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Dynamic Dispatching and Preventive Maintenance for Parallel 

Machines with Dispatching-dependent Deterioration 

Cheng-Hung Wu, Yi-Chun Yao, Stéphane Dauzère-Pérès, and Cheng-Juei Yu 

Abstract 

 A dynamic decision model that coordinates dispatching and preventive maintenance decisions for failure-

prone parallel machines in make-to-order (MTO) production environments is developed in this research. The 

primary objective is to minimize the weighted long-run average waiting costs of MTO systems. Two common 

but seldom studied stochastic factors, namely, the dispatching-dependent deterioration of machines and 

machine-health-dependent production rates, are explicitly modeled in the proposed dynamic dispatching and 

preventive maintenance (DDPM) model. Although the DDPM model is developed using Markov decision 

processes, it is equally effective in non-Markovian production environments. The performance of the DDPM 

model is validated in Markovian and non-Markovian production environments. Compared with several 

methods from the literature, simulation results show an improvement of at least 45.2% in average job waiting 

times and a minimum reduction of 48.9% in average machine downtimes. The comparison results between 

the optimal dynamic dispatching policies with and without coordinated preventive maintenance show that 

performance improvement can be mostly attributed to the coordination between preventive maintenance and 

dispatching decisions.  

 

Introduction and Problem Formulation  

This research investigates joint dispatching and preventive maintenance optimization problems for parallel 

machines with dispatching-dependent deterioration. In the literature, unrelated parallel machines are flexible 

machines that can process the same group of jobs but have different processing time distributions. Parallel 

machines that can perform various operations or produce different products are widely used to satisfy the 

requirements of product diversification. In the current research, the varying production rates of parallel 

machines can result from machine deterioration. In practice, the deterioration of machines frequently depends 

on dispatching decisions (Kazaz et al., 2013). For example, a computer numerically controlled (CNC) 

machine may be used to perform machining operations on different materials and products. However, various 
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materials may stress the cutting tools of CNC machines in different ways and lead to varying equipment 

health deterioration processes, which are defined as dispatching-dependent machine health deterioration in 

this research.  

When machine health deteriorates over time, the accumulated wear on machines or tools may impact 

product quality, cause additional rework, reduce production efficiency, and eventually lead to machine failure 

(Kaufman and Lewis, 2007; Zhang and Daigle, 2012; Kao et al., 2018). For example, when an operation with 

high quality requirements is assigned to a deteriorated machine, the high rework rate of the deteriorated 

machine may lead to a low throughput rate and high production costs. By contrast, the same deteriorated 

machine may still perform operations with low quality requirements and not result in high rework rates. 

Consequently, different production rates can be observed in the same group of machines due to varying 

equipment health, which is defined as machine-health-dependent production rates.  

 

 

Figure 1 Production rate decreases with machine health in semiconductor testing and assembly processes 

 

Dispatching-dependent deterioration and health-dependent production rates are common stochastic factors 

in manufacturing systems. For example, diverse materials stress the tool bits of CNC machines in different 

ways and cause varying deterioration rates in machining processes. When deteriorated tools are used, a low 

yield quality, such as a rough surface, is expected. Consequently, high rework/scrap rates hinder production 

efficiency. Similar machine–product fitness examples can be found in the high-tech manufacturing industry. 

Production rate decreases while 
machine health deteriorates 

Production rate recovers 
after maintenance 
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Yu et al. (2002) discovered this problem in the printed circuit board (PCB) manufacturing line of the Japanese 

electronics industry. As shown in Figure 1, one of our industry partners from the semiconductor testing and 

assembly industry also found similar deterioration and production rate changes in their production line. In 

the figure, the throughput rates and health of a machine deteriorate over time, and throughput rate recovery 

is observed after machine maintenance. 

Most existing scheduling methods use metaheuristic algorithms to find the optimal schedule for a finite 

set of jobs on a fixed number of unrelated machines. The production time of a job is frequently assumed to 

be a machine-dependent constant, and production time uncertainties are disregarded. Yu et al. (2002) 

developed Lagrangian relaxation methods for scheduling unrelated parallel machines in the printed wire 

board industry. Chen and Wu (2007) and Chen (2015) presented heuristic scheduling algorithms to minimize 

the total weighted completion time of unrelated parallel machines. Rezaeian (2003), Liaw et al. (2003), 

Afzalirad and Rezaeian (2015), and Rezaeian (2016) developed metaheuristic algorithms to optimize the 

machine loads of unrelated parallel machines. Lin and Ying (2014) developed an artificial bee colony 

algorithm to minimize the maximum completion time of jobs, i.e. the makespan, when the setup time between 

job switching is sequence-dependent. To schedule jobs on unrelated parallel batching machines, Kao et al. 

(2018) propose two mixed integer linear programs that balance between productivity and quality risk. 

The dynamic dispatching and dynamic preventive maintenance of failure-prone machines are closely 

related to our work. Stochastic optimization methods are frequently used in dynamic production control 

problems because machine deterioration and failure are uncertain events in these environments. Kaufman 

and Lewis (2007) asserted that optimal maintenance policies depend on workload and machine health. Cai 

et al. (2013) studied work-dependent deterioration in an M/G/1 queueing system with two types of job and a 

single deteriorating machine. Celen and Djurdjanovic (2015) developed heuristic algorithms for coordinating 

product sequencing and maintenance under operation-dependent deterioration. Wu et al. (2008) proposed 

heuristic algorithms to minimize the weighted cycle time in a serial production line. Zhou et al. (2009) studied 

preventive maintenance scheduling problems to minimize short-term maintenance costs using dynamic 

programming. Cui et al. (2014) proposed a robust three-phase dynamic production scheduling and 

maintenance algorithm for a single flexible machine. Borrero et al. (2013) develop Markov decision process 
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(MDP) models for systems with state-dependent processing rates. Zhang and Zeng (2015) and Zhou et al. 

(2015) proposed different heuristic methods for minimizing the opportunity costs of maintenance in multi-

unit series systems. The literature in this area shows that dynamic scheduling and preventive maintenance 

are challenging research problems even for a single machine. 

