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1 Introduction

Increases in the general price level of goods and services, known as inflation, affects the
decisions of households, firms and governments making it one of the most important
macroeconomics indicators. Since inflation can be affected by monetary policy, a central
objective of many central banks around the world is to maintain a stable rate of inflation
thereby achieving stable macroeconomic outcomes. For instance, in the early 1990s, the
Reserve Bank of Australia (RBA) formulated an explicit inflation target of 2–3 per cent,
on average, over the medium term, making it one of the early adopters of the inflation
targeting framework (Dixon and G.C., 2004). Since then, Australian CPI inflation has
typically ranged between 0-6 per cent in any given quarter. The Australian experience has
shown that inflation is difficult to fine-tune within a narrow band. As a result, obtaining
accurate inflation forecasts is critical in making correct policy decisions.

Despite being an early adopter of inflation targeting, the literature on forecasting Aus-
tralian inflation is relatively sparse (see, e.g. Beechey and Österholm (2010); Garnier
et al. (2015); Cross and Poon (2016) and references therein). Moreover, none of these
papers has investigated whether explicit modeling of the underlying trend can enhance
forecast performance. This is surprising since fluctuations in the trend, as opposed to
period-to-period fluctuations, are more in line with the RBA’s definition of a medium
term inflation target. With this potential shortcoming in mind, our objective in this
paper is to determine whether a class of trend models with various error term structures
can improve upon commonly used models in the literature.

To this end, we provide the first a systematic study on forecasting Australia inflation
using time-varying trend models with various specifications for flexible error structures.
In trend models, the time series is decomposed into an underlying trend and transitory
component. In the literature on forecasting US CPI inflation, it has been shown that
allowing for time-varying volatility in both components enhances overall forecast perfor-
mance (Stock and Watson, 2007). Since this is the first paper to consider such models
for the Australian economy, we consider a trend model with stochastic volatility in the
measurement equation (Trend-SV), a trend model with a moving average and stochastic
volatility (Trend-SV-MA) (Chan, 2013), and also revisit the trend model with stochastic
volatility in both the measurement equation and the state equation (Trend-2SV) (Stock
and Watson, 2007). Set in this manner we can learn which trend model is the best to fore-
cast inflation in Australia. In addition to these models, we also consider other competing
models. This includes autoregressive (AR) and Phillips curve (PC) models with various
specifications on the error terms, along with a combination based forecast. PC mod-
els, which rely on the unemployment rate, remain attractive models in inflation forecast
(e.g., Staiger, Stock, and Watson, 1997; Brayton, Roberts, and Williams, 1999; Garratt,
Mitchell, Vahey, and Wakerly, 2011). They achieved remarkable forecasting performance
in some periods in the U.S. from 1984 to 1996, and remain an important candidate model
for inflation forecasts in Australia.

In line with Australia’s adoption of inflation targeting, our forecast evaluation sample
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ranges from 1993Q3-2019Q4. Using both point and density forecasts, our results show
that trend models with stochastic volatility consistently performance well across all fore-
cast horizons. More specifically, we find that Trend-SV forecasts well at short horizons
in point forecast and all forecast horizons in density forecasts, while Trend-2SV-MA and
Trend-SV-MA have the best forecasting performance on medium and long horizons in
point forecasts, respectively. In the point forecast analysis, we also find that the trend
models can better predict underlying changes in the inflation dynamics as compared to
the AR and PC models. For instance, trend models can capture the dramatic decrease
in the underlying trend of inflation when the inflation targeting policy was implemented,
the a one-off 10 per cent Goods and Services Tax inflationary episode in 2000, and the
gradually decline in inflation since 2014.

The remainder of the present paper proceeds as follows. Section 2 describes the specifi-
cations of the trend models. Section 3 presents the data employed in the estimation and
forecasting exercises, followed by the simulation methods of the parameters. Section 4
discusses the forecast results of all the competing models for both the recursive forecast,
combination forecast, and rolling window forecast. Section 5 concludes the entire paper.

2 Trend Models and Other Competing Models

The models used in this paper for forecasting Australia inflation can be divided into three
groups. We firstly introduce the trend model group, which is time-varying trend group
and specified by the underlying trend of inflation and time-varying parameters. There
are then two groups of competing models: The autoregressive model (AR) group and the
Phillips curve (PC) group. Since PCs are often estimated using levels or first differences,
we further split the PC group into two subgroups. The first subgroup specifies PCs in
terms of the inflation and the unemployment rate (PC group), and the second subgroup
uses their first differences (PCd group). The following sections provide details of the
specifications on error terms in each group.

2.1 The Trend Model Group

2.1.1 Trend

The first model is a trend model with a Gaussian distributed error term (Trend) and
constant variances, which is defined as:

yt = τt + εyt , εyt ∼ N (0, σ2
y), (1)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (2)
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where the error terms εyt and ετt are assumed to follow a Gaussian distribution, and they
are serially uncorrelated and independent. Equation (1) is known as a measurement
equation, in which τt is the latent trend or unobserved component. Equation (2) is the
state equation which we specify as a random walk.

