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Abstract

I examine the role of the U.S. shale oil boom in driving global oil prices. Using a
structural vector autoregressive (SVAR) model that identifies separate oil supply
shocks for the U.S. and OPEC, I find that U.S. supply shocks can account for up
to 13% of the oil price variation over the 2003–2015 period. This is considerably
more than what has been found in other studies. Moreover, while U.S. oil pro-
duction has increased substantially since 2010, U.S. oil supply shocks first started
to contribute negatively to oil prices beginning in late 2013. This mismatch im-
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1 Introduction

Few other commodities receive the same level of attention among economists as

crude oil. It serves as an important input for a large share of production and is

actively traded in the financial markets. It has been at the centre of wars and

conflicts and can be a contributing factor to political turmoil and geopolitical

tensions as well as leading to inflationary pressure and recessions (Hamilton 1983;

1985). Thus it is not surprising that a significant change in the price of oil spurs

interest and debate.

During the summer of 2014, the oil price practically collapsed. From fluctuating

around $120 per barrel, the price hit the $28 mark in January 2016, a decrease of

more than 75 per cent. In the decade preceding the collapse, the United States

saw an unprecedented surge in crude oil output after more than two decades of

production decline. This sudden spurt was the result of innovations in shale oil

extraction technology, as well as record high oil prices that made commercial shale

production viable. Still, the role of U.S. shale oil in the subsequent collapse of

the oil price is debated. In particular, since the seminal paper by Kilian (2009),

demand shocks have been commonly viewed as the main driver of oil price fluctu-

ations (see e.g. Kilian and Murphy (2012) and Aastveit, Bjørnland and Thorsrud

(2015)). While Baumeister and Kilian (2016) argue that slow growth in emer-

ging markets may also have played a key role in the large oil price drop of 2014,

it is hard to rule out oil supply shocks considering the unprecedented surge in

oil production over the last decade, especially in the United States. This is also

supported by the recent findings of Caldara, Cavallo and Iacoviello (2016) who

attribute a larger role for supply. Moreover, Behar and Ritz (2017) show that

a switch from an accommodative strategy to a market-share strategy by OPEC

can be rationalised when facing high-cost shale producers and predict that such

switch happened in 2014. The paper most closely related to my study is Kilian

(2017), who shows that the Brent crude price would have been up to $10 higher

without the U.S. shale oil boom by applying counterfactual analysis. Yet none of

the recent papers examine the role of the United States, the shale oil boom and

U.S. supply shocks explicitly.

In this paper, I aim to rectify this shortcoming and explore the implications

of increased U.S. self-sufficiency in crude oil for oil prices over the 2003:M01–

2015:M12 period. The hypothesis is that additional oil production produced by

the U.S. shale oil fields has put a downward pressure on prices. To analyse this

hypothesis, I estimate a structural vector autoregression (SVAR) model which
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includes a measure of U.S. crude oil supply, OPEC production, a measure of

global economic activity and the real price of oil. The model builds on Kilian

(2009) in that oil supply and demand shocks are identified separately. Novel to

my model, however, is the explicit distinction between U.S. and OPEC supply

shocks. To quantify the role of changes in U.S. supply, I rely on the U.S. ban on

crude oil exports and use a constructed U.S. imports variable. This restricts the

sample to end in December 2015 with the lifting of the export ban in January

2016. The imports variable is constructed as the residual from a regression of U.S.

crude oil imports on measures of domestic and foreign demand for U.S. crude oil.

The choice of using U.S. imports differs from earlier studies that have used crude

oil production to measure oil supply. I argue that using U.S. imports allows me

to directly assess the price effect of the displacement of foreign crude oil. The

identified supply shock from the U.S. is thus interpreted as a sudden negative

shift in U.S. demand for foreign crude oil due to higher domestic availability.

To motivate and frame the results, the analysis relies on evidence from a strand

of literature that studies the insufficient capacity in the crude oil refining and

transportation sectors following the U.S. shale oil boom (see among others Kilian

2016; McRae 2017; Wilkerson and Melek 2014).

I find strong support for the hypothesis that the U.S. shale industry has put a

downward pressure on global oil prices. The analysis shows that the cumulative

effect of U.S. supply shocks on the oil price has been negative leading up to the

mid-2014 fall in prices. Further, following a positive U.S. supply shock that lowers

U.S. imports by 1%, the real price of oil falls by almost 2%. U.S. supply shocks

explain up to 13% of the variation in the real price of oil over the sample period.

Taken together, U.S. and OPEC supply shocks account for a third of the variation

in the real price of oil. This is considerably higher than what has been found by

earlier studies in the literature and reintroduces supply as an important driver of

oil prices.

The remainder of the paper is structured as follows. Section 2 gives a brief narrat-

ive of the U.S. shale oil boom and the plunge in the oil price during 2014 and 2015.

Section 3 presents the SVAR model which includes an adjusted measure of U.S.

crude oil imports to identify U.S. supply shocks. I present the results in section 4

while section 5 discusses robustness with alternative identifying restrictions and

model specifications.
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2 Data environment

2.1 The U.S. shale oil boom

Shale oil is petroleum found in rock formations of low permeability.1 Primary

recovery from conventional oil wells requires only drilling because the pressure

differential brings the oil to the surface (Bret-Rouzaut and Favennec 2011). Shale

oil, on the other hand, cannot be extracted by traditional methods as the sediment

in which it is enclosed bars it from flowing freely. A combination of two techno-

logies makes this extraction commercially viable: hydraulic fracturing (fracking)

and horizontal drilling. The former allows the oil to escape the rocks and the latter

lets more rock be fracked at the same time. The development of these technologies

was fuelled by the period of high oil prices in the run-up to the financial crisis

and subsequent years (Alquist and Guénette 2014; Kilian 2016; Maugeri 2013).

Unconventional oil thus became competitive against conventional techniques, and

investments in shale oil gained traction.

2.1.1 The Cushing glut

It is easy to justify an assertion that the fall in global oil prices, at least to some

extent, was due to the U.S. shale oil boom. However, there are two caveats to

consider relating to the timings of the boom and the fall in prices. The first

is related to the chemical properties of shale oil and the second to the lack of

appropriate transportation infrastructure in shale oil rich regions of the United

States.

The chemical make-up of shale oil is different from that of conventional oil. In

general, the chemical properties of shale oil are characterised as light and sweet,

measured by API gravity and sulphur content respectively. These are similar

to the properties of crude oil that has been produced in the U.S. traditionally.

