=1 and Σe are allowed to change discretely across
time with the state variable st ∈ {PC,CC} denoting the pro- and counter-
cyclical regime, respectively. The regime indicator st evolves according to a
Markov chain with transition probability matrix P . Secondly, we substitute
aggregate global crude oil production with that of just the OPEC member
countries. Third and finally we employ the OECD+6 index of industrial pro-
duction provided by Baumeister and Hamilton (2019a) rather than the Kilian
(2009) index as a measure of real economic activity.13

In order to keep our model parsimonious and to facilitate a clear interpre-
tation of regimes, we partition the model so that only the parameters in the
OPEC oil supply equation are functions of st[

∆qt
y◦t

]
=

[
µ•(st)
µ◦

]
+

[∑L
`=1A•`(st)yt−`∑L
`=1 A◦`yt−`

]
+

[
e•t
e◦t

]
, (4)

where the • and ◦ subscripts denote regime-switching and regime-fixed blocks
respectively. These blocks can be estimated independently and subsequently

13We detrend the OECD+6 index by taking twelve-month growth rates. This is equivalent
to extracting the cyclical component of the series as the forecast error of a random walk
model with a twelve months ahead forecast horizon, as recommended by Hamilton (2018).
Hence, we achieve a consistent twelve-month change transformation across all variables
included in the model. The Kilian index on the other hand, constructed as a deviation from
a linear trend, should not be transformed (Kilian and Zhou, 2018).
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transformed to obtain the VAR representation (Hamilton, 1994; Hamilton,
2016). While the regime-fixed component is estimated as a standard VAR
model, the OPEC equation is estimated as

∆qt = µ•(st) +B•(st)y◦t +
L∑
`=1

C•`(st)yt−` + vt vt ∼ N(0, σ2
v(st)) (5)

where B•(st) is the vector of parameters describing the contemporaneous re-
lationship between ∆qt and y◦t = [ ∆xt, ∆ ln pt ]′.

5.2 Priors, estimation and structural inference

To estimate the model we follow Hamilton (2016) and employ the Gibbs sam-
pler, a Markov Chain Monte Carlo (MCMC) algorithm.14 We refer to Ap-
pendix E for a detailed overview of the prior distributions selected and to online
Appendix H for details about the estimation procedure. Following Hamilton
and Herrera (2004) we estimate our model with 24 lags of the endogenous
variables. For the regime-fixed component, we employ uninformative natu-
ral conjugate normal inverse-Wishart priors so that the posterior distributions
will have mean and variance corresponding to the ordinary least-squares (OLS)
estimates.

For Equation (5) we employ independent normal inverse-Wishart priors
and set the prior means of parameters β2(st) ∈ B•(st) to be −0.2 and 0.2 in
the pro- and countercyclical regime respectively. Two considerations motivate
our choice of prior means for β2(st). First, having sufficiently different priors
across regimes reduces the probability that our estimation algorithm runs into
degeneracy, i.e. that st takes on only a single value for all t.15 Second, given
the theoretical predictions discussed above, we hold prior beliefs that this
parameter will change sign with st as OPEC exhibits pro- and countercyclical
behavior.16

The remaining VAR parameters have prior means of zero as they are growth
rates and specified with sizable variance. Finally we prescribe Dirichlet pri-

14We make 200,000 draws from the sampler and discard the first 100,000.
15This is the label-switching problem in Bayesian estimation of latent Markov models (see

among others Celeux, Hurn, and Robert, 2000; Jasra, Holmes, and Stephens, 2005; Geweke,
2007) where identical marginal posterior distributions across subsamples render the regimes
unidentifiable.

16It is worth noting that the main results remain robust to different choices of the prior
means so long as they are sufficiently different. We report below that the posterior means of
β2(st) are larger in magnitude than the prior means, suggesting that the data favor opposite
signs for β2(st).
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ors for the columns of transition probabilities matrix P . Our choice of shape
parameters however, result in prior distributions that are approximately uni-
formly distributed on [0, 1] so the data is allowed to inform regime persistence.

The structural shocks are identified by Cholesky decomposition of the
variance-covariance matrix. This method is tractable, transparent, without
excess computational burden and has been widely applied to study oil market
dynamics in small VAR models (see among many others Kilian, 2009; Ratti
and Vespignani, 2015; Gundersen, 2020). Moreover, it makes the compari-
son to the regime-invariant BVAR model readily feasible. The widespread use
of this identification scheme also facilitates a direct comparison of estimated
dynamic behavior with existing literature. Online Appendix I demonstrates
that the sign of unrestricted responses are determined by the sign of estimated
covariances when identifying the model using Cholesky decomposition. The
identification scheme assumes a recursive structure on the timing of the im-
pact of structural shocks on the endogenous variables.17 More specifically, the
reduced form errors can be decomposed as et = S(st)εt, oreqex

ep


t

=

ς11(st) 0 0
ς21(st) ς22(st) 0
ς31(st) ς32(st) ς33(st)

εqεx
εp


t

(6)

with matrix S(st) being the lower triangular component of the Cholesky de-
composition of Σe(st) and εt the vector of structural uncorrelated shocks,
E[εtε

′
t] = I. Because Σe(st) varies with st, we will get two sets of structural

parameters and shocks.
Following Kilian (2009) we order the supply variable at the top, followed

by global activity and finally the real price of oil. An OPEC supply shock
in the countercyclical regime is interpreted as unexpected shortfalls or unan-
ticipated increases in the crude oil output of OPEC member countries. This
is the classic interpretation of an oil supply shock (Hamilton, 1985; Kilian,
2009). In the procyclical regime where there is either a flooding or balanc-
ing of the market, an OPEC supply shock will reflect output wars of unusual
intensity or unusually large withdrawals of crude from the market.18 By or-
dering OPEC crude oil production as the first equation we impose a vertical

17For cases where such zero-restrictions cannot be justified, popular but computationally
demanding alternatives such as sign-restrictions (Rubio-Ramirez, Waggoner, and Zha, 2010)
and the more general Baumeister-Hamilton approach (Baumeister and Hamilton, 2015)
should be applied.

18It is important to note that the shocks themselves must be interpreted as occurring
within a given regime and are independent of each other. We do not model a relationship
between structural shocks and regime switches.
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within-month supply curve. Our identifying assumption is that OPEC cannot
respond within a month to demand- or price shocks. The typical argument is
that shifting the production schedule is costly and producers observe oil con-
sumption at a low frequency (Kilian 2009). An aggregate demand shock that
increase global real economic activity is interpreted as a sudden change to the
demand for industrial commodities whereas shocks to the real price of oil are
called oil-specific demand shocks. The latter may be interpreted as shifts in
precautionary demand for oil caused by uncertainty about future availability
of crude oil. Our final identifying assumption is that the response of global
real activity lags by at least one month to oil-specific demand shocks. As oil
prices change, oil consumers are slow at adjusting their activity level.

For structural inference, we follow Karamé (2010) and compute exact im-
pulse response functions (EIRF) defined as

φjh(y, ε) = E
[
∂yh
∂ε0

∣∣∣∣s0 = j, P

]
,

that is, the expected value of endogenous variable y ∈ y, h periods after a
structural shock ε ∈ ε from the stationary solution of state s0 = j ∈ {PC,CC},
taking the expectation over all possible paths of the state variable (regime indi-
cator) from s0 to sH . The H-horizon EIRF is obtained by taking a probability-
weighted sum over all conditional responses given by the 2H possible sequences
of the state variable from s1 to sH .19 Hence we emphasize that the dynamic
properties of the EIRF are conditional on the transition matrix P . To isolate
the regime-contingent behavior, we compute the regime-dependent impulse
response functions (RDIRF)

ψjh(y, ε) = E
[
∂yh
∂ε0

∣∣∣∣sh = j ∀h ∈ [0, H]

]
which conditions on remaining in the same regime throughout. Finally we
compute the conventional impulse response function (IRF)

ϕh(y, ε) = E
[
∂yh
∂ε0

]
in the case of the fixed-regime BVAR.

19The number of paths increases exponentially in H. For example there are 262,144
possible sequences for H = 18 which must be computed for each draw from the Gibbs
sampler. To ease the computational burden, we only consider sequences that have more
than 10−6 probability of occurring. The excluded paths account for about 3–5% of the total
probability mass.

20



6 Results

We present theoretical predictions in terms of empirical model properties and
the corresponding evidence for these found in the data. We evaluate the model
output against contemporary and historical narrative evidence and price ex-
pectations inferred from futures contracts.

From the discussion above, we had Prediction 1 which states that we expect
regime-switching between distinct pro- and countercyclical regimes, with the
difference in response across regimes increasing in incentive power. We will
now postulate empirical predictions in terms of empirical model parameters.

Prediction 3. Sign reversal. Under strategic behavior, the price semi-
elasticity of supply α13(st) ∈ A•1 in Equation (3) will have opposite signs
α13(PC) < 0 < α13(CC) for all elements of the 68% posterior credible set.

This prediction follows from Proposition 1, stating that the first row of
Equation (2) has negative sign. Notice that Prediction 3 concerns properties
of reduced form parameters A•1 and covariance matrix Σe which jointly govern
the EIRF. To present the predicted sign-reversal in terms of the EIRF, we ease
notation by setting φjh = φjh(∆q,∆ ln p), i.e. the expected response in OPEC
output change ∆q to a shock in log price changes ∆ ln p from state j at horizon
h.

Prediction 4. Pro- and countercyclical responses. Under strategic be-
havior we expect distinct pro- and countercyclical responses of OPEC output
to price shocks on impact φPC0 ≤ 0 ≤ φCC0 .

To evaluate whether regime-switching yields distinct inference on aggre-
gate dynamic behavior we compare the EIRF φ and RDIRF ψ of the regime-
switching model with the non-switching IRF ϕ of the regime-fixed model.

Prediction 5. Distinct structural inference. Under strategic behavior
the regime-contingent responses satisfy ψPCh ≤ φPCh ≤ ϕh ≤ φCCh ≤ ψCCh for all
h and elements in the 68% posterior credible set.

Recall from earlier that Prediction 2 states that persisting changes to the
market environment may induce persistent deviations from average behav-
ior. A lasting decrease in incentive power yields more frequent but less severe
punishments and shorter but less disciplined reward phases. Conversely, an
increase in incentive power yields longer-lasting reward phases with greater
cartel output restraint and less frequent but more severe punishments. For-
mally we expect such structural breaks to yield episodes of behavior that is
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unlikely given average relationships or indeterminate with respect to regime
classification.

Let ST , ST denote the longest unbroken sequences of pro- and counter-
cyclical regimes respectively, observed in a sample of length T . Let F (X) =
Pr(ST ≥ X|P, T ) and F (X) = Pr(ST ≥ X|P, T ) be the probability of observ-
ing an unbroken sequence of pro- and countercyclical regime lasting at least
X periods, conditional on transition matrix P and sample length T . Finally,
let CC∗ and PC∗ be the longest unbroken sequence of pro- and countercyclical
regimes observed for a draw of the model.

