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Abstract

We study the importance of time-varying volatility in modelling hourly electricity prices when

fundamental drivers are included in the estimation. This allows us to contribute to the literature of

large Bayesian VARs by using well-known time series models in a huge dimension for the matrix of

coefficients. Based on novel Bayesian techniques, we exploit the importance of both Gaussian and

non-Gaussian error terms in stochastic volatility. We find that by using regressors as fuels prices,

forecasted demand and forecasted renewable energy is essential in order to properly capture the

volatility of these prices. Moreover, we show that the time-varying volatility models outperform

the constant volatility models in both the in-sample model-fit and the out-of-sample forecasting

performance.
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1 Introduction

Due to the recent advent and availability of big data sets for forecasting important macroeconomic

variables, scholars and researchers have focused on the macroeconometrics of time series analysis,

see Huber and Feldkircher (2019); Koop et al. (2019); Huber et al. (2020); Chan (2020a) among

others. However, it is only recently that we have observed a growing interest in the multivariate

analysis of electricity prices and the influence that variable and unpredictable renewable energy

sources (such as wind and, to lesser extent, solar photovoltaic energy) can exercise on the

determination of these prices. Indeed, the vast majority of the literature on electricity prices

focuses on univariate models for individual hours of the day and only a few papers have recently

considered multivariate specifications (Raviv et al., 2015; Gianfreda et al., 2020). To the best of

our knowledge, the analysis of multivariate models with time-varying volatility has not been deeply

investigated and we aim at filling also this gap adopting Bayesian approaches.

Recently, the question of time instability has been posed to account, for instance, for large drops

in demand that can suddenly occur (as during the current pandemic) or for negative wholesale

electricity prices. Then, it has become clear that electricity, as well as interest rates and oil prices,

can become negative and attract the attention of all economists to understand the economic

consequences; as for those implied by the dynamics of WTI prices in April 2020.

In the energy markets, the phenomenon of negative prices - when allowed to occur - has

become more frequent due to the increasing share of electricity generated from renewable energy

sources (RES). Indeed, worldwide energy policies have supported, and they are still fostering, green

generation to reduce carbon emissions and mitigate the climate change. From a technical point of

view, RES have induced prices to be null or even negative. Indeed, being a clean energy source with

null marginal cost of production, RES enters the supply curve before the other thermal conventional

technologies with higher marginal costs (this is known as the merit order). Consequently, the

supply curve is shifted towards the right by the amount of generation produced by intermittent

renewable energy sources. This reduces the equilibrium price that, in some markets like Germany,

can become negative when extremely high RES generation is coupled by low levels of demand.

However, renewables (as wind, hydro and solar to less extent) are variable, intermittent and not

easily predictable since they are strictly related to weather conditions. If the wind blows and/or the

sun shines, green and economic generation satisfies the demand and electricity prices are low (or

negative); otherwise, demanded electricity is covered with more expensive thermal conventional
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plants running with fossil fuels. Consequently, there are recent and increasing concerns about

global warming, which will inevitably amplify these patterns and it will make demand as well as

supply varying over time with greater uncertainty; see for instance Damm et al. (2017).

Econometrically, all these issues support the application of time-varying models, as the

multivariate models with time-varying volatility. Dimension is further expanded when we consider

the needs to include past information to account for dependencies and strong seasonality affecting

electricity markets. Indeed, demand is heavily influenced by industrial activities with different

dynamics over the week and the year; and prices are strictly related among themselves and their

past observations.

The most challenging point for the use of multivariate time series models is the huge amount

of information available in the exogenous variables and in their lagged values. In fact, in order to

estimate the simplest model, we need a lagged representation for each hourly price depending on

its past values observed on one, two and seven days before, plus the inclusion of dummy variables;

hence, leading to 72 parameters for the 24 hourly prices with their previous 3 lags, plus 13 dummies

variables for 12 months and the one indicating weekends and holidays. However, including for each

hour also the exogenous variables for supply, that is RES and fossil fuels, and demand, the matrix

of coefficients becomes of size 160 times 24 hours.

One can state that traditionally factor models are successfully used to handle large datasets,

however the recent literature in large Bayesian Vector Autoregressive models (VAR) has provided

valid and important alternatives. In the macroeconomic literature (Clark and Ravazzolo, 2015;

Carriero et al., 2016, 2019; Chan, 2020a), the use of time-varying volatility is known to improve

the full sample analysis by capturing the peak and booms and also to improve the forecasting

accuracy. See Bauwens et al. (2013) for early research in time-varying volatility for electricity

markets. Thus, following this stream of the literature, we have decided to expand the models

proposed by Gianfreda et al. (2020) by adding stochastic volatility. Indeed in that paper, authors

compare several univariate and multivariate frequentist and Bayesian models augmented with

fundamental variables to predict hourly day-ahead electricity prices, but without considering the

issue of volatility. In the energy literature, there are mixed results related to volatility, with the

main ones arguing that time-varying volatility can be captured by the intermittent behaviour

of renewable energy sources. As suggested by Karakatsani and Bunn (2010), the inclusion of

fundamental drivers can eliminate volatility effects, being a sort of surrogate for omitted factors.
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However, it must be emphasised that all previous research has considered only the univariate

dimension and multivariate models have not been explored. The large dimensionality of time-

varying volatility models applied to (electricity) hourly data1 can result in sizeable estimation

errors. To mitigate this, we follow recent macroeconomic literature and apply Bayesian estimation

techniques.

Furthermore, to our knowledge, this paper is the first to provide a full sample multivariate

analysis of the volatility of electricity prices, and the results refer to two European countries

(Germany and Italy) that have a strong RES influx and, in the German case, allowing the formation

of negative prices.2 Besides electricity markets, these models will become of extreme interest in the

future applications and consequent developments, since we have already assisted to the formation

of negative interest rates in response to financial crises. Thus, the economic consequences of the

global pandemic situation will enhance more the determination of negative (or extremely low)

prices also for other commodities, as it has already occurred for crude oil.

From the computational and operational point of view, Carriero et al. (2019) and Chan (2020a)

have recently developed Bayesian estimation methods for VARs with stochastic volatility that allow

to reduce the computational timing, when the number of coefficients increase roughly. Therefore,

following the specification in Chan and Eisenstat (2018) and Cross et al. (2020), we use a Bayesian

VAR with stochastic volatility for showing the movements of the volatility in the electricity prices.