However, because of declining crude oil production from conventional wells since

the 1970s, refineries along the Gulf Coast have been relying on imports from the

Middle East to cover petroleum product demand. This oil, however, is charac-

terised as heavy and sour. These refineries were fitted accordingly and have been

mostly unable to process lighter oil without further investments in new or up-

1Shale oil should not be confused with oil shale, sedimentary rocks with high kerogen content.
Liquid petroleum can be extracted from these rocks, but it is a costly and capital intensive
process (Bret-Rouzaut and Favennec 2011). Because of this confusion, shale oil is often referred
to as tight oil.
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graded equipment.2 Several obstacles related to the processing of shale oil have

also been reported by the industry, namely that shale oil differs chemically, not

only from conventional oil, but also from sample to sample extracted from the

same shale play (Baker Hughes 2013; Benoit and Zurlo 2014).

Second, North Dakota has become a prominent shale producer, but has not been

an important producer of conventional oil historically. For this reason, pipelines

and rail capacity did not exist to accommodate the rapid expansion of oil pro-

duction in the state, making it more costly for the producers to get the oil to

the market (McRae 2017; Wilkerson and Melek 2014). Traditionally, crude oil

has been transported from the Gulf Coast to Cushing, Oklahoma where there

has been more residual demand. The swelling supply of shale oil inland and no

southbound pipelines from Cushing created an excess supply of oil in the U.S.

interior (Kilian 2016).

These developments spawned a glut of light sweet crude oil in Cushing, Oklahoma.

The emergence of this glut can be seen in Figure 1 as a price spread widening

between the Brent Crude and the West Texas Intermediate (WTI) benchmarks.3

The persistent spread in prices created incentives for refineries to adapt to the

new opportunities in shale oil refining. Over time and in addition to the use of

trucks, rail and river barges, pipelines were constructed from the storage facilities

in Cushing to the refineries along the Gulf Coast (see Kilian 2016, 2017; Wilkerson

and Melek 2014). The closing of the Brent–WTI spread later on is an indication

that the bottlenecks in the supply chain became less severe and thus U.S. oil to a

larger extent was used as feedstock by the domestic refining industry.

The implication of this glut in Cushing was a temporary friction in the transmis-

sion of booming shale oil supply in the U.S. to the oil prices globally. While the

WTI had to be sold at a considerable discount and with inventories of shale oil

to staying high in Cushing, the refineries had to continue importing crude from

abroad in order to satisfy demand for petroleum products. In other words, as

the U.S. oil supply was booming, the impact on global prices was cushioned by

the glut until downstream buyers were able to adapt their refining processes and

2While refining plants on the East Coast which typically import light and sweet North Sea
oil could use the shale oil as feedstock, the necessary infrastructure to transport the oil is not
in place. Some refineries on the Gulf Coast had the necessary equipment to process shale oil,
but the lack of southbound pipelines from the Midwest hindered the adoption (Kilian 2016).

3It should be noted that decouplings between the WTI and the Brent is not a new phe-
nomenon. There has previously been insufficient pipeline infrastructure to transport oil into
Cushing causing the WTI to be sold at a premium (Fattouh 2007). As discussed by Büyükşahin
et al. (2013), there has been a lack of storage capacity as well as pipeline infrastructure out of
Cushing leading to discounts on the WTI as early as 2008.
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Figure 1: West Texas Intermediate and Brent Crude benchmark prices (left axis) and
U.S. crude oil imports and exports (right axis), 2000–2016, at monthly frequency.
Source: Federal Reserve Bank of St. Louis Economic Data (FRED) and Energy In-
formation Administration (EIA)

utilise domestic shale oil to a greater extent, thereby reducing the need for foreign

imports. This mechanism will be modelled explicitly in the next section.

3 A Structural VAR with U.S. imports of crude

oil

In this section, I present the empirical model that I use in my analysis. Novel to

my approach is that in order to capture U.S. oil supply, I construct a measure of

U.S. imports of crude oil. I then analyse the effects of U.S. oil supply shocks, along

with the other shocks, on the global oil market using a structural VAR model.

3.1 U.S. imports of crude oil

Since I am interested in how developments in the U.S. oil industry have affected

the global oil market, a U.S. centric model design with an appropriate measure of

U.S. oil supply is needed. Ideally, one would want to capture shifts in U.S. demand

for foreign crude oil that occur due to a higher availability of domestic supply.

As such, U.S. crude oil production is an inappropriate measure because changes

in flow supply does not translate directly into shifts in the demand schedule for

imports that affect non-U.S. oil prices. After the enactment of the Energy Policy

and Conservation Act of 1975, the U.S. government banned exports of crude oil

and natural gas. While, given the appropriate permissions, some export could take
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place, the extent of this flow was negligible relative to total U.S. oil production.4

A key point is then that any increase in U.S. supply of crude oil only transmits

to prices globally if it displaces foreign sources of oil. However, as the export

ban was effectively lifted in January 2016 with the passing of the Consolidated

Appropriations Act, the sample used in the analysis must end in December 2015

for the argument to remain valid.

Equation 1 explains the relationship between U.S. crude oil self-sufficiency, net

exports and changes in inventories.

U.S. Production− U.S. Consumption = Exports− Imports + ∆Inventories (1)

In this context, consumption refers to the number of barrels of crude oil U.S.

refineries use as input to produce petroleum products. Exports can be set to

zero due to the export ban. Moreover, holding inventories are likely only to be

done to smooth out gluts and shortfalls in the flow of oil. Therefore, build-ups

of inventories are likely to be transitory and even out over time.5 The widening

of the Brent–WTI spread that began in early 2011 coincided with a build-up of

stocks at tank farms and pipelines which lasted till May the same year. The

International Energy Agency (IEA) and the U.S. EIA announced in June that 30

million barrels of crude oil would be released from the U.S. Strategic Petroleum

Reserve to offset negative effects of the political unrest in Libya (EIA 2011). This

prompted the futures prices to fall and a lowering of inventories that did not end

until futures prices had rebounded in November that same year. From December

to May 2012, total inventories increased by 55.5 million barrels (roughly 7 days

worth of total U.S. crude oil output) and reached its pre-2014 peak. The monthly

growth rate however, never exceeded +/– 2.5% during this period. By setting

exports and the change in inventories equal to zero and re-arranging, equation 1

can be simplified to:

Imports = U.S. Consumption− U.S. Production (2)

The demand for oil that is not satisfied by domestic production thus has to be

4These exports have mainly come from production sites in California and Alaska (EIA 2014;
2015). On average, exports relative to U.S. production have been around 1% from 2003 to 2015
with a peak at 6% in April 2015. The vast majority of U.S.-sourced crude goes to Canada (EIA
2014b), but starting in 2014, some crude leaving the Gulf was shipped to Europe and Asia.
However, this is Canadian oil re-exported by the United States (EIA 2014a). This might help
explain the growth in U.S. exports relative to U.S. production starting in 2014.