Prediction 6. Break in dynamic behavior. Under strategic competi-
tion we expect evolving market conditions to yield limT→∞ F (CC∗) → 0 and
limT→∞ F (PC∗)→ 0.

We expect that low cartel discipline and frequent switching between less
distinct regimes will lead to a more uncertain regime classification.

Prediction 7. Indeterminate regime classification. Under strategic
competition we expect evolving market conditions to yield periods with a pos-
terior mean of the regime indicator sequence st to be Pr(st = CC) u 1

2
.

Finally, recall also from Section 4 that we may not exclude non-linear or
even non-monotonic price-quantity relationships when incentive power is con-
strained and OPEC optimally reduces cartel discipline. We expect also such
a local reduction in covariance between prices and quantities to be manifested
in regime indeterminacy.

6.1 Prediction 1: Evidence of pro- and countercyclical
output regimes

We assess evidence for distinct pro- and countercyclical regimes, see Predic-
tions, 3, 4 and 5 above. Consider the impulse-response functions plotted in
Figure 5. The solid lines denote the EIRF, dashed lines the RDIRF, and
green lines denote standard IRF from a (one-regime) BVAR. Shaded areas
report the 68% credible sets, i.e. the 16- and 84th percentiles of the posterior
distributions. The OPEC response to a precautionary demand shock is given
by the first row and third column panel and clearly demonstrates distinct pro-
and countercyclicality. Moreover, the response in the countercyclical regime
is more persistent, with the credible set containing 0 after approximately 15
months, compared to 7 under procyclical behavior. The fixed-regime BVAR
on the other hand exhibits a passive, acyclical response. This difference in
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responses between the regime-switching- and fixed model highlights how as-
suming a regime-independent supply schedule leads the estimated response to
be biased towards zero, see the discussion in Section 4. Hence we conclude
that the data support empirical Predictions 4 and 5.20 Finally notice that the
price response to a supply shock is also regime-contingent. In this case, the
fixed-regime BVAR gives an IRF that has a large credible set, but is at least
initially in agreement with the procyclical regime response. This may be due
to the larger persistence of the output response to an OPEC supply shock. The
remaining responses are qualitatively similar to those found in Kilian (2009).
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Figure 5: Exact impulse response functions (EIRF). The pro- and countercycli-
cal regimes are plotted in red and blue, respectively. The dashed lines show
regime-dependent response (RDIRF) and shaded areas 68% credible sets. The
impulse-response functions (IRF) of the one-regime BVAR are reported in
green together with the 68% credible sets.

20To evaluate Prediction 3 consider Figure 13 in Appendix C, plotting the implied prior-
and posterior distributions over the first lag of the MS-BVAR coefficients. The first row
reports posteriors for the pro- and counter-cyclical regime in red and blue respectively,
with priors in dashed lines. Note the sign change in posterior mean and median for the
coefficients of interest ∂∆qt(st)/∂∆pt−1 = α(st)•13 ∈ A(st), Equation 3, with α(PC)•13 <
0 < α(CC)•13. The final two rows report posteriors of the non-switching block in gray and
priors in green.
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We now turn to the inferred path of output regimes by comparing model
estimates with contemporary and historical narrative evidence. Consider Fig-
ure 7, which reports the posterior mean (blue) and median (black) of the dis-
tribution over regime indicator sequences. A mean posterior value near PC or
CC indicates high confidence of pro- or counter-cyclical behavior respectively.
Indeterminate values imply lower confidence. To fix ideas on how to interpret
the regime indicator sequence, consider Figure 6 which partitions ∆ log pt, ∆qt
space into four quadrants of which I, IV and II, III are associated with
pro- and countercyclical behavior, st = PC and st = CC, respectively. We
emphasize that only the observations with market flooding, ∆ ln p < 0 and
∆qt > 0, or quadrant IV in Figure 6, are to be interpreted as an output war.
Observations in quadrant I represents cooperative, procyclical behavior where
oil is withdrawn from the market. Hence, observations in quadrants I, II and
III have an interpretation as a cooperative or reward phase actions.

∆p

0

0

∆q

I balancing II counter-cyclical

IV floodingIII counter-cyclical

Figure 6: Implied regimes in the ∆q, ∆p space. Observations from pro- and
countercyclical regimes are in the quadrants I, IV and II, III respectively.
The punishment stage correspond to quadrant IV , the reward phase to quad-
rants I, II and III. The origin is marked by the intersecting blue lines.

We define output wars as periods in which we have high confidence that
OPEC is flooding the market, i.e. observations t such that ∆ ln pt < 0 <
∆qt (quadrant IV in Figure 6) and the posterior mean regime probability
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Pr(st = PC) > .75. They are indicated with light red shading. The darkly
shaded red- and blue areas denote months in which the International Energy
Agency’s monthly Oil Market Report (OMR) finds that OPEC’s actions are
substantially raising or decreasing the price of oil, see Appendix D for details
on the construction of this time series.

Notice that because the procyclical regime includes cooperative behavior,
their duration serves as a lower bound on the expected length of output wars.
Second, the models’ classification of procyclical behavior is consistent with
judgment in the OMR, excepting two OPEC meetings in 1995 which are clas-
sified as indeterminate, i.e. reflecting low cartel discipline. Furthermore, the
output wars we identify in 1986 and 1998 are consistent with historical nar-
rative accounts of OPEC’s actions and motives at the time, see for instance
Noreng (2006), Yetiv (2010) and Yergin (2011).
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Figure 7: Posterior regime indicator against time. Pro- and counter-cyclical
regimes denoted by PC and CC. Median, black points and mean, blue. The
lightly shaded areas denote output wars with high confidence of market flood-
ing behavior, ∆ ln pt < 0 < ∆qt and Pr(st = PC) > .75. The darkly shaded red
and blue areas denote months in which the International Energy Agency’s Oil
Market Report (OMR) finds that OPEC’s actions are substantially decreasing
or increasing the price of oil.
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6.2 Prediction 2: Deviations from average behavior

We now turn to evidence that OPEC has exhibited persistent deviations from
average behavior, see Predictions 6 and 7. The estimated regime sequence
in Figure 7 suggests a qualitative shift in the dynamic patterns of behavior
around 1999. The rapid regime shifts and prolonged periods of indeterminacy,
such as in the 1986-1998 period, indicate frequent switching between less dis-
tinct regimes or less steeply sloped supply schedules, i.e. that the observed
acyclical quantities supplied are given by a convex combination of pro- and
countercyclical supply (Prediction 7).

Notice that from approximately the year 2000 the countercyclical behavior
appears to become more persistent. We formally consider the likelihood of
observing this countercyclical episode, given average behavior. For each stored
draw from the Gibbs sampler, we identify CC∗, the longest unbroken sequence
of countercyclical behavior. We then store the date at which it begins. The
posterior distributions over the dates and duration of the longest sequences
are reported in Figure 8.

The distribution over dates is remarkably concentrated at the mode of April
1998, with a long right tail pulling the median to June 2000. In contrast, the
distribution over duration is multi-modal. The evidence suggests that the
longest countercyclical period began between 1998 and 1999, but the duration
of this regime depends on whether the indeterminate episodes between 1998
and 2014 are classified as pro- or countercyclical. Following Prediction 6, we
quantify the likelihood of observing a sequence at least as long as CC∗, i.e.
F (CC∗), as follows: For each draw we simulate the probability of observing at
least once a countercyclical regime of equal or greater length than the greatest
observed sequence. The mean and median probabilities are approximately 30%
and 22.5%, respectively. Based on this metric the observed duration of the
longest countercyclical regime period is consistent with the average predictions
of the model.

Yet from Figure 7 we see that the posterior distribution suggests it is un-
likely that any output wars occurred between mid-1998 and late 2014, with ob-
served procyclical episodes all firmly in the cooperative quadrant I of Figure 6.
We examine whether contemporary narrative evidence of exogenous supply
disruptions can explain isolated incidents of regime indeterminacy. Consider
Figure 9 which plots periods in which the OMR reports substantial exogenous
disruptions to OPEC output. Notice in particular the 2006-2007 period, where
OPEC production is falling and prices are increasing. The OMR ascribes these
price movements respectively to international sanctions on Iranian oil exports
and unrest in Nigeria, coinciding with the modes at 62 and 100 months in
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Figure 8: Histogram over the starting month and duration of the longest
unbroken sequence of a countercyclical regime across Gibbs sampler draws.
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Figure 9: Posterior regime indicator against time. Pro- and counter-cyclical
regimes denoted by PC and CC. The shaded areas denote months in which
the International Energy Agency’s Oil Market Report (OMR) finds that there
are substantial exogenous disruptions to OPEC’s oil production.

Figure 8.
We therefore repeat the exercise but counting only the pro-cyclical regimes

that coincides with increases in OPEC output, i.e. the red-shaded areas in
Figure 7. This exercise amounts to assuming that OPEC’s behavior would be
countercyclical in absence of these disruptions, accepting the OMR descrip-
tion of unintended production outages. The longest countercyclical regime
period is now 200 months and the probability mean of randomly observing
this realization is 1.1%, with a median of only 0.04%. Under the assump-
tion of otherwise countercyclical behavior the data suggest that there was a
change in the underlying data generating process in mid-1998. Our interpre-
tation is that OPEC’s cartel discipline was low during the 1986–1999 period
but increased markedly post-1998. This finding is consistent with the results
in Almoguera, Douglas, and Herrera (2011) and Ratti and Vespignani (2015)
but contrasts with the claim of Baumeister and Kilian (2016) who state that
OPEC permanently collapsed in 1986, never again attempting to influence
market outcomes.
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6.3 Corroborative evidence from futures prices

As a final exercise we consider if price expectations inferred by futures con-
tracts are consistent with regime-switching.21 Let ∆ ln pFt = ln p12

t − ln p0
t be

the time-t difference in log WTI prices for delivery in twelve months and within
month. Figure 10 plots the posterior mean of the regime indicator together
with an indicator for when ∆ ln pFt exceeds its 90th percentile. Notice that
steeply sloped futures curves coincide with periods in which either our model,
the IEA or both classify procyclical behavior. This pattern of futures prices is
consistent with market expectations of heavily but temporarily depressed oil
prices, exactly as predicted by the theory. The only two exceptions are during
October 2008 to November 2009 global financial crisis, a large transitory de-
mand shock, and November 2006, coinciding with OMR reports of geopolitical
tensions in Iran.

7 Robustness

Our results hold up to numerous robustness checks and extensions. We esti-
mate the model with different lag orders, priors and variables as well as perform
MCMC convergence diagnostics. We present a brief summary of these exercise
here, relegating the details to Appendix F.

