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Abstract

This paper proposes a novel asymmetric continuous probabilistic score (ACPS) for
evaluating and comparing density forecasts. It extends the proposed score and defines
a weighted version, which emphasizes regions of interest, such as the tails or the center
of a variable’s range. A test is also introduced to statistically compare the predictive
ability of different forecasts. The ACPS is of general use in any situation where the
decision maker has asymmetric preferences in the evaluation of the forecasts. In an artificial
experiment, the implications of varying the level of asymmetry in the ACPS are illustrated.
Then, the proposed score and test are applied to assess and compare density forecasts of
macroeconomic relevant datasets (US employment growth) and of commodity prices (oil
and electricity prices) with particular focus on the recent COVID-19 crisis period.

Keyword: asymmetric continuous probabilistic score; asymmetric loss; proper score;
density forecast; predictive distribution; weighted score; probabilistic forecast.

1 Introduction

Macroeconomic forecasting has always been of pivotal importance for central bankers,
policymakers and researchers. Nowadays, the vast majority of the research in macroeconomics
and finance mainly focuses on the development and implementation of forecasting techniques
that minimize the expected squared forecast error (Gneiting (2011)). This approach is
grounded on the implicit assumption of using a symmetric loss function in evaluating the
accuracy of a forecast.

Despite being common practice, the use of symmetric loss functions in forecasting is
unrealistic especially in policy institutions, where the policymakers could have a specific
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aversion to positive or negative deviations of a forecast from the target. Consider a policymaker
who is interested in forecasting employment. Suppose that, if the predicted employment
rate drops below a given threshold, she will be forced to adopt new expansionary economic
policy. It is highly likely that the policymaker is more averse to forecasts that give too high
probability mass to the right part of the distribution of the employment rate (positive growth
of employment), while she may be more relaxed with respect to forecasts that give too high
probability mass to the left part of the distribution (negative or low growth of employment).
Other examples relate to energy markets that have recently experienced negative prices. WTI
oil prices collapsed to -37.63 US dollar for barrel in April 2020; German electricity prices have
measured several negative prices with the introduction of renewable energy resources (RES).
Producers would be more sensitive to prices below a threshold, up to zero if the marginal cost
of production is zero, as it is the case of RES, than higher prices. These examples call for the
design of a more general class of loss functions and scoring rules that account for asymmetry,
in order to guide the process of making and assessing forecasts. To the best of our knowledge,
a measure that properly incorporates asymmetry in density forecasting evaluation does not
exist in the literature.

The main goal of this paper is the proposal of novel and practical forecasting evaluation
tools that can fill in this gap and answer the increasing demand from policymakers and central
bankers. We plan to achieve this result by introducing an innovative asymmetric scoring rule
that is able to measure and evaluate heterogeneous aversion to different deviations of a density
forecast from the target. We derive some properties of the new scoring rule and in particular
demonstrate that it is a proper scoring rule. Moreover, we provide threshold- and quantile-
weighted versions that allow to emphasize the performance of the forecast in regions of interest
to the policymaker.

Within the literature on point forecasting, Christoffersen and Diebold (1996, 1997) proposed
some asymmetric loss functions. In the former paper, they studied the optimal prediction
problem under general loss structures and characterized the optimal predictor under an
asymmetric loss function, focusing on the LinEx and the LinLin asymmetric functions. In
the latter paper, the authors provided an illustration of an asymmetric loss in the context of
GARCH processes.

More recently, scholars have begun to empirically investigate the degree of loss function
asymmetry of central banks and other international institutions. Among others, Elliott et al.
(2005) and Patton and Timmermann (2007) proposed formal methods to infer the degree of
asymmetry of the loss function and to test the rationality of forecasts. Within this stream
of literature, Artis and Marcellino (2001) found that IMF and OECD forecasts of the deficit
of G7 countries are biased towards over or under-prediction relative to mean square error
(MSE) forecasts. Regarding European institutions forecasts, Christodoulakis and Mamatzakis
(2008, 2009) found evidence of asymmetric loss. In another study, Dovern and Jannsen (2017)
documented that the GDP growth forecasts made by professional forecasters tend to exhibit
systematic errors, and tend to overestimate GDP growth. Moreover, Boero et al. (2008)
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interpreted the tendency to over-predict GDP growth as a signal that policymakers exhibit
greater fear of under-prediction than over-prediction, thus suggesting that their judgements
are based on an asymmetric loss. More recently, Tsuchiya (2016) examined the asymmetry of
the loss functions of the Japanese government, the IMF and private forecasters for Japanese
growth and inflation forecasts.

In the framework of forecast combination, Elliott and Timmermann (2004) showed that the
optimal combination weights significantly differ under asymmetric loss functions and skewed
error distributions as compared to those obtained with mean squared error loss. Finally,
Demetrescu and Hoke (2019) studied factor-augmented forecasting under asymmetric point
loss function.

An alternative and more universal approach to forecasting is the provision of a predictive
density, known as probabilistic or density forecasting (see Elliott and Timmermann (2016a,
ch.8)). Two key aspects of density forecasts are the statistical compatibility between the
forecasts and the realized observations (calibration) and the concentration of predictive
distributions (sharpness). The aim of probabilistic forecasts is to maximize their sharpness,
subject to calibration (Gneiting and Ranjan (2013)). Density forecasting is more complex
than point forecasting since the estimation problem requires to construct the whole predictive
distribution, rather than a specific function thereof (e.g., mean or quantile). Several reasons
have been suggested for preferring density over point forecasts (e.g., Elliott and Timmermann
(2016b)). First, point forecasting is often associated to the mean of a distribution and it is
optimal for highly restricted loss functions, such as quadratic loss function, but inadequate
for any prospective user having a different loss. Moreover, the value of a point forecast can
be increased by supplementing it with some measures of uncertainty and complete probability
distributions over the outcomes provide useful information for making economic decisions;
see, for example, Anscombe (1968) and Zarnowitz (1969) for early works and the discussions
in Granger and Pesaran (2000), Timmermann (2006) and Gneiting (2011). Carriero et al.
(2020) extends the application to tail risk nowcasts of economic activity. Finally, in recursive
forecasting with nonlinear models the full predictive density matters since the nonlinear effects
typically depend not only on the conditional mean, but also on where future values occur in
the set of possible outcomes.

A natural way to evaluate and compare competing density forecasts is the use of proper
scoring rules, which assess calibration and sharpness simultaneously and encourage honest
and careful forecasting. Despite the wide literature on the class of proper scoring rules for
probabilistic forecasts of categorical and binary variables (e.g., see Savage (1971), Schervish
(1989)) the advances for continuous variables are more limited. Motivated by these facts, we
aim at designing a novel asymmetric proper scoring rule to be used for evaluating density
forecasts of continuous variables, which is the typical case in macroeconomics and finance
exercises (e.g., predicting variables such as unemployment, inflation, log-returns, GDP growth,
and realized volatility).

Gneiting and Raftery (2007) proposed the continuous rank probability score (CRPS) as
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a proper scoring rule for probabilistic forecasts of continuous variables, and more recently,
Gneiting and Ranjan (2011) extended the CRPS by introducing a threshold- and a quantile-
weighted version (tCRPS and qCRPS, respectively). These scoring rules give more emphasis
to the performance of the density forecast in a selected region of the domain, B, by assigning
more weight to the deviations from the observations made in B. The major drawback of both
the CRPS and its weighted versions is the symmetry of the underlying reward scheme, meaning
that they assign equal reward to positive and negative deviations of a probabilistic forecast
from the target. This comes from the fact that the CRPS is built on the Brier score and
inherits some of its properties, such as properness and symmetry. Similarly, since both the
weighted versions of the CRPS essentially consist in re-weighting the CRPS over the domain
of the variable of interest, they inherit the symmetry of the latter.

Winkler (1994) did a first effort towards asymmetric scoring rules and proposed a general
method for constructing asymmetric proper scoring rules starting from symmetric ones.
However, this approach is limited to forecasting binary variables, and continuous variables
were not investigated.

We address this issue and contribute to the literature on proper scoring rules for evaluating
density forecasts by proposing a novel asymmetric proper scoring rule which assigns different
penalties to positive and negative deviations from the true density. The main contribution of
this paper is twofold. First, we define a new proper scoring rule which assigns an asymmetric
penalty to deviations from the target density. Moreover, we provide a threshold- and quantile-
weighted version of it and develop an adaptation of the Diebold-Mariano test to statistically
compare the predictive ability of different forecasts. Then, we compare the performance of the
scores with the CRPS and its weighted versions. Second, we use the proposed score to evaluate
density forecasts in three relevant applications in macroeconomics (US employment growth)
and commodity prices (oil and electricity prices) with data updated to the COVID-19 crisis
period. Variables have experienced large volatilities, with sizeable spikes and negative energy
prices. As we discussed above, players might be more sensitive to some specific parts of the
distribution of these series and we shed light on how to evaluate this asymmetry.

The key result of this paper is the provision of a tool able to account for the decision
maker’s preferences in the evaluation of density forecasts, both in terms of domain- and
error-weighting schemes. Domain-weighting gives heterogeneous emphasis to the performance
on different regions, while the error-weighting asymmetrically rewards negative and positive
deviations from the target value. The proposed weighted asymmetric scoring rule combines
the two schemes and allows to evaluate the performance of the forecasting density from both
perspectives.

