
 

 

 

This file was downloaded from BI Open, the institutional repository (open access) at 
BI Norwegian Business School http://biopen.bi.no 

It contains the accepted and peer reviewed manuscript to the article cited below. It 
may contain minor differences from the journal's pdf version. 

 

 

 

 

 

ATANASOV, V., MØLLER, S.V. and PRIESTLEY, R. (2020), Consumption 

Fluctuations and Expected Returns. The Journal of Finance, 75: 1677-1713. 

doi:10.1111/jofi.12870 

 

 

 

 

 

 

Copyright policy of Wiley, the publisher of this journal:   

Authors are permitted to self-archive the peer-reviewed (but not final) version of a 
contribution on the contributor's personal website, in the contributor's  institutional 

repository or archive, subject to an embargo period of 24 months for social science 
and humanities (SSH) journals and 12 months for scientific, technical, and medical 

(STM) journals following publication of the final contribution. 

 

https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html 

 

http://biopen.bi.no/
https://doi.org/10.1111/jofi.12870
https://authorservices.wiley.com/author-resources/Journal-Authors/licensing/self-archiving.html


Consumption Fluctuations and Expected Returns

Journal of Finance forthcoming

Victoria Atanasov, Stig Vinther Møller, and Richard Priestley∗

Abstract

This paper introduces a novel consumption-based variable, cyclical consumption,

and examines its predictive properties for stock returns. Future expected stock re-

turns are high (low) when aggregate consumption falls (rises) relative to its trend and

marginal utility from current consumption is high (low). We show that the empirical

evidence ties consumption decisions of agents to time-variation in returns in a manner

consistent with asset pricing models based on external habit formation. The predic-

tive power of cyclical consumption is not confined to bad times and subsumes the

predictability of many popular forecasting variables.
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In this paper, we take a new approach to linking stock return predictability to both bad and

good economic times. Consider an economy where investors exhibit external habit formation

as in, for example, Campbell and Cochrane (1999), and therefore risk premia vary over time

through variation in risk aversion. In good times, when consumption rises above its trend

and hence the marginal utility of present consumption is low, investors are willing to give

up current consumption and invest. This in turn forces stock prices to increase and future

expected returns to decrease. Conversely, in bad times, when consumption falls below its

trend and hence the marginal utility of current consumption is high, expected returns in

the future need to be high in order to induce investors to postpone the valuable present

consumption and to invest and consume in the future. It is our conjecture that cyclical

fluctuations in aggregate consumption should be useful in picking out bad and good times in

the economy as measured from a representative agents’point of view, and hence informative

about future excess stock returns. If the argument holds true, there should exist an inverse

relation between cyclical consumption and future expected returns in the data.

The empirical results that we present in this paper confirm the idea that future expected

returns are high (low) when consumption is falling below (rising above) its trend and cyclical

consumption is low (high). Cyclical fluctuations in consumption, which we intermittently

refer to as cc, capture a significant fraction of the variation in future stock market returns.

The results we document are important because they imply an intimate relation between

expected returns and consumption suggesting that asset prices are driven by fundamental

shocks reflecting changes in marginal utility.

An important and novel finding is that the predictive power of cyclical consumption is

not confined to bad times alone. Cyclical consumption provides a consistent description of

how positive and negative macroeconomic events, reflected through consumption decisions of

investors, affect stock market returns. These results are notable because they stand in stark

contrast to Rapach, Strauss, and Zhou (2010), Henkel, Martin, and Nardari (2011), Dangl

and Halling (2012), and Golez and Koudijs (2018) who find that popular predictor variables
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can only forecast stock returns in bad times, whereas there is essentially no evidence of

predictability in good times, that is, during business cycle expansions.

To extract the cyclical component of consumption, we employ a simple and robust linear

projection method of Hamilton (2018). This procedure provides an alternative concept of

what macroeconomists often refer to as the "cyclical component" of a time series and it is

advantageous over other prominent detrending methods in two important respects. First,

the procedure ensures that the identified cyclical component is stationary and consistently

estimated for a wide range of nonstationary processes. Second, it produces a series which is

accurately related to the underlying economic fluctuations as opposed to, for instance, the

popular Hodrick and Prescott (1997) filter which can spuriously generate dynamic relations.

This feature is particularly appealing because it implies that any predictive ability of cyclical

consumption for stock returns is more likely to reflect actual predictability rather than arise

as a result of a statistical artifact of the decomposition method (Hamilton (2018)). We

explore a variety of alternative specifications and utilize other econometric procedures to

isolate cyclical variation in consumption such as polynomial time trends and backward-

looking moving averages, and find even stronger evidence of predictability. The choice of

Hamilton’s (2018) detrending procedure as a benchmark specification provides a conservative

and robust view of return predictability.

Our findings are supportive of theoretical explanations of asset prices which generate

time-varying expected returns such as models with time-varying risk aversion. In the external

habit formation model of Campbell and Cochrane (1999), for example, habit acts like a trend

for consumption. A decline in consumption relative to the trend, which can be thought of

as bad times, leads to low stock prices and high expected returns. Conversely, an increase

in consumption above trend, which can be thought of as good times, leads to high stock

prices and low expected returns. Under relatively mild assumptions, there exists a tight

relation between a finite-horizon version of the surplus consumption variable of Campbell

and Cochrane (1999), which generates changes in equity prices in the model, and cyclical
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consumption.

To explore formally the link between cyclical consumption and habit models, we simulate

data from the Campbell and Cochrane (1999) model and investigate the extent of the model-

implied predictability, and examine its consistency with the time-series predictability that we

observe in our actual data. The simulations show that the habit model produces an inverse

relation between expected returns and cyclical consumption just as we find in the data. The

degree of in-sample predictability implied by the model is qualitatively comparable to that

in the data. The out-of-sample tests reinforce the results from in-sample regressions but

typically indicate less predictable movements in expected returns. These findings open up

a possibility to interpret our results as evidence of countercyclical variation in the market

price of consumption risk.

We perform a battery of robustness checks of our empirical findings and address a number

of econometric concerns surrounding predictive regressions with persistent predictors (Nel-

son and Kim (1993) and Stambaugh (1999)). Both the IVX testing approach of Kostakis,

Magdalinos, and Stamatogiannis (2015) that robustifies the inference to the degree of re-

gressor persistence, and an advanced bootstrap procedure that accounts for the regressor’s

time series properties indicate strong evidence of predictability at the one-quarter horizon

which extends to horizons of about five years. The predictability does not vanish during the

post-oil-crisis period in which standard popular business cycle indicators have proven dismal

as predictive variables (Welch and Goyal (2008)).

We also show that the forecasting power of cyclical consumption fluctuations is not

confined to the aggregate U.S. stock market. Robust patterns of predictability exist across

industry portfolios. In addition, the strong predictive ability of cyclical consumption extends

to international equity markets. A global measure of cyclical consumption computed as a

simple average of respective developed market country-specific components captures a large

part of time-variation in future expected returns on the world market portfolio as well as on

the regional portfolios such as the European portfolio, the EAFE (Europe, Australia, and
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the Far East) portfolio or the G7 portfolio.

Explaining the dynamic behavior of asset returns using aggregate consumption data

is a challenging task for financial economists. Very few studies find evidence in favor of

returns being predictable from consumption. Perhaps the most prominent consumption-

based predictive variable is Lettau and Ludvigson’s (2001) consumption-wealth ratio, cay.

We find that cyclical consumption contains predictive information which goes clearly over

and above that of many well-recognized variables, including the consumption-wealth ratio

of Lettau and Ludvigson (2001), the ratio of labor income to consumption of Santos and

Veronesi (2006), and the conditional volatility of consumption of Bansal, Khatchatrian, and

Yaron (2005). We consider nineteen alternative popular economic variables and find that

very few of them have predictive power and none of them can systematically generate better

out-of-sample forecasts than cyclical consumption.

While we have emphasized the connection between our empirical analysis and the external

habit model of Campbell and Cochrane (1999), our result that stock returns are predictable

by consumption fluctuations appears consistent with other classes of asset pricing models

such as learning models which can generate countercyclical variation in risk premia (Collin-

Dufresne, Johannes, and Lochstoer (2016) and Nagel and Xu (2018)). A series of positive

fundamental shocks in a learning model makes the agent optimistic, asset prices high, and

subsequent future returns, on average, low. For example, Nagel and Xu (2018) predict that

the equity premium is negatively related to long-run weighted averages of past real per capita

payout growth rates and they verify this empirically. Thus, in line with our empirical results,

past growth rates of fundamentals generate slow-moving time-variation in expected returns.

However, unlike the habit-based explanation of return predictability, the learning model of

Nagel and Xu (2018) features constant relative risk aversion and return predictability which

is induced by subjective belief dynamics rather than time-varying risk aversion.

Other models could also be congruous with our empirical findings that consumption fluc-

tuations can predict future stock returns. For example, models with heterogeneous investors
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such as Constantinides and Duffi e (1996) and Constantinides and Ghosh (2017) can generate

a link between past fundamentals and expected market returns. In these models, counter-

cyclical shocks to labor income risk imply a countercyclical variation in the equity premium

and hence stock return behavior which could be reflected in consumption fluctuations. Re-

latedly, Chien, Cole, and Lustig (2016) show that in a model with agents with different asset

trading technologies, a sequence of bad shocks can magnify cyclical fluctuations in the price

of risk and drive up the Sharpe ratio.

Furthermore, recent models that include leverage offer a direct link where countercycli-

cal variation in leverage generates predictability of the risk premium and affects aggregate

consumption dynamics. For example, Gomes and Schmid (2017) develop a general equilib-

rium model with heterogeneous firms, where countercyclical leverage drives up risk premia

on financial assets in downturns which is naturally reflected in credit spread changes. Be-

cause defaults tend to cluster in downturns, when the market price of risk is high, credit

spreads spike up in recessions. These endogenous movements in credit prices amplify the

effects of macroeconomic shocks and imply predictable patterns in expected stock returns

over business cycle.

The paper proceeds as follows. Section I explains how cyclical consumption is con-

structed. Section II presents the empirical results. A number of robustness tests are sum-

marized in Section III. Section IV compares the out-of-sample forecasting ability across

alternative predictors. Section V lays out a simple economic framework based on the habit

model of Campbell and Cochrane (1999) where cyclical consumption emerges as a relevant

predictor variable for future stock returns. It also conducts a simulation analysis to compare

the extent of predictability in the model and historical data. We conclude in Section VI.

I. Extracting cyclical consumption

As our primary measure of consumption, we use aggregate seasonally adjusted consump-
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tion expenditures on nondurables and services from the National Income and Product Ac-

counts (NIPA) Table 7.1 constructed by the Bureau of Economic Analysis (BEA) in the

Department of Commerce of the United States. The data are quarterly, in real per capita

terms, measured in 2009 chain weighted dollars, and span the period from the first quarter

of 1947 to the fourth quarter of 2017.

To extract the cyclical component of consumption, we employ a simple and robust linear

projection method of Hamilton (2018) which provides an alternative means to identify what

macroeconomists usually refer to as the "cyclical component" of a time series. We regress the

log of real per capita consumption, ct, on a constant and four lagged values of consumption

as of date t− k:

ct = b0 + b1ct−k + b2ct−k−1 + b3ct−k−2 + b4ct−k−3 + ωt, (1)

where the regression error, ωt, is our measure of cyclical consumption cct at time t:

cct = ct − b̂0 − b̂1ct−k − b̂2ct−k−1 − b̂3ct−k−2 − b̂4ct−k−3. (2)

This procedure has several attractive features over other popular detrending methods. In

particular, it offers a reasonable model-free way to construct a time series which is accu-

rately related to the actual economic fluctuations as opposed to, for instance, the Hodrick

and Prescott (1997) filter which can spuriously generate series with dynamics that have

no relation to the underlying data-generating process. Under plausible assumptions, the

Hamilton (2018) method ensures that the identified residual component is stationary and

consistently estimated for a wide range of unknown and possibly nonstationary processes.1

1The detrending procedure of Hamilton (2018) allows us to remove the nonstationary component of ct

without modeling the nonstationarity, as the decomposition in Equation (1) will imply a stationary process

ωt, if either the kth difference of ct or the deviation of ct from a kth-order deterministic time polynomial is

stationary for some k as the sample size becomes large, see Hamilton (2018) for a formal proof.
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Furthermore, by virtue of the fact that cc is a one-sided filter, any finding that cc can predict

future observations of some other variable should represent a true predictive ability rather

than an artifact of a choice of a detrending method.2

An empirical implementation of Equation (1) requires a choice of k. Hamilton (2018)

recommends using a two-year horizon as a standard benchmark for business cycle dynamics

and values of around five years for capturing the effect of longer-term shocks which are

"nevertheless still transient". We experimented with alternative specifications of k ranging

from one to eleven years and generally found evidence of stock return predictability. The

benchmark results we present in the paper are based on cc computed using a horizon of six

years, i.e. k = 24 with quarterly data.3

[Figure 1 about here]

Figure 1 shows a time series plot of cc computed from Equation (2) for k = 24 along with

recession dates as defined by the NBER. Cyclical consumption has an unconditional mean

of zero by construction, a standard deviation of 3.74%, and a first order autocorrelation

of 0.97 corresponding to a half-life of slightly over five years. This implies highly persis-

tent expected returns in the return forecasting regressions as emphasized by Campbell and

Cochrane (1999), Pastor and Stambaugh (2009), and van Binsbergen and Koijen (2010).4

The figure illustrates that cc exhibits significant business cycle fluctuations in the post-war

period in that it typically rises after recessions and reaches its highest values some time

before the onset of recessions, and falls throughout economic contractions. Our contention

is that these fluctuations in cyclical consumption constitute a more accurate description of

2In this respect, Hamilton (2018) argues that in contrast to the HP cyclical series which is readily

forecastable from its own lagged values and likewise past values of other variables, the realizations of ω will

by construction be diffi cult to predict.
3A choice of a six-year horizon turns out to be consistent with implications of the external habit model

of Campbell and Cochrane (1999) as we show in Section V.
4For comparison, Lettau and Ludvigson (2013) identify a risk aversion shock with a half-life of over four

years.
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good and bad economic times than previously employed predictor variables. If so, cyclical

consumption should contain predictive information about future expected stock returns. We

test this hypothesis below.

II. Predictive regression analysis

We investigate the forecasting ability of cyclical consumption for two measures of aggre-

gate stock market returns: the return on Standard and Poor’s composite stock price index

(S&P 500) and the return on the Center for Research in Security Prices (CRSP) value-

weighted index of U.S. stocks listed on the NYSE, NASDAQ, and Amex. We compute

excess returns by subtracting the return on the 30-day Treasury bill from the market return.

We focus on excess returns but also examine nominal returns as well as real returns calculated

by deflating nominal returns with the inflation rate of the aggregate U.S. Consumer Price

Index (CPI). We download the data on returns from the Wharton Research Data Services

(WRDS) database and the CPI inflation rate from the Bureau of Labor Statistics (BLS).

Unless otherwise specified, we compute a measure of cyclical consumption from the most

recently available figures for seasonally adjusted consumption of nondurables and services in

real per capita terms and based on full-sample parameter estimates in Equation (2).

A. Return predictive regressions

We consider a standard predictive regression model for analyzing aggregate stock return

predictability:

rt,t+h = α + βcct + εt,t+h, (3)

where cct is one-quarter lagged cyclical consumption and rt,t+h is the h-quarter ahead log

excess return on the stock market. We measure rt,t+h as the h-quarter continuously com-

pounded log return on the market less the corresponding h-quarter continuously compounded

log Treasury bill return.
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To test the significance of β in Equation (3), we use the Newey and West (1987) hetero-

skedasticity- and autocorrelation-robust t-statistic (truncated at lag h; our results are robust

towards other choices of truncation lags). In addition, we compute empirical p-values for

the slope estimates from a wild bootstrap procedure that accounts for the persistence in

regressors and correlations between equity stock return and predictor innovations, and allows

for general forms of heteroskedasticity.5 This simulation produces an empirical distribution

that better approximates the finite sample distribution of the slope estimates in Equation

(3). For more powerful tests, we follow the recommendation of Inoue and Kilian (2004) and

calculate p-values for a one-sided alternative hypothesis.6

[Table I about here]

Panel A of Table I reports the OLS estimates of β, the corresponding t-statistics (in

parentheses), and the adjusted R2s, R̄2, (in square brackets) from predictive regressions in

Equation (3). We find that the estimated coeffi cient on cc is negative and that there is an

economically sizable predictive impact of cyclical consumption on future excess stock market

returns. In particular, the point estimate of β in the quarterly regression on the S&P 500

index is -1.70 in annual terms (first row, second column in Table I). This implies that a

fall in cc by one standard deviation below its mean leads to a rise in the expected return

of about 6 percentage points at an annual rate. The estimate of the coeffi cient is strongly

statistically significant and the associated R̄2 is 3.69%. Thus, expected returns are low when

cyclical consumption is high in good times or economic upswings, and expected returns are

high when cyclical consumption is low in bad times or economic downturns. This result is

5A general concern with predictability regressions is that their reliability can be undermined by the

uncertainty regarding the order of integration of the predictor variable. Statistical inference can be unreliable

when the predictor variable is persistent and its innovations are highly correlated with returns (Nelson and

Kim (1993) and Stambaugh (1999)). Modelling the predictive variables as local-to-unity processes can lead

to invalid inference if the regressor contains stationary or near-stationary components (Valkanov (2003),

Lewellen (2004), Campbell and Yogo (2006), and Hjalmarsson (2011)).
6The bootstrap procedure we apply follows that of Rapach, Ringgenberg, and Zhou (2016).
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consistent with investors responding rationally to countercyclical variation in the price of

consumption risk over time: A fall in consumption relative to its past history indicates bad

economic times where marginal utility of current consumption is high and future returns are

expected to be high.