First, we re-estimate the model with reduced lag-order. Changing the lag
order to e.g. 12 or 18 does not qualitatively overturn our results or conclu-
sions. We assess prior sensitivity in two ways. First, we increase the variance
of prior distributions for all parameters. Second, for β2(st) (governing the re-
lationship between contemporaneous prices on quantities), we move the prior
means closer to zero and in line with the priors of other VAR parameters. The
results remain unchanged, demonstrating that the data are highly informative
about the parameter values. However, the sensitivity analysis shows that the
prior means of β2(st) must be sufficiently different in order to identify separate
regimes.

We extend our analysis and estimate our baseline model with a total of
three variable substitutions. First, we replace the OECD+6 index of indus-

21The price of futures contracts is widely used as a measure of oil price expectations.
For example, p.7 in the Norges Bank’ Monetary Policy Report 4/14 plainly states that
“[projections] in this report are based on the assumption that oil prices move in line with
futures prices [...]”. For storeable commodities such as oil the slope of the futures curve
is typically interpreted as representing the equilibrium cost of storage (Reichsfeld, Roache,
et al. 2011). If the cost of storing oil increases convexly in the quantity stored, a steeply
positively sloped curve implies a supply glut.
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Figure 10: Posterior mean regime indicator against time in blue. Pro- and
counter-cyclical regimes denoted by PC and CC. Black points indicate when
the twelve-month log WTI future curve slope ln p12

t − ln p0
t exceeds its 90th

percentile. The lightly shaded areas denote output wars with high confidence
of market flooding behavior, ∆ ln pt < 0 < ∆qt and Pr(st = s1) > .75. The
darkly shaded red areas bars denote months in which the International Energy
Agency’s Oil Market Report (OMR) finds that OPEC’s actions are substan-
tially reducing the price of oil.
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trial production with the Kilian (2009) freight index to measure global real
economic activity. The results are qualitatively similar to our baseline specifi-
cation, albeit with less precisely estimated regimes. Second, we switch OPEC
crude oil production with non-OPEC output. Our estimation procedure me-
chanically identifies pro- and countercyclical regimes. However, the 68% cred-
ible sets of impulse response functions of the real price of oil to non-OPEC
supply shocks contain zero for all horizons and hardly differ across regimes.
Moreover, regime persistence is low, with many periods classified as indeter-
minate and little evidence of prolonged countercyclical output. Third and
similarly to the previous point, we substitute OPEC production with global
aggregate output. In this case, we find qualitatively similar results as in the
baseline case except that non-OPEC output shortages (e.g. coincidentally
with Hurricane Katrina) alter the regime classification in the 2000s. This sug-
gests that OPEC output variation indeed does dominate the global oil supply
response.

Finally, we perform simple MCMC convergence diagnostics. We compute
Geweke inefficiency factors and do difference-in-means tests for all estimated
parameters. Both metrics are within conventionally accepted limits and we
conclude that the MCMC sampler converged.

8 Conclusion

A long-standing literature has employed empirical macroeconomic models of
the oil market to investigate the origin and propagation of shocks to the price of
crude oil. Structural inference is conducted under the assumption that global
oil supply is well-approximated by a stationary, linear process. In this paper,
we argue that strategic competition between OPEC members has induced non-
linear price quantity relationships and that this non-linearity has rendered
conventional structural inference uninformative.

We derived the symmetric profit-maximizing public equilibrium in a model
of oligopolistic quantity competition with evolving observable demand. Effi-
cient, symmetric equilibria induce switching between cooperative and punish-
ment regimes, persistent deviations from average behavior, and potentially
non-linear supply correspondences. The model was used to derive two empiri-
cal predictions. First, strategic competition induces switching between distinct
pro- and countercyclical regimes. Second, under evolving market conditions
we expect persistent deviations from average behavior, manifested through
switching frequencies and supply elasticity.

Adapting the model of Kilian (2009) to allow for regime-switching in crude
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oil supply, we find robust evidence in the data supporting both hypotheses. We
also find that allowing for regime-shifting substantially alters inferred behavior.
Inference in traditional oil market models generally find that oil producers
are passive with respect to price developments. Our analysis suggests that
this acyclical behavior may be due to an unwarranted conflation of pro- and
countercyclical regimes. We therefore suggest that a stationary, linear supply
correspondence is not an appropriate approximation of OPEC’s actual output
behavior.

We conclude by suggesting two avenues for future research. First, our theo-
retical analysis assumes symmetry among producers. More research is needed
to identify the salient dimensions of heterogeneity among OPEC producers
and how they interact with optimizing behavior in a dynamic environment,
e.g. the domestic political economy of OPEC countries or their costs of pro-
duction. Empirically one could explore such heterogeneity through a panel of
OPEC oil producers. Second, future research may study methods of struc-
tural inference under regime-switching that are computationally feasible and
allow for a relaxation of the zero-restrictions employed in this paper. A natu-
ral candidate would be an extension of the Baumeister and Hamilton (2015)
methodology.
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A Appendix: Theory

A.1 Model of oligopolistic quantity competition

The stage game is described in detail. Producer i ∈ {1, 2} chooses an ob-
servable and unobservable quantity qi and h̃i, both in Q := {0, ε, ..., q∗} ⊂ R
an evenly ε-spaced grid, and such that total output respects the constraint
qi + h̃i ≤ q∗. We denote variables that are not publicly observed with a tilde,
e.g. the total production q̃i := qi + h̃i of player i is not publicly observed.
We will omit the tilde when it is irrelevant whether an action is observable
or not, i.e. when conditioning on actions. Let q ∈ Q2 be the action profile
and q := q1 + q2 ∈ Q + Q = {0, ε, . . . , 2q∗} the total output.22 To easily re-
late action profiles to total production we introduce the vector ι = (1, 1) so
ι′q = q, used interchangeably. The inverse demand function is p(q, x), where
x ∈ R≥0 is interpreted as the market demand for the dominant producers’
product net of production from a non-strategic competitive fringe. The price
p(q, x) = xp(q) is continuous in all arguments, strictly decreasing and weakly
convex in output ∂p(q)/∂q < 0, ∂2p/∂2q ≥ 0 and strictly positive p(q, x) > 0
for all q. The players observe

p(q, x, θ̃) = θ̃p(q, x) (7)

where the multiplicative term θ̃ is an unobserved log-normally distributed
random variable ln θ̃ ∼ N (−σ2

θ/2, σ2
θ) with independent realizations over t. The

observed prices are then conditionally log-normally distributed

ln p(x, q) ∼ N(ln p(q, x)− σ2
θ/2, σ2

θ) (8)

with distribution Fp(·|q, x) and density fp(·|q, x). The parameter σθ governs
a mean-preserving spread of the distribution and has a natural interpretation
as monitoring quality. Notice that because prices are strictly positive for all
levels of production the producers may never infer their opponents action with
certainty from the price realization. Let c : R → R be a weakly convex and
strictly increasing cost function, ∂c(q)/∂q > 0, ∂2c(q)/∂2q2 > 0. Conditional
on actions, the realized- and ex-ante expected profits in each stage game are

π(q, x, θ̃)i = θ̃xp(ι′q)qi − c(qi)
=⇒ Eθ̃π(q, x, θ̃)i = xp(ι′q)qi − c(qi) =: π(q, x)i

(9)

22We will denote matrices, vectors, and their scalar elements respectively by uppercase,
lowercase bold- and standard symbols, e.g. a matrix Z, vector z, and scalar elements z ∈ Z,
z ∈ z.
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for i ∈ {1, 2}.
We make two assumptions that are satisfied, among others, for standard

elastic constant elasticity of demand functions or an appropriately scaled linear
function. First, suppressing player subscripts, we assume that the expected
profits are strictly concave in own output

∂2π(q), x

∂2q
< 0

for all q so that a best-response always exists. In the limiting case of constant
marginal costs this condition holds for all demand functions such that the first
order effect dominates

q
∂2p(ι′q)

∂2q2
< −2

∂p(ι′q)

∂q

a standard property. Second, we assume that (inverse) demand is everywhere
(inelastic) elastic and the elasticity (increases) decreases in output q.

Assumption 1. Elastic demand. Let the inverse price elasticity of demand
be inelastic and increasing in quantities

−∂p(q, x)

∂q

q

p(q, x)
= −∂p(q)

∂q

q

p(q)
≤ 1

∂

∂q

∂p(q)

∂q

q

p(q)
≥ 0

for all q.

The natural interpretation of Assumption 1 is that the overall supply, in-
cluding the competitive fringe, is sufficient to push consumer demand away
from the inelastic region. Notice that while there is no direct effect of demand
x on the inverse price elasticity, there is an indirect effect through an increase
in equilibrium output. For example, the (inverse) elasticity will (increase)
decrease in demand x when evaluated at qm(x).

Define qm(x) := argmaxq∈Q2π1(x, q1, q2) + π2(x, q1, q2) the monopoly or
jointly profit-maximizing quantity, symmetric when ε→ 0 by the assumption
of concave profits. Next, denote the conditional best-response function as
qbr(q′, x) := argmaxq∈Qπ(q, q′, x), with q′ denoting the opponents’ action. Let
the symmetric, pure strategy, stage-game Nash equilibrium such that qn(x) :=
q : qbr(q′, x) = q′ and q1 = q2 in q. The existence of qn(x) is not guaranteed for
every x ∈ R+ because actions are discrete, ε > 0. In the following we restrict
attention to sufficiently fine action sets such that jointly profit-maximizing
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quantities are symmetric Q2 : q = q′ ∀ q, q′ ∈ qm(x) and demand levels x
such that pure strategy symmetric stage-game Nash equilibria exist X := {x :
qn(x) ∈ Q2}. The set X exists because the best-response under symmetric
actions in the continuous action limit are increasing in demand.23

A.2 Optimal equilibrium

We derive the strongly symmetric, perfect public equilibrium (PPE, Mailath
and Samuelson 2006) in our oligopoly model when augmented by a Markov
process on the residual demand level. We show that the results from Abreu,
Pearce, and Stacchetti (1990) apply straightforwardly so there exists a unique,
efficient strongly symmetric PPE. Each period the dominant producers observe
the observable quantities q1 and q2, the demand level x, and the realized price
p̃. Recall that the producers do not observe or the signal noise θ̃ or the
hidden quantities h̃1 and h̃2. The signal space of the stage game is therefore
S := Q1×Q2×R+. Let a history ht = {xs, ps, qs}t−1

s=1 be the information set at
the outset of stage t with h1 = ∅ and Ht = St the space of period-t histories.
A perfect public strategy is a map from the signal history and current demand
state to actions σ : H ×X → Q. A profile of strategies is strongly symmetric
if σ1(ht) = σ2(ht) for all ht ∈ H. Let Σ the set of all strongly symmetric
public strategies, non-empty by the existence of a symmetric stage-game Nash
equilibrium qn(x) in pure strategies. A profile σ ∈ Σ which for every ht ∈ H t

and t are a Nash equilibrium of the repeated game is a strongly symmetric
PPE. Let v(σ) the pay-off induced by σ ∈ Σ and V := {v(σ), σ ∈ Σ} ⊂ Rd.
Note that V is non-empty by the non-emptiness of Σ and bounded, above by
repeated play of qm(yj) and below, through individual rationality, by a pay-
off of 0. Let qj(σ) the equilibrium action profile and EΩ|qv

j the continuation

23Let ε→ 0 derive the first-order condition for the best-response

∂π(x, q)

∂q
|q′ = 0

and apply the implicit function theorem, and solve for the best-response under symmetric
actions to yield

∂qbr

∂x
= −

(
∂2π(q, x)

∂2q2

)−1(
∂2π(q, x)

∂q∂x
+
∂2π(q, x)

∂q∂q′

)
.

