






Figure 5: Drawdown of RPP and 60/40 portfolio (daily data)

The figure shows historical drawdowns of RPP and 60/40 portfolio from 1962 to 2020. Light

shaded bars indicate NBER recessions and show a clear business cycle pattern in drawdown.

Abbreviations are the same with figure 4.

Figure 6: Yield on 10-Year U.S. Treasury Note

The figure shows daily yield on 10-Year U.S. treasury note from 1962.06 to 2020.03, the

y-axis is in percent.
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Figure 7: Portfolio performance with interest rate division (daily data)

The figure shows performances of RPP and 60/40 portfolio in different subperiods:

moderately rising rates periods (shaded grey), sharply rising rates periods (shaded green),

and falling rates period (shaded blue). Abbreviations are the same with figure 4.

25

10213451020075GRA 19703



Figure 8: Portfolio performance with assets correlation division (daily data)

The figure shows performances of RPP and 60/40 portfolio in different situations: positive

assets correlation situation (shaded green), negative assets correlation situation (shaded

grey). Abbreviations are the same with figure 4.
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Figure 9: Performance of RPP and 60/40 portfolio (monthly data)

The figure shows historical performances of RPP and 60/40 portfolio from 1927 to 1962

with monthly data. Figure descriptions and abbreviations are the same with figure 4. In

the third panel, actual bond weight deviates from theoretical bond weight calculated from

equation 9 or 10 because we rebalance our portfolio every 12 month, in the time interval,

bond weights will fluctuate when portfolio gains or loses.
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Figure 10: Portfolio performance with interest rate division (monthly data)

The figure shows performances of RPP and 60/40 portfolio in different situations from 1927

to 1962: rising rate periods from 1927.01 to 1941.10 (shaded green), falling rate periods from

1941.11 to 1962.07 (shaded grey). Abbreviations are the same with figure 4.
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1927.01 to 1927.11 (falling interest rates)

Ex. return SR VaR ES Avg. DD MDD

RPP 0.3979 3.2453 -0.0254 -0.0254 -0.34% -2.51%

60/40 0.1712 2.0316 -0.0310 -0.0310 -0.35% -3.06%

1929.08 to 1933.03 (falling interest rates)

RPP -0.0813 -0.4620 -0.1151 -0.1466 -16.55% -40.35%

60/40 -0.2360 -0.9273 -0.1286 -0.1544 -35.90% -63.77%

1937.05 to 1938.06 (falling interest rates)

RPP -0.0260 -0.1293 -0.0925 -0.0925 -11.94% -21.34%

60/40 -0.1344 -0.5195 -0.1688 -0.1688 -15.45% -30.95%

1945.02 to 1945.10 (moderate rising interest rates)

RPP 0.4756 2.8641 -0.0454 -0.0454 -0.74% -4.44%

60/40 0.2004 2.1206 -0.0279 -0.0279 -0.48% -2.75%

1948.11 to 1949.10 (moderate rising interest rates)

RPP 0.1721 1.442 -0.0720 -0.0720 -0.12% -1.06%

60/40 -0.0026 -0.027 -0.0656 -0.0656 -0.83% -3.43%

1953.07 to 1958.04 (moderate rising interest rates)

RPP 0.1216 0.7680 -0.0534 -0.0719 -7.39% -32.80%

60/40 0.0708 0.8722 -0.0344 -0.0346 -2.79% -12.25%

1960.04 to 1961.02 (moderate rising interest rates)

RPP 0.2914 1.6841 -0.0646 -0.0646 -0.91% -4.17%

60/40 0.1005 1.3715 -0.0312 -0.0312 -0.72% -3.32%

Table 8: Portfolio performances in NBER recession periods (monthly data)

The table shows historical performances of two portfolios in NBER recession periods.