5The monthly changes in U.S. inventories resemble a covariance stationary process with mean
close to zero, see Appendix B for details.
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Figure 2: U.S. crude oil production and imports, 1970–2015. Source: EIA

covered by changes in imports.

Figure 2 shows a clear negative correlation between U.S. oil production and im-

ports over the long run. Tropical storms and hurricanes are temporary shocks to

both variables causing the series to co-move. Most of these shocks hit during the

August–October hurricane season. Hurricane Katrina (2005) and Hurricane Ike

(2008) are by far the most devastating in terms of volumes and clearly visible in

Figure 2. Further, the decline in imports after 2005 precedes the boom in domestic

supply, indicating that the initial fall in imports was due to lower U.S. consump-

tion. Crude oil demand can be controlled for by including a real economic activity

variable in the VAR model. However, it will enter the U.S. equation with a lag

and not account for the contemporaneous correlation. This poses a challenge for

representing U.S. oil supply with U.S. imports as variations in imports would need

to be uncorrelated with shifts in domestic demand and the business cycle while

at the same time being correlated with observed domestic supply. To ensure that

this condition is satisfied, I regress U.S. imports on variables that reflect demand

for oil to clean out this variation. I then use the residual from this regression

as a proxy for U.S. oil supply. This proxy will be uncorrelated with the demand

factors by construction.

Two variables with the appropriate monthly frequency and sample availability
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were chosen for the regression.6 Vehicle miles travelled captures domestic demand

for petroleum products through the use of road vehicles. It includes cars and

larger diesel vehicles used in freight transportation.7 More traffic on U.S. roads

implies a higher demand for petroleum products which induces demand for crude

oil from refineries. The refineries can choose to import the oil or use what is

produced domestically. However, the mileage on the U.S. vehicles each month

does not affect the amount of oil extracted from the ground directly. Petroleum

product exports captures demand for American crude oil abroad through exports

of refined products from U.S. refineries.8 Again, the refineries have to make use of

imports or domestic supply. How much is refined and exported does not directly

determine how much crude oil is taken up from the ground. See Appendix A for

more information about the dataset.

∆usimpt = 0.843
(0.28∗∗∗)

∆vmtt + 0.12
(0.03∗∗∗)

∆petrolexpt + êt R̄2 = 0.17 (3)

Equation 3 describes the regression that I estimate on the sample 2003:M01–

2015:M12. All variables are in log-differences and the standard errors are shown

in parentheses.9 The residual is the measure of U.S. oil supply that I will later in-

clude in the structural VAR model (explained in the next section). The variable

(residual) is orthogonal to contemporaneous demand innovations and therefore

captures the supply effects on oil imports. In other words, a negative shock to

the modified U.S. imports variable can be interpreted as a decision by refineries

to import less crude because of a sudden abundance of domestic supply. A pos-

itive shock will then reflect the need for more imports because of less domestic

production.

6Sales of heating oil or other ’distillate fuel oils’ used in industry could have been other fitting
choices. However, the set of candidate variables to include in the regression is constrained by
the availability of data on a monthly frequency.

7The variable is compiled by the U.S. Federal Highway Administration and based on vehicle
counts. Each data-point is calculated by taking the total number of vehicles travelling on a
given stretch of public road that month and multiplying it by the road’s length in miles and the
number of lanes. The final step is to sum over all monitored roads.

8The U.S. became a net exporter of petroleum products in 2011 (EIA 2015)
9To check for robustness, lagged values of the regressors have been included as well as hav-

ing the estimation of the coefficients in Equation 3 being based on pre-shale samples. These
alternative specifications do not change the baseline results reported below. Finally, tests for
parameter stability (Bai-Perron) have been carried out and specified with a variety of trimming
percentages. The tests do not suggest any breaks in the post-shale period. Of the suggested
breakpoints, none are statistically significant except one at 2009:M04 which is so at the 10%
level.
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3.2 The Structural VAR model

I will now include my constructed measure of U.S. imports in a Structural VAR

model. Having a U.S.-specific variable in the model necessitates the use of OPEC

production as an alternative measure of foreign supply. The reason for this is

twofold. The first is due to a possible simultaneity issue, as U.S. oil production

is a component of global production. The second reason has to do with the data

itself. Aggregate global production exhibits low variation relative to more disag-

gregated measures, possibly reflecting that a shortfall of production in one location

is met by an increase somewhere else thereby neutralising fluctuations. While the

same can be said about the producers within OPEC, the member countries as

a group account for most of the short-run fluctuations in the global output (see

e.g. Almoguera, Douglas and Herrera 2011). OPEC production is an interesting

candidate as it represents a large bulk of global production and possibly captures

some interesting dynamics between itself and the U.S. Behar and Ritz (2017) pre-

dicts that OPEC will, facing increased production by shale oil producers, change

behaviour and increase production as well. Adding separate supply-equations for

different oil producers has been done by Kang, Ratti and Vespignani (2016; 2017)

with U.S. and non-U.S. production, Ratti and Vespignani (2015) and Kolodzeij

and Kaufmann (2014) with OPEC and non-OPEC production. Common to these

papers is the argument that aggregate global production leads to underestimation

of the influence of supply shocks on oil prices.

This model is an augmentation of the Kilian (2009) 3-variable model that includes

aggregate global oil production, the measure of global activity and the real price

of oil.10

Consider the following reduced form VAR model

Yt = µ+
P∑

p=1

ApYt−p + et (4)

where Yt =
[
∆opecprodt,∆usimp

S
t , reat, lrpot

]′
is the vector of variables, percent-

age change in OPEC crude oil production, the adjusted U.S. crude oil imports

constructed in section 3.1, an index of real economic activity (Kilian 2009) and the

10In Appendix D.2, I show that the results reported below are broadly robust to a specification
that includes crude oil inventories as in Kilian and Murphy (2014). However, this brings the
number of equations up to five and is challenging to estimate with the limited sample used here.
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real price of oil respectively. reat and lrpot are in logs.11 µ is a vector of intercept

terms and et
iid∼ N(0,Σe) where Σe is positive semi-definite and symmetric. All

data is on monthly frequency and the model is specified with 18 lags. Hamilton

and Herrera (2004) demonstrated with their replication of the Bernanke, Gertler

and Watson (1997) model that a rich lag structure is needed to capture oil price

shocks. An ex ante choice of 1.5 years worth of lags rather than the use of in-

formation criteria is in line with the recommendations of Kilian and Lütkepohl

(2017).12

To identify the structural shocks, let the reduced form errors be decomposed in

the following way et = Sεt, or
e∆opecprod

e∆usimpS

erea

elrpo


t

=


s11 0 0 0

s21 s22 0 0

s31 s32 s33 0

s41 s42 s43 s44



ε∆opecprod

ε∆usimpS

εrea

εlrpo


t

(5)

where matrix S is the lower triangular component of the Cholesky decomposition

of Σe and εt is the structural shocks with the property that E [εtε
′
t] = I. The way

S is identified implies that a recursive structure is imposed where the responses of

the variables ordered at the top in Yt will be restricted to zero contemporaneously.