The rest of the paper is organized as follows. Section 2 presents a novel asymmetric scoring
rule for density forecasts, its extension to threshold- and quantile-weighted versions and a test
to compare the predictive accuracy of different forecasts. Then Section 3 discusses its main
properties. It also illustrates a comparison with the (weighted) CRPS in simulated experiments.
Finally, Section 4 provides different applications on forecasting US macroeconomic variables
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(employment rate) and commodity prices (oil and electricity prices). The article closes with a
discussion in Section 5.

The MATLAB code for implementing the proposed scoring rules is available at:

https://github.com/matteoiacopini/acps

2 Asymmetric Proper Scoring rules for Density forecasting

The evaluation and comparison of probabilistic forecasts typically relies on proper scoring rules.
Informally, a scoring rule is a measure that summarises the goodness of a probabilistic forecast
by combining the predictive distribution and the value that actually materializes. One can
think of it as a measure of distance between the probabilistic forecast and the actual value.
We consider positively oriented scoring rules, therefore if probabilistic forecast P1 obtains a
higher score than P2, this means that P1 yields a more accurate forecast than P2. Therefore,
the score can be interpreted as a reward to be maximized.

In more formal terms, following the notation of Gneiting and Raftery (2007), consider the
problem of making probabilistic forecasts on a general sample space Ω. Let A be a σ-algebra
of subsets of Ω, and let P be a convex class of probability measures on (Ω,A). A probabilistic
forecast is any probability measure P ∈ P, such that P : Ω → R̄, where R̄ = [−∞,+∞]

denotes the extended real line, is said to be P-quasi-integrable if it is measurable with respect
to A and is quasi-integrable with respect to all P ∈ P (see Bauer (2011)). A scoring rule is
any extended real-valued function S : P × Ω → R̄ such that S(P, ·) is P-quasi-integrable for
all P ∈ P. In practice, if P is the forecast density and the event ω materializes, then the
forecaster’s reward is S(P, ω).

In order to be effectively used in scientific forecasts evaluation, scoring rules have to be
proper, meaning that they have to reward accurate forecasts. Suppose the true density of the
observations is Q and denote the expected value of S(P, ω) under Q(ω) with

S(P,Q) = EQ[S(P, ω)] =

∫
Ω
S(P, ω)Q(dω),

then the scoring rule S is strictly proper if S(Q,Q) ≥ S(P,Q). The equality holds if and only
if P = Q, thus implying that the forecaster has higher reward if she predicts P = Q. If instead
S(Q,Q) ≥ S(P,Q) for all P and Q, then the scoring rule is said to be proper.

The vast majority of the proper scoring rules proposed in the literature are symmetric, that
is, they reward in the same way positive and negative deviations from the target. For example,
suppose a forecast P1 assigns too high probability mass to the right part of the domain (as
compared to the true density) and a forecast P2 assigns too high probability mass to the left
part, by the same amount. If these forecasts are evaluated under a symmetric scoring rule,
then they receive the same score.

A symmetric loss is unsatisfactory for many real world situations where the decision maker
has a preference or aversion towards a particular kind of error. We aim at filling in this gap
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by defining a new asymmetric proper scoring rule for continuous variables, which is suited for
evaluation and comparison of density forecasts and penalises more either side of the deviation
from the target.

Definition 1 (Asymmetric Continuous Probability Score). Let c ∈ (0, 1) represent the level of
asymmetry, such that c = 0.5 implies a symmetric loss, while c < 0.5 penalises more the left
tail, and c > 0.5 the right tail. Let P be the probabilistic forecast and y the realized (ex-post)
value. We define the asymmetric continuous probability score (ACPS) as

ACPS(P, y; c) =

∫ y

−∞

(
c2 − P (u)2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
du

+

∫ +∞

y

(
(1− c)2 − (1− P (u))2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
du.

(1)

The following result shows the properness of our new score for every level of asymmetry.

Theorem 1 (Properness). The asymmetric scoring rule ACPS defined in eq. (1) is strictly
proper for any c ∈ (0, 1).

Proof. The strict properness derives from the fact that ACPS can be obtained from the
quadratic score for binary outcomes, which is strictly proper, via two transformations that
preserve properness, see Winkler (1994) and Matheson and Winkler (1976). Specifically, let
p ∈ (0, 1) be a probabilistic forecast of success in a binary experiment and let S be the quadratic
rule, that is

S(p) =

S1(p) = 1− (1− p)2, if success,

S2(p) = 1− p2, if failure.

Notice that S(p) is a strictly proper and symmetric scoring rule. Following Winkler (1994), one
can obtain a strictly proper asymmetric scoring rule for binary outcomes via the transformation

SAc (p) =


S1(p)− S1(c)

T (c)
, if success,

S2(p)− S2(c)

T (c)
, if failure,

T (c) =

S1(1)− S1(c), if p > c,

S2(0)− S2(c), if p ≤ c,

where c ∈ (0, 1) denotes the level of asymmetry. Then, following Matheson and Winkler
(1976), to obtain an asymmetric scoring rule for continuous variables, we assume that the
subject assigns a probability distribution function P (x) to a continuous variable of interest.
Fix an arbitrary real number u to divide the real line into two intervals, I1 = I(−∞, u] and
I2 = I(u,∞), and define a success the event that y falls in I1. Since P (u) ∈ (0, 1) for any
u ∈ R, we can evaluate the binary scoring rule SAc at p = P (u), thus obtaining a different
value SAc (P (u)) for each u. Finally, the dependence of the scoring rule on the arbitrary value
of u is removed by integrating over all u, which yields eq. (1).

Notice that one can obtain a different (strictly) proper asymmetric scoring rule as long as
the baseline score is (strictly) proper.
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The integrals in eq. (1) can be numerically approximated by truncating the domain to
[umin, y] and [y, umax] such that

ACPS(P, y; c) ≈
N∑
i=1

wy
2,i

(
c2 − P (uy2,i)

2
)[ 1

(1− c)2
I(P (uy2,i) > c) +

1

c2
I(P (uy2,i) ≤ c)

]
+

N∑
i=1

wy
1,i

(
(1− c)2 − (1− P (uy1,i))

2
)[ 1

(1− c)2
I(P (uy1,i) > c) +

1

c2
I(P (uy1,i) ≤ c)

]
,

(2)

where (wy1,i, u
y
1,i)i and (wy2,i, u

y
2,i)i, for i = 1, . . . , N , are the weights and locations of two

Gaussian quadratures of N points on [y, umax] and [umin, y], respectively.

Remark 1. In Bayesian statistics it is current practice the use of predictive distributions,
mostly in the form of Monte Carlo samples from posterior predictive distributions of quantities
of interest. The asymmetric scoring rule ACPS can be easily computed using the output
of a Markov chain Monte Carlo algorithm by approximating the predictive distribution via
the empirical cumulative distribution function (empirical CDF) and using it as a probabilistic
forecast P .

To get an insight of the shape of the ACPS for varying levels of asymmetry, c, we consider
two examples: one with several probabilistic forecasts and the other with a fixed forecast.

Figure 1: Asymmetric scoring rule ACPS(P, y; c) for different forecasting densities P and asymmetry level
c. The observed value is fixed at y = 0 and the true density is N (0, 4). Left panel: cumulative distribution
functions of true density (solid, black) and forecasting densities: N (−3, 1) (dashed, blue), N (0, 1) (dashed,
orange), N (3, 1) (dashed, yellow), N (0, 16) (dashed, purple). Right panel: value of the asymmetric scoring
rule ACPS(P, y; c) against the asymmetry level c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}, for each forecasting
density (same colors as left panel).

Example 1. Let us consider several Gaussian probabilistic forecasts P . In Fig. 1 we show
the value of the score on a range of asymmetry values c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}, for a
given observation y whose true density is a standard Gaussian. When the density forecast is
Gaussian with the same mean as the target, the score is an inverse U-shaped function of the
asymmetry level c. This is essentially due to the symmetry of the Gaussian distribution around
its mean, since the probability mass in excess on the right tail is exactly equal to the mass
lacking on the left one. However, notice that a higher score is assigned to N (0, 1), as compared
to N (0, 16). Instead, the density forecasts N (−3, 1) and N (3, 1) receive a high penalty for
high and small levels of c, respectively. This shows that values of c close to 1 heavily penalise
forecasting densities that put more mass on the left part of the support as compared to the
target, and conversely for values of c close to 0.
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Example 2. Let us consider an alternative case when we keep fixed the probabilistic forecast
to N (2, 1) and inspect the value of the ACPS for alternative target densities. As expected (see
Fig. 2), when the true density assigns more mass on the left part of the support as compared to
the N (2, 1), the forecast receives a very low score especially for c close to 0. Conversely, when
the underlying true density is N (3, 1) the forecast receives a higher reward for c = 0.05, since
its CDF is basically a left-shifted version of the target.