2.1.2 Trend-SV

The trend model can be extended by allowing the measurement equation to have stochas-
tic volatility (Trend-SV):

yt = τt + εyt , εyt ∼ N (0, eht), (3)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (4)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (5)

where the error terms εyt , ε
τ
t and εht are serially uncorrelated and independent of each other.

Note that the error term in Equation (3) are specified by stochastic volatility, thereby
allowing the magnitude of the variance to change over time. In contrast, Equation (4)
has a constant error term.

2.1.3 Trend-2SV

Following Stock and Watson (2007), the Trend-SV model can be further generalized to
have stochastic volatility in the state equation (Trend-2SV):

yt = τt + εyt , εyt ∼ N (0, eht), (6)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (7)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (8)

gt = gt−1 + εgt , εgt ∼ N (0, σ2
g), (9)

where the error terms εyt , ε
τ
t , ε

h
t and εgt are serially uncorrelated and independent of each

other.
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2.1.4 Trend-SV-MA

Following Chan (2013), we also consider a version of the Trend-SV model in which the
measurement equation has moving average errors (Trend-SV-MA):

yt = τt + εyt , (10)

τt = τt−1 + ετt , ετt ∼ N (0, σ2
τ ), (11)

εyt = ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (12)

ht = ht−1 + εht , εht ∼ N (0, σ2
h), (13)

where ε2y has an MA process , and σ2
τ is the variance of the underlying trend of inflation.

Following Chan (2013) and Zhang et al. (2020), we set the order of moving average
component to be one for simplicity.

2.1.5 Trend-2SV-MA

The last trend model allows for stochastic volatility in the state equation of the Trend-
SV-MA model (Trend-2SV-MA):

yt = τt + εyt , (14)

τt = τt−1 + ετt , ετt ∼ N (0, egt), (15)

εyt = ut + ψ1ut−1 + · · ·+ ψqut−q, ut ∼ N (0, eht), (16)

ht = ht−1 + εht , εht ∼ N (0, σ2
h). (17)

where the error terms εyt , ε
τ
t , ε

h
t and εgt are serially uncorrelated and independent of each

other, and ε2y has an MA process.

2.2 The AR Group

In addition to trend-models we consider four AR models. This includes the standard AR
with homoscedastic Gaussian distributed errors (AR), an AR with stochastic volatility
(AR-SV), an AR with an MA process (AR-MA), and an AR with both stochastic volatility
and an MA process (AR-SV-MA).

2.2.1 The Benchmark AR model

The AR model is defined as:

yt =

p∑
i=1

aiyt−i + εt, εt ∼ N (0, σ2).
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When conducting forecasting exercise, the k-step ahead forecast inflation of the AR model
can be calculated by

ykt+k − yt = ap(A)∆yt + εkt ,

where ap(A) denotes the polynomials in lag operator A and εkt is the k-step ahead forecast
error. Following Stock and Watson (2007), we use the Akaike Information Criterion
(AIC), and also the Hannan-Quinn information criterion (HQC) to determine the values
of p for benchmark models in two sample periods. Based on the results of AIC and
HQC, the optimal lag lengths of AR model are reported in Table A1 in the Appendix,
which are lag four for the sample period 1978Q2-2019Q4, and lag one for the sub-sample
1993Q3-2019Q4 when there is inflation targeting framework.

2.3 Phillips Curve Models

2.3.1 Phillips Curve I

Following Stock and Watson (1999, 2007) we use a non-accelerating inflation rate of the
unemployment (NAIRU) Phillips curve (PC), which is defined by:

yt =

p∑
i=1

b1i∆yt−i +

q∑
j=0

(b2j(Ut−j − U) + εt, εt ∼ N (0, σ2),

where U stands for the unemployment rate and U is the natural unemployment rate.
Parameters p and q are the lag lengths of inflation and the unemployment rate in the
PC, respectively. The k-step ahead forecast inflation of the PC is obtained as follows:

ykt+k − yt = bk1(B)yt + bk2(B)(Ut − U) + εkt , (18)

where bk1(B) and bk2(B) denote the polynomials in lag operator B, respectively. NAIRU
(U) is assumed to be time invariant. Let bk0 = −bk2(B)U ; then, Equation 18 can be
rewritten as Equation 19 with a constant term bk0:

ykt+k − yt = bk0 + bk1(B)∆yt + bk2(B)Ut + εkt . (19)

This Phillips curve with an unemployment rate level is a conventional Phillips curve
model. The transformed Equation 19 can describe the unemployment rate directly for
the inflation forecast. It is denoted as PC(p, q), where p is the lag length of the first
differential of inflation and q is the lag length of the unemployment rate. As with the
AR model, the lag lengths p and q are determined by the AIC and HQC. The results are
reported in Table A1 in the Appendix, which are p = 4 and q = 4 in both two sample
time periods, 1978Q2-2019Q4 and 1993Q3-2019Q4.

