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Abstract

Ordinal data in social science statistics are often modeled as discretizations of a

multivariate normal vector. In contrast to the continuous case, where SEM estimation is

also consistent under non-normality, violation of underlying normality in ordinal SEM may

lead to inconsistent estimation. In this article, we illustrate how underlying non-normality

induces bias in polychoric estimates and their standard errors, and it is noteworthy that

this bias is strongly affected by how we discretize. It is therefore important to consider

tests of underlying multivariate normality. In this study we propose a parametric bootstrap

test for this purpose. Its performance relative to the test of Maydeu-Olivares is evaluated

in a Monte Carlo study. At realistic sample sizes, the bootstrap exhibited substantively

better Type I error control and power than the Maydeu-Olivares test in ordinal data with

ten dimensions or higher. R code for the bootstrap test is provided.

Keywords: ordinal data, structural equation modeling, polychoric correlation,

parametric bootstrap
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Pernicious polychorics: The impact and detection of underlying non-normality

Introduction

Ordinal data, such as responses to questionnaires, are common in the behavioral,

educational and psychological sciences. Instead of neglecting the categorical nature of the

data by applying methods developed for continuous data, methodology has been developed

in an effort to model ordinal categorical data (e.g. Christoffersson, 1975; Muthén, 1984).

In the context of covariance modeling like confirmatory factor analysis (CFA) and

structural equation modeling (SEM), these methods have been found to outperform

methods that assume continuous variables (Li, 2016b). The methodology is based on the

assumption that the observed ordinal data represent unobserved continuous variables that

have been discretized. That is, observed p-dimensional vectors X of ordinal observations

are thought to be generated through the discretization of an unobserved, continuous

p-dimensional random vector ξ with correlation matrix Σ. This model class includes

ordinal SEM and the special case of ordinal CFA, as well as IRT models, see Takane &

De Leeuw (1987) and Foldnes & Grønneberg (2019, Appendix A). In order to identify the

polychoric correlation matrix, that is, the correlation matrix of ξ, it is typically assumed

that ξ has a multivariate normal distribution (Pearson, 1901). Under this assumption Σ

may be estimated with normal-theory based maximum likelihood (Olsson, 1979). Then we

can fit a CFA/SEM model to the matrix of polychoric correlations using diagonally or

unweighted least squares estimation. The methodology is implemented in current software

packages like EQS (Bentler, 2006), Mplus (Muthén & Muthén, 2012), LISREL (Jöreskog &

Sörbom, 2015) and lavaan (Rosseel, 2012), and is in frequent use in empirical research.

When observing a random sample from a continuous distribution, the underlying

covariance matrix can always be estimated consistently using the empirical covariance

matrix. Such a universally valid estimator does not exist in the ordinal case, and the

important polychoric correlations of Olsson (1979) specifically assume that ξ is

multivariate normal, and need not be a consistent estimator for Σ outside of this condition.
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In practice, empirical research studies do not usually report on the tenability of the

normality assumption. This may partly be due to the lack of statistical tests for underlying

non-normality in popular software packages. Another factor is that several highly

influential Monte Carlo studies such as Flora & Curran (2004) have suggested that

moderate deviations from normality in ξ will not lead to substantive bias in the estimates

of polychoric correlations (see Grønneberg & Foldnes, 2019, for more references and a fuller

discussion on this point).

Most simulation studies on the robustness of polychoric correlations simulate ordinal

data using the following two-step procedure. Firstly, a continuous random vector with a

fixed covariance matrix Σ is generated using the Vale-Maurelli (Vale & Maurelli, 1983)

simulation approach. Secondly, this continuous vector is discretized in a manner made

precise below (see eq. (3)). Surprisingly, it turns out that this second step usually results in

an ordinal random vector which is numerically equal to a discretized version of a

multivariate normal vector with a correlation matrix slightly different from Σ. That is, the

simulated data is such that it could have been generated by simulating from an exactly

multivariate normal random vector and then discretized. As a result, very few simulation

studies have in fact studied real violation of the underlying normality assumption in

ordinal SEM. This was recently shown in Grønneberg & Foldnes (2019), based on the

result that the Vale-Maurelli vector usually has a normal copula, as shown in Foldnes &

Grønneberg (2015). The extent to which non-normality in ξ leads to bias in the polychoric

coefficients and their standard errors, and consequently to invalid model inference is

therefore partially an open question.

We will illustrate that non-normality in ξ may entail substantial estimation bias for

the polychoric correlation. We expect such bias to propagate to estimates of parameters in

the SEM/CFA model, since these models are fitted to the polychoric correlation matrix.

Our illustrations also show that there are non-normal conditions where the bias of the

polychoric correlations are minimal, but where standard inference procedures based on a
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normal assumption are invalid, e.g. by producing incorrect standard errors of the

estimates. We therefore expect that SEM inference as well as chi-square statistics for

testing correct model specification become invalid as a result. Hence, it is important to

develop and evaluate tests for underlying normality in ordinal datasets. Should such a test

reject the normality hypothesis, we must interpret our estimated model with more caution.

We suggest that researchers should therefore run tests for underlying normality and report

the result of such tests in their studies.

In the lowest possible dimension, e.g. the bivariate case, several tests have been

proposed and evaluated for testing discretized non-normality (Maydeu-Olivares et al., 2009;

Jöreskog, 2005). In the present article our focus is on testing discretized normality for

vectors of arbitrary dimensions. While there are tests for combining pairwise normality

tests for all bivariate marginals (Raykov & Marcoulides, 2015), to the best of our

knowledge, only one test has been proposed for directly testing normality in arbitrary

dimensions (Maydeu-Olivares, 2006) but has still not been empirically evaluated, with the

exception of a small study in Maydeu-Olivares (2006).

This article is organized as follows. We first illustrate that the polychoric estimator

may be severely biased when the underlying normality assumption is violated. We then

review the general discretized normality model and the test of Maydeu-Olivares (2006). A

new parametric bootstrap test for underlying non-normality is then introduced. Next, we

describe our simulation design, with an emphasis on proper simulation methodology for

ordinal covariance models. In the non-normal simulation conditions, we assess the bias of

the normal-theory polychoric correlations and their associated standard errors. The

simulation results are then presented and discussed. The final section provides some

concluding remarks.
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Illustrations of the pernicious influence of underlying non-normality on normal

theory polychoric correlations

In this section we provide exact calculations for the normality-based polychoric

correlation in a specific bivariate non-normal case. Our aim is to demonstrate that

underlying non-normality may result in severe bias in the population values of the

polychoric correlations. This investigation expands similar studies, such as those by

Monroe (2018) and Jin & Yang-Wallentin (2017). In contrast to previous studies, we follow

Foldnes & Grønneberg (2019) and only consider underlying distributions with standard

normal marginals. We find that the size and direction of this bias varies greatly as a

function of the number and placements of the thresholds, and is difficult to predict. This

strongly motivates testing for underlying normality.

Our illustration is restricted to the bivariate case. Since the polychoric correlation

matrix is computed using bivariate distributions only, it suffices to study the bivariate case.

A further advantage of restricting attention to the bivariate case is that we are able to

visualize the non-normal distributions we work with. We note that the study reported in

this section has a focus on a limited case, and should be followed up by further research.

Its main limitation is that we mainly focus on a specific deviation from normality. We first

provide a detailed introductory example which shows that polychoric correlations may have

substantial bias, in both positive and negative directions. We then expand this by

systematically varying the set up of the introductory illustrative example, and we study

how this influences the bias of the polychoric correlations.

A simple illustration of polychoric bias

We here provide a case that incorporates both substantive positive and negative bias

with respect to the true correlation among ξ1 and ξ2, the coordinates of ξ. The calculations

are available as R (R Core Team, 2018) code in the supplementary online material. We use

the concept of a bivariate copula to construct a non-normal bivariate distribution. For a
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general overview on copulas, see Nelsen (2007) and Joe (1997). A bivariate copula C(u, v)

is the joint cumulative distribution function (CDF) of two random variables, each of which

is uniformly distributed on [0, 1]. Sklar (1959) showed that for any bivariate vector (ξ1, ξ2)

with continuous marginals, the joint CDF H(a, b) = P (ξ1 ≤ a, ξ2 ≤ b) may be uniquely

decomposed into its marginals and its copula C:

H(a, b) = C(F1(a), F2(b))

where F1 and F2 are the CDFs of ξ1 and ξ2, respectively.