Thus, the contribution of the current research is the joint optimization of dispatching and preventive 

maintenance decisions for parallel machines when dispatching-dependent deterioration and health-dependent 

production rates are considered. Coordination between dispatching and preventive maintenance decisions is 

critical for such systems, and both factors are explicitly modeled in our dynamic dispatching and preventive 

maintenance (DDPM) model. To our knowledge, no previous research has yet considered both stochastic 

factors for parallel machines.  

 

DDPM Model  

This research considers a make-to-order (MTO) production system that produces 𝐼  products on 𝐽 

multifunctional machines. Let 𝑖 ∈ 1,2, … , 𝐼  represent a type of product. Type 𝑖 demands join queue 𝑖 and 

wait to be manufactured (as shown in Figure 2) by one of the 𝐽  machines. To consider the random 

deterioration of the machines explicitly, stochastic optimization methods must be adopted. In the literature, 

two stochastic optimization methods, namely stochastic programming (SP) and MDP, are widely used in 

stochastic production control problems. In the current research, given that dispatching and preventive 

maintenance decisions must be taken many times a day, a long planning horizon with many decision epochs 

is required. In Feinberg and Shwartz (2002), Wallace and Ziemba (2005), and Lee and Meng (2014), the 

computational complexity of multiple recourse stochastic programming grows exponentially with the planning 

horizon and is computationally intractable in our problem. Thus, to consider a planning horizon with many 

decision epochs, we develop our DDPM model using MDP, and the demand arrival, production, and machine 

failure processes are assumed to follow Poisson or Markov processes to satisfy the required Markov 

assumptions of the MDP models. Although the model is developed and solved under Markov assumptions, the 

optimal control policies generated by the DPPM model are validated in Markovian and non-Markovian 

simulation environments. In non-Markovian environments that do not comply with the Markov assumptions, 
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numerical results indicate a similar performance advantage over other methods. 

 

Figure 2 Production system with failure-prone parallel machines 

 

Thus, the demand arrivals are assumed to follow Poisson arrival processes with product-specific arrival 

rates λ . Each machine has 𝐾 different machine health states, and production rates depend on the product 

and machine health state. Let 𝑘 ∈ 0,1, … , 𝐾 1  be the real-time health state of a machine. A machine in 

health state 𝑘 is healthier than a machine in health state 𝑘′ when 𝑘 𝑘′. Moreover, 𝑘 𝐾 1 indicates 

the best health state, whereas 𝑘 0 indicates the failure state of a machine. We define 𝜇  as the production 

rate for type 𝑖 when a machine is under health state 𝑘. To model the influence of machine deterioration, we 

assume that 𝜇 𝜇  when 𝑘 𝑘  (i.e., the production rate does not increase when machine health 

deteriorates). 

Machine health deterioration is dispatching-dependent and is assumed to follow a continuous-time Markov 

chain. Different job assignments result in various machine deterioration rates. That is, when different types of 

job are assigned to a machine, the machine health deterioration rate changes accordingly. Let 𝛽  denote the 

machine health deterioration rate between health states 𝑘 and 𝑘 1 when a machine is assigned to process 

type 𝑖 products.  

A decision maker can choose to conduct optional preventive maintenance when machine deterioration is 

observed. Maintenance decisions immediately place a machine in maintenance state. Once maintenance begins, 

the process takes an exponentially distributed amount of time with rate 𝛾   to complete. The preventive 
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maintenance rate is assumed to depend on the health of a machine at the time when the preventive maintenance 

decision was made. If no preventive maintenance is conducted, then a machine may eventually fail (i.e., k = 

0). When machine failure is observed, an exponentially distributed repair time with rate 𝛾  is required to 

mend the machine.  

 

Figure 3 Transition diagram between machine health states 

 

In this section, the DDPM model is developed to coordinate dispatching and preventive maintenance 

decisions in systems with multiple product types and machines. Optimal dispatching and maintenance 

decisions depend on the real-time queue and machine health states due to the dynamic nature of a system 

(Kaufman and Lewis, 2007). Thus, we define the state variable of the dynamic optimization model at time 𝑡 

as 𝑠 𝑞 , 𝑥 , 𝑦 , where 𝑞 𝑞 , 𝑞 , … , 𝑞 , 𝑥 𝑥 , 𝑥 , … , 𝑥  , and 𝑦 𝑦 , 𝑦 , … , 𝑦 . In 

these equations, 𝑞   denotes the real-time queue length of product 𝑖, 𝑦   denotes the number of available 

machines with health state 𝑘, and 𝑥  represents the number of machines undergoing preventive maintenance 

or repair under health state 𝑘. Moreover, ∑ 𝑥 𝑦 𝐽 because the system has exactly 𝐽 machines. 

Coordination between maintenance and dispatching decisions is critical for the current research because 

manufacturing and machine health deterioration processes are dispatching-dependent. Thus, the following 

decision variables are defined and considered for all states 𝑠 . 

(1) Dispatching decision: 𝑎  

Let 𝑎  (𝑎 , 𝑎 , … , 𝑎  ) be the dispatching decision at time 𝑡 , where 𝑎 𝑖 ∈ 1, 2, … , 𝐼   represents 

the dispatching decision for machines with health state 𝑘. If 𝑎 𝑖, then the highest priority is assigned to 

product 𝑖 on health state 𝑘 machines.  
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(2) Preventive maintenance decision: 𝑏  

Let 𝑏 (𝑏 , 𝑏 , … , 𝑏 ) be the preventive maintenance decision at time 𝑡, where 0 𝑏 𝑦  is a non-

negative integer decision variable that represents the state-dependent preventive maintenance decision on 

health state 𝑘  machines. When 𝑏 0 , preventive maintenance begins on 𝑏   of 𝑦   available machines 

that are currently in health state 𝑘. Let 𝑏 0 to prevent unnecessary calculation because machines with 

perfect health state require no maintenance. We also constantly assume 𝑏 𝑦   because corrective 

maintenance begins immediately on all failed machines. 

The objective of the DDPM model is to minimize the weighted long-run average waiting costs of an MTO 

production system. Let ℎ  be the holding cost rate of product 𝑖 (i.e., waiting cost ℎ  is accrued for every 

unfulfilled type 𝑖 demand per unit time). Notably, minimizing average cycle time by setting ℎ 1 for all 

𝑖 is a special case of the general DDPM model.  