Columns three to seven in Panel A of Table I show that predictability extends to longer

horizons of one to five years. The extent of predictability increases with the horizon both

in terms of the size of the estimated coeffi cient and R̄2 statistics, but at a decreasing rate.

For example, at the four quarter horizon the estimated coeffi cient and R̄2 are almost four

times as large as the ones recorded at the one quarter horizon. In contrast, the increase from

the sixteenth to the twentieth quarter horizon for the coeffi cient size is around twenty five

percent and for the R̄2 less than ten percent.7

The second row in Panel A of Table I reveals a similar pattern of predictability for the

CRSP value-weighted returns. The table also shows that the predictive power of cyclical

consumption applies to both real returns (Panel B) and actual returns (Panel C), although

the evidence of predictability for actual returns is not quite as prominent.

[Table II about here]

Kostakis, Magdalinos, and Stamatogiannis (2015) develop a test that is robust to the

regressor’s degree of persistence (including unit root, local-to-unit root, near-stationary or

stationary persistence classes) and has good size and power properties. This approach al-

leviates practical concerns about the quality of inference under possible misspecification of

the (generally unobservable) time series properties of the regressor in long-horizon predictive

regressions. Table II reports the results using their IVX estimator to test the significance

of the estimate of β in Equation (3). We find that the null hypothesis of no predictability

7Following the advice of an anonymous referee, we compared the direct regression coeffi cients in Table

I with coeffi cients implied from a first-order VAR model. Table AIII in the internet appendix shows that

the indirect coeffi cients are very similar to the direct coeffi cients we obtain from the time-overlapping multi-

horizon regressions.
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can be rejected at the 5% level for excess returns and real returns at all horizons and for

both the CRSP and S&P 500 indices. For actual returns, we obtain slightly lower IVX-Wald

statistics but typically also reject the null hypothesis of no predictability.

In summary, we show that stock returns are predictable by cyclical consumption fluctua-

tions at various horizons over the post-war period. Expected returns are predicted to be high

when consumption falls relative to its trend and cyclical consumption is low and marginal

utility is high. In bad times when the marginal utility of consumption is high, investors

want to consume more and therefore require a higher expected return to give up valuable

current consumption. In good times, marginal utility of consumption is low and investors

are inclined to save through investing in stocks driving prices up and expected returns down.

These findings constitute new evidence of time-varying risk premia which ties stock return

predictability directly to fluctuations in consumption.8

B. Predicting stock returns in good and bad times

Some popular predictor variables are able to forecast returns in bad times as defined by

recessions but not in good times, that is, during business cycle expansions (Rapach, Strauss,

and Zhou (2010), Henkel, Martin, and Nardari (2011), Dangl and Halling (2012), and Golez

and Koudijs (2018)). In light of this, Cujean and Hasler (2017) develop a theoretical mech-

anism with heterogeneous agents that causes recession-centric stock return predictability.

Several other studies emphasize the usefulness of financial institutions and intermediation

coupled with frictions and market segmentation since the 2007-2009 sub-prime financial cri-

sis for rationalizing stock market behavior and capturing a propagation of a shock in bad

times as opposed to normal and good times (see the discussion in Cochrane (2017)).

8As noted in Section I the benchmark results reported in the paper are based on a cyclical consumption

measure computed from Equation (2) for k = 24. Table AIV in the internet appendix shows that the

forecasting power of cyclical consumption is significant across various consumption horizons k ranging from

one to eleven years (k = 4, 8, ..., 44). For any return holding period between one quarter and five years, the

predictability is strongest at cycle lengths of five to six years (k values between 20 and 24).
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The finding that returns are only predictable in bad times is a general concern for stan-

dard asset pricing models that emphasize the impact of time variation in risk premia as a

common explanation of asset prices. To examine whether the relation between future re-

turns and cyclical consumption is only present in bad economic times, we estimate a linear

two-state predictive regression model in the spirit of Boyd, Hu, and Jagannathan (2005):

rt,t+h = α + βbadIbadcct + βgood (1− Ibad) cct + εt,t+h, (4)

where rt,t+h is the h-quarter ahead log excess return on the CRSP value-weighted index, Ibad

is the state indicator that equals one during bad economic states and zero otherwise, and

cct is one-quarter lagged cyclical consumption. Furthermore, βbad and βgood denote the slope

coeffi cients which measure the return predictability in bad and good states, respectively.

To evaluate the regression in Equation (4), we first follow Dangl and Halling (2012) and

Henkel, Martin, and Nardari (2011) and employ the NBER-dated chronology of recessions for

the identification of bad states. That is, the indicator variable Ibad takes on a value of unity

during the NBER-dated recessions and zero otherwise. Panel A of Table III summarizes the

results.

[Table III about here]

An important finding is that the predictive power of cyclical consumption is not confined

to bad times alone. In particular, the results in Panel A of Table III indicate that cyclical

consumption provides a consistent description of future stock returns both in good and bad

economic states. In detail, at the one quarter horizon, the coeffi cient estimates in Panel A

of Table III are -0.83 (with a t-statistic of -1.86) in bad times and -0.37 (with a t-statistic

of -2.61) in good times, with bootstrap p-values indicating statistical significance at the 5%

and 1% levels, respectively. To understand these units, note that a one-standard-deviation

fall in cc in bad times leads to a rise in the expected excess return of approximately 3

percentage points at a quarterly horizon, roughly a 12-percentage-point increase at an annual
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rate. A corresponding change in annualized returns during good times amounts to slightly

more than 5 percentage points. These estimates imply a total average reaction of future

expected returns of close to 6.5 percentage points per annum. Differences in the level of

statistical significance over bad and good times can be due to the fact that recessions are

more infrequent than expansions (41 versus 243 data points in our seventy-year sample).

These results are notable because they stand in marked contrast to several studies which

document the presence of predictability in economic recessions and a lack of such in economic

expansions. Cyclical consumption typically retains its significance at the various horizons

that we consider. The R̄2 statistics in Panel A of Table III increase monotonically from

3.22% at a quarterly horizon to 35.01% at a horizon of five years.

To guard against the possibility that these results are due to the specific definition of a

recession as identified by the NBER’s Business Cycle Dating Committee, we next apply three

alternative identifications of bad states. In particular, we follow Rapach, Strauss, and Zhou

(2010) and measure bad states using the bottom third of sorted growth rates of real GDP

in Panel B of Table III. We download the series of real seasonally adjusted GDP from the

Federal Reserve Economic Data (FRED) of the Federal Reserve Bank of St. Louis. Panel C

of Table III defines bad states as periods with the manufacturing purchasing managers index

(PMI) issued by the Institute of Supply Management being below an optimal threshold value

of 44.48 (Berge and Jordà (2011)). Finally, Panel D of Table III uses a further definition

of bad states as periods when cyclical consumption is one standard deviation below its

mean. During the full sample period, the four regime definitions classify 41, 94, 31 and 49

realizations as bad states, respectively.9

9To examine the robustness of the results, we experimented with a number of alternative definitions of

bad states such as periods with cyclical consumption being 0.5, 1.5 or 2 standard deviations below its mean

or periods with the lowest 5%, 10%, 15%, 20% or 25% of cyclical consumption realizations (in turn). We also

defined bad regimes based on sorted values of real profit growth or real net cash flow growth as in Rapach,

Strauss, and Zhou (2010), considered a measure of bad times from the Survey of Professional Forecasters

(SPF) following Henkel, Martin, and Nardari (2011), and another one based on an unemployment recession
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The results show that when we use the same measure of bad times as in the existing

literature, there is consistent evidence of predictability both in bad and good times. The

estimates of βbad typically exceed the corresponding βgood counterparts (in absolute terms),

but stock return predictability is not confined to relatively short recession periods alone.

This result is in sharp contrast to the predictability pattern reported in, for example, Henkel,

Martin, and Nardari (2011) and Dangl and Halling (2012) who find that return predictability

is driven predominantly by rare recession periods.

These results indicate a strong predictive ability of cyclical consumption which is stable

over time and across states of nature. This is a novel finding in the prevailing literature

which documents that the forecasting power of many popular predictor variables is often

concentrated in relatively short time spans of adverse macroeconomic changes.

C. Alternative detrending methods

Since there is no a priori theoretical guideline regarding the choice of an appropriate

econometric procedure to isolate cyclical variation in consumption, it is instructive to com-

pare the predictive ability of cc with other empirical measures of cyclical consumption. In

the following, we consider five such definitions. First, we follow a voluminous literature in

macroeconomics and finance and assume a secular linear upward trend in consumption:

ct = d0 + d1t+ ωt, (5)

where the residual measures cyclical consumption, cc. A second technique extends a linear

trend formulation to allow for a breakpoint and hence makes it possible to account for a

well-known fall in the macroeconomic risk, or the volatility of the aggregate economy, at the

gap of Stock and Watson (2010). Cyclical consumption generally emerges as a strong predictor of stock

returns in both good and bad times.
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beginning of the 1990s10:

ct =

{
d0 + d1t+ ωt for t ≤ t1

d0 + d1t+ d2 (t− t1) + ωt for t > t1,
(6)

where the breakpoint t1 corresponds to the first quarter of 1992 (see also Lettau, Ludvigson,

and Wachter (2008)). Essentially, Equation (6) presents a piecewise OLS regression which

fits two separate lines to the disconnected data around the break date.

We also allow for higher order time polynomials such as a quadratic time trend model

which conveniently accounts for slowly changing trends by establishing a quadratic exposure

estimate d2 that can intensify or diminish the linear time trend:

ct = d0 + d1t+ d2t
2 + ωt, (7)

and a corresponding cubic representation:

ct = d0 + d1t+ d2t
2 + d3t

3 + ωt. (8)

Finally, we follow Campbell (1991) and Hodrick (1992) and calculate a "stochastically

detrended" consumption series as a backward-looking moving average based on a five-year

window, where cc in quarter t is equal to the difference between the natural logarithm

of consumption in quarter t and the average of the natural logarithm of consumption in

quarters t-20 to t-1. The six measures of cyclical consumption that we identify display

cross-correlations in the range of 0.34 to 0.91.

[Table IV about here]

Table IV reports estimation results for the predictive regression in Equation (3) based

10An extensive body of the macroeconomic literature finds evidence of a regime shift to lower volatility

of real macroeconomic activity occurring in the last two decades of the 20th century (see, for example,

McConnell and Perez-Quiros (2000) and Stock and Watson (2002)).
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on alternative measures of cc. Cyclical consumption displays stable and robust predictive

power regardless of how we detrend consumption. However, there are also some differences.

Simple linear and quadratic trend specifications exhibit weaker long-run predictability, while

the breaking and cubic detrending methods often yield stronger predictability than our

benchmark results in Table I.

These results emphasize that our choice of the detrending procedure of Hamilton (2018)

as a benchmark specification generally provides a conservative view of return predictability.

Further, the question about which method should be employed to isolate cyclical varia-

tion in consumption appears largely irrelevant since all methods reveal substantial return

predictability.

D. Temporal stability of estimates

Welch and Goyal (2008) highlight that many business cycle predictor variables have

performed particularly poorly after the oil price crisis in the mid 1970s. To address this

point, Table V reexamines the evidence of predictability over three subsamples: 1980-2017,

1990-2017, and 2000-2017. The results for the first two subsamples compare fairly with

the full sample results in Table I. For the post-2000 sample period, we find systematically

larger coeffi cient estimates, in absolute terms, and R̄2 statistics which are well beyond those

reported in Table I. To provide an example, the β coeffi cients are -0.54 and -6.31 (t-statistics

of -2.94 and -6.95) with R̄2 values of 7.35% and 55.64% for the S&P500 index at the one-

quarter and twenty-quarter horizons, respectively, in the 2000-2017 sample, whereas the

according estimates in the full sample are -0.43 and -5.33 (t-statistics of -3.28 and -4.28)

with R̄2 statistics of 3.69% and 34.99%.

[Table V about here]

We obtain similar results in three other periods that we do not report in the table: in the

post-1965 data (see also, Welch and Goyal (2008)); a period predating the global financial

crisis; and a sample which omits the data in the aftermath of the run-up in prices in the early
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2000s. We conclude that the predictive power of cyclical consumption fluctuations is not

confined to any particular period and is not concentrated in sub-samples with severe crises, a

pattern often found in the literature. This result is interesting in view of the fact that many

traditional predictor variables tend to record a reduction in the extent of predictability in

the data after the mid 1970s.

We also study the temporal stability of the β estimates in Equation (3) to structural

breaks as prescribed by Elliott and Müller (2006). Their proposed q̂LL test statistic for the

hypothesis that βt = β for all t and any h is particularly useful in the context of predictive

regressions because it is asymptotically effi cient for a wide range of data-generating processes,

has superior size properties in small samples than other popular statistics, and is simple to

construct. Moreover, the simulation analysis in Paye and Timmermann (2006) shows that

the test of Elliott and Müller (2006) possesses excellent finite sample size properties even

in the presence of highly persistent lagged endogenous predictors. Table AV in the internet

appendix documents that the q̂LL statistics for our benchmark estimates in Table I are never

significant at any horizon (we find similar results for subsamples). These results emphasize

a stable relation between consumption fluctuations and future expected stock returns.

E. Out-of-sample analysis

Bossaerts and Hillion (1999) and Welch and Goyal (2008) point out that in-sample pre-

dictability of stock returns is not necessarily robust to out-of-sample validation and therefore

in-sample predictability does not generally indicate that it is possible to obtain reliable out-

of-sample forecasts. Reasons why out-of-sample results might differ from in-sample results

include effects from loss of information when splitting up samples in out-of-sample tests,

structural breaks, and parameter uncertainty (see, for example, Inoue and Kilian (2004),

Paye and Timmermann (2006), Lettau and Van Nieuwerburgh (2008), and Cochrane (2008)).

Furthermore, Nagel and Xu (2018) show that in models with learning, the presence of in-

sample predictability does not necessarily imply that out-of-sample predictability will also
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be evident.

There are at least two possible interpretations of out-of-sample tests. One view of out-

of-sample testing is that it is a means of helping to validate the in-sample relations. An

alternative view of out-sample testing is that it is a way to assess whether a savvy investor

could construct a real time trading strategy.11

On the one hand, we could assume that the econometrician has a limited information set

relative to the economic agent. Unlike the econometrician, the economic agents are aware

of the history of past consumption and its relation to the consumption trend, and hence

they know how stock returns react to the real quantities. This perspective is termed the

"economic agents knew" framework. On the other hand, we could adopt a "savvy investor"

framework where the agent waits until consumption is reported, often with a lag, and from

there calculates cyclical consumption based on real-time data to form a forecast of the next

period return in order to subsequently trade.

The framework one chooses has implications on how the out-of-sample tests are con-

ducted. Since our main aim is to examine the validity of the in-sample evidence on pre-

dictability of future returns by cyclical consumption, rather than to create a trading strategy,

we follow the "economic agents knew" framework. This allows us to use current, that is, re-

vised latest-available consumption data and a one period lag in the predictability regression.

We proceed as follows. First, using the revised consumption data, we recursively estimate

cyclical consumption every quarter using data available at the time of the forecast. Then

we employ these values of cc in recursive predictive regressions for stock returns to form

out-of-sample forecasts. We use an expanding estimation window where the coeffi cients in

the return forecasting regression are estimated recursively using only information available

through time t for forecasting over the next h quarters. To ensure that our results are not

sensitive to the choice of the evaluation period, we perform out-of-sample tests for three

11We thank an anonymous referee for making this distinction between the two perspectives for interpre-

tation of out-of-sample predictability tests.
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different out-of-sample forecasting periods: 1980Q1-2017Q4, 1990Q1-2017Q4, and 2000Q1-

2017Q4.12

For nested forecast comparison tests, we specify a model of constant expected returns,

that is, a benchmark model where a constant is the sole explanatory variable. The constant

expected return model is a restricted nested version of an unrestricted model of time-varying

expected returns, which includes both a constant and cc. To this end, we compare the

forecasting error from a series of out-of-sample return forecasts obtained from a prediction

equation that includes a constant and cc (the unrestricted model), to a prediction equation

that includes a constant as the sole forecasting variable (the restricted model). For example,

Welch and Goyal (2008) show that the historical average forecast is a very stringent out-of-

sample benchmark.

