

This file was downloaded from BI Open, the institutional repository (open access) at
BI Norwegian Business School https://biopen.bi.no

It contains the accepted and peer reviewed manuscript to the article cited below. It
may contain minor differences from the journal's pdf version.

Wu, C.-H., Yao, Y.-C., Dauzère-Pérès, S., & Yu, C.-J. (2020). Dynamic dispatching and

preventive maintenance for parallel machines with dispatching-dependent

deterioration. Computers & Operations Research, 113, 104779.

doi:https://doi.org/10.1016/j.cor.2019.104779

Copyright policy of Elsevier, the publisher of this journal.
The author retains the right to post the accepted author manuscript on open web

sites operated by author or author's institution for scholarly purposes, with an
embargo period of 0-36 months after first view online.

 http://www.elsevier.com/journal-authors/sharing-your-article#

https://biopen.bi.no/
http://www.elsevier.com/journal-authors/sharing-your-article

- 1 -

Dynamic Dispatching and Preventive Maintenance for Parallel

Machines with Dispatching-dependent Deterioration

Cheng-Hung Wu, Yi-Chun Yao, Stéphane Dauzère-Pérès, and Cheng-Juei Yu

Abstract

 A dynamic decision model that coordinates dispatching and preventive maintenance decisions for failure-

prone parallel machines in make-to-order (MTO) production environments is developed in this research. The

primary objective is to minimize the weighted long-run average waiting costs of MTO systems. Two common

but seldom studied stochastic factors, namely, the dispatching-dependent deterioration of machines and

machine-health-dependent production rates, are explicitly modeled in the proposed dynamic dispatching and

preventive maintenance (DDPM) model. Although the DDPM model is developed using Markov decision

processes, it is equally effective in non-Markovian production environments. The performance of the DDPM

model is validated in Markovian and non-Markovian production environments. Compared with several

methods from the literature, simulation results show an improvement of at least 45.2% in average job waiting

times and a minimum reduction of 48.9% in average machine downtimes. The comparison results between

the optimal dynamic dispatching policies with and without coordinated preventive maintenance show that

performance improvement can be mostly attributed to the coordination between preventive maintenance and

dispatching decisions.

Introduction and Problem Formulation

This research investigates joint dispatching and preventive maintenance optimization problems for parallel

machines with dispatching-dependent deterioration. In the literature, unrelated parallel machines are flexible

machines that can process the same group of jobs but have different processing time distributions. Parallel

machines that can perform various operations or produce different products are widely used to satisfy the

requirements of product diversification. In the current research, the varying production rates of parallel

machines can result from machine deterioration. In practice, the deterioration of machines frequently depends

on dispatching decisions (Kazaz et al., 2013). For example, a computer numerically controlled (CNC)

machine may be used to perform machining operations on different materials and products. However, various

- 2 -

materials may stress the cutting tools of CNC machines in different ways and lead to varying equipment

health deterioration processes, which are defined as dispatching-dependent machine health deterioration in

this research.

When machine health deteriorates over time, the accumulated wear on machines or tools may impact

product quality, cause additional rework, reduce production efficiency, and eventually lead to machine failure

(Kaufman and Lewis, 2007; Zhang and Daigle, 2012; Kao et al., 2018). For example, when an operation with

high quality requirements is assigned to a deteriorated machine, the high rework rate of the deteriorated

machine may lead to a low throughput rate and high production costs. By contrast, the same deteriorated

machine may still perform operations with low quality requirements and not result in high rework rates.

Consequently, different production rates can be observed in the same group of machines due to varying

equipment health, which is defined as machine-health-dependent production rates.

Figure 1 Production rate decreases with machine health in semiconductor testing and assembly processes

Dispatching-dependent deterioration and health-dependent production rates are common stochastic factors

in manufacturing systems. For example, diverse materials stress the tool bits of CNC machines in different

ways and cause varying deterioration rates in machining processes. When deteriorated tools are used, a low

yield quality, such as a rough surface, is expected. Consequently, high rework/scrap rates hinder production

efficiency. Similar machine–product fitness examples can be found in the high-tech manufacturing industry.

Production rate decreases while
machine health deteriorates

Production rate recovers
after maintenance

- 3 -

Yu et al. (2002) discovered this problem in the printed circuit board (PCB) manufacturing line of the Japanese

electronics industry. As shown in Figure 1, one of our industry partners from the semiconductor testing and

assembly industry also found similar deterioration and production rate changes in their production line. In

the figure, the throughput rates and health of a machine deteriorate over time, and throughput rate recovery

is observed after machine maintenance.

Most existing scheduling methods use metaheuristic algorithms to find the optimal schedule for a finite

set of jobs on a fixed number of unrelated machines. The production time of a job is frequently assumed to

be a machine-dependent constant, and production time uncertainties are disregarded. Yu et al. (2002)

developed Lagrangian relaxation methods for scheduling unrelated parallel machines in the printed wire

board industry. Chen and Wu (2007) and Chen (2015) presented heuristic scheduling algorithms to minimize

the total weighted completion time of unrelated parallel machines. Rezaeian (2003), Liaw et al. (2003),

Afzalirad and Rezaeian (2015), and Rezaeian (2016) developed metaheuristic algorithms to optimize the

machine loads of unrelated parallel machines. Lin and Ying (2014) developed an artificial bee colony

algorithm to minimize the maximum completion time of jobs, i.e. the makespan, when the setup time between

job switching is sequence-dependent. To schedule jobs on unrelated parallel batching machines, Kao et al.

(2018) propose two mixed integer linear programs that balance between productivity and quality risk.

The dynamic dispatching and dynamic preventive maintenance of failure-prone machines are closely

related to our work. Stochastic optimization methods are frequently used in dynamic production control

problems because machine deterioration and failure are uncertain events in these environments. Kaufman

and Lewis (2007) asserted that optimal maintenance policies depend on workload and machine health. Cai

et al. (2013) studied work-dependent deterioration in an M/G/1 queueing system with two types of job and a

single deteriorating machine. Celen and Djurdjanovic (2015) developed heuristic algorithms for coordinating

product sequencing and maintenance under operation-dependent deterioration. Wu et al. (2008) proposed

heuristic algorithms to minimize the weighted cycle time in a serial production line. Zhou et al. (2009) studied

preventive maintenance scheduling problems to minimize short-term maintenance costs using dynamic

programming. Cui et al. (2014) proposed a robust three-phase dynamic production scheduling and

maintenance algorithm for a single flexible machine. Borrero et al. (2013) develop Markov decision process

- 4 -

(MDP) models for systems with state-dependent processing rates. Zhang and Zeng (2015) and Zhou et al.

(2015) proposed different heuristic methods for minimizing the opportunity costs of maintenance in multi-

unit series systems. The literature in this area shows that dynamic scheduling and preventive maintenance

are challenging research problems even for a single machine.

Thus, the contribution of the current research is the joint optimization of dispatching and preventive

maintenance decisions for parallel machines when dispatching-dependent deterioration and health-dependent

production rates are considered. Coordination between dispatching and preventive maintenance decisions is

critical for such systems, and both factors are explicitly modeled in our dynamic dispatching and preventive

maintenance (DDPM) model. To our knowledge, no previous research has yet considered both stochastic

factors for parallel machines.

DDPM Model

This research considers a make-to-order (MTO) production system that produces 𝐼 products on 𝐽

multifunctional machines. Let 𝑖 ∈ 1,2, … , 𝐼 represent a type of product. Type 𝑖 demands join queue 𝑖 and

wait to be manufactured (as shown in Figure 2) by one of the 𝐽 machines. To consider the random

deterioration of the machines explicitly, stochastic optimization methods must be adopted. In the literature,

two stochastic optimization methods, namely stochastic programming (SP) and MDP, are widely used in

stochastic production control problems. In the current research, given that dispatching and preventive

maintenance decisions must be taken many times a day, a long planning horizon with many decision epochs

is required. In Feinberg and Shwartz (2002), Wallace and Ziemba (2005), and Lee and Meng (2014), the

computational complexity of multiple recourse stochastic programming grows exponentially with the planning

horizon and is computationally intractable in our problem. Thus, to consider a planning horizon with many

decision epochs, we develop our DDPM model using MDP, and the demand arrival, production, and machine

failure processes are assumed to follow Poisson or Markov processes to satisfy the required Markov

assumptions of the MDP models. Although the model is developed and solved under Markov assumptions, the

optimal control policies generated by the DPPM model are validated in Markovian and non-Markovian

simulation environments. In non-Markovian environments that do not comply with the Markov assumptions,

- 5 -

numerical results indicate a similar performance advantage over other methods.