Uniformization is applied to transform the original continuous-time Markov decision problem into an 

equivalent discrete-time problem (Serfozo, 1978). For a system with 𝐼  products/𝐽  machines/𝐾  machine 

health states, the uniformization rate 𝜑 can be defined as  

𝜑＝ 𝜆 𝐽 𝜇 𝛽 𝛾 . 

Table 1 provides the summary of all the variables and notations used in the DDPM model. 

Table 1 Notations and definitions used in the DDPM model 

Notation Definition 

𝑖 Product type, 𝑖 ∈ 1, 2, … , 𝐼  

𝐼 Number of product types 

𝑗 Machine, 𝑗 ∈ 1, 2, … , 𝐽  

𝐽 Number of machines 

𝑘 
Machine health state, 𝑘 ∈ 0,1, … , 𝐾 1   

𝐾 1: perfect health, 0: failed 

𝐾 Number of different machine health states 

𝑞  Queue length of product type 𝑖, 𝑞 ∈ ℕ ∪ 0  

𝑥  Number of health state 𝑘 machines under maintenance/repair 

𝑦  Number of available health state 𝑘 machines 

𝑠  
State variable, 𝑠 𝑞 , 𝑥 , 𝑦  ∈ S, where 𝑞 𝑞 , … , 𝑞 , 𝑥

𝑥 , … , 𝑥 , and 𝑦 𝑦 , … , 𝑦  
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S State space, set of all possible system states 

ℎ  Holding cost rate of product 𝑖  

λ  Demand arrival rate of product 𝑖 

𝜇  Production rate of product 𝑖 on a health state 𝑘 machine 

𝛽  
Machine health deterioration rate from health state 𝑘 to 𝑘 1 

when a machine is assigned to process product 𝑖  

𝛾  Maintenance/repair rate of a health state 𝑘 machine 

𝜑 Uniformization rate 

 

After applying uniformization and transforming the continuous-time problem into a discrete-time equivalent 

model, we can focus on the discrete time points where state transitions are observed. The expected cost 

between two consecutive decision epochs can be defined as 

C 𝑠
1
𝜑

ℎ 𝑞 . 

If we disregard preventive maintenance decision 𝑏   and focus on the one-step transition probability 

function under 𝑠  and dispatching decision 𝑎 , then the one-step transition probability without preventive 

maintenance can be defined as 𝑃 𝑠 𝑥′, 𝑦′, 𝑞′ | 𝑞 , 𝑥 , 𝑦 , 𝑎 ) for each of the following five transition 

types (𝑏  and its impact on the system state are discussed in a later section). 

Table 2 Transition probabilities 𝑃 𝑠 |𝑠 , 𝑎 ) 

Event/Transition Type Notation Probability 

Type 𝑖 demand arrival 𝑃 ,  
𝜆
𝜑

 

Type 𝑖 service completion on health 

state 𝑘 machines  
𝑃 , ,  

𝑦 𝜇
𝜑

 

Deterioration of a health state 𝑘 

machine when producing product 𝑖  
𝑃 , ,  

𝑦 𝛽
𝜑

 

Maintenance/repair completion of a 

health state 𝑘 machine 
𝑃 ,  

𝑥 𝛾
𝜑

 

Dummy transition (to make the 

probability functions summed up to 1) 
𝑃  

1 𝑃 ,  

𝑃 , , 𝑃 , , 𝑃 ,  



- 9 - 

 

Value Iteration Algorithm for Solving the DDPM Model 

Let 𝑉 𝑠  be the optimal value function defined in the backward induction dynamic program. As shown 

in Figure 4 and in Optimality Equation (I), the optimal value function is iteratively defined by the optimality 

equation in the backward value iteration algorithm. Every feasible action in the current case is evaluated for 

all states using the backward induction value iteration algorithm. 

 

Figure 4 Time chart of the value iteration algorithm 

Machine maintenance is preemptive and assumed to begin immediately after decision 𝑏  is made. Hence, 

system state changes from 𝑠 𝑞 , 𝑥 , 𝑦  to 

�̅� 𝑞 , �̅� , 𝑦  𝑞 , 𝑥 𝑏 , 𝑦 𝑏 . 

That is, 𝑠  and �̅�  are the system states before and after the machine maintenance decision in period 𝑡. 

The expected one-step cost remains unchanged after the maintenance decision because preventive 

maintenance has no immediate effect on queue length. Thus,  

C �̅� C 𝑠
1
𝜑

ℎ 𝑞 . 

Subsequently, we define an indicator variable 𝐼  as 

𝐼
1, if 𝑎 𝑖   

0, otherwise  
. 

Let �̅�  be the real-time system state at time 𝑡 after maintenance decision 𝑏 . The optimal finite horizon 

policies can be defined as  

Optimality Equation (I): 

𝑉 𝑠  

 min
,

C 𝑠 Pr 𝑠 |𝑠 , 𝑎 , 𝑏 ∙ 𝑉 𝑠  

 C 𝑠 min
,

Pr 𝑠 | 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , 𝑎 ∙ 𝑉 𝑠  
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 C 𝑠 min min  Pr 𝑠 | 𝑞 , 𝑥 𝑏 , 𝑦 𝑏  , 𝑎 ∙ 𝑉 𝑠  

 C 𝑠 min min Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠  

 
1
𝜑

ℎ 𝑞  

   min

⎩
⎪⎪
⎨

⎪⎪
⎧

∑ 𝑃 , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                         
∑ 𝑊 �̅�                                                       

                                                                
∑ 𝑃 , 𝑉 𝑞 , 𝑥 𝑏 , … , 𝑥 𝑏 1, … , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 1

 𝑃 𝑉 �̅�                                                           
                                                      ⎭

⎪⎪
⎬

⎪⎪
⎫

, 

where 𝑊 �̅�   represents all the terms that are dependent on dispatching and preventive maintenance 

decisions. 𝑊 �̅�  is defined as 

𝑊 �̅�  = min
∈ , ,…

W �̅� , 𝑎 , where 

W �̅� , 𝑎  

⎩
⎪
⎨

⎪
⎧

𝐼 𝑃 , , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                       

𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 𝑏 1, 𝑦 𝑏 1, … , 𝑦  

1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                               

1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                               ⎭
⎪
⎬

⎪
⎫

 

∑

⎩
⎪
⎪
⎨

⎪
⎪
⎧ 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                       

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏 , … , 𝑦 𝑏 1, 𝑦 𝑏 1, … , 𝑦

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                               

𝑉 𝑞 , 𝑥 𝑏 , 𝑦 𝑏                               ⎭
⎪
⎪
⎬

⎪
⎪
⎫

. 