E.1. Baseline out-of-sample results

In Table VI, we show results of out-of-sample predictions of the log excess return on the

CRSP value-weighted index over various horizons ranging from one quarter to five years. We

find that the unrestricted model typically generates significantly better forecasts than the

restricted model. For instance, the ENC-NEW test of Clark and McCracken (2001) rejects

the null hypothesis that the forecasts from the constant expected return model encompass

the forecasts from the time-varying expected return model at the 1% level for all horizons

and all forecasting periods that we consider. The MSE-F test of McCracken (2007) rejects

the null hypothesis that the mean squared errors from the unrestricted model are bigger

than or equal to those from the historical average return.

[Table VI about here]
12Starting the out-of-sample evaluation in 1980 provides a reasonably long initial in-sample period for

reliably estimating the parameters used to generate the first predictive regression forecast. This issue is of

particular relevance for us because a consistent estimation of the trend parameters in cc requires a large

number of observations.

19



The out-of-sample R2OOS statistics in Table VI are all positive, meaning that cc system-

atically delivers a lower average forecasting error than the historical average forecast. For

example, at the one-quarter horizon, the R2OOS is 0.64% (significant at the 10% level) when

we forecast from 1980, 1.96% (significant at the 10% level) when we forecast from 1990, and

1.35% (albeit insignificant) when we forecast from 2000. It is instructive to compare these

measures of fit with corresponding R2 statistics from in-sample regressions in Table V of the

order of 1.86% for the post-1980 period, 2.96% for the post-1990 period, and 5.56% for the

post-2000 period. Consistent with Bossaerts and Hillion (1999) and Welch and Goyal (2008),

we find a lower out-of-sample fit for every forecast evaluation period that we consider at a

horizon of one quarter.

At horizons greater than one quarter, the R2OOS statistics are all statistically significant.

They are often close to, but remain systematically below, their in-sample counterparts both

in the early 1980-2017 and in the late 2000-2017 evaluation periods. In the post-1990 sample,

the out-of-sample R2 estimates are less than the corresponding in-sample measures of fit for

time horizons of up to two years while the reverse holds true for longer-term returns at

horizons of between three and five years.

E.2. Additional out-of-sample results

In a robustness test, we follow Lettau and Ludvigson (2001) and consider a scenario

where the predictive regression is estimated recursively each time a forecast is made but the

parameters in cc are fixed at their values estimated over the full sample. This technique might

be advantageous because it does not induce a sampling error in the estimation of parameters

in cc, especially in the early estimation recursions. Table AVII in the internet appendix

shows that using full sample estimates to measure cc often leads to stronger out-of-sample

predictive power (exceptions include the results for longer-horizon returns in the post-1980

sample). Overall, this suggests that the reestimation of the parameters in cc induces sampling
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error into the parameter estimates, which may lead to less accurate forecasts.13

To summarize, our results show that cyclical fluctuations in consumption that we identify

display statistically significant out-of-sample predictive power for aggregate stock market

returns. This is the case when the out-of-sample forecasting starts in 1980, 1990, or 2000.

These results are in contrast to Welch and Goyal (2008) who accentuate that a long list of

popular business cycle predictor variables have been unsuccessful out-of-sample in the last

few decades, an issue we return to in Section IV.

III. Further robustness tests and extensions

In this section, we investigate the predictive ability of cyclical consumption for stock

returns sorted into industry portfolios, explore the robustness of our results to alternative

ways of defining consumption, and examine international evidence.

A. Industry portfolios

In the preceding analysis, we have assessed the predictability of stock returns by means

of two commonly used stock market indices that give a broad view of the behavior of the

aggregate equity premium. In this section, we investigate how well cyclical consumption can

forecast returns on portfolios of stocks sorted on industry SIC codes.14

[Table VII about here]

Table VII reports the estimation results from univariate predictive regressions for each

of the ten industry portfolios. In line with our results for the total market portfolios in

Table I, cyclical consumption emerges as a powerful predictor of a cross section of industry

returns. The inverse relation between cyclical consumption and future expected returns is

13We also investigate the out-of-sample predictive power of cc using real-time data instead of revised data.

The results are in Table AVIII in the internet appendix and they are largely consistent with our benchmark

findings in Table VI.
14The portfolio data are from Ken French’s online data library.
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visible for all the industry portfolios. The results are strongly significant (usually at the 1%

significance level) across all industries, apart from the energy category. In addition, we find

that the regression slopes and R̄2 statistics vary across industries, illustrating cross-sectional

differences in the sensitivities. In particular, returns on durable goods and hi-tech business

equipment have the highest level of predictability. Overall, the results in Table VII reinforce

our conclusion that cyclical consumption fluctuations predict stock returns and emphasize

that time-varying expected rates of return contain a common macroeconomic component.

B. Alternative consumption measures

Thus far, our main empirical analysis has focused on real per capita NIPA expenditure

on nondurable goods and services as a proxy of aggregate consumption. In this section, we

consider the predictive ability of cyclical consumption extracted from various subcategories of

personal consumption expenditure (PCE), including i) nondurable goods (NON); ii) services

(SERV); iii) durable goods (DUR); iv) the stock of durable goods (SDUR) constructed from

the year-end estimates of the chained quantity index for the net stock of consumer durable

goods published by the Bureau of Economic Analysis (BEA) following Yogo (2006); v)

nondurable and durable goods (GOODS); and vi) total PCE.

[Table VIII about here]

Table VIII shows results from the benchmark regression (3) applied to the log excess

return on the value-weighted CRSP index. The predictive power of cyclical consumption is

generally qualitatively similar in terms of coeffi cient magnitudes, statistical significance, and

R̄2 measures across the six different expenditure aggregates that we consider. According to

the R̄2 statistics, nondurable goods emerge as the strongest predictor of stock returns with

R̄2 values of 3.18% and 45.42% for quarterly and five-year returns, respectively. However,

the extent of predictability is very similar across consumption categories except those that

involve durables where the extent of predictability is weaker, in particular at the one quarter

horizon. It is interesting to note that the predictive ability of the aggregate consumption
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proxy in Table I compares fairly to that of nondurables and services, measured separately.

Note also that at horizons of three years and above, we often find stronger results based on

alternative PCE categories in Table VIII than in Table I. This evidence reinforces our main

findings and further highlights the conservative nature of our benchmark results.

C. International evidence

To mitigate concerns regarding over-fitting or "data snooping" (Lo and MacKinley (1990)

and Bossaerts and Hillion (1999)), we investigate the predictability of stock returns in in-

ternational equity markets. We follow Ang and Bekaert (2007), Hjalmarsson (2010), and

Rapach, Strauss, and Zhou (2013) and collect international total return indices in national

currency from Morgan Stanley Capital International (MSCI) recorded since the beginning

of 1970. We consider seven major developed market regions around the world, including

the MSCI World, the MSCI World ex USA, the MSCI EAFE, the MSCI Europe, the MSCI

Pacific, the MSCI Far East, and the MSCI G7 indices.15 We focus our attention on actual

returns because appropriate proxies for regional market risk-free rates and inflation rates are

not available. Similar results are obtained for returns denominated in U.S. dollars, excess

returns computed by subtracting the U.S. Treasury bill rate as a proxy for the world risk-free

rate, and real returns computed by subtracting the U.S. CPI inflation rate as a proxy for

the global inflation rate.

In what follows, we examine whether a global measure of cyclical variation in consumption

reveals significant predictive power for future stock returns around the world. This approach

15The MSCI World equity index consists of 23 developed market countries including Australia, Austria,

Belgium, Canada, Denmark, Finland, France, Germany, Hong Kong, Ireland, Israel, Italy, Japan, the Nether-

lands, New Zealand, Norway, Portugal, Singapore, Spain, Sweden, Switzerland, the United Kingdom, and

the United States. The World index covers approximately 85% of the free float-adjusted market capitaliza-

tion in each country. The MSCI EAFE index represents 21 developed market countries, not including the

United States and Canada. The MSCI Europe consists of 15 major developed European countries. The

MSCI Pacific index consists of 5 developed market countries, including Australia, Hong Kong, Japan, New

Zealand, and Singapore, and the MSCI Far East index includes Hong Kong, Japan, and Singapore.
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is motivated by the fact that world-wide rather than local fluctuations in the business cycle

have gained on importance over recent decades (Lumsdaine and Prasad (2003) and Kose,

Otrok, and Whiteman (2003)). To the extent that a global cyclical consumption component

can adequately capture common business cycle related risks, our analysis contributes to the

debate about the level of integration in financial markets (Pukthuanthong and Roll (2009),

and Rangvid, Santa-Clara, and Schmeling (2016)).

To this end, we compute a global measure of cyclical consumption as a simple arithmetic

average of country-specific cyclical consumption components. The latter are obtained by

fitting the regression in Equation (1) to the logarithm of real seasonally-adjusted consump-

tion expenditures in 20 developed market countries from the MSCI World index for which

consumption data is available from the OECD database over the full sample period (not

including Hong Kong, Israel, and Singapore).16

[Table IX about here]

The results for international predictability are reported in Table IX. We find a stable

negative relation between cyclical consumption and future stock returns. This relation is

always economically and statistically significant. In economic magnitudes, the international

estimates imply an even stronger impact of cyclical consumption on expected returns than

our benchmark findings for the United States. For instance, we find that a fall in the global

cyclical consumption by one standard deviation below its mean would lead to a rise in the

expected return on the MSCI World index of the order of about 7.5 percentage points per

annum. The corresponding Newey and West (1987) t-statistic of -3.59 and the bootstrap

p-value indicate significance at the 1% level. Variation in cyclical consumption accounts for

5.32% of the variation in the quarterly world market return. Cyclical consumption retains

16We have considered a number of alternative global measures of cyclical consumption such as a GDP-

weighted average or the first principal component of the national cyclical consumption series. We also

experimented with consumption data for the G7 countries only and found generally similar conclusions.
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its predictive power at any return horizon that we consider with associated R̄2 statistics

climbing to 46.75%, 53.97%, and 51.86% for h = 12, 16, and 20 quarters, respectively.

The results are broadly similar across the different regions with predictability, perhaps

not surprisingly due to the more recent sample period, being strongest at the G7 level

and weakest for the Pacific region. The consistency of the estimated sign, its size, and the

statistical significance provides evidence that cyclical consumption is useful in tracking future

movements in global equity returns. These results are in line with our benchmark findings

and they suggest that our main results are specific to the U.S. stock market.

IV. Alternative predictor variables

How does the predictive information contained in cyclical consumption compare to other

well known predictor variables that have been rationalized by their ability to track business

cycle conditions? To address this question, we consider a set of out-of-sample tests with

alternative business cycle variables that have been used in the extant literature. The fore-

casting variables that we consider include the fifteen predictors studied by Welch and Goyal

(2008),17 the share of labor income to consumption (sw) of Santos and Veronesi (2006),

the consumption-wealth ratio (cay) of Lettau and Ludvigson (2001), consumption volatility

(σc) of Bansal, Khatchatrian, and Yaron (2005), and the output gap (gap) of Cooper and

Priestley (2009).

We use revised macroeconomic data to compute sw, cay, σc, gap, and cc. We compute

the share of labor income to consumption following Santos and Veronesi (2006) using the

definition of labor income in Lettau and Ludvigson (2001). The data for total personal

consumption expenditures, labor income and asset wealth that are used to compute the

consumption-wealth ratio are downloaded from the website of Martin Lettau. We calculate

consumption volatility as σc,t−1,J ≡ log
(∑J

j=1

∣∣ηc,t−j∣∣), where ηc,t is the residual from an

17The source of these data is the online library of Amit Goyal.
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AR(1) process of log growth rate in real per capita nondurables and services and J = 4

quarters following Bansal, Khatchatrian, and Yaron (2005). The output gap is constructed

from the industrial production data available at the Federal Reserve Bank of St. Louis

following Cooper and Priestley (2009).

This gives us a total of nineteen alternative predictor variables:

1. Log dividend-price ratio (dp): log of a 12-month moving sum of dividends paid on the

S&P 500 index minus the log of prices on the S&P 500 index.

2. Log dividend yield (dy): log of a 12-month moving sum of dividends paid on the S&P

500 index minus the log of lagged prices on the S&P 500 index.

3. Log earnings-price ratio (e/p): log of a 12-month moving sum of earnings on the S&P

500 index minus the log of prices on the S&P 500 index.

4. Log dividend-payout ratio (d/e): log of a 12-month moving sum of dividends minus

the log of a 12-month moving sum of earnings on the S&P 500 index.

5. Stock variance (svar): sum of squared daily returns on the S&P 500 index.

6. Book-to-market ratio (b/m): ratio of book value to market value for the Dow Jones

Industrial Average.

7. Net equity expansion (ntis): ratio of a 12-month moving sum of net equity issues by

NYSE-listed stocks to the total end-of-year market capitalization of NYSE stocks.

8. Treasury bill rate (tbl): interest rate on a three-month Treasury bill (secondary mar-

ket).

9. Long-term yield (lty): long-term government bond yield.

10. Long-term return (ltr): return on long-term government bonds.

11. Term spread (tms): long-term yield on government bonds minus the Treasury bill

rate.

12. Default yield spread (dfy): difference between the BAA- and AAA-rated corporate

bond yields.

13. Default return spread (dfr): long-term corporate bond return minus the long-term
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government bond return.

14. Inflation (infl): calculated from the Consumer Price Index (CPI) for all urban

consumers.

15. Investment-to-capital ratio (i/k): log ratio of aggregate private nonresidential fixed

investment to aggregate capital for the whole economy (Cochrane (1991)).

16. Share of labor income to consumption (sw): ratio of the compensation of employees

to the consumption of nondurables plus services (Santos and Veronesi (2006)).

17. Consumption-wealth ratio (cay): residual from a cointegrating relation between log

consumption, log asset (nonhuman) wealth, and log labor income (Lettau and Ludvigson

(2001)).

18. Consumption volatility (σc): log of a backward-looking moving average of the ab-

solute innovations in consumption growth based on a four-quarter window (Bansal, Khatch-

atrian, and Yaron (2005)).

19. Output gap (gap): residual from a regression of log of industrial production on a

time trend which contains linear and quadratic components (Cooper and Priestley (2009)).

We employ a recursive out-of-sample methodology as in Section II.E. to calculate equity

premium forecasts for each predictor. We use the 1953Q4-1979Q4 sample as the initial

estimation period and expand it by one quarter in each recursion. The forecasting ability is

evaluated by means of the out-of-sample R2 statistic (R2OOS).
18

[Table X about here]

Table X presents results of out-of-sample horse races pitting the forecasts for each predic-

18Table AI in the internet appendix provides descriptive statistics of the predictor varaibles, and Table

AII shows that the in-sample predictive power of cc compares favorably with that of standard business cycle

predictor variables. Out of the 19 alternative economic predictors that we consider, only four variables

including the term spread (tms), the investment-to-capital ratio (i/k) of Cochrane (1991), the consumption-

wealth ratio (cay) of Lettau and Ludvigson (2001), and the output gap (gap) of Cooper and Priestley (2009)

exhibit significant and strong predictive ability for stock returns. The remaining variables are typically

insignificant at the 5% level and/or generate low R2s.
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tor variable against the historical average return benchmark forecast. The overall picture is

that the traditional predictive variables have rather weak out-of-sample predictive power. At

a horizon of one quarter, eighteen out of nineteen alternative predictors generate a negative

R2OOS statistic and thus fail to outperform the historical average forecast. This result echoes

the message of Welch and Goyal (2008) that many economic variables deliver a very erratic

out-of-sample performance in the period after the oil price shocks of the 1970s. In marked

contrast to this observation, the predictive power of cc clearly stands out. The quarterly

R2OOS statistic for cc is positive at 0.64% (significant at the 10% level), meaning that un-

like many popular predictors, cc outperforms the prevailing mean benchmark and clears the

out-of-sample hurdle.

A similar picture prevails at longer horizons. For example, at horizons of one, two, and

three years, we register negative R2OOS statistics for seventeen out of nineteen alternative

predictor variables (the two exceptions with positive R2OOS’s are tms and i/k), whereas cc

generates positive R2OOS statistics of 4.14%, 10.55%, and 17.63% (significant at a 1% level),

respectively. Overall, for return holding periods of up to three years, cc emerges as the most

powerful predictor in our sample. At horizons of four and five years, i/k is the only variable

that yields R2OOS statistics which slightly exceed those produced by cc.