Figure 2: Asymmetric scoring rule ACPS(P, y; c) for different observed values y and asymmetry level c. The
forecasting density is fixed at P = N (2, 1). Left panel: cumulative distribution functions of the forecasting
density (dashed, black) and of observation densities: N (3, 1) (solid, blue), N (−1, 1) (solid, orange), N (1, 4)
(solid, yellow), N (3, 4) (solid, purple). Right panel: value of the asymmetric scoring rule ACPS(P, y; c)
against the asymmetry level c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}, for each observation density (same colors as
left panel).

2.1 Threshold and quantile-weighted versions

In addition to asymmetric preferences towards under- or overestimation, a decision maker is
usually concerned with a precise forecast in a specific range of all possible values. Therefore,
it is important to have a tool that allows to assign heterogeneous weights to various regions of
the set of possible values of the variable. This calls for a scoring rule able to account for both
error-weighting, i.e. asymmetric preferences and domain-weighting of density forecasts.

Gneiting and Ranjan (2011) modified the CRPS by re-weighting the loss according to a
user-specified weight function, which allows to select the regions where the decision-maker has
greater concern. By exploiting the representation of the CRPS in terms of quantile functions,
they define a threshold-weighted (tCRPS) and quantile-weighted (qCRPS) score functions as
follows

tCRPS(P, y) =

∫ +∞

−∞

∣∣P (z)− I(y ≤ z)
∣∣2w(z) dz, (3)

qCRPS(P, y) =

∫ 1

0
2
(
I(y ≤ P−1(α))− α

)
(P−1(α)− y)v(α) dα, (4)

where w(z) ≥ 0 and v(α) ≥ 0 are the weight functions and level α ∈ (0, 1). Table 1 reports
some examples of weighting functions for the case of real-valued variables of interest; notice
that the uniform weight, w(z) = 1 and v(α) = 1, leads to the standard CRPS. See Lerch et al.
(2017) for discussion and applications of these scoring rules.
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Table 1: Examples of weight functions for threshold-weighted and quantile-weighted CRPS, and variables
supported on the real line. φ,Φ denote the probability density and cumulative distribution functions of the
standard Normal distribution, respectively, with x ∈ R and α ∈ (0, 1).

Emphasis Threshold weight function Quantile weight function
uniform w(x) = 1 v(α) = 1
center w(x) = φ(x) v(α) = α(1− α)
tails w(x) = 1− φ(x)/φ(0) v(α) = (2α− 1)2

right tail w(x) = Φ(x) v(α) = α2

left tail w(x) = 1− Φ(x) v(α) = (1− α)2

The definition of ACPS in (1) can be modified to address this issue and obtain a threshold-
weighted and a quantile-weighted asymmetric scoring rule, as follows.

Definition 2 (Threshold-weighted ACPS). Let G(du) be a positive measure1. We define the
threshold-weighted asymmetric continuous probability score (tACPS), as

tACPS(P, y; c) =

∫ y

−∞

(
c2 − P (u)2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
G(du)

+

∫ +∞

y

(
(1− c)2 − (1− P (u))2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
G(du),

(5)

where c ∈ (0, 1) is the level of asymmetry and P is the probabilistic forecast and y the value
that materializes.

Definition 3 (Quantile-weighted ACPS). Let p(u) denote the probability density function of
P (u) and let P−1(α) be the corresponding quantile function at α ∈ [0, 1]. Let V (dα) be a
positive measure on the unit interval. We define the quantile-weighted asymmetric continuous
probability score (qACPS), as

qACPS(P, y; c) =

∫ P (y)

0

(
c2 − α2

)[ 1

(1− c)2
I(α > c) +

1

c2
I(α ≤ c)

] 1

p(P−1(α))
V (dα)

+

∫ 1

P (y)

(
(1− c)2 − (1− α)2

)[ 1

(1− c)2
I(α > c) +

1

c2
I(α ≤ c)

] 1

p(P−1(α))
V (dα).

(6)

As stated for ACPS, we can provide evidence of the properness of the two novel scores
defined in eq. (5) and eq. (6).

Theorem 2 (Properness of tACPS, qACPS). For any c ∈ (0, 1), it holds:

a) the threshold-weighted asymmetric continuous probability score tACPS in eq. (5) is
strictly proper;

b) the quantile-weighted asymmetric continuous probability score qACPS in eq. (6) is strictly
proper.

Proof. The result follows from Theorem 1 and Matheson and Winkler (1976).

Both tACPS and qACPS can be computed by approximating eq. (5) and eq. (6) in a way
analogous to eq. (2). The main advantage of the tACPS and qACPS consists in the ability

1Notice that G(du) is not required to be a probability measure.
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to consider two levels of asymmetry: in terms of the loss at each point, and over different
regions of the domain. This is fundamental to answer the need of the decision maker who is
concerned with the performance of the forecast in a given interval of possible values (e.g., the
right tail) and who has an aversion to particular deviations from the target (e.g., averse to
underestimation).

Tab. 2 provides a summary of some key differences between the CRPS and ACPS, and the
corresponding weighted versions.

Table 2: Examples of scoring rules for evaluating density forecasts.

Domain
uniform weighted

L
os

s symmetric CRPS tCRPS, qCRPS
asymmetric ACPS tACPS, qACPS

Remark 2 (Multivariate case). The proposed asymmetric scores can be easily generalized to
multivariate settings. To this aim, denote with Q the class of the Borel probability measures on
Rn and let F ∈ Q be a probabilistic forecast identified via its cumulative distribution function,
P . Let c ∈ (0, 1) represent the level of asymmetry and denote with y = (y1, . . . , yn)′ the
multivariate value that materializes. The multivariate version of the asymmetric continuous
probability score is defined as

ACPS(P,y; c) =

=

∫ yn

−∞
· · ·
∫ y1

−∞

(
c2 − P (u)2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
du

+

∫ +∞

yn

· · ·
∫ +∞

y1

(
(1− c)2 − (1− P (u))2

)[ 1

(1− c)2
I(P (u) > c) +

1

c2
I(P (u) ≤ c)

]
du,

(7)

where du = du1 · · · dun. Moreover, one can define a multivariate threshold-weighted ACPS by
substituting the product of Lebesgue measures in eq. (7) with a positive measure G(du) on
Rn.

In the literature on asymmetric point forecasting measures, the choice of the shape
parameter(s) of the loss function has been of interest especially over the last decade. Some
works, such as Christoffersen and Diebold (1996) and Demetrescu and Hoke (2019) performed
an empirical exercise to rank competing forecasting models under asymmetric point forecast
measure using a grid of asymmetry values.

Instead, Elliott et al. (2008, 2005) and Patton and Timmermann (2007) introduced
procedures for inferring the value of the shape parameters of the forecaster’s loss function.
Assuming a collection of time series of forecasts of a given quantity of interest is available,
they treat the loss function parameters as variable to be estimated and look for the values
that would be most consistent with forecast rationality. This approach is appealing since the
loss function parameters may provide information about the forecaster’s objectives. However,
the main drawback of these approaches is that they rely on the availability of a time series of
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observed forecasts from relevant decision-makers (e.g., the IMF, the OECD, or central bankers).
Therefore, the application is case specific for those data.

2.2 Testing predictive ability

When forecasts from multiple models are available, there is the need for statistical tools, such
as tests, for assessing whether different forecasts are equally good. In the context of point
forecasts, the Diebold-Mariano (DM) test is the most frequently used test for equal forecast
performance. Essentially, it is based on the loss differential, defined as

dt = L(e1,t)− L(e2,t),

where ej,t = ŷj,t−yt is the forecast error of model j = 1, 2 at time t = 1, . . . , T , ŷj,t is the point
forecast of model j, yt is the true value, and L(·) is a given loss function. The null hypothesis
of equal accuracy in forecasting is H0 : E[dt] = 0 for all t, versus the alternative H1 : E[dt] 6= 0.
It can be shown that, if the loss differential series is (i) covariance stationary, and (ii) has short
memory (see e.g. McCracken (2020)), then under the null hypothesis

√
T d̄√

2πfd(0)
→ N (0, 1),

where d̄ and fd(0) are the sample mean and the spectral density (at frequency 0) of the loss
differential. Recently, McCracken (2020) found that the slow decay of the loss differential series
is the most frequent problem that hampers the use of the Diebold-Mariano test in real data
economic applications.

The density forecasting approach requires some adaptations of the Diebold-Mariano test,
since the forecast is an infinite dimensional object P .

Remark 3 (Modified DM test). To test the null hypothesis of equal accuracy of two competing
models in a density forecasting approach, we modify the definition of the loss differential as
follows. First, consider a proper scoring rule S, such as the ACPS or the CRPS, and denote
the associated loss with S∗(y, P ) = −S(y, P ). Then, the loss differential is defined as

d∗t = S∗(yt, P1,t)− S∗(yt, P2,t). (8)

Notice that the series d∗t has the same interpretation as dt in the original DM test, and following
the same theoretical arguments one can prove that, under the null hypothesis H0 : E[d∗t ] = 0

for each t, one has √
T d̄∗√

2πfd∗(0)
→ N (0, 1), (9)

where d̄∗ and fd∗(0) are the equivalent of d̄ and fd(0) for d∗t .
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3 Illustrations and comparison with weighted CRPS

This section investigates the performance of the proposed asymmetric scoring rule and
compares it with the CRPS. In order to assess the good performance of our measure, we
consider different target densities: (i) Gaussian, (ii) Student-t, (iii) Gamma, (iv) Beta. This
range includes families of distributions with different support (R, R+ and [0, 1]), skewed and
with fat tails. For the asymmetric scoring rule ACPS we use varying levels of asymmetry,
corresponding to c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}. Recall that c = 0.50 implies a symmetric
loss.