In order to simulate from H, one may first simulate a random vector (U1, U2) from

the copula using general techniques described e.g. in Joe (1997), and then transform

(U1, U2) via

(ξ1, ξ2) =
(
F−1

1 (U1), F−1
2 (U2)

)
, (1)

which will have distribution H, i.e. (ξ1, ξ2) will have marginal distributions F1 and F2, and

copula C.

Following arguments in Foldnes & Grønneberg (2019), we here assume that both ξ1

and ξ2 are standard normally distributed, i.e. that F1 = F2 = Φ, where Φ is the CDF for

standard normal distribution. Given any copula C, a bivariate distribution with standard

normal marginals is defined by the joint CDF H(a, b) = C(Φ(a),Φ(b)). In the present

illustration we let C belong to the class of Joe copulas:

Cθ(u, v) = 1− [(1− u)θ + (1− v)θ − (1− u)θ(1− v)θ]1/θ.

The strength of dependency is parameterized by θ ∈ [1,∞]. In this illustration the Pearson

correlation between ξ1 and ξ2 is fixed at ρ = 0.7. A numerical search revealed that setting

θ = 3.011 for the Joe copula results in a Pearson correlation of ρ = 0.7 when combined

with standard normal marginals. That is, the bivariate vector whose CDF is

H(a, b) = Cθ=3.011(Φ(a),Φ(b)) (2)
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has a Pearson correlation coefficient of 0.7, and standard normal marginal distributions. In

terms of the stochastic representation in eq.(1) with F1 = F2 = Φ, we have that

0.7 = Cov (ξ1, ξ2) = Cov
(
Φ−1(U1),Φ−1(U2)

)
,

when (U1, U2) is distributed according to the Joe copula with dependence parameter

θ = 3.011.

Note that while the marginal distributions of (ξ1, ξ2) are exactly standard normal, its

full bivariate distribution is far from normal. To visualize the difference, consider the

contour lines of the density of H in eq. (2) presented in the right-hand panel of Figure 1.

For comparison the contours of the bivariate normal distribution with standard normal

marginals and correlation 0.7 are depicted in the left-hand panel. Clearly, although the two

distributions have the same univariate marginals, and the same correlation of 0.7, the

distributions are not the same. One notable feature of the Joe copula is the strong

dependence in the upper tails.

The dashed horizontal and vertical lines in the figure represent the thresholds used in

our example. These thresholds are cut-off values to discretize ξ1 and ξ2 into ordinal

variables X1 and X2, respectively, each having three categories. As a special case of the

upcoming general description (see eq. (3)), we have

X1 =


1, if ξ1 ≤ 0.7

2, if 0.7 < ξ1 ≤ 1.7

3, if ξ1 > 1.7

, X2 =


1, if ξ2 ≤ −1.5

2, if − 1.5 < ξ2 ≤ 1.8

3, if ξ2 > 1.8

.

The resulting distribution of X1 is given by the probabilities 0.758, 0.197, 0.045, and is

highly skewed. The distribution of X2 is more symmetrical, with probabilities

0.067, 0.897, 0.036. With the copula package (Hofert et al., 2013) we can calculate the joint

probability distribution of X1 and X2, expressed as a 3 × 3 table. The values of the joint

probabilities (rounded to three decimal points) are printed in the corresponding cells in

Figure 1. We see that the joint probabilities of (X1, X2) when discretizing the normal
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(a) Bivariate normal distribution
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0.000

0.692

0.066

0.006

0.190

0.001

0.029

0.015

0.000

(b) Bivariate distribution with Joe copula

Figure 1 . Contour lines for two bivariate distributions with correlation 0.7 and standard

normal marginals. The dashed lines represent threshold values 0.7, 1.7 for ξ1, and −1.5, 1.8

for ξ2. In each cell defined by the thresholds is printed the corresponding joint probability

for ordinal variables X1 and X2.

distribution differ somewhat from the probabilities obtained when discretizing the Joe

distribution.

We now study the normal-theory (NT) likelihood function for observations of

(X1, X2), as studied in Olsson (1979). This likelihood function is based on the assumption

that (ξ1, ξ2) is bivariate normal with standardized marginals and Pearson correlation ρ, and

is a function of hypothesized thresholds and Pearson correlation, and depends on the

observations only through the 3× 3 table of empirical proportions.

We note that the NT likelihood function is not a correctly specified likelihood

function when (ξ1, ξ2) has a Joe copula. Therefore the NT maximum likelihood estimator

(NT-MLE) does not need to be consistent for the actual Pearson correlation of (ξ1, ξ2),

which we recall is 0.7 under both distributions, but will instead estimate a so-called least
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false parameter with respect to the Kullback–Leibler divergence (see Jin & Yang-Wallentin

(2017) for a discussion of this topic in the context of polychoric correlations and Claeskens

& Hjort (2008) for a general perspective).

In order to compute the limits of the NT-MLE of ρ, we may approximate it by

computing the NT-MLE from a very large simulated sample from (X1, X2). Alternatively,

we may in this case identify this limit exactly through the following simple procedure. In

the NT likelihood function, we insert the true 3× 3 probability table, i.e. the population

distribution of (X1, X2). The NT likelihood function can then be maximized, which results

in the NT-MLE of an infinitely large sample of (X1, X2), i.e. the least false values in the

population. We follow standard practice and use the two-stage method of Olsson (1979)

and not the simultaneous MLE, and note that the least false parameter values of these two

methods may differ (Jin & Yang-Wallentin, 2017).

We will call the limit of the NT-MLE of ρ for the NT polychoric correlation, and we

note that this is a population parameter which need not equal the Pearson correlation of

(ξ1, ξ2). Under the bivariate normal distribution shown in Figure 1(a), the NT polychoric

correlation is, as dictated by theory, ρ = 0.7. Under the bivariate distribution with Joe

copula in Figure 1(b) the NT polychoric correlation is instead ρ = 0.99. That is, the NT

polychoric estimator has a substantive positive bias of 34%, which is close to the

theoretical maximum, since 1 is the theoretical upper bound for correlations.

For the same distributions for (ξ1, ξ2) depicted in Figure 1 we might change the

thresholds in order to obtain a substantial negative bias. With thresholds −1.8, 1.8 for ξ1

and −1.8,−1.2 for ξ2, the NT polychoric correlation is still 0.7 under the bivariate normal

distribution, compared to 0.35 for the Joe distribution. The relative bias is now negative

and very substantial at 50%.
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A study of the impact of threshold configurations and underlying Pearson

correlation on normal theory polychoric correlation bias

In the above we considered how the NT polychoric correlation behaves under two

different ordinal distributions when ξ is non-normal. The only difference between the two

distributions was the choice of thresholds, and the result was a substantial difference in NT

polychoric correlation bias. Here, we report a more systematic exploration of the

consequences of the placements of the thresholds, keeping the distribution of ξ fixed to a

Joe copula with standard normal marginals and Pearson correlation of 0.7. We study how

the bias in NT polychoric correlations vary across different threshold patterns. We also

assess the effect of fixing the thresholds, and thereby also the distributions, to be equal for

the two marginals.

Our approach is to randomly generate thresholds. For each threshold configuration

we calculate the NT polychoric correlation for the resulting ordinal distribution. Note that

while the thresholds will be randomly drawn in a manner described below, this is the only

source of randomness. That is, we do not here assess the finite sample behavior of the

polychoric estimator based on simulated data, but precisely calculate its limit.

For K = 3, only two actual thresholds are generated. In general, K − 1 thresholds are

drawn. To illustrate our simulation method, we consider the K = 3 case in detail. Here, we

draw random thresholds τ1,1, τ1,2 for marginal and τ2,1, τ2,2 for the second. The population

value of the limit of the NT polychoric estimator is then calculated based on the

distribution of the random variables

X1 =


1, if ξ1 ≤ τ1,1

2, if τ1,1 < ξ1 ≤ τ1,2

3, if ξ1 > τ1,2

, X2 =


1, if ξ2 ≤ τ2,1

2, if τ2,1 < ξ2 ≤ τ2,2

3, if ξ2 > τ2,2

The distribution of (ξ1, ξ2) is still kept to the distribution of eq. (2), i.e. a distribution with

standard normal marginals, and a Joe copula with θ = 3.011. We also consider cases where

K = 5 and K = 15. The simulation proceeds as above, except we use the general set up
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described in eq. (3) in the upcoming section, generalizing the above equations to a finer

discretization.