Indicators’ descriptions are the same with table 1.
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6 Volatility variation effect

6.1 Theories

In our two-asset case of n = 2, applying equations 9 and 10 into 1, we get

σ2 = w2
1σ

2
1 + w2

2σ
2
2 + 2w1w2σ1σ2ρ1,2 =

2σ2
1σ

2
2(1 + ρ1,2)

σ2
1 + σ2

2

(13)

σ2 = 2w2
i σ

2
i (1 + ρ1,2) for i = 1, 2 (14)

where ρ1,2 is the correlation between assets. To reach the target volatility in

equation 11, the weights of assets and leverage must satisfy

(cwi)
2 =

σ2
target

σ2
i

1

2(1 + ρ1,2)
for i = 1, 2 (15)

In our empirical portfolio, σi and ρ1,2 are historical measures that derive the

weights and leverage and these historical values are taken as our forecasted

ones. The actual volatilities of portfolio not only depend on weights and

leverage, but also depend on actual volatilities of assets and the actual

correlation between them, which could be denoted as σ̃i and ρ̃1,2. Let’s go

back to equation 1 again, the actual volatility of portfolio σ̃ must satisfy6

σ̃2 = σ2
target ×

1

2(1 + ρ1,2)
× [(

σ̃1

σ1

)2 + (
σ̃2

σ2

)2 +
σ̃1σ̃2

σ1σ2

2ρ̃1,2] (16)

Let σ̃1
σ1

= k1 and σ̃2
σ2

= k2, then the actual variance of portfolio in equation 16

can be rewritten as

σ̃2 = σ2
target ×

1

2(1 + ρ1,2)
× (k2

1 + k2
2 + 2k1k2ρ̃1,2) (17)

6note that σ is the volatility of the portfolio without leverage, but σ̃ is the volatility of
the portfolio with leverage. So σ̃ = σ × c
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Figure 11: How actual ratio of risk contribution moves on κ with different ρ1,2

In this figure, y-axis is the actual ratio of risk contribution (RC) of assets (w1 × ∂w1
σ :

w2 × ∂w2σ), x-axis is κ = k1
k2

= σ̃1σ2

σ1σ̃2
, lines in different colors represent that the correlations

between assets are 0.6, 0.2, 0, -0.2 and -0.5 respectively. The left one shows the case that

0.2 < κ < 1.0, when κ is constant, a stronger positive correlation results in a smaller actual

ratio. The right one shows the case that 1.0 < κ < 3.0, when κ is constant, a stronger

positive correlation results in a larger actual ratio. When correlation between assets is 0,

actual ratio is κ2.

Let κ = k1
k2

, we have

σ̃2 = σ2
target ×

k1k2

1 + ρ1,2

×

[
(κ+ ρ̃1,2) + ( 1

κ
+ ρ̃1,2)

]
2

(18)

Similar with the actual volatility of portfolio, the actual RC of assets may

not be equal as we have expected. With equation 2 and 3, the actual ratio of

RC of assets (w1 × ∂w1σ : w2 × ∂w2σ) is

actual ratio = (σ2
2σ̃

2
1 + σ1σ2σ̃1σ̃2ρ̃1,2) : (σ2

1σ̃
2
2 + σ1σ2σ̃1σ̃2ρ̃1,2)

= (k2
1 + k1k2ρ̃1,2) : (k2

2 + k1k2ρ̃1,2)

= (κ+ ρ̃1,2) : (
1

κ
+ ρ̃1,2)

(19)

The equation means that assets in the portfolio have equal RC if and only if

κ = 1, which is the point where all lines intersect in figure 11. When κ 6= 1,
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the actual ratio of RC will be away from our target value 1 : 1 or 1. Figure 11

shows that when ρ̃1,2 = 0, the actual ratio of RC is κ2 (the green line). When

ρ̃1,2 < 0 and κ is constant, the actual ratio of RC is smaller than κ2 (the purple

and red line) and farther than 1; when ρ̃1,2 > 0 and κ is constant, the actual

ratio is larger than κ2 (the blue and orange line) and closer to 1. Therefore,

a stronger positive correlation between assets is more likely to satisfy equal

risk contributions when κ 6= 1. When ρ̃1,2 = 1 or assets are perfectly positive

correlated, the actual ratio is exactly κ because (κ+ 1) : ( 1
κ

+ 1) = κ.

Let’s take one step further, we denote π, the geometric mean of ki as the

average ratio between actual and predicted volatility of assets, and denote the

heterogeneity of ratio between actual and predicted volatility of assets as λ.