Along with PC, PC models with SV, with MA, and with SV-MA (PC-SV, PC-MA and
PC-SV-MA) are also considered as competing models in the forecasting exercises. The
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specifications of these models are the same as those in the trend model group. For
simplicity, the lag lengths of inflation and the unemployment rate in these models are
both four in two sample time periods to consistent with PC.

2.3.2 Phillips Curve II

Phillips curve II is specified by an assumption that autoregressive distributed lags (ADL)
exist in both the inflation and unemployment rates, as also explored by Stock and Watson
(2007). This type of Phillips curve is represented as PCd(p, q). The expression of PCd
model with Gaussian distributions in error terms is below:

yt =

p∑
i=1

c1iyt−i +

q∑
j=1

c2j∆Ut−i + εt, εt ∼ N (0, σ2),

where both the inflation and unemployment rates are assumed to be integrated of order
one I(1) and the stationary predictors ∆yt and ∆Ut are included in the model. The k-step
ahead forecast inflation of Phillips curve II is as follows:

ykt+k − yt = ck1 + ck2(B)∆yt + ck3(B)∆Ut + εkt ,

Same as AR and PC models, the lag lengths p and q of PCd are determined by the AIC
and HQC in Table A1 in the Appendix. In 1978Q2-2019Q4, the optimal lag lengths of
PCd are p = 4 and q = 4, while they are p = 3 and q = 4 in 1993Q3-2019Q4.

Same as Phillips Curve I, PCd-SV, PCd-MA and PCd-SV-MA are also introduced in the
forecasting exercises. The specifications of these models are the same as corresponding
trend models. For simplicity, the lag lengths of inflation and the unemployment rate in
these models are consistent with PCd.

3 Estimation

3.1 Data

In the present paper, we use the quarterly consumer price index (CPI) and the unemploy-
ment rates (the percentage of the labor force 15 years and over) of Australia from 1978Q3
to 2019Q4, which are released by the Reserve Bank of Australia (RBA). Both of these
macroeconomic variables are seasonally adjusted. The CPI inflation rate is calculated by
the following formula:

yt = 400 ∗ log(CPIt/CPIt−1).

The quarterly CPI inflation, unemployment rate, and their first differences are plotted
in Figures 1 and 2. Figure 1 shows that the fluctuation in Australia inflation is stronger
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than that in the unemployment rate. Furthermore, the unemployment rate decreases
gradually starting in 1993.
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Figure 1: CPI inflation and the unemployment rates.
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Figure 2: The first differences of CPI inflation and the unemployment rates.

3.2 Parameter Estimation

All models are estimated using a Bayesian paradigm with Markov chain Monte Carlo
(MCMC) algorithms: Gibbs sampling and Metropolis-Hastings. Following Chan and
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Jeliazkov (2009), the latent states are sampled using an efficient precision based sampler
as opposed to conventional Kalman of particle filters.

3.3 Initial Values and Priors

Where appropriate, the initial values of τ, h and g are assumed to follow Gaussian distri-
butions:

τ1 ∼ N (τ0, σ
2
0τ ), h1 ∼ N (h0, σ

2
0h), g1 ∼ N (g0, σ

2
0g),

where we set τ0 = h0 = g0 = 0 and σ2
0τ = σ2

0h = σ2
0g = 5. Therefore, the initial values

of these two parameters are distributed with mean 0 and variance 5. Considering the
properties of the growth rates for macroeconomic time series, the prior distribution is
around 0 and large prior variances are used within (-5, 5), thus, the initial values are
reasonable and relatively non-informative.

The priors of σ2
τ , σ

2
h, and σ2

g are assumed to be independent and follow inverse-gamma
distributions:

σ2
τ ∼ IG(ντ , Sτ ), σ2

h ∼ IG(νh, Sh), σ2
g ∼ IG(νg, Sg).

We set the hyperparameters to ντ = νh = νg = 10, Sτ = 0.18, and Sh = Sg = 0.45 based
on suggestions from previous studies on inflation (e.g., Chan, 2013; Stock and Watson,
2007). These prior values imply relatively noninformative values for the shape parameters
ν of the inverse-gamma distribution. The scale parameters mean that Eσ2

τ = 0.1412 and
Eσ2

h = Eσ2
g = 0.2242; thus, the state transition is reasonably smooth and the results are

comparable to those in the literature.

3.4 Posterior Simulation Method

The simulation of draws from the posterior distribution is conducted by a sequentially
drawing order, and the related Bayesian inference is similar to that of Chan (2013) and
Zhang (2019). Specifically, the posteriors of the trend models are sampled cyclically in
the following sequence:

For the Trend model:

1. p(τ |y, σ2
y , σ

2
τ ),

2. p(σ2
y, σ

2
τ | τ ) = p(σ2

y | τ )p(σ2
τ | τ ).

For the Trend-SV model:

1. p(τ |y,h, σ2
h, σ

2
τ ),
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2. p(h |y, τ , σ2
h, σ

2
τ ),

3. p(σ2
h, σ

2
τ | τ ,h) = p(σ2

h |h)p(σ2
τ | τ ).