 

Notably, finding the solution for the optimality equation requires iterative calculation. We need to find the 

optimal 𝑎  and W �̅� , 𝑎  for every preventive maintenance decision 𝑏 , which requires three layers of for-

loops on 𝑎  and 𝑏  for every 𝑠 .  

Table 3 Pseudocode for the original value iteration algorithm 

For all t 

{ 
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For all 𝑠  

{ 

For all 𝑏  

{ 

For all 𝑎  

{ 

Find 𝑊 �̅� , 𝑎    

𝑊 �̅�  = min
∈ , ,…

W �̅� , 𝑎  that optimizes the dispatching decisions  

} 

Given 𝑊 �̅� ,  

Find min C 𝑠 ∑ Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠  for all 𝑏  

} 

𝑉 𝑠 min min C 𝑠 ∑ Pr 𝑠 |�̅� , 𝑎 ∙ 𝑉 𝑠   

} 

} 

 

The 𝑐𝜇-rule (Cμ) is widely recognized as the optimal dispatching rule for queuing systems with multiple 

customer classes when the system does not exhibit dispatching-dependent deterioration (van Mieghem, 1995; 

Baras et al., 1985; Iravani and Kolfal, 2005). The Cμ dispatching policy assigns high priorities to products 

with large 𝑐 𝜇   values, where 𝑐   is the waiting cost rate of product 𝑖  and 𝜇   is the production rate. In 

Proposition 1, given Optimality Equation (I), we can demonstrate that Cμ can be sub-optimal in systems 

with dispatching-dependent deterioration. 

 

Proposition 1: For queuing systems with machines that exhibit dispatching-dependent deterioration, Cμ that 

assigns highest priority to products with large 𝑐 𝜇  values can be sub-optimal. 

Proof: We present the proposition using a counter example. For a queuing system with one machine, two 

products, and two machine health states (i.e., good or failed), the system parameters are set as follows: 

Parameters Holding cost 

rate 

Demand 

arrival rate 

Production rate 

(good health) 

Deterioration 

rate 

Repair rate 

Values ℎ 1
ℎ 1 

𝜆 0
𝜆 0 

𝜇 3
𝜇 2

 
𝛽 2
𝛽 0

 𝛾 1 
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In this single-machine system, the state variable can be defined as 𝑞 , 𝑞 , 𝑥 , 𝑥 , 𝑦 , 𝑦 . Considering 

that the best health machine requires no maintenance and any failed machine immediately begins the repair 

process, 𝑥  and 𝑦  are always 0, and we can simplify the state definition to consider only non-zero variables 

𝑞 ,  𝑞 , 𝑥 , and 𝑦 . Hence, given a state 𝑞 , 𝑞 , 𝑥 , 𝑦 , let V 𝑞 , 𝑞 , 𝑥 , 𝑦  be the optimal total expected 

costs before clearing all the jobs in the queues. 

We can easily find the optimal expected costs before clearing all the queues for any given system state 

because the demand arrival rates are 0. When only one job is present in the queues, finding V 𝑞 , 𝑞 , 𝑥 , 𝑦  is 

easy because optimal dispatching will not make the server idle. Thus, by finding the expected costs of the non-

idling policy, we can obtain 

V 1,0,0,1 1
V 1,0,1,0 2

 and 
V 0,1,0,1

V 0,1,1,0
. 

Then, consider states 1,1,0,1  and 1,1,1,0  that have exactly one job in both queues. Under the Cμ and 

non-Cμ policies, the expected total costs before clearing the queues can be determined by using the previously 

mentioned job V 𝑞 , 𝑞 , 𝑥 , 𝑦  and Optimality Equation (I). 

 Expected total costs under the 𝐂𝛍 policy: 
𝑉 1,1,0,1 5/2
𝑉 1,1,1,0 9/2

 

 Expected total costs under the non-𝐂𝛍 policy: 
𝑉 1,1,0,1 2
𝑉 1,1,1,0 4

  

Apparently, the expected costs of the following Cμ policy is higher than those of the non-Cμ policy. Thus, 

we conclude that the Cμ policy can be sub-optimal under the dispatching-dependent deterioration setting. 

▓ 

The Cμ policy can be demonstrated to be optimal without dispatching-dependent deterioration and health-

dependent production rate (Nain, 1989). However, when either dispatching-dependent deterioration or health-

dependent production rate is present, the Cμ policy becomes sub-optimal, unstable, and will fail to achieve 

throughput optimality under a single-machine setting (Huang et al., 2018). Given that an unstable policy will 

lead to an unbounded cycle time and queue length, applying a simple heuristic policy, such as the Cμ policy, 

can be sub-optimal. Consequently, the optimal policy should be found by using the DPPM model.  

 



- 13 - 

Nested Induction Algorithm for Solving the DDPM Model 

In accordance with Proposition 1, the Cμ dispatching rule is sub-optimal for systems with dispatching-

dependent deterioration. Evaluating all possible combinations of states and action variables in Optimality 

Equation (I) is required in each iteration of the backward induction algorithm because the simple and widely 

used Cμ rule may be nonoptimal. However, the backward induction algorithm is known to be inefficient when 

the number of states or feasible actions is large.  

Thus, we present a nested induction algorithm to simplify the computation process and facilitate the 

implementation of the algorithm. 𝑣 𝑠   is defined as the value function under the optimal one-step 

dispatching decision while the current period’s preventive maintenance is ignored. 𝑣 𝑠   and 𝑉 𝑠  

assume that the decision maker will proceed optimally beginning from the next decision epoch 𝑡 1 with 

regard to dispatching and maintenance decisions.  