Forecasting density
N (0, 1) N (−3, 1) N (3, 1) N (0, 16)

CRPS 1 4 3 2
ACPS(·, ·; 0.05) 1 2 4 3
ACPS(·, ·; 0.275) 1 3 4 2
ACPS(·, ·; 0.5) 1 4 3 2
ACPS(·, ·; 0.725) 1 4 3 2
ACPS(·, ·; 0.95) 1 4 2 3

Figure 3: Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations.
Density estimated with M = 500 draws from forecasting distribution. Target is N (0, 1) (black), forecasting
densities are: N (0, 1) (blue), N (−3, 1) (orange), N (3, 1) (yellow), N (0, 16) (purple).

Fig. 3 and Fig. 4 provide graphical evidence of the properness of the ACPS in two cases,
with a Gaussian and a Student-t target, respectively. Both figures show that the ACPS rewards
the forecast density which corresponds to the ground truth, for all levels of asymmetry. In
addition, we find that the ranking of the competing probabilistic forecasts changes according
to the value of c, due to the different penalty assigned to asymmetric deviations from the
target.

Forecasting density
t(−3, 1, 3) t(2, 1, 3) t(0, 1, 5) t(4, 1, 15)

CRPS 3 2 1 4
ACPS(·, ·; 0.05) 3 2 1 4
ACPS(·, ·; 0.275) 3 2 1 4
ACPS(·, ·; 0.5) 3 2 1 4
ACPS(·, ·; 0.725) 4 2 1 3
ACPS(·, ·; 0.95) 4 2 1 3

Figure 4: Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations.
Density estimated withM = 500 draws from forecasting distribution. Target is t(0, 1, 5) (black), forecasting
densities are: t(−3, 1, 3) (blue), t(2, 1, 3) (orange), t(0, 1, 5) (yellow), t(4, 1, 15) (purple).

To investigate further this aspect, Fig. 5 presents the ranking of forecasts when none of the
candidates corresponds to the true density, which isN (2, 4). The CRPS indicatesN (3, 1) as the
best forecast, as does the ACPS for values of c around 0.5. However, when the ACPS assigns
more weight to the asymmetric loss, that is for c close to the boundary of (0, 1), the ranking
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significantly changes. For c = 0.05, that is when great importance is given to underestimation
of the target, the N (0, 1) is preferred, while N (0, 16) is the best for the opposite case, when
c = 0.95.

Forecasting density
N (0, 1) N (−3, 1) N (3, 1) N (0, 16)

CRPS 3 4 1 2
ACPS(·, ·; 0.05) 1 3 4 2
ACPS(·, ·; 0.275) 2 4 1 3
ACPS(·, ·; 0.5) 3 4 1 2
ACPS(·, ·; 0.725) 3 4 1 2
ACPS(·, ·; 0.95) 3 4 2 1

Figure 5: Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations.
Density estimated with M = 500 draws from forecasting distribution. Target is N (2, 4) (black), forecasting
densities are: N (0, 1) (blue), N (−3, 1) (orange), N (3, 1) (yellow), N (0, 16) (purple).

Many economic and financial variables in levels are inherently positive (e.g. GDP, volatility)
or take values on a bounded interval (e.g., interest rate, unemployment rate). To account for
these cases, we investigate the performance of the ACPS in simulated experiments where the
target density is either Gamma or Beta.

Forecasting density
Ga(1, 1) Ga(2, 1) Ga( 3

2 ,
3
2 ) Ga(1, 2)

CRPS 3 1 4 2
ACPS(·, ·; 0.05) 4 1 2 3
ACPS(·, ·; 0.275) 4 1 2 3
ACPS(·, ·; 0.5) 4 1 2 3
ACPS(·, ·; 0.725) 4 1 2 3
ACPS(·, ·; 0.95) 2 1 3 4

Figure 6: Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations.
Density estimated with M = 500 draws from forecasting distribution. Target is Ga(2, 1) (black), forecasting
densities are: Ga(1, 1) (blue), Ga(2, 1) (orange), Ga( 3

2
, 3
2
) (yellow), Ga(1, 2) (purple).

Fig. 6 presents the results for a Ga(2, 1) target density. By looking at the worst performing
densities according to ACPS, we find that Ga(1, 1) is assigned the highest penalty for values
c ≤ 0.725, while Ga(1, 2) becomes the worst for c = 0.95. This reflects that for c ≤ 0.725, the
asymmetric score penalizes more the underestimation, while for c = 0.95 it gives more weight
to overestimation. Similar results are found in Fig. 7 with a positively skewed Beta target
density, Be(1, 2).

3.1 Threshold-weighted version

We deep further the properties of the proposed asymmetric scoring rule by considering a
threshold-weighted version and comparing it with the threshold-weighted CRPS. The goal is
to disentangle the different role of the domain-weighting scheme, which reflects the interest
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Forecasting density
Be(1, 1) Be(1, 5) Be(1, 2) Be(5, 5)

CRPS 3 2 1 4
ACPS(·, ·; 0.05) 2 3 1 4
ACPS(·, ·; 0.275) 3 2 1 4
ACPS(·, ·; 0.5) 2 3 1 4
ACPS(·, ·; 0.725) 3 4 1 2
ACPS(·, ·; 0.95) 2 4 1 3

Figure 7: Ranking of probabilistic forecasts. Results from S = 1 simulation of N = 100 observations.
Density estimated with M = 500 draws from forecasting distribution. Target is Be(1, 2) (black), forecasting
densities are: Be(1, 1) (blue), Be(1, 5) (orange), Be(1, 2) (yellow), Be(5, 5) (purple).

of the decision-maker in having good forecasts within a specific interval of values, and of the
error-weighting scheme, which corresponds to the decision-maker’s loss in case of under or
overestimation.

Consider a simulated experiment where N = 100 observations are drawn from a Normal
distribution N (1, 4) and several forecasting densities are approximated using M = 500 draws.
We consider the domain-weighting schemes in Tab. 1, using 5 alternative asymmetry levels
c ∈ {0.05, 0.275, 0.50, 0.725, 0.95}.

In Tab. 3 we find that the asymmetric penalty imposed by ACPS plays a significant role
for all domain-weighting schemes considered. For an uniform weight, the ACPS agrees with
the CRPS for c = 0.5, i.e. the symmetric case, but rewards differently the density forecasts
for alternative values of the asymmetry level c. When the interest is focused on the right tail
of the distribution, both threshold-weighted CRPS and ACPS agree, but when the attention
is on the left tail, the two scoring rules perform remarkably different. The CRPS favours the
standard Normal over the N (3, 1), while the ACPS rewards the latter for all c ≥ 0.275.

The key insight obtained from this simulated exercise concerns the importance of domain-
and error-weighting schemes. The first assigns an heterogeneous weight to the performance
on different intervals, while the latter asymmetrically rewards negative and positive deviations
from the true value. The threshold-weighted asymmetric scoring rule, tACPS, combines the
two schemes and allows to evaluate the performance of the forecasting density from both
perspectives. This is important to the decision makers, who are usually interested in a
specific range of all possible values, thus calling for heterogeneous domain-weighting, and
have asymmetric preferences towards under or overestimation, which motivates an asymmetric
score.

14



Table 3: This table reports the ranking of probabilistic forecasts using tCRPS and tACPS, for different
weights (uniform, center, tails, right and left tail) and asymmetry levels (c ∈ {0.05, 0.2750.50, 0.725, 0.95}).
Results from S = 1 simulation of N = 100 observations (average score across all observations). Density
estimated with M = 500 draws from forecasting distribution. Target is N (1, 4), forecasting densities are
N (0, 1), N (−3, 1), N (3, 1), N (0, 16).