For the Trend-2SV model:

1. p(τ |y,h,g, σ2
h, σ

2
g),

2. p(h,g |y, τ , σ2
h, σ

2
g) = p(h |y, τ , σ2

h)p(g |y, τ , σ2
g),

3. p(σ2
h, σ

2
g |h,g) = p(σ2

h |h)p(σ2
g |g).

For the Trend-SV-MA model:

1. p(τ |y,h, ψ, σ2
τ ),

2. p(h |y, τ , ψ, σ2
h),

3. p(ψ, σ2
τ , σ

2
h |y, τ ,h) = p(ψ |y, τ ,h)p(σ2

h |h)p(σ2
τ | τ ).

For the Trend-2SV-MA model:

1. p(τ |y,h,g, ψ, σ2
h, σ

2
g),

2. p(h,g |y, τ , ψ, σ2
h, σ

2
g) = p(h |y, τ , ψ, σ2

h)p(g |y, τ , ψ, σ2
g),

3. p(ψ, σ2
g , σ

2
h |y, τ ,h,g) = p(ψ |y, τ ,h,g)p(σ2

h |h)p(σ2
g |g).

3.5 Posterior Estimation

Before forecasting, we present estimates of the stochastic volatility parameters and mov-
ing average coefficient over the full sample: 1978Q2-2019Q4. All the full sample posterior
estimates and quantiles are based on 50,000 draws after a burn-in with 5,000 draws.

3.5.1 Posterior Estimates of SV Parameters

Figure 3 presents posterior means and credible intervals of stochastic volatility parameter
h and g obtained under Trend-SV and Trend-2SV, and Figure 4 is under Trend-SV-MA
and Trend-2SV-MA. In particular, the latter models in both figures produce smoother
estimates of h, which allow for an extra time-varying variance parameter g to explain the
volatility of inflation in Australia. Given that h and g are from exponential functions
which are monotonically increasing functions, the values of h and g change substantially
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over the sample period, which indicates that their are substantial variation of inflation,
which highlight the importance of introducing stochastic volatility in trend models.

It is also interesting to note that the curves of h and g vary over time. During early
1990s, the peak of h under Trend-2SV-MA is lower than that under Trend-SV-MA, while
the value of g channeling the volatility of underlying trend from the state equation of
Trend-2SV-MA also reaches a peak in that time period. However, h begins to increase
from 2005 under both models, while g is stable around those years.
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2
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84%-tile

mean
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1980 1985 1990 1995 2000 2005 2010 2015 2020

-2

-1

0

1

2
 h  under Trend-2SV
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-4
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16%-tile

Figure 3: Posterior estimates and quantiles for SV parameter h and g under Trend-SV
and Trend-2SV.
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Figure 4: Posterior estimates and quantiles of SV parameter h and g under Trend-SV-MA
and Trend-2SV-MA.

3.5.2 Posterior distributions of MA coefficients

The marginal density estimates for the MA coefficient p(ψ|y) under Trend-SV-MA and
Trend-2SV-MA are shown in Figure 5. Both values of ψ are concentrated around 0.2 and
the mass is away from 0, which suggests that MA specification is unlikely to be 0 in these
two trend models. Specifically, under Trend-SV-MA, ψ has higher probability and more
concentrated around its mean than that under Trend-2SV-MA. It indicates that moving
average component share more weight in channeling the volatility of the inflation when
there is no stochastic volatility parameter in the state equation.
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Figure 5: Posterior distribution of MA coefficients under Trend-SV-MA and Trend-2SV-
MA.

4 Forecast Results

In this section, we first discuss the forecast method used in the main analysis, including:
forecast metrics, forecast horizons and sample time periods. We then present the recursive
forecast results from each model, followed by combination forecast and robustness checks.

4.1 Forecast Method

In the forecast section, all models are estimated by a pseudo out-of-sample forecast
method. That is, the forecast results are first calculated at time T0 + 1 and compared
with the actual data at time T0 + 1. We then step to T0 + 2, T0 + 3, and so on, until
we reach the end of the sample. Since quarterly time series are used, the forecast made
by each model are one-quarter ahead, one-year ahead, and three-year ahead forecasts
with forecast horizon k = 1, 4, and 12. Set in this manner we are able to compare short,
medium and long run forecasts from each of the competing models. Since the PC group
does not have an iterative formula for the unemployment rate, we use a firect forecasting
methodology for all models.

The forecast performance is evaluated in terms of two metrics. Point forecasts are evalu-
ated using the relative mean square forecast error (Relative MSFE) and density forecasts
are evaluated using the relative average log predictive likelihood (Relative ALPL).
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The first forecast metric (Relative MSFE) represents a relative point forecasting perfor-
mance between a candidate model and the benchmark. When calculating the MSFE
of a model, the forecast ŷT0+t+k−1 is evaluated by averaging all the posterior means
E(yT0+t+k−1 |y1:T0+t) at T0 + t. Then, the forecasting error is calculated by e2

T0+t+k−1 =
y0
T0+t+k−1 − E(yT0+t+k−1 |y1:T0+t). Eventually, the MSFE can be calculated as below:

MSFE =
1

T − T0− k + 1

T−T0−k+1∑
t=1

e2
T0+t+k−1.