Supply variables are ordered at the top, followed by global demand and, lastly,

the oil price. OPEC supply shocks are defined as unexpected changes in oil

production in OPEC member countries. A U.S. import shock is a sudden change in

the importing decision of U.S. refineries reflecting the availability of domestically

produced crude oil. By placing OPEC on top, a short-run vertical supply curve

is imposed. Hence, OPEC cannot adjust their production within a month after

shocks to aggregate demand, nor after shifts in beliefs about the state of the future

oil markets (oil-specific demand shocks). Taking into consideration the adjustment

costs of changing their production schedules, necessary cartel coordination among

OPEC members, but also lack of information regarding business cycle movements

in real time, oil producers are likely to respond to these innovations with a lag.

Additionally, OPEC cannot respond to U.S. import shocks contemporaneously,

reflecting OPEC’s inability to observe what the United States imports from abroad

11∆opecprodt and ∆usimpSt are I(0) while reat and lrpot are I(1). See Appendix A for
more information about the dataset. Importantly, the VAR model in Equation 4 is stable and
therefore has a moving average representation.

12Beginning with Kilian (2009), it has been customary to include 24 lags in these models.
However, due to the number of parameters to be estimated relative to the sample size, only 18
lags are included in this model.
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in real time. This information is published by the EIA later on.13 Finally, the

refineries in the U.S are assumed not to react to aggregate demand and oil-specific

demand shocks instantly. Although oil prices are observed in the market daily, the

American suppliers are slow to ramp up their production due to adjustment costs.

Hence, the effect of higher oil prices on imports when the U.S. supply situation is

taken into account is delayed. Still, the United States is ordered beneath OPEC

production as there is evidence which suggests that shale producers are more

flexible than conventional producers (see e.g. Bjørnland, Nordvik and Rohrer

2017).14

An abrupt change in global real activity is here represented by a shock to the

demand of industrial commodities, henceforth called an aggregate demand shock

(see Kilian 2009). Innovations to the real price of oil that are not explained by

either supply or demand are called oil-specific demand shocks and reflect primar-

ily precautionary demand for crude oil related to expectations of future supply

shortfalls (see Kilian 2009).15 The exclusion restriction implies that global real

activity takes one month to adjust to oil-specific demand shocks. While oil prices

are observable daily, economic agents are slow to change their behaviour, and the

effect on the level of real activity is therefore delayed. This is consistent with the

historical relationship between oil prices and business cycle movements (see e.g.

Hamilton (1985)). The real price of oil equation is left unrestricted. These identi-

fying restrictions are similar to those first imposed by Kilian (2009). In section 5,

I show that the results are robust to alternative restrictions.

4 Empirical results

The sample period used for the estimation is 2003:M01–2015:M12. As shown by

Baumeister and Peersman (2013), parameter instability is a prevalent feature of oil

market models over the commonly estimated sample beginning in the early 1970s.

The choice of sample period is ultimately motivated by the research question.

Shale oil production in the U.S. had just begun in 2003 and the U.S. export

ban on exports was lifted in December 2015. Extending the sample backwards,

however, does not affect the main results until 1997 when statistical significance is

lost. Estimated impulse responses are shown in Figure 3. Since the U.S. imports

13Since the structural shock to U.S. imports reflects domestic supply conditions, it is even
tougher for OPEC to monitor.

14In Appendix D, I show that the results are robust to an alternative ordering of the variables.
15The interpretation of this shock should not be taken too literally however, as it will reflect

all residual variation in the oil price not explained by the other endogenous variables.
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Figure 3: Impulse responses generated from the model described in equations 4 and
5. The sample is 2003:M01–2015:M12. They are all in levels of the variables. Shocks
are normalised so that the response of the variables is 1 on impact, i.e. 1% for the
OPEC supply shock, U.S. supply shock and aggregate demand shock while one log unit
for the oil price. The shaded areas represent 68% confidence bands calculated using a
bootstrap with 10,000 draws.

variable is a generated regressor, the reported confidence bands are computed

using on a two-stage residual bootstrap procedure.16

Starting with the supply shocks (left columns), a sudden innovation to OPEC

supply growth leads to a persistent increase in their level of production. The

United States begins to import more on impact and periodically so over the next

year. It is however, hard to interpret the nature of this response. The response

of global activity is clearly negative and statistically significant over time. The

real price of oil initially increases but is not significant and turns negative within

6 months. The persistently negative response of global activity is puzzling given

16Each iteration of the procedure follows these steps: first a residual bootstrap sample is
generated from equation 3. Second, a residual bootstrap of the VAR model is carried out where
the U.S. imports variable is replaced by the bootstrap sample from the first step. Finally, the
bootstrap sample from the previous step is used to estimate a VAR model and impulse response
functions are computed and stored.
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that the OPEC supply shock causes oil prices to fall.17

The second column shows the responses to the U.S. import shock. A negative

shock to U.S. imports, reflecting a sudden abundance of domestically produced

crude oil, does not change OPEC production nor global activity. Interestingly,

U.S. imports exhibit a very low degree of persistence as it returns to pre-shocks

levels within two months. Still, the oil price exhibits a persistent but gradual

decrease. When the U.S. reduces its imports by 1%, the oil price falls by almost 2%

after ten months and is significantly negative after eight months. As a comparison,

for the OPEC supply shock to decrease the oil price by the same amount, the

OPEC supply shock must increase OPEC production by approximately 0.3%.

Turning to the demand side, the third column shows the responses to the aggregate

demand shock that increases global activity. The shock leads OPEC and the

United States to produce more (imports less) crude oil, but only temporarily. The

oil price responds by increasing on impact and follows a hump-shaped trajectory

back to zero as expected.

Following an oil-specific demand shock (right column), OPEC starts to produce

more while the Americans import less, implying that their domestic supply is

higher. For OPEC, the response is slow, but it is much more persistent than that

of the U.S. and lasts for almost eight periods. A puzzling result is that of global

activity, which initially increases following the shock to oil prices. This is a similar

result as that seen in Kilian (2009), later attributed to not allowing emerging and

developed economies to respond differently to oil market shocks (see Aastveit et

al. 2015).

The historical decomposition of the real price of oil is presented in Figure 4.