Figure 2 Production system with failure-prone parallel machines

Thus, the demand arrivals are assumed to follow Poisson arrival processes with product-specific arrival

rates λ . Each machine has 𝐾 different machine health states, and production rates depend on the product

and machine health state. Let 𝑘 ∈ 0,1, … , 𝐾 1 be the real-time health state of a machine. A machine in

health state 𝑘 is healthier than a machine in health state 𝑘′ when 𝑘 𝑘′. Moreover, 𝑘 𝐾 1 indicates

the best health state, whereas 𝑘 0 indicates the failure state of a machine. We define 𝜇 as the production

rate for type 𝑖 when a machine is under health state 𝑘. To model the influence of machine deterioration, we

assume that 𝜇 𝜇 when 𝑘 𝑘 (i.e., the production rate does not increase when machine health

deteriorates).

Machine health deterioration is dispatching-dependent and is assumed to follow a continuous-time Markov

chain. Different job assignments result in various machine deterioration rates. That is, when different types of

job are assigned to a machine, the machine health deterioration rate changes accordingly. Let 𝛽 denote the

machine health deterioration rate between health states 𝑘 and 𝑘 1 when a machine is assigned to process

type 𝑖 products.

A decision maker can choose to conduct optional preventive maintenance when machine deterioration is

observed. Maintenance decisions immediately place a machine in maintenance state. Once maintenance begins,

the process takes an exponentially distributed amount of time with rate 𝛾 to complete. The preventive

- 6 -

maintenance rate is assumed to depend on the health of a machine at the time when the preventive maintenance

decision was made. If no preventive maintenance is conducted, then a machine may eventually fail (i.e., k =

0). When machine failure is observed, an exponentially distributed repair time with rate 𝛾 is required to

mend the machine.

Figure 3 Transition diagram between machine health states

In this section, the DDPM model is developed to coordinate dispatching and preventive maintenance

decisions in systems with multiple product types and machines. Optimal dispatching and maintenance

decisions depend on the real-time queue and machine health states due to the dynamic nature of a system

(Kaufman and Lewis, 2007). Thus, we define the state variable of the dynamic optimization model at time 𝑡

as 𝑠 𝑞 , 𝑥 , 𝑦 , where 𝑞 𝑞 , 𝑞 , … , 𝑞 , 𝑥 𝑥 , 𝑥 , … , 𝑥 , and 𝑦 𝑦 , 𝑦 , … , 𝑦 . In

these equations, 𝑞 denotes the real-time queue length of product 𝑖, 𝑦 denotes the number of available

machines with health state 𝑘, and 𝑥 represents the number of machines undergoing preventive maintenance

or repair under health state 𝑘. Moreover, ∑ 𝑥 𝑦 𝐽 because the system has exactly 𝐽 machines.

Coordination between maintenance and dispatching decisions is critical for the current research because

manufacturing and machine health deterioration processes are dispatching-dependent. Thus, the following

decision variables are defined and considered for all states 𝑠 .

(1) Dispatching decision: 𝑎

Let 𝑎 (𝑎 , 𝑎 , … , 𝑎) be the dispatching decision at time 𝑡 , where 𝑎 𝑖 ∈ 1, 2, … , 𝐼 represents

the dispatching decision for machines with health state 𝑘. If 𝑎 𝑖, then the highest priority is assigned to

product 𝑖 on health state 𝑘 machines.

- 7 -

(2) Preventive maintenance decision: 𝑏

Let 𝑏 (𝑏 , 𝑏 , … , 𝑏) be the preventive maintenance decision at time 𝑡, where 0 𝑏 𝑦 is a non-

negative integer decision variable that represents the state-dependent preventive maintenance decision on

health state 𝑘 machines. When 𝑏 0 , preventive maintenance begins on 𝑏 of 𝑦 available machines

that are currently in health state 𝑘. Let 𝑏 0 to prevent unnecessary calculation because machines with

perfect health state require no maintenance. We also constantly assume 𝑏 𝑦 because corrective

maintenance begins immediately on all failed machines.

The objective of the DDPM model is to minimize the weighted long-run average waiting costs of an MTO

production system. Let ℎ be the holding cost rate of product 𝑖 (i.e., waiting cost ℎ is accrued for every

unfulfilled type 𝑖 demand per unit time). Notably, minimizing average cycle time by setting ℎ 1 for all

𝑖 is a special case of the general DDPM model.

Uniformization is applied to transform the original continuous-time Markov decision problem into an

equivalent discrete-time problem (Serfozo, 1978). For a system with 𝐼 products/𝐽 machines/𝐾 machine

health states, the uniformization rate 𝜑 can be defined as

𝜑＝ 𝜆 𝐽 𝜇 𝛽 𝛾 .

Table 1 provides the summary of all the variables and notations used in the DDPM model.

Table 1 Notations and definitions used in the DDPM model

Notation Definition

𝑖 Product type, 𝑖 ∈ 1, 2, … , 𝐼

𝐼 Number of product types

𝑗 Machine, 𝑗 ∈ 1, 2, … , 𝐽

𝐽 Number of machines

𝑘
Machine health state, 𝑘 ∈ 0,1, … , 𝐾 1

𝐾 1: perfect health, 0: failed

𝐾 Number of different machine health states

𝑞 Queue length of product type 𝑖, 𝑞 ∈ ℕ ∪ 0

𝑥 Number of health state 𝑘 machines under maintenance/repair

𝑦 Number of available health state 𝑘 machines

𝑠
State variable, 𝑠 𝑞 , 𝑥 , 𝑦 ∈ S, where 𝑞 𝑞 , … , 𝑞 , 𝑥

𝑥 , … , 𝑥 , and 𝑦 𝑦 , … , 𝑦

- 8 -

S State space, set of all possible system states

ℎ Holding cost rate of product 𝑖

λ Demand arrival rate of product 𝑖

𝜇 Production rate of product 𝑖 on a health state 𝑘 machine

𝛽
Machine health deterioration rate from health state 𝑘 to 𝑘 1

when a machine is assigned to process product 𝑖

𝛾 Maintenance/repair rate of a health state 𝑘 machine

𝜑 Uniformization rate

After applying uniformization and transforming the continuous-time problem into a discrete-time equivalent

model, we can focus on the discrete time points where state transitions are observed. The expected cost

between two consecutive decision epochs can be defined as

C 𝑠
1
𝜑

ℎ 𝑞 .

If we disregard preventive maintenance decision 𝑏 and focus on the one-step transition probability

function under 𝑠 and dispatching decision 𝑎 , then the one-step transition probability without preventive

maintenance can be defined as 𝑃 𝑠 𝑥′, 𝑦′, 𝑞′ | 𝑞 , 𝑥 , 𝑦 , 𝑎) for each of the following five transition

types (𝑏 and its impact on the system state are discussed in a later section).

Table 2 Transition probabilities 𝑃 𝑠 |𝑠 , 𝑎)

Event/Transition Type Notation Probability

Type 𝑖 demand arrival 𝑃 ,
𝜆
𝜑

Type 𝑖 service completion on health

state 𝑘 machines
𝑃 , ,

𝑦 𝜇
𝜑

Deterioration of a health state 𝑘

machine when producing product 𝑖
𝑃 , ,

𝑦 𝛽
𝜑

Maintenance/repair completion of a

health state 𝑘 machine
𝑃 ,

𝑥 𝛾
𝜑

Dummy transition (to make the

probability functions summed up to 1)
𝑃

1 𝑃 ,

𝑃 , , 𝑃 , , 𝑃 ,

- 9 -

Value Iteration Algorithm for Solving the DDPM Model

Let 𝑉 𝑠 be the optimal value function defined in the backward induction dynamic program. As shown

in Figure 4 and in Optimality Equation (I), the optimal value function is iteratively defined by the optimality

equation in the backward value iteration algorithm. Every feasible action in the current case is evaluated for

all states using the backward induction value iteration algorithm.

Figure 4 Time chart of the value iteration algorithm

Machine maintenance is preemptive and assumed to begin immediately after decision 𝑏 is made. Hence,

system state changes from 𝑠 𝑞 , 𝑥 , 𝑦 to

�̅� 𝑞 , �̅� , 𝑦 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 .

That is, 𝑠 and �̅� are the system states before and after the machine maintenance decision in period 𝑡.

The expected one-step cost remains unchanged after the maintenance decision because preventive

maintenance has no immediate effect on queue length. Thus,

C �̅� C 𝑠
1
𝜑

ℎ 𝑞 .

Subsequently, we define an indicator variable 𝐼 as

𝐼
1, if 𝑎 𝑖

0, otherwise
.