π =
√
k1k2 =

√
σ̃1σ̃2

σ1σ2

(20)

λ =
κ+ 1

κ

2
=
k2

1 + k2
2

2k1k2

=
σ2

2σ̃
2
1 + σ2

1σ̃
2
2

2σ1σ2σ̃1σ̃2

(21)

Then from equation 18 we could get

σ̃ = σtarget × π ×

√
λ+ ρ̃1,2

1 + ρ1,2

(22)

We find that forecasted and actual volatilities of assets do not affect actual

volatility of portfolio individually, instead, they show the impact when putting

together, as shown in equations 20 and 21 that they determine factors π and λ.

From equation 22, actual volatility of portfolio σ̃ increases with π, illustrating

that the more we underestimate average volatility of assets, the higher portfolio

volatility we will get, vice versa; σ̃ also increases with λ+ρ̃1,2
1+ρ1,2

, indicating that the

more heterogeneity of ratio between actual and predicted volatility of assets

(the higher λ), or the more we underestimate correlations, the higher portfolio

volatility we will get, vice versa.
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Figure 12: How actual risk contribution moves on λ with different ρ

In this figure, y-axis is the actual RC of assets (wi× ∂wiσ) and the sum of them (the actual

portfolio volatility). Here we assume that k1 > k2, the actual RC of asset 1 (the blue area)

is always no smaller than that of asset 2 (the green area). X-axis is λ. The 4 subfigures

show RC of assets when the correlations between assets are 0.6, 0.3, 0 and -0.3 respectively.
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From equation 22 we could get

σ̃

σtarget
= π ×

√√√√√√
1 + ρ̃1,2

1 + ρ1,2

+
λ− 1

1 + ρ1,2

 (23)

Let’s assume that on average π ∼= 1 and 1+ρ̃1,2
1+ρ1,2

∼= 1 (that is to say, we correctly

estimate σ̃1σ̃2 and ρ̃1,2) and they are independent, then we find that when

λ = 1, we will get λ−1
1+ρ1,2

= 0 and σ̃
σtarget

∼= 1, that is to say, the actual volatility

of portfolio is approximately equal to the target one. But λ > 1 except in

the case σ̃1σ2
σ1σ̃2

= 1,7 then we get λ−1
1+ρ1,2

> 0 except in the case σ̃1σ2
σ1σ̃2

= 1, which

means that the actual volatility of portfolio is higher than the target volatility

in most cases. From this perspective, RPP tend to have a higher volatility

than target for most of the time.

To intuitively show how λ affects both RC8 and portfolio volatility, here

we assume σtarget = 1, π = 1, ρ1,2 = ρ̃1,2 = ρ, then get figure 12, which

shows that portfolio volatility increases with λ in an approximately linear way.

Every subfigure shows that when λ is greater than 1, RC of two assets is far

from equal with asset 1 dominating. When λ is constant, a weaker correlation

results in a higher portfolio volatility and a more uneven RC between assets.

6.2 Empirical analysis

With our empirical risk parity portfolio (RPP) results, we obtain figure 13

and figure 14 to show the factors in our models and their effects on volatility

of RPP from 1962 to 2020. The bottom of the two figures show that the

theoretical (using equation 22) and actual volatilities of RPP are almost the

same, the difference comes from the difference between target and actual

assets’ weight, which is caused by the time interval 12 months to rebalance

7λ =
κ+ 1

κ

2 , and x+ 1
x > 2 unless x = 1 for all x > 1, so λ > 1 unless κ = 1

8the formulations for risk contribution are shown in Appendix B
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Figure 13: σ̃i, log ki, log κ, log π, (ρ̃1,2 − ρ1,2) and σ̃ from 1962 to 1991

The top panel shows the actual volatilities of S&P 500 and LTR (σ̃i) in every rebalance

time. Second panel shows log ki ((k1 for S&P 500, k2 for LTR)), log κ and log π. Because

log κ = log k1−log k2, log π = log k1+log k2
2 , so the relationship among them are quite intuitive:

log κ is the difference between log k1 and log k2, and log π is their midpoint. Periods when

absolute value of log κ is large will have a large λ, and λ in these periods are labelled. Third

panel shows change in correlation compared with previous period (y-axis is in the right),

and
√

λ+ρ̃1,2
1+ρ1,2

of current period (the yellow line, y-axis is in the left). Besides, periods shaded

grey see positive assets correlation, and periods shaded green see negative assets correlation.