For the relative MSFE, a value which is smaller than one indicates that the related candi-
date model has better forecasting performance than the benchmark, while a value which
is larger than one means that the competing model has worse forecasting performance
than the benchmark.

The predictive likelihood p(ŷT0+t+k−1 = yT0+t+k−1 |y1:T0+t) is used to present the den-
sity forecasting performance p(ŷT0+t+k−1 |y1:T0+t). When the observed data with higher
probability fall into the density of the posterior predictive distribution, the estimated
parameters which are conditional on the observed data yT0+t+k−1 can produce a larger
predictive likelihood value. In other words, a positive relative ALPL value suggests that
the candidate model has better performance than the benchmark, while a negative ALPL
value indicates that the benchmark forecasts better. The ALPL has an expression as be-
low:

ALPL =
1

T − T0− k + 1

T−T0−k+1∑
t=1

log p(ŷT0+t+k−1 = yT0+t+k−1 |y1:T0+t).

For forecast accuracy comparison, we use a one-sided sign test of equal predictive accuracy
of Diebold and Mariano (1995). When the competing models are all nested, test statistics
introduced by Clark and McCracken (2001) can be used. As models are allocated into
four groups and are not all nested, we do not report test results of nested models. The
rejection of equal forecast accuracy relative to the benchmark at significance level 0.05 is
denoted by asterisk and reported in the result tables below.

The full sample time period is 1978Q2-2019Q4s. Considering that the inflation targeting
framework was implemented by the RBA since early 1990’s (Macfarlane, 1998), Stevens
(1999) suggests that mid-1993 is the time at which the medium-term inflation target was
explicitly articulated by the RBA. This time point is widely accepted as the beginning of
conducting a new monetary policy, so we also report the forecasting results from sample
1993Q3-2019Q4 as a robustness check. The forecast results are estimated recursively with
time marching. The first 6 points are separated for lags and the following 40 time points
are used as the initial data for the parameter estimation. Thus, the forecasting periods
are 1989Q4 to 2019Q4 and 2005Q1 to 2019Q4, respectively.
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4.2 Recursive Forecast Results

The recursive forecast results for time periods 1978Q2-2019Q4 and 1993Q3-2019Q4 are
reported in Tables 1 and 2, respectively. To facilitate the discussion, we present the
forecast results for two sample time periods separately. In each table, the Relative MSFE
results are reported in the left column and the Relative ALPL results are in the right
column.

4.2.1 Results for Sample Period 1978Q2-2019Q4

The forecast results in Table 1 show that trend model group perform substantially better
than other model groups in both point and density forecasts (the best forecast from all
the competing models in each column are in bold). When comparing trend models to
the AR and PC groups, most of the forecasts from trend models perform better than the
benchmark AR, which indicates that the trend group is suitable for the inflation forecast
in Australia. More specifically, Trend-SV outperforms the other models on one-quarter
ahead in point forecast and all the forecast horizons in density forecast, while Trend-
2SV-MA has the best forecasting performance on one-year ahead in point forecast and
Trend-SV-MA does well on three-year forecast horizon. Trend-SV-MA also has the near-
best forecasting performance in both point and density forecasts comparing with other
leading trend models. The Diebold-Mariano tests for statistical significance of point
forecast improvement indicate that the gains at the long run horizon are statistically
significant at 0.05 significance level.
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Table 1: Recursive forecast results for all groups, 1978Q2–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=12 k=1 k=4 k=12

AR 1.00 1.00 1.00 0.00 0.00 0.00

AR-SV 0.99 1.01 1.01 0.13 0.13 0.08
AR-MA 1.01 1.06 1.06 -0.20 -0.24 -0.24
AR-SV-MA 1.00 1.02 1.02 0.12 0.12 0.07

Trend 0.92 0.91 0.77* -0.03 0.01 0.12
Trend-SV 0.88 0.92 0.79* 0.14 0.18 0.26
Trend-2SV 1.02 1.03 0.95 0.13 0.15* 0.14
Trend-SV-MA 0.92 0.90 0.76* 0.13 0.16 0.25*
Trend-2SV-MA 0.90 0.89 0.82* 0.05 0.03 0.06

PC 1.12 1.24 2.21* -0.03 -0.07 -0.28
PC-SV 1.05 1.14 1.41* 0.09 0.05 -0.11
PC-MA 1.12 1.28 2.48* -0.22 -0.27 -0.40*
PC-SV-MA 1.06 1.16 1.40* 0.08* 0.05 -0.10

PCd 1.11 1.23 2.61 -0.03 -0.06 -0.28*
PCd-SV 1.04 1.17 1.66 0.09 0.04 -0.15
PCd-MA 1.11 1.28 2.89 -0.22 -0.27 -0.41*
PCd-SV-MA 1.05 1.18 1.69 0.09 0.04 -0.16

Notes: Bold entries are the smallest relative MSFE or the largest relative ALPL for the corresponding
horizons. * indicates rejection of equal forecast accuracy relative to AR model at significance level
0.05, when using an asymptotic test in Diebold and Mariano (1995).