The cumulative effect of the U.S. import shock has since late-2013 contributed to

pushing oil prices down. OPEC, on the other hand, seems to have been working to

increase prices following the 2014 fall. Oil-specific demand has also contributed,

possibly reflecting the expectations of an oversupply in the oil markets. Caldara et

al. (2016) find similar results for the 2014–15 episode, but do not identify separate

U.S. and OPEC supply shocks. Baumeister and Kilian (2016) find evidence that

prior to the slump in oil prices, movements in oil supply could predict parts of

the decline that would occur later, which is consistent with the findings here. In

contrast to the U.S. import shocks, aggregate demand shocks did not influence

17When the OECD+6 industrial production index constructed by Baumeister and Hamilton
(2017) and detrended according to the recommendations of Hamilton (2018) is used in place
of the Kilian index, global activity responds positively (but not statistically significant) as one
would expect.
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Figure 4: Historical decomposition of the real price of oil derived from the model
described in equations 4 and 5. The sample is 2003:M01–2015:M12 The shaded areas
correspond to the cumulative effects of the different shocks on the oil price.

prices negatively until 2014 and only did so for the first of the two dips in prices

that occurred between 2014 and 2016. Overall, the influence of demand factors

in the historical decomposition is reduced compared to e.g. Kilian (2009).

The variance decomposition of the real price of oil is presented in Table 1. It shows

the relative contributions of each shock to variations in the oil price. U.S. supply-

side innovations explain up to 13% of the variation in the oil price. OPEC and the

United States together account for 30% of the fluctuations in the oil price at the

18-months forecast horizon according to the model. In recent years, the literature

has been giving supply-side explanations of oil price fluctuations an increasingly

smaller role. The current results, together with Caldara et al. (2016), however,

provide evidence of the importance of supply. To put this into dollar amounts, I

do a back-of-the-envelope calculation of the implied path of the real price of oil in

the absence of U.S. import shocks after September 2013. Specifically, I recompute

the solid line in Figure 4 by setting the cumulative effect of U.S. import shocks to

zero after September 2013, add back the estimated deterministic term and then

reflate it to nominal terms. As can be seen in Figure 5, in the absence of U.S.

import shocks, the oil price would have been roughly $10 higher if it were not for

the U.S. shale oil boom. This is a similar estimate to that of Kilian (2017).

The results presented here suggest that the U.S. shale oil boom has contributed

significantly to lowering oil prices during 2014 and 2015. While this result might

seem surprising considering the rapid growth in U.S. shale oil output that began

as early as 2011, it is consistent with the accounts of frictions in the supply-
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Variance decomposition of the real price of oil

Shocks Horizons

1 month 6 months 12 months 18 months

OPEC supply
7.73 2.83 8.77 17.58

(0.26; 8.48) (1.54; 11.95) (4.27; 29.46) (6.90; 40.71)

U.S. imports
2.12 1.05 8.10 13.04

(0.13; 5.84) (1.99; 19.92) (6.32; 32.00) (8.00; 34.02)

Aggregate demand
7.15 13.63 10.94 10.73

(0.46; 10.14) (2.30; 19.59) (3.35; 19.43) (4.85; 23.19)

Oil-specific demand
83.00 82.48 72.19 58.65

(79.86; 95.29) (58.16; 85.84) (36.61; 70.12) (26.20; 58.44)

Table 1: Variance decomposition (in percentages) of the real price of oil for different
time horizons, generated from the imports model described in equations 4 and 5. The
sample is 2003:M01–2015:M12. The confidence intervals (in parenthesis) are at the 68%
level and computed using a bootstrapping method with 10,000 draws.

chain and lack of pipeline infrastructure delaying the adoption of shale oil by U.S.

refineries (see section 2.1.1). The closing of the Brent–WTI spread in late 2013

and early 2014 lines up with the emergence of the negative cumulative effect U.S.

import shocks had on the oil price as can be seen by comparing Figure 1 and 4.

This suggests that the adoption of shale oil in the domestic refining sector finally

displaced foreign crude oil imports and the price spread narrowed as a result.18

The choice of representing the U.S. supply side of the oil market with (adjusted)

U.S. imports was motivated by the research question. However, it has been cus-

tomary in this literature to have a supply equation where the endogenous variable

is the quantity of crude oil produced. The conclusion commonly drawn from these

models is that oil supply shocks cannot explain oil-price fluctuations. The results

from a model identical to the one presented above, but where U.S. imports are

replaced by U.S. crude oil production, are presented in Appendix C. The gains

from identifying the U.S. supply shocks by exploiting the relationship between do-

mestic production and imports rather than with the quantity produced directly

are evident. The response of OPEC to a positive U.S. supply shock, as seen in

Figure 7, is sensible in that they increase output, consistent with attempting to

keep their market share. The model does predict that the oil price temporarily

18As has been pointed out earlier, U.S. imports and U.S. crude oil production have been
sensitive to hurricanes and tropical storms in the Gulf Region. However, the 2013 Atlantic
Hurricane season was the least active in two decades (NOAA 2014) so these disruptions are not
driving the results in this period.
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Figure 5: The implied path of the nominal price of oil in the absence of U.S. import
shocks.

increases which might also drive OPEC upwards. This, together with the response

of global activity – which both get a temporary boost – are however, puzzling.

In particular, one would not expect oil prices to increase when both the U.S. and

OPEC expand output. The estimated response eventually turns negative, but is

not significantly different from zero.19 In addition, the model fails at explaining

the 2014 fall in oil prices as illustrated by the historical decomposition in Figure

8. Specifically, the oil-specific demand shock (a residual shock) explains the lion’s

share of the movements in the real price of oil past mid-2014 suggesting that the

supply (and demand) shocks are not well identified. Hence, a model that includes

U.S. crude oil production rather than U.S. imports does not shed light upon the

research question or reaffirm results from previous studies.

5 Robustness and sensitivity checks

To check the robustness of the results I impose different identifying restrictions

as well estimate a model where inventories are included. The details are given in

Appendix D, so a brief summary will suffice here.

First, I rearrange the ordering of the variables so that the U.S. is placed on top and

OPEC second. The results do not change compared to those of the main baseline

ordering. Second, I re-estimate the baseline model using Bayesian methods with

flat priors. For identification, I impose a mix of sign and zero restrictions on

the contemporaneous impact matrix. In particular, the zero-restriction on the s12

19Kilian (2009) also found that the response of global activity moves in the same direction as
oil production following a supply shock. However, his results also showed that the real price of
oil moves in the opposite direction, contrary to the results here.
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parameter is relaxed to be negative on impact. This implies that following a shock

that lowers U.S. imports, OPEC will respond by increasing their output. The main

results from the baseline model remain robust to the chosen identification strategy.