The bottom panel shows the theoretical volatility of portfolio (using our model) and actual

volatility of portfolio in every rebalance time, and the green line is target volatility equal to

0.1030.
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Figure 14: σ̃i, log ki, log κ, log π, (ρ̃1,2 − ρ1,2) and σ̃ from 1991 to 2019
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the portfolio9, and the leverage limit. Recall that in our RPP we use the

historical volatilities and correlation as the prediction ones, so the ratio

between actual and predicted value could be treated as the ratio between

values of current and previous period, therefore, the ratio k1 and k2 represent

variation in volatility (from previous values to current ones) of S&P 500 and

LTR respectively. From figures, we find that π, which represents the average

variation in volatility of S&P 500 and LTR, determines most of the variation

in portfolio volatility σ̃. Before 1990s, there are two extremely large σ̃ and π

in 196510 and 1979, which is the result of large k2, the increase in volatility of

LTR. In the recent 30 years, there’s only one extremely large σ̃ in 2008, the

Great Recession, which is the result of large k1, the increase in volatility of

S&P 500. Therefore, there is a clear shift in core factor determining extreme

portfolio volatility before 1990s and after 1990s, variation in bond volatility

dominates before 1990s, and variation in equity volatility contributes more

after 1990s. It’s worth noting that π in 2007 and 2008 are almost the same,

but in 2007 there is a large decreasing in assets correlation whereas in 2008

assets correlation slightly increased, therefore, year 2007 do not see a

relatively large σ̃, indicating that variation in assets correlation clearly affect

portfolio volatility. Besides, periods with large λ does not always see large σ̃,

so heterogeneity of ratio between actual and predicted volatility of assets λ

may have impact on portfolio volatility σ̃, but not strong as π and ρ.

Figure 15 shows the unconditional distributions of log ki (log k1 for S&P

500, log k2 for LTR), and the risk contribution (RC) of LTR and S&P 500.

Means of log k1 and log k2 are close to zero, indicating that on average both

bond and equity volatilities do not change much, at least, between two

rebalance intervals, so we to some extent forecast the volatility correctly. The

average RC of S&P 500 is slightly larger than that of LTR, however, RC of

9See the 3rd subfigure of figure 4
10To be precise, period from 1965-06-20 to 1966-06-20
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Mean Min Max Skew Excess Kurt

log(k2) (LTR) 0.0441 -0.6520 1.5103 1.8957 6.0745

log(k1) (S&P 500) 0.0512 -0.6249 0.7500 0.0608 -0.3613

RC of LTR 0.0572 0.0067 0.2465 3.0349 14.2204

RC of S&P 500 0.0607 0.0107 0.1928 1.6352 3.9921

Table 9: Summary statistics for log k1, log k2 and risk contributions

The table reports summary statistics for log k1, log k2 (log k1 for S&P 500, log k2 for LTR)

and the risk contribution (RC) of LTR and S&P 500.

LTR sees larger skewness and excess kurtosis as shown in table 9. This

results could be explained by k1 and k1: the mean of log k1 (S&P 500) is

slightly greater than log k2, but the skewness and excess kurtosis of log k2

(LTR) is greater, which means that LTR has more ’extreme’ volatility

variations and more ’extreme’ large RC.
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Figure 15: Unconditional distributions of log variation in volatility of S&P 500

and LTR and risk contributions

The top subfigure shows the kernel density estimates of the unconditional log variation in

volatility of S&P 500 and LTR, the bottom subfigure shows the RC of LTR and S&P 500,

and the sum of the two risk contributions is the volatility of RPP.
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7 Conclusion

This paper studies a hypothetical risk parity portfolio(RPP) constructed with

only equity and government bond using a longer sample dataset of daily

data from 1962 to 2020. RPP equalizes risk contributions from the various

components of the portfolio, that is to say, asset allocator distributes the

same risk budget to each component so that none is dominating (at least

on an ex-ante basis), which is the main difference from traditional equity

dominated portfolios. Based on the extended data, our empirical results show

that outperformance of RPP to some extent relies on falling interest rate

economy. Compared with traditional 60/40 portfolio, RPP has larger VaR, ES

and drawdown, in other words, larger tail risk in rising interest rate economy,

and the situation gets even worse when faced with recession or positive assets

correlation periods. However, in falling interest rate economy, RPP realizes

higher excess return and Sharpe ratio and takes less risk in recessions.