Therefore, we introduce the nested induction algorithm to 𝑣 𝑠  and 𝑉 𝑠 . As shown in Figure 5, nested 

induction begins from the iterative definition of 𝑣 𝑠 , Optimality Equation (II-A). Then, the optimal value 

function 𝑉 𝑠   can be iteratively determined by using 𝑣 𝑠   in Optimality Equation (II-B). Nested 

induction can considerably reduce computation time.  

 

Figure 5 Time chart of the nested induction algorithm 

Given that 𝑣 𝑠  considers only one-step optimal dispatching, we can write 𝑣 𝑠  as follows: 

Optimality Equation (II-A): 

𝑣 𝑠  

C 𝑠 min Pr 𝑠 |𝑠 , 𝑎 ∙ 𝑣 𝑠  
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1
𝜑

ℎ 𝑞 𝑃 , 𝑣 𝑞 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 𝑥 , 𝑦 𝑦  

𝑊 𝑠  

𝑃 , 𝑉 𝑞 𝑞 , 𝑥 𝑥 , … , 𝑥 1, … , 𝑥 , 𝑦 𝑦 , … , 𝑦 1  

𝑃 𝑣 𝑞 𝑞 , 𝑥 𝑥 , 𝑦 𝑦 , 

where W 𝑠   represents the dispatching-dependent terms for machines with health state 𝑘 . Once more, 

W 𝑠  can be defined as 

W 𝑠 min
∈ , ,…

W 𝑠 , 𝑎 , where W 𝑠 , 𝑎  is defined as 

W 𝑠 , 𝑎  

⎩
⎪
⎨

⎪
⎧

𝐼 𝑃 , , 𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 , 𝑦            

𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦 , … , 𝑦 1, 𝑦 1, … , 𝑦
1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦
1 𝐼 𝑃 , , 𝑉 𝑞 , 𝑥 , 𝑦

                   
⎭
⎪
⎬

⎪
⎫

 

⎩
⎪
⎪
⎪
⎨

⎪
⎪
⎪
⎧

𝐼 𝑦 𝜇

𝜑
𝑉 𝑞 , … , 𝑞 1, … , 𝑞 , 𝑥 , 𝑦           

𝐼 𝑦 𝛽

𝜑
𝑉 𝑞 , 𝑥 , 𝑦 , … , 𝑦 1, 𝑦 1, … , 𝑦

1 𝐼 𝑦 𝜇

𝜑
𝑉 𝑞 , 𝑥 , 𝑦

1 𝐼 𝑦 𝛽

𝜑
𝑉 𝑞 , 𝑥 , 𝑦

                     

⎭
⎪
⎪
⎪
⎬

⎪
⎪
⎪
⎫

. 

  

After finding 𝑣 𝑠  iteratively for all 𝑠 ∈ S, the optimality equation, including preventive maintenance 

decisions, can now be defined using 𝑣 𝑠 . 

Optimality Equation (II-B): 

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏  

 

Table 4 Pseudocode for the nested induction algorithm 

For all t 

{ 

For all 𝑠  

{ 
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For all 𝑎  

{ 

Find 𝑊 𝑠 , 𝑎    

𝑊 𝑠 = min
∈ , ,…

W 𝑠 , 𝑎  that optimizes the dispatching decisions  

} 

Given 𝑊 𝑠 , 𝑣 𝑠 min C 𝑠 ∑ Pr 𝑠 |𝑠 , 𝑎 ∙ 𝑉 𝑠   

} 

 

For all 𝑠  

{ 

For all 𝑏  

{ 

Find min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏  

} 

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏   

} 

} 

 

Proposition 2: The nested induction algorithm converges to the optimal value function 𝑉 𝑠  of the original 

backward induction algorithm.  

Proof: System state 𝑠 𝑞 , 𝑥 , 𝑦  immediately transits to �̅� 𝑞 , �̅� , 𝑦 𝑞 , 𝑥 𝑏 , 𝑦 𝑏  when 

a preventive maintenance decision 𝑏  is made because preventive maintenance is instantly initiated. Thus, 

𝑣 �̅� 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏  defined in Optimality Equation (II-A) represents the sum of the current and 

optimal future expected costs after preventive maintenance decision  𝑏  . Therefore, finding 𝑉 𝑠   via 

𝑉 𝑠 min 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏   in Optimality Equation (II-B) is equivalent to finding 𝑉 𝑠   in 

Optimality Equation (I). 

▓ 

Subsequently, we show that the computational complexity of the nested induction algorithm is less than that 

of the original value iteration algorithm. ‖𝑆‖ is defined as the number of states in the state space, ‖𝐴‖ as 

the average number of distinct dispatching decisions per state, and ‖𝐵‖ as the average number of distinct 
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preventive maintenance decisions per state (i.e., ‖𝐴‖ ‖𝐵‖ represents the average size of the action space 

per state).  

Let 𝑩𝑽𝑰𝑨 be the time complexity of solving the original backward induction algorithm and 𝑩𝑵𝑰𝑨 be the 

complexity of the nested induction algorithm. We then present Proposition 3 to characterize the computational 

complexity of both algorithms. 

 

Proposition 3: The computational complexity of 𝑩𝑵𝑰𝑨 of the nested induction algorithm is less than that of 

𝑩𝑽𝑰𝑨  of the original value iteration algorithm, and the difference in computational complexity can be 

estimated by 

𝑩𝑵𝑰𝑨

𝑩𝑽𝑰𝑨

‖𝑆‖ ‖𝐴‖ ‖𝐵‖
 ‖𝑆‖ ‖𝐵‖ ‖𝐴‖

. 

Proof:  

The comparison of the optimality equations and pseudocodes of both algorithms indicates that the 

complexity of finding 𝑊 �̅� , 𝑎  and 𝑊 𝑠 , 𝑎  is the same for both algorithms. Let τ be the required 

computational effort for finding 𝑊 𝑠 , 𝑎  or 𝑊 �̅� , 𝑎 , and the following observations are made. 