Thresholds are randomly generated in three ways, and this is summarized here. For

more details, the R code in the supplementary material should be consulted. A first

method for generating thresholds is by using uniform thresholds, which corresponds to

simulating thresholds uniformly on [−3, 3] and then sorting the numbers. The second

method for generating thresholds is by using logarithmic thresholds. For i = 1, 2, we set

τi,k = (log k)− Ui where U1, U2 are independent and uniform on [0, 3]. The third method

for generating thresholds produces symmetric thresholds. We consider cases where

K = 3, 5, 15, and so K − 1 is an even number. The first (K − 1)/2 thresholds are generated

by simulating random numbers uniformly and then sorting the numbers. The remaining

thresholds are set equal to the first, but in reverse order, and with opposite signs. As a

consequence, the distribution of the ordinal variables will also be symmetrical.

We also consider the condition where the marginals are equal by using the same

thresholds. In this case we first generate τ1,1, τ1,2 and then set τ2,j = τ1,j for j = 1, 2. In

summary, for each level of K, by crossing equality/inequality of marginals with threshold

generation approach, we have a total of six conditions. In each condition 1000 thresholds

configurations were drawn, and the NT polychoric correlation was calculated for each

configuration.

The resulting NT polychoric correlations are given in Figure 2. We first note that the

symmetric case has less bias than the other cases. Also, equality of marginals reduces bias

considerably in the symmetric case, but not in the asymmetrical cases. In the uniform and

logarithmic conditions, the ranges of NT polychoric correlations are very wide,

encompassing weak correlations and almost a perfect positive correlation. We finally

observe that bias is reduced as the number of levels increases.

We repeated the study with the dependence parameter for the Joe copula set to

θ = 1.53, giving a Pearson correlation of 0.36 when paired with standard normal marginals.
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Figure 2 . Histograms of NT polychoric correlations for underlying Joe distribution with

correlation 0.7, represented as a red vertical line. SYM, LOG and UNI refer to symmetric,

logarithmic and uniform threshold generation methods, respectively. The suffix -EQ refers

to equal thresholds in the two marginals.

This more modest correlation leads to a distribution which is closer to standard Normal.

Contour graphs of bivariate normal and Joe distributions for a Pearson correlation of 0.36

may be found in the online supplementary material (Figure S1), as well as histograms of

the spread of NT polychoric correlations (Figure S2).

The findings in this low-correlation version of the experiment are similar to those in

the above high correlation case. We observe that considerable variation in NT polychoric

correlation also exists here across the randomly generated thresholds. When the number K

of categories increase, the bias is generally reduced. However, the smaller bias associated

with symmetric marginals in the high-correlation case is not observed in the low-correlation

case. Also, equal marginal distributions in the symmetric case are not associated with
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smaller bias, as was the case for the high-correlational case.

Finally, instead of varying the thresholds, let us consider them as fixed. By

systematically varying the dependence parameter θ in the Joe copula, and calculating the

NT polychoric correlation for each value of θ, we may study how it is affected by varying

degrees of dependencies. We used fixed logarithmic thresholds, unequal in the two

marginals, with the same random numbers U1, U2 for each K = 3, 5, 15. For a grid of

θ ∈ [1, 18], we computed the resulting Pearson correlation for a Joe copula with

dependence parameter θ and standard normal marginals, as well as the NT polychoric

correlations for the given thresholds. The results are plotted in Figure 3. We see that the

bias in general decreases with the number of thresholds, as is expected from an inspection

of Figure 2. We also see that the bias is non-linear, being the greatest for Pearson

correlations around 0.8, for this particular distributional configuration. For very high

correlations, the bias decreases. In fact, for θ = 1 and for θ =∞, the Joe distribution is a

bivariate normal distribution: For θ = 1 we have independence in the Joe copula, while for

θ =∞ we have the so-called Frechet upper bound distribution with standard normal

marginals (Joe, 1997, Chapter 3). Since the marginals are standard normal, this

corresponds to a bivariate normal distribution with ρ = 0 and ρ = 1, respectively.

In conclusion, these examples show that estimating the polychoric correlation

coefficient while assuming underlying normality can lead to substantive estimation bias

(both negative and positive) when the normality assumption is violated. The wide range of

possible NT polychoric correlations observed for K ≤ 5 clearly demonstrates that the

interaction between a specific threshold configuration and the underlying distribution has a

strong effect on the bias of NT polychoric correlation. The nature of this interaction seems

complicated, and we could only discern with clarity the following pattern: bias is

consistently reduced when the number of categories increased. Also, symmetrical

thresholds are associated with smaller bias, especially in the high-correlational case.
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Figure 3 . Variation of bias in NT polychoric correlation for a selection of Joe copulas with

standard normal marginals and fixed logarithmic thresholds for K = 3, 5, 15.

Discretized normality and the test of Maydeu-Olivares

In ordinal SEM based on polychoric correlations the following framework is adapted.

We observe n IID observations of a random vector X = (X1, X2, . . . , Xp)′ whose

coordinates are ordinal. We assume X is discretized from a continuous p-dimensional

random vector ξ, which is hypothesized to be multivariate normal. This means that for

i = 1, 2, . . . , p, we have

Xi =



x1, if τi,0 < ξi ≤ τi,1

x2, if τi,1 < ξi ≤ τi,2
...

xK , if τi,K−1 < ξi ≤ τi,K .

(3)

We have for each i that τi,0 = −∞ < τi,1 ≤ τi,2 ≤ · · · ≤ τi,K−1 ≤ τi,K =∞. Under this

model the distribution of X is a function of the distribution of ξ and of the thresholds. By
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identifiability considerations, we assume that ξ has standardized marginals. By the

normality assumption, this means that the correlation matrix of ξ and the thresholds fully

describe the distribution of X.

Maydeu-Olivares (2006) proposed a test for the null hypothesis that ξ has

multivariate normal distribution. The test statistic is based on the discrepancy between

the observed bivariate proportions in the sample and the probabilities implied by assuming

that ξ is multivariate normally distributed. Let k 6= l and denote by pkl,ij the number of

observations in the sample with Xk = i and Xl = j, divided by the sample size. These are

the observed bivariate proportions in our dataset. To obtain the model-implied

proportions, that is, the proportions we would expect under the assumption of discretized

normality, we estimate the thresholds τ̂ and the polychoric correlation ρ̂ between ξk and ξl

(Olsson, 1979). Then, the model-implied proportion is calculated as

πkl,ij = P (τ̂l,i−1 < ξl ≤ τ̂l,i, τ̂k,j−1 < ξk ≤ τ̂k,j), assuming that (ξk, ξl) is normally distributed

with covariance matrix ( 1 ρ̂
ρ̂ 1 ). Note that in the probability defining πkl,ij, threshold

parameteres are estimated from data and are treated as fixed and their distribution is not

included in the probability calculation. Let rkl,ij = pkl,ij − πkl,ij be the residual between the

observed proportion and the proportion implied by normality. There are p(p− 1) ·K2/2

such residuals. Maydeu-Olivares (2006) derived the asymptotic distribution of the squared

residuals when ξ is multivariate normal:

T := n
∑

r2
kl,ij

d−→
d∑
i=1

αiZ
2
i , where Z1, Z2, . . . , Zd IID N(0, 1), (4)

where d = (K2 − 2K)p(p− 1)/2, and where α1, . . . , αd are the eigenvalues of the matrix

M = (I −∆G)Γ(I −∆G)′, (5)

where I is the identity matrix, and ∆ is a Jacobian matrix defined as ∂π/∂κ, where π

contains the model-implied bivariate proportions, and κ contains the thresholds and the

polychoric correlations. The matrix G is such that
√
n(κ̂− κ0) a= G

√
n(p− π0), where π0

contains the true bivariate proportions (Maydeu-Olivares, 2006, eq. 14). Since the limit in
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eq. (4) is a mixture of independent chi-square distributions, Maydeu-Olivares (2006)

proposed, in analogy with well-known approximations such as the Satorra-Bentler

adjustment (Satorra & Bentler, 1988), to scale T so that its asymptotic mean and possibly

variance equals that of a chi-square distribution with d degrees of freedom. A simple

mean-scaling then yields

TS = d · T
tr(M) .

A mean and variance correction obtained by scaling and shifting (Asparouhov & Muthén,

2010) yields

TSS = c1 · T + c2,

where

c1 :=
√

d

tr(M2) , c2 := d−

√√√√d · tr(M)2

tr(M2) .