Theoretical construction of RPP shows that the actual volatility of RPP

with two assets (σ̃) could be denoted by target volatility (σtarget), the average

ratio between actual and predicted volatility of assets (π), the heterogeneity

of ratio between actual and predicted volatility of assets (λ), the predicted

correlation between assets (ρ1,2) and actual correlation between assets (ρ̃1,2),

specifically, σ̃ = σtarget×π×
√

λ+ρ̃1,2
1+ρ1,2

. From this equation, we get an interesting

finding that RPP tends to have a higher actual volatility than target one

(σ̃ > σtarget) even if we predict the average volatilities of assets and correlation

correctly (π=1 and ρ1,2 = ρ̃1,2), because the heterogeneity of ratio between

actual and predicted volatility of assets (λ) is greater than 1 in most cases11, so

in most cases, risk contributions of both assets will not be equal, therefore, risk

parity funds are hard to equalize risk contribution in practice. This conclusion

11λ =
κ+ 1

κ

2 ≥ 1, where κ = σ̃1σ2

σ1σ̃2
, σ̃i is actual volatilities of assets, σi is predicted

volatilities of assets
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is evidenced by our empirical results that portfolio volatility is larger the target

one for most of time periods and average portfolio volatility is slightly larger

than target one, also, risk contributions of two assets are not equal and S&P

500 on average contributes slightly more. In extreme cases, when volatility

shoots up, our usage of historical volatility as predicted ones results in that

actual portfolio volatility can be triple the target one, besides, RPP tends to

have longer look-back periods and rebalance intervals, making the extreme case

even worse. Our empirical results also show that bond have more extreme risk

contributions, causing extreme portfolio volatility. In this paper, we use the

historical volatilities and correlation as the predicted ones, other prediction

methods to construct RPP remains an interesting open question.
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APPENDIX

A The treasuries used to construct the LTR

Period Coupon (%) Call/Maturity Date

1961-1965 4.250 5/15/1985

1966-1972 4.250 8/15/1992

1973-1974 6.750 2/15/1993

1975-1976 8.500 5/15/1999

1977-1980 7.875 2/15/2000

1981 8.000 8/15/2001

1982 13.375 8/15/2001

1983 10.750 2/15/2003

1984 11.875 11/15/2003

1985 11.750 2/15/2010

1986-1989 10.000 5/15/2010

1990-1992 10.375 11/15/2012

1993-1996 7.250 5/15/2016

1997-1998 8.130 8/15/2019

1999-2001 8.130 8/15/2021

2002 6.250 8/15/2023

2003-2004 7.500 11/15/2024

2005 6.875 8/15/2025

2006 6.750 8/15/2026

2007 6.375 8/15/2027

2008 5.500 8/15/2028

(Continued)
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Period Coupon (%) Call/Maturity Date

2009 5.250 2/15/2029

2010-2012 5.375 2/15/2031

2013-2016 4.500 2/15/2036

2017 5.000 5/15/2037

2018 4.500 5/15/2038

2019 4.500 8/15/2039

2020 4.625 2/15/2040

B formulations for risk contribution

Because the sum of actual risk contributions of assets should be equal to the

actual volatility of portfolio (see equation 3), with equations 18 and 19, the

actual risk contribution of assets should be

risk contribution of asset 1 =
σ2
target × π

1+ρ1,2
× (κ+ρ̃1,2)

2

σ̃
(B.1)

risk contribution of asset 2 =
σ2
target × π

1+ρ1,2
× ( 1

κ
+ρ̃1,2)

2

σ̃
(B.2)
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