Let �̅� be the real-time system state at time 𝑡 after maintenance decision 𝑏 . The optimal finite horizon

policies can be defined as

Optimality Equation (I):

𝑉 𝑠

 min
,

C 𝑠 Pr 𝑠 |𝑠 , 𝑎 , 𝑏 ∙ 𝑉 𝑠

 C 𝑠 min
,

Pr 𝑠 | 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , 𝑎 ∙ 𝑉 𝑠

- 10 -

 C 𝑠 min min Pr 𝑠 | 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , 𝑎 ∙ 𝑉 𝑠

 C 𝑠 min min Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠

1
𝜑

ℎ 𝑞

 min

⎩
⎪⎪
⎨

⎪⎪
⎧

∑ 𝑃 , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏
∑ 𝑊 �̅�

∑ 𝑃 , 𝑉 𝑞 , 𝑥 𝑏 , … , 𝑥 𝑏 1, … , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 1

 𝑃 𝑉 �̅�
 ⎭

⎪⎪
⎬

⎪⎪
⎫

,

where 𝑊 �̅� represents all the terms that are dependent on dispatching and preventive maintenance

decisions. 𝑊 �̅� is defined as

𝑊 �̅� = min
∈ , ,…

W �̅� , 𝑎 , where

W �̅� , 𝑎

⎩
⎪
⎨

⎪
⎧

𝐼 𝑃 , , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 𝑏 1, 𝑦 𝑏 1, … , 𝑦

1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 ⎭
⎪
⎬

⎪
⎫

∑

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 𝑏 1, 𝑦 𝑏 1, … , 𝑦

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 ⎭
⎪
⎪
⎬

⎪
⎪
⎫

.

Notably, finding the solution for the optimality equation requires iterative calculation. We need to find the

optimal 𝑎 and W �̅� , 𝑎 for every preventive maintenance decision 𝑏 , which requires three layers of for-

loops on 𝑎 and 𝑏 for every 𝑠 .

Table 3 Pseudocode for the original value iteration algorithm

For all t

{

- 11 -

For all 𝑠

{

For all 𝑏

{

For all 𝑎

{

Find 𝑊 �̅� , 𝑎

𝑊 �̅� = min
∈ , ,…

W �̅� , 𝑎 that optimizes the dispatching decisions

}

Given 𝑊 �̅� ,

Find min C 𝑠 ∑ Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠 for all 𝑏

}

𝑉 𝑠 min min C 𝑠 ∑ Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠

}

}

The 𝑐𝜇-rule (Cμ) is widely recognized as the optimal dispatching rule for queuing systems with multiple

customer classes when the system does not exhibit dispatching-dependent deterioration (van Mieghem, 1995;

Baras et al., 1985; Iravani and Kolfal, 2005). The Cμ dispatching policy assigns high priorities to products

with large 𝑐 𝜇 values, where 𝑐 is the waiting cost rate of product 𝑖 and 𝜇 is the production rate. In

Proposition 1, given Optimality Equation (I), we can demonstrate that Cμ can be sub-optimal in systems

with dispatching-dependent deterioration.

Proposition 1: For queuing systems with machines that exhibit dispatching-dependent deterioration, Cμ that

assigns highest priority to products with large 𝑐 𝜇 values can be sub-optimal.

Proof: We present the proposition using a counter example. For a queuing system with one machine, two

products, and two machine health states (i.e., good or failed), the system parameters are set as follows:

Parameters Holding cost

rate

Demand

arrival rate

Production rate

(good health)

Deterioration

rate

Repair rate

Values ℎ 1
ℎ 1

𝜆 0
𝜆 0

𝜇 3
𝜇 2

𝛽 2
𝛽 0

 𝛾 1

- 12 -

In this single-machine system, the state variable can be defined as 𝑞 , 𝑞 , 𝑥 , 𝑥 , 𝑦 , 𝑦 . Considering

that the best health machine requires no maintenance and any failed machine immediately begins the repair

process, 𝑥 and 𝑦 are always 0, and we can simplify the state definition to consider only non-zero variables

𝑞 , 𝑞 , 𝑥 , and 𝑦 . Hence, given a state 𝑞 , 𝑞 , 𝑥 , 𝑦 , let V 𝑞 , 𝑞 , 𝑥 , 𝑦 be the optimal total expected

costs before clearing all the jobs in the queues.

We can easily find the optimal expected costs before clearing all the queues for any given system state

because the demand arrival rates are 0. When only one job is present in the queues, finding V 𝑞 , 𝑞 , 𝑥 , 𝑦 is

easy because optimal dispatching will not make the server idle. Thus, by finding the expected costs of the non-

idling policy, we can obtain

V 1,0,0,1 1
V 1,0,1,0 2

 and
V 0,1,0,1

V 0,1,1,0
.

Then, consider states 1,1,0,1 and 1,1,1,0 that have exactly one job in both queues. Under the Cμ and

non-Cμ policies, the expected total costs before clearing the queues can be determined by using the previously

mentioned job V 𝑞 , 𝑞 , 𝑥 , 𝑦 and Optimality Equation (I).

 Expected total costs under the 𝐂𝛍 policy:
𝑉 1,1,0,1 5/2
𝑉 1,1,1,0 9/2

 Expected total costs under the non-𝐂𝛍 policy:
𝑉 1,1,0,1 2
𝑉 1,1,1,0 4

Apparently, the expected costs of the following Cμ policy is higher than those of the non-Cμ policy. Thus,

we conclude that the Cμ policy can be sub-optimal under the dispatching-dependent deterioration setting.

▓

The Cμ policy can be demonstrated to be optimal without dispatching-dependent deterioration and health-

dependent production rate (Nain, 1989). However, when either dispatching-dependent deterioration or health-

dependent production rate is present, the Cμ policy becomes sub-optimal, unstable, and will fail to achieve

throughput optimality under a single-machine setting (Huang et al., 2018). Given that an unstable policy will

lead to an unbounded cycle time and queue length, applying a simple heuristic policy, such as the Cμ policy,

can be sub-optimal. Consequently, the optimal policy should be found by using the DPPM model.

- 13 -

Nested Induction Algorithm for Solving the DDPM Model

In accordance with Proposition 1, the Cμ dispatching rule is sub-optimal for systems with dispatching-

dependent deterioration. Evaluating all possible combinations of states and action variables in Optimality

Equation (I) is required in each iteration of the backward induction algorithm because the simple and widely

used Cμ rule may be nonoptimal. However, the backward induction algorithm is known to be inefficient when

the number of states or feasible actions is large.

Thus, we present a nested induction algorithm to simplify the computation process and facilitate the

implementation of the algorithm. 𝑣 𝑠 is defined as the value function under the optimal one-step

dispatching decision while the current period’s preventive maintenance is ignored. 𝑣 𝑠 and 𝑉 𝑠

assume that the decision maker will proceed optimally beginning from the next decision epoch 𝑡 1 with

regard to dispatching and maintenance decisions.

Therefore, we introduce the nested induction algorithm to 𝑣 𝑠 and 𝑉 𝑠 . As shown in Figure 5, nested

induction begins from the iterative definition of 𝑣 𝑠 , Optimality Equation (II-A). Then, the optimal value

function 𝑉 𝑠 can be iteratively determined by using 𝑣 𝑠 in Optimality Equation (II-B). Nested

induction can considerably reduce computation time.

Figure 5 Time chart of the nested induction algorithm

Given that 𝑣 𝑠 considers only one-step optimal dispatching, we can write 𝑣 𝑠 as follows:

Optimality Equation (II-A):

𝑣 𝑠

C 𝑠 min Pr 𝑠 |𝑠 , 𝑎 ∙ 𝑣 𝑠

- 14 -

1
𝜑

ℎ 𝑞 𝑃 , 𝑣 𝑞 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑥 , 𝑦 𝑦

𝑊 𝑠

𝑃 , 𝑉 𝑞 𝑞 , 𝑥 𝑥 , … , 𝑥 1, … , 𝑥 , 𝑦 𝑦 , … , 𝑦 1

𝑃 𝑣 𝑞 𝑞 , 𝑥 𝑥 , 𝑦 𝑦 ,

where W 𝑠 represents the dispatching-dependent terms for machines with health state 𝑘 . Once more,

W 𝑠 can be defined as

W 𝑠 min
∈ , ,…

W 𝑠 , 𝑎 , where W 𝑠 , 𝑎 is defined as

W 𝑠 , 𝑎

⎩
⎪
⎨

⎪
⎧

𝐼 𝑃 , , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 , 𝑦

𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦 , … , 𝑦 1, 𝑦 1, … , 𝑦
1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦
1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦

⎭
⎪
⎬

⎪
⎫

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝐼 𝑦 𝜇

𝜑
𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 , 𝑦

𝐼 𝑦 𝛽

𝜑
𝑉 𝑞 , 𝑥 , 𝑦 , … , 𝑦 1, 𝑦 1, … , 𝑦

1 𝐼 𝑦 𝜇

𝜑
𝑉 𝑞 , 𝑥 , 𝑦

1 𝐼 𝑦 𝛽

𝜑
𝑉 𝑞 , 𝑥 , 𝑦

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

.

After finding 𝑣 𝑠 iteratively for all 𝑠 ∈ S, the optimality equation, including preventive maintenance

decisions, can now be defined using 𝑣 𝑠 .

Optimality Equation (II-B):

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

Table 4 Pseudocode for the nested induction algorithm

For all t

{

For all 𝑠

{

- 15 -

For all 𝑎

{

Find 𝑊 𝑠 , 𝑎

𝑊 𝑠 = min
∈ , ,…

W 𝑠 , 𝑎 that optimizes the dispatching decisions

}

Given 𝑊 𝑠 , 𝑣 𝑠 min C 𝑠 ∑ Pr 𝑠 |𝑠 , 𝑎 ∙ 𝑉 𝑠

}

For all 𝑠

{

For all 𝑏

{

Find min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

}

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏

}

}

Proposition 2: The nested induction algorithm converges to the optimal value function 𝑉 𝑠 of the original

backward induction algorithm.