N (0, 1) N (−3, 1) N (3, 1) N (0, 16)
tCRPS uniform 4 2 3 1
tACPS(·, ·; 0.05) uniform 1 3 4 2
tACPS(·, ·; 0.275) uniform 2 1 4 3
tACPS(·, ·; 0.5) uniform 4 2 3 1
tACPS(·, ·; 0.725) uniform 4 3 2 1
tACPS(·, ·; 0.95) uniform 4 3 1 2
tCRPS center 1 3 4 2
tACPS(·, ·; 0.05) center 3 1 4 2
tACPS(·, ·; 0.275) center 3 1 4 2
tACPS(·, ·; 0.5) center 4 1 3 2
tACPS(·, ·; 0.725) center 4 1 3 2
tACPS(·, ·; 0.95) center 4 1 3 2
tCRPS tails 1 3 4 2
tACPS(·, ·; 0.05) tails 1 4 2 3
tACPS(·, ·; 0.275) tails 1 3 2 4
tACPS(·, ·; 0.5) tails 2 3 4 1
tACPS(·, ·; 0.725) tails 3 4 2 1
tACPS(·, ·; 0.95) tails 4 3 1 2
tCRPS right tail 2 3 4 1
tACPS(·, ·; 0.05) right tail 3 2 4 1
tACPS(·, ·; 0.275) right tail 3 2 4 1
tACPS(·, ·; 0.5) right tail 4 2 3 1
tACPS(·, ·; 0.725) right tail 4 3 2 1
tACPS(·, ·; 0.95) right tail 4 3 1 2
tCRPS left tail 1 3 2 4
tACPS(·, ·; 0.05) left tail 1 3 4 2
tACPS(·, ·; 0.275) left tail 2 3 1 4
tACPS(·, ·; 0.5) left tail 4 3 1 2
tACPS(·, ·; 0.725) left tail 4 3 1 2
tACPS(·, ·; 0.95) left tail 4 2 1 3

4 Empirical applications

In the empirical applications, we adopt a similar framework to Amisano and Giacomini (2007)
and Gneiting and Ranjan (2011), and consider the task of comparing density forecasts in
a time series context. We use a fixed-length rolling window to provide a density forecast
for h step ahead future observations. We focus on three different applications related to
macroeconomics (employment growth rate) and to commodity prices (oil prices and electricity
prices). We compare several univariate models, such as the autoregressive (AR) model, the
Markov-switching (MS) AR model and the time-varying parameter (TVP) AR model.

We use the AR(1) as benchmark model, then we specify 12 lags for the employment
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growth rate (i.e., 1 year of monthly observations) and 20 lags for the oil (i.e., 1 month of
daily observations). Regarding the electricity prices, we include 7 lags (i.e., 1 week of daily
observations) and by following common practice in the literature, we restrict lags to t − 1,
t− 2, and t− 7, which correspond to the previous day, two days before, and one week before
the delivery time, recalling first similar conditions that may have characterized the market
over the same hours and similar days (such as congestions and blackouts) and secondly the
demand level during the days of the week. For the MS-AR model we consider only 1 lag,
while for the TVP-AR model we use 1 and 2 lags. For both AR and TVP-AR, we consider
three specifications of the variance: constant volatility and time-varying volatility in the form
of stochastic volatility with Gaussian and Student-t error. For the MS-AR, we impose an
identification constraint on the error variance.

In the first application, we aim at forecasting monthly US total nonfarm seasonally adjusted
employment growth rate downloaded from the FRED database. We consider the growth rate
of the monthly employment rate in US from January 1980 to April 2020. We see evidence of
some spikes, in particular with a strong fall in April 2020 due to present COVID-19 situation
(see Figure S.1 in the supplementary material). We use a rolling window approach of 20 years
(thus 240 observations) and we forecast h = 1 and h = 12 (thus 1 year ahead) month ahead
by using a recursive forecasting exercise.

For oil prices, we analyze daily West Texas Index (WTI) data (no weekends) from 02
January 2012 to 07 May 2020 in order to include in the analysis the recent turmoil. Indeed,
large drops in demand that suddenly occurred and storage scarcity have resulted in negative
WTI oil prices at the end of April 2020. As for the employment rate, we have used a rolling
window of 4 years and we forecast h = 1 and h = 5 days ahead by applying recursive techniques.

In the third application, we consider the problem of forecasting the day-ahead electricity
prices in Germany, one of the largest and leading energy market. In the electricity markets,
the phenomenon of negative prices – when allowed to occur, such as in Germany where there is
no floor price – has become more frequent due to the increasing share of electricity generated
from renewable energy sources (RES) and the current impossibility to store it (see Figure 2 in
the supplementary material). We analyze daily data (with weekends) from 01 January 2014
to 08 May 2020. For the forecasting analysis, we have considered a rolling window of 3 years
and a recursive techniques for predicting h = 1 and h = 7 days ahead.

As we discussed in the introduction, policymakers or energy producers may be more
concerned with forecasting values below a given threshold than the full distribution, since they
require different measures, including in the case of energy variables to stop the production.2

This supports the application of the ACPS. For the oil series we perform a case study around
the collapse of WTI prices and discuss how the ACPS results can be applied to identify the
true unknown density.

2Unfortunately, we have not precise data to compute (i) the value of this threshold, excluding the case of
RES producers of electricity prices, that could be still profitable even when prices are marginally above zero,
and (ii) the level of asymmetry of the loss function. Therefore, we investigate several values of c, the parameter
that drives the asymmetry of our measure.
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Before evaluating the relative performance of all models, we check the calibration of the
density forecasts. Calibration of density forecasts is based on properties of a density and refers
to absolute accuracy (see Bassetti et al. (2019) for further details). The absolute accuracy can
be studied by testing forecast accuracy relative to the “true”, unobserved density. Dawid (1982)
introduced the criterion of calibration for comparing prequential probabilities with binary
random outcomes and exploited the concept of probability integral transform (PIT), that is the
value that a predictive CDF attains at the observations, for continuous random variables. The
PITs summarize the properties of the densities and may help us to judge whether the densities
are biased in a particular direction and whether the width of the densities has been roughly
correct on average, see Diebold et al. (1998). The PITs can provide an indication of whether
a density is wrong in predicting higher moments or specific parts of the distribution, such as
the tails; however they cannot distinguish among models that are also correctly calibrated.
We apply the test of Knuppel (2015) and refer to Rossi and Sekhposyan (2013) for evaluation
of PITs in presence of instabilities, Rossi and Sekhposyan (2014) for application with large
database and Rossi and Sekhposyan (2019) for a comparison of alternative tests for correct
specification of density forecasts.

The PIT tests in Tab. 4 indicate that all densities are correctly calibrated for the
employment growth rate at 5% significance level, excluding the one given by the TVP-AR(2)
model at 12-month horizon, for which the p-value is marginally lower at 4.9%. Density
forecasts from models TVP-AR(2)-SV3 and TVP-AR(2)-tSV are calibrated at 1-day ahead
horizon; no density is correctly calibrated at 5-days ahead horizons. All densities are not
correctly calibrated when predicting EEX electricity prices at both horizons. So, the PITs
analysis suggests there is not a stochastically dominating model, but more specifications can
provide (absolute) accurate forecasts suggesting the use of relative metrics such as the ACPS
to discriminate among them. In the case of EEX prices, all models are wrong and a possible
explanation is that the models considered in this text are based only on econometric properties
of the series, hence they may be labelled as “purely econometric” models. Gianfreda et al.
(2020a) and Gianfreda et al. (2020b) document how important is to extend these models with
economically relevant variables, such as variables related to the demand and the production of
electricity, including renewable energy sources, to increase accuracy. We leave this extension
for further research and apply our metrics to an example where models in terms of calibration
are all wrong.

Tab. 4 shows the ranking of the probability forecasts over vintages and across models for
all the three datasets for c = 0.05, 0.5, 0.95.4 The ACPStest presented in Section 2.2 is also
reported.5

Regarding the employment growth rate, we can see at horizon 1-month ahead that the
best model for c = 0.05 is the AR(12)-tSV, for c = 0.5 it is the TVP-AR with 2 lags (the

3Notice that the TVP-AR(2)-SV is always preferred in terms of relative accuracy.
4See Table IV in the supplementary material for results for a higher range of c.
5In order to perform the test, we checked the stationarity and short memory of the loss differential series

using the ADF test and the autocorrelation function, respectively.
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Table 4: Ranking of probability forecasts and accuracy test. Best model, over vintages, according to: CRPS;
ACPS with c = 0.05; 0.5; 0.95 for the three different datasets: Employment (top); Oil (middle) and EEX
(bottom).

EMPL

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(12) AR(12)-SV AR(12)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 12 9∗∗∗ 5∗∗∗ 13 2∗∗∗ 1∗∗∗ 11∗∗∗ 3∗∗∗ 10∗∗∗ 8∗∗∗ 4∗∗∗ 7∗∗∗ 6∗∗∗

ACPS(·, ·; 0.5) 13 10∗∗∗ 9∗∗∗ 11 8∗∗∗ 7∗∗∗ 12∗∗∗ 4∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 2∗∗∗ 3∗∗∗

ACPS(·, ·; 0.95) 13 4∗∗∗ 3∗∗∗ 12 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 9∗∗∗ 6∗∗∗ 8∗∗∗ 10∗∗∗

CRPS 13 10∗∗∗ 9∗∗∗ 11 8∗∗∗ 7∗∗∗ 12∗∗∗ 4∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 2∗∗∗ 3∗∗∗

Horizon 12 AR(1) AR(1)-SV AR(1)-tSV AR(12) AR(12)-SV AR(12)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 11 12 10 13 3 2 9∗∗∗ 4 6 5 1 8 7
ACPS(·, ·; 0.5) 12 4∗∗∗ 3∗∗∗ 13 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

ACPS(·, ·; 0.95) 12 1∗∗∗ 2∗∗∗ 13 3∗∗∗ 4∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

CRPS 12 4∗∗∗ 3∗∗∗ 13 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

OIL

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 12 8∗ 11 10∗∗ 7∗ 9∗∗ 13 6∗∗∗ 3∗∗∗ 4∗∗∗ 5∗∗∗ 2∗∗∗ 1∗∗∗