By symmetry ∂q/∂x = ∂q′/∂x. But if ∂q′/∂x < 0, the right-hand-side is strictly positive
and ∂q/∂x > 0, a contradiction. Thus qbr(q, x) crosses q once in x, qbr(q, x) space. But
then there exists x : limε→0 q

br(q) = q ∈ q for every a symmetric action profile q ∈ Q and
ε > 0.
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payoffs conditional on state j, with expectations taken over the signal space
when conditioning on actions q. The discounted average state-j payoff may
be generically decomposed into current and future payoffs

v(σ, xj) = (1− δ)π(xj, qj(σ)) + δ
∑

mjs∈mj

mjsEΩ|qv(σ, xs)

conditional on a history. Suppose for the moment that V is compact, and
consider the following property:

Definition 1. Bang-bang property. A strategy profile σ such that after any
history ht ∈ H t and t the continuation values are v(σ) ∈ extV is said to be
bang-bang.

Abreu, Pearce, and Stacchetti (1990) demonstrate that any efficient strongly
symmetric equilibrium with d = 1 (absorbing demand state) are necessarily
bang-bang in the sense of Definition 1, see in particular Theorem 7 and pp.
1056-1057. We now show that this result generalizes to environments where
payoffs follow a stationary and irreducible higher-dimensional Markov process.
We derive a contraction mapping B of which the equilibrium payoffs are a fixed
point, numerically computed by recursively applying B to a superset of the
equilibrium payoffs W ⊃ V ,

V = lim
n→∞

Bn(W ) = B(B(. . . B(B(W )) . . .))︸ ︷︷ ︸
n

.

The algorithm for computing equilibrium values is detailed in Appendix G.
Before stating the result, it is worth considering the intuition for why the
bang-bang result of Abreu, Pearce, and Stacchetti (1990) generalizes through
the notion of a lottery (6.B.1, Mas-Colell, Whinston, Green, et al. 1995). In
optimal equilibria of the game with static demand the players face a lottery
over extreme payoffs, with transition probabilities parameterized by the ac-
tion profile. In the game with Markov demand producers face a compound
lottery over extreme state-contingent payoffs while retaining exactly the re-
cursive structure of the game with static demand. But the risk neutral players
are indifferent between simple and compound lotteries with the same expected
value. Hence the equilibria with Markov demand may be “collapsed” state-
wise by convex combinations into an incentive-equivalent game with one state
and the APS algorithm applied. Because the convex combination is linear,
the extreme one-dimensional continuation value corresponds uniquely to the
convex combination of extrema across states. Hence the bang-bang property
applies in every state.
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To compactly state our result we present the generic strategy, introduce
the necessary notation, and state the result. Symmetric strategies prescribe a
reward and punishing action for each state j ∈ (1, . . . , d) for a total of 2d states.
In state j of the regular phase play qj ∈ Q2 in publicly observable quantities. If

an opponent observably deviates, q /∈ Qj
, or the signal realization pt ∈ P

j ⊂ R,
switch to the punishment phase in the next period and play q

j
∈ Q2. The

punishment phase continues if q /∈ Qj or pt ∈ P j ⊂ R, else switch to the
reward phase in the next period. Begin in the regular phase at t = 1. Let
τ : H × X × Q2 → [0, 1] the transition probability implied by the trigger
regions P j, P j, action profiles qj, qj and demand level x ∈ x. Equilibrium

path actions are thus determined by the collection ς = {qj, qj, τ j, τ j}dj=1. Let
W ⊃ V a superset of the equilibrium payoff set with maxW = w, minW = w.
The reward- and punishment phase payoffs are thus given by

vj(q, τ j,W ) := (1− δ)π(xj, q) + δ(τ j(q)m′jw + (1− τ j(q))m′jw)

vj(q, τ j,W ) := (1− δ)π(xj, q) + δ(τ j(q)m′jw + (1− τ j(q))m′jw)
(10)

given a bang-bang strategy with exogenously fixed extreme continuation val-
ues.
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Proposition 2. Optimal equilibrium. There exists a unique, efficient sym-
metric public perfect equilibria in bang-bang strategies. The equilibrium may
be computed as the fixed-point of a monotone set-valued contraction mapping

B(W ) = {Bj(W )}j∈D : Rd → Rd (11)

where
Bj(W )

=

co


max

q ∈ Q2, pj ∈ R+
vj(q, τ j(ι′q, pj),W )

min
q ∈ X2, τ j ∈ [0, 1]

vj(q, τ j(q),W )


such that

vj(q, τ j(ι′q, pj),W ) ≥ vj(q†, τ j(ι′q′, pj),W ) ∀ q† ∈ Q2

and
vj(q, τ j(q),W ) ≥ vj(q†, τ j(q†),W ) ∀ q† ∈ Q2

where the value functions are given by (10), q† are action profiles where the
player’s output is free and the opponent plays equilibrium actions, τ j(q) =
(1− 1(ι′q 6= ι′qj))τ j and

τ j(ι′q, pj) =

(
1− Fθ

(
pj

p(ι′q, xj)

))
(1− 1(ι′q 6= ι′qj)).

Proof. The proof proceeds in two steps. We first show that the results in
Abreu, Pearce, and Stacchetti (1990), hereafter APS, apply such that a unique,
optimal equilibrium exists. We then derive the operator B in terms of primitive
variables.

Existence of optimal equilibrium

We follow the notation of APS exactly and proceed in three steps. We first
verify that restrictions on the stage game in APS hold. Second we generalize
definitions of the primitive objects employed by APS to the model with Markov
demand. Third, we show that the resulting equilibrium can be decomposed
into d equilibria isomorphic with APS and the equilibrium may be computed
by applying the APS algorithm independently to each state and updating the
value set.
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The five assumptions on the stage game structure in APS are satisfied for
the model presented 3. Action spaces are finite (A1). The signal is continu-
ously distributed with support independent of actions (A2, A3). Stage-game
pay-offs are continuous in the signal (A4) and a pure-strategy Nash equilibrium
exists in the stage game (A5).

The strongly symmetric equilibrium payoffs V ⊂ Rd, non-empty by the
existence of pure strategy stage-game Nash equilibria, follow a d-state Markov
process with right-stochastic transition matrix M , stationary and irreducible.
Let mj the jth row of M a standard d-simplex. The continuation payoffs in
state j are in Vj := {m′jv : v ∈ V } ⊂ R. Recall that APS define L(Ω,RN)
the set of all equivalence classes of essentially bounded Lebesgue measurable
functions u from signal space Ω to the N -dimensional reals. I now define
the analogous set for strongly symmetric equilibria in a Markov setting. By
strong symmetry each state has a one-dimensional payoff set so N = 1 for
states j ∈ D. Now consider W ⊃ V ∈ Rd containing the equilibrium payoffs.
Let wj ⊂ R the jth dimension of W and Wj := {m′jw : w ∈ W} ⊂ R. Define
the set

Lj(Ω,W ) :=

 ∑
mjk∈mj

mjkuk : uk ∈ L(Ω, wk)


containing all convex combinations of Lebesgue-measurable functions uk ∈
L(Ω, wk). Let LM(Ω,W ) := {Lj(Ω,W )}dj=1 and

v(q, xj|u(·|q)) = (1− δ)π(xj, q) + δ
∑

mjk∈Mj

mjk

∫
Ω

uk(z|q)dz

the payoff induced by an action profile q and u ∈ Lj(Ω,W ). Let q′ ∈ Q2

denote an action profile where the players actions q ∈ Q varies freely and the
opponents’ action q′ fixed. Then q is admissible with respect to u if

v(q, yj|ud(·|q)) ≥ v(q′, xj|u(·|q′))

for all q′ ∈ Q2. Let Bj(W ) be the set of all v(q, xj|uj(·|q)) such that q ∈ Q2

is admissible with respect to uj ∈ Lj(Ω,W ). APS show that there exists a
unique u∗ ∈ L(Ω, extWj) that renders extB(Wj) admissible with respect toWj.
The convex combination is strictly increasing so extrema of the range extWj

are uniquely given as a function of extreme points in the domain {extwj}dj=1.
Hence there exist a unique set of functions {u∗k ∈ L(Ω, wk)}dk=1 in Lj(Ω,W )
such that

∑
mjk∈mj

mjku
∗
k(ω) = u∗(ω) for all ω ∈ Ω and extB(Wj) ∈ Bj(W ).
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Suppose there existed a u ∈ L(Ω,W ) \ L(Ω, ext) non-extreme that sup-
ported payoffs w ≤ minB(Wj) and w ≥ maxB(Wj). But the convex combina-
tion of Lebesgue-measurable functions u ∈ L(Ω,W ) is itself a measurable func-
tion from Ω tom′jw. For every uj ∈ Lj(Ω,W ) there exists a u ∈ L(Ω,Wj) such
that u(ω) = uj(ω) for all ω ∈ Ω. This is a contradiction. Thus extBj(W ) =
extB(Wj) rendered admissible by a unique u∗ ∈ L(Ω,Wj) and u∗j ∈ Lj(Ω,W )
such that u∗(ω) = u∗j(ω) for all ω ∈ Ω. The notion of self-generation gener-
alizes directly to BM(W ) := {Bj(W )}dj=1 as B1(W ), . . . , Bd(W ) are evaluated
independently.