Differently from Chan (2020a), we do not assume a stochastic volatility component constant across

the variables, but we assume that the time-varying volatility changes across hours. Moreover,

differently from Carriero et al. (2019) and Cross et al. (2020), we do not have any ordering problems

in the estimation, because our variables follow a time dependence structure of consecutive hours

in a day.

The main finding in our paper refers to the importance of modelling multivariate time-varying

volatility in the variation of the electricity prices and, in particular, the fact that the assumption

of constant volatility on average overestimates the time-varying volatility over time, thus leading

to imprecise estimation. Moreover, the inclusion of fat tail error term in the stochastic volatility

produces further improvements across central hours, where the estimation of different degrees of

freedom is important.

In the paper, we provide also a forecasting exercise of the German and Italian electricity prices

1We remember that our models requires to estimate a (24× 24) time-varying covariance matrix.
2We count 595 negative prices in our sample, corresponding to almost 2% of all observations.
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from 2018 to 2019. We found evidence of strong improvements once we include forecasted demand

and renewable energy sources in the analysis with respect to the baseline model with only a lag

representation of the response variable. Furthermore, if we include time-varying volatility in the

form of Gaussian or Student-t form, we observe strong improvements in Germany and moderate

improvements in Italy. These improvements are available both in point and density forecasting,

and also when focusing on quantile density forecasting for tail comparison. Therefore, as argued

by Gianfreda and Bunn (2018), price asymmetries induced by wind generation are significant and

attention shall be paid to their modelling. The presence of fat tail in the stochastic volatility

is particularly emphasised in Germany during the central hours and across the different metrics

considered. This phenomenon is particularly emphasised in this market since prices are free to

fluctuate from a floor price of -500 e/MWh to a cap price of 3000e/MWh, whereas in other

countries the floor is generally set to zero.

The paper proceeds as follows. We present the model structure used in the empirical study

in Section 2 together with some details on the estimation methodology. Section 3 describes the

data used. In Section 4, we consider the application of time-varying volatility models to hourly

electricity prices. We first present the results based on a full sample estimation, then those based

on different sample sizes. It also contains a recursive out-of-sample forecasting exercise to assess

the performance of the Bayesian VAR with Stochastic volatility models by means of both point and

density metrics. Finally, Section 5 concludes and briefly discusses some future research directions.

2 VARs with Stochastic Volatility

In this section, we outline the class of models we wish to compare. Firstly, we consider the most

general model with time-varying volatility (Chan and Eisenstat, 2018; Cross et al., 2020) and then

other models are specified as restricted versions of the general one. In particular, we highlight

the differences between a Gaussian stochastic volatility model and a fat-tail stochastic volatility

model, thus with the Student-t error term. Therefore, our multivariate specifications allow us

to compare whether features such as intermittent and unpredictable supply and variable demand

(and consequent negative prices) only increase volatility or actually change the (tail) distribution,

as suggested by Gianfreda and Bunn (2018) in their analysis of univariate time series.

Let yt = (y1t, . . . , yHt)
′ denote the (H × 1) vector of day-ahead hourly electricity prices, with
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H = 24. Consider the following vector autoregressive (VAR) model with stochastic-volatility (SV):

A0yt = B1yt−1 + . . .+Bpyt−p + εt, εt ∼ N (0,Σt), (1)

where B1, . . . , Bp are the (H ×H) VAR matrix of coefficients; A0 is a (H ×H) lower triangular

matrix with ones on the diagonal and Σt is a time-varying diagonal matrix of the form Σt =

diag(exp(h1t), . . . , exp(hHt)). Following Chan and Eisenstat (2018), we reformulate the model as

follows:

yt = X̃tβ +Wtγ + εt, εt ∼ N (0,Σt), (2)

where X̃t = IH ⊗ (y′t−1, . . . ,y
′
t−p) and Wt contains the appropriate elements of yt. Regarding

the coefficients in B1, . . . , Bp and A0, we can split them in two different groups. The first group

consists of β, which is a (kβ × 1) vector containing the coefficients associated with the lagged

observations, the dummy variables and the exogenous variables. On the other hand, the second

group contains a (kγ×1) vector, γ, of coefficients that characterizes the contemporaneous relations

between the variables and it consists of the free elements of A0 stacked by rows.

In particular, kγ = H(H − 1), while the size of the vector of coefficients varies along the model

specification. If we include in the specifications the lagged observations, then kβ = H2p. On the

other hand, if we add a vector of dummies denoted by dt = (d1t, . . . , dKt)
′, where (d1t, . . . , d12t)

representing the twelve months of the year and d13t representing Saturdays, Sundays and holidays

for each country, hence K = 13; then kβ = (Hp+K)H.

The model in Eq. (2) can be written in a stacked form:

yt = Xtθ + εt, εt ∼ N (0,Σt),

where Xt = (X̃t,Wt) and θ = (β′,γ ′) is of dimension kθ = kβ + kγ . If we assume p = 3 lags, then

kθ = 2592 parameters to estimate.

In order to complete the model specification of the VAR(p) with stochastic volatility we

need to include the time-varying volatility in the model. Thus, we include the log-volatilities

ht = (h1t, . . . , hHt) for t = 1, . . . , T . Following Cogley and Sargent (2005), we assume that the

latent log-volatilities ht evolve according to a random walk process

ht = ht−1 + ut, ut ∼ N (0,Ω),
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where ut is a vector of i.i.d. residuals, Ω = diag(σ2h1 , . . . , σ
2
hH

) and h0 is treated as a parameter to

be estimated.

As stated in Cross et al. (2020), the prior specifications for the state variance, Ω, and for the

initial state, h0, follow an independent prior distribution such as

h0 ∼ N (ah, Vh), σ2hi ∼ IG(νhi , Shi) for i = 1, . . . ,H,

where IG(·, ·) denotes an inverse Gamma distribution. Regarding the hyperparameters, we set

ah = 0, Vh = 10× IH ; νhi = 10 and Shi = 0.12(νhi − 1).

Regarding the prior distribution of the vectorized matrix of coefficients β and γ, we assume

independent Normal prior3 specification of the form:

β ∼ N (µ
β
, V β); γ ∼ N (µ

γ
, V γ),

where µ
β
,µ

γ
are the prior means and V β, V γ are the prior covariance matrix.