ACPS(·, ·; 0.5) 12 9 13 7 8 11 10 3∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 4∗∗∗ 2∗∗∗

ACPS(·, ·; 0.95) 12 8 11∗∗ 9 7 10∗∗ 13 3∗∗ 6∗ 5∗ 1∗∗ 4∗ 2∗

CRPS 12 9 13 7 8 11 10 3∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 4∗∗∗ 2∗∗∗

Horizon 5 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 10 5 7 9 3 6 12 13 2 8 11 1∗ 4∗

ACPS(·, ·; 0.5) 3 7 6 8 4 5 11 1∗∗ 13 12 2 10 9
ACPS(·, ·; 0.95) 6 1 3∗ 8 2 4 13 5 10 7 11 12 9
CRPS 3 6 7 8 4 5 11 1∗∗ 13 12 2 10 9

EEX

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 11 8∗ 6∗∗∗ 9∗∗∗ 3∗∗∗ 1∗∗∗ 12 13 7∗∗ 4∗∗ 10 5∗∗ 2∗∗∗

ACPS(·, ·; 0.5) 12 10∗∗∗ 11∗ 7∗∗∗ 2∗∗∗ 5∗∗∗ 13 9∗∗∗ 6∗∗∗ 4∗∗∗ 8∗∗∗ 3∗∗∗ 1∗∗∗

ACPS(·, ·; 0.95) 12 7∗∗∗ 8∗∗∗ 11∗∗∗ 2∗∗∗ 6∗∗∗ 13 9∗∗∗ 3∗∗∗ 5∗∗∗ 10∗∗∗ 1∗∗∗ 4∗∗∗

CRPS 13 10∗∗∗ 11∗ 7∗∗∗ 1∗∗∗ 5∗∗∗ 12 9∗∗∗ 6∗∗∗ 4∗∗∗ 8∗∗∗ 3∗∗∗ 2∗∗∗

Horizon 7 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 5 13 12 1∗∗∗ 11 4 7 3 9 8 2 10 6
ACPS(·, ·; 0.5) 10 12 13 9∗∗∗ 8∗∗∗ 7∗∗∗ 11 6∗∗∗ 4∗∗∗ 2∗∗∗ 5∗∗∗ 3∗∗∗ 1∗∗∗

ACPS(·, ·; 0.95) 12 11 10 9∗∗∗ 7∗ 5∗∗ 13 1∗∗∗ 8∗ 4∗∗ 2∗∗∗ 6∗ 3∗∗

CRPS 10 12 13 9∗∗∗ 8∗∗∗ 7∗∗∗ 11 6∗∗∗ 4∗∗∗ 2∗∗∗ 5∗∗∗ 3∗∗∗ 1∗∗∗

Notes:
1 ∗∗∗, ∗∗ and ∗ indicate scores are significantly different from 1 at 1%, 5% and 10%, according to the ACPStest in Section 2.2.
2 Gray cells indicate models that are correctly calibrated at 5% significance level according to the Knuppel test.

same for the CRPS measure), and for c = 0.95 it is the AR(12)-SV, showing differences across
different levels of asymmetry. The test indicates that most of the models provide superior
forecasts than the AR(1) benchmark and only the AR(12) model does not provide gains. The
difference in model performance for various levels of c is confirmed for h = 12 and interesting
for c = 0.05 only the AR(1)-MS is statistically superior. Therefore, our evidence supports the
large literature on the use of time-varying and nonlinear models in modelling and forecasting
(un)employment data. Moreover, the best model for h = 12 and c = 0.5 is the same when
applying the CRPS. In Fig. 8, we report the best model in each vintage for the two horizon
ahead, where the black line refers to the CRPS, the red and the yellow for the ACPS for
c = 0.05 and for c = 0.95, respectively. The graph shows large instability in the best model, in
particular when using the CRPS. The ACPS rules seem to prefer one of the alternative models
for more consecutive vintages. For example, by looking at the relative frequency of occurrence
of each model as the best model, we find that for c = 0.05, 31% times the AR(12)-tSV is
considered the best model for h = 1. Similar percentages are found for other levels of c and h,
despite model order varies substantially across measures.

Moving to the oil prices, in the middle panel of Tab. 4, we find that across vintages, for
1 day ahead the TVP-AR(2) is the best model whereas the TVP-AR(2)-SV is the second
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Figure 8: Best model in each vintage for EMPL dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS
with c = 0.95 (yellow).

best for the asymmetric levels c = 0.5, 0.95 and the CRPS. For c = 0.05 the best model is
the TVP-AR(2)-SV model, supporting PITS evidence that this model is among the few ones
correctly calibrated. The TVP-AR(2)-SV model is again the best model for 1 week ahead of
forecasting and for c = 0.05 and it is one of the two models to be statistically superior to the
AR benchmark. For the same weekly horizon and other levels of c, again only few models are
superior to the benchmark. Fig. 9 confirms that the ACPS is less variable in this selection
than the CRPS.
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Figure 9: Best model in each vintage for OIL dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS
with c = 0.95 (yellow).

Fig. 10 illustrates the ACPS for one step ahead density forecasts of the OIL prices, according
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to an AR(20) model, for each vintage of the rolling estimation and various levels of asymmetry.
Despite showing the results for a single model, this figure presents some interesting insights.
By looking at the scores between April 17 and April 21, we find that the forecast is worst
performing for c = 0.05 and best for c = 0.95, indicating that the density forecast assigns
more mass on the right part of the support as compared to the density of the observations.
This situation is similar to the yellow line in Fig. 1. Surprisingly, the ranking is reversed
between April 21 and April 24, where the forecast receives a higher score under c = 0.05.
This suggests that the density forecast is likely to be a right-shifted version of the observation
density, similarly to the blue line in Fig. 1.

Figure 10: Top two rows: values of ACPS for one step ahead density forecasts of the OIL prices according to
a TVP-AR(2) model and an AR(20) model, respectively, for selected rolling windows (x-axis) and different
asymmetry levels c: 0.05 (dashed red line), 0.275 (dashed yellow line), 0.50 (dashed black line), 0.725 (dashed
purple line), 0.95 (dashed green line). Bottom row: observed values of the time series (solid black line). The
right column is a zoomed-in version of the left column.

These results highlight how accounting for asymmetry in forecast evaluation may lead to
dramatically different implications. By looking at the period until April 21, a decision maker
averse to overestimation of oil price is likely to discard the AR(20) in favor of alternative models
for making forecasts. Conversely, another agent facing the same decision problem, equipped
with the same data and models, but averse to underestimation, is likely to agree to the AR(20).

Moreover, these insights provide an important value added of the ACPS as compared to
symmetric scores. By looking at variation of the ranking according to the ACPS over time, it
is possible to infer the relative dynamics of the forecasting and observation densities. In the
case previously mentioned, between April 17 and April 21 the forecast tends to overestimate
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(i.e., its CDF is to the right of the observations CDF), while it tends to underestimate between
April 21 and April 24 (i.e., its CDF is to the left of the observations CDF). Under a symmetric
score it is not possible to grasp these insights since negative and positive deviations from the
target are equally penalized.

The bottom panel of Tab. 4 reports the results for the electricity prices. As in the previous
cases, there is large uncertainty on the model ranking. In line with PIT evidence, the high
volatility, spikes and negative prices of the electricity prices drive different results depending
on the level of asymmetry of the user. At h = 1 and c = 0.05, the AR(20)-tSV is the best
model, for higher values of c, the TVP-AR(2)-SV and TVP-AR(2)-tSV are the preferred ones.
Many models with time-varying volatility outperform the constant volatility models, confirming
evidence in Gianfreda et al. (2020b). At h = 12 the AR(20) for c = 0.05, the TVP-AR(2)-tSV
for c = 0.5, and the TVP-AR(1) for c = 0.95 give the highest ACPS. Fig. 11 again indicates
more stable performance of some models when accounting for asymmetry relative to use the
symmetric CRPS.

h
=

1
h

=
7

Figure 11: Best model in each vintage for EEX dataset: CRPS (black), ACPS with c = 0.05 (red), ACPS
with c = 0.95 (yellow).

5 Conclusions

This paper has introduced a novel asymmetric proper score for probabilistic forecasts of
continuous variables, the ACPS. Its main application is the evaluation and comparison of
density forecasts. In addition, we have proposed a threshold- and quantile-weighted version of
the asymmetric score, which, by reweighing the domain, allows for a further level of asymmetry
in the evaluation of forecasts. We also derive a test to compare the statistical accuracy of
different forecasts. The definition of ACPS is sufficiently flexible to be used in a variety of
univariate contexts, and carries over to the multivariate case. The latter deserves further
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investigation and is an open field for future research.
We provide a tool able to account for the decision maker’s preferences in the evaluation of

density forecasts both in terms of domain- and error-weighting schemes.
In an artificial data exercise, we have shown the good performance of our proposed

asymmetric score for different continuous target distributions. In relevant macroeconomic and
energy applications, we evaluate our score across different models and for different horizons,
and we improve on the quality of the forecasts by providing an effective tool for density forecast
evaluation.