Finally, I estimate an augmented version of the Kilian and Murphy (2014) model

in order to account for changes in inventories. The structural shocks are identified

with sign-restrictions. Again, the main conclusions drawn from the baseline model

remains unchanged. However, the response of the oil price to a U.S. import shock

is less persistent than in the baseline model and returns to pre-shock levels after

6 months compared to 16 in the baseline model.

6 Conclusion

In this paper I analyse the impact of the U.S. shale oil boom on global oil prices.

In doing so, I estimated a structural VAR based on Kilian (2009) with OPEC

production, a modified U.S. crude oil import variable, a measure of real economic

activity and the real price of oil. The use of crude oil import data in a structural

VAR to model the case of the United States directly is to my knowledge new to

the literature. It is modified so as only to capture U.S. supply innovations. This

approach is the most sensible given the institutional framework in place in the

United States up until December 2015 as it gives a clear transmission mechanism

of domestic supply shocks to oil prices abroad.

Firstly, the findings show that a 1% reduction in U.S. imports causes the oil price

to decrease by almost 2% after ten months. The U.S. import shock, reflecting the

domestic supply environment, explains up to 13% of the variation in the oil price

over the sample period 2003–2015. The U.S. and OPEC together account for a

third of the variation in the oil price. This is significantly more than what has

been found in earlier studies. Secondly, the results show that the developments

in the U.S. oil industry had no significant effect on global prices until the end of

2013.

These results suggest that the U.S. shale oil boom has in fact been able to af-

fect global oil prices negatively. However, the analysis shows that oil prices were

not affected until the end of 2013. The cause of the delay is puzzling consider-

ing the length of time U.S. production figures had been on the rise. A possible

explanation for the lagged transmission of U.S. supply shocks to the rest of the

world is the oil glut in Cushing, Oklahoma caused by insufficient pipeline capacity

and incompatible refining equipment that postponed adoption of shale oil by the

domestic refining industry, indirectly observable in the WTI–Brent price spread.
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The results put forward in this paper add to the discussion of the role of the U.S.

in the oil price fall of 2014/2015. Contrary to earlier studies, I find an increased

importance of supply side factors in explaining oil price fluctuations. Further, due

to the emergence of the U.S. shale oil industry, the role of the United States in the

market has fundamentally changed and will have implications for oil prices globally

going forward depending on the state of transportation and refining infrastructure.
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A Data

Variable Description Source

∆opecprod Log-change in total OPEC crude oil produc-

tion in thousands of barrels per day. Data-

stream identifier: OPPCOBD.P

Thomson Reuters Datastream – EIA

∆usimpS Log-change in U.S. crude oil imports in mil-

lions of barrels per day. Adjusted for demand

factors (see text for details).

U.S. Energy Information Administration

(EIA)

∆vmt Log-change in the Vehicle Miles Travelled in-

dex compiled from automatic roadside traffic

monitors. Seasonally adjusted.

Federal Highway Administration. Retrieved

from FRED database, St. Louis Fed.

https://fred.stlouisfed.org/series/

TRFVOLUSM227SFWA

∆petrolexp Log-change in U.S. petroleum products ex-

ports in million barrels per day.

U.S. Energy Information Administration

(EIA).

∆usprod U.S. field production of crude oil in thousands

of barrels per day.

U.S. Energy Information Administration

(EIA)

rea Measure of global real economic activity

based on dry cargo bulk freight rates.

Monthly deviations from trend. Introduced

in Kilian (2009).

http://www-personal.umich.edu/~lkilian/

paperlinks.html

lrpo Log of refiner’s acquisition cost of crude oil

imports deflated by the U.S. CPI.

U.S. Energy Information Administration

(EIA). U.S. CPI retrieved from the FRED

database, St. Louis Fed.

∆gprod Global crude oil production in thousands of

barrels per day. Datastream identifier: WD-

PCOBD.P

Thomson Reuters Datastream – EIA

∆usinv Percentage change in U.S. crude oil invent-

ories. Including the United States Strategic

Petroleum Reserve (SPR).

U.S. Energy Information Administration

(EIA)

Commonly quoted oil prices such as Brent or WTI are not used in the analysis the

reason being that these prices reflect market outcomes on particular exchanges

for particular types of oil. While they serve as benchmarks for the pricing of oil

produced elsewhere, they do not reflect the cost refineries actually pay. For this

reason, the U.S. refiner’s acquisition cost of imported crude oil is the closest proxy

to a true global oil price. It is a volume-weighted price series based on the crude

oil imported to the United States. Using this price in oil market VAR models is

not uncommon in the literature (see e.g. Aastveit, Bjørnland and Thorsrud 2015;

C. J. Baumeister and James D Hamilton 2017; Kilian 2009). For a discussion on

the different oil prices and their uses, see Alquist, Kilian and Vigfusson (2013)

and Kilian and Vigfusson (2011).
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B Unit Root and Stationarity Tests of U.S. In-

ventories

2004 2006 2008 2010 2012 2014

-0.03

-0.02

-0.01

0

0.01

0.02

0.03

Figure 6: Plot of the log change in U.S. inventories over the sample 2003:M01–
2015:M12. Data is retrieved from U.S. Energy Information Administration (EIA).

Unit root and stationarity tests

Variable Lags ADF PP KPSS

∆U.S. inventories N/A −7.65∗∗∗ 0.12
2 −7.98∗∗∗

4 −6.07∗∗∗

6 −5.63∗∗∗

8 −5.48∗∗∗

10 −3.60∗∗∗

Critical values
1% −3.47 −3.47 0.74
5% −2.88 −2.88 0.46
10% −2.58 −2.58 0.35

Table 2: Test results from an Augmented Dickey-Fuller test (ADF), a Phillips-Perron
test (PP) and a Kwiatkowski-Phillips-Schmidt-Shin test (KPSS) to check for unit root
and stationarity in U.S. inventory data. The series is tested with a constant term and
in first difference after taking the natural logarithm. The sample range is 2003:M01–
2015M12 with monthly observations. For the ADF and PP tests, the null hypothesis is
that the series has a unit root while the null hypothesis for the KPSS test is that the
series is stationary. The test results suggest stationarity and no unit root.
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C Alternative SVAR model with U.S. crude oil

production

In section 3.2, a new way of identifying supply shocks was implemented with

U.S. crude oil imports. A relevant question is what the results would be if an

alternative model that included U.S. crude oil production rather than imports

was estimated. The only difference from earlier is the inclusion of U.S. crude oil

production instead of oil imports.