We can specify Eq. 2 in a different form by using a different representation of the X̃t matrix. In

particular, we include some exogenous variables in the VAR, which leads to a VARX specification

with stochastic volatility. The exogenous variables included in the analysis refer to both the

demand and supply curves. As far as the former is concerned, we include the forecasted hourly

demand xt = (x1t, . . . , xHt)
′ which contains variability around the expected levels of demand. As

far as the supply is concerned, we consider fossil fuel prices, which, however, do not change over the

24 hours and are determined over the previous day, and the variability induced by the forecasted

values for RES. Then, to summarize, we have included wt = (w1t, . . . , wHt)
′ for forecasted wind

generation; zt = (z1t, . . . , zHt)
′ for forecasted solar power generation; and mt−1, gt−1 and ct−1 for

CO2, gas and coal prices determined on the previous day, respectively.

From Eq 2, we redefine the matrix X̃t = IH ⊗ (y′t−1, . . . ,y
′
t−p,d

′
t,x
′
t,w

′
t, z
′
t,mt−1, gt−1, ct−1),

thus transforming Eq. 2 into a VARX(p)-SV, where kβ = (Hp+K + 3H + 3)H is the dimension

of the vector of coefficients β.

In this paper, we consider a different specification of the time-varying covariance matrix that

augments the (random walk) stochastic volatility specification to include fat tails. Thus, we

3Please note that we have also used a shrinkage prior of the Dirichlet-Laplace form for all the components of the β
and γ in both VAR and VARX specifications. However, the results were similar to those with the Normal prior, hence
they have been omitted.
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introduce a VAR(p) with stochastic volatility with Student-t error term and we introduce the

degrees of freedom of a Student-t distribution. Differently from a strand of the literature (see

Chan, 2020a,b), we have decided to include the degrees of freedom that change with the variables,

such as electricity demand and solar power generation, which show higher values during daytime.

Thus, νj > 0 depends on j = 1, . . . ,H to account for the varying dynamics across the hours.

The model specification follows Eq. (2) but the variance matrix Σt has a novel component.

The VAR(p)-tSV is given by

yt = X̃tβ +Wtγ + εt, εt ∼ N (0,diag(exp(h1t)/λ1t, . . . , exp(hHt)/λHt)),

ht = ht−1 + ut, ut ∼ N (0,diag(σ2h1 , . . . , σ
2
hH

)), (3)

where λjt ∼ IG(νj/2, νj/2) for every t and j = 1, . . . ,H. We consider two different options on

the degree of freedom of the fat tail component. In the first one, the degrees of freedom νj are

parameters to be estimated for each variable, thus we assume a Gamma prior for νj of the form

νj ∼ Ga(aν , bν); while in the second case, we fix the degrees of freedom νj = 5 to ensure fat tails.

As for the Gaussian stochastic volatility model, we consider a specification with exogenous

variables also for the fat tails case. Thus, we have a different specification of X̃t = IH ⊗

(y′t−1, . . . ,y
′
t−p,d

′
t,x
′
t,w

′
t, z
′
t,mt−1, gt−1, ct−1) and we can define a VARX(p)-tSV model in the in-

sample and forecasting exercise.

As anticipated, we do not encounter any ordering problems in the lower triangular matrix A0

as instead in Carriero et al. (2019); Cross et al. (2020). In fact, in our analysis, we have a strong

time dependence due to hourly specification and the variable ordering in the VAR-SV and VAR-

tSV model will not affect the in-sample analysis and the relative forecasting performance of the

models. We remember that the 24 hourly prices are set jointly the day before delivery, this implies

that hourly prices cannot be treated iteratively across the day, but they have to be modelled as

published by the system operator. This is a technical market requirement to plan the functioning

of the system; although some adjustments can be undertaken only in subsequent market sessions,

like the intra-daily and balancing ones, which close after the day-ahead session and determine,

however, price series differing in their pricing mechanisms.

For comparison, we consider also a constant variance model, thus a VAR(p) and a VARX(p),

where the error term is distributed with a constant covariance matrix Σt = Σ. For the prior
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assumption, we use the usual Bayesian prior specification for the covariance matrix and we consider

an inverse Wishart distribution, IW (ν0,Ψ0), where ν0 are the prior degrees of freedom and Ψ0 is

the prior scale matrix. A summary of the models used is presented in Table 1.

Models Description

VAR with Gaussian constant volatility
VARX with Gaussian constant volatility
VAR-SV with Gaussian stochastic volatility
VARX-SV with Gaussian stochastic volatility
VAR-tSV with stochastic volatility and t innovations (estimated νj)
VARX-tSV with stochastic volatility and t innovations (estimated νj)
VAR-tSVν with stochastic volatility and t innovations (fixed ν = νj = 5)
VARX-tSVν with stochastic volatility and t innovations (fixed ν = νj = 5)

Table 1: List of Competing Bayesian VAR Models.

3 Data Description

Given the high penetration of renewables, as for wind in Germany and solar in Italy, we focus

on these two countries and use hourly day-ahead auction prices directly collected from the

corresponding power exchanges: the European Energy Exchange EEX for the former market,

and the Gestore dei Mercati Energetici GME for the latter one, considering specifically the Italian

single national prices PUN.

In addition, we consider the forecasted renewable generation from wind and solar power and the

forecasted demand, together with closing settlement prices for fossil fuels to account for marginal

production costs. As far as the forecasts for wind, solar and demand are concerned, they were

provided by Thomson Reuters at hourly frequency. In details, we used values forecasted by the

operational weather model provided by the European Centre for Medium-Range Weather Forecast,

EC. This model runs at midnight and updates from 05.40 a.m. to 06.55 a.m., hence providing the

latest information available to market operators to prepare their bidding strategy to be submitted

into the day-ahead market by noon. In case of missing or unavailable (Italian) forecasts, we adopted

this strategy to reconstruct the full required series. When the forecasts from the EC model running

at midnight (its acronym is ECop00) were not available, we replaced missing observations according

to the time of publication. In details, we considered secondly the forecasts provided by the Global

Forecast System (GFS) running an ensemble model at midnight (that is GFSen00), alternatively

in case of further missing observations we used the results of the operational model that was
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still running at midnight (that is GFSop00), and, if necessary, we used the same replacement

scheme using respectively GFSen18, GFSop18, ECen12, according to the time of publication

of their results. At the end of the process, residual missing observations were replaced with

interpolated values. The two weather models differ in terms of randomness and resolution. The

operational model is deterministic with high resolution and no involved randomness, whereas the

ensemble model is a probabilistic model with lower resolution but with random variations of the

initial weather conditions. Therefore, the latter simulates more weather instability by considering

different weather scenarios.