For trend models with SV parameters in both measurement equation and state equation
(Trend-2SV and Trend-2SV-MA), the forecast performance of these models depends on
wether MA specification is included into the model. Specifically, Trend-2SV does not
have better forecasting performance than that of Trend-SV on all the forecast horizons
and cannot beat other trend models in point forecast. While Trend-2SV-MA have slightly
better performance than Trend-SV-MA in point forecasts, they only dominate the Trend
model on short and medium run forecasts in density forecasts. Overall, Trend-SV-MA
can improve both point and density forecasts which are gained by the simpler Trend
model for Australia, while it is not true for a trend model with only two SV parameters.

For the AR group, the forecast results in Table 1 suggest that the benchmark AR is hard
to be beat by AR models with other specifications in point forecast, while in density
forecast, AR-SV and AR-SV-MA with SV specification in the measurement equation can
improve forecasting performance than the benchmark across all the forecast horizons.
Similarly, AR-SV-MA has optimal density forecasts on all the forecast horizons within
AR group.

For PC and PCd groups, neither PC nor PCd can outperform the benchmark across all
the forecast horizons and two forecast metrics. While PC and PCd models with SV and
SV-MA have better forecasts than the benchmark on one-quarter and one-year ahead
forecasts in density forecast, and they are also the best models within their own groups.
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In summary, the main conclusion is that the trend group tends to outperform the AR
and PC groups, with particularly large improvements from models with SV and SV-MA.

4.2.2 Point Forecast Analysis

To give a closer examination of the performance of all the competing models, we plot
the actual inflation time series and one-quarter ahead point forecasts in Figure 6. The
competing models are allocated by groups to facilitate a model comparison. The main
insight is that the forecasts from models in the trend group adjust rapidly with the fast
jumped actual value along the evaluation period. It’s also important to note that forecasts
from models with SV and SV-MA specifications (especially Trend-SV and Trend-SV-MA)
have less volatility and are close to the actual value. This is potentially why Trend-SV
and Trend-SV-MA can outperform other models in the forecast exercise.
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Figure 6: Actual inflation time series and one-quarter ahead point forecast under all the
competing models.

We also present the MSFEs of one-quarter ahead forecasts across the entire forecasting
period for each model and plot them on a recursive basis in Figure 7. We see that the
MSFEs of all the models dropped substantially around 1995, raised up dramatically in
2000, and then decreased gradually up to the date. This indicates that all the models
capture the flexible specification of the inflation target in Australia during the first few
years. A possible mechanism is that when the demand pressures from the real economy
were eased, inflation declined, and the MSFEs raised to a platform with a sustained
delayed response from model-based forecasts.
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Figure 7: MSFEs of one-quarter ahead forecast under all the competing models on a
recursive basis.

When the 10 per cent Goods and Services Tax was implement from 1st July, 2000, inflation
immediately increased by 3 per cent overnight and shot up over 6 per cent in 2000Q3. It
is a one-off boost to the price level and the inflation dropped back around 2-3 per cent
inflation target in the subsequent quarters. During this inflationary episode, only trend
models adjust back the underlying trend quickly, with Trend-SV having smallest MSFE
of all models.

Since 2014, the Reserve Bank of Australia has undershooting the inflation target and the
inflation rate is under it’s lower bound of 2 per cent. The results in Figure 6 show that
models with an underlying trend specification capture this feature and have smoother
forecasts for inflation. The MSFEs of all the models have similar performance and all the
values fall back below 1 by the end of the sample.

4.2.3 Results for the Sample Period 1993Q3-2019Q4

Table 2 reports the forecast results when we restrict the forecast evaluation sample to
begin in 1993Q3, thereby reflecting the period in which Australia had an inflation target.
We observe that the trend model group outperform other groups on medium run and
long runs point forecasts. In density forecast, Trend-SV, Trend-2SV and Trend-2SV-MA
have better forecasting performance than the benchmark on short and medium runs.

For the trend group, Trend-SV and Trend-SV-MA with SV in the measurement equation
still outperform other trend models, suggesting the underlying trend inflation captured
by Trend-SV and Trend-SV-MA accurately depicts the persistence of inflation than other
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trend models. For AR, PC and PCd groups, models with SV or SV-MA also forecast
better than models with Gaussian distribution or just MA specification in most cases.
Taken together, these forecast results show that models with SV or SV-MA provide good
point and density forecasts for inflation in the sub-sample period.

When comparing models in the AR and PC groups, we find that only the AR-SV-MA
can outperform the benchmark on one-quarter ahead point forecast and three-year ahead
density forecast. Moreover, both the relative MSFE and the relative ALPL of competing
models are closer to those of the benchmark than the results from the entire sample
period.