 Through the pseudocode of the original value iteration algorithm, 𝑊 �̅� , 𝑎  is evaluated within the 

three-layered for-loops on 𝑠 , 𝑎 , and 𝑏  with a complexity of ‖𝑆‖ ‖𝐵‖ ‖𝐴‖ τ. Meanwhile, 

𝑊 𝑠 , 𝑎   is evaluated within the two-layered for-loops on 𝑠   and 𝑏   by the nested induction 

algorithm with a complexity of ‖𝑆‖ ‖𝐴‖ τ.  

 In the pseudocode of the nested induction algorithm, another two-layered for-loops on 𝑠  and 𝑏  are 

used to determine 𝑉 𝑠   by comparing 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏   under all feasible 𝑏  . This two-

layered for-loops is not required in the original value iteration algorithm. The computational 

complexity of the additional loops is less than ‖𝑆‖ ‖𝐵‖ τ  in the nested induction algorithm 

because the required computational effort for evaluating 𝑣 𝑞 , 𝑥 𝑏 , 𝑦 𝑏   in the additional 

loops is considerably less than that for 𝑊 𝑠 , 𝑎 . 

We can conclude that the estimated time complexity 𝑩𝑽𝑰𝑨  of the original algorithm is ‖𝑆‖ ‖𝐵‖

‖𝐴‖ τ, and the estimated time complexity 𝑩𝑵𝑰𝑨 of the nested induction algorithm is less than the sum of 

‖𝑆‖ ‖𝐴‖ τ and ‖𝑆‖ ‖𝐵‖ τ. Thus, 
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𝑩𝑵𝑰𝑨

𝑩𝑽𝑰𝑨

‖𝑆‖ ‖𝐴‖ τ ‖𝑆‖ ‖𝐵‖ τ
 ‖𝑆‖ ‖𝐵‖ ‖𝐴‖ τ

‖𝑆‖ ‖𝐴‖ ‖𝐵‖
 |𝑆| |𝐵| ‖𝐴‖

. 

▓ 

  

The number of available dispatching decisions ‖𝐴‖ and ‖𝐵‖ is generally large. For example, ‖𝐴‖ can 

be estimated by ‖𝐴‖ 𝐼 , and ‖𝐵‖ depends on the number of distinct combinations of available machines 

under all health states. The nested induction algorithm is considerably more efficient than the original value 

iteration algorithm because ‖𝐴‖ and ‖𝐵‖ are large in a reasonably sized system.  

 

Implementation of the Nested Induction Algorithm for the DDPM Model 

A software tool is developed using Microsoft Visual C# to solve the DDPM model. The software generates 

optimal dispatching and preventive maintenance policies. In the following numerical example, we illustrate 

the solution to the DDPM model for a problem with two machines, two products, and three machine health 

states (I = 2, J = 2, and K = 3). The parameters listed in Table 5 are used to construct the illustrative example. 

 Table 5 Parameters of the example with two machines, two products, and three machine health states 

Parameter Numerical example 

Holding cost of product 𝑖: ℎ  
ℎ 1
ℎ 1 

Arrival rate of product 𝑖: 𝜆  
𝜆 3
𝜆 3 

Production rate of product 𝑖 on a perfectly conditioned 

machine (i.e., k=2): 𝜇  

𝜇 5
𝜇 4

 

Production rate of product 𝑖 on a fairly conditioned 

machine (i.e., k=1): 𝜇 𝑟 𝜇  

𝜇 3.5
𝜇 3.6

 

Deterioration rate of the machine while processing 

product 𝑖  

𝛽 0.03
𝛽 0.04

 

Failure rate of the machine while processing product 𝑖 
𝛽 0.02
𝛽 0.03

 

Maintenance rate 𝛾 0.5 

Repair rate 𝛾 0.4 

 

Under the proposed DPPM method, dispatching decisions are made in real time for each individual machine 
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as soon as the machine becomes idle. Therefore, the DPPM model only handles one dispatching problem for 

a specific machine at a time. Given that a machine processes only one product at a time, the idle machine will 

immediately be assigned one job. Thus, if the highest priority queue is non-empty, only the highest priority 

product can be assigned to the idle machine. Meanwhile, in accordance with optimality equation (I) or (II-A), 

the highest priority will not be assigned to a product with empty queue to avoid machine idling, which is costly. 

As a result, the optimal dispatching rule generated by the DPPM model always dynamically assigns the highest 

priority to a product with non-empty queue depending on the real-time queue lengths. For example, in this 

illustrative dispatching problem of two product types, a non-idling policy that allocates product 1 to all 

machines whenever the queue for product 2 is empty is optimal. On the contrary, when the queue for product 

1 is empty, all idle machines are assigned to process product 2. 

In this two-machine example, the system state can be defined using eight variables, i.e.,  𝑠

𝑞 , 𝑞 , 𝑥 , 𝑥 , 𝑥 , 𝑦 , 𝑦 , 𝑦   , where 𝑥 , 𝑦 ∈ 0,1,2  and ∑ 𝑥 𝑦 2.  Given that corrective 

maintenance immediately begins on failed machines and machines with the best health require no maintenance, 

𝑦  and 𝑥  are constantly 0. We omit the two variables in the remainder of this paper to simplify the notation. 

We fix four variables (𝑥 , 𝑥 , 𝑦 , and 𝑦 ) and plot the optimal control policy in the 2-dimension (2D) subsets 

(𝑞 , 𝑞 ) of the state space because we cannot easily visualize the optimal policy in the 8-dimension state space 

(six dimensions after omitting 𝑦  and 𝑥 ).  