Moving to fuel prices, we used the closing settlement prices for Coal ICE API2 CIF ARA

(LMCYSPT), one month forward ICE UK natural gas prices (NATBGAS), and EEX-EU CO2

Emissions E/EUA (EEXEUAS) converted into Euro/MWh, using the WMR&DS exchange rates

for US$ to Euro (USEURSP) and GBP to Euro (UKEURSP). These data have been collected

from Datastream and interpolated for missing quotations over weekends.

Finally, following Gianfreda et al. (2020), we have pre-processed series for solar power and used

monthly and weekend dummy variables for calendar and weekly seasonality, respectively, with the

latter ones containing also the indication for holidays. To summarize, we use hourly data for prices,

forecasted demand, wind and solar PV generation, together with repeated daily data (across the

24 hours) for fossil fuel prices from 01 January 2016 to 31 December 2019.

4 Results

In this section, we illustrate the performance of the proposed Bayesian VAR models with different

volatility structures.We first present results based on a full sample estimation and show that the

introduction of stochastic volatility fits the data substantially better. Then, in a recursive out-of-

sample forecasting exercise, we compare the forecast performance of the Bayesian VARs models

by using different point and density measures.

In order to explain the model specification, we need to explain the lag structure p for our

models and we follow common practice in the literature (Knittel and Roberts, 2005; Weron and

Misiorek, 2008; Raviv et al., 2015; Gianfreda et al., 2020) and restrict lags to t−1, t−2, and t−7,

which correspond to the previous day, two days before, and one week before the delivery time,

recalling first similar conditions that may have characterized the market over the same hours and
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similar days (such as congestions and blackouts) and secondly the demand level during the days of

the week. Hence, hourly prices with a reduced 7-lag structure are considered, and, with an abuse

of notation in the remainder of the article, p = 3 is used to denote the maximum number of lags.

4.1 Estimation Results

In this section, we first present the empirical results for all the Bayesian VAR models, as listed

in Table 1, which were obtained using the full sample from January 2016 to December 2019. We

have also considered sub-samples for analysing the volatility in some periods, thus we reduce the

sample from January 2016 to December 2017 and from January 2018 to December 2019. As an

additional robustness check, we have performed our analysis on a yearly base, thus considering

each year separately. The results presented in the Supplementary Material show that the volatility

did indeed increase during the years 2018-2019.4

Results are very similar across all the models despite differences in the covariance structure.

As described in Section 2, the stochastic volatility representation changes across hours, that is

to say that we have it time-varying over the hours. Thus, in Figure 1 we depict the posterior

means of the stochastic volatility, expressed in standard deviations exp (hkt/2) for k = 1, . . . ,H

and t = 1, . . . , T . We show the model comparisons over all 24 hours of the VARX model with

constant volatility computed over 1 year centred rolling window, the VARX model with stochastic

volatility and the VARX with fat tail stochastic volatility. First note that we left the same scale

for emphasizing the difference across models. The volatility estimates from the VARX model with

constant volatility are on average higher than for the time-varying volatility models. Figure 2

reports for each hour the number of times over our sample that the posterior means of the VARX

model are higher than those of the VARX model with stochastic volatility and the VARX with fat

tail stochastic volatility, respectively.5 The posterior means of the VARX model are on average

higher than those of VARX with fat tail stochastic volatility for all hours and for most of the hours

excluding early hours at night when compared to the VARX with stochastic volatility. The average

of this statistics over the 24 hours for German price is 64% in the VARX vs VARX-SV comparison

and 89% in the VARX vs VARX-tSV comparison. For Italy, the results are qualitatively similar,

4For the sake of exposition, the paper reports all figures for the Germany example and the Supplementary Material
shows the same results for Italy.

5When computing these statistics, we discard the initial 6-month data and the final 6-month data in order to compute
rolling volatility from the VARX model.
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with a 24-hour average of 60% for the VARX vs VARX-SV comparison and 87% for the VARX vs

VARX-tSV comparison.

Moreover, it is interesting to observe that there are substantial changes across the hours of the

days for the latter models and, in particular, looking at the fat tail representation of the error, the

volatility shows high values during winters and lower values during summers recalling the calendar

seasonality for all the four studied years. The VARX model with stochastic volatility seems to be

more prone to spikes at different hours and different periods of the year. In general, the assumption

of constant volatility could therefore imprecisely estimate the time-varying pattern of volatility.
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Figure 1: Posterior Means of the Stochastic Volatility Models, in standard deviations exp (ht/2),
observed in Germany. Model comparisons over all the 24 hours between the VARX computed over
1 year centred rolling window (left); the VARX-SV (middle) and the VARX-tSV (right).
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Figure 2: Number of times over the adjusted full sample that the posterior means of the VARX model are
higher than those of the VARX model with stochastic volatility and the VARX with fat tail stochastic
volatility. Top panel refers to Germany; bottom panel refers to Italy. First row for VARX vs VARX-SV
and second rows for VARX vs VARX-tSV.

In addition, in Figure 3, we focus on the posterior means of the three specifications - VARX 6,

6It has been computed over 1 year centred rolling window, but we have also tested the usage of a 2 years centred
rolling window with similar results; thus, they have been omitted but are available upon request.

12



VARX-SV and VARX-tSV - over the same hour, and we look in greater details at hours 10 (left),

14 (middle) and 18 (right), that is when RES show their higher production in connection with

high levels of demand. Results for the other hours are provided in the Supplementary Material.

Indeed, the model comparisons across the same hour emphasise indeed that the posterior means

of the volatility estimated with a constant volatility structure (VARX) are higher than those with

a time-varying structure (that is VARX-SV and VARX-tSV), and also that introducing fat tails

in the error term (VARX-tSV in grey lines) systematically reduces the volatility over the sample

considered and reductions are substantial especially during winters with this phenomenon being

more clearly visible at hours 10 and 18. Surprisingly and more interestingly, the highest reductions

are found at 14 when instead the economics of the energy systems suggests the major uncertainty

due to the combination of forecasts errors for demand with those for wind and, especially, solar

generations. This may also be the reason for which overall volatility increased over the last years

of sample in hours 10 and 18, but less so for hour 14.
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Figure 3: Posterior Means of the Stochastic Volatility Models, in standard deviations exp (ht/2),
observed in Germany. Model comparisons across hours 10 (left), 14 (middle) and 18 (right) for VARX
(red line), VARX-SV (black line) and VARX-tSV (grey line).