Proof: System state 𝑠 𝑞 , 𝑥 , 𝑦 immediately transits to �̅� 𝑞 , �̅� , 𝑦 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 when

a preventive maintenance decision 𝑏 is made because preventive maintenance is instantly initiated. Thus,

𝑣 �̅� 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 defined in Optimality Equation (II-A) represents the sum of the current and

optimal future expected costs after preventive maintenance decision 𝑏 . Therefore, finding 𝑉 𝑠 via

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 in Optimality Equation (II-B) is equivalent to finding 𝑉 𝑠 in

Optimality Equation (I).

▓

Subsequently, we show that the computational complexity of the nested induction algorithm is less than that

of the original value iteration algorithm. ‖𝑆‖ is defined as the number of states in the state space, ‖𝐴‖ as

the average number of distinct dispatching decisions per state, and ‖𝐵‖ as the average number of distinct

- 16 -

preventive maintenance decisions per state (i.e., ‖𝐴‖ ‖𝐵‖ represents the average size of the action space

per state).

Let 𝑩𝑽𝑰𝑨 be the time complexity of solving the original backward induction algorithm and 𝑩𝑵𝑰𝑨 be the

complexity of the nested induction algorithm. We then present Proposition 3 to characterize the computational

complexity of both algorithms.

Proposition 3: The computational complexity of 𝑩𝑵𝑰𝑨 of the nested induction algorithm is less than that of

𝑩𝑽𝑰𝑨 of the original value iteration algorithm, and the difference in computational complexity can be

estimated by

𝑩𝑵𝑰𝑨

𝑩𝑽𝑰𝑨

‖𝑆‖ ‖𝐴‖ ‖𝐵‖
 ‖𝑆‖ ‖𝐵‖ ‖𝐴‖

.

Proof:

The comparison of the optimality equations and pseudocodes of both algorithms indicates that the

complexity of finding 𝑊 �̅� , 𝑎 and 𝑊 𝑠 , 𝑎 is the same for both algorithms. Let τ be the required

computational effort for finding 𝑊 𝑠 , 𝑎 or 𝑊 �̅� , 𝑎 , and the following observations are made.

 Through the pseudocode of the original value iteration algorithm, 𝑊 �̅� , 𝑎 is evaluated within the

three-layered for-loops on 𝑠 , 𝑎 , and 𝑏 with a complexity of ‖𝑆‖ ‖𝐵‖ ‖𝐴‖ τ. Meanwhile,

𝑊 𝑠 , 𝑎 is evaluated within the two-layered for-loops on 𝑠 and 𝑏 by the nested induction

algorithm with a complexity of ‖𝑆‖ ‖𝐴‖ τ.

 In the pseudocode of the nested induction algorithm, another two-layered for-loops on 𝑠 and 𝑏 are

used to determine 𝑉 𝑠 by comparing 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 under all feasible 𝑏 . This two-

layered for-loops is not required in the original value iteration algorithm. The computational

complexity of the additional loops is less than ‖𝑆‖ ‖𝐵‖ τ in the nested induction algorithm

because the required computational effort for evaluating 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 in the additional

loops is considerably less than that for 𝑊 𝑠 , 𝑎 .

We can conclude that the estimated time complexity 𝑩𝑽𝑰𝑨 of the original algorithm is ‖𝑆‖ ‖𝐵‖

‖𝐴‖ τ, and the estimated time complexity 𝑩𝑵𝑰𝑨 of the nested induction algorithm is less than the sum of

‖𝑆‖ ‖𝐴‖ τ and ‖𝑆‖ ‖𝐵‖ τ. Thus,

- 17 -

𝑩𝑵𝑰𝑨

𝑩𝑽𝑰𝑨

‖𝑆‖ ‖𝐴‖ τ ‖𝑆‖ ‖𝐵‖ τ
 ‖𝑆‖ ‖𝐵‖ ‖𝐴‖ τ

‖𝑆‖ ‖𝐴‖ ‖𝐵‖
 |𝑆| |𝐵| ‖𝐴‖

.

▓

The number of available dispatching decisions ‖𝐴‖ and ‖𝐵‖ is generally large. For example, ‖𝐴‖ can

be estimated by ‖𝐴‖ 𝐼 , and ‖𝐵‖ depends on the number of distinct combinations of available machines

under all health states. The nested induction algorithm is considerably more efficient than the original value

iteration algorithm because ‖𝐴‖ and ‖𝐵‖ are large in a reasonably sized system.

Implementation of the Nested Induction Algorithm for the DDPM Model

A software tool is developed using Microsoft Visual C# to solve the DDPM model. The software generates

optimal dispatching and preventive maintenance policies. In the following numerical example, we illustrate

the solution to the DDPM model for a problem with two machines, two products, and three machine health

states (I = 2, J = 2, and K = 3). The parameters listed in Table 5 are used to construct the illustrative example.

 Table 5 Parameters of the example with two machines, two products, and three machine health states

Parameter Numerical example

Holding cost of product 𝑖: ℎ
ℎ 1
ℎ 1

Arrival rate of product 𝑖: 𝜆
𝜆 3
𝜆 3

Production rate of product 𝑖 on a perfectly conditioned

machine (i.e., k=2): 𝜇

𝜇 5
𝜇 4

Production rate of product 𝑖 on a fairly conditioned

machine (i.e., k=1): 𝜇 𝑟 𝜇

𝜇 3.5
𝜇 3.6

Deterioration rate of the machine while processing

product 𝑖

𝛽 0.03
𝛽 0.04

Failure rate of the machine while processing product 𝑖
𝛽 0.02
𝛽 0.03

Maintenance rate 𝛾 0.5

Repair rate 𝛾 0.4

Under the proposed DPPM method, dispatching decisions are made in real time for each individual machine

- 18 -

as soon as the machine becomes idle. Therefore, the DPPM model only handles one dispatching problem for

a specific machine at a time. Given that a machine processes only one product at a time, the idle machine will

immediately be assigned one job. Thus, if the highest priority queue is non-empty, only the highest priority

product can be assigned to the idle machine. Meanwhile, in accordance with optimality equation (I) or (II-A),

the highest priority will not be assigned to a product with empty queue to avoid machine idling, which is costly.

As a result, the optimal dispatching rule generated by the DPPM model always dynamically assigns the highest

priority to a product with non-empty queue depending on the real-time queue lengths. For example, in this

illustrative dispatching problem of two product types, a non-idling policy that allocates product 1 to all

machines whenever the queue for product 2 is empty is optimal. On the contrary, when the queue for product

1 is empty, all idle machines are assigned to process product 2.

In this two-machine example, the system state can be defined using eight variables, i.e., 𝑠

𝑞 , 𝑞 , 𝑥 , 𝑥 , 𝑥 , 𝑦 , 𝑦 , 𝑦 , where 𝑥 , 𝑦 ∈ 0,1,2 and ∑ 𝑥 𝑦 2. Given that corrective

maintenance immediately begins on failed machines and machines with the best health require no maintenance,

𝑦 and 𝑥 are constantly 0. We omit the two variables in the remainder of this paper to simplify the notation.

We fix four variables (𝑥 , 𝑥 , 𝑦 , and 𝑦) and plot the optimal control policy in the 2-dimension (2D) subsets

(𝑞 , 𝑞) of the state space because we cannot easily visualize the optimal policy in the 8-dimension state space

(six dimensions after omitting 𝑦 and 𝑥).

Figure 6 plots the optimal preventive maintenance decisions on fairly healthy machines (i.e., 𝑘 1) when

at least one fairly conditioned machine is available (i.e., 𝑦 0 . Factory managers frequently delay

preventive maintenance policy 𝑏 when systems are heavily loaded to prevent capacity loss during the

process. In this numerical example, however, the optimal policy tends to begin when queues are long. The

preventive maintenance decision depends on the health of not only an individual machine but also of other

machines because such activity differs in subpanels (a), (b), (c), and (d) of Figure 6. Figure 6 also illustrates

the need for the joint optimization of dispatching and preventive maintenance processes because the common

practice of delaying such activity under a heavy load generally fails to achieve optimality.

- 19 -

 (a) 𝑥 1, 𝑥 0, 𝑦 1, 𝑦 0 (b) 𝑥 0, 𝑥 1, 𝑦 1, 𝑦 0

 (c) 𝑥 0, 𝑥 0, 𝑦 1, 𝑦 1 (d) 𝑥 0, 𝑥 0, 𝑦 2, 𝑦 0

: will not maintain any fairly conditioned machine (𝑏 0)
: will maintain one fairly conditioned machine (𝑏 1)
: will maintain two fairly conditioned machines (𝑏 2)

Figure 6 Optimal preventive maintenance decisions on machines with fair health

Model Validation and Numerical Analysis

In this research, the discrete event simulation software eM-Plant is used to build a simulation model to

compare DDPM with several dispatching rules from the literature. We use systems with two machines, two

products, and three machine health states (𝐼 2, 𝐽 2, and 𝐾 3) for model validation. The layout of the

simulation system is shown in Figure 7. For all the simulation studies, the simulation periods are 365 days

with an additional 10-day warm-up period.