Deriving the optimal equilibrium

The generic, symmetric bang-bang strategy prescribes a reward and pun-
ishing action for each state j ∈ (1, . . . , d) for a total of 2d states. We now
state the players’ strategy: In state j of the regular phase play qj ∈ Q2 in

publicly observable quantities. If an opponent observably deviates, q /∈ Q
j
,

or the signal realization pt ∈ P
j ⊂ R, switch to the punishment phase in the

next period and play q
j
∈ Q2. The punishment phase continues if q /∈ Qj

or pt ∈ P j ⊂ R, else switch to the reward phase in the next period. Begin
in the regular phase at t = 1. Let τ : H × X × Q2 → [0, 1] the transition
probability implied by the trigger regions P j, P j, action profiles qj, qj and
demand level x ∈ x. Equilibrium path actions are thus determined by the col-
lection σbb = {qj, qj, τ j, τ j}dj=1. Average pay-offs under this strategy satisfy
the following stationary system

v = (1− δ)π + δ(t ◦Mv + (ι− t) ◦Mv)

v = (1− δ)π + δ(t ◦Mv + (ι− t) ◦Mv)
(12)

where ◦ denotes element-wise multiplication and v, π, t are d-dimensional vec-
tors respectively stacking state-wise present-valued payoffs, stage-game profits,
and transition probabilities for the regular- and punishing phases. If we define
the first 1, . . . , d of the 2d total states as regular and the last d + 1, . . . , 2d
as punishing the system is governed in equilibrium by the 2d × 2d transition
matrix

T :=

(
T ◦M (ι− T ) ◦M
T ◦M (ι− T ) ◦M

)
(13)

where T := (t, t), T = (t, t) and ι := (ι, ι). An example of (13) for d = 2
is illustrated in Figure 11, where tij is the element in row i and column j of
T . Recall that PPE are sequential equilibria (9.C.4, Mas-Colell, Whinston,
Green, et al. 1995) so the continuation values equal equilibrium payoffs under
any deviation. Let q′ and q′ denote action profiles where the opponent plays
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Figure 11: Equilibrium states and transition probabilities for T in Equation 13
for the case with two demand states, d = 2.

equilibrium actions and the player’s action is free. For generic state-j equilibria
with action profile q let the payoff from playing q′ be

vj(q, qj) = (1− δ)π(q′, xj) + δ
∑

mjs∈mj

mjs (τ(q′)vs + (1− τ(q′)vs)

so the equilibrium condition for state j may be generically expressed as vj(qj) ≥
vj(q′) for all j ∈ D and q̃i ∈ Q. To ease notation let ∆π := π(q′) − π(q),
∆π := π(q′) − π(q) and ∆t := t(q) − t(q′), ∆t := t(q) − t(q′) vectors of
relative payoffs- and transition probabilities under a deviation in the reward-
and punishment phase, respectively. Let ∆v := v − v ≥ 0 the value function
differential. The equilibrium conditions may thus be compactly denoted

(1− δ)∆π ≤ δ∆t ◦M∆v

(1− δ)∆π ≤ δ∆t ◦M∆v
(14)

for all q′ ∈ Q2. Equation (14) states that in equilibrium, the relative gain to
a deviation may not exceed the expected- and discounted cost of incremen-
tally increasing the probability of switching to, or remaining in, the punishing
state. Incentives are said to have higher power the greater is ∆v, the value
function differential, dynamically linked across states through the transition
matrix M . Thus, higher-powered incentives in any state enforce lower transi-
tion probabilities and greater one-shot deviation pay-offs in all states. Notice
that by Proposition 2 the unique optimal pure strategy equilibrium maxi-
mizes the value of ∆v. It is useful to solve for ∆v in terms of primitives. Let
∆π := π − π and ∆t := t− t the relative payoff and duration of the reward
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phase. Incentive power may then be expressed as

∆v = (1− δ)∆π + δ(∆t ◦M∆v).

Let M∆τ = (∆τimij)i,j∈D a d× d matrix such that M∆τ∆v = ∆t ◦M∆v, so

∆v = (I − δM∆τ )
−1(1− δ)∆π (15)

expresses the value function differential in terms of primitives.24 Notice that
the marginal effect of relative profits ∆π and duration ∆t on incentive power
are complementary and that there are decreasing returns to punishment du-
ration on ∆v due to discounting.

We now characterize the transition functions. We begin by arguing that
the equilibrium action profiles satisfy

0 ≤ ι′qm(xj) ≤ ι′qj ≤ ι′qn(xj) ≤ ι′qj (16)

as all reward-phase action profiles ι′qm(xj) > ι′q and ι′q > ι′qn(xj) violate
individual rationality and punishing actions ι′q < ι′qn(xj) trivially do not
satisfy the bang-bang criterion. It follows that there is no myopic incentive to
decrease (increase) output in the reward (punishing) phase and the incentive
constraints (14) hold trivially for such deviations. In deriving transition prob-
abilities, attention may be restricted to deviations which increase (decrease)
output in the reward (punishing) phase. Recall that equilibrium output must
be in observable quantities. Fixing continuation values, We argue that the
most severe punishment is achieved by

τ j(q) = (1− 1(ι′q 6= ι′qj))τ j (17)

where 1(·) the indicator function and τ j ∈ [0, 1] governs the stochastic length
of the punishment. Note that (17) demands that the action profiles be in
observable quantities only, so any downward deviation is immediately detected
and there is no information asymmetry. In equilibrium τ j must satisfy

π(q′, xj)− π(qj, xj) =
δ

1− δ
(τ j − 0)

∑
mjs∈Mj

mjs(v
s − vs) (18)

24To verify that (I − δM∆τ )−1 is well-defined let λ1, . . . , λd the eigenvalues of δM∆τ so
the matrix I − δM∆τ has eigenvalues ρj = 1 − λj and the inverse exists if |ρj | < 1 for all
j ∈ D. But this holds by the following argument: Let M∆τv = λv for some eigenvalue
λ. Let vk the largest entry in the eigenvector such that |vk| ≥ |vs| for all k, s in D. Then∑d
j=1mkjvj = λ

δ∆τk
vk. But then | λ

δ∆τk
||vk| =

∑d
j=1mkj |vj | ≤

∑d
j=1mkj |vk| = |vk| so

| λ
δ∆τk
| ≤ 1. Since δ < 1 and |∆τk| ≤ 1 we conclude that λ < 1 implying 0 < ρj < 1 and

thus (I − δM∆τ )−1 exists.
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with equality for all j. If not, strictly lower pay-offs exist and the pay-off
is not extreme. Notice that, by implication, τ = 0 if the punishment is in
stage-game actions qn. Turn to the regular phase, and fix some qj to be
enforced. The optimal transition function τ minimizes inefficient equilibrium
transitions (size, τ) while maintaining incentive compatibility (power, τ(q′)−
τ(q)). The trade-off between size and power is optimized by restricting the
transition probability to the convex region of Fθ. We show that the regular-
phase transition probability is given by

τ j(ι′q, pj) =

(
1− Fθ

(
pj

p(ι′q̃, xj)

))
(1− 1(ι′q 6= ι′qj)) (19)

where 1(ι′q 6= ι′qj) is in an indicator for a public defection and the trigger
price is given by the smallest

pj ∈ [0, exp(−σ2
θ

3/2)p(yj, ι′q)]

satisfying the incentive conditions (14) for every q ∈ Q2.
A defection in hidden quantities is inferred from realizations of condi-

tionally log-normally distributed prices, ln p(q̃, x, θ̃) where we recall that the
distribution Fp(·|q) is parameterized by the action profile q. Notice that
the players’ inference problem corresponds to a goodness of fit test across
{ln p(q̃, x, θ̃) : q ∈ Q2}. The likelihood-ratio test of the hypothesis q̃ > q
is then uniformly most powerful by the Neyman-Pearson lemma, minimizing
size, given power. The log-normal distribution satisfies the monotone likeli-
hood ratio property in total output, that is

∂

(
fp(ln p|q̂)

fp(ln p|q)

)/
∂p < 0

for ι′q̂ > ι′q, so the likelihood of a deviation is monotonically increasing in the
realized price level. A tail test of observed prices pj ≤ p(q, x, θ̃) is a sufficient
statistic for the likelihood ratio. Thus the functional form of the transition
function is

Pr(p(q̃, x, θ̃) ≥ pj) = Pr

(
θ̃ ≤ pj

p(q, x)

)
= 1− Fθ

(
pj

p(q, x)

)
.

To determine the upper bound p, notice that incentives are provided by the
conditional difference (power) τ j(q

′
) − τ j(qj), q′ 6= q not the level τ j(qj)

or false positive rate. It is never optimal for the trigger price pj to locate
Fθ(p

j/p(q), x) in the concave region, as the same power can be achieved with
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a lower probability of false positives, increasing pay-offs while maintaining
incentives. The second derivative F ′′θ changes sign at the mode,

∂2Fθ(z)

∂z∂z
= 0

−fθ
z
− fθ · 2

(
ln(z)√

2
σθ +

σθ√
2 · 2

)
1

z
√

2σθ
= 0

z = exp

(
−3

2
σ2
θ

)
where replacing z with pj/p(q,x) in the final expression above yields the proposed
bound, restricting Fθ to the efficient convex region. Finally, and again for
fixed actions q, the trigger pj is optimally set to the lowest level such that
all incentive compatibility constraints hold, minimizing false positives. Notice
that the transition probability under punishment τ requires the output to be
in observable quantities. If Xj were non-observable the transition probability
would be governed by a tail test and imply efficiency losses.

A.3 Proposition 1. Covariance.

Proof. We show that
lim
σθ→0

lim
δ→1

q − q = qm − q∗

such that the stated result follows directly from Equation (16) in Appendix
(A.2) and that jointly profit-maximizing quantities qm(x) clearly are weakly
increasing in x.

By the assumption x : πm ≥ πn there are returns to coordinating output
in at least one demand state so M∆π > 0 if qm may be enforced. But in the
limit qm are enforceable: By the bang-bang property optimal punishment is
no less severe than permanent reversion to stage-game Nash equilibria. It is
therefore sufficient to show that qm may be enforced under that punishment.
Combine the equilibrium conditions (14) with the value function differential
identity (15) to yield the reward-phase equilibrium condition

∆π ≤ δ∆t ◦M(I − δM∆τ )
−1∆π (20)

where the equilibrium condition under punishment holds trivially under
permanent reversion to stage-game equilibria and is omitted. But then

lim
σθ→0

lim
δ→1

δM(I − δM)−1∆π = ∞
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as limσθ→0 ∆t = 1 − 0 = 1 and max eigM = 1 as M is a stochastic ma-
trix. Thus π = πm may be supported and incentives may become arbitrarily
powerful.

Recall from Proposition 2 that the optimal equilibrium demands the most
severe punishment, minimizing v, or equivalently, maximizing v. We show
that greater punishment quantities have a direct positive effects on incentives
via greater per-period losses and a negative indirect effect through reduced
punishment duration, but that the former dominates under the stated limiting
conditions. To begin consider the equilibrium condition under punishment

∆π ≤ δ∆t ◦M(I − δM∆τ )
−1∆π (21)

where we again combine the equilibrium condition (14) and the incentive power
identity (15). Notice that raising the punishment quantity q increases the per-
period loss ∆π and thus the power of incentives

∆v = (I − δM∆τ )
−1(1− δ)∆π

directly. But the one-shot deviation payoff ∆π will also increase. Clearly t = 0
under the absorbing punishment. It follows immediately from the equilibrium
condition (21) that any punishment with q > qn may not be absorbing, so
t in (14) must increase with q. But raising ∆t reduces ∆t which indirectly
lowers ∆v through a reduction in M∆τ . But notice that magnitudes of the
direct- and secondary effects are respectively increasing- and decreasing in δ.
For sufficiently patient players the direct effect dominates and punishments
are t

A.4 Proposition 3: Incentive power.