Thus, to further inspect the effect of fat tails, we have investigated the differences between

estimating or fixing the degrees of freedom at the same value over all the 24 hours. For the same

three hours, Figure 4 shows the values for estimated ν (black lines) and for ν fixed to 3 (grey

dashed lines) and to 5 (red lines). While black and red lines for the ν estimated and fixed to 5

are almost perfectly overlapping at 10 and 18 (and also at 7-9 and 19-23 but less for ν fixed to

3 at hours 12-16), the three dynamics decouple substantially at hour 14 when high volatility is

observed for the degrees of freedom fixed to 5 and low values occur for estimated degrees of freedom.

This then suggests how important is accounting for time varying changes estimated accounting

for the characteristics of the ‘current’ sample, especially for hours with greater variability. These
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results confirm what was already suggested by Gianfreda and Bunn (2018) concerning the time-

varying shape and tail dynamics exhibited by hourly electricity prices, even if they were considered

individually each hour.
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Figure 4: Posterior Means of the Stochastic Volatility Models VARX-tSV - in standard deviations
exp (ht/2) - with estimated ν (black line), fixed ν = 5 (red line) and also ν = 3 (grey dashed) at hours
10 (left), 14 (centre) and 18 (right) in Germany.

Going into further details and looking at the distribution of degrees of freedom ν, Figure

5 shows the posterior means and distribution of ν over the 24 hours. The credibility intervals

provide the uncertainty about estimated values and clearly show that it is high for hours 7-11 and

18-23 and instead it is low over hours 12-17. Reading these results together with those reflecting

the differences in using estimated or fixed degrees of freedom, we can state that estimating or

fixing the degrees of freedom does not implies dramatic changes at hours 10 and 18 even if the

uncertainty is observed to be high; hence, practitioners can choose the approach they prefer. On

the contrary, attention must be paid on central hours since, for instance, the low uncertainty at

hour 14 is coupled with substantial differences between estimated or ex-ante fixed values, and in

the latter case the choice of fixing degrees of freedom may produce substantial overestimation.

Then, a dynamic estimation is suggested for these central hours, since there is a strong influence

of the fat tailness of the data. Same results are found for Italy, and these have been reported in

the Supplementary Material.

Given the large size of implemented models, it is worth noticing the computational cost in

the estimation process. Table 2 shows the timing expressed in seconds to obtain 5, 000 posterior

draws for the models considered in our analysis and reported in Table 1. The estimation period

is the full sample ranging from January 2016 to December 2019 and the models are estimated

using Matlab 2019b on a Macbook Pro with an Intel Core i7 @2.70 GHz processor and 16 GB

memory. Computational times more than double when adding X variables and, more importantly,
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Figure 5: Posterior Means (left) and Posterior Distribution (right) of the Degrees of Freedom ν across
the 24 Hours for the VARX-tSV Model for Germany. The red horizontal line represents the posterior
mean, whereas the blue box indicates the 75% credibility interval.

increase by multiples when adding stochastic volatility and less dramatically when also adding fat

tails. However, the estimation time for the most computational intense model is always below

eight minutes.

Const SV tSV tSV (ν = 5)

Germany
VAR 60.7 346.5 391.5 357.1
VARX 131.1 421.6 453.3 450.6

Italy
VAR 61.2 358.4 388.6 385
VARX 133.8 439.9 463.5 460.3

Table 2: The computational times (in seconds) to obtain 5, 000 posterior draws under each model
specification on the full sample size (T = 1454).

4.2 Forecast Results

4.2.1 Forecast assessment

In order to assess the goodness of our forecasts, the rest of this section will focus on describing

the point and density metrics. As a point forecast measure, we apply the root-mean-square errors

(RMSEs) for each of the hourly prices, as well as the RMSEs for the daily average and of an average
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restricted only to the central hours. The RMSE for h = 1, . . . , 24 hourly prices is calculated as

RMSEh =

√√√√ 1

T −R

T−1∑
t=R

(
ŷh,t+1|t − yh,t+1

)2
,

where T is the number of observations, R is the length of the rolling window and ŷh,t+1|t are the

individual hourly price forecasts. In addition, we analyse the average RMSEs on all the 24 hours

(RMSEAvg) and on the hours from 8 a.m. to 8 p.m. (peak hours, RMSEPAvg), calculated as follows:

RMSEAvg =
1

24

24∑
h=1

RMSEh; RMSEPAvg =
1

13

20∑
h=8

RMSEh. (4)

On the other hand, we evaluate density forecasts by using average continuous ranked probability

score (CRPS) and the quantile CRPS (Gneiting and Raftery, 2007; Gneiting and Ranjan, 2011).

These measures have advantages over the log score, in particular, they do a better job of rewarding

values from the predictive density that are close to - but not equal to - the outcome, and they are

less sensitive to outlier outcomes.

The CRPS, defined such that a lower number is a better score, is given by

CRPSh,t(yh,t+1) =

∫ ∞
−∞

(F (z)− I{yh,t+1 ≤ z})2 dz = Ef |Yh,t+1 − yh,t+1| − 0.5Ef |Yh,t+1 − Y ′h,t+1|,

(5)

where F denotes the cumulative distribution function associated with the predictive density f ,

I{yh,t+1 ≤ z} denotes an indicator function taking the value 1 if yh,t+1 ≤ z and 0 otherwise, and

Yh,t+1 and Y ′h,t+1 are independent random draws from the posterior predictive density. In the same

way we can construct the average CRPS over the 24 hours and over peak hours on day t+ 1.

Regarding the quantile CRPS, the quantile-weighted versions of the continuous ranked

probability score is defined as:

Sh,t(yh,t+1) =

∫ 1

0
QSα

(
F−1(α), yh,t+1

)
ω(α)dα, (6)

where QSα
(
F−1(α), yh,t+1

)
is the quantile score defined as

QSα
(
F−1(α), yh,t+1

)
= 2

(
I{yh,t+1 ≤ F−1(α)} − α

) (
F−1(α)− yh,t+1

)

16



with F−1(α) the quantile forecast and α ∈ (0, 1). When ω(α) = 1, we have an uniform weight,

thus an unweighted continuous ranked probability score.