The proposed score, ACPS, is of general use in any situation where the decision maker has
asymmetric preferences in the evaluation of forecasts and thus it can be applied to a much
wide range of applications. Further extensions could cover the area of forecast instability, see
Giacomini and Rossi (2010), and the case of state-dependent function of economic variables
such as in Odendahl et al. (2020).
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Supplementary Material to “Proper scoring rules for evaluating
asymmetry in density forecasting”

Abstract

This appendix contains the details of the model specifications used in the empirical
applications in Section S.1. The data used in the empirical application is described in
Section S.2, while Section S.3 provides additional details of the empirical analysis.

S.1 Models

Let i ∈ {EMPL,OIL,EEX}.

AR(1)

As a benchmark, we consider a standard autoregressive model of order 1, AR(1), defined as

yi,t = αi + βiyi,t−1 + εi,t, εi,t ∼ N (0, σ2
i ), (S.1)

where t = 1, . . . , T . As for the other models, we also consider different lag specification.

Markov Switching AR(1)

The assumption of constant parameters in time series analysis is likely to be incorrect, especially
for long time series. Motivated by this fact, we estimate a Markov switching AR(1) model,
called MS-AR(1), where the autoregressive parameter jumps according to a latent Markov
chain

yi,t = αi,St + βi,Si,tyi,t−1 + εi,t, εi,t ∼ N (0, σ2
i,St

) (S.2)

where each Si,t follows a homogeneous Markov chain with transition matrix

Ξi =

ξi,1,1 ξi,1,2

ξi,2,1 ξi,2,2


with ξi,k,j = P (Si,t = j|Si,t = k).

Bayesian inference

We sample the path of Si,t using the forward filter, backward sampler of Frühwirth-Schnatter
(2006).

Fix i and define βSt = (αi, βi,St)
′ and Xt = (1, yt−1). Finally, for each state m = 1, . . . ,M

let Tm = {t = 1, . . . , T : st = m}. Assume a Gaussian prior for βm, for each state
m = 1, . . . ,M , as

P (βm) = N (µ
β
, V β).
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Then, the posterior is obtained as

βm|y, st, σ2 ∼ N (µβ, V β),

where

V β =
(
V −1
β +

∑
t∈Tm

X ′tXt

σ2
m

)−1
, µβ = V β

(
V −1
β µ

β
+
∑
t∈Tm

X ′tyt
σ2
m

)
.

Assume a Dirichlet prior for ξm = (ξm,1, . . . , ξm,m), for each state m = 1, . . . ,M , as

P (ξm) = Dir(cm).

Then, the posterior is obtained as

ξm|st ∼ Dir(cm + Nm),

where

Nm,l = #{t : St−1 = m ∧ St = l}.

For identifying the states, we impose a restriction on the levels of the volatility, i.e. σ2
i,1 < σ2

i,2.
Therefore, we label state 1 the low volatility regime and state 2 the high volatility regime.

TVP-AR(1)

In order to capture potential smooth variations of the coefficient, we consider a TVP framework,
denoted TVP-AR(1), where the latter parameter is assumed to evolve according to a latent
AR(1) process

yi,t = αi,t + βi,tyi,t−1 + εi,t, εi,t ∼ N (0, σ2
i ) (S.3)

βi,t = Aiβi,t−1 + ηi,t, ηi,t ∼ N (0,Ωi) (S.4)

We sample the path of βi,t using the forward filter, backward sampler of Carter and Kohn
(1994).

We assume a Gaussian prior for each column j of Ai, that is

P (Ai,:j) = N (µ
A
, V A),

thus obtaining a Gaussian posterior

Ai,:j |{βi,1, . . . ,βi,T },Ωi ∼ N (µA, V A),
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where

V A =
(
V −1
A +

T∑
t=2

β′i,t−1Ω−1
i βi,t−1

)−1
, µA = V A

(
V −1
A µ

A
+

T∑
t=2

β′i,t−1Ω−1
i βi,t

)
.

Stochastic Volatility

We also study the previous autoregressive models with the inclusion of stochastic volatility. We
present only the extension for the AR(1) in eq. (S.1), and analogous changes apply to model
(S.4).

Let hi,t, for t = 1, . . . , T , be the log-variance for series i at time t, then an AR(1) model
with Gaussian noise and stochastic volatility, denoted AR(1)-SV, is given by

yi,t = αi + βiyi,t−1 + εi,t, εi,t ∼ N (0, exp(hi,t))

hi,t = hi,t−1 + ui,t, ui,t ∼ N (0, σ2
i,h). (S.5)

The last model considered is an extension of the AR(1) with stochastic volatility that
assumes Student-t noise. Let νi > 0 be the degrees of freedom parameter. An AR(1) with
Student-t noise and stochastic volatility, denoted AR(1)-SV-t, is given by

yi,t = αi + βiyi,t−1 + εi,t, εi,t ∼ N (0, exp(hi,t)/λi,t)

hi,t = hi,t−1 + ui,t, ui,t ∼ N (0, σ2
i,h), (S.6)

where λi,t ∼ IG(νi/2, νi/2).
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S.2 Data description

Figure S.1: Raw data series.
This figure reports the raw time series for EMPL, OIL, and EEX .
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S.3 Additional details on empirical applications

Table S.1: Relative frequency of occurrence of each model for EMPL as best model, across vintages,
accoriding to: CRPS (rows 1-2), ACPS with c = 0.05 (rows 3-4), ACPS with c = 0.95 (rows 5-6)

AR(1) AR(1)-SV AR(1)-tSV AR(12) AR(12)-SV AR(12)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV

CRPS h = 1 0.01 0.10 0.10 0.03 0.16 0.13 0.00 0.06 0.07 0.07 0.10 0.09 0.06
h = 12 0.01 0.10 0.14 0.05 0.15 0.15 0.00 0.17 0.06 0.05 0.04 0.05 0.04

ACPS 0.05 h = 1 0.00 0.20 0.05 0.00 0.31 0.06 0.01 0.10 0.04 0.03 0.11 0.05 0.03
h = 12 0.01 0.18 0.03 0.00 0.31 0.07 0.03 0.31 0.00 0.00 0.04 0.00 0.00

ACPS 0.95 h = 1 0.00 0.16 0.03 0.00 0.26 0.08 0.00 0.15 0.07 0.03 0.16 0.03 0.03
h = 12 0.00 0.19 0.05 0.00 0.23 0.04 0.00 0.45 0.00 0.00 0.05 0.00 0.00

Table S.2: Relative frequency of occurrence of each model for OIL as best model, across vintages, according
to: CRPS (rows 1-2), ACPS with c = 0.05 (rows 3-4), ACPS with c = 0.95 (rows 5-6)

AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV

CRPS h = 1 0.03 0.04 0.06 0.07 0.04 0.06 0.10 0.04 0.06 0.05 0.11 0.17 0.18
h = 5 0.06 0.05 0.08 0.11 0.09 0.11 0.09 0.07 0.07 0.07 0.05 0.07 0.08

ACPS 0.05 h = 1 0.03 0.11 0.05 0.04 0.09 0.05 0.12 0.05 0.06 0.05 0.13 0.11 0.10
h = 5 0.03 0.08 0.07 0.10 0.19 0.12 0.14 0.09 0.04 0.04 0.05 0.03 0.02

ACPS 0.95 h = 1 0.04 0.12 0.05 0.05 0.10 0.05 0.11 0.03 0.06 0.04 0.12 0.12 0.10
h = 5 0.05 0.13 0.05 0.16 0.19 0.09 0.12 0.07 0.03 0.02 0.04 0.02 0.02

Table S.3: Relative frequency of occurrence of each model for EEX as best model, across vintages, according
to: CRPS (rows 1-2), ACPS with c = 0.05 (rows 3-4), ACPS with c = 0.95 (rows 5-6)

AR(1) AR(1)-SV AR(1)-tSV AR(7) AR(7)-SV AR(7)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV

CRPS h = 1 0.04 0.03 0.05 0.11 0.16 0.10 0.04 0.05 0.06 0.11 0.08 0.07 0.10
h = 7 0.04 0.05 0.05 0.07 0.07 0.04 0.03 0.08 0.08 0.12 0.12 0.10 0.16

ACPS 0.05 h = 1 0.03 0.03 0.02 0.18 0.18 0.04 0.03 0.09 0.08 0.04 0.13 0.11 0.04
h = 7 0.01 0.01 0.01 0.04 0.05 0.01 0.01 0.18 0.05 0.09 0.32 0.10 0.12

ACPS 0.95 h = 1 0.05 0.05 0.03 0.16 0.19 0.04 0.05 0.08 0.07 0.02 0.12 0.10 0.03
h = 7 0.09 0.06 0.01 0.08 0.06 0.03 0.05 0.12 0.05 0.04 0.27 0.06 0.08

5



Table S.4: Ranking of probability forecasts and accuracy test. Best model, over vintages, according to:
CRPS; ACPS with c = 0.05; 0.275; 0.5; 0.725; 0.95 for the three different datasets: Employment (top); Oil
(middle) and EEX (bottom).