To summarize, the results in Table X reinforce a stable and strong predictive ability of

cyclical consumption relative to numerous popular business cycle predictors. We find that

none of the nineteen alternative traditional predictor variables usually considered in the

literature can systematically generate better out-of-sample forecasts of the equity premium

than cyclical consumption. These results attempt to address a concern of Welch and Goyal

(2008) who demonstrate that it is very diffi cult to identify individual economic variables

capable of generating reliable out-of-sample forecasts. Against this backdrop, we show that

cyclical consumption outperforms the historical average by meaningful margins and generates

better forecasts than popular forecasting variables.
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V. The external habit model

The predictive regression analysis in Section II documents an inverse relation between

cyclical consumption and future expected stock returns: A fall (rise) in consumption below

(above) trend indicates bad (good) times when marginal utility of current consumption and

future expected returns are high (low). A natural question is how this empirical evidence re-

lates to consumption-based asset pricing theory which aims to explain the dynamic behavior

of asset returns using aggregate consumption data.19

Campbell and Cochrane (1999), for example, assume that investors evaluate current

consumption relative to a habit level of consumption that can be thought of as a weighted

moving average of past consumption expenditures.20 In their model, habit acts as a trend

for consumption: a decline in consumption relative to the trend in a recession leads to

high expected returns and low asset prices. This begs a question about how our detrended

consumption variable relates to consumption habit, and what restrictions such a relation

may impose on the consistency of our choice of the cycle parameter k in the Hamilton

(2018) filter with respect to return predictability. To address these issues, we study the

implications of the habit model of Campbell and Cochrane (1999) for time-varying expected

returns. Specifically, Section V.A. sets down a simple economic framework wherein cyclical

consumption emerges as a relevant predictor variable for future stock returns. Section V.B.

19Countercyclical variation in risk premia has been incorporated in prominent equilibrium models which

can generate time-varying expected returns, including models with time-varying risk aversion (Campbell and

Cochrane (1999)), time-varying aggregate consumption risk (Bansal and Yaron (2004)), and time-varying

disaster risk (Farhi and Gabaix (2016) and Wachter (2013)).
20The empirical analysis in Bansal, Kiku, and Yaron (2012) and Beeler and Campbell (2012) points to an

important distinction between the habit model of Campbell and Cochrane (1999) and the long-run risks model

of Bansal and Yaron (2004). Specifically, the long-run risks model implies that past or current consumption

cannot explain future dividend-price ratios or returns, while the habit model in contrast suggests that asset

prices are backward-looking and that past consumption growth forecasts future price-dividend ratios and

returns.
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discusses details on the calibration and Section V.C. examines the compatibility of our results

with the predictability generated by the model.

A. Consumption habit, cyclical consumption, and time-varying returns

Campbell and Cochrane (1999) augment the standard power utility function with a time-

varying subsistence level Xt, which represents the agent’s "external habit" and is defined

indirectly through the surplus consumption ratio St ≡ Ct−Xt
Ct

. To ensure stationarity and

prevent habit from falling below consumption, Campbell and Cochrane (1999) assume that

the log surplus consumption ratio, st ≡ log (St), follows a mean-reverting heteroscedastic

first-order autoregressive process:

st+1 = (1− φ) s+ φst + λ (st) υt+1, (9)

where s is the steady state value of st, φ is the habit persistence parameter, and λ (st) is a

nonlinear monotonically decreasing sensitivity function that determines how innovations in

consumption growth υt+1 influence st+1. Surplus consumption is the only state variable in

the model, and it controls the price of risk and generates time-variation in expected returns.

Appendix C in the working paper of Wachter (2006) formally demonstrates that a first-

order approximation around st = s implies that surplus consumption adjusts gradually to

the history of current and past consumption with coeffi cient φ:

st ≈ κ+ λ (s)

∞∑
j=0

φj∆ct−j, (10)

where κ is a constant depending on model parameters. The model requires a high, but less

than unity, value of φ to match stock market data. While surplus consumption is, in the

theory, influenced by past consumption going back to infinity, a "cut-off" horizon can be

used to obtain an empirical proxy for st. If we omit the constant κ and the proportionality

parameter λ (s), and assume a close to unity value of the persistence parameter (φ ≈ 1), it
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follows that there exists a close link between a finite-horizon proxy of surplus consumption

and cyclical consumption:

ŝt ≈ ct − ct−k ≈ cct, (11)

where k determines how long habit reacts to past consumption. The second approximation

in (11) follows from the fact that under the random walk hypothesis for consumption, Hamil-

ton’s (2018) detrending procedure reduces to a difference filter because, for large samples, the

OLS estimates in Equation (1) converge to b1 = 1 and all other bj = 0. The resulting cyclical

component is then simply given by the difference over a k-quarter horizon, or, equivalently,

the sum of the observed changes over k periods.

If excess returns on the stock market and consumption growth are jointly conditionally

lognormally distributed, the Campbell and Cochrane (1999) model implies:

Et (rt+1) +
1

2
σ2t = γtcovt (rt+1,∆ct+1) , (12)

where Et (rt+1) is the expected log excess stock return, γt is the state-dependent price of

consumption risk defined as γt = γ (1 + λ (st)), covt (rt+1,∆ct+1) is the amount of risk, and

1
2
σ2t is a Jensen’s inequality term. Since λ (st) is inversely related to st, and cct and st are

tightly linked as they both depend on past consumption growth, it follows that low levels

of cyclical consumption increase γt and forecast high expected returns. This prediction

turns out consistent with the empirical evidence that we presented in Section II. The inverse

relation between st, and therefore cct, and risk premia operates also via the conditional

covariance term in Equation (12) because a fall in consumption toward the habit in bad

times is associated with a rise in covt (rt+1,∆ct+1) in the model. Overall, the dependence

of expected returns on surplus consumption is close to linear as illustrated in Figure 4 in

Campbell and Cochrane (1999), except for very low values of the surplus consumption ratio.21

21Note also that the effect of the Jensen’s inequality term is quite small empirically. For instance, we

obtain a coeffi cient of -0.41 (t-statistic of -3.07) and an R̄2 measure of 3.11% in the benchmark predictive
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B. Parameter calibration

We proceed by conducting a simple simulation study with two purposes. First, we would

like to evaluate the extent to which the habit model of Campbell and Cochrane (1999)

can match the time-series predictability of stock returns in the data. Secondly, we aim to

analyze the frequency at which consumption innovations are related to expected returns.

We employ Campbell and Cochrane’s (1999) parameter values to simulate a sample path of

1,000,000 quarters of artificial data for returns on stocks and consumption growth from the

model.22 We then calculate population values for a variety of statistics. Table XI compares

simulated means and standard deviations implied by the model to corresponding statistics

in our empirical sample over the 1947Q1-2017Q4 period. Following Campbell and Cochrane

(1999), we set the average log consumption growth at 1.89% and its standard deviation at

1.50%, which should be measured against the values of 1.89% and 1.00% in our empirical

sample (all terms per annum). As for the further parameter choices, the utility curvature

parameter is set at γ = 2.00, the persistence parameter of the log surplus consumption ratio

at φ = 0.87, and the subjective discount factor at δ = 0.89. As Table XI shows, we can

match quite closely the means and standard deviations of consumption growth and excess

returns as well as their Sharpe ratios, using either the consumption claim or dividend claim

to model the market return.23

[Table XI about here]

regression for quarterly excess CRSP returns in Equation (3) compared to the estimate of -0.42 (t-statistic

of -3.06) and an R̄2 statistic of 3.16% for log excess CRSP returns reported in Table I.
22Campbell and Cochrane (1999) pick parameters by calibrating the model to match certain moments in

the post-war U.S. data over the 1947-1995 period. Our 1947-2017 sample displays similar statistics as in

Table 2 in Campbell and Cochrane (1999). For instance, the mean of the log consumption growth is 1.89 in

both samples; the standard deviation of the log consumption growth is 1.50 and 1.00; the Sharpe ratio for

log stock returns is 0.43 and 0.40; the Sharpe ratio for simple returns is 0.50 and 0.49; the average of the log

excess stock returns is 6.64 and 6.52; and the standard deviation of log stock returns is 15.20 and 16.38 in

percent per annum in the two samples, accordingly.
23See the Internet Appendix for further details about the simulations.
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C. Implications for stock return predictability

In this section, we use our simulations to investigate the model’s ability to reproduce

the results in Section II, that is, an inverse relation between cyclical consumption and fu-

ture expected stock returns. In addition, the simulations allow us to assess the impact of

cycle length on asset prices and study the frequency at which consumption innovations are

incorporated into risk prices.

[Table XII about here]

To begin with, we analyze the population properties of the model for in-sample pre-

dictability of stock returns. Based on a sample path of 1,000,000 quarterly simulations, we

compute a long series of artificial realizations of log excess returns and our cyclical consump-

tion variable as defined in (11) for k = 24.24 We then examine the extent of model-implied

predictability by estimating the standard predictive regression (3). The upper row of Table

XII, Panel A displays the estimates in simulated data implied by the consumption claim; the

middle row presents simulation results for the dividend claim; and the entries in the bottom

row replicate the findings in the historical data (see also, Table I). We show OLS estimates of

slope coeffi cients and adjusted R̄2 statistics in percent in square brackets. We do not report

t-statistics of the simulation results because the large sample size makes them meaningless.

As one can see, cyclical consumption can predict returns at various horizons ranging

from one quarter to five years. The slope coeffi cients have the right (negative) sign in the

model as in the empirical regressions. The model’s predictions for the consumption claim

are somewhat weaker compared to the actual data but the general patterns are similar. In

the model, the slope coeffi cients increase (in absolute terms) from -0.22 at a horizon of one

quarter to -3.04 at a horizon of five years, for the consumption claim, compared with values

24We also examined predictability in the historical data for a measure of cyclical consumption computed

from a difference filter in (11) and obtained results which were similar to our benchmark findings.
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of -0.42 and -5.01 in the actual data.25 For the dividend claim, the predictive coeffi cients on

cyclical consumption are similar to the consumption claim, but the adjusted R̄2 statistics

are reduced. For instance, the population R̄2’s for the consumption claim rise from 1.75% at

a one-quarter horizon to 23.80% at the five-year horizon, whereas with values of 1.46% and

18.13%, respectively, the measures of regression fit are lower using the dividend claim (see

also, Campbell and Cochrane (1999)). For comparison, the corresponding R̄2’s in the actual

postwar sample are of around 3% for quarterly returns and close to 35% for the five-year

returns.

We turn next to an assessment of the out-of-sample predictability in the model by gen-

erating 2,500 artificial samples of size 284, which matches the number of observations in

our postwar historical sample. For each artificial sample, we then compute 112-(h-1) out-of-

sample forecasts, which matches the number of forecasts in the 1990-2017 evaluation window.

The upper row of Table XII, Panel B shows average out-of-sample R2 values across the 2,500

artificial samples for the consumption claim; the middle row gives corresponding statistics

for the dividend claim; and the bottom row replicates the results in the historical data (see

also, Table VI). For the consumption claim, we find that cyclical consumption consistently

outperforms the historical mean in forecasting returns out-of-sample for each forecast hori-

zon h, with out-of-sample R2 measures rising from 1.00% for quarterly returns to 9.51% for

five-year returns. The out-of-sample R2 values with the dividend claim are genereally lower

across horizons but still positive. Overall, as expected, we see more predictability in the

historical sample compared to the model out-of-sample.

Finally, Table AX in the internet appendix examines the impact of cycle length on the

model fit. For consistency with Table AIV, we study a total of eleven specifications with

consumption cycles k varying from 4 to 44 quarters. Similar to the patterns in the historical

25Table AIX in the internet appendix shows that cyclical consumption displays a comparable degree of

volatility and autocorrelation in actual and simulated data. For example, the standard deviation and first-

order autocorrelation are 3.74% and 0.97 in actual data compared to 3.66% and 0.96 in simulated data.
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sample, the simulations indicate that the predictive power of cc is increasing in k up to

cycle lengths of around five or six years, almost stagnating for values of k between six

and eight years, and slightly deteriorating thereafter. The predictive coeffi cients on cyclical

consumption are similar for both claims, but the R̄2 statistics tend to be lower when using

the dividend claim compared to the consumption claim. The findings generally indicate

that returns adjust to changing economic conditions at frequencies of around five to six

years, giving a macroeconomic, consumption-related foundation for the existence of risk

determinants in asset prices which are due to low frequency dynamics. This insight appears

consistent with our choice of a six-year cycle in the benchmark application of Hamilton’s

(2018) filter in Section II.26

In summary, we make two main points. Our first point is that simulated data from

the Campbell and Cochrane (1999) model produce an inverse relation between cyclical con-

sumption and future expected stock returns as we find in the empirical data. The model

generates qualitatively similar patterns but yields lower predictability, especially for longer

horizon returns. Our second point is that values of around five to six years are optimal for

the parameter k in the Hamilton (2018) filter in terms of capturing predictable variation in

expected returns.

VI. Conclusion

The predictability of stock returns has been rationalized as evidence suggesting the ex-

istence of time-variation in expected risk premia. Common predictor variables have, how-

ever, for the most part been unsuccessful in establishing a sound relation to fundamentals

(Cochrane (2005), Welch and Goyal (2008), and Henkel, Martin, and Nardari (2011)).

26While cc captures a slow-moving business cycle related risk premium component, cay is less persistent

and works particularly well at business cycle frequencies of relatively short horizons as shown by Lettau and

Ludvigson (2001). In our sample, the half-life of cc is about 5 years, while that of cay is about 2 years,

illustrating that cc works at a lower frequency than cay.
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In this paper, we propose a novel consumption-based predictive variable, called cyclical

consumption, and show that it captures a significant fraction of variation in expected stock

returns. To identify a cyclical component of consumption, which measures deviations of

aggregate consumption from its trend, we employ the robust linear projection method of

Hamilton (2018). We document a robust inverse relation between cyclical consumption and

future expected returns: When economic conditions deteriorate, often referred to as bad

times, consumption drops below its trend, leading to a rise in the marginal utility of current

consumption. As a consequence, prices fall and future expected returns rise. Conversely,

in good times when consumption rises above trend and marginal utility from consumption

is low, prices rise and future expected returns fall. The empirical evidence we find ties

consumption decisions of agents to time-variation in expected returns in a manner consistent

with rational asset pricing and suggests that stock return predictability arises as a rational

response to changing business conditions.

Our findings are supportive of theoretical explanations of asset prices which emphasize the

role of habit formation in consumption such as Campbell and Cochrane (1999). Using simu-

lations, we show that the habit model produces a similar inverse relation between expected

returns and cyclical consumption. Our analysis emphasizes that low frequency fluctuations

in consumption capture slow-moving countercyclical variation in expected returns.

We conduct a battery of robustness checks and conclude that the predictive power of

cyclical consumption is higher than that of many well-recognized forecasting variables, is

stable over time, not confined to bad times or times of crises, is evident in industry portfolio

and international data, and is robust to a variety of alternative specifications and methods

applied to isolate cyclical variation in consumption. Taken together, our evidence lends

support to asset pricing models based on external habit formation where the dynamics of

expected returns are driven by changes in the level of current consumption relative to its

past history.
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Table I

Benchmark Predictive Regressions

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log stock market return,

and cct is one-quarter lagged cyclical consumption. The table shows results for log excess

market returns (Panel A), log real market returns (Panel B), and log market returns (Panel

C) for the S&P 500 index and the CRSP value-weighted index. For each regression, the

table reports the slope estimate, Newey-West corrected t-statistics in parentheses (h lags),

and adjusted R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance

at the 10%, 5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values.