Figure 6 plots the optimal preventive maintenance decisions on fairly healthy machines (i.e., 𝑘 1) when 

at least one fairly conditioned machine is available (i.e., 𝑦 0  . Factory managers frequently delay 

preventive maintenance policy 𝑏   when systems are heavily loaded to prevent capacity loss during the 

process. In this numerical example, however, the optimal policy tends to begin when queues are long. The 

preventive maintenance decision depends on the health of not only an individual machine but also of other 

machines because such activity differs in subpanels (a), (b), (c), and (d) of Figure 6. Figure 6 also illustrates 

the need for the joint optimization of dispatching and preventive maintenance processes because the common 

practice of delaying such activity under a heavy load generally fails to achieve optimality.  
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            (a)  𝑥 1, 𝑥 0, 𝑦 1, 𝑦 0      (b)  𝑥 0, 𝑥 1, 𝑦 1, 𝑦 0   

  
            (c)  𝑥 0, 𝑥 0, 𝑦 1, 𝑦 1       (d)  𝑥 0, 𝑥 0, 𝑦 2, 𝑦 0   

: will not maintain any fairly conditioned machine (𝑏 0) 
: will maintain one fairly conditioned machine (𝑏 1) 
: will maintain two fairly conditioned machines (𝑏 2) 

Figure 6 Optimal preventive maintenance decisions on machines with fair health 

Model Validation and Numerical Analysis 

In this research, the discrete event simulation software eM-Plant is used to build a simulation model to 

compare DDPM with several dispatching rules from the literature. We use systems with two machines, two 

products, and three machine health states (𝐼 2, 𝐽 2, and 𝐾 3) for model validation. The layout of the 

simulation system is shown in Figure 7. For all the simulation studies, the simulation periods are 365 days 

with an additional 10-day warm-up period. 
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Figure 7 Simulation model for the numerical study 

Dispatching Rules from the Literature 

DDPM is compared with several widely used dispatching rules, namely, dynamic dispatching without 

preventive maintenance (DD), dynamic dispatching with condition-based preventive maintenance (DDCPM), 

first-come, first-served (FCFS), round-robin (RR), and Cμ.  

1. DD 

DD rules adopt the same logic as that in DDPM but do not consider preventive maintenance. That is, let 

𝑏 0 at all times. Notably, DD is the optimal dispatching policy when preventive maintenance decisions 

are not considered. The performance difference between DD and DDPM enables us to analyze the impact and 

value of coordinating preventive maintenance and dispatching decisions.  

2. DDCPM  

DDCPM adopts the condition-based preventive maintenance (CPM) policy that is widely used in practice. 

Under CPM, preventive maintenance begins on deteriorated machines as soon as deterioration is observed 

instead of using workload-dependent optimal preventive maintenance policies. A dynamic dispatching policy 

is then solved under the CPM rule. In summary, DDCPM differs from DDPM only in terms of maintenance 

policy and any performance improvement observed under DDPM results from a better preventive maintenance 

policy.  

3. FCFS 

FCFS is a common, simple, and easy-to-implement dispatching rule. Bernier et al. (2004) and Wein (1988) 

indicated that FCFS is used in semiconductor production systems. Under FCFS, products are manufactured in 
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the order that they enter the system. 

4. RR 

RR policies are known to achieve throughput optimality in production systems and computer networks with 

unlimited buffer capacity (Andradottir et al., 2002). In our simulation study, we allow machines to process 

different products in circular order in pre-assigned time slices that aim to maximize overall throughput under 

a given product mix.  

5. Cμ 

Cμ  is known to achieve minimal weighted cycle time in systems without dispatching-dependent 

deterioration (van Mieghem, 1995). Under the Cμ policy, higher priority will be given to a product with the 

largest 𝑐 𝜇 value, where 𝑐  is the waiting cost of product 𝑖 and 𝜇  is the production rate for producing 

product 𝑖. Baras et al. (1985) and Iravani and Kolfal (2005) proposed that Cμ is suitable for controlling 

multiproduct manufacturing systems. 

 

Data Collection and Key Performance Indicators (KPIs) for the Numerical Analysis 

In the simulation study, the following performance indicators are collected and analyzed:  

1. Throughput:  

The throughput indicator simply counts the total output during the simulation period. 

2. Average processing time:  

The average processing time of jobs will possibly depend on dispatching rules because production slows 

down with machine deterioration. Therefore, we collect the average processing time of jobs in our simulation 

study. 

3. Average waiting time:  

The average waiting time of jobs in queues will also depend on dispatching and maintenance policies. 

Notably, the sum of the average processing time and the average waiting time will become the average cycle 

time. Given that the average processing and waiting times are provided in the numerical results, the average 

cycle time will not be separately provided to avoid redundancy.   

4. Average machine downtime:  
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Preventive maintenance and corrective maintenance frequently require different amounts of time to 

complete. Although preventive maintenance helps reduce unexpected machine failures, conducting frequent 

preventive maintenance may increase failure/maintenance counts. Thus, overall machine downtime, which is 

the sum of the corrective maintenance and preventive maintenance times, may or may not decrease with 

optimal preventive maintenance decisions. We collect the average machine downtime to observe changes in 

machine availability.  

Design of Experiments 

The objective of our numerical study is to validate the performance of the DDPM model within a wide 

range of production environments. In the numerical study, the system parameters are selected on the basis of 

an actual industry problem in semiconductor manufacturing. To conduct sensitivity analysis and validate the 

proposed method in general production environments, parameters are scaled up and down in the factorial 

experiments.  

To maximize the diversity of our numerical cases, experimental design techniques are used to generate test 

systems. Instead of randomly generating system parameters, we use the two-level Plackett–Burman 

experimental design technique to generate 20 sets of system parameters. The high–low levels of the model 

parameters are listed in Table 6. The complete Plackett–Burman designs of the 20 sets of parameters are 

summarized in Table 7.  

Table 6 High–low levels of the experimental factors 

Experimental Factors {Low, High}

𝛽 ，𝑖 ∈ 1,2  { ， }  

𝛽 ，𝑖 ∈ 1,2  { ， } 

𝛾  { ， }  

𝜇 ，𝑖 ∈ 1,2  {4，6} 

𝑟 ，𝑖 ∈ 1,2   

(𝜇 𝑟 𝜇 ) 

{0.5，0.8} 
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𝜌, system utilization {0.75，0.9} 

𝛼 ，𝑖 ∈ 1,2 , product mix {2，3} 

𝜏 

𝛾 𝜏𝛾  
{2，3} 

 