EMPL

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(12) AR(12)-SV AR(12)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 12 9∗∗∗ 5∗∗∗ 13 2∗∗∗ 1∗∗∗ 11∗∗∗ 3∗∗∗ 10∗∗∗ 8∗∗∗ 4∗∗∗ 7∗∗∗ 6∗∗∗

ACPS(·, ·; 0.275) 12 10∗∗∗ 9∗∗∗ 13 8∗∗∗ 7∗∗∗ 11∗∗∗ 2∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 3∗∗∗ 4∗∗∗

ACPS(·, ·; 0.5) 13 10∗∗∗ 9∗∗∗ 11 8∗∗∗ 7∗∗∗ 12∗∗∗ 4∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 2∗∗∗ 3∗∗∗

ACPS(·, ·; 0.725) 13 10∗∗∗ 9∗∗∗ 11∗∗ 2∗∗∗ 1∗∗∗ 12∗∗∗ 8∗∗∗ 6∗∗∗ 7∗∗∗ 4∗∗∗ 3∗∗∗ 5∗∗∗

ACPS(·, ·; 0.95) 13 4∗∗∗ 3∗∗∗ 12 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 9∗∗∗ 6∗∗∗ 8∗∗∗ 10∗∗∗

CRPS 13 10∗∗∗ 9∗∗∗ 11 8∗∗∗ 7∗∗∗ 12∗∗∗ 4∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 2∗∗∗ 3∗∗∗

Knuppel p-value 0.137 0.389 0.374 0.475 0.222 0.180 0.145 0.337 0.136 0.136 0.195 0.061 0.061

Horizon 12 AR(1) AR(1)-SV AR(1)-tSV AR(12) AR(12)-SV AR(12)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 11 12 10 13 3 2 9∗∗∗ 4 6 5 1 8 7
ACPS(·, ·; 0.275) 12 8∗∗∗ 5∗∗∗ 13 1∗∗∗ 2∗∗∗ 11∗∗∗ 3∗∗∗ 7∗∗∗ 6∗∗∗ 4∗∗∗ 9∗∗∗ 10∗∗∗

ACPS(·, ·; 0.5) 12 4∗∗∗ 3∗∗∗ 13 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

ACPS(·, ·; 0.725) 12 4∗∗∗ 1∗∗∗ 13 2∗∗∗ 3∗∗∗ 11∗∗∗ 5∗∗∗ 6∗∗∗ 7∗∗∗ 8∗∗∗ 9∗∗∗ 10∗∗∗

ACPS(·, ·; 0.95) 12 1∗∗∗ 2∗∗∗ 13 3∗∗∗ 4∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

CRPS 12 4∗∗∗ 3∗∗∗ 13 1∗∗∗ 2∗∗∗ 11∗∗∗ 5∗∗∗ 7∗∗∗ 8∗∗∗ 6∗∗∗ 9∗∗∗ 10∗∗∗

Knuppel p-value 0.181 0.088 0.126 0.440 0.124 0.138 0.170 0.087 0.354 0.354 0.049 0.287 0.287

OIL

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 12 8∗ 11 10∗∗ 7∗ 9∗∗ 13 6∗∗∗ 3∗∗∗ 4∗∗∗ 5∗∗∗ 2∗∗∗ 1∗∗∗

ACPS(·, ·; 0.275) 12 8 13 7∗ 9 10 11 4∗∗∗ 5∗∗∗ 6∗∗∗ 1∗∗∗ 3∗∗∗ 2∗∗∗

ACPS(·, ·; 0.5) 12 9 13 7 8 11 10 3∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 4∗∗∗ 2∗∗∗

ACPS(·, ·; 0.725) 10 9 13 7 8 11 12 2∗∗∗ 6∗∗ 5∗∗ 1∗∗∗ 4∗∗∗ 3∗∗∗

ACPS(·, ·; 0.95) 12 8 11∗∗ 9 7 10∗∗ 13 3∗∗ 6∗ 5∗ 1∗∗ 4∗ 2∗

CRPS 12 9 13 7 8 11 10 3∗∗∗ 6∗∗∗ 5∗∗∗ 1∗∗∗ 4∗∗∗ 2∗∗∗

Knuppel p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.011 0.042 0.042 0.001 0.159 0.159

Horizon 5 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 10 5 7 9 3 6 12 13 2 8 11 1∗ 4∗

ACPS(·, ·; 0.275) 5 8 7 6 4 3 11 1∗∗ 13 12 2∗ 10 9
ACPS(·, ·; 0.5) 3 7 6 8 4 5 11 1∗∗ 13 12 2 10 9
ACPS(·, ·; 0.725) 2 4 5 8 3 6 9 1 13 11 7 12 10
ACPS(·, ·; 0.95) 6 1 3∗ 8 2 4 13 5 10 7 11 12 9
CRPS 3 6 7 8 4 5 11 1∗∗ 13 12 2 10 9
Knuppel p-value 0.025 0.021 0.012 0.040 0.016 0.009 0.004 0.002 0.017 0.017 0.001 0.002 0.002

EEX

Horizon 1 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 11 8∗ 6∗∗∗ 9∗∗∗ 3∗∗∗ 1∗∗∗ 12 13 7∗∗ 4∗∗ 10 5∗∗ 2∗∗∗

ACPS(·, ·; 0.275) 12 10 11 5∗∗∗ 2∗∗∗ 1∗∗∗ 13 9∗∗∗ 7∗∗∗ 6∗∗∗ 8∗∗∗ 4∗∗∗ 3∗∗∗

ACPS(·, ·; 0.5) 12 10∗∗∗ 11∗ 7∗∗∗ 2∗∗∗ 5∗∗∗ 13 9∗∗∗ 6∗∗∗ 4∗∗∗ 8∗∗∗ 3∗∗∗ 1∗∗∗

ACPS(·, ·; 0.725) 12 10∗∗∗ 11∗∗∗ 9∗∗∗ 5∗∗∗ 6∗∗∗ 13 8∗∗∗ 3∗∗∗ 2∗∗∗ 7∗∗∗ 1∗∗∗ 4∗∗∗

ACPS(·, ·; 0.95) 12 7∗∗∗ 8∗∗∗ 11∗∗∗ 2∗∗∗ 6∗∗∗ 13 9∗∗∗ 3∗∗∗ 5∗∗∗ 10∗∗∗ 1∗∗∗ 4∗∗∗

CRPS 13 10∗∗∗ 11∗ 7∗∗∗ 1∗∗∗ 5∗∗∗ 12 9∗∗∗ 6∗∗∗ 4∗∗∗ 8∗∗∗ 3∗∗∗ 2∗∗∗

Knuppel p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Horizon 7 AR(1) AR(1)-SV AR(1)-tSV AR(20) AR(20)-SV AR(20)-tSV AR(1)-MS TVP-AR(1) TVP-AR(1)-SV TVP-AR(1)-tSV TVP-AR(2) TVP-AR(2)-SV TVP-AR(2)-tSV
ACPS(·, ·; 0.05) 5 13 12 1∗∗∗ 11 4 7 3 9 8 2 10 6
ACPS(·, ·; 0.275) 10 12 13 8∗∗∗ 9∗∗∗ 7∗∗∗ 11 6∗∗∗ 5∗∗∗ 2∗∗∗ 3∗∗∗ 4∗∗∗ 1∗∗∗

ACPS(·, ·; 0.5) 10 12 13 9∗∗∗ 8∗∗∗ 7∗∗∗ 11 6∗∗∗ 4∗∗∗ 2∗∗∗ 5∗∗∗ 3∗∗∗ 1∗∗∗

ACPS(·, ·; 0.725) 12 11∗∗ 10∗∗∗ 9∗∗∗ 8∗∗∗ 7∗∗∗ 13 5∗∗∗ 6∗∗∗ 2∗∗∗ 3∗∗∗ 4∗∗∗ 1∗∗∗

ACPS(·, ·; 0.95) 12 11 10 9∗∗∗ 7∗ 5∗∗ 13 1∗∗∗ 8∗ 4∗∗ 2∗∗∗ 6∗ 3∗∗

CRPS 10 12 13 9∗∗∗ 8∗∗∗ 7∗∗∗ 11 6∗∗∗ 4∗∗∗ 2∗∗∗ 5∗∗∗ 3∗∗∗ 1∗∗∗

Knuppel p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

Notes:
1 ∗∗∗, ∗∗ and ∗ indicate scores are significantly different from 1 at 1%, 5% and 10%, according to the ACPStest in Section 2.2.
2 Gray cells indicate models that are correctly calibrated at 5% significance level according to the Knuppel test.

6



BI Norwegian Business School
Centre for Applied Macro - Petroleum economics (CAMP)
N-0442 Oslo

www.bi.no/camp

CAMP Working Paper Series
ISSN: 1892-2198

Centre for Applied Macroeconomics and Commodity Prices (CAMP) 
will bring together economists working on applied macroeconomic issues, with special
emphasis on petroleum economics.   

CENTRE FOR APPLIED MACROECONOMICS AND COMMODITY PRICES (CAMP)


	Introduction
	Asymmetric Proper Scoring rules for Density forecasting
	Threshold and quantile-weighted versions
	Testing predictive ability

	Illustrations and comparison with weighted CRPS
	Threshold-weighted version

	Empirical applications
	Conclusions
	Models
	Data description
	Additional details on empirical applications