Proposition 3. Incentive power. Consider an unanticipated one-time shift
in incentive power from v, v to v′, v′ such that ∆v′ ≤ ∆v. The corresponding
optimal reward-phase output q′ ≥ q and transition probabilities t

′ ≥ t, t′ ≥ t
and punishment quantities q′ ≤ q weakly increase- and decrease, respectively.

Proof. In optimal equilibria the equilibrium conditions will hold with equality
for at least one violation, see the proof of Proposition 2 in Appendix A.2. The
equilibrium conditions will therefore be violated for a sufficient reduction in
incentive power such that initial action profiles and transition functions are
no longer enforceable. Applying B(∆V ′) from (2) it may be verified directly
that ∆π′ ≤ π, ∆π′ ≤ π and ∆t

′ ≥ ∆t, ∆t′ ≥ ∆t. The required reduction
in deviation payoffs implies q′ ≥ q and q′ ≤ q by the quantity ranking in
Equation (16).
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A.5 Proposition 4. Monitoring quality.

Proposition 4. Monitoring quality. Incentives ∆v are decreasing in signal
noise σθ.

Proof. A marginal increase σθ reduces the slope of Fθ(·) if

∂∆t

∂σθ
=

∂

∂σθ

(
Fθ

(
p

p(q′, x)

)
− Fθ

(
p

p(q, x)

))
< 0

is falling for all deviations q′. To verify recast the cumulative density function
in terms of the error function

Fθ

(
p

p(q, x)

)
=

1

2
+

1

2
erf

 ln
(

p
p(q,x)

)
− σ2

θ

2

2σθ

 .

But then

Fθ

(
p

p(q′, x)

)
−Fθ

(
p

p(q, x)

)
= erf

 ln
(

p
p(q′,x)

)
2σθ

− σθ
23/2

−erf

 ln
(

p
p(q,x)

)
2σθ

− σθ
23/2


with both arguments convexly decreasing in σθ. But the error function is
strictly increasing and

q′ > q =⇒ p(q′, x) < p(q, x) =⇒ ln

(
p

p(q′, x)

)
> ln

(
p

p(q, x)

)
and hence the slope ∆t decreases. By the proof of Proposition 2, at least one
incentive compatibility constraint binds under regular play, so the increase in
σθ will leave the equilibrium conditions violated upon impact. In response,
quantities q or trigger price p must increase, decreasing v, in turn increasing
v, and thus also ∆v.

A.6 Proposition 5. Dynamic demand.

Proposition 5. Demand dynamics and incentive power. Let j, s and
k 6= s indices in D = {1, . . . , d} and consider transition matrices M , M̂ where
m̂js > mjs, mjk/(1−mjs) = m̂jk/(1− m̂js) and M k = M̂ k for all k ∈ D \ j.
Let V and V ′ the set of equilibrium payoffs induced by M and M ′. Then V ⊂ V̂
if
∑

mjk∈Mj\mjsmjk∆v
k < ∆vs.
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Proof. Consider W = B(V |M̂), where {wk ∈ W : k ∈ D \ j} = {vk ∈ V : k ∈
D \ j}. Let extWj = {wj, wj} the extrema in dimension j and note that

∆wj = (1− δ)∆πj + δ∆τ
∑

m̂jk∈M̂j

mjkδv
k =: wj − wj

= (1− δ)∆πj + δτ

m̂js∆v
s + (1− m̂js)

∑
m̂jk∈M̂j\m̂js

m̂jk

1− m̂js

∆vk


= (1− δ)∆πj + δτ

m̂js∆v
s + (1− m̂js)

∑
mjk∈Mj\mjs

mjk

1−mjs

∆vk


⇒ ∆wj −∆vj = (m̂js −mjs)

∆vs −
∑

mjk∈Mj\mjs

mjk∆v
k

 ≥ 0

by construction. Greater incentive power in state j yields weakly more extreme
outcomes so B(V |M̂) is a proper superset of V and V ⊂ V̂ .

A.7 Proposition 6: Non-monotonic incentive power.

Proposition 6. Demand level and incentive power. Let σθ → 0, δ → 1
and mjj → 1. Then there exist demand levels xj ∈ {x′, x′′, x′′′} ⊂ X increasing
x′ < x′′ < x′′′ such that incentive-power ∆v(x′) < ∆v(x′′) > ∆v(x′′′).

Proof. Let ∆πc(x) := πm(x)−πn(x) the difference between symmetric maximum-
and stage-game Nash profits and ∆π(x) ∈ π(x)− π(x) the difference between
unconstrained reward- and punishment profits. Note that because M > 0
incentive power is complementary across states and ∆vj(x′) ≤ ∆vj(x′′) ≥
∆vj(x′′′) implies ∆v(y′) ≤ ∆v(x′′) ≥ ∆v(x′′′). By Proposition 2 incentive
power is locally increasing if ∆πc(x′′) ≥ ∆πc(x′). Let x′ := x : π(ε, ε, x′) =
0. The unconstrained reward phase payoff limmjj→1 ∆vj(x′) = 0 and by
individual rationality vj(x′) ≥ 0. Hence limmjj→1 ∆vj(x′) = 0. Next let
x′′ ∈ x : qm(y′′) < qn(x′′), implying and ∆πc(x′′) > 0 so the unconstrained
∆v(y′′) > 0. Finally let x′′′ : qn(y) = x∗ capacity constrained implying that
x = x∗ so ∆πc(y′′′) ≥ ∆π. But π(q∗, y) increases linearly at rate p(q∗)q∗ in
y whereas the jointly profit-maximizing payoff π(qq

m
, x) increases at most by

p(qm(x))qm(x). By Assumption (1) the term p(q)q is increasing everywhere
in q so p(q∗)q∗ ≥ p(qm)qm. But then ∆πc(y) decreases in y for all y : qn = q∗

and limx→∞∆v(x) = 0.
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A.8 Proposition 7: Intertemporal incentives

Proposition 7. Intertemporal incentives. Let x′ such that qm(x′) <
qn(x′) < q∗. There exists parameters x, M , δ < 1 and σθ such that q(i) =
qm(i), q(i) = q∗, and q(xj) = qn(xj) = q(xj) for identical demand levels
xi = xj = x′.

Proof. Proof is by construction. Let M such that mi∆v > 0. By the proof of
Proposition 1 there exist δ < 1 and σθ > 0 such that q(i) = qm(i), q(i) = q∗.

Let 0 = xk ∈∈ x and fix δ and σθ. Then limmjk→1mj∆v = 0 and q(xj) =
qn(xj) = q(xj).
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B Parameter values for numerical solution

The inverse demand function is p(y, q) = y(ξ + βq)−1, with ξ and β governing
the inverse elasticity of demand. The reference parameters are held constant
when evaluating a range of the alternative parameter.

Parameter Description Value

|Q| Elements in action set 31

qmax Output capacity 3

δ Discount factor 0.9

β Inverse demand parameter 3

ξ Inverse demand parameter 10

σθ Signal noise, reference 0.15

σθ Range of signal noise {0.05, 0.1, · · · , 0.5}
exp(−3/2σ2

θ) Noise, reference 0.97

exp(−3/2σ2
θ) Range of noise {0.99, · · · , 0.69}

y1, y2 Demand level, reference (5.2, 50.9)

y2 Range of demand levels {5.2, · · · , 209.3}
m1,m2 Persistence, reference (0.9, 0.9)

m2 Range of persistence parameters {0.1, 0.2, · · · , 1}

Table 1: Parameter values for numerical solutions.

C Appendix: Figures
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(a) Low demand (b) High demand

(c) Low demand (d) High demand

Figure 12: Incentive power ∆v against the level x2 and persistence m2 of the
high demand state and the signal noise distributions’ mode exp(−1.5σ2

θ) (see
Appendix A.2). The incentive power is evaluated in the low (a,c) and high
(b,d) demand states x1 and x2, respectively.
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Figure 13: Implied prior and realized posterior distributions over VAR coeffi-
cients. The first two rows reports the non-switching block, with priors in green
and posterior in gray. The final row shows the switching equation with priors
in dashed lines.
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Figure 14: The prior (green) and posterior (gray) distributions over transition
probabilities for the pro- and countercyclical regimes, Pr(st+1 = PC|st = PC)
(left-hand-side) and Pr(st+1 = CC|st = CC) (right-hand-side) with median
and 68% credible sets are reported in red.
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D Appendix: Data

D.1 Data description, sample and source

The data are described in Table 2. The normalized, endogenous variables of
the MS-BVAR are plotted in Figure 15.

Data Description Sample Source

∆qt The twelve-month change in to-
tal OPEC crude oil production
in thousands of barrels per day.
The time series is standardized
prior to estimation.

1984:M01–2019:M12 International Energy Agency
Monthly Oil Data Service (IEA
MODS)

∆xt The twelve-month log change in
the OECD+6 industrial produc-
tion index provided by Baumeis-
ter and Hamilton (2019a). This
detrending procedure is in line
with the recommendations of
Hamilton (2018) and is equiva-
lent to the forecast error from
a random walk model with a
twelve-month forecast horizon.

1958:M01–2019:M12 https://sites.google.com/

site/cjsbaumeister/research

The Kilian (2009) index of de-
mand for industrial commodi-
ties.

1968:M01–2020:M04 https://sites.google.com/

site/lkilian2019/research/

data-sets

∆ log pt The twelve-month log change in
the real price of oil. The underly-
ing time series is the refiner’s ac-
quisition cost of imported crude
oil.

1974:M01–2019:M12 U.S. Energy Information Admin-
istration (EIA).

We deflate the price by the U.S.
CPI.

CPIAUCSL at the FRED Data Ser-
vice, Federal Reserve Bank of St.
Louis.

pft,t+h The end of month West Texas In-
termediate futures contract price
at time t with delivery h months
in the future.

1985:M01–2019:M12 Thomson Reuters Datastream:
NCLC.h

Table 2: Variable Summary and Data Sources

D.2 Narrative evidence

We downloaded the 2001–2019 Oil Market Report (OMR) from iea.org.
The 1990–2000 reports are archived on https://archive.org/web. Each re-
port features an executive summary of the key forces driving oil price change
since last report. We construct an indicator series for when IEA reports that
OPEC’s actions increased or decreased prices and for when there was an ex-
ogenous disruption, yielding three series in total. The coding involves some
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Figure 15: Normalized raw data. January 1985 - September 2019. The demand
indicator is plotted the left-hand-side, twelve-month changes in log real oil
prices and OPEC output on the right-hand-side.

judgment. The full set of executive summaries and our coding procedure are
available upon request. We provide an example for each series below.

• OPEC actions reducing prices: December 2014: “Oil prices contin-
ued to plunge in November and into early December. The selloff gained
pace after OPEC on 27 November decided to keep its output target
unchanged.”

• OPEC actions increasing prices: December 2017: “Benchmark crude
prices rose by $4-5/bbl on average in November and traded at their high-
est level in more than two years in early December. The extension of the
OPEC/non-OPEC output cuts and, latterly, the closure of the Forties
pipeline system were factors.”