We note that TSS, although mean-and-variance adjusted, is different from the

mean-and-variance adjusted test studied by Maydeu-Olivares (2006). However, these

statistics have been empirically shown to be tightly related (Foldnes & Olsson, 2015).

To the best of our knowledge and aforementioned, no simulation study has evaluated

the performance of these tests, with the exception of a small study (p = 12) in

Maydeu-Olivares (2006), which used the multivariate t-distribution to evaluate the power

of the tests. The results were promising, the tests maintained Type I error rates at an

acceptable level, while exhibiting a high power to detect that the multivariate t-distribution

was used, especially at the largest sample size. However, in that small study the number of

categories was restricted to K = 3 and only symmetrical thresholds were considered.

A parametric bootstrap test for discretized normality

Motivation for using the parametric bootstrap

Given an ordinal dataset, let T obs be the numerical value of the test statistic in

eq. (4), and let T̃ obs denote the scaled statistic TS or some other approximation to the true
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distribution of T . The true p-value is P (T > T obs), which may be approximated, using the

large sample result of eq. (4), by

P (χ2
d > T̃ obs). (6)

Since the limit variable in eq. (4) is not distributed according to a χ2
d-distribution, except if

e.g. α1 = · · · = αd, the difference between the approximate and the actual p-value will not

go to zero, i.e. we do not have consistency. Note that this potential inconsistency is a

direct consequence of the chosen approximation, and that such approximations often work

very well in finite samples (Foldnes & Grønneberg, 2017a).

A consistent method based on eq. (4) is obtained as follows. We estimate each

α1, . . . , αd from data, resulting in estimates α̂1, . . . , α̂d, and use the approximation

P (T > T obs) ≈ P

(
d∑
i=1

α̂iχ
2
1 > T obs

)
,

where the probability treats α̂1, . . . , α̂d as fixed. This test, in the context of model fit for

structural equation models, was studied by Foldnes & Grønneberg (2017a). The problem

with this approach is that d = (K2 − 2K)[p(p− 1)/2], a high number even in moderately

simple problems. It therefore seems likely that the estimation of α1, . . . , αd will introduce a

large degree of approximation error compared to using eq. (6).

Description of the proposed test

We next propose an alternative and consistent approximation to the p-value based on

the parametric bootstrap. Under the null hypothesis of discretized normality, the

distribution of the data is fully specified by a parametric model, and our proposed test is

therefore a simple application of the parametric bootstrap, see e.g. Efron & Tibshirani

(1994) and Rice (2006). Note that since we can simulate from the parametric model using

the estimated parameters, we do not need to re-sample from the data. Such re-sampling is

connected with applying the bootstrap to non-parametric models (Efron & Tibshirani,

1994). We now give a high level overview of the proposed method. A detailed technical

description of the parametric bootstrap test is given in Algorithm 1.
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Under the null hypothesis that ξ is normally distributed with standardized marginals,

the underlying probability distribution of the data is of the form

PΣ,τ (·)

where Σ is the correlation matrix of ξ and τ is the vector of the thresholds for the

representation of X in eq. (3). The true, unknown p-value is therefore

ptrue = P (T > T obs) = PΣ,τ (T > T obs).

The parametric bootstrap p-value uses estimators as approximations for Σ and τ . For

concreteness, assume that Σ̂, τ̂ are obtained with the normality-based method of Olsson

(1979). The bootstrap p-value is

pboot = PΣ̂,τ̂ (T > T obs), (7)

and is consistent. Since the probability is not easily calculated exactly, we follow standard

bootstrap practice (Efron & Tibshirani, 1994) by simulating B (where B is an

appropriately high number) new samples of size n, generated by discretizing a multivariate

normal vector with standardized marginals and correlation matrix Σ̂. The discretization is

done using eq. (3) with thresholds from τ̂ . We compute the test statistics T1, T2, . . . , TB,

each being computed on the basis of the simulated samples. Using these B simulated test

statistics, we approximate the probability in eq. (7) using

p̂boot = 1
B

B∑
i=1

I{Ti > T obs}

where I{A} is the indicator function of A, which is 1 if A is true, and zero otherwise. By

the law of large numbers, p̂boot is a consistent approximation of pboot as B →∞, which in

turn approximates ptrue. The stepwise progression of the test is outlined in Algorithm 1,

terminating with the p-value associated with the null hypothesis of underlying normality.

Simulating non-normal variables for ordinal covariance modeling

To evaluate the test of Maydeu-Olivares (2006) and the bootstrap test we apply

Monte Carlo simulation. We simulate non-normal continuous data with a pre-specified
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Algorithm 1 Bootstrap test of underlying normality
1: procedure Boot(original sample)

2: Calculate the polychoric correlation matrix Σ̂, and the threshold sets τ̂i for each

variable, based on original sample

3: Use original sample to calculate Torig with eq. (4)

4: for k ← 1, . . . , B do

5: cont.sample ← A random sample drawn from N(0, Σ̂)

6: ordinal.sample ← Discretize cont.sample using thresholds τ̂i

7: Use ordinal.sample to calculate Tk with eq. (4)

8: P(k)← 1 if Tk > Torig, 0 otherwise

9: end for

10: return the p-value as
∑B

k=1 P (k)
B

11: end procedure

correlation matrix, which is subsequently discretized using various threshold configurations.

Our goal is to control the univariate ordinal distributions, and the underlying correlation

matrix, while increasing the degree of non-normality in ξ. In this way the correlational

structure of ξ and the observed ordinal distributions are kept constant, and will not be

confounded with the effect of non-normality in ξ. Following identifiability arguments given

in Foldnes & Grønneberg (2019), we restrict attention to distributions of ξ that have

standard normal marginals.

There are many options for distributions with a prespecified correlation matrix Σ and

with standard normal marginals. The multivariate normal distribution with covariance

matrix equal to Σ and with expectation equal to the p-dimensional zero vector is one

candidate. A random vector with this distribution is denoted by Z in the following. To

break the underlying normality assumption, but still respect that the univariate marginals

be N(0, 1) and the correlation matrix be Σ, we used the VITA (VIne To Anything) method

(Grønneberg & Foldnes, 2017). VITA distributions are so-called regular vines (Bedford et
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al., 2002) with a pre-specified covariance matrix. Regular vines are, briefly summarized,

multivariate distributions constructed from bivariate copulas according to a hierarchical

scheme that may be visualized as a sequence of tree graphs. The nodes in the first tree

represent variables. In the next tree, the nodes represent unconditional pairs of variables.

In subsequent trees the nodes represent pairs of variables that are conditional on sets of

variables. An illustration of such a hierarchy of trees in the five-dimensional case is given in

Figure 4. This hierarchy of trees will be used in our Monte Carlo study. In addition to the

hierarchical tree structure, the user specifies univariate marginal distributions and the type

of bivariate copulas to be used for each edge in the trees. A numerical search across the

trees is performed to calibrate the copula parameters so that a desired correlation matrix is

reached. As argued by Foldnes & Grønneberg (2019), the VITA method is especially well

suited for the problem at hand, as the marginals can be fixed to standard normal, and we

have specified a correlation matrix. What is left is to specify a sequence of trees, and a

family of bivariate copulas to use for constructing the VITA distribution.

1 2 3 4 5

12

23 34

35

T1

1323 34 35 T2
12 | 3 14 | 3 45 | 3

12 | 3 14 | 3 45 | 3 T3
24 | 13 15 | 34

24 | 13 15 | 34 T4
25 | 134

Figure 4 . A five-dimensional regular vine.
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Simulation design

Next we present the design conditions for our Monte Carlo study.