Table 2: Recursive forecast results for all groups, 1993Q3–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=12 k=1 k=4 k=12

AR 1.00 1.00 1.00 0.00 0.00 0.00

AR-SV 1.00 1.00 1.00 0.05 0.03 -0.04
AR-MA 1.01 1.03* 1.04 -0.03 -0.05* -0.06
AR-SV-MA 0.99 1.00* 1.00 0.05 0.04 -0.03

Trend 1.11 0.95 0.97 -0.15* -0.14* -0.23*
Trend-SV 1.11 0.94 0.98 0.03 0.07 -0.03
Trend-2SV 1.17 0.99 0.99 0.02 0.05 -0.11
Trend-SV-MA 1.11 0.94 0.97 0.01 0.04 -0.02
Trend-2SV-MA 1.10 0.98 0.97 -0.06* -0.07* -0.18*

PC 1.43* 1.16 1.28 -0.12* -0.04 -0.08
PC-SV 1.22 1.10 1.08 0.01 0.08 -0.01
PC-MA 1.42* 1.17 1.25 -0.13* -0.09* -0.14*
PC-SV-MA 1.22 1.11 1.07 0.01 0.07 -0.01

PCd 1.42* 1.11 1.10 -0.12* -0.04 -0.04
PCd-SV 1.31* 1.22 1.08 -0.03* 0.04 -0.02
PCd-MA 1.42* 1.10 1.06 -0.13* -0.09 -0.11*
PCd-SV-MA 1.30* 1.19 1.05 -0.02 0.05 -0.01

Notes: See the notes to Table 1.

4.3 Combination Forecast

In this section, we conduct a forecasting analysis by combining the forecasting results
in each group. Specifically, the forecasting results are combined by both equal weight
(EW) and time-varying weight (TVW) methods for the entire sample period. Following
the suggestion of Zhang (2019), the window width is forty in the time-varying weight
combination forecast, that is, the time-varying weight of each model is determined by the
forecasting performance of previous forty quarters. The results for both equal weight and
time-varying weight forecasting results for AR group, trend group, PC and PCd groups,
respectively, are shown in Table 3.
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Overall, the best forecasting performance is from time-varying weight of trend models
(Trend-TVW) with optimal forecast across all the forecast horizons and methods. More-
over, equal weight of trend models (Trend-EW) has the near best forecasting performance.
The close performance between equal weight and time-varying weight is also true in AR
group, PC and PCd groups, and it is consistent with the conclusion that equal weight and
time-varying weight have similar forecast results for the US inflation forecast in Zhang
(2019). Under combination forecast, the forecasting performance of trend group has
been significantly improved on long-run horizon in point forecast. The relative MSFE of
Trend-EW and Trend-TVW are both 0.70 comparing to the best model Trend-SV-MA
with 0.76. Similarly to the results from recursive forecast, the improvement from trend
models on the long run horizon is statistically significant in the Diebold-Mariano tests for
both forecast metrics. Finally, it is worth noting that the combination forecasting per-
formance of PC and PCd groups is greatly improved, with both their point and density
forecast results being similar to those of the benchmark.

Table 3: Combination forecast results for all groups, 1978Q2–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=12 k=1 k=4 k=12

AR 1.00 1.00 1.00 0.00 0.00 0.00

AR-EW 1.00 1.00 0.92* 0.01 0.01 -0.03*
AR-TVW 1.00 1.00 0.92 0.02 0.03 -0.01

Trend-EW 0.91 0.89 0.70* 0.10 0.13 0.17*
Trend-TVW 0.91 0.88 0.70* 0.10 0.14 0.17*

PC-EW 1.05 1.07 1.72 -0.01 -0.01 -0.16
PC-TVW 1.05 1.07 1.80 0.00 0.00 -0.15

PCd-EW 1.04 1.01 1.54 -0.01 0.00 -0.13
PCd-TVW 1.04 1.01 1.60 0.00 0.02 -0.11

Notes: See the notes to Table 1.

4.4 Rolling Window Forecast

As a sensitivity analysis we also conducted forecasts using a rolling window approach
examine whether or not the trend model group still maintains better forecasting per-
formance than the benchmark, the AR group and the PC groups. Unlike the recursive
approach, this method fixes the parameter estimation period to a certain number of time
period, in our case 40-quarters (i.e. 10 years). The Relative MSFE and ALPL metrics are
reported in Tables A2 and A3 for the full sample 1978Q2-2019Q4 and restricted sample
1993Q3-2019Q4, respectively.

In the first instance, when examining the results over the full sample, we find that the
relative forecast performance of the trend models to the benchmark is similar to that
of the recursive forecast. However, with information from a fixed window width, no
single model can improve its relative forecasting performance over information from the
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entire sample period. Among all the competing models, Trend-SV is the best forecasting
model on one-quarter ahead in point forecast and almost all forecast horizons in density
forecast, which is similar to the recursive forecasting results. Trend model does well in
point forecast. However, both PC and PCd groups produce worse forecast than those
from the benchmark across all the forecast horizons in the rolling window forecast exercise.
Although PC and PCd models with SV and SV-MA outperform other models within PC
and PCd groups, they are weaker than the benchmark in the rolling window forecast.