The sample covers the period from 1953Q4 to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Excess Market Returns

SP500 -0.43 -1.60 -2.72 -3.36 -4.34 -5.33

(-3.28)∗∗∗ (-3.83)∗∗∗ (-4.21)∗∗∗ (-4.65)∗∗∗ (-4.69)∗∗∗ (-4.28)∗∗∗

[3.69] [12.93] [20.79] [24.70] [32.36] [34.99]

CRSP -0.42 -1.55 -2.57 -3.13 -4.08 -5.01

(-3.06)∗∗∗ (-3.59)∗∗∗ (-3.96)∗∗∗ (-4.47)∗∗∗ (-4.57)∗∗∗ (-4.17)∗∗∗

[3.16] [11.43] [18.68] [22.46] [31.53] [34.46]

Panel B: Real Market Returns

SP500 -0.41 -1.56 -2.67 -3.33 -4.38 -5.54

(-3.11)∗∗∗ (-3.55)∗∗∗ (-3.84)∗∗∗ (-4.12)∗∗∗ (-4.17)∗∗∗ (-3.97)∗∗∗

[3.34] [11.71] [18.47] [21.51] [28.19] [31.45]

CRSP -0.40 -1.51 -2.52 -3.10 -4.12 -5.22

(-2.91)∗∗∗ (-3.34)∗∗∗ (-3.62)∗∗∗ (-3.95)∗∗∗ (-3.99)∗∗∗ (-3.80)∗∗∗

[2.87] [10.45] [16.83] [19.93] [28.04] [31.66]

Panel C: Market Returns

SP500 -0.35 -1.28 -2.11 -2.51 -3.33 -4.26

(-2.65)∗∗∗ (-3.00)∗∗∗ (-3.05)∗∗∗ (-3.05)∗∗∗ (-3.16)∗∗∗ (-3.15)∗∗∗

[2.36] [8.51] [12.86] [13.94] [19.06] [22.16]

CRSP -0.34 -1.23 -1.96 -2.28 -3.07 -3.94

(-2.47)∗∗ (-2.80)∗∗∗ (-2.84)∗∗∗ (-2.87)∗∗∗ (-3.02)∗∗∗ (-3.05)∗∗∗

[1.98] [7.38] [11.18] [12.06] [17.87] [21.11]
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Table II

IVX-Wald Statistics

This table shows IVX-Wald statistics of Kostakis, Magdalinos, and Stamatogiannis (2015)

for predictive OLS regressions summarized in Table I. ∗, ∗∗, and ∗∗∗ indicate significance at

the 10%, 5%, and 1% levels, respectively.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Excess Market Returns

SP500 9.72∗∗∗ 9.38∗∗∗ 7.72∗∗∗ 6.38∗∗ 7.11∗∗∗ 7.83∗∗∗

CRSP 8.43∗∗∗ 7.89∗∗∗ 6.19∗∗ 4.95∗∗ 5.63∗∗ 6.23∗∗

Panel B: Real Market Returns

SP500 8.54∗∗∗ 8.38∗∗∗ 7.00∗∗∗ 5.87∗∗ 6.80∗∗∗ 7.89∗∗∗

CRSP 7.45∗∗∗ 7.09∗∗∗ 5.63∗∗ 4.57∗∗ 5.42∗∗ 6.35∗∗

Panel C: Market Returns

SP500 5.99∗∗ 5.60∗∗ 4.29∗∗ 3.25∗ 3.81∗∗ 4.51∗∗

CRSP 5.15∗∗ 4.63∗∗ 3.61∗ 2.37 2.87∗ 3.45∗
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Table III

Predictability in Good and Bad Times

The table presents results of two-state predictive regressions of the form rt,t+h = α +

βbadIbadcct+βgood (1− Ibad) cct+εt,t+h, where h denotes the horizon in quarters, rt,t+h is the h-

quarter ahead log excess return on the CRSP value-weighted index, cct is one-quarter lagged

cyclical consumption, and Ibad is the state indicator that equals one during bad economic

states and zero otherwise. Panel A employs the NBER-dated chronology of recessions to

define bad states following Rapach, Strauss, and Zhou (2010) and Henkel, Martin, and

Nardari (2011); Panel B defines bad states using the bottom third of sorted growth rates

of real GDP following Rapach, Strauss, and Zhou (2010); Panel C defines bad states as

periods with the Purchasing Managers Index below a threshold value of 44.48 specified as

in Berge and Jordà (2011); Panel D defines bad states as periods with cyclical consumption

realizations below its mean by more than one standard deviation. For each regression, the

table reports slope estimates, Newey-West corrected t-statistics in parentheses (h lags), and

adjusted R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values. The

sample covers the period from 1953Q4 to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: NBER Business Cycle Dates

βbad -0.83 -3.85 -3.53 -3.01 -5.86 -7.01

(-1.86)∗∗ (-2.91)∗∗∗ (-2.09)∗∗∗ (-2.39)∗∗∗ (-4.91)∗∗∗ (-3.74)∗∗∗

βgood -0.37 -1.26 -2.45 -3.15 -3.84 -4.71

(-2.61)∗∗∗ (-2.93)∗∗∗ (-3.76)∗∗∗ (-4.12)∗∗∗ (-4.17)∗∗∗ (-3.97)∗∗∗

[3.22] [14.42] [18.69] [22.14] [32.07] [35.01]

Panel B: Real GDP Growth

βbad -0.76 -2.61 -3.08 -3.24 -4.54 -5.95

(-3.56)∗∗∗ (-4.41)∗∗∗ (-3.84)∗∗∗ (-4.32)∗∗∗ (-5.73)∗∗∗ (-5.01)∗∗∗

βgood -0.24 -1.00 -2.30 -3.07 -3.84 -4.50

(-1.37)∗ (-2.35)∗∗ (-3.35)∗∗∗ (-3.88)∗∗∗ (-3.65)∗∗∗ (-3.30)∗∗∗

[3.99] [13.95] [18.74] [22.15] [31.46] [34.84]

Panel C: Purchasing Managers Index (PMI)

βbad -0.90 -5.02 -5.71 -5.26 -7.24 -7.66

(-1.61)∗ (-6.07)∗∗∗ (-3.91)∗∗∗ (-3.74)∗∗∗ (-3.80)∗∗∗ (-3.12)∗∗

βgood -0.38 -1.29 -2.33 -2.97 -3.82 -4.77

(-2.73)∗∗∗ (-3.05)∗∗∗ (-3.70)∗∗∗ (-4.18)∗∗∗ (-4.30)∗∗∗ (-3.93)∗∗∗

[3.14] [15.56] [20.50] [22.94] [32.76] [35.03]

Panel D: Cyclical Consumption

βbad -0.46 -1.17 -1.58 -2.61 -2.75 -3.92

(-2.15)∗∗ (-2.34)∗∗ (-2.18)∗∗ (-3.22)∗∗∗ (-2.88)∗∗ (-3.12)∗∗∗

βgood -0.38 -1.88 -3.44 -3.60 -5.21 -5.81

(-1.79)∗∗ (-2.86)∗∗∗ (-3.34)∗∗∗ (-2.94)∗∗∗ (-3.35)∗∗∗ (-3.09)∗∗∗

[2.80] [11.48] [19.97] [22.50] [33.08] [34.97]
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Table IV

Alternative Detrending Methods

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess return

on the CRSP value-weighted index, and cct is one-quarter lagged cyclical consumption. We

compute cc by fitting a linear, linear with a break, quadratic or cubic time trend specification

as indicated in the first column. The stochastic method computes cyclical consumption as

a five-year backward-looking moving average. For each regression, the table reports the

slope estimate, Newey-West corrected t-statistics in parentheses (h lags), and adjusted R2

statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%,

and 1% levels, respectively, according to one-sided wild bootstrap p-values. The sample

covers the period from 1953Q4 to 2017Q4.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Linear -0.22 -0.83 -1.43 -1.87 -2.40 -2.77

(-2.63)∗∗∗ (-2.89)∗∗∗ (-2.90)∗∗∗ (-3.21)∗∗∗ (-3.28)∗∗∗ (-2.68)∗∗

[1.49] [5.76] [9.29] [11.70] [14.69] [13.44]

Break -0.62 -2.35 -3.99 -5.05 -6.00 -6.46

(-3.37)∗∗∗ (-3.30)∗∗∗ (-3.63)∗∗∗ (-4.78)∗∗∗ (-5.50)∗∗∗ (-4.52)∗∗∗

[3.54] [13.15] [22.36] [28.67] [33.87] [29.92]

Quadratic -0.44 -1.64 -2.69 -3.21 -3.66 -3.62

(-2.50)∗∗ (-2.60)∗∗∗ (-2.61)∗∗∗ (-2.87)∗∗∗ (-3.25)∗∗∗ (-2.85)∗∗∗

[1.79] [7.03] [11.07] [12.44] [13.28] [9.61]

Cubic -0.83 -3.24 -5.55 -6.84 -8.00 -8.59

(-3.51)∗∗∗ (-3.78)∗∗∗ (-4.29)∗∗∗ (-5.90)∗∗∗ (-6.28)∗∗∗ (-4.84)∗∗∗

[3.87] [15.27] [26.44] [32.54] [37.66] [33.20]

Stochastic -1.09 -4.60 -8.57 -11.62 -15.26 -18.88

(-1.92)∗ (-3.08)∗∗∗ (-3.67)∗∗∗ (-5.18)∗∗∗ (-6.42)∗∗∗ (-6.15)∗∗∗

[1.35] [7.11] [14.87] [22.11] [31.90] [36.29]
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Table V

Predictive Regressions for Subsamples

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess return

on the S&P 500 index or the CRSP value-weighted index, and cct is one-quarter lagged

cyclical consumption. The sample of returns covers the period from 1980Q1 to 2017Q4

(Panel A), from 1990Q1 to 2017Q4 (Panel B), and from 2000Q1 to 2017Q4 (Panel C). For

each regression, the table reports the slope estimate, Newey-West corrected t-statistics in

parentheses (h lags), and adjusted R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗

indicate significance at the 10%, 5%, and 1% levels, respectively, according to one-sided wild

bootstrap p-values.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Post-1980 Period

SP500 -0.35 -1.34 -2.53 -3.43 -4.55 -5.55

(-2.24)∗∗ (-2.96)∗∗∗ (-3.10)∗∗∗ (-3.25)∗∗∗ (-3.52)∗∗∗ (-3.70)∗∗∗

[2.22] [9.21] [17.92] [23.26] [30.42] [33.27]

CRSP -0.35 -1.30 -2.31 -2.98 -3.91 -4.61

(-2.11)∗∗ (-2.80)∗∗∗ (-2.89)∗∗∗ (-3.03)∗∗∗ (-3.45)∗∗∗ (-3.76)∗∗∗

[1.86] [7.90] [15.48] [19.44] [26.35] [27.54]

Panel B: Post-1990 Period

SP500 -0.44 -1.67 -3.00 -4.13 -5.61 -7.09

(-2.52)∗∗∗ (-3.07)∗∗∗ (-2.82)∗∗∗ (-3.20)∗∗∗ (-3.74)∗∗∗ (-4.58)∗∗∗

[3.83] [14.35] [21.34] [26.99] [36.29] [40.49]

CRSP -0.42 -1.53 -2.59 -3.43 -4.69 -5.85

(-2.25)∗∗∗ (-2.64)∗∗∗ (-2.34)∗∗∗ (-2.62)∗∗∗ (-3.29)∗∗∗ (-4.43)∗∗∗

[2.96] [11.16] [16.44] [20.53] [29.89] [33.20]

Panel C: Post-2000 Period

SP500 -0.54 -2.06 -3.28 -4.06 -4.91 -6.31

(-2.94)∗∗∗ (-3.40)∗∗∗ (-2.93)∗∗∗ (-3.35)∗∗∗ (-4.62)∗∗∗ (-6.95)∗∗∗

[7.35] [23.72] [30.40] [37.38] [47.44] [55.64]

CRSP -0.52 -1.92 -2.83 -3.33 -3.99 -5.14

(-2.58)∗∗∗ (-2.86)∗∗∗ (-2.33)∗∗ (-2.57)∗∗∗ (-3.58)∗∗ (-5.41)∗∗∗

[5.56] [18.30] [21.66] [25.70] [34.79] [42.77]
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Table VI

Benchmark Out-of-sample Tests

The table presents results of out-of-sample forecasts of h-quarter-ahead log excess returns

on the CRSP value-weighted index where a time-varying expected returns model with cyclical

consumption as regressor is compared against a constant expected returns model. The

parameters used to calculate cyclical consumption are estimated recursively from the current

latest-available consumption data. R2OOS is the out-of-sample R
2 in percent. ENC-NEW is

the encompassing test statistic of Clark and McCracken (2001) and MSE-F is the F -statistic

of McCracken (2007). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,

respectively, according to one-sided wild bootstrap p-values in case of the ENC-NEW and

MSE-F statistics, and according to the Clark and West (2007) test in case of the R2OOS

statistics. The first observation in the out-of-sample period is 1980Q1, 1990Q1, or 2000Q1,

and the predictive model is estimated recursively until 2017Q4.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Forecasting from 1980

ENC-NEW 2.85∗∗∗ 12.73∗∗∗ 25.26∗∗∗ 35.79∗∗∗ 54.53∗∗∗ 60.56∗∗∗

MSE-F 0.98∗∗∗ 6.43∗∗∗ 17.09∗∗∗ 30.17∗∗∗ 42.93∗∗∗ 41.07∗∗∗

R2OOS 0.64∗ 4.14∗∗∗ 10.55∗∗∗ 17.63∗∗∗ 23.86∗∗∗ 23.59∗∗∗

Panel B: Forecasting from 1990

ENC-NEW 3.51∗∗∗ 13.77∗∗∗ 22.47∗∗∗ 29.46∗∗∗ 46.57∗∗∗ 53.95∗∗∗

MSE-F 2.24∗∗∗ 9.76∗∗∗ 17.63∗∗∗ 26.92∗∗∗ 44.09∗∗∗ 52.80∗∗∗

R2OOS 1.96∗ 8.22∗∗∗ 14.37∗∗∗ 21.05∗∗∗ 31.25∗∗∗ 36.21∗∗∗

Panel C: Forecasting from 2000

ENC-NEW 2.40∗∗∗ 7.89∗∗∗ 11.76∗∗∗ 17.01∗∗∗ 29.89∗∗∗ 39.64∗∗∗

MSE-F 0.99∗∗∗ 4.15∗∗∗ 5.85∗∗∗ 10.97∗∗∗ 20.33∗∗∗ 33.08∗∗∗

R2OOS 1.35 5.67∗∗∗ 8.26∗∗∗ 15.24∗∗∗ 26.29∗∗∗ 38.43∗∗∗
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Table VII

Portfolios Sorted on Industry

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess portfo-

lio return, and cct is one-quarter lagged cyclical consumption. The table shows results for

industry categories including Nondurable Goods (NON), Durable Goods (DUR), Manufac-

turing (MAN), Energy (ENG), HiTech Business Equipment (HT), Telephone and Television

Transmission (TEL), Wholesale and Retail (SHOPS), Healthcare and Medical Equipment

(HLTH), Utilities (UTILS) and Other industry categories (OTHER). For each regression, the

table reports the slope estimate, Newey-West corrected t-statistics in parentheses (h lags),

and adjusted R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance

at the 10%, 5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values.

The sample covers the period from 1953Q4 to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

NON -0.31 -1.12 -1.94 -2.54 -3.47 -4.51

(-2.25)∗∗ (-2.42)∗∗∗ (-2.70)∗∗∗ (-2.72)∗∗∗ (-2.82)∗∗∗ (-2.81)∗∗

[1.63] [6.40] [10.71] [14.24] [19.95] [23.97]

DUR -0.66 -2.36 -3.71 -4.47 -5.69 -6.99

(-3.47)∗∗∗ (-4.31)∗∗∗ (-5.17)∗∗∗ (-6.18)∗∗∗ (-6.62)∗∗∗ (-6.36)∗∗∗

[4.07] [13.38] [19.44] [26.59] [35.94] [39.88]

MAN -0.39 -1.40 -2.15 -2.42 -3.12 -3.84

(-2.61)∗∗∗ (-3.07)∗∗∗ (-3.34)∗∗∗ (-3.55)∗∗∗ (-3.27)∗∗∗ (-2.91)∗∗∗

[2.11] [7.97] [12.55] [14.57] [20.19] [21.21]

ENG -0.18 -0.68 -0.93 -0.56 -0.69 -1.26

(-1.22) (-1.36) (-1.05) (-0.50) (-0.56) (-0.88)

[0.18] [1.49] [1.68] [0.26] [0.56] [2.22]

HT -0.62 -2.35 -4.04 -5.23 -6.85 -8.29

(-2.93)∗∗∗ (-3.42)∗∗∗ (-3.72)∗∗∗ (-4.68)∗∗∗ (-5.18)∗∗∗ (-5.03)∗∗∗

[3.42] [12.04] [18.81] [23.12] [32.31] [34.21]

TEL -0.46 -1.74 -3.24 -4.29 -5.19 -5.89

(-3.11)∗∗∗ (-3.19)∗∗∗ (-3.22)∗∗∗ (-3.23)∗∗∗ (-3.19)∗∗∗ (-2.87)∗∗∗

[3.99] [11.74] [18.48] [21.10] [23.34] [22.74]

SHOPS -0.42 -1.49 -2.32 -2.91 -3.97 -5.05

(-2.76)∗∗∗ (-3.19)∗∗∗ (-3.43)∗∗∗ (-3.46)∗∗∗ (-3.52)∗∗∗ (-3.37)∗∗∗

[2.28] [8.83] [12.16] [15.81] [23.39] [26.96]

HLTH -0.37 -1.38 -2.48 -3.45 -4.92 -6.48

(-2.48)∗∗∗ (-2.85)∗∗∗ (-2.76)∗∗∗ (-2.87)∗∗∗ (-3.28)∗∗∗ (-3.61)∗∗∗

[1.92] [8.01] [12.67] [16.02] [23.69] [30.01]

UTILS -0.31 -1.24 -2.17 -2.56 -3.11 -3.54

(-2.81)∗∗∗ (-3.55)∗∗∗ (-3.92)∗∗∗ (-3.41)∗∗∗ (-3.04)∗∗∗ (-2.46)∗∗

[2.20] [9.49] [16.84] [18.15] [20.41] [20.26]

OTHER -0.43 -1.64 -2.75 -3.53 -4.74 -5.95

(-2.66)∗∗∗ (-3.36)∗∗∗ (-4.31)∗∗∗ (-4.90)∗∗∗ (-4.42)∗∗∗ (-3.90)∗∗∗

[2.23] [8.87] [14.66] [18.89] [26.28] [29.99]
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Table VIII

Alternative Consumption Measures

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess return on the

CRSP value-weighted index, and cct is one-quarter lagged cyclical consumption. We compute

cc by applying the robust linear projection method of Hamilton (2018) to the logarithm of

real per capita consumption expenditure for nondurable goods (NON), services (SERV),

durable goods (DUR), the stock of durable goods (SDUR), nondurable and durable goods

(GOODS), or aggregate personal consumption expenditure (PCE) as indicated in the first

column. For each regression, the table reports the slope estimate, Newey-West corrected

t-statistics in parentheses (h lags), and adjusted R2 statistics in percent in square brackets.

∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively, according to

one-sided wild bootstrap p-values. The sample covers the period from 1953Q4 to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

NON -0.38 -1.44 -2.50 -3.22 -4.28 -5.14

(-3.04)∗∗∗ (-3.73)∗∗∗ (-3.95)∗∗∗ (-4.65)∗∗∗ (-5.93)∗∗∗ (-6.58)∗∗∗

[3.18] [11.83] [21.14] [28.51] [42.41] [45.42]

SERV -0.38 -1.39 -2.33 -2.80 -3.57 -4.33

(-2.84)∗∗∗ (-3.33)∗∗∗ (-3.72)∗∗∗ (-4.16)∗∗∗ (-4.05)∗∗∗ (-3.51)∗∗∗

[2.66] [9.42] [15.90] [18.58] [24.81] [26.51]

DUR -0.07 -0.29 -0.58 -0.82 -1.06 -1.28

(-1.79)∗∗ (-2.49)∗∗∗ (-3.24)∗∗∗ (-3.79)∗∗∗ (-4.24)∗∗∗ (-4.59)∗∗∗

[0.96] [5.85] [14.31] [23.25] [33.33] [37.79]

SDUR -0.10 -0.39 -0.79 -1.10 -1.39 -1.61

(-1.99)∗∗ (-2.38)∗∗∗ (-3.05)∗∗∗ (-3.47)∗∗∗ (-3.81)∗∗∗ (-3.98)∗∗∗

[1.16] [5.86] [14.44] [22.82] [30.62] [31.66]

GOODS -0.17 -0.69 -1.30 -1.76 -2.31 -2.79

(-2.42)∗∗∗ (-3.02)∗∗∗ (-3.49)∗∗∗ (-4.02)∗∗∗ (-4.70)∗∗∗ (-5.16)∗∗∗

[1.93] [8.57] [18.05] [27.12] [39.67] [43.78]

PCE -0.29 -1.08 -1.91 -2.48 -3.20 -3.91

(-2.85)∗∗∗ (-3.20)∗∗∗ (-3.80)∗∗∗ (-4.36)∗∗∗ (-4.58)∗∗∗ (-4.45)∗∗∗

[2.72] [9.93] [18.58] [25.41] [35.40] [39.37]
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Table IX

International Evidence

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log return on world or

regional MSCI total equity indices and cct is one-quarter lagged global cyclical consumption.

We compute global cyclical consumption as a cross-country average for 20 developed coun-

tries, including Australia, Austria, Belgium, Canada, Denmark, Finland, France, Germany,

Ireland, Italy, Japan, the Netherlands, New Zealand, Norway, Portugal, Spain, Sweden,

Switzerland, the United Kingdom and the United States. For each regression, the table

reports the slope estimate, Newey-West corrected t-statistics in parentheses (h lags), and

adjusted R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the

10%, 5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values. We

consider the longest possible sample period for each set of test asset returns. The sample

of returns on the aggregate G7 index covers the period from 1977Q1 to 2017Q4 and from

1970Q1 to 2017Q4 otherwise.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

World -0.48 -1.95 -3.53 -4.73 -5.78 -6.32

(-3.59)∗∗∗ (-4.04)∗∗∗ (-4.63)∗∗∗ (-5.33)∗∗∗ (-6.51)∗∗∗ (-7.35)∗∗∗

[5.32] [22.47] [37.46] [46.75] [53.97] [51.86]

World ex USA -0.48 -1.96 -3.55 -4.76 -5.79 -6.23

(-3.56)∗∗∗ (-3.90)∗∗∗ (-4.18)∗∗∗ (-4.52)∗∗∗ (-5.20)∗∗∗ (-5.33)∗∗∗

[4.87] [19.73] [33.05] [41.82] [48.06] [44.70]

EAFE -0.51 -2.01 -3.62 -4.90 -6.07 -6.74

(-3.65)∗∗∗ (-3.82)∗∗∗ (-4.00)∗∗∗ (-4.21)∗∗∗ (-4.74)∗∗∗ (-5.18)∗∗∗

[5.24] [19.70] [32.09] [40.50] [47.14] [46.73]

Europe -0.51 -2.08 -3.78 -5.07 -6.16 -6.67

(-3.75)∗∗∗ (-4.11)∗∗∗ (-4.35)∗∗∗ (-4.64)∗∗∗ (-5.22)∗∗∗ (-5.31)∗∗∗

[5.54] [21.68] [35.69] [44.11] [49.99] [47.14]

Far East -0.51 -2.11 -3.85 -5.06 -6.03 -6.33

(-2.97)∗∗∗ (-3.65)∗∗∗ (-3.63)∗∗∗ (-3.53)∗∗∗ (-3.54)∗∗∗ (-3.14)∗∗∗

[3.38] [13.88] [22.58] [27.17] [30.66] [26.76]

Pacific -0.49 -2.03 -3.65 -4.77 -5.66 -5.94

(-3.07)∗∗∗ (-3.68)∗∗∗ (-3.60)∗∗∗ (-3.41)∗∗∗ (-3.36)∗∗∗ (-2.98)∗∗∗

[3.63] [14.78] [23.85] [28.54] [31.21] [27.06]

G7 -0.44 -1.86 -3.51 -4.83 -5.91 -6.50

(-3.13)∗∗∗ (-3.66)∗∗∗ (-4.18)∗∗∗ (-4.85)∗∗∗ (-6.11)∗∗∗ (-7.40)∗∗∗

[5.14] [22.80] [40.93] [50.31] [56.95] [55.14]
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Table X

Out-of-sample Results with Alternative Predictor Variables

The table presents the out-of-sample R2 statistics in percent from h-quarter ahead fore-

casts of log excess returns on the CRSP value-weighted index where the time-varying ex-

pected returns model with one of the predictive variables listed in the second column as a

regressor is compared against a constant expected returns model. Section IV contains de-

finitions of the forecasting variables. The parameters used to calculate variables 17-20 are

estimated recursively from the current latest-available data. ∗, ∗∗, and ∗∗∗ indicate signifi-

cance at the 10%, 5%, and 1% levels, respectively, according to the Clark and West (2007)

test statistics. The first observation in the out-of-sample period is 1980Q1; the predictive

model is estimated recursively until 2017Q4.

# var h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

1 dp -5.29 -23.40 -49.33 -40.09 -30.04 -40.84

2 dy -6.45 -21.81 -41.22 -33.53 -25.92 -39.13

3 e/p -2.63 -10.62 -22.59 -21.79 -27.60 -37.16

4 d/e -3.30 -5.77 -8.57 -15.48 -10.88 -8.36

5 svar -17.32 -17.82 -18.72 -25.54 -18.04 -24.82

6 b/m -1.72 -6.12 -15.93 -20.37 -24.04 -28.74

7 ntis -2.51 -13.75 -9.92 -9.37 -15.42 -31.11

8 tbl -4.03 -11.83 -5.78 -25.16 -64.17 -127.11

9 lty -2.45 -9.93 -13.35 -38.98 -75.43 -133.55

10 ltr -1.55 -2.12 -1.58 -3.86 -7.58 -9.14

11 tms -2.78 -0.93 10.31∗∗∗ 12.77∗∗∗ 13.88∗∗∗ 5.32∗∗∗

12 dfy -2.70 -4.90 -3.29 -15.30 -21.02 -16.52

13 dfr -0.49 -2.48 -3.94 -6.80 -9.24 -12.59

14 infl -1.86 -0.84 1.20∗∗ -6.36 -10.65 -22.00

15 i/k 0.23 2.21∗∗ 8.79∗∗∗ 16.76∗∗∗ 27.39∗∗∗ 24.88∗∗∗

16 sw -3.17 -9.69 -17.69 -30.03 -39.36 -45.37

17 cay -2.18 -13.33 -20.03 -15.01 -10.90 -24.23

18 σc -0.44 0.06 -3.69 -13.05 -10.67 -10.49

19 gap -2.02 -5.51 -4.45 -1.47 7.50∗∗∗ 9.69∗∗∗

20 cc 0.64∗ 4.14∗∗∗ 10.55∗∗∗ 17.63∗∗∗ 23.86∗∗∗ 23.59∗∗∗
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Table XI

Summary Statistics of Simulated and Historical Data

The table presents summary statistics for log consumption growth rates (∆c) and the log

aggregate stock market returns (r) expressed in annualized percentages. It shows the time-

series averages (E), standard deviations (σ), and Sharpe ratios computed as the mean excess

return (r − rf) divided by the standard deviation. In the model, r − rf is the log return on

the consumption or dividend claim minus the log risk-free rate. In the data, r− rf is the log

return on the value-weighted CRSP index minus the log Treasury bill return. Data statistics

reported in columns "Consumption claim" and "Dividend claim" present the moments in

the simulated data. We generate 1,000,000 quarterly observations based on the calibrated

parameter values of Campbell and Cochrane (1999). Column "Actual data" summarizes

the moments in our empirical sample covering the period from 1947Q1 to 2017Q4.

Statistic Consumption claim Dividend claim Actual data

E (∆c) 1.89 1.89 1.89

σ (∆c) 1.50 1.50 1.00

E (r − rf ) /σ (r − rf ) 0.43 0.38 0.40

E (r − rf ) 5.22 5.01 6.52

σ
(
r − rf

)
12.02 13.31 16.38
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Table XII

Model-implied Predictability

Panel A of the table presents results of predictive regressions of the form rt,t+h = α +

βcct+εt,t+h, where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess

market return, and cct is one-quarter lagged cyclical consumption computed as specified in

Equations (1) and (11) in the actual and simulated data for k = 24, respectively. For each

regression, the table reports the slope estimate and the adjusted R2 statistic in percent in

square brackets. The rows "Consumption claim" and "Dividend claim" show results from

1,000,000 quarterly simulated observations. The row "Actual data" displays results in the

historical data. Panel B of the table presents results of out-of-sample forecasts of h-quarter

ahead log excess stock returns where the time-varying expected returns model with cyclical

consumption as regressor is compared against a constant expected returns model. The

rows "Consumption claim" and "Dividend claim" show average out-of-sample R2 statistics

in percent in simulated data from 2,500 artificial samples of size 284, which matches the

number of observations in our post-war sample. For each artificial sample, we compute 112-

(h-1) out-of-sample forecasts for consistency with the number of forecasts in the post-1990

evaluation window. The row "Actual data" shows corresponding results in the historical

data.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: In-sample Predictability

Consumption claim -0.22 -0.82 -1.51 -2.10 -2.60 -3.04

[1.75] [6.53] [12.02] [16.59] [20.48] [23.80]

Dividend claim -0.22 -0.82 -1.52 -2.11 -2.61 -3.05

[1.46] [5.36] [9.68] [13.13] [15.90] [18.13]

Actual data -0.42 -1.55 -2.57 -3.13 -4.08 -5.01

[3.16] [11.43] [18.68] [22.46] [31.53] [34.46]

Panel B: Out-of-sample Predictability

Consumption claim 1.00 3.47 5.99 7.56 8.54 9.51

Dividend claim 0.68 2.15 3.18 3.26 2.69 1.71

Actual data 1.96 8.22 14.37 21.05 31.25 36.21
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Figure 1. Cyclical consumption. The figure plots the series of cyclical consumption

along with NBER recessions represented by shaded bars over the period from 1953Q4 to

2017Q4.
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Internet Appendix A: The out-of-sample procedure and tests

The out-of-sample recursive scheme we employ is similar to e.g. Cooper and Priestley (2009).

Below we briefly summarize how we proceed for the case of an out-of-sample window covering

the period from 1980Q1 to 2017Q4. We start by using consumption data since 1947Q1

through 1979Q4 to estimate

ct = b0,τc + b1,τcct−k + b2,τcct−k−1 + b3,τcct−k−2 + b4,τcct−k−3 + ωt, (A1)

where τc = 1979Q4, k = 24, and the residual ωt is the measure of cc from 1953Q4 to 1979Q4.

The time subscript τc for the parameters in Equation (A1) indicates that they are updated

recursively in each quarter. Next, we expand the sample period of consumption by one

quarter and estimate over the period from 1947Q1 to 1980Q1:

ct = b0,τc+1 + b1,τc+1ct−k + b2,τc+1ct−k−1 + b3,τc+1ct−k−2 + b4,τc+1ct−k−3 + ωt, (A2)

where τc+1 = 1980Q1. We add on the last estimate of cc for 1980Q1 from Equation (A2) to

the time series of cc over the period from 1953Q4 to 1979Q4 generated above. We repeat this

procedure, quarter-by-quarter, recursively estimating the parameters and saving the values

of cc until the end of the sample.

In a next step, we employ these values of cc in recursive predictive regressions for stock

returns to form out-of-sample forecasts. We use an expanding estimation window where the

coeffi cients in the return forecasting regression are estimated recursively using only informa-

tion available through time t for forecasting over the next h quarters.

The assessment of out-of-sample predictability involves three metrics. The first statistic

we report is the powerful ENC-NEW statistic of Clark and McCracken (2001) which extends

the encompassing test of Harvey, Leybourne, and Newbold (1998) by deriving a nonstandard

2



asymptotic distribution of this test statistic under the null of nested forecasts. The ENC-

NEW statistic tests the null hypothesis that the restricted forecasting model encompasses

the unrestricted forecasting model; the alternative is that the time-varying expected return

model contains information that could be used to significantly improve the forecast of the

constant expected return model. The second is the MSE-F statistic of McCracken (2007)

which tests the null hypothesis that the restricted forecasting model has a mean squared

error (MSE) that is less than or equal to that of the unrestricted forecasting model; the

alternative is that the unrestricted model has a smaller MSE. The third test is the out-of-

sample R2OOS statistic which measures the proportional reduction (or increase) in the MSE

of the unrestricted model relative to the MSE of the prevailing mean benchmark forecast.

The R2OOS statistic is measured in units that are comparable to the in-sample R
2. The R2OOS

takes positive (negative) values when the predictive regression model predicts better (worse)

than the historical mean.1 The critical values for the ENC-NEW and MSE-F statistics are

obtained from a bootstrap procedure. To assess the statistical significance of the R2OOS’s,

we employ the Clark and West (2007) test statistic, which tests the null hypothesis that

the historical average MSE is less than or equal to the predictive regression MSE against

the alternative hypothesis that the historical average MSE is greater than the predictive

regression MSE. This statistic is a correction of the Diebold and Mariano (1995) statistic

and is demonstrated to be more suitable for nested models.

1The results for predictive regression forecasts that implement the Campbell and Thompson (2008) eco-

nomically motivated sign restrictions in order to reduce parameter estimation uncertainty and help stabilize

predictive regression forecasts are qualitatively similar. These restrictions entail setting the slope coeffi cient

of cc in the bivariate predictive regression forecast to zero if the estimated slope coeffi cient is positive, and

setting the forecast of the equity premium to zero if the bivariate predictive regression forecast of the equity

premium is negative.
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Internet Appendix B: The model of Campbell and Cochrane (1999)

Campbell and Cochrane (1999) augment the standard power utility function with a time-

varying subsistence levelXt that adapts nonlinearly to current and past average consumption

in the economy:

Et

∞∑
t=0

δt
(Ct −Xt)

1−γ − 1

1− γ
, (B1)

where Ct is aggregate consumption at time t, δ is the subjective time discount factor, and

γ is the utility curvature parameter. The reference point Xt represents the agent’s external

habit level, which is defined indirectly through the surplus consumption ratio St ≡ Ct−Xt
Ct

.