The variable ordering is similar to the previous model with supply variables on

top and United States production also with a short-run vertical supply curve.
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Figure 7: Impulse responses generated from the alternative SVAR model with U.S.
production and the sample 2003:M01–2015:M12. They are all in levels of the variables.
Shocks are normalised so that the response of the variables is 1 on impact, i.e. 1%
for the OPEC supply shock, U.S. supply shock and aggregate demand shock while one
log-unit for the oil price. The shaded areas represent 68% confidence bands calculated
using a bootstrap with 10,000 draws.
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Figure 8: Historical decomposition of the real price of oil derived from the alternative
SVAR model with the 2003:M01–2015:M12 sample. The shaded areas correspond to
the cumulative effects of the different shocks on the oil price.

Variance decomposition of the real price of oil

Shocks Horizons

1 month 6 months 12 months 18 months

OPEC supply
2.53 1.45 2.63 6.61

(0.33; 8.71) (1.57; 9.92) (2.98; 17.42) (4.87; 25.55)

U.S. supply
0.01 9.26 8.46 10.01

(0.07; 3.30) (2.05; 22.33) (4.71; 23.93) (6.22; 26.37)

Aggregate demand
2.08 4.31 6.90 6.80

(0.24; 6.68) (1.74; 14.81) (3.32; 22.54) (4.21; 22.91)

Oil-specific demand
95.37 84.97 82.00 76.58

(84.39; 96.76) (61.16; 87.38) (47.13; 78.63) (38.82; 72.30)

Table 3: Variance decomposition (in percentages) of the real price of oil for different
time horizons, generated from the alternative SVAR model with sample 2003:M01–
2015:M12. The confidence intervals (in brackets) are at the 68% level and computed
using a bootstrapping method with 10,000 draws.

D Section 5—Robustness and sensitivity checks

D.1 Alternative restrictions

In my baseline model I assume that OPEC oil production cannot respond contem-

poraneously to U.S. supply shocks. To investigate whether my results are sensitive

to this assumption, I report results for two alternative identification schemes.
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D.1.1 Alternative ordering

A simple check of whether the results are sensitive to the restriction on s12 is

to re-arrange the equations so that s12 now corresponds to the contemporaneous

OPEC parameter in the United States imports equation. While often perceived

as an infeasible exercise without any prior considerations and in large systems (see

Kilian and Lütkepohl 2017), only two different models (orderings) are considered

here as the other restrictions are taken as given following Kilian (2009). The

results from this model are reported in figure 9. The first two columns show that

the main results are largely insensitive to the ordering of the equations. OPEC

production, no longer restricted to zero on impact, now responds significantly

negative to a U.S. supply shock on impact and the oil price responds slightly less

and slightly following a U.S. supply shock and an OPEC supply shock respectively.

The qualitative interpretation of the results remains unchanged.
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Figure 9: Impulse responses generated from the baseline model but where the ordering
of the supply variables have been interchanged. The sample is 2003:M01–2015:M12.
They are all in levels of the variables. Shocks are normalised so that the response of
the variables is 1 on impact, i.e. 1% for the OPEC supply shock, U.S. supply shock and
aggregate demand shock while one log-unit for the oil price. The shaded areas represent
68% confidence bands calculated using a bootstrap with 10,000 draws.
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D.1.2 Mixed restrictions

One limitation of using a recursive identification scheme is that OPEC oil pro-

duction and U.S. imports cannot both affect each other contemporaneously. To

allow for this, I identify shocks using a combination of sign and zero-restrictions.

Estimation of the reduced form model is done by applying Bayesian methods with

diffuse priors.20

Sign restrictions have become a popular way of identifying structural shocks and

date back to Faust (1998), Canova and De Nicolò (2003) and Uhlig (2005). For

simplicity, only the zero restriction on s12 will be relaxed. While not very common,

imposing a mix of identifying restrictions has been done previously in Aastveit et

al. (2015). Behar and Ritz (2017) show that a shift to a market-share strategy by

OPEC can be optimal when facing competition from high-cost suppliers. OPEC

thus will respond with the opposite sign to a change in U.S. imports. In other

words, following a negative U.S. import shock reflecting a higher domestic supply

of crude oil, OPEC will respond by increasing their own production.21 The re-

striction is imposed only on impact following Canova and Paustian (2011) to not

to be more restrictive than necessary.
e∆opecprod

e∆usimpS

erea

elrpo


t

=


+ − 0 0

× + 0 0

× × + 0

× × × +



ε∆opecprod

ε∆usimpS

εrea

εlrpo


t

(6)

To produce impulse response functions that are consistent with the restrictions

described in equation 6, a procedure based on the Rubio-Ramirez, Waggoner and

Zha (2010) algorithm is implemented.

First, the Cholesky decomposition of the covariance matrix of the reduced form

model is computed, Σe = SS ′. With S̃ = SP , Σe = S̃S̃ ′ also holds if P is an

orthogonal matrix with the same dimensions as S. By drawing P randomly, we can

have as many candidate draws of S̃ we want. Each draw of the orthogonal matrix

P is constructed in the following way: First draw a 2×2 matrix W with elements

20The posterior distribution is then dominated by the likelihood function. Further, assuming
normally distributed reduced form errors, the posterior will be Normal-Inverse-Wishart with
mean and variance parameters corresponding to the OLS estimates of the parameters and cov-
ariance matrix of the reduced form model. See Kadiyala and Karlsson (1997) and Canova (2007)
for details.

21In order to distinguish the OPEC supply shock from the U.S. import shock, it is necessary
to restrict the response of OPEC to move in the opposite direction of U.S. imports. Depending
on the signs of the unrestricted parameters, the OPEC supply shock and the U.S. import shock
could be observationally equivalent if not.
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w ∼ N(0,1). Then perform a QR-decomposition W = QR with the property that

QQ′ = Q′Q = I. Finally, construct the orthogonal matrix P =

Q2×2 0 0

0 1 0

0 0 1

.

Each draw of S̃ is checked against the sign-restrictions posited in equation 6 and

stored if it passes. If the restrictions are not satisfied, the draw is discarded and

a new matrix P is drawn. Among all the accepted draws, the impulse response

functions are computed.

The results are shown in figure 10. The solid lines correspond to the mean im-

pulse responses at each horizon. Note that because of the identification strategy

implemented, only the responses of the OPEC supply and the U.S. import shocks

will differ from the baseline model. The responses to the OPEC supply shock are

mostly unchanged. This is to be expected as the responses to this shock were not

restricted in the baseline model. The main difference is that the response of the

real oil price is now insignificant. OPEC responds to a negative U.S. import shock

by increasing output. However, this increase is very small in magnitude. Global

real activity responds negatively, but is only significant from zero in some periods.

The main result from the baseline model is robust to the identifying restrictions

as the oil price decreases following a negative U.S. import shock in a similar way

as with a pure recursive identification scheme.