- 20 -

Figure 7 Simulation model for the numerical study

Dispatching Rules from the Literature

DDPM is compared with several widely used dispatching rules, namely, dynamic dispatching without

preventive maintenance (DD), dynamic dispatching with condition-based preventive maintenance (DDCPM),

first-come, first-served (FCFS), round-robin (RR), and Cμ.

1. DD

DD rules adopt the same logic as that in DDPM but do not consider preventive maintenance. That is, let

𝑏 0 at all times. Notably, DD is the optimal dispatching policy when preventive maintenance decisions

are not considered. The performance difference between DD and DDPM enables us to analyze the impact and

value of coordinating preventive maintenance and dispatching decisions.

2. DDCPM

DDCPM adopts the condition-based preventive maintenance (CPM) policy that is widely used in practice.

Under CPM, preventive maintenance begins on deteriorated machines as soon as deterioration is observed

instead of using workload-dependent optimal preventive maintenance policies. A dynamic dispatching policy

is then solved under the CPM rule. In summary, DDCPM differs from DDPM only in terms of maintenance

policy and any performance improvement observed under DDPM results from a better preventive maintenance

policy.

3. FCFS

FCFS is a common, simple, and easy-to-implement dispatching rule. Bernier et al. (2004) and Wein (1988)

indicated that FCFS is used in semiconductor production systems. Under FCFS, products are manufactured in

- 21 -

the order that they enter the system.

4. RR

RR policies are known to achieve throughput optimality in production systems and computer networks with

unlimited buffer capacity (Andradottir et al., 2002). In our simulation study, we allow machines to process

different products in circular order in pre-assigned time slices that aim to maximize overall throughput under

a given product mix.

5. Cμ

Cμ is known to achieve minimal weighted cycle time in systems without dispatching-dependent

deterioration (van Mieghem, 1995). Under the Cμ policy, higher priority will be given to a product with the

largest 𝑐 𝜇 value, where 𝑐 is the waiting cost of product 𝑖 and 𝜇 is the production rate for producing

product 𝑖. Baras et al. (1985) and Iravani and Kolfal (2005) proposed that Cμ is suitable for controlling

multiproduct manufacturing systems.

Data Collection and Key Performance Indicators (KPIs) for the Numerical Analysis

In the simulation study, the following performance indicators are collected and analyzed:

1. Throughput:

The throughput indicator simply counts the total output during the simulation period.

2. Average processing time:

The average processing time of jobs will possibly depend on dispatching rules because production slows

down with machine deterioration. Therefore, we collect the average processing time of jobs in our simulation

study.

3. Average waiting time:

The average waiting time of jobs in queues will also depend on dispatching and maintenance policies.

Notably, the sum of the average processing time and the average waiting time will become the average cycle

time. Given that the average processing and waiting times are provided in the numerical results, the average

cycle time will not be separately provided to avoid redundancy.

4. Average machine downtime:

- 22 -

Preventive maintenance and corrective maintenance frequently require different amounts of time to

complete. Although preventive maintenance helps reduce unexpected machine failures, conducting frequent

preventive maintenance may increase failure/maintenance counts. Thus, overall machine downtime, which is

the sum of the corrective maintenance and preventive maintenance times, may or may not decrease with

optimal preventive maintenance decisions. We collect the average machine downtime to observe changes in

machine availability.

Design of Experiments

The objective of our numerical study is to validate the performance of the DDPM model within a wide

range of production environments. In the numerical study, the system parameters are selected on the basis of

an actual industry problem in semiconductor manufacturing. To conduct sensitivity analysis and validate the

proposed method in general production environments, parameters are scaled up and down in the factorial

experiments.

To maximize the diversity of our numerical cases, experimental design techniques are used to generate test

systems. Instead of randomly generating system parameters, we use the two-level Plackett–Burman

experimental design technique to generate 20 sets of system parameters. The high–low levels of the model

parameters are listed in Table 6. The complete Plackett–Burman designs of the 20 sets of parameters are

summarized in Table 7.

Table 6 High–low levels of the experimental factors

Experimental Factors {Low, High}

𝛽 ，𝑖 ∈ 1,2 { ， }

𝛽 ，𝑖 ∈ 1,2 { ， }

𝛾 { ， }

𝜇 ，𝑖 ∈ 1,2 {4，6}

𝑟 ，𝑖 ∈ 1,2

(𝜇 𝑟 𝜇)

{0.5，0.8}

- 23 -

𝜌, system utilization {0.75，0.9}

𝛼 ，𝑖 ∈ 1,2 , product mix {2，3}

𝜏

𝛾 𝜏𝛾
{2，3}

Table 7 Twenty sets of system parameters using the Plackett–Burman design

 𝜷𝟏
𝟐 𝜷𝟐

𝟐 𝜷𝟏
𝟏 𝜷𝟐

𝟏 𝜸𝟎 𝝁𝟏
𝟐 𝝁𝟐

𝟐 𝒓𝟏 𝒓𝟐 𝝆 𝜶𝟏 𝜶𝟐 𝝉

1 1/15 1/15 1/8 1/8 1/2 4 6 0.5 0.8 0.75 3 3 3

2 1/15 1/15 1/12 1/8 1/2 6 6 0.5 0.8 0.9 2 2 2

3 1/10 1/10 1/12 1/12 1/2 6 6 0.5 0.5 0.75 2 3 2

4 1/10 1/15 1/12 1/8 1/2 4 4 0.8 0.5 0.9 2 3 3

5 1/10 1/15 1/8 1/12 1/3 6 6 0.5 0.5 0.9 3 2 3

6 1/15 1/10 1/12 1/8 1/3 6 6 0.8 0.5 0.75 3 3 2

7 1/10 1/10 1/8 1/8 1/3 4 6 0.5 0.8 0.9 3 3 2

8 1/10 1/15 1/8 1/12 1/2 6 6 0.8 0.8 0.75 2 3 3

9 1/15 1/15 1/12 1/12 1/2 4 6 0.8 0.5 0.9 3 2 2

10 1/10 1/15 1/12 1/8 1/3 6 4 0.5 0.5 0.75 3 2 3

11 1/15 1/10 1/12 1/12 1/2 4 4 0.5 0.8 0.75 3 2 3

12 1/15 1/15 1/8 1/8 1/3 6 4 0.8 0.8 0.75 2 2 2

13 1/15 1/15 1/8 1/12 1/3 4 4 0.5 0.5 0.9 2 3 2

14 1/10 1/10 1/12 1/8 1/3 4 6 0.8 0.8 0.9 2 2 3

15 1/10 1/10 1/8 1/12 1/2 6 4 0.8 0.8 0.9 3 2 2

16 1/15 1/10 1/8 1/8 1/2 6 4 0.8 0.5 0.9 3 3 3

17 1/15 1/10 1/8 1/12 1/3 4 6 0.8 0.5 0.75 2 2 3

18 1/10 1/10 1/8 1/8 1/2 4 4 0.5 0.5 0.75 2 2 2

19 1/15 1/10 1/12 1/12 1/3 6 4 0.5 0.8 0.9 2 3 3

20 1/10 1/15 1/12 1/12 1/3 4 4 0.8 0.8 0.75 3 3 2

Numerical Results and Analysis: Exponential Processing Time Distribution

We run the simulation for all the 20 systems under each control policy. Tables 8 and 9 summarize the

simulation results under exponential processing times (the detailed simulation results of each of the 20 systems

- 24 -

can be found in the Appendix). Notably, DDPM outperforms all the other methods for all the KPIs.

In Table 8, all the results are normalized to the result of DDPM to facilitate reading and comparison. For

example, the throughput of DDCPM is 0.9982 times the throughput of DDPM, and the average waiting time

of DDCPM is 1.4523 times the average waiting time of DDPM. In addition to average performance, the

confidence intervals for all the 20 systems under each KPI are listed in Tables A1–A4.

In Table 9, the pairwise t-test results are summarized to verify the significance of performance improvement

between DDPM and all the other policies. For example, compared with that under DD, the performance

improvement under DDPM is significant on all the 20 systems in terms of average processing time, average

waiting time, and average machine downtime.

Table 8 Average normalized simulation results under exponential processing time distribution

 Processing Time Distribution: Exponential

KPI DDPM DD DDCPM FCFS RR Cμ

Throughput 1 1.0011 0.9982 0.9973 0.9857 1.0002

Average processing time 1 1.1778 1.0036 1.1978 1.1949 1.1861

Average waiting time 1 5.2162 1.4523 7.5410 23.0186 5.7680

Average machine downtime 1 1.6290 1.4885 1.6519 1.6325 1.6449

Throughput: A higher value is better.

Processing time/waiting time/downtime: A lower value is better.