The local coeffi cient of relative risk aversion is γ/St.

Campbell and Cochrane (1999) assume a mean-reverting heteroskedastic first-order au-

toregressive process for the log surplus consumption ratio, st ≡ log (St):

st+1 = (1− φ) s+ φst + λ (st) υt+1, (B2)

where s is the steady state value of st, φ is the habit persistence parameter, and λ (st) is a

nonlinear monotonically decreasing sensitivity function that determines how innovations in

consumption growth υt+1 influence st+1.

The log consumption growth ∆ct+1 = log (Ct+1/Ct) is given by:

∆ct+1 = g + υt+1, υt+1 ∼ niid
(
0, σ2c

)
, (B3)

where g and σ2c are constant parameters governing the mean and volatility. The sensitivity

function is specified as

λ (st) =

{
1
S

√
1− 2 (st − s)− 1 if st ≤ smax

0 if st ≥ smax,
(B4)
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where

S = σc

√
γ

1− φ
(B5)

is the steady state level of St and

smax ≡ s+
1

2

(
1− S

2
)

(B6)

is the value of st at which the expression in Equation (B4) becomes zero. Specifying λ (st)

in this way implies that the real risk-free rate is constant over time. In particular, from the

Euler equation

1 = Et [Ri,t+1Mt+1] , (B7)

where Ri,t+1 is the real gross return on any traded asset i andMt+1 is the stochastic discount

factor:

Mt+1 = δ

(
St+1
St

Ct+1
Ct

)−γ
= δe−γ{g+(φ−1)(st−s)+[1+λ(st)]υt+1}, (B8)

it follows that the log real risk-free rate is:

rf,t+1 = − log (δ) + γg − γ

2
(1− φ) . (B9)

The aggregate market is represented as a claim to the future consumption stream and the

price-consumption ratio for a consumption claim satisfies:

Pt
Ct

(st) = Et

[
Mt+1

Ct+1
Ct

[
Pt+1
Ct+1

(st+1) + 1

]]
. (B10)

The surplus consumption ratio is the only state variable in the model and the price-consumption

ratio can therefore be written as a function of st only. Furthermore, since consumption is the

dividend paid by the market, the price-consumption ratio is analogous to the price-dividend

5



ratio, and the return on the aggregate market is given as:

Rt+1 =
(Pt+1/Ct+1) + 1

Pt/Ct

Ct+1
Ct

. (B11)

Following Campbell and Cochrane (1999), we solve the model by substituting for Mt+1

from (B8) and consumption growth from (B3) and then use numerical integration over the

normally distributed shock υt+1.2 We also consider returns to the dividend claim (see the

appendix to Campbell and Cochrane, 1999). We set the correlation between consumption

and dividends to 0.2 when using the dividend claim such that dividends and consumption

are imperfectly correlated. Furthermore, we set the dividend volatility to 6.1% to match the

standard deviation of dividend growth in the post-war sample.3

2We solve the model using a Matlab program similar to the Gauss program available on John Y.

Cochrane’s website. See the appendix of Costa and Vasconcelos (2009) for a conversion of Campbell and

Cochrane’s (1999) Gauss code to Matlab. We calculate the integral using the Gauss-Legendre 40-point

quadrature and bound the integral by −8 and +8 standard deviations. To solve the model, we use the

GaussLegendre.m function available on Pavel Holoborodko’s website.
3We follow Chen (2009) and use non-reinvested dividends when computing the dividend volatility.
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Internet Appendix C: Additional results

Table AI

Descriptive Statistics

The table provides summary statistics for alternative predictive variables listed in the sec-

ond column. Panel A reports for each variable the time-series average (mean), median, stan-

dard deviation (std), skewness (skew), kurtosis (kurt), minimum (min), maximum (max),

and first-order autocorrelation (ρ(1)). Panel B displays the Pearson correlation coeffi cients.

Section IV contains definitions of the forecasting variables. The sample covers the period

from 1953Q4 to 2017Q4.

Panel A: Summary Statistics

# var mean median std skew kurt min max ρ(1)

1 dp -3.56 -3.50 0.39 -0.31 2.37 -4.49 -2.78 0.98

2 dy -3.54 -3.49 0.40 -0.32 2.45 -4.50 -2.77 0.98

3 e/p -2.82 -2.86 0.42 -0.85 6.56 -4.81 -1.90 0.94

4 d/e -0.74 -0.73 0.31 2.83 19.66 -1.24 1.38 0.89

5 svar 0.01 0.00 0.01 7.42 71.89 0.00 0.11 0.42

6 b/m 0.51 0.49 0.25 0.73 2.92 0.13 1.20 0.98

7 ntis 0.01 0.02 0.02 -0.88 3.63 -0.05 0.05 0.93

8 tbl 0.04 0.04 0.03 0.83 4.09 0.00 0.15 0.95

9 lty 0.06 0.06 0.03 0.82 3.27 0.02 0.15 0.98

10 ltr 0.02 0.01 0.05 0.90 5.63 -0.15 0.24 -0.04

11 tms 0.02 0.02 0.01 -0.25 3.04 -0.04 0.05 0.84

12 dfy 0.01 0.01 0.00 1.84 8.05 0.00 0.03 0.87

13 dfr 0.00 0.00 0.02 0.31 14.89 -0.12 0.16 -0.05

14 infl 0.01 0.01 0.01 0.19 6.51 -0.04 0.04 0.45

15 i/k 0.04 0.04 0.00 0.31 2.48 0.03 0.04 0.97

16 sw 0.89 0.88 0.03 0.26 1.92 0.84 0.94 0.97

17 cay -0.00 -0.00 0.02 -0.26 2.41 -0.05 0.04 0.91

18 σc -4.52 -4.48 0.54 -0.43 3.14 -6.37 -3.41 0.81

19 gap -0.00 -0.01 0.07 0.04 1.95 -0.14 0.12 0.96

20 cc 0.00 0.00 0.04 -0.22 2.40 -0.09 0.08 0.97
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Table AII

In-sample Regressions with Alternative Predictive Variables

The table presents results of predictive regressions of the form rt,t+h = α + βxt + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess return on

the CRSP value-weighted index, and xt is one-quarter lagged predictive variable. Section

IV contains definitions of the forecasting variables. For each regression, the table reports

the slope estimate, Newey-West corrected t-statistics in parentheses (h lags), and adjusted

R2 statistics in percent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%,

5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values. The sample

covers the period from 1953Q4 to 2017Q4.
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# var h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

1 dp 0.02 0.09 0.14 0.16 0.18 0.23

(1.59)∗∗ (1.87)∗∗ (1.69)∗ (1.55) (1.66)∗ (2.48)∗∗

[0.73] [3.91] [5.83] [5.89] [6.01] [8.40]

2 dy 0.03 0.09 0.13 0.15 0.16 0.21

(1.78)∗∗ (1.83)∗∗ (1.54)∗ (1.47) (1.56) (2.31)∗∗

[1.08] [3.74] [4.85] [5.16] [5.16] [7.21]

3 e/p 0.01 0.04 0.05 0.06 0.04 0.04

(0.52) (0.81) (0.64) (0.64) (0.41) (0.32)

[-0.16] [0.62] [0.39] [0.56] [0.06] [-0.10]

4 d/e 0.02 0.07 0.14 0.15 0.20 0.29

(0.93) (1.70)∗ (1.72)∗ (1.40) (1.71)∗ (2.39)∗∗

[0.10] [1.21] [3.43] [2.95] [4.66] [8.33]

5 svar 0.18 1.98 3.66 2.68 3.68 6.00

(0.23) (2.19)∗∗ (2.87)∗∗∗ (1.48) (1.72)∗ (2.22)∗∗

[-0.35] [0.96] [2.32] [0.77] [1.49] [3.57]

6 b/m 0.02 0.08 0.08 0.05 0.04 0.10

(0.74) (1.01) (0.66) (0.32) (0.24) (0.56)

[-0.11] [0.87] [0.41] [-0.16] [-0.26] [0.29]

7 ntis -0.12 -0.32 -0.41 -0.46 -1.29 -2.50

(-0.34) (-0.25) (-0.25) (-0.27) (-0.57) (-0.87)

[-0.31] [-0.27] [-0.29] [-0.30] [0.33] [1.79]

8 tbl -0.33 -0.95 -1.29 -1.67 -1.96 -1.96

(-1.85)∗∗ (-1.71)∗∗ (-2.05)∗∗ (-1.82)∗∗ (-1.46)∗ (-1.07)

[1.11] [2.61] [2.81] [3.76] [4.32] [3.19]
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# var h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

9 lty -0.24 -0.52 -0.48 -0.36 -0.26 0.03

(-1.28) (-0.84) (-0.60) (-0.33) (-0.18) (0.01)

[0.25] [0.29] [-0.07] [-0.26] [-0.36] [-0.43]

10 ltr 0.15 0.39 0.40 0.51 0.43 0.77

(1.39)∗ (2.34)∗∗ (2.25)∗∗ (2.69)∗∗ (2.33)∗∗ (3.01)∗∗

[0.56] [1.14] [0.49] [0.80] [0.30] [1.37]

11 tms 0.67 2.62 4.30 6.28 7.72 8.54

(1.63)∗∗ (2.26)∗∗ (3.41)∗∗∗ (4.54)∗∗∗ (3.81)∗∗∗ (2.73)∗∗

[0.92] [4.42] [7.24] [12.70] [16.38] [15.47]

12 dfy 0.89 4.24 5.29 5.55 9.38 16.85

(0.55) (1.16) (1.12) (1.01) (1.34) (2.01)∗

[-0.17] [0.83] [0.71] [0.58] [1.98] [5.68]

13 dfr 0.51 0.39 0.02 0.31 0.50 0.39

(1.84)∗∗ (0.77) (0.05) (0.57) (0.98) (0.63)

[1.67] [-0.11] [-0.40] [-0.33] [-0.23] [-0.34]

14 infl -0.91 -3.50 -3.88 -3.99 -5.15 -5.80

(-1.21) (-2.05)∗∗ (-2.68)∗∗∗ (-3.25)∗∗∗ (-2.63)∗∗ (-1.96)∗∗

[0.61] [3.17] [2.15] [1.73] [2.55] [2.51]

15 i/k -4.18 -13.73 -21.89 -32.21 -43.08 -50.46

(-2.81)∗∗∗ (-2.76)∗∗∗ (-2.78)∗∗∗ (-4.38)∗∗∗ (-6.70)∗∗∗ (-6.51)∗∗∗

[2.87] [8.09] [12.09] [21.33] [32.71] [35.07]

16 sw -0.25 -0.77 -1.28 -1.63 -2.02 -2.26

(-1.17) (-1.11) (-1.06) (-0.92) (-0.87) (-0.83)

[0.21] [1.01] [1.82] [2.37] [3.15] [3.04]

17 cay 0.63 2.59 5.06 6.76 7.78 8.35

(2.48)∗∗∗ (2.93)∗∗∗ (3.89)∗∗∗ (4.78)∗∗∗ (4.92)∗∗∗ (4.55)∗∗∗

[1.75] [8.18] [18.16] [25.00] [27.55] [24.79]

18 σc -0.01 -0.04 -0.03 0.04 0.03 0.08

(-0.73) (-1.45)∗ (-0.73) (0.65) (0.46) (1.24)

[-0.18] [1.01] [0.15] [0.42] [-0.03] [1.54]

19 gap -0.28 -0.95 -1.46 -2.02 -2.56 -2.99

(-3.53)∗∗∗ (-3.34)∗∗∗ (-3.46)∗∗∗ (-5.10)∗∗∗ (-6.17)∗∗∗ (-6.12)∗∗∗

[4.47] [13.01] [18.31] [28.29] [39.10] [42.17]

20 cc -0.42 -1.55 -2.57 -3.13 -4.08 -5.01

(-3.06)∗∗∗ (-3.59)∗∗∗ (-3.96)∗∗∗ (-4.47)∗∗∗ (-4.57)∗∗∗ (-4.17)∗∗∗

[3.16] [11.43] [18.68] [22.46] [31.53] [34.46]
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Table AIII

Implied Coeffi cients from a Restricted VAR

The table compares direct slope estimates obtained from long-run return regressions

summarized in Table I against long-horizon coeffi cients implied by a restricted first-order

VAR:

rt+1 = α + βcct + εrt+1

cct+1 = δ + φcct + εcct+1,

where rt+1 is the quarterly log stock market return and cct is one-quarter lagged cyclical

consumption. We compute the implied long-horizon coeffi cients following Cochrane (2008)

as β(h) = β
(
1− φh

)
/ (1− φ), where h is the forecasting horizon. The table shows results

for log excess market returns (Panel A), log real market returns (Panel B), and log market

returns (Panel C) for the CRSP value-weighted index. ∗, ∗∗, and ∗∗∗ indicate significance at

the 10%, 5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values.

The sample covers the period from 1953Q4 to 2017Q4.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Excess Market Returns

Direct -0.42∗∗∗ -1.55∗∗∗ -2.57∗∗∗ -3.13∗∗∗ -4.08∗∗∗ -5.01∗∗∗

Implied -0.42∗∗∗ -1.59∗∗∗ -2.98∗∗∗ -4.20∗∗∗ -5.26∗∗∗ -6.19∗∗∗

Panel B: Real Market Returns

Direct -0.40∗∗∗ -1.51∗∗∗ -2.52∗∗∗ -3.10∗∗∗ -4.12∗∗∗ -5.22∗∗∗

Implied -0.40∗∗∗ -1.54∗∗∗ -2.88∗∗∗ -4.05∗∗∗ -5.08∗∗∗ -5.97∗∗∗

Panel C: Market Returns

Direct -0.34∗∗∗ -1.23∗∗∗ -1.96∗∗∗ -2.28∗∗∗ -3.07∗∗∗ -3.94∗∗∗

Implied -0.34∗∗ -1.29∗∗ -2.41∗∗ -3.40∗∗ -4.26∗∗ -5.01∗∗
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Table AIV

In-sample Regressions with Alternative Values of Parameter k

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess return on

the CRSP value-weighted index, and cct is one-quarter lagged cyclical consumption. Cycli-

cal consumption is computed as specified in Equation (1) for different values of parameter

k as indicated in the first column. For each regression, the table reports the slope estimate,

Newey-West corrected t-statistics in parentheses (h lags), and adjusted R2 statistics in per-

cent in square brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels,

respectively, according to one-sided wild bootstrap p-values. The sample covers the period

from 1958Q4 to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

k = 4 -0.59 -2.37 -5.38 -5.96 -7.55 -10.57

(-0.92) (-1.60)∗ (-2.40)∗∗ (-3.01)∗∗∗ (-3.24)∗∗∗ (-4.10)∗∗∗

[0.22] [2.22] [7.53] [7.17] [10.00] [15.72]

k = 8 -0.52 -2.10 -3.43 -4.26 -6.18 -7.97

(-1.60)∗ (-2.31)∗∗ (-2.58)∗∗∗ (-3.02)∗∗∗ (-3.96)∗∗∗ (-4.68)∗∗∗

[1.06] [5.70] [9.06] [11.02] [20.05] [26.09]

k = 12 -0.33 -1.38 -2.58 -3.87 -5.46 -6.30

(-1.37)∗ (-2.14)∗∗ (-2.57)∗∗∗ (-3.54)∗∗∗ (-4.80)∗∗∗ (-5.39)∗∗∗

[0.60] [4.04] [8.58] [15.51] [26.34] [27.38]

k = 16 -0.28 -1.23 -2.65 -3.86 -4.85 -5.28

(-1.53)∗ (-2.40)∗∗ (-3.37)∗∗∗ (-4.52)∗∗∗ (-5.40)∗∗∗ (-4.77)∗∗∗

[0.61] [4.47] [12.85] [21.55] [28.92] [27.09]

k = 20 -0.36 -1.45 -2.79 -3.60 -4.29 -5.22

(-2.13)∗∗ (-3.43)∗∗∗ (-4.01)∗∗∗ (-5.04)∗∗∗ (-5.24)∗∗∗ (-4.66)∗∗∗

[1.63] [8.24] [18.15] [23.72] [28.68] [31.98]

k = 24 -0.36 -1.39 -2.39 -2.99 -4.01 -4.85

(-2.55)∗∗∗ (-3.23)∗∗∗ (-3.67)∗∗∗ (-4.12)∗∗∗ (-4.28)∗∗∗ (-3.84)∗∗∗

[2.19] [9.13] [16.11] [19.84] [29.33] [31.05]

k = 28 -0.30 -1.12 -1.95 -2.76 -3.72 -4.38

(-2.38)∗∗∗ (-2.94)∗∗∗ (-3.18)∗∗∗ (-3.61)∗∗∗ (-3.91)∗∗∗ (-3.54)∗∗∗

[1.65] [6.77] [12.12] [18.95] [27.32] [26.94]

k = 32 -0.26 -0.95 -1.92 -2.64 -3.40 -3.87

(-2.36)∗∗ (-2.58)∗∗∗ (-2.94)∗∗∗ (-3.34)∗∗∗ (-3.62)∗∗∗ (-3.02)∗∗∗

[1.27] [5.49] [13.20] [18.83] [24.55] [22.93]

k = 36 -0.28 -1.09 -1.97 -2.54 -3.20 -3.42

(-2.44)∗∗ (-2.80)∗∗∗ (-2.98)∗∗∗ (-3.38)∗∗∗ (-3.50)∗∗∗ (-2.65)∗∗∗

[1.82] [7.85] [14.70] [18.04] [22.62] [19.00]

k = 40 -0.29 -1.04 -1.79 -2.31 -2.74 -2.82

(-2.71)∗∗∗ (-2.72)∗∗∗ (-2.85)∗∗∗ (-3.26)∗∗∗ (-2.97)∗∗∗ (-2.36)∗∗∗

[1.93] [7.21] [12.09] [15.00] [16.91] [13.23]

k = 44 -0.24 -0.90 -1.62 -1.94 -2.26 -2.33

(-2.15)∗∗ (-2.34)∗∗∗ (-2.66)∗∗∗ (-2.61)∗∗∗ (-2.53)∗∗∗ (-2.08)∗∗∗

[1.28] [5.44] [10.17] [10.90] [11.96] [9.48]
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Table AV

qLL-statistics

The table shows qLL-statistics of Elliott and Müller (2006) for the benchmark predictive

regressions summarized in Table I. The qLL-statistic tests the hypothesis H0: βt = β for all

t in rt,t+h = α+ βcct + εt,t+h, where h denotes the horizon in quarters, rt,t+h is the h-quarter

ahead log stock market return, and cct is one-quarter lagged cyclical consumption. The 10%,