Dimensionality and correlation matrix of ξ

We generated data with dimensions p = 5, p = 10 and p = 15. These dimensionalities

represent a range from small- to medium-sized models used in CFA studies. Given the

considerable computational running time of the tests evaluated in this study when

dimensionality increases, we did not include sample sizes that reflect larger (p ≥ 20)

models. Test evaluation at larger dimensions is a worthy topic for future studies. In all

conditions the univariate marginals were of standard normal distribution, and at each

dimension p, the correlation matrix of ξ was kept fixed. The correlation matrices were

obtained as model-implied matrices for two-factor analytical models; see the appendix for

R code. For the smallest case the correlation matrix Σ5 of the discretized variable

ξ = (ξ1, ξ2, ξ3, ξ4, ξ5)′ is given in Table 1. For dimensions p = 10 and p = 15, the correlation

ξ1 ξ2 ξ3 ξ4 ξ5

ξ1 1.00

ξ2 0.56 1.00

ξ3 0.48 0.42 1.00

ξ4 0.40 0.35 0.30 1.00

ξ5 0.32 0.28 0.24 0.20 1.00
Table 1

Correlation matrix Σ5 of ξ for the p = 5 case.

matrices Σ10 and Σ15 are given in Tables 2 and 3, respectively. We remark that all

correlations are weak to moderate.
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ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10

ξ1 1.00

ξ2 0.56 1.00

ξ3 0.48 0.42 1.00

ξ4 0.40 0.35 0.30 1.00

ξ5 0.32 0.28 0.24 0.20 1.00

ξ6 0.19 0.17 0.14 0.12 0.10 1.00

ξ7 0.17 0.15 0.13 0.10 0.08 0.56 1.00

ξ8 0.14 0.13 0.11 0.09 0.07 0.48 0.42 1.00

ξ9 0.12 0.10 0.09 0.07 0.06 0.40 0.35 0.30 1.00

ξ10 0.10 0.08 0.07 0.06 0.05 0.32 0.28 0.24 0.20 1.00
Table 2

Correlation matrix Σ10 of ξ for the p = 10 case.

Distribution of ξ

Fixing the marginals to standard normal and fixing the correlation matrix still allow

for many feasible distributions for ξ. For each level p of dimensionality we generated data

from five such distributions. To study Type I error control of the tests, the first

distribution for ξ was the multivariate normal. To allow for power investigations, four

non-normal distributions were considered. These were based on VITA distributions. We

restricted ourselves to two types of bivariate copulas when constructing vines: the Gumbel

family of copulas and the Joe family of copulas, see Nelsen (2007) and Grønneberg &

Foldnes (2017) for technical definitions. These copulas differ from the normal copula by,

e.g. allowing tail dependencies. Let us for p = 5, 10 and 15 denote by Zp a multivariate

normal p-vector with standard normal marginals and whose correlation matrix equals Σp.

Likewise let Gp denote a random p-vector whose distribution equals that of the regular vine

constructed from Gumbel pair-copulas, and let Jp denote a random p-vector whose
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ξ1 ξ2 ξ3 ξ4 ξ5 ξ6 ξ7 ξ8 ξ9 ξ10 ξ11 ξ12 ξ13 ξ14 ξ15

ξ1 1.00

ξ2 0.56 1.00

ξ3 0.48 0.42 1.00

ξ4 0.40 0.35 0.30 1.00

ξ5 0.32 0.28 0.24 0.20 1.00

ξ6 0.19 0.17 0.14 0.12 0.10 1.00

ξ7 0.17 0.15 0.13 0.10 0.08 0.56 1.00

ξ8 0.14 0.13 0.11 0.09 0.07 0.48 0.42 1.00

ξ9 0.12 0.10 0.09 0.07 0.06 0.40 0.35 0.30 1.00

ξ10 0.10 0.08 0.07 0.06 0.05 0.32 0.28 0.24 0.20 1.00

ξ11 0.19 0.17 0.14 0.12 0.10 0.19 0.17 0.14 0.12 0.10 1.00

ξ12 0.17 0.15 0.13 0.10 0.08 0.17 0.15 0.13 0.10 0.08 0.56 1.00

ξ13 0.14 0.13 0.11 0.09 0.07 0.14 0.13 0.11 0.09 0.07 0.48 0.42 1.00

ξ14 0.12 0.10 0.09 0.07 0.06 0.12 0.10 0.09 0.07 0.06 0.40 0.35 0.30 1.00

ξ15 0.10 0.08 0.07 0.06 0.05 0.10 0.08 0.07 0.06 0.05 0.32 0.28 0.24 0.20 1.00
Table 3

Correlation matrix Σ15 of ξ for the p = 15 case.

distribution equals that of the regular vine constructed from Joe pair-copulas. Note that

Zp, Gp and Jp all have standard normal marginals and correlation matrix Σp. For technical

details in the construction of these distributions, see the R code in the supplementary

material. In order to obtain a distribution whose non-normality is intermediate between Zp

and Gp we also simulated data from the random vector

ZGp = 1√
2
Zp + 1√

2
Gp,

whose marginal distributions are standard normal and whose correlation matrix equals Σp,

by construction. Likewise, to interpolate between normality and the distribution of Jp we
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simulated from

ZJp = 1√
2
Zp + 1√

2
Jp.

To sum up, for p = 5, 10 and 15, we simulated from the following random vectors:

Zp, ZGp, Gp, ZJp and Jp. By allowing two kinds of non-normal distributions, in the form of

Gp and Jp, we may investigate how different types of non-normality affect the performance

of the test of Maydeu-Olivares (2006) and the bootstrap test. Also, by allowing an

intermediate distribution between the normal case Zp and each of Gp and Jp, we may

better study the power of the tests to detect non-normality as we progressively move from

Zp to ZGp and finally to Gp, and likewise from Zp to ZJp and finally to Jp.

Number of levels and distributions of observed variables

In empirical research the most common numbers of levels in ordinal data are K = 4, 5

and 7 (Li, 2016b). We included these levels in our study. For each K, we considered three

configurations of thresholds, resulting in three distributions for the ordinal marginals in X,

which we refer to as symmetrical, moderately skewed and strongly skewed. The

corresponding distributions of the discretized variables are presented in Figure 5.

In accordance with earlier studies (e.g. Flora & Curran, 2004; Li, 2016a,b) we keep all

marginals fixed. Considering the numerical experiments reported in Figure 2, it appears

that we do not lose much generality by not considering unequal thresholds across marginals

in the skewed conditions. However, in the symmetrical conditions equal marginals may

yield smaller bias.

Sample sizes

Sample size will affect test performance. The larger the sample, the larger the power

to detect underlying non-normality is expected to be. In the current study we included two

sample sizes, 200 and 1000, which we regard as representing a relatively small and a

relatively large sample size, respectively.
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Data generation and test implementation

For the smallest dimension, p = 5, we included a full factorial design, with 5

(distributions for ξ) × 3 (number of levels in observed variables) × 3 (ordinal observed

distributions) × 2 (sample size) = 90 experimental conditions. At the larger dimensions we

excluded the K = 5 condition and in addition, for K = 4 and K = 7 we excluded the

moderately skewed ordinal distribution. Hence, for each of p = 10 and p = 15, there were 5

(distributions for ξ) × 2 (number of levels in observed variables) × 2 (ordinal observed

distributions) × 2 (sample size) = 40 experimental conditions. The reason for considering

a fewer number of conditions for p = 10 and p = 15 was related to computational resource

restrictions in performing the simulation studies. Both the test of Maydeu-Olivares (2006)

and the bootstrap test are time-consuming at high dimensions. In order to calculate the

adjusted test statistics of Maydeu-Olivares (2006), large-dimensional matrix multiplications

are needed in order to obtain M in equation (5). As an illustration, when p = 15 and

K = 7, M has dimension of 5145× 5145. The bootstrap test is also time-consuming, since

it computes T in many bootstrap samples. However, the bootstrap procedure does not

need to compute the matrix M . In addition the bootstrap procedure is easy to implement

using parallel computing, which will reduce its running time considerably.

In total, 90+40+40=170 experimental conditions were considered. In each condition,

1000 random samples were drawn, and the outcomes of the tests of underlying normality

were recorded. For the bootstrap test B = 1000 bootstrap samples were drawn for each

generated sample.

Data generation and calculation of test statistics were performed in R using packages

sirt (Robitzsch, 2019) and VineCopula (Schepsmeier et al., 2018), for polychoric estimates

and for constructing and simulating from regular vines, respectively. The simulations were

performed on the Abel Cluster, owned by the University of Oslo and the Norwegian

metacenter for High Performance Computing (NOTUR)
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Evaluation criterion

The performance of the tests was assessed in terms of rejection rates at the 5% level

of significance.

Bias of polychoric correlations and standard errors across simulation conditions

Before we present simulation results on tests of underlying non-normality in the next

section, we first investigate how our simulation conditions affect central ingredients in

ordinal SEM, namely the polychoric correlations and their standard errors. From the

practical perspective of ordinal SEM, it is important that conditions with substantial bias

in the polychoric estimates and/or in their associated standard errors are detected by a

test for underlying non-normality. On the other hand, if the bias is not substantial, we can

accept from the practical perspective of ordinal SEM that underlying non-normality is

detected less often. In conditions where we have substantive estimation bias with respect

to the polychoric correlations, it is likely that also ordinal SEM will be biased. And from a

practical point of view, it is these conditions that we hope the tests for non-normality will

be able to detect.