Table 9 Pairwise t-test results between DDPM and the other policies

DDPM vs.

DD

DDPM vs.

DDCPM

DDPM vs.

FCFS

DDPM vs.

RR

DDPM vs.

𝐂𝛍

B I W B I W B I W B I W B I W

Throughput 0 20 0 2 18 0 1 19 0 7 13 0 0 20 0

Average processing

time
20 0 0 0 15 5 20 0 0 20 0 0 20 0 0

Average waiting time 20 0 0 11 9 0 20 0 0 20 0 0 20 0 0

Average machine

downtime
20 0 0 10 10 0 20 0 0 20 0 0 20 0 0

B: Number of systems, DDPM is significantly better.

I: Number of systems, difference is insignificant.

W: Number of systems, DDPM is significantly worse

- 25 -

The findings and observations from the simulation results are summarized as follows.

 Throughput performance of DDPM:

Redundant capacity exists in our numerical study because capacity utilization levels are set between 0.75

and 0.9. Thus, a manufacturing system can process all demand and achieve similar throughput performance.

From the first row of Table 9, the throughput of DDPM still considerably outperforms those of RR, FCFS,

and DDCPM in seven systems, one system, and two systems, respectively, whereas the difference in the other

systems is insignificant.

Considering that the simulation model assumes limited buffer capacity, demand is lost when the queue is

full and losing demand may occurs if production control is inefficient. Thus, DDPM can still achieve

significant throughput improvement in several systems. Significant throughput improvements are observed

among the systems, and the capacity utilization levels are all 0.9. This result implies that DDPM can benefit

from high system utilization, and significant throughput improvement can be observed under high capacity

utilization.

 Average processing time:

The second row of Table 9 indicates that DDPM significantly outperforms all the other policies in terms of

average processing time in all the systems. As shown in Table 8, the average savings in processing time ranges

from 17.8% to 19.8%, except when compared with DDCPM. Given that DDCPM always performs preventive

maintenance when machine deterioration is observed, the machine is always operating under perfect condition,

which makes the processing time similar to that of DDPM. However, DDCPM suffers from an aggressive

maintenance policy and has a longer preventive maintenance time and longer job waiting time in queue.

 Average waiting time:

DDPM significantly outperforms DD, FCFS, RR, and Cμ in terms of average waiting time in all 20

systems. As shown in Table 8, the average waiting times of DD, FCFS, RR, and Cμ are 5.2, 7.5, 23.0, and

5.7 times that of DDPM, respectively. DDPM significantly outperforms DDCPM in terms of average waiting

time in 11 systems, whereas the performance difference is insignificant in the nine other systems. A

considerable reduction in waiting time and queue lengths are achieved by simply coordinating preventive

maintenance decisions with dispatching decisions. Meanwhile, DD and DDCPM are the optimal dispatching

- 26 -

policies without preventive maintenance and with condition-based preventive maintenance, respectively. This

finding suggests that coordinating preventive maintenance decisions with dispatching decisions is important

for production systems with dispatching-dependent deterioration.

In addition, queue length directly reflects the work-in-process (WIP) level of a production system. A

reduction in average waiting time implies that coordinating scheduling and preventive maintenance can reduce

average WIP levels by an average of approximately 80%. Although lean manufacturing attempts to eliminate

WIP and inventory in production systems, optimal preventive maintenance is key to achieving leaner

production.

 Average machine downtime:

Over 50% reduction in machine downtime is observed when optimal preventive maintenance is adopted.

Overall machine downtime may not decrease with better preventive maintenance decisions because such

activity frequently requires different periods to complete. Our simulation results suggest that conducting

optimal preventive maintenance may not only reduce unexpected machine failures but also average machine

downtime.

To evaluate the performance of DDPM in systems with more than two products, we randomly generate 20

systems with three and four products using the parameters in Table 6. For each of the 20 randomly generated

systems, DDPM outperforms all other policies by at least 0.6% and 16.5% in throughput and cycle time,

respectively. However, although the simulation results suggest the superiority of DPPM in systems with more

products, the required computational effort for solving large-scale MDP problems becomes a challenge. To

overcome those computational challenges, we plan to combine artificial intelligence algorithms with MDP to

control the required computational effort in the future.

Model Validation in Non-Markovian Systems: Constant and Uniformly Distributed Processing Times

 To respond to this well-known weakness of MDP models, i.e., assuming that the processing times of jobs

follow an exponential distribution, we conduct a simulation study with uniformly distributed and constant

processing times.

 Uniform processing time distribution: Processing time is assumed to follow uniform random variables

U(
.

𝝁𝒊
𝒌 , .

𝝁𝒊
𝒌), where

𝝁𝒊
𝒌 represents the average processing time of a job 𝑖 on a health state 𝑘 machine, and

- 27 -

U(
.

𝝁𝒊
𝒌 , .

𝝁𝒊
𝒌) suggests that processing times are uniformly distributed between 80% and 120% of the average

processing time.

 Constant processing time: Constant processing time
𝝁𝒊

𝒌 is assumed for job 𝑖 on a health state 𝑘

machine. Under the constant processing time setting, no processing time uncertainty exists in the

simulation.

We conduct simulations using uniform and constant processing time distributions for all 20 systems, and

the simulation results are summarized in Tables 10 and 11. Notably, DDPM performs equally well in systems

with a non-Markovian processing time distribution.

Table 10 Simulation results with uniformly distributed processing times

Processing Time Distribution: Uniform U(

𝟎.𝟖

𝝁𝒊
𝒌 , 𝟏.𝟐

𝝁𝒊
𝒌)

KPI DDPM DD DDCPM FCFS RR Cμ

Throughput 1 1.0009 0.9884 0.9999 0.9855 1.00002

Average processing time 1 1.1843 1.0012 1.2039 1.1932 1.1901

Average waiting time 1 5.8329 1.5916 9.0932 30.8172 6.6703

Average machine downtime 1 1.6173 1.4922 1.6442 1.6214 1.6325

Throughput: A higher value is better.

Processing time/waiting time/downtime: A lower value is better.

Table 11 Simulation results with a constant processing time

 Processing Time Distribution: Constant

KPI DDPM DD DDCPM FCFS RR Cμ

Throughput 1 0.9994 0.9992 0.9901 0.9851 0.9990

Average processing time 1 1.1834 1.0029 1.2001 1.1928 1.1923

Average waiting time 1 6.3279 1.6202 9.3582 34.3034 7.2445

Average machine downtime 1 1.6226 1.5211 1.6521 1.6249 1.6451

Throughput: A higher value is better.

Processing time/waiting time/downtime: A lower value is better.

Compared with the simulation results using exponentially distributed processing times, considerable

improvements in average processing time/waiting time/machine downtime can still be observed, and

throughput performance remains similar under all processing time settings. The simulation results suggest the

robustness of the DDPM model in general systems that do not comply with the Markov assumption.

- 28 -

Conclusion

This research develops a dynamic decision model that coordinates dispatching and preventive maintenance

decisions for failure-prone parallel machines. The proposed DDPM model simultaneously considers two

important features of production systems: dispatching-dependent deterioration of machines and machine-

health-dependent production rates. Although these features are common in production systems, our research

is among the first to consider both features in dispatching and preventive maintenance decision problems.

The proposed DDPM model is validated through a thorough numerical study. Compared with those of other

widely used dispatching methods in the literature, the average waiting time and machine downtime can be

reduced by at least 45.2% and 48.9%, respectively. Moreover, the proposed method is equally robust in non-

Markovian systems with constant and uniformly distributed processing times. Our numerical results suggest

that coordination between dispatching and preventive maintenance is critical. Compared with the optimal

dispatching policy without controlled preventive maintenance, waiting and production times are significantly

reduced.

Given that this study is limited to a single workstation, we plan to extend our research to multiple-stage

serial production systems in the future. In addition, although the proposed DDPM model is a general model

that allows any number of products, machines, and machine health states, the required computational effort

for solving large-scale problems remains a challenge. Considering the recent developments in artificial

intelligence (AI), particularly in reinforcement learning, we plan to develop efficient AI-based algorithms for

solving large DDPM models in the future.

ACKNOWLEDGMENT

We thank the editor and the anonymous reviewers for their insightful comments and suggestions. This research

is supported in part by the Ministry of Science and Technology of Taiwan under Grant No. 105-2923-E-002-

009-MY3/ 107-2628-E-002-006-MY3 and the Agence Nationale de la Recherche of France under Grant No.

ANR-15-CE10-0003.

REFERENCES

- 29 -

[1] Afzalirad, M., & Rezaeian, J. (2015). Design of high-performing hybrid meta-heuristics for unrelated

parallel machine scheduling with machine eligibility and precedence constraints. Engineering

Optimization, 1-21.

[2] Andradottir, S., Ayhan, H. and Down D.G. (2001). Server assignment policies for maximizing the

steady-state throughput of finite queueing systems, Management Science, 47(10), 1421-1439.

[3] Baras, J. S., Dorsey, A. J., & Makowski, A. M. (1985). Two competing queues with linear costs and

geometric service requirements: the μc-rule is often optimal. Advances in Applied Probability, 17(01),

186-209.