Next, when restricting the sample to the inflation targeting period, we find that all the
trend models perform well on medium and long runs in point forecast. All models in PC
and PCd groups outperform the benchmark on one-year ahead point forecast in rolling
window forecast, however the benchmark is hard to beat in density forecast by most
competing models.

In summary, the forecast results of the rolling window forecast method indicate that
the trend model group is less influenced by the change of information available for es-
timation. Generally, trend models can provide better forecast performance than other
groups. Models with SV and SV-MA specifications have better forecasting performance
than those without them, which are the same as the findings in recursive forecast.

5 Concluding Remarks

In this paper, we compared the forecast accuracy of trend models against commonly used
autoregressive and Phillips curve models when forecasting the CPI inflation rate in Aus-
tralia. The results showed that a trend model with stochastic volatility in the transitory
component (Trend-SV) provides the best point forecast performance at a short horizo-
nand at all horizons in density forecast. Allowing for moving average (Trend-SV-MA and
Trend-2SV-MA) further improved point forecast accuracy at both medium- and long-run
horizons. This result suggests that policy makers would benefit from adopting trend
models when forecasting inflation. Notably, trend models produced highly competitive
forecasts when there was an inflationary episode or a permanently lower trend growth
period. More generally, we also found that trend models can capture various dynamics in
periods of significance which the AR and PC models can not. This includes the dramatic
reduction in inflation when the RBA adopted inflation targeting, the a one-off 10 per
cent Goods and Services Tax inflationary episode in 2000, and the gradually decline in
inflation since 2014.
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Appendix

Table A1: Akaike Information Criterion (AIC) and Hannan-Quinn Information Criterion
(HQC) for AR(p) Models and PC(p,q) and PCd(p,q) Models.

1978Q3-2019Q4 1993Q3-2019Q4

AIC HQC AIC HQC

AR 4 4 1 1
PC (4,4) (4,4) (4,4) (4,4)
PCd (4,4) (4,4) (3,4) (3,4)

Table A2: Rolling window forecast results for all groups, 1978Q2–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=12 k=1 k=4 k=12

AR 1.00 1.00 1.00 0.00 0.00 0.00

AR-SV 1.02 1.00 1.02 0.04 -0.01 -0.08
AR-MA 1.01 1.11 1.21 -0.11 -0.10 -0.10
AR-SV-MA 1.05 1.01 1.03 0.03 -0.02 -0.08

Trend 0.96 0.98 0.80 -0.14 -0.15 -0.12
Trend-SV 0.93 1.01 0.83 0.03 0.01 0.02
Trend-2SV 1.07 1.11 1.01 0.00 -0.06 -0.17
Trend-SV-MA 1.02 1.01 0.81 0.00 0.00 0.04
Trend-2SV-MA 0.99 0.99 0.87* -0.07 -0.16 -0.20

PC 1.16 1.24 2.49 -0.06 -0.09 -0.29
PC-SV 1.13 1.13 1.53 -0.02 -0.08 -0.26
PC-MA 1.17* 1.38 3.50* -0.16* -0.15 -0.28
PC-SV-MA 1.12* 1.10 1.39 0.00 -0.06 -0.20

PCd 1.21* 1.26 2.59 -0.08 -0.10 -0.36
PCd-SV 1.13* 1.13 1.53 -0.03 -0.08 -0.26
PCd-MA 1.21* 1.36 3.33 -0.19 -0.15 -0.29
PCd-SV-MA 1.21* 1.13 1.52 -0.04 -0.08 -0.25

Notes: See the notes to Table 1.
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Table A3: Rolling window forecast results for all groups, 1993Q3–2019Q4

Relative MSFE Relative ALPL

k=1 k=4 k=12 k=1 k=4 k=12

AR 1.00 1.00 1.00 0.00 0.00 0.00

AR-SV 1.00 1.00 1.00 0.00 -0.04 -0.10
AR-MA 1.01 0.99 1.00 -0.03 -0.04 -0.06
AR-SV-MA 1.05 1.00 1.00 -0.01 -0.04 -0.11

Trend 1.05 0.95 0.91 -0.24* -0.25* -0.30*
Trend-SV 1.06 0.94 0.92 -0.03 0.00 -0.07
Trend-2SV 1.13 0.99 0.89 -0.07 -0.09 -0.24*
Trend-SV-MA 1.13 0.96 0.92 -0.09 -0.06 -0.08*
Trend-2SV-MA 1.16 0.98 0.90 -0.18* -0.22* -0.32*

PC 1.25 0.95 1.28 -0.06 0.00 -0.13
PC-SV 1.10 0.94 0.98 -0.02 0.01 -0.08
PC-MA 1.25 0.95 1.25 -0.11 -0.10 -0.22*
PC-SV-MA 1.11 0.93 0.98 -0.03 0.01 -0.07

PCd 1.33 0.94 1.22* -0.11 -0.02 -0.11*
PCd-SV 1.17 0.93 1.08 -0.08 0.00 -0.11
PCd-MA 1.31 0.90 1.22 -0.13 -0.09 -0.19*
PCd-SV-MA 1.15 0.92 1.06 -0.07 0.00 -0.10

Notes: See the notes to Table 1.
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