Inference for the polychorics, and subsequently for ordinal SEM, may be incorrect in

two ways. Underlying non-normality may induce substantive bias in the polychoric

correlations, and in the standard error associated with a polychoric estimate. If the

polychoric estimates become biased due to non-normality, SEM parameters are also likely

to be biased and the ordinal SEM procedure is invalid. However, even with unbiased

polychoric estimates, the inference based on these may be invalid due to non-normality.

The reason is that parameter standard error and also the chi-square test of correct model

specification are calculated from formulas where an estimate Γ̂ of the asymptotic covariance

matrix Γ of the polychoric estimator is plugged in (see Muthén (1978, 1984), as well as the

general estimation and inference framework for covariance models found in Satorra (1989)).

This matrix is estimated while assuming underlying normality. In conditions where Γ̂ is
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not a consistent estimator of Γ, due to underlying non-normality, the standard errors and

the chi-square test statistic will not be reliable, and ordinal SEM inference will be invalid.

Bias in polychoric estimates

Figure 6 shows plots for dimension p = 10 of the difference between the estimated

polychoric correlations and the true correlations of the underlying vector. For dimensions

p = 5 and p = 15 the observed patterns are similar, with corresponding figures available in

the supplementary material (Figures S3 and S4). In each combination of underlying

distribution (Z, ZG, ZJ, G and J), number of categories (K = 4, 5, 7) and observed ordinal

distribution (symmetrical, moderately and severely skewed), the estimated polychoric

correlations were calculated from a large sample (n = 106).

It is seen that the polychoric estimates are not substantively biased under

symmetrical and moderately skewed ordinal distributions, for all underlying distributions

and observed ordinal distributions. However, under the severely skewed condition,

non-normality implies negatively-biased polychoric correlations. This is a case that is often

encountered in practice. As expected, the bias increases when we move from a vector

combined from a normal and a VITA vector (ZG and ZJ) to the full VITA vector (G and

J). Also, we note that the type of underlying normality (G vs. J) affects the bias. Under

the Joe VITA vector the bias is more pronounced than under the Gumbel VITA vector,

and this is mirrored when comparing ZG with ZJ. Across all conditions, the number of

observed categories does not affect the bias in polychoric estimates.

Bias in standard error estimation

In all simulation conditions the true covariance matrix Γ of the polychoric estimates

was compared to the normal-theory matrix ΓNT . In statistical software the latter matrix,

which assumes underlying normality, is estimated from data and used as an estimate of Γ.

Discrepancies between the elements in ΓNT and Γ imply that standard errors in ordinal

SEM, being based on the assumption that Γ = ΓNT , are invalid. In each simulation
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condition we estimated Γ by simulating 20 000 samples, each of size n = 4 000. In each

sample the vector of polychoric estimates was obtained, and we approximated Γ by the

empirical covariance matrix of these vectors. A high-precision estimate of ΓNT was

obtained from a large sample (n = 105) using standard routines from lavaan.

Following the approach suggested by Foldnes & Grønneberg (2017b), the discrepancy

between the matrices was visualized by plotting the difference between corresponding

elements in ΓNT and Γ against the elements of Γ. For dimension p = 10 this can be seen in

Figure 7, where we have 45 polychoric correlations, and 1 035 non-redundant elements in

Γ. Similar figures for p = 5 and p = 15 are included in the online supplementary material,

and show the same overall pattern (Figures S5 and S6). As expected, with data drawn

from the multivariate normal vector Z there is no systematic discrepancy between ΓNT and

Γ. It was found that bias in the normal-theory estimator of Γ was most pronounced under

the symmetrical condition. This was unexpected given the unbiasedness of the polychoric

estimator in this condition, see Figure 6. Under symmetrical ordinal distributions, for all

values of K, there is substantive negative bias for many elements of Γ, especially under the

full VITA vectors G and J . As we progress from symmetrical (SYM) to moderately and

severely skewed distributions (SKEW1 and SKEW2, respectively), the bias progressively

disappears. This trend is opposite to what we observed for the polychoric estimates in

Figure 6, where the bias increased. In the condition of severe skewness, where the

polychoric correlations were substantively biased under the full VITA vectors G and J,

there is little bias in the normal-theory estimate of Γ. As was the case for polychoric

correlation bias, the Joe VITA implies a larger bias than the Gumbel VITA. Also, the

intermediate vectors ZG and ZJ generate less bias than the full VITA vectors G and J.

Relation between bias and type and degree of underlying non-normality

We have seen that in our simulation design, the degree of bias in the polychoric

correlation coefficients and its normal theory covariance matrix ΓNT is associated with the
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degree of non-normality. For instance, moving from the multivariate normal condition Z

via ZJ to the full VITA condition J entails a steady increase in bias. Also, whether the

non-normal distribution is based on Gumbel or Joe pair-copulas affects the degree of bias.

The bias summarized above is of a sufficient magnitude for it to be practically important,

but is not dramatic compared to the introductory bivariate examples, see Figure 2. As

illustrated in the bivariate example, it is easy to find simulation set ups where the bias is

much more pronounced. Even when the thresholds are fixed, Figure 3 indicates that we

here may dramatically increase the bias by using an example with higher correlations. The

correlations in our simulation design (Tables 1, 2 and 3) are all small or moderate. We also

did not search for thresholds which induce specifically severe biases, but used thresholds

similar to those used in earlier papers (e.g Rhemtulla et al., 2012; Flora & Curran, 2004;

Li, 2016b).

As we have seen in the bivariate illustrations, there is considerable variation in the

bias of NT polychoric correlations, and presumably also of ΓNT , originating from the

placements of the thresholds. It is important to observe that this variability does not

reflect a change in the degree of underlying non-normality, which is fixed by the

distribution of ξ. The relationship between the bias and the degree of underlying

non-normality is therefore complex, and it seems implausible that tests for underlying

normality will always succeed in identifying cases with practically important bias in

polychoric correlations and ΓNT but will not reject for non-normal cases that do not induce

such bias. What relation there is between the considered tests for underlying normality

and variability of bias when varying the thresholds is investigated only to a small degree in

the present study, and should be further investigated in a follow up study.

Simulation results: Type I control and power for testing underlying normality

We first report Type I error control of the tests, before reporting on power to detect

underlying non-normality.
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Type I error control

A commonly used criterion for acceptable Type I error control was proposed by

Bradley (1978): the empirical rejection rate at 5% significance level should be between

2.5% and 7.5%. In Tables 4 and 5 we use gray backgrounds in cells that correspond to

acceptable Type I error control.

For the lowest dimensionality, p = 5, empirical rejection rates at the 5% level of

significance are given in Table 4. As was observed by Foldnes & Olsson (2015), the

mean-adjustment in TS leads to higher rejection rates than the mean-and-variance

adjustment in TSS. In fact, the rejection rate of TS is unacceptably high under all

conditions. In contrast, TSS and the bootstrap test performs well in all conditions. It is

noteworthy that across different numbers of categories and ordinal distributions, these two

tests are highly successful in controlling the rate of Type I errors.

For higher dimensionalities, p = 10 and p = 15, the rejection rates are given in Table

5. As was the case for p = 5, TS has a strong tendency to overreject the underlying

normality hypothesis, while the tendency for TSS is to underreject, as reported by Foldnes

& Olsson (2015). The bootstrap test performs better than TS and TSS, exhibiting

acceptable Type I error control in most conditions. However, at the smallest sample size

the bootstrap test tends to overreject the null hypothesis. Across all conditions in Table 5,

the poorest bootstrap test rejection rate is 0.086, which still is relatively close to the range

of acceptable performance. In comparison, TS and TSS exhibit inacceptably high and low

rejection rates, respectively, in almost all conditions. We also note that whether the ordinal

distribution is symmetrical or not does not affect the rejection rates of the bootstrap and

TSS.

Power

We next report on the power of the tests to detect discretized non-normality. Due to

the poor Type I error control of TS we deem this test to be inadequate and do not report
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its power.