• Exogenous event affects OPEC production: January 2006: “NYMEX
WTI averaged $59.45/bbl in December and pushed above $64/bbl in
early January on strong gasoline prices, Nigerian outages and uncer-
tainty about Iran’s nuclear program.”
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Prior distributions for the switching equation

Parameter(s) Variable(s) Density Mean St. dev.

µ•(s
i) Intercept Normal 0 0.05

β1(si) ∈ B• Contemporaneous Normal 0 0.071
β2(si) ∈ B• Contemporaneous Normal (−1)i × 0.2 0.071
∀ ζ(si) ∈ C•1(si) 1st lag Normal 0 0.071
p11 Probability Dirichlet 0.50 0.29
p22 Probability Dirichlet 0.50 0.29
ρj Probability Dirichlet 0.50 0.22

Table 3: Prior distributions for Equation 5, the transition matrix P and the
initial probabilities needed to initialize the Hamilton filter ρj. s

1 = PC and
s2 = CC.

E Appendix: Prior selection

Priors on coefficients of switching Equation 5 and transition matrix P are
listed in Table 3. Parameters in B• and C•` denote coefficients on contem-
poraneous and lagged terms respectively. The columns pi1 and pi2 in P are
Dirichlet distributed Dir(αj) with α1 = [ 1 1 ] and α2 = [ 1 1 ]. This choice of
shape parameters results in uniform (flat) prior distributions for the transition
probabilities. For ρj, we specify Dirichlet prior distribution αj = [ 2 2 ] as to
put equal probability of being in a given regime at t = 1.25

The implied prior distributions of the VAR system will for the unrestricted
equation be transformations of the distributions listed above and the diffuse
priors from the non-switching equations that have Gaussian inverse-Wishart
posterior distributions. As explained by Hamilton (2016, p. 175), the coef-
ficients for the full VAR system can be recovered by computing Σ̂12(st) =
B̂•(st)Σ̂22 and then Â•(st) = Ĉ•(st) + Σ̂12(st)Σ̂

−1
22 Â◦ = Ĉ•(st) + B̂•(st)Â◦.

26

If we evaluate these relationships at the prior means, noting that the prior
means of A◦ is the OLS estimates, and assume for for simplicity that we have

25In our dual regime case, the Dirichlet distribution has only two inputs of shape param-
eters. For this special case, its probability density function is identical to that of the beta
distribution.

26With the notation used in the main text, these computations can be done directly if
we suppress the intercept term and assume one lag. A more compact notation is used to
describe our model and the estimation in Appendix H from which these relationships can
be computed directly.
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only one lag, then we are left with

Ā•(st) =
[
0 β̄2(st)

] [α̂21 α̂22 α̂23

α̂31 α̂32 α̂33

]
The imputed prior means for our parameters of interest α13(st) is then −0.273
and 0.273 for PC and CC, respectively. These imputed priors can be seen in
Figure 13 for the first lag.

F Robustness and extensions

This section describe a variety of extensions and robustness checks. Apart
from the specification of the baseline model, we also look at extensions of the
model where we substitute baseline model variables with other measures of oil
demand and oil supply. Finally, we report a summary of MCMC covergence
diagnostics.

F.1 Model specification and prior sensitivity

Our choice to specify a model of 24 lags is motivated by the literature. Among
others Hamilton and Herrera (2004), Kilian and Murphy (2014) argue that a
long lag order is required to capture the full transmission of oil price shocks
and to study the dynamics of business cycles in commodity markets. Kilian
and Lütkepohl (2017) advocate an ex ante choice of lag order rather than
relying on information criteria. We have estimated our model with 12 and 18
lags as well. The main results are all similar in substance, with the exception
that regime classification becomes less precise during the 2000s.

Our baseline specification prescribes non-informative priors on the non-
switching equation and zero-mean normal priors for coefficients in the switch-
ing equation. Zero means are motivated by the data being in growth rates and
not in levels. Estimating the model with looser priors for the switching block
does not change our conclusions. For the contemporaneous term β2(st) ∈ B•,
a prior mean of zero is not robustly feasible because it causes degeneracy
in expectation when the full VAR representation is computed (see Appendix
E for details on this transformation). Neither do we hold prior beliefs that
the contemporaneous correlation between quantities produced and prices is
zero. Our sensitivity analysis also suggests that the prior means of β2(PC)
and β2(CC) must be sufficiently different (approximately ±0.05) in order to
reliably identify the regimes.
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Figure 16: Exact impulse response functions (EIRF) using the specification
with the Kilian (2009) indicator for real economic activity. The pro- and
countercyclical regimes are plotted in red and blue, respectively. The dashed
lines show regime-dependent response (RDIRF) and shaded areas 68% credible
sets. The impulse-response function (IRF) of the one-regime BVAR reported
in green together with the 68% credible set.

F.2 The Kilian index of real economic activity

We re-estimate our baseline model with one simple change. In place of the
twelve-month growth rate of the OECD+6 index of industrial production
(Baumeister and Hamilton, 2019a), we include the Kilian index of global real
economic activity (Kilian, 2009). As can be seen in Figures 16 and 17, the
exact impulse response functions and posterior distribution over regime indi-
cator variables do not substantially change when this substitution is made.
This exercise highlights that our findings are driven mainly by switching in
the price-quantity relationship and not the choice of demand indicator. The
main difference lies again in poorer regime classification as reflected by an
indeterminate posterior mean of the regime indicator sequence.
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Figure 17: Posterior regime indicator against time using the specification
with the Kilian (2009) indicator for global demand. Pro- and counter-cyclical
regimes are denoted by PC and CC. Median, black points and mean, blue.
The lightly shaded areas denote output wars with high confidence of market
flooding behavior, ∆ ln pt < 0 < ∆qt and Pr(st = PC) > .75. The darkly
shaded red and blue areas denote months in which the International Energy
Agency’s Oil Market Report (OMR) finds that OPEC’s actions are substan-
tially decreasing or increasing the price of oil.
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F.3 Alternative oil supply variables

We run two additional estimations of our baseline model to assess whether
our results are spurious. Instead of estimating the model with OPEC crude
oil production, we include total non-OPEC production as well as global crude
oil production. The estimation procedure mechanically decomposes both non-
OPEC and total world output into pro- and countercyclical regimes. See
Figures 18a and 18b for the impulse response functions.

Notice that there is no response of real oil prices to non-OPEC output
shocks while the aggregate response is nearly identical. For the specification
employing total world production, the posterior regime classifications over-
lap during output wars, showing that OPEC’s actions affect the aggregate
outcome in a substantively similar way, see Figure 19b. Unsurprisingly, the
specification with total output registers several instances of procyclical behav-
ior not present in the baseline model with OPEC output. For instance, the
procyclical production in August and September of 2005 likely reflects the ef-
fects of Hurricane Katrina. Finally and importantly, there is no evidence of
non-OPEC output wars, see Figure 19a. Interestingly, the posterior mean of
the regime indicator sequence indicates that non-OPEC output is largely pas-
sive prior to 2013, after which it becomes more strongly pro-cyclical. This is
consistent with evidence in Gundersen (2020) of increased importance of U.S
oil production following the shale revolution.
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Figure 18: Exact impulse response functions (EIRF) using the specifica-
tion with Non-OPEC and total global output. The pro- and countercycli-
cal regimes are plotted in red and blue, respectively. The dashed lines show
regime-dependent response (RDIRF) and shaded areas 68% credible sets. The
impulse-response function (IRF) of the one-regime BVAR reported in green
together with the 68% credible set.
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Figure 19: Posterior regime indicator against time using the specification with
non-OPEC (top) and total (bottom) output. Pro- and counter-cyclical regimes
are denoted by PC and CC. Median, black points and mean, blue. The lightly
shaded areas denote output wars with high confidence of market flooding be-
havior, ∆ ln pt < 0 < ∆qt and Pr(st = PC) > .75. The darkly shaded red
and blue areas denote months in which the International Energy Agency’s Oil
Market Report (OMR) finds that OPEC’s actions are substantially decreasing
or increasing the price of oil.
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F.4 MCMC convergence diagnostics

We perform simple diagnostics to assess convergence of the MCMC sampler.
First, we compute Geweke inefficiency factors for each parameter. An efficiency
factor of 5 means that we will need 50,000 draws from the Gibbs sampler to
obtain the same efficiency as 10,000 ideally obtained IID draws. With our
100,000 draws, the inefficiency factors of most parameters range between 0.5
and 2. A handful of parameters have larger inefficiency factors than this,
but none are above 17. A rule of thumb is that inefficiency factors below 20
suggest convergence.27 See Figure 20 for the distribution of inefficiency factors.
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Figure 20: Distribution of inefficiency factors for all parameters. An ineffi-
ciency factor below 20 is conventionally deemed acceptable.

Second, for each parameter, we perform a difference in means test where the
means are computed for the first 10% and the last 50% of the draws. Apart
from a few exceptions, we cannot reject the null hypotheses of no differences in
means at the 1% or 5% levels.28 A plot of the MCMC draws of the parameter

27The expression for the inefficiency factor is given by 1 + 2
∑∞
k=1 γ(k), where γ(k) is the

autocorrelation function for the trace of a parameter at horizon k. Hence, an inefficiency
factor of 1 means that there is no autocorrelation among the draws.

28It is well known and can be shown through simulation that the p-values of a test statistic
is uniformly distributed if the null hypothesis is true. With hundreds of parameters to test,
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β2(CC) can be seen in Figure 21. This plot is representative of those of the
other parameters and do indeed resemble white noise.
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Figure 21: The trace of β2(CC) from the Gibbs sampler. It is representative
of other parameter draws in resembling white noise.

we are bound to observe p-values that are smaller than the conventional significance levels
by pure chance.
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ONLINE APPENDIX
— For Online Publication Only —

G Algorithm to solve for efficient equilibrium

We compute the equilibrium pay-offs V by numerically iterating the operator
B, defined by equations (2) and (11), on a set of initial values W ∗ satisfying
V ⊂ W ∗. We describe the initialization procedure, then give an overview of
the main steps in the computation, and finally detail the exact zero-finding
algorithm.

Block A - Initialize

Select a tolerance ζ and parameters, see Table 1. Let

wj0 := max
q∈Q2

π(q, xj) + π(q, xj)

wj0 := min
q∈Q

π(q, xj)

be initial values in W ∗ for all j ∈ D. Let the corresponding action profiles
by qj0 and qj

0
. Let payoffs be vj(q, pj,Wt) and vj(q, τ j,Wt) under action profile

q, continuation values Wt, trigger price pj, and transition probability τ . The
set of feasible and in individually rational deviations are {qj + ε, ..., qmax} and
{0, ε, ..., qj − ε} in the reward- and punishment state respectively.