[4] Bernier, V., & Frein, Y. (2004). Local scheduling problems submitted to global FIFO processing

constraints. International journal of production research, 42(8), 1483-1503.

[5] Borrero, J. S., & Akhavan-Tabatabaei, R. (2013). Time and inventory dependent optimal maintenance

policies for single machine workstations: An MDP approach. European Journal of Operational

Research, 228(3), 545-555.

[6] Cai, Y., Hasenbein, J. J., Kutanoglu, E., & Liao, M. (2013). Single-machine multiple recipe predictive

maintenance. Probability in the Engineering and Informational Sciences, 27(2), 209-235.

[7] Celen, M., & Djurdjanovic, D. (2015). Integrated maintenance decision-making and product sequencing

in flexible manufacturing systems. Journal of Manufacturing Science and Engineering, 137(4):041006–

041006–15.

[8] Cui, W.W., Lu, Z., & Pan, E. (2014). Integrated production scheduling and maintenance policy for

robustness in a single machine. Computers & Operations Research, 47, 81-91.

[9] Chen, A., & Wu, G. S. (2007). Real-time health prognosis and dynamic preventive maintenance policy

for equipment under aging Markovian deterioration. International Journal of Production

Research, 45(15), 3351-3379.

[10] Chen, J. F. (2015). Unrelated parallel-machine scheduling to minimize total weighted completion

time. Journal of Intelligent Manufacturing, 1099-1112.

[11] Feinberg, E.A. & Shwartz, A. (2002). Handbook of Markov Decision Processes: Methods and

Applications. Kluwer, Berlin.

[12] Huang, J., Down, D.G., Lewis, M. E., & Wu, C.-H. (2018) Dynamic scheduling and maintaining a

flexible server, preprint.

[13] Iravani, S. M., & Kolfal, B. (2005). When does the cμ rule apply to finite-population queueing

systems?. Operations Research Letters, 33(3), 301-304.

[14] Kaufman, D. L., & Lewis, M. E. (2007). Machine maintenance with workload considerations. Naval

Research Logistics (NRL), 54(7), 750-766.

[15] Kazaz, B., & Sloan, T. W. (2013). The impact of process deterioration on production and maintenance

policies. European Journal of Operational Research, 227(1), 88-100.

[16] Kao, Y. T., Dauzère-Pérès, S., Blue, J., & Chang, S. C. (2018). Impact of integrating equipment health

in production scheduling for semiconductor fabrication. Computers & Industrial Engineering, 120, 450-

459.

[17] Lee, C.-Y., & Meng, Q. (2014). Handbook of Ocean Container Transport Logistics: Making Global

Supply Chains Effective. Springer, Berlin.

[18] Lee, S., & Ni, J. (2013). Joint decision making for maintenance and production scheduling of production

- 30 -

systems. The International Journal of Advanced Manufacturing Technology, 66(5-8), 1135-1146.

[19] Liaw, C-F., Lin, Y-K., Cheng, C-Y., & Chen, M. (2003). Scheduling unrelated parallel machines to

minimize total weighted tardiness. Computers & Operations Research, vol.30, no.12, pp.1777-1789.

[20] Lin, S. W., & Ying, K. C. (2014). ABC-based manufacturing scheduling for unrelated parallel machines

with machine-dependent and job sequence-dependent setup times. Computers & Operations

Research, 51, 172-181.

[21] Nain., P. (1989) Interchange arguments for classical scheduling problems in queues. Systems & Control

Letters, 12(2):177–184.

[22] Rezaeian, J. (2016). A robust hybrid approach based on particle swarm optimization and genetic

algorithm to minimize the total machine load on unrelated parallel machines. Applied Soft Computing.

[23] Samhouri, M. S. (2009). An intelligent opportunistic maintenance (OM) system: a genetic algorithm

approach. In Science and Technology for Humanity (TIC-STH), 2009 IEEE Toronto International

Conference (pp. 60-65). IEEE.

[24] Serfozo, R. (1978) An equivalence between continuous and discrete time Markov decision processes.

Operations Research, 27(3), 616–620.

[25] van Mieghem, J. A. (1995). Dynamic Scheduling with Convex Delay Costs: The Generalized c|mu Rule.

The Annals of Applied Probability, 5(3), 809-833

[26] Wallace, S.W. & Ziemba, W.T. (2005) Applications of Stochastic Programming. SIAM Publication,

Philadelphia.

[27] Wu, C. H., Down, D. G., Lewis, M. E. (2008). Heuristics for allocation of reconfigurable resources in

a serial line with reliability considerations. IIE Transactions, 40(6), 595-611.

[28] Yao, X., Xie, X., Fu, M. C., & Marcus, S. I. (2005). Optimal joint preventive maintenance and

production policies. Naval Research Logistics (NRL), 668-681.

[29] Yu, L., Shih, H. M., Pfund, M., Carlyle, W. M., & Fowler, J. W. (2002). Scheduling of unrelated parallel

machines: an application to PWB manufacturing. IIE transactions, 34(11), 921-931.

[30] Zhang, X., & Zeng, J. (2015). Deterioration state space partitioning method for opportunistic

maintenance modelling of identical multi-unit systems. International Journal of Production

Research, 53(7), 2100-2118.

[31] Zhou, B., Yu, J., Shao, J., & Trentesaux, D. (2015). Bottleneck-based opportunistic maintenance model

for series production systems. Journal of Quality in Maintenance Engineering.

[32] Zhou, X., Xi, L., & Lee, J. (2009). Opportunistic preventive maintenance scheduling for a multi-unit

series system based on dynamic programming. International Journal of Production Economics, 118(2),

361-366.

[33] Z.-J Zhang, & J. Daigle.(2012) Analysis of job assignment with batch arrivals among heterogeneous

servers. European Journal of Operational Research 217.1: 149-161.

- 31 -

Appendix A: Detailed Results of the Numerical Experiments

 Average Throughput

Table A1. Normalized average throughput and confidence interval of 30 simulation replications