5%, and 1% critical values are -12.80, -14.32, and -17.57. The table shows results for log

excess market returns (Panel A), log real market returns (Panel B), and log market returns

(Panel C) for the S&P 500 index and the CRSP value-weighted index.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Excess Market Returns

SP500 -2.38 -3.91 -3.54 -3.60 -3.95 -4.04

CRSP -2.09 -3.54 -3.35 -3.26 -3.66 -3.92

Panel B: Real Market Returns

SP500 -2.89 -4.45 -4.12 -3.87 -3.96 -3.85

CRSP -2.59 -4.17 -4.22 -4.13 -4.21 -4.06

Panel C: Market Returns

SP500 -2.67 -4.34 -4.22 -4.24 -4.36 -4.07

CRSP -2.41 -4.05 -4.21 -4.23 -4.29 -3.94
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Table AVI

Two-state Predictive Regressions with Alternative Detrending Methods

The table presents results of two-state predictive regressions of the form rt,t+h = α +

βbadIbadcct+βgood (1− Ibad) cct+εt,t+h, where h denotes the horizon in quarters, rt,t+h is the h-

quarter ahead log excess return on the CRSP value-weighted index, cct is one-quarter lagged

cyclical consumption, and Ibad is the state indicator that equals one during bad economic

states and zero otherwise. Bad states are defined as periods with cyclical consumption

realizations below its mean by more than one standard deviation. We compute cc by fitting

a linear (Panel A), linear with a break (Panel B), quadratic (Panel C) or cubic (Panel D) time

trend specification; or compute cyclical consumption as a five-year backward-looking moving

average (Panel E). For each regression, the table reports the slope estimate, Newey-West

corrected t-statistics in parentheses (h lags), and adjusted R2 statistics in percent in square

brackets. ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%, and 1% levels, respectively,

according to one-sided wild bootstrap p-values. The sample covers the period from 1953Q4

to 2017Q4.
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Linear

βbad -0.14 -0.46 -0.81 -1.66 -2.40 -3.03

(-1.25) (-1.25) (-1.47)∗ (-2.51)∗∗∗ (-3.32)∗∗∗ (-2.75)∗∗∗

βgood -0.31 -1.24 -2.03 -2.04 -2.40 -2.63

(-1.85)∗∗ (-2.31)∗∗∗ (-2.59)∗∗∗ (-2.47)∗∗ (-2.41)∗∗ (-1.92)∗

[1.26] [6.16] [9.96] [11.41] [14.33] [13.11]

Panel B: Break

βbad -0.47 -1.32 -1.36 -3.07 -5.55 -7.06

(-1.49)∗ (-1.48)∗ (-1.53)∗ (-2.44)∗∗ (-2.63)∗∗∗ (-2.26)∗∗

βgood -0.71 -2.97 -5.62 -6.31 -6.28 -6.11

(-3.01)∗∗∗ (-3.00)∗∗∗ (-3.78)∗∗∗ (-4.90)∗∗∗ (-5.24)∗∗∗ (-3.45)∗∗∗

[3.25] [13.94] [26.34] [30.32] [33.67] [29.72]

Panel C: Quadratic

βbad -0.38 -1.24 -0.74 -1.67 -2.27 -2.00

(-1.46) (-1.68)∗ (-0.90) (-1.57)∗ (-1.52)∗ (-1.11)

βgood -0.49 -2.04 -4.58 -4.65 -4.87 -4.91

(-1.69)∗ (-1.93)∗∗ (-2.79)∗∗∗ (-2.46)∗∗∗ (-2.62)∗∗∗ (-2.91)∗∗∗

[1.43] [6.98] [15.03] [14.15] [14.21] [10.44]

Panel D: Cubic

βbad -0.52 -2.10 -2.78 -5.03 -6.44 -5.50

(-1.20) (-1.90)∗∗ (-2.09)∗∗ (-2.49)∗∗ (-2.87)∗∗∗ (-2.76)∗∗∗

βgood -1.04 -4.03 -7.47 -8.10 -9.08 -10.61

(-3.20)∗∗∗ (-3.28)∗∗∗ (-4.34)∗∗∗ (-5.99)∗∗∗ (-5.28)∗∗∗ (-4.70)∗∗∗

[3.76] [15.84] [29.30] [33.35] [38.06] [34.83]

Panel E: Stochastic

βbad -6.48 -9.19 -15.00 -20.86 -20.35 -15.08

(-1.89)∗ (-1.38) (-1.94)∗ (-3.25)∗∗∗ (-3.79)∗∗∗ (-2.48)∗∗

βgood -1.29 -4.77 -8.82 -11.98 -15.40 -18.80

(-2.33)∗∗ (-3.20)∗∗∗ (-3.59)∗∗∗ (-5.10)∗∗∗ (-6.38)∗∗∗ (-6.12)∗∗∗

[2.53] [7.01] [14.85] [22.32] [31.73] [36.07]
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Table AVII

Out-of-sample Tests with Fixed Parameter Estimates

The table presents results of out-of-sample forecasts of h-quarter-ahead log excess returns

on the CRSP value-weighted index where a time-varying expected returns model with cyclical

consumption as regressor is compared against a constant expected returns model. The

parameters used to calculate cyclical consumption are estimated over the full sample from

the current latest-available consumption data. R2OOS is the out-of-sample R
2 in percent.

ENC-NEW is the encompassing test statistic of Clark and McCracken (2001) and MSE-F

is the F -statistic of McCracken (2007). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%, 5%,

and 1% levels, respectively, according to one-sided wild bootstrap p-values in case of the

ENC-NEW and MSE-F statistics, and according to the Clark and West (2007) test in case

of the R2OOS statistics. The first observation in the out-of-sample period is 1980Q1, 1990Q1,

or 2000Q1, and the predictive model is estimated recursively until 2017Q4.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Forecasting from 1980

ENC-NEW 4.35∗∗∗ 16.37∗∗∗ 30.65∗∗∗ 32.39∗∗∗ 41.51∗∗∗ 36.29∗∗∗

MSE-F 2.06∗∗∗ 7.87∗∗ 16.15∗∗∗ 14.65∗∗∗ 15.19∗∗∗ -0.93

R2OOS 1.33∗ 5.02∗∗∗ 10.02∗∗∗ 9.41∗∗∗ 9.98∗∗∗ -0.70∗∗∗

Panel B: Forecasting from 1990

ENC-NEW 4.21∗∗∗ 14.87∗∗∗ 20.98∗∗∗ 22.88∗∗∗ 32.58∗∗∗ 31.52∗∗∗

MSE-F 3.71∗∗∗ 12.98∗∗∗ 17.33∗∗∗ 20.48∗∗∗ 30.49∗∗∗ 26.46∗∗∗

R2OOS 3.21∗∗ 10.64∗∗∗ 14.17∗∗∗ 16.86∗∗∗ 23.92∗∗∗ 22.15∗∗∗

Panel C: Forecasting from 2000

ENC-NEW 3.86∗∗∗ 12.22∗∗∗ 16.60∗∗∗ 21.32∗∗∗ 36.56∗∗∗ 46.12∗∗∗

MSE-F 3.92∗∗∗ 12.70∗∗∗ 15.71∗∗∗ 21.75∗∗∗ 37.20∗∗∗ 50.11∗∗∗

R2OOS 5.16∗∗ 15.55∗∗∗ 19.47∗∗∗ 26.29∗∗∗ 39.49∗∗∗ 48.60∗∗∗
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Table AVIII

Out-of-sample Tests with Vintage Data

The table presents results of out-of-sample forecasts of h-quarter-ahead log excess re-

turns on the CRSP value-weighted index where a time-varying expected returns model

with cyclical consumption as regressor is compared against a constant expected returns

model. The parameters used to calculate cyclical consumption are estimated recursively

from historical vintages of consumption data from the ALFRED database at St. Louis

Fed, and two-quarter lag is used in the out-of-sample forecasting regressions to take ac-

count for delays in macroeconomic releases. R2OOS is the out-of-sample R
2 in percent.

ENC-NEW is the encompassing test statistic of Clark and McCracken (2001) and MSE-

F is the F -statistic of McCracken (2007). ∗, ∗∗, and ∗∗∗ indicate significance at the 10%,

5%, and 1% levels, respectively, according to one-sided wild bootstrap p-values in case

of the ENC-NEW and MSE-F statistics, and according to the Clark and West (2007)

test in case of the R2OOS statistics. The first observation in the out-of-sample period is

1980Q1, 1990Q1 or 2000Q1, and the predictive model is estimated recursively until 2017Q4.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Forecasting from 1980

ENC-NEW 4.68∗∗∗ 20.27∗∗∗ 38.50∗∗∗ 54.90∗∗∗ 93.22∗∗∗ 95.43∗∗∗

MSE-F 2.36∗∗∗ 13.24∗∗∗ 30.65∗∗∗ 47.58∗∗∗ 76.56∗∗∗ 72.31∗∗∗

R2OOS 1.53∗∗ 8.16∗∗∗ 17.45∗∗∗ 25.23∗∗∗ 35.85∗∗∗ 35.22∗∗∗

Panel B: Forecasting from 1990

ENC-NEW 4.25∗∗∗ 17.16∗∗∗ 30.61∗∗∗ 46.50∗∗∗ 77.78∗∗∗ 89.86∗∗∗

MSE-F 2.47∗∗∗ 11.53∗∗∗ 23.35∗∗∗ 40.68∗∗∗ 67.67∗∗∗ 80.39∗∗∗

R2OOS 2.16∗ 9.56∗∗∗ 18.19∗∗∗ 28.71∗∗∗ 41.09∗∗∗ 46.36∗∗∗

Panel C: Forecasting from 2000

ENC-NEW 3.72∗∗∗ 11.65∗∗∗ 17.51∗∗∗ 26.44∗∗∗ 44.68∗∗∗ 61.13∗∗∗

MSE-F 2.45∗∗∗ 8.23∗∗∗ 11.29∗∗∗ 16.95∗∗∗ 26.48∗∗∗ 45.67∗∗∗

R2OOS 3.29∗ 10.66∗∗∗ 14.80∗∗∗ 21.74∗∗∗ 31.72∗∗∗ 46.28∗∗∗
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Table AIX

Dynamics of Simulated and Historical Data

The table presents descriptive statistics for cyclical consumption. It shows the time-series

averages (Mean), standard deviations (Std), and the first five autocorrelation coeffi cients.

Cyclical consumption is computed as specified in Equations (1) and (11) in the actual and

simulated data for k = 24, respectively. We generate 1,000,000 quarterly observations based

on the calibrated parameter values of Campbell and Cochrane (1999). The empirical sample

covers the period from 1953Q4 to 2017Q4.

Mean Std AC1 AC2 AC3 AC4 AC5

Simulated data 0.00 0.04 0.96 0.92 0.87 0.83 0.79

Actual data 0.00 0.04 0.97 0.93 0.88 0.83 0.77
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Table AX

Model-implied Predictability Across Various Cycle Lengths

The table presents results of predictive regressions of the form rt,t+h = α+ βcct + εt,t+h,

where h denotes the horizon in quarters, rt,t+h is the h-quarter ahead log excess market return,

and cct is one-quarter lagged cyclical consumption computed as specified in Equation (11)

for different values of parameter k as indicated in the first column. For each regression, the

table reports OLS estimates of the regressor and adjusted R2 statistics in percent in square

brackets based on 1,000,000 quarterly simulated observations.

h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel A: Consumption Claim

k = 4 -0.32 -1.19 -2.18 -3.03 -3.75 -4.35

[0.64] [2.34] [4.23] [5.81] [7.13] [8.21]

k = 8 -0.29 -1.09 -2.01 -2.80 -3.46 -4.02

[1.07] [3.94] [7.18] [9.89] [12.13] [13.97]

k = 12 -0.27 -1.01 -1.87 -2.59 -3.21 -3.73

[1.36] [5.05] [9.24] [12.72] [15.60] [18.05]

k = 16 -0.25 -0.94 -1.73 -2.41 -2.98 -3.47

[1.56] [5.81] [10.62] [14.61] [17.99] [20.80]

k = 20 -0.23 -0.88 -1.61 -2.24 -2.78 -3.24

[1.69] [6.28] [11.47] [15.86] [19.51] [22.63]

k = 24 -0.22 -0.82 -1.51 -2.10 -2.60 -3.04

[1.75] [6.53] [12.02] [16.59] [20.48] [23.80]

k = 28 -0.20 -0.76 -1.41 -1.97 -2.44 -2.85

[1.79] [6.71] [12.30] [17.02] [21.05] [24.41]

k = 32 -0.19 -0.72 -1.33 -1.85 -2.29 -2.67

[1.80] [6.72] [12.39] [17.19] [21.21] [24.59]

k = 36 -0.18 -0.67 -1.25 -1.74 -2.16 -2.51

[1.78] [6.72] [12.39] [17.13] [21.12] [24.51]

k = 40 -0.17 -0.64 -1.18 -1.64 -2.03 -2.37

[1.78] [6.65] [12.22] [16.89] [20.84] [24.17]

k = 44 -0.16 -0.60 -1.11 -1.55 -1.92 -2.23

[1.73] [6.49] [11.94] [16.54] [20.40] [23.67]
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h = 1 h = 4 h = 8 h = 12 h = 16 h = 20

Panel B: Dividend Claim

k = 4 -0.32 -1.20 -2.20 -3.06 -3.78 -4.40

[0.53] [1.91] [3.42] [4.62] [5.57] [6.34]

k = 8 -0.30 -1.10 -2.03 -2.82 -3.50 -4.06

[0.88] [3.23] [5.81] [7.86] [9.52] [10.79]

k = 12 -0.27 -1.02 -1.88 -2.62 -3.24 -3.77

[1.12] [4.15] [7.47] [10.13] [12.23] [13.89]

k = 16 -0.25 -0.95 -1.75 -2.43 -3.01 -3.50

[1.29] [4.76] [8.59] [11.63] [14.06] [15.96]

k = 20 -0.24 -0.88 -1.63 -2.26 -2.80 -3.26

[1.41] [5.16] [9.29] [12.60] [15.22] [17.31]

k = 24 -0.22 -0.82 -1.52 -2.11 -2.61 -3.05

[1.46] [5.36] [9.68] [13.13] [15.90] [18.13]

k = 28 -0.21 -0.77 -1.42 -1.97 -2.45 -2.85

[1.48] [5.47] [9.68] [13.41] [16.27] [18.53]

k = 32 -0.19 -0.72 -1.33 -1.85 -2.30 -2.67

[1.48] [5.47] [9.91] [13.50] [16.36] [18.63]

k = 36 -0.18 -0.68 -1.25 -1.74 -2.16 -2.52

[1.47] [5.44] [9.88] [13.42] [16.27] [18.55]

k = 40 -0.17 -0.64 -1.18 -1.64 -2.03 -2.37

[1.46] [5.39] [9.73] [13.23] [16.06] [18.30]

k = 44 -0.16 -0.60 -1.11 -1.55 -1.92 -2.24

[1.42] [5.25] [9.51] [12.96] [15.72] [17.92]
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