The nonnegative weight function on the unit interval ω(α) can take on different specifications

in order to assess centre or tails emphasis. In particular, ω(α) = α(1−α) defines a centre emphasis,

while a tails emphasis is computed from ω(α) = (2α−1)2. The right and left emphasis are denoted

as ω(α) = α2 and ω(α) = (1−α)2, respectively. As for the RMSE and CRPS, we can compute the

average quantile CRPS over the 24 hours and over the peak hours on day t+1. In what follows, we

indicate the average center quantile CRPS with CQ-CRPS, the average right tails quantile CRPS

with RQ-CRPS, and the average left tails quantile CRPS with LQ-CRPS, respectively.

Moreover, in this paper we report the RMSEs, average CRPS and average quantile CRPSs for

the baseline VAR model with constant volatility and for every third hour7. For the other VAR

models, we report the ratios computed between the RMSE of the current models and the RMSE of

the baseline VAR model. Then, entries of less than 1 indicate that the given current model yields

forecasts more accurate than are those provided from the baseline, and similarly for the CRPS

and the quantile CRPS.

In addition, to provide a rough gauge of whether the differences in forecast accuracy are

significant, we apply Diebold and Mariano (1995) t-tests for equality of the average loss to compare

predictions of alternative models to the benchmark for a given horizon h8. The differences in

accuracy that are statistically different from zero are denoted with one, two, or three asterisks,

corresponding to significance levels of 10%, 5%, and 1%, respectively. The underlying p-values are

based on t-statistics computed with a serial correlation-robust variance, using the pre-whitened

quadratic spectral estimator of Andrews and Monahan (1992). Our use of the Diebold-Mariano

test, with forecasts from models that are, in many cases, nested, is a deliberate choice, as in

Clark and Ravazzolo (2015), and, as noted by Clark and West (2007) and Clark and McCracken

(2012), this test is conservative and might result in under-rejection of the null hypothesis of equal

predictability. We report p-values based on one-sided tests, taking the VAR as the null and the

other current models as the alternative.

Finally, the Model Confidence Set procedure of Hansen et al. (2011) across models for a

fixed horizon have been employed to jointly compare their predictive power without disentangling

7Tables with all hours and all models are available in the Supplementary Material.
8In our application for testing density forecasts, we use equal weights without adopting a weighting scheme, as in

Amisano and Giacomini (2007).
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between constant or time-varying volatility. The R package MCS detailed in Bernardi and Catania

(2016) has been used, and the differences have been tested separately for each hour and model,

repeating the full process for both countries. Results are discussed in the following section.

4.2.2 Forecasting Results

Our results are based on a one-step ahead rolling forecasting process with a window size of two

years for both countries. Please note that the initial estimation sample goes from 1 January 2016

to 31 December 2017 and then the forecasting evaluation period starts on 1 January 2018 and ends

on 31 December 2019; hence, there is a total of 731 in-sample forecasts.

Results refer to the performances of our different multivariate models from the simplest one

(with lags and dummy variable, the benchmark VAR) to more complex ones including constant

or different time-varying volatility specifications as well as fundamental drivers (as fuel prices

and forecasts for demand and renewable energy sources). Tables 3 and 4 report the results

across Germany and Italy respectively, every third hour. Whereas, results across all 24 hours

and extensive model comparisons are shown in Tables S.1-S.12 in the Supplementary Material.

As expected, the forecasting performance decreases across the peak hours (that is between

hour 8 and hour 20) and this is consistent with the high uncertainty affecting demand levels during

daytime and also supply; and this is consistent across all electricity markets. Hence, the benchmark

VAR models show the highest RMSEs at hours 14-16 in Germany (around 13e/MWh) and at

peak hours 9-10 & 15-20 in Italy (around 8e/MWh). These differences can be explained by the

intra-daily dynamics of forecasted demand and RES generation, which differ substantially across

countries because of the diverse geographical conditions affecting, for instance, hours of daylight,

solar radiation and wind speed. Further details and comparisons of the intra-daily dynamics of

demand and RES generation are presented in Gianfreda et al. (2020) and Gianfreda et al. (2016).

The most interesting aspect addressed here is the expected forecasting improvement resulting

from accounting for volatility together with fundamental drivers (demand, RES and fuels).

First of all, our results show that in both markets the Bayesian multivariate models with

stochastic volatility (VARX-SV) exhibit substantial improvements with respect to the benchmark

VARs with a constant volatility and the VARX. Including fundamental drivers in the modelling of

price variability increase forecast accuracy and even larger gains are obtained by extending with

time-varying volatility. The Model Confidence Set shows that the VAR and VARX models are
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never included in the model set when predicting German electricity prices in terms of RMSE and

CRPS metrics and only at low volatile early-morning hours for Italian prices.

Further improvements can be observed when we include the Student-t stochastic volatility.

Again, this occurs for both point and density metrics. Moreover, we observe no difference between

estimating the degrees of freedom or fixing them equal to an ex-ante selected value (as for instance

5) across hours. This confirms our previous findings and proves that both ways produce similar

forecasting results in Germany. Therefore, practitioners can make an indifferent decision regarding

their modelling strategy, but we suggest estimating the degrees of freedom across hours in order

to address different degrees of fat tails over the 24 hours. On the contrary, for Italy there is no

empirical evidence of differences between Gaussian and fat tail stochastic volatility models across

the considered forecasting measures. On one hand, this is in line with the lower bound market

constraint applied to Italian prices; on the other hand, this may be due to the different levels

of RES penetration observed in Italy, especially wind when compared to its levels observed in

Germany.

Looking specifically at the metrics, the average reductions in loss function are similar for both

metrics of about 20% in Germany and 5% in Italy. Forecasting gains in terms of the RMSE increase

from hour 8 to the end of the day, as shown more clearly from the last column of Tables 3 and 4 in

which, however, only central hours are considered. More generally, the RMSEs decrease from the

VARX to the VARX-tSV across all hours and more in Germany than in Italy. Similarly for the

CRPSs, for which we observe reductions of almost 10% in Germany and 5% in Italy. In Germany

the use of fat tails error (Student t distribution) leads to improvements of 20% in both metrics,

while we do not observe similar reductions in Italy.

Considering the tails, results in terms of the average LQ-CRPS and RQ-CRPS confirm the

expected lower gains in Italy, of about 0.8 with respect to the benchmark levels for both left

and right tails. Surprisingly, we observe substantial forecasting improvements of, however, equal

magnitude on both left and right tails in Germany, of about 0.6 with respect to the benchmark

levels. These details are reported in the Supplementary Material for the On-line Appendix. To

summarize them, we have displayed the LQ-CRPS in Table 3, in order to capture the negative

prices in Germany; and the RQ-CRPS in Table 4, in order to capture more positive prices in Italy.