Table 6 presents rejection rates at the 5% level of signficance for the lowest

dimensionality. In the 72 conditions obtained by fully crossing 4 kinds of distributions, 2

sample sizes, 3 levels of categories and 3 types of thresholds the power to reject the

underlying normality assumption is most often higher for the bootstrap test compared to

the TSS test. In fact, in only 9 of the 72 conditions did TSS exhibit higher power than the

bootstrap test. The generally higher rejection rates under the bootstrap mirror the findings

observed under discretized normality, where we found that Type I error rates of the

bootstrap were generally higher than those of TSS.

As expected, the power of both tests increased when the distribution changes from

ZG to G, and likewise from ZJ to J. That is, it is harder to detect non-normality of random

vectors that are sums of a normal component and a non-normal component compared to

random vectors composed entirely of the non-normal component.

We finally remark that the type of non-normality affects the power of both tests. The

type of non-normality in the Joe VITA distribution is easier to detect than the

non-normality in the Gumbel VITA distribution. For instance, when n = 200 and there are

7 symmetrical levels in the observed ordinal distribution, the bootstrap test only rejects

24% of the generated samples under the Gumbel VITA, compared to 76% under the Joe

VITA.

The power results for the two largest dimensionalities are given in Table 7. Again,

the bootstrap generally has higher a power to detect non-normality than TSS. In all of the

64 conditions in Table 7 the bootstrap has power that is higher than or equal to that of

TSS. As expected, power increases with increasing sample size, and also when introducing

more non-nonormality, i.e, when comparing J with ZJ, and G with ZG. Further, we observe

that the non-normality of G is less likely to be detected compared to the non-normality of

J. This is especially evident when p = 15 and n = 200. Particularly bad is the performance

of TSS in this condition under the Gumbel VITA distribution, never rejecting the null
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hypothesis of underlying normality.

Power tends to decrease under asymmetrical compared to symmetrical ordinal

distributions, at the smallest sample size. For instance, under p = 10, n = 200 and with

K = 4, for the Joe VITA distribution the bootstrap rejection rates are 88% and 29%,

under symmetrical and asymmetrical distributions, respectively. At the largest sample size

this tendency is repeated when K = 4, but for K = 7 there are conditions where

asymmetrical distributions lead to higher power compared to symmetrical distributions,

e.g. under the ZJ distribution, p = 15 and n = 1000, the bootstrap test has a power of 69%

under asymmetrical marginals compared to 45% under symmetrical observed marginals.

Finally, we note that power is generally higher with K = 7 categories compared to

K = 4 categories, and especially for asymmetrical distributions.

Discussion

The non-normal simulation conditions employed in our simulation study have been

shown to affect either the precision of the polychoric estimates, or the precision of their

estimated standard errors. Especially surprising was the large number of conditions where

the polychoric correlations were approximately unbiased, but where their associated

standard errors were biased. However, this may be an artifact of our specific simulation

design. Further research is needed to probe the complex interaction among observed

distributional forms and type of underlying non-normality with respect to bias in

polychoric inference. In general, non-normality was consistently observed to cause

problems in inference relating to the polychoric correlations. Given the centrality of

polychoric inference for ordinal SEM, we may conclude that ordinal SEM, within the

context of our simulation design, in general is sensitive to underlying non-normality. This

sensitivity depends on the type and degree of underlying non-normality, and – as a

complicating factor – the placements of the thresholds, a factor which is completely

unconnected to the degree of non-normality of ξ. We have observed that a VITA vector



IMPACT AND DETECTION OF UNDERLYING NON-NORMALITY 34

constructed from Joe pair-copulas embeds a more challenging type of non-normality than a

VITA vector constructed from Gumbel pair-copulas. Also, we have seen that an

intermediate distributional type between a normal and a VITA vector causes less bias in

polychoric inference than the full VITA vector.

To the best of our knowledge, we have conducted the first comprehensive evaluation

of test statistics proposed by Maydeu-Olivares (2006) for underlying normality in ordinal

data. We have also proposed an alternative in a new bootstrap test. Using a newly

developed simulation methodology, we evaluated the tests in a Monte Carlo study where

the underlying continuous distribution, the number of categories and the distribution of the

ordinal marginals were manipulated. Two approximations to the test statistic of

Maydeu-Olivares (2006) were evaluated. The mean-scaled approximation performed poorly,

not being able to maintain type I error control. The scaled-and-shifted approximation

performed better, and maintained type I error control in five dimensions. However, in

dimensions 10 and 15 the scaled-and-shifted test exhibited poor Type I error control. In

contrast, the new bootstrap test was able to control Type I error rates in almost all

conditions. The bootstrap test also exhibited higher power than the scaled-and-shifted test

to detect underlying non-normality. In summary, in the conditions employed in the present

study, we found the bootstrap test to perform better overall than the large sample

approximations to the distribution of the test statistic of Maydeu-Olivares (2006).

From the practical perspective of the researcher estimating an ordinal SEM to gain

substantial knowledge in their field of study, an important question is whether a test of

underlying non-normality can discern between conditions where non-normality is only

mildly violated and ordinal SEM is approximately valid, and conditions where the degree

and type of non-normality invalidate polychoric inference and thereby also ordinal SEM.

Our proposed bootstrap test is based solely on statistical considerations, and ideally should

therefore attain the highest possible power in all non-normal conditions. However, a test

that detects even small deviations from normality will from the practical perspective be too
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conservative. We observed that the bootstrap test has lower power under ZG compared to

G, and under ZJ compared to J, so the test is indeed less strict when polychoric-related

bias is less severe. Also, the test has lower power under ZG and G, compared to ZJ and J,

respectively. Hence, the bootstrap test detects with higher probability the type of

non-normality that produce the larger bias. Despite these findings, there are some

observations that we did not expect and that we cannot currently explain. For instance,

the power of the bootstrap test generally was highest under the moderately skewed

condition in Table 7. Under this kind of observed ordinal distribution the bias in

polychoric estimates (see Figure 6) and the bias in polychoric standard errors (see Figure

7) were moderate. That is, conditions where there is moderate bias in both polychoric

correlations and standard errors are more likely to be detected by the bootstrap test than

conditions with substantive bias in only polychoric correlations, or only in standard errors.

The number of observed categories (4, 5 or 7) in general did not affect the polychoric

inference or the performance of the bootstrap test. In contrast, the shape of the observed

ordinal distribution was found to impact these outcomes substantially.

Generally, at the smallest sample size (n = 200) the bootstrap test had in many

conditions low power to detect underlying non-normality, especially when the underlying

distribution was half-way between normality and VITA non-normality. It is no surprise

that the problem of detecting underlying non-normality in multivariate ordinal data is

difficult, since so much of the structure in the continuous vector is lost when it is

discretized. Our bootstrap test was based on bivariate probabilities. It will be a challenge

for future research to develop a more powerful test, possibly by including trivariate

probabilities in the test statistic.

Limitations

Although we simulated ordinal data for covariance modeling using the best available

methods, we only evaluated two kinds of non-normality in the underlying discretized
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vector. There are of course many possible non-normal distributions that can be

constructed and simulated from using the VITA framework, and even more distributions

outside the regular vines available with VITA. It is still not known which types of

distributions are most often encountered in practice, and it is therefore difficult to know if

our discretized VITA distributions may approximate real-world ordinal data. Another

limitation is that only two sample sizes were considered. Also, we considered only

discretized vectors whose pairwise correlations were quite moderate. In Tables 1 - 3 no two

pairs of variables had a correlation higher than 0.56. In the case where the underlying ξ

has pairs of variables with higher correlations, at least up to a certain point, the

non-normality should be easier to detect than was the case in the present study, as shown

in the bivariate illustration, see Figure 3 (p.15). A future Monte Carlo study may include

correlational strength as an experimental factor to investigate this issue. Our study, in line

with many previous studies, did not mix the number of categories or distributional shapes

in a given simulation condition. As different variables in most practical settings have

different distributional forms, future studies should systematically investigate whether

mixing different ordinal distributions will aggravate the impact of non-normality on ordinal

SEM beyond that observed in the present study.

An important limitation of the present investigation is that we did not consider cases

with missing data. An overview of available methods is given in Jia & Wu (2019). We

conjecture that such methods may be combined with a variant of the bootstrap

methodology proposed in the present paper. A systematic formalization and evaluation of

such an approach should be made in future studies.