Throughput

System DDPM DD DDCPM FCFS RR Cμ
DDPM
Rank

1 1
1.0005
0.0023

0.9996
0.018

1.0009
0.0021

1.002
0.0022

1.0013
0.002

5

2 1
0.9989
0.0017

0.9974
0.0017

0.9853
0.0268

0.9977
0.0018

1.0003
0.0018

2

3 1
1.0046
0.0074

1.0049
0.0078

1.0041
0.008

1.0038
0.0076

1.0042
0.0067

6

4 1
0.9999
0.0025

0.9808
0.0387

1.0005
0.0023

0.9364
0.0029

1
0.0023

3

5 1
0.9992
0.0015

1.0005
0.0018

0.998
0.0014

0.9786
0.003

0.9986
0.0024

2

6 1
1.0005

0.002
0.9989

0.002
0.9989

0.0026
0.9762

0.0471
0.9998

0.0018
2

7 1
1.0209
0.0441

1.0073
0.0516

1.0211
0.0448

1.0069
0.0531

1.0217
0.0446

6

8 1
1.0003
0.0019

1.0001
0.002

0.9992
0.0014

0.9998
0.0016

1.0009
0.0016

4

9 1
0.9991
0.0019

0.9987
0.0018

0.9799
0.0398

0.973
0.0021

0.9994
0.0023

1

10 1
0.9996
0.0019

0.999
0.0022

0.9994
0.0022

0.987
0.0272

1.0001
0.0022

2

11 1
1.0005

0.003
1.0026

0.0027
0.9882

0.027
0.9821

0.0385
0.9998

0.003
3

12 1
0.9982
0.0026

0.9979
0.002

0.998
0.0028

0.9994
0.0023

0.9997
0.0026

5

13 1
1.0005
0.0026

1.0001
0.0023

1.0003
0.0021

0.98
0.0031

0.9983
0.0022

4

14 1
0.9998
0.0018

0.9999
0.0024

0.978
0.0399

1.0001
0.0018

1.001
0.0024

3

15 1
1.0011
0.0015

0.9987
0.0021

0.9995
0.0022

0.9219
0.0024

0.9966
0.0067

2

16 1
0.9996
0.0025

1.0003
0.0026

0.9999
0.0024

0.9979
0.0025

1.0001
0.0022

3

17 1
1.0001
0.0017

0.9987
0.0023

0.9997
0.0024

0.9988
0.0022

0.9815
0.0371

2

18 1
1.001
0.0024

0.999
0.0023

0.9984
0.003

0.9992
0.0029

0.9994
0.0024

2

19 1
0.9986
0.0023

0.9816
0.0361

0.9992
0.0022

0.9872
0.0027

1.0016
0.0019

2

20 1
0.9996
0.0023

1.0006
0.0026

0.9818
0.0383

0.9599
0.0597

0.9996
0.002

2

Avg 1 1.0011 0.9982 0.9973 0.9857 1.0002 3

- 32 -

 Average processing time of jobs

Table A2. Normalized average processing time of jobs and confidence interval

Average processing time of jobs

System DDPM DD DDCPM FCFS RR Cμ
DDPM
Rank

1 1
1.1457

0.0038
0.9987
0.0021

1.1647
0.0035

1.1606
0.0043

1.1627
0.0038

2

2 1
1.1299

0.0031
1.0012
0.0015

1.1836
0.0033

1.1718
0.0032

1.1298
0.0034

1

3 1
1.3655

0.0065
0.9983
0.0021

1.3765
0.0045

1.3716
0.0055

1.3737
0.0057

2

4 1
1.1646

0.0034
0.9996
0.0025

1.2065
0.0042

1.195
0.003

1.1978
0.0044

2

5 1
1.2569

0.0045
0.9989
0.0022

1.2812
0.0056

1.284
0.0042

1.2764
0.005

2

6 1
1.1856

0.0035
1.0001
0.0020

1.1985
0.0042

1.1981
0.0043

1.1961
0.004

1

7 1
1.1795

0.0033
0.9995
0.0023

1.2269
0.004

1.2158
0.0048

1.2118
0.0047

2

8 1
1.0948

0.003
1.0147
0.0025

1.0995
0.0029

1.0977
0.0023

1.1001
0.0039

1

9 1
1.13
0.0024

0.9997
0.0022

1.1664
0.0034

1.1615
0.0032

1.1278
0.0029

2

10 1
1.2937

0.0049
0.9997
0.0026

1.2805
0.0061

1.2854
0.0059

1.2845
0.0056

2

11 1
1.2189

0.0047
1.0095
0.0028

1.2501
0.0054

1.2357
0.0055

1.2211
0.0051

1

12 1
1.0738

0.0033
0.9987
0.0025

1.0727
0.0021

1.0753
0.003

1.0763
0.0029

2

13 1
1.2254

0.0043
0.9998
0.0023

1.2499
0.0051

1.2488
0.0052

1.2467
0.0042

2

14 1
1.1112
0.0028

1.0213
0.0026

1.1101
0.003

1.1084
0.003

1.1089
0.0029

1

15 1
1.1128

0.003
1.0014
0.0022

1.1098
0.0034

1.1293
0.0036

1.1101
0.003

1

16 1
1.169

0.004
1.0008
0.0024

1.2029
0.0037

1.1977
0.0038

1.1981
0.0032

1

17 1
1.1577

0.005
1.0096

0.003
1.1855

0.0051
1.1721

0.0032
1.1554

0.0055
1

18 1
1.2818

0.0043
1

0.0027
1.2815

0.0055
1.2878

0.0051
1.2827

0.0048
1

19 1
1.1512

0.0032
1.0212
0.0067

1.1987
0.004

1.1916
0.0034

1.1505
0.0038

1

20 1
1.1086

0.0027
1.0002
0.0019

1.1108
0.003

1.1107
0.0034

1.1116
0.0024

1

Avg 1 1.1778 1.0036 1.1978 1.1949 1.1861 1

- 33 -

 Average waiting time of jobs in queues

Table A3. Normalized average waiting time of jobs in queues and confidence interval

Average waiting time of jobs

System DDPM DD DDCPM FCFS RR Cμ
DDPM
Rank

1 1
3.7505
0.1168

1.4190
0.0266

5.2056
0.1895

18.4688
0.3537

4.1909
0.1993

1

2 1
3.649
0.1771

0.9795
0.0304

7.7497
0.3819

14.4849
0.4596

3.787
0.197

2

3 1
7.4867
0.3685

1.0126
0.0268

7.7539
0.262

37.5004
1.2775

7.737
0.3292

1

4 1
5.2791
0.2302

1.7312
0.2094

12.1064
0.7163

30.7202
0.5379

9.1211
0.5062

1

5 1
13.5231

0.5595
2.2757

0.0807
18.4701

1.5422
42.8866

0.9762
15.0898

0.6094
1

6 1
3.3589
0.1472

0.9791
0.0428

4.3531
0.2292

13.9026
0.4455

3.6689
0.18

2

7 1
4.8017
0.2263

0.9812
0.033

10.0969
0.6601

16.2172
0.7444

6.2883
0.3316

2

8 1
2.7109

0.09
1.5932

0.0465
2.7853

0.085
20.1713

0.4306
2.8832
0.1224

1

9 1
3.5351
0.1507

0.989
0.0284

6.3814
0.4039

23.0993
0.4014

3.5015
0.1545

2

10 1
8.6658
0.3587

2.0031
0.082

9.6552
0.3916

38.7173
1.5326

8.4015
0.4684

1

11 1
4.2629
0.1701

1.4029
0.0338

5.8926
0.231

33.5862
1.4611

4.2518
0.1602

1

12 1
2.341
0.1278

0.9925
0.0391

2.6197
0.1257

9.6622
0.2759

2.2700
0.0876

2

13 1
9.2207
0.5352

1.0125
0.0371

11.7081
0.6212

30.9423
0.8233

9.7687
0.4136

1

14 1
4.9124
0.2754

2.7608
0.1029

6.0297
0.3171

12.8941
0.5844

4.9782
0.2761

1

15 1
3.0507
0.1608

0.9904
0.0271

3.532
0.2172

17.0661
0.3992

2.9431
0.1558

2

16 1
6.4099
0.2745

1.6855
0.0569

11.9509
0.6781

26.7849
0.9397

8.2778
0.3445

1

17 1
4.4485
0.1579

1.8949
0.0783

5.5042
0.2945

18.3166
0.4805

5.1133
1.1468

1

18 1
5.8697
0.2016

1.0004
0.0315

5.5823
0.2434

18.2243
0.6251

5.7903
0.1791

1

19 1
5.0525

0.222
2.3306

0.1526
10.9574

0.6314
28.6026

0.7308
5.0522
0.2551

1

20 1
1.9943

0.068
1.0122

0.0321
2.4858
0.5624

8.0891
0.3170

2.2462
0.1053

1

Avg 1 5.2162 1.4523 7.5410 23.0168 5.7680 1

- 34 -

 Average machine downtime

Table A4. Normalized average machine downtime and confidence interval

Average downtime of machines (maintenance + repair time)

System DDPM DD DDCPM FCFS RR Cμ
DDPM
Rank

1 1
2.2374

0.0364
1.9860

0.0329
2.2332

0.0367
2.2544

0.0403
2.2514

0.0381
1

2 1
1.3966

0.0268
0.9941

0.0216
1.3913

0.0496
1.4156

0.0265
1.4046

0.0266
2

3 1
1.2487

0.0279
0.9935

0.0209
1.2490

0.0207
1.2393

0.0234
1.2417

0.0192
2

4 1
1.8502

0.0281
1.9262

0.0832
2.0927

0.0262
1.9024

0.0245
2.0469

0.3300
1

5 1
2.1412

0.0326
1.9705

0.0253
2.1228

0.0266
2.0712

0.0223
2.1113

0.0305
1

6 1
1.3271

0.0270
1.0020

0.0197
1.3657

0.026
1.3244

0.0673
1.3575

0.0299
1

7 1
1.3354

0.0535
0.9979

0.0470
1.3896

0.0603
1.3498

0.0751
1.3666

0.0552
2

8 1
1.8377

0.0370
2.0003

0.0318
1.8362

0.0319
1.8395

0.0278
1.8461

0.0274
1

9 1
1.2508

0.0206
1.0026

0.0174
1.2788

0.0539
1.2707

0.0234
1.2599

0.0205
1

10 1
2.0956

0.0385
2.0319

0.0355
2.1482

0.0447
2.1434

0.0774
2.1202

0.0334
1

11 1
1.8645

0.0355
2.0074

0.0345
1.9221

0.0628
1.8707

0.0786
1.8876

0.0332
1

12 1
1.4447

0.0855
1.0253

0.0551
1.4331

0.0717
1.4451

0.0824
1.4469

0.0799
1

13 1
1.5420

0.0258
0.9986

0.0188
1.5072

0.0275
1.4709

0.0249
1.5209

0.0251
2

14 1
1.6250

0.023
1.9499

0.0222
1.6434

0.0686
1.6623

0.0235
1.6711

0.0246
1

15 1
1.1211

0.0152
0.9968

0.0142
1.1204

0.016
1.0490

0.0162
1.1214

0.0206
2

16 1
2.1184

0.0409
1.9889

0.0377
2.1161

0.0354
2.1212

0.0363
2.1065

0.0305
1

17 1
2.0111

0.0321
2.0063

0.0335
1.9675

0.0375
2.0213

0.0328
1.9807

0.0818
1

18 1
1.4255

0.0213
1.0047

0.0174
1.4061

0.0196
1.4403

0.0178
1.4177

0.0223
1

19 1
1.6291

0.0274
1.8812

0.079
1.7185

0.0231
1.6989

0.0288
1.6255

0.0296
1

20 1
1.0785

0.0226
1.0054

0.023
1.0955

0.0471
1.0591

0.0674
1.1129

0.0201
1

Avg 1 1.6290 1.4885 1.6519 1.6325 1.6449 1