As argued by Gianfreda and Bunn (2018) in their analysis on German individual hours selected

according to intra-daily profiles, wind and solar generation reduce the skewness of hourly electricity
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prices, with this phenomenon being more evident at hours 12-13 because solar is at its maximum

level. Moreover, they add that both increase the kurtosis of electricity prices at peak hour 19.

On the contrary, hour 3 shows higher volatility because more negative price spikes are observed

compared to hours 12-13 and 19.

Therefore, considering Germany and its off-peak1 prices (that is in the early morning from hour

1 to 7), lower quantiles are of most practical interest for the occurrence of down spikes. Then,

looking for instance at hour 3 we observe that the LQ-CRPS shows limited improvements when

considering constant or time-varying with Student-t volatility. This may be due to lower values

observed during off-peak1 hours than those observed in peak (8-20) and off-peak2 (21-24) hours:

there is indeed a jump in this metric from 0.413 at hour 1 to 1.158 at hour 15, which, however, still

confirms the convenience in implementing more complex models with regressors and time-varying

volatility with estimated or fixed degrees of freedom. Instead, for hours 12-13, both the high

and low quantiles are of interest and here we observe substantial and significant improvements in

both the LQ-CRPS and RQ-CRPS from the VARX-tSV when indifferently estimating or fixing ν.

Similar comments apply at hours 19-21 when the high quantiles are the most interesting for the

risk of high prices, because RES decreases but demand is still at high levels.

These comments, however, do not apply to the Italian prices since they are affected by RES

with a lower magnitude compared to Germany and, more importantly, they are not allowed to

become negative. However, it is still interesting to observe that during peak hours the inclusion of

time-varying volatility and regressors improves both point and density metrics.
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Table 3: Forecasting Metrics for Germany. Note that real values are used for the Bayesian VAR model, and

ratios for all the other models
Hour 1 4 7 10 13 16 19 22 Avg Avg8−20

RMSE
VAR 5.003 6.792 9.070 11.288 11.908 13.286 11.675 10.130 8.070 10.704
VARX 1.099 0.939 0.875∗∗ 0.784∗∗∗ 0.763∗∗∗ 0.759∗∗∗ 0.747∗∗∗ 0.674∗∗∗ 0.739 0.718
VARX-SV 1.050 0.892∗∗∗ 0.798∗∗∗ 0.718∗∗∗ 0.698∗∗∗ 0.711∗∗∗ 0.689∗∗∗ 0.677∗∗∗ 0.675 0.658
VARX-tSV 1.036 0.886∗∗∗ 0.786∗∗∗ 0.704∗∗∗ 0.680∗∗∗ 0.712∗∗∗ 0.684∗∗∗ 0.671∗∗∗ 0.670 0.651
VARX-tSV (ν = 5) 1.040 0.882∗∗∗ 0.785∗∗∗ 0.707∗∗∗ 0.678∗∗∗ 0.706∗∗∗ 0.684∗∗∗ 0.676∗∗∗ 0.667 0.650

CRPS
VAR 2.545 3.416 4.502 5.740 6.108 6.635 6.075 5.294 4.093 5.485
VARX 1.101 0.960∗ 0.906∗∗∗ 0.784∗∗∗ 0.753∗∗∗ 0.749∗∗∗ 0.742∗∗∗ 0.679∗∗∗ 0.740 0.716
VARX-SV 1.035 0.871∗∗∗ 0.791∗∗∗ 0.695∗∗∗ 0.686∗∗∗ 0.677∗∗∗ 0.660∗∗∗ 0.642∗∗∗ 0.652 0.634
VARX-tSV 0.996 0.848∗∗∗ 0.763∗∗∗ 0.675∗∗∗ 0.641∗∗∗ 0.648∗∗∗ 0.652∗∗∗ 0.641∗∗∗ 0.633 0.614
VARX-tSV (ν = 5) 1.001 0.849∗∗∗ 0.761∗∗∗ 0.677∗∗∗ 0.643∗∗∗ 0.649∗∗∗ 0.651∗∗∗ 0.639∗∗∗ 0.632 0.614

CQ-CRPS
VAR 0.305 0.412 0.540 0.682 0.718 0.794 0.715 0.619 0.487 0.650
VARX 1.097 0.932∗∗ 0.878∗∗∗ 0.772∗∗∗ 0.741∗∗∗ 0.743∗∗∗ 0.734∗∗∗ 0.673∗∗∗ 0.734 0.715
VARX-SV 1.020 0.850∗∗∗ 0.785∗∗∗ 0.683∗∗∗ 0.682∗∗∗ 0.685∗∗∗ 0.653∗∗∗ 0.636∗∗∗ 0.645 0.630
VARX-tSV 0.983 0.837∗∗∗ 0.761∗∗∗ 0.667∗∗∗ 0.639∗∗∗ 0.654∗∗∗ 0.647∗∗∗ 0.635∗∗∗ 0.629 0.614
VARX-tSV (ν = 5) 0.986 0.833∗∗∗ 0.755∗∗∗ 0.667∗∗∗ 0.637∗∗∗ 0.651∗∗∗ 0.643∗∗∗ 0.633∗∗∗ 0.625 0.611

LQ-CRPS
VAR 0.413 0.577 0.722 0.908 0.989 1.101 0.961 0.875 0.665 0.881
VARX 1.045 0.911∗∗∗ 0.889∗∗∗ 0.774∗∗∗ 0.749∗∗∗ 0.730∗∗∗ 0.731∗∗∗ 0.657∗∗∗ 0.724 0.707
VARX-SV 1.028 0.849∗∗∗ 0.795∗∗∗ 0.690∗∗∗ 0.683∗∗∗ 0.680∗∗∗ 0.646∗∗∗ 0.625∗∗∗ 0.652 0.633
VARX-tSV 1.001 0.851∗∗∗ 0.778∗∗∗ 0.675∗∗∗ 0.648∗∗∗ 0.655∗∗∗ 0.639∗∗∗ 0.625∗∗∗ 0.642 0.619
VARX-tSV (ν = 5) 1.001 0.845∗∗∗ 0.775∗∗∗ 0.677∗∗∗ 0.649∗∗∗ 0.654∗∗∗ 0.635∗∗∗ 0.622∗∗∗ 0.638 0.617