D.2 SVAR with U.S. inventories

In order to address the issue of inventories not being included in the main model,

I present here an adaptation of the Kilian and Murphy (2014) model where an

extra equation for adjusted U.S. imports is included. The model is estimated on a

2000:M01–2015:M12 sample compared to the baseline model as the extra equation

introduces additional parameters to be estimated. Consider the following reduced

form model

Yt = µ+
P∑

p=1

ApYt−p + et (7)

where Yt =
[
∆opecprodt,∆usimp

S
t , reat, lrpot,∆usinvt

]′
. The first four variables

remain the same as in the baseline model while ∆usinvt is the percentage change

of total U.S. crude oil inventories and the number of lags is 18. The estimation of

the reduced form model in equation 7 is done by applying Bayesian methods with

diffuse priors so that posterior distributions will be Normal-Inverse-Wishart.

A total of 5 structural shocks will be identified by impact sign-restrictions. The
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Figure 10: One standard deviation impulse responses generated from the imports
model described in equation 6. The sample is 2003:M01–2015:M12. They are all in
levels of the variables. The U.S. import shock is normalised to be negative. The solid
line represents the median response at each horizon and the shaded areas represent 68th
posterior probability regions of the estimated impulse responses.

first three, the OPEC supply shock, the U.S. import shock and the aggregate

demand shock have similar interpretations as in the baseline model. The OPEC

supply shock is an unexpected increase in OPEC production that lowers oil prices

and increases real activity. As prices fall, U.S. producers will reduce output and

U.S. refineries would have to import more crude oil to cover petroleum product

demand. The effect on inventories is ambiguous, but the logic is the same as in

Kilian and Murphy (2014). Storage demand might fall as the OPEC supply shock

triggers a predictable decrease in prices, but it might also increase to smooth out

consumption. The same logic applies to the U.S. import shock which represents

a sudden change in the domestic availability of crude oil that moves U.S. demand

for imports. However, as has been shown by Behar and Ritz (2017), it can be

optimal for OPEC to switch to a market-share strategy when facing competition

from high-cost suppliers and OPEC will respond by increasing output following

a negative U.S. import shock. This restriction is necessary in order to separately

identify the OPEC supply shock and the U.S. import shock with sign-restrictions.

A positive aggregate demand shock raises oil price and stimulates oil production

among OPEC producers and in the United States. The effect on inventories are
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OPEC supply shock U.S. import shock Aggregate demand shock Speculative demand shock

OPEC production + + + +
U.S. imports + – – –
Real economic activity + + + –
Real price of oil – – + +
U.S. inventories +

Table 4: Sign-restrictions imposed on impact responses

again ambiguous. Kilian and Murphy (2014) named the next shock the speculative

demand shock and is the parallel to the oil-specific demand shock in the baseline

model. It captures changes in the expectations regarding the future availability of

crude oil. A speculative demand shock that raises the oil price in anticipation of

future oil shortages will induce market agents to put oil in storage before the actual

shortfall has materialised, hence speculative. Such a shock will make producers

increase output while consumption will fall to accommodate the storage of oil.

The final structural shock is a residual shock that will account for anything not

captured by the other shocks. Following Kilian and Murphy, I do not impose any

restrictions on the responses from this shock nor do I report any results stemming

from this shock. Table 4 summarises the impact sign-restrictions implied by the

above description of the properties of each structural shock. The U.S. import

shock is normalised to decrease the real price of oil.

In addition to these sign-restrictions, I follow the example of Kilian and Murphy

(2014) and impose a dynamic restriction on the shape of the response of the real

price of oil to a OPEC supply shock. This is to ensure that models, where a

positive supply shock do not result in lower prices and higher quantities, are ruled

out.

The estimation procedure follows the standard Rubio-Ramirez, Waggoner and

Zha (2010) algorithm. With the estimates of the reduced form model and the

covariance matrix Σe, let the reduced form errors be written as a linear combin-

ation et = Sεt where S is the N × N contemporaneous multiplier matrix and

εt the vector of structural shocks with E [εtε
′
t] = I. To obtain an estimate of

S, perform an eigendecomposition of Σe = EDE ′ and let S = ED0.5 so that

Σe = SS ′. With S̃ = SP , Σe = S̃S̃ ′ will also hold as long as P is an orthogonal

N ×N matrix. This means that we can construct as many candidate draws of S̃

as we want by drawing matrices P randomly. Each draw of S̃ is checked against

the sign-restrictions and stored if in compliance. P will be drawn in the following

way: First draw an N × N matrix K of standard normal variables and perform

a QR decomposition such that K = QR where QQ′ = Q′Q = I and let P = Q′.
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Figure 11: Impulse responses generated from the model with inventories described in
Equation 7 and with impact sign-restrictions as described in Table 4. The sample is
2000:M01–2015:M12. They are all in levels of the variables. The shocks are normalised
so that the response of the variables is 1 on impact. The U.S. import shock is normalised
to be negative. The solid line represents the median response at each horizon and
the shaded areas represent 68th posterior probability regions of the estimated impulse
responses.

Finally, the impulse response functions are computed and checked against the

dynamic sign-restriction.

The impulse responses are shown in Figure 11. Overall, the conclusions draws

based on the baseline model is not changed. However, there are some significant

differences stemming from the new identification scheme as well as the inclusion

of inventories in the model. I will discuss each in turn. Following a OPEC supply

shock, the oil price falls immediately and is persistently negative for over 20

months. In the baseline results where there are no restrictions on this response, the

oil price is positive initially. Global activity increases as oil prices fall for a couple

of months contrary to the baseline model where activity is persistently negative.

Restricting the oil price to respond negatively on impact may have remedied this

contradictory result. Demand for U.S. imports is persistently positive and the level

of inventories responds positively on impact. This suggests that the consumption

smoothing effect dominates in this case.

The U.S. import shock that reduces U.S. demand for crude oil imports due to
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higher domestic supply causes the oil price to fall immediately. The increase is

only significantly different from zero for 6 months compared to 16 in the baseline

model. This is possibly due to global activity responding positively for the first

10 months rather than negatively as in the baseline model. In fact, relaxing the

impact restriction on the response of global activity brings these responses closer

to the baseline model results.

The responses from the aggregate demand shock are similar to those in the baseline

model. The speculative demand shock that raises the oil price and inventory

demand has much less persistent effect on the oil price than the oil-specific demand

shock in the baseline model. This might stem from global activity responding

negatively on impact rather than positive as in the baseline model and in Kilian

(2009).

Based on the above results, controlling for inventories does not seem to produce

results that contradicts those of the baseline model. The identification scheme

however, has put more structure on the variable responses, especially the responses

of global real activity, and thus muted the oil price responses to many of the

structural shocks.
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