Conclusion

Structural equation modeling with ordinal data is regularly based on an assumption

of discretized normality. Due partly to the lack of statistical tests in currently available

software, and to recommendations in previous simulation studies that suggest that ordinal
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SEM is quite robust to underlying non-normality, the normality assumption has often been

taken for granted by practitioners.However, recent research has unveiled problems with the

simulation methodology in previous simulation studies. In the present study we adopted a

recently proposed simulation method for ordinal data to study both the effect of underlying

non-normality on polychoric estimation, and the performance of two tests for underlying

normality. We found that polychoric correlation was very sensitive towards non-normality

in ξ, and that the sensitivity was strongly moderated by the placements of the thresholds,

i.e. the observed ordinal distributions.

The first test for underlying non-normality was proposed by Maydeu-Olivares (2006)

and had not previously been empirically evaluated except for a small simulation study in

the original paper. The second test is a new bootstrap procedure that is proposed in the

present article. In our simulation study the bootstrap test was the only procedure that

adequately maintained Type I error control. Given that ordinal SEM is more sensitive to

underlying non-normality than previously assumed, we therefore recommend that

researchers run the bootstrap test prior to estimating their models. The test is available in

the open-source software package R, and code is provided in the online supplementary

material.
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Figure 5 . Distribution of the observed variables. The panel rows correspond to K = 4, 5

and K = 7 categories. The panel columns correspond to conditions of symmetrical,

moderately skewed and severely skewed distributions.
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Figure 6 . Difference between polychoric and true correlations against true correlations for

dimension p = 10. The panel rows correspond to K = 4, 5 and K = 7 categories. The panel

columns correspond to conditions of symmetrical, moderately skewed and severely skewed

distributions, crossed with five underlying distributions. Z=normal, ZG=normal and

Gumbel VITA combined, ZJ=normal and Joe VITA combined, G=Gumbel VITA, J=Joe

VITA.
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Figure 7 . Bias between normal-theory and true values in the covariance matrix of

polychoric correlations Γ for dimension p = 10. The panel rows correspond to K = 4,

K = 5 and K = 7 categories. The panel columns correspond to conditions of symmetrical,

moderately skewed and severely skewed distributions, crossed with five underlying

distributions. Z=normal, ZG=normal and Gumbel VITA combined, ZJ=normal and Joe

VITA combined, G=Gumbel VITA, J=Joe VITA.
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n Cat. Thr. Boot TS TSS

1 0.045 0.119 0.042

2 0.064 0.149 0.0494

3 0.055 0.122 0.042

1 0.05 0.107 0.028

2 0.053 0.144 0.0415

3 0.049 0.139 0.037

1 0.073 0.216 0.036

2 0.052 0.279 0.041

200

7

3 0.057 0.203 0.036

1 0.051 0.112 0.049

2 0.052 0.134 0.0554

3 0.054 0.122 0.055

1 0.06 0.114 0.06

2 0.06 0.155 0.0655

3 0.053 0.157 0.056

1 0.043 0.12 0.037

2 0.06 0.186 0.062

1000

7

3 0.051 0.188 0.054
Table 4

Type I error rates, dimension p = 5. n= sample size. Boot= bootstrap test. TS and TSS:

mean-scaled and mean-and-variance adjusted tests, respectively. Cat.= number of observed

categories. Thr.= threshold type, where 1=symmetrical, 2=moderately skewed and

3=strongly skewed. Rejection rates between 2.5% and 7.5% are shaded gray.
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p n Cat. Thr. Boot TS TSS

1 0.067 0.13 0.022
4

3 0.043 0.13 0.017

1 0.086 0.266 0.002
200

7
3 0.062 0.381 0.009

1 0.06 0.13 0.052
4

3 0.051 0.147 0.038

1 0.048 0.118 0.014

p
=

10

1000

7
3 0.046 0.195 0.024

1 0.076 0.178 0.003
4

3 0.043 0.169 0.001

1 0.077 0.315 0
200

7
3 0.079 0.566 0.004

1 0.052 0.14 0.033
4

3 0.06 0.155 0.034

1 0.053 0.123 0.004

p
=

15

1000

7
3 0.052 0.215 0.017

Table 5

Type I error rates, dimensions p = 10 and p = 15. n= sample size. Boot= bootstrap test.

TS and TSS: mean-scaled and mean-and-variance adjusted tests, respectively. Cat.= number

of observed categories. Thr.= threshold type, where 1=symmetrical and 3=strongly skewed.

Rejection rates between 2.5% and 7.5% are shaded gray.
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Dist. ZG5 G5 ZJ5 J5

n Cat. Thr. Boot TSS Boot TSS Boot TSS Boot TSS

1 0.06 0.05 0.30 0.25 0.08 0.07 0.77 0.74

2 0.09 0.08 0.43 0.39 0.18 0.16 0.92 0.924

3 0.06 0.04 0.12 0.09 0.08 0.06 0.33 0.29

1 0.06 0.04 0.32 0.25 0.12 0.09 0.90 0.84

2 0.08 0.07 0.43 0.39 0.16 0.15 0.94 0.945

3 0.08 0.05 0.18 0.14 0.10 0.08 0.58 0.54

1 0.09 0.05 0.24 0.18 0.11 0.07 0.76 0.68

2 0.10 0.10 0.45 0.42 0.17 0.15 0.92 0.91

200

7

3 0.07 0.04 0.18 0.14 0.10 0.09 0.69 0.66

1 0.13 0.12 0.98 0.98 0.36 0.35 1.00 1.00

2 0.30 0.31 1.00 1.00 0.74 0.75 1.00 1.004

3 0.12 0.11 0.48 0.47 0.30 0.29 0.99 0.99

1 0.14 0.13 0.99 0.99 0.50 0.48 1.00 1.00

2 0.22 0.22 1.00 1.00 0.68 0.69 1.00 1.005

3 0.14 0.14 0.83 0.84 0.46 0.46 1.00 1.00

1 0.11 0.10 0.94 0.93 0.30 0.28 1.00 1.00

2 0.17 0.17 1.00 1.00 0.52 0.52 1.00 1.00

1000

7

3 0.18 0.18 0.94 0.94 0.54 0.55 1.00 1.00
Table 6

Power to detect non-normality, dimension p = 5. Dist.=underlying distribution, where

ZG=combination of normal and Gumbel VITA, G=Gumbel VITA, ZJ=combination of

normal and Joe VITA, and J=Joe VITA. n= sample size. Boot= bootstrap test.

TSS=mean-and-variance scaled test. Cat.= number of observed categories. Thr.= threshold

type, where 1=symmetrical, 2=moderately skewed and 3=strongly skewed.
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Dist. ZG G ZJ J

p n Cat. Thr. Boot TSS Boot TSS Boot TSS Boot TSS

1 0.07 0.03 0.35 0.16 0.11 0.04 0.88 0.72
4

3 0.04 0.01 0.09 0.02 0.06 0.02 0.29 0.16

1 0.09 0.00 0.35 0.03 0.12 0.00 0.86 0.38
200

7
3 0.05 0.01 0.17 0.06 0.06 0.01 0.75 0.57

1 0.14 0.11 0.99 0.99 0.46 0.41 1.00 1.00
4

3 0.12 0.10 0.62 0.57 0.28 0.24 1.00 1.00

1 0.12 0.05 0.98 0.95 0.39 0.21 1.00 1.00

p
=

10

1000

7
3 0.18 0.14 0.98 0.97 0.62 0.54 1.00 1.00

1 0.07 0.00 0.41 0.07 0.13 0.00 0.93 0.64
4

3 0.03 0.00 0.08 0.00 0.04 0.00 0.30 0.09

1 0.09 0.00 0.41 0.00 0.16 0.00 0.94 0.09
200

7
3 0.06 0.00 0.15 0.01 0.07 0.01 0.73 0.37

1 0.17 0.10 1.00 1.00 0.52 0.39 1.00 1.00
4

3 0.09 0.05 0.68 0.57 0.31 0.22 1.00 1.00

1 0.15 0.02 0.99 0.94 0.45 0.11 1.00 1.00

p
=

15

1000

7
3 0.23 0.10 1.00 0.99 0.69 0.48 1.00 1.00

Table 7

Power to detect non-normality, dimensions p = 10 and p = 15. Dist.=underlying

distribution, where ZG=combination of normal and Gumbel VITA, G=Gumbel VITA,

ZJ=combination of normal and Joe VITA, and J=Joe VITA. n= sample size. Boot=

bootstrap test. TSS=mean-and-variance scaled test. Cat.= number of observed categories.

Thr.= threshold type, where 1=symmetrical and 3=strongly skewed.
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