Notes:
1 Please refer to Section 2 for the details on models. The ‘X’ indicates models with exogenous variables. All forecasts are
produced with one-step-ahead rolling window process.
2 ∗∗∗, ∗∗ and ∗ indicate that ratios are significantly different from 1 at 1%, 5% and 10%, according to the Diebold-Mariano test.
3 Grey cells indicate models that belong to the Superior Set of Models delivered by MCS procedure at confidence level 10%.
4 The results with a fixed ν = 3 are similar with results obtained with ν = 5, thus they have not been reported here but are
available in the supplementary material.
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Table 4: Forecasting Metrics for Italy. Note that real values are used for the Bayesian VAR model, and ratios

for all the other models
Hour 1 4 7 10 13 16 19 22 Avg Avg8−20

RMSE
VAR 4.431 5.269 5.806 8.448 6.872 8.479 8.568 6.289 5.054 6.902
VARX 1.030 1.021 0.983 0.905∗∗ 0.916∗∗∗ 0.890∗∗∗ 0.979 0.960∗ 0.953 0.900
VARX-SV 1.015 1.017 0.959 0.859∗∗∗ 0.893∗∗∗ 0.862∗∗∗ 0.899∗∗∗ 0.897∗∗∗ 0.906 0.856
VARX-tSV 1.004 1.022 0.960 0.871∗∗∗ 0.896∗∗∗ 0.869∗∗∗ 0.904∗∗∗ 0.894∗∗∗ 0.911 0.864
VARX-tSV (ν = 5) 1.001 1.024 0.958 0.865∗∗∗ 0.894∗∗∗ 0.866∗∗∗ 0.901∗∗∗ 0.892∗∗∗ 0.908 0.860

CRPS
VAR 2.446 2.925 3.073 4.498 3.652 4.513 4.607 3.427 2.733 3.721
VARX 1.037 1.019 0.995 0.912∗∗∗ 0.900∗∗∗ 0.889∗∗∗ 0.975 0.957∗∗ 0.960 0.902
VARX-SV 1.017 0.999 0.959∗∗ 0.851∗∗∗ 0.871∗∗∗ 0.844∗∗∗ 0.876∗∗∗ 0.870∗∗∗ 0.899 0.840
VARX-tSV 1.001 1.002 0.961∗∗ 0.856∗∗∗ 0.866∗∗∗ 0.847∗∗∗ 0.878∗∗∗ 0.867∗∗∗ 0.901 0.843
VARX-tSV (ν = 5) 0.999 1.001 0.958∗∗ 0.850∗∗∗ 0.863∗∗∗ 0.844∗∗∗ 0.874∗∗∗ 0.864∗∗∗ 0.899 0.840

CQ-CRPS
VAR 0.281 0.334 0.360 0.523 0.425 0.525 0.532 0.392 0.314 0.432
VARX 1.034 1.025 0.991 0.890∗∗∗ 0.899∗∗∗ 0.875∗∗∗ 0.970∗ 0.955∗∗ 0.953 0.891
VARX-SV 1.005 0.983 0.936∗∗∗ 0.832∗∗∗ 0.864∗∗∗ 0.836∗∗∗ 0.874∗∗∗ 0.860∗∗∗ 0.881 0.826
VARX-tSV 0.986 0.989 0.937∗∗∗ 0.841∗∗∗ 0.861∗∗∗ 0.845∗∗∗ 0.880∗∗∗ 0.858∗∗∗ 0.884 0.832
VARX-tSV (ν = 5) 0.985 0.991 0.936∗∗∗ 0.833∗∗∗ 0.858∗∗∗ 0.839∗∗∗ 0.872∗∗∗ 0.854∗∗∗ 0.881 0.827

RQ-CRPS
VAR 0.393 0.444 0.478 0.716 0.583 0.719 0.719 0.549 0.423 0.585
VARX 1.015 1.037 1.018 0.924∗∗∗ 0.920∗∗∗ 0.903∗∗∗ 0.985 0.965∗ 0.983 0.921
VARX-SV 1.005 1.013 0.981 0.869∗∗∗ 0.903∗∗∗ 0.866∗∗∗ 0.910∗∗∗ 0.880∗∗∗ 0.935 0.872
VARX-tSV 0.988 1.011 0.982 0.875∗∗∗ 0.899∗∗∗ 0.873∗∗∗ 0.908∗∗∗ 0.879∗∗∗ 0.939 0.874
VARX-tSV (ν = 5) 0.985 1.013 0.980 0.870∗∗∗ 0.896∗∗∗ 0.871∗∗∗ 0.907∗∗∗ 0.878∗∗∗ 0.937 0.873

Notes: Please see the notes to Table 3.
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5 Conclusions

Modelling day-ahead electricity prices has become extremely important for understanding the

energy system and providing empirical support to policy makers in a context where uncertainty is

progressively increasing as a consequence of changing weather conditions due to climate change.

In this regard, appropriate models may also produce useful forecasts, which help market operators

plan their generation schedules while accounting (and then adapting) to the imperfect predictability

of both demand and RES generation. This is also extremely relevant for the transmission system

operators who must guarantee the continuous balance between demand and supply.

In this framework, we address the less explored issue of multivariate models in which volatility

dynamics are included. We have questioned whether the inclusion of a constant or a time-

varying volatility structure can better detect the movements of electricity prices in two important

European countries, namely Germany and Italy. Thus, we propose high dimensional VAR models

with different stochastic volatility representations in which fundamental drivers are included

as exogenous variables, these are forecasted demand, renewable energy sources and fuels. In

particular, we assume that the time-varying volatility changes across hours and drives the

dependence in a time-ordered structure, then we do not charge any ordering label problems as

stated in the literature (Carriero et al., 2019; Cross et al., 2020).

Using only a lagged representation of the data or adding different exogenous variables, we find

empirical supporting evidence for VAR models with stochastic volatility against the conventional

VAR. Indeed, most of the gains appear to come from allowing stochastic volatility rather than

constant volatility. In particular, during some hours of the day, the assumption of fat tails in the

error term improves the detection of time-varying volatility. Furthermore, in a recursive forecasting

exercise, we find that models with exogenous variables also show improvements in both point and

density forecasts. In addition, the combined inclusion of time-varying volatility plus exogenous

variables lead to even better point and density metrics.

For future research, it would be interesting to extend these models specification by including

a global shrinkage prior for both exogenous and lagged variables or alternatively to use different

priors in all the parameters.
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