Block B - Iteration

Index the iterations by t = {0, 1, 2, ...}, with t = 0 denoting the initial values.
Value functions have converged when |wjt −w

j
t−1| ≤ ζ and |wjt −w

j
t−1| ≤ ζ for

all j. Starting from the initialization value t = 0, iterate the following steps
until convergence:

1. Compute candidate actions, trigger prices, and transition probabilities.
Search for each j ∈ D for every candidate q, q in Q2 for a trigger pj(q)
and transition probability τ j satisfying incentive compatibility for all
deviations with equality for at least one deviation

v(q, pj,Wt) = v(q′, pj,Wt) (22)
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vj(q, τ j,Wt) = vj(q′, τ j,Wt) (23)

and for one q, q in Q2

v(q, pj,Wt) ≥ v(q′′, pj,Wt)

vj(q, τ j,Wt) ≥ vj(q′′, τ j,Wt)

for all other q′′ 6= q′, q′′ 6= q′ in Q2. Gather candidate trigger prices,

transition probabilities, and quantities in pjt , τ j, Q
j

t , and Qj

t
.

2. Compute extreme continuation values. Evaluate continuation values

for every combination (qjt , p
j
t) ∈ {Q

j

t ,p
j
t} and (qj

t
, τ jt) ∈ {Qj

t
, τ jt} and

select the extreme continuation values:

wjt+1 = max
(qjt ,p

j
t )∈{Q

j
t ,P

j
t}
v(qt, p

j
t ,Wt) (24)

wjt+1 = min
(qjt ,τ

j
t )∈{Qj ,T j}

vj(q
t
, τ jt ,Wt) (25)

Due to discounting, we have wjt+1 ≤ wjt and wjt+1 ≥ wjt .

3. Compute candidate transition probabilities. Gather the wjt+1 and wjt+1

in d-dimensional vectors wt+1, wt+1 and define Wt+1 = {wt+1, wt+1}.

H Appendix: Gibbs sampler

Our estimation procedure largely follows Hamilton (2016, p. 181). However,
we include independent parallel sampling from two separate blocks in order
to allow parts of the VAR system to remain constant across regimes. We use
subscript j ∈ {1, 2} to designate the two different regimes, but the sampler
generalizes to allow for a any number of regimes N ≥ 2. In our baseline
specification, we do not allow the covariance matrix of the regime-switching
block to be governed directly by the Markov chain. Rather it is conditional
on the switching of the VAR coefficients.
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For convenience, the two blocks are to be estimated are repeated below.

∆qt = µ•(st) +B•(st)y◦t +
L∑
`=1

C•`(st)yt−` + vt, vt ∼ N(0, σ2
v(st))

y◦t = µ◦ +
L∑
`=1

A◦`yt−` + e◦t, e◦t ∼ N(0,Σ◦)

To further simplify the exposition we rewrite the equations into

∆qt = G•(st)zt + vt

y◦t = A◦xt−1 + e◦t

where:
G•(st) =

[
B•(st) C•(st)

]
zt =

[
y′◦t,x

′
t−1

]′
xt−1 =

[
y′t−1,y

′
t−2, ...,y

′
t−L, 1

]′
The collection of objects that we are interested in are the covariances σ• =
{σ2

v} and σ◦ = Σ◦, coefficients ϕ• = {G•1,G•2} and ϕ◦ = A◦, Markov
probabilities p = {ρ1, ρ2, p11, p12, p21, p22} and finally the sequence, one for each
date, of regime indicators S = {s1, ..., sT}. The ρj are initial probabilities of
being in regime j at t = 1 and are needed to initialize the Hamilton filter. We
now describe how the conditional posterior distributions of these objects are
obtained.

Initial conditions

To start the sampler we provide an initial value for each parameter. Given
some S0 and our priors, the remaining objects may be drawn from the ap-
propriate distributions as described below. In blocks A and B, we employ
the OLS estimates of the parameters conditional on S0 to draw initial pa-
rameter values from these distributions. In theory the estimated posterior
distribution will converge for any initial S0 that does not imply degeneracy,
e.g. S0 = {j, j, ..., j}. Faster convergence may be achieved by providing an
appropriate initial S0. To obtain S0, we estimate a simple single-equation
Markov-switching model of the following form

∆ ln pt = µ(st) + ϕ(st)∆xt + εt, εt ∼ N(0, σ2) (26)
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by Maximum Likelihood as described in Hamilton (2016). The data used to
estimate this model is identical as in our VAR model framework. To generate
S0, we compute the smoothed regime probabilities Pr(st = j|ΩT ;λ) for each t.
We classify each st ∈ S0 with the decision rule that if Pr(st = j|ΩT ;λ) ≥ 0.5,
then st = j. To be confident that we will obtain the same posterior distribution
irrespective of the initial conditions, we have run the Gibbs sampler using
randomly generated S0 and obtain the same distribution.

Block A — σ2
v|ΩT , p,ϕ•,S and Σ◦|ΩT ,ϕ◦

Suppose that we have draws from a previous iteration of the sampler (or initial
conditions) ` at hand and want to now draw sample ` + 1. We first draw the
variance σ2

v from an inverse-Wishart distribution with scale matrix (I + H`
•)

and T + η degrees of freedom where

H`
• =

T∑
t=1

(∆qt − δ`1tG`
•1zt − δ`2tG`

•2zt)(∆qt − δ`1tG`
•1zt − δ`2tG`

•2zt)
′

is the sum of residual outer products and δjt an indexing variable such that
δjt = 1 if st = j and zero otherwise.29 We then sample the regime-independent
block covariance matrix Σ◦ from an inverse-Wishart distribution with scale
parameter (I +H`

◦) but where

H`
◦ =

T∑
t=1

(y◦t − A`◦xt−1)(y◦t − A`◦xt−1)′.

At the conclusion of this step we have the variances σ`+1
• and σ`+1

◦ of both
blocks.

Block B — G•j|ΩT , p,σ•,S and A◦|ΩT ,σ◦

To draw the coefficients for the regime-switching block, we sample from a
normal distribution given a precision matrix computed using the draw σ`+1

• .

In particular, g•j
`+1 ∼ N(ĝ•j,K

−1
g ) where Kg = V −1

g + δ`jtz
′
t(σ
−2(`+1)
v )zt,

ĝ•j = K−1
g (V −1

g g0j+δ
`
jtz
′
t(σ
−2(`+1)
v )∆qt), V g is the prior covariance and g0j the

prior mean for regime j. For computational efficiency, we implement Algorithm

29As the inverse-Wishart distribution is multivariate analogue to the inverse-gamma dis-
tribution, we are in effect sampling from the inverse-gamma distribution as the regime-
switching block only contains one equation.
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1 described in Chan (2020). For the regime-independent block, we specify
diffuse priors and sample α`+1

◦ ∼ N(α̂`+1,Σ`+1
◦ ⊗ (xt−1x

′
t−1)−1) where α̂`+1 =

vec[Â′`+1
◦ ] which is obtained through OLS.

To obtain the VAR representations described in Equation 4, one for each
regime, we apply the transformation described by Hamilton (2016, p. 175). As
the final step, we evaluate the eigenvalues of the companion forms to ensure
that we have obtained stationary systems. If at least one of the eigenvalues
lies outside the unit circle, we abandon the draws for ` + 1 and roll back the
sampler to start over from Block A.

Block C — p|ΩT ,σ•,ϕ•,S
In this block, we draw the initial regime probabilities necessary to initialize the
Hamilton filter {ρj}2

j=1 and the columns of the transition probability matrix
P , {pij}2

j=1. The conditional posterior distribution for ρj is sampled from
D(κ1 + δ`11, κ2 + δ`21). We then proceed to count the number of jumps between
regimes in the previous iteration as well as the number of times the regime
did not change, T `ij =

∑T
t=2 δ

`
itδ

`
jt−1. The columns of P are then drawn from

D(κi1 + T `i1, κi2 + T `i2) for i ∈ {1, 2}. D(·) in this case refers to the Dirichlet
distribution and the values separated by commas are the shape parameters.

Block D — S|ΩT , p,σ•,ϕ•

In this final step, we apply the Hamilton filter (Hamilton 2016, p. 172) to ob-
tain the sequences of probabilities Pr(st = j|Ωt, p,σ•,ϕ•). To obtain S`+1 =
{s1, ..., sT}, we begin iterating backwards by first drawing a number from
U(0, 1). If this draw is smaller than Pr(sT = 1|ΩT , p,σ•,ϕ•) we set s`+1

T = 1
and s`+1

T = 2 otherwise. To continue for T − 1, we first compute the joint
probability Pr(sT−1 = i, sT = s`+1

T |ΩT , p,σ•,ϕ•)
30 with which we obtain the

conditional probability Pr(sT−1 = i|sT = s`+1
T ,ΩT , p,σ•,ϕ•). Using this prob-

ability, we make a new draw from U(0, 1) and assign a new value for s`+1
T−1 using

the same rule as before. We repeat these steps for t = T − 2, ..., 1 to obtain
the complete a draw from the conditional posterior distribution of S`+1. S`+1

will determine the value of δjt in iteration `+ 2.

30See Hamilton (2016, p. 173) for details.
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I Appendix: Identification

We show that the sign of covariance between quantities produced and prices
determines the sign of the impact effect of OPEC supply shocks on the real
price of oil. For any positive-definite matrix Σ, there exists a lower triangular
matrix L such that Σ = LL′, the Cholesky decomposition of Σ. Suppose that
Σ is a covariance matrix that is symmetric with positive entries on its diagonal.σ2

1 σ12 σ13

σ21 σ2
2 σ23

σ31 σ23 σ2
3

 =

`11 0 0
`21 `22 0
`31 `32 `33

`11 `21 `31

0 `22 `32

0 0 `33


=

 `2
11 `11`21 `11`31

`11`21 `2
21 + `2

22 `21`31 + `22`32

`31`11 `31`21 + `32`22 `2
31 + `2

32 + `2
33


From this relationship the elements of L may be expressed as functions of the
variances and covariances. Three of the solutions are trivial:

σ2
1 = `2

11 ⇒ `11 = σ1,

σ21 = `11`21 ⇒ `21 =
σ21

σ1

,

σ31 = `11`31 ⇒ `31 =
σ31

σ1

We can obtain the other three by substitution:

σ2
2 = `2

21 + `2
22 ⇒ `22 =

√
σ2

2 −
σ2

12

σ2
1

,

σ23 = `21`31 + `22`32 ⇒ `32 =
1√

σ2
2 −

σ2
12

σ2
1

(
σ23 −

σ12σ13

σ2
1

)
,

σ2
3 = `2

31 + `2
32 + `2

33 ⇒ `33 =

√√√√σ2
3 −

σ2
13

σ2
1

− 1

σ2
2 −

σ2
12

σ2
1

(
σ23 −

σ12σ13

σ2
1

)2

In the estimated reduced form model, the covariance between quantities pro-
duced and prices, σ31 is respectively negative- and positive in the pro- and
countercyclical regime. In turn the impact responses, `31, of oil prices to
OPEC supply shocks are respectively negative and positive. Changing the
variable ordering, e.g. with OPEC production at the bottom will scale this
covariance by a different factor.
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