Table 7 Twenty sets of system parameters using the Plackett–Burman design 

 𝜷𝟏
𝟐 𝜷𝟐

𝟐 𝜷𝟏
𝟏 𝜷𝟐

𝟏 𝜸𝟎 𝝁𝟏
𝟐 𝝁𝟐

𝟐 𝒓𝟏 𝒓𝟐 𝝆 𝜶𝟏 𝜶𝟐 𝝉 

1 1/15 1/15 1/8 1/8 1/2 4 6 0.5 0.8 0.75 3 3 3 

2 1/15 1/15 1/12 1/8 1/2 6 6 0.5 0.8 0.9 2 2 2 

3 1/10 1/10 1/12 1/12 1/2 6 6 0.5 0.5 0.75 2 3 2 

4 1/10 1/15 1/12 1/8 1/2 4 4 0.8 0.5 0.9 2 3 3 

5 1/10 1/15 1/8 1/12 1/3 6 6 0.5 0.5 0.9 3 2 3 

6 1/15 1/10 1/12 1/8 1/3 6 6 0.8 0.5 0.75 3 3 2 

7 1/10 1/10 1/8 1/8 1/3 4 6 0.5 0.8 0.9 3 3 2 

8 1/10 1/15 1/8 1/12 1/2 6 6 0.8 0.8 0.75 2 3 3 

9 1/15 1/15 1/12 1/12 1/2 4 6 0.8 0.5 0.9 3 2 2 

10 1/10 1/15 1/12 1/8 1/3 6 4 0.5 0.5 0.75 3 2 3 

11 1/15 1/10 1/12 1/12 1/2 4 4 0.5 0.8 0.75 3 2 3 

12 1/15 1/15 1/8 1/8 1/3 6 4 0.8 0.8 0.75 2 2 2 

13 1/15 1/15 1/8 1/12 1/3 4 4 0.5 0.5 0.9 2 3 2 

14 1/10 1/10 1/12 1/8 1/3 4 6 0.8 0.8 0.9 2 2 3 

15 1/10 1/10 1/8 1/12 1/2 6 4 0.8 0.8 0.9 3 2 2 

16 1/15 1/10 1/8 1/8 1/2 6 4 0.8 0.5 0.9 3 3 3 

17 1/15 1/10 1/8 1/12 1/3 4 6 0.8 0.5 0.75 2 2 3 

18 1/10 1/10 1/8 1/8 1/2 4 4 0.5 0.5 0.75 2 2 2 

19 1/15 1/10 1/12 1/12 1/3 6 4 0.5 0.8 0.9 2 3 3 

20 1/10 1/15 1/12 1/12 1/3 4 4 0.8 0.8 0.75 3 3 2 

 

Numerical Results and Analysis: Exponential Processing Time Distribution  

We run the simulation for all the 20 systems under each control policy. Tables 8 and 9 summarize the 

simulation results under exponential processing times (the detailed simulation results of each of the 20 systems 
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can be found in the Appendix). Notably, DDPM outperforms all the other methods for all the KPIs. 

In Table 8, all the results are normalized to the result of DDPM to facilitate reading and comparison. For 

example, the throughput of DDCPM is 0.9982 times the throughput of DDPM, and the average waiting time 

of DDCPM is 1.4523 times the average waiting time of DDPM. In addition to average performance, the 

confidence intervals for all the 20 systems under each KPI are listed in Tables A1–A4. 

In Table 9, the pairwise t-test results are summarized to verify the significance of performance improvement 

between DDPM and all the other policies. For example, compared with that under DD, the performance 

improvement under DDPM is significant on all the 20 systems in terms of average processing time, average 

waiting time, and average machine downtime.  

Table 8 Average normalized simulation results under exponential processing time distribution 

 Processing Time Distribution: Exponential 

KPI DDPM DD DDCPM FCFS RR Cμ 

Throughput 1 1.0011 0.9982 0.9973 0.9857 1.0002 

Average processing time 1 1.1778 1.0036 1.1978 1.1949 1.1861 

Average waiting time 1 5.2162 1.4523 7.5410 23.0186 5.7680 

Average machine downtime 1 1.6290 1.4885 1.6519 1.6325 1.6449 

Throughput: A higher value is better.   

Processing time/waiting time/downtime: A lower value is better. 

Table 9 Pairwise t-test results between DDPM and the other policies 

 
DDPM vs. 

DD 

DDPM vs. 

DDCPM 

DDPM vs. 

FCFS 

DDPM vs. 

RR 

DDPM vs. 

𝐂𝛍 

B  I  W  B  I  W  B  I  W  B  I  W  B  I  W 

Throughput 0 20 0 2 18 0 1 19 0 7 13 0 0 20 0 

Average processing 

time 
20 0 0 0 15 5 20 0 0 20 0 0 20 0 0 

Average waiting time 20 0 0 11 9 0 20 0 0 20 0 0 20 0 0 

Average machine 

downtime 
20 0 0 10 10 0 20 0 0 20 0 0 20 0 0 

B: Number of systems, DDPM is significantly better. 

I: Number of systems, difference is insignificant. 

W: Number of systems, DDPM is significantly worse 
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The findings and observations from the simulation results are summarized as follows. 

 Throughput performance of DDPM:  

Redundant capacity exists in our numerical study because capacity utilization levels are set between 0.75 

and 0.9. Thus, a manufacturing system can process all demand and achieve similar throughput performance. 

From the first row of Table 9, the throughput of DDPM still considerably outperforms those of RR, FCFS, 

and DDCPM in seven systems, one system, and two systems, respectively, whereas the difference in the other 

systems is insignificant. 

Considering that the simulation model assumes limited buffer capacity, demand is lost when the queue is 

full and losing demand may occurs if production control is inefficient. Thus, DDPM can still achieve 

significant throughput improvement in several systems. Significant throughput improvements are observed 

among the systems, and the capacity utilization levels are all 0.9. This result implies that DDPM can benefit 

from high system utilization, and significant throughput improvement can be observed under high capacity 

utilization. 

 Average processing time:  

The second row of Table 9 indicates that DDPM significantly outperforms all the other policies in terms of 

average processing time in all the systems. As shown in Table 8, the average savings in processing time ranges 

from 17.8% to 19.8%, except when compared with DDCPM. Given that DDCPM always performs preventive 

maintenance when machine deterioration is observed, the machine is always operating under perfect condition, 

which makes the processing time similar to that of DDPM. However, DDCPM suffers from an aggressive 

maintenance policy and has a longer preventive maintenance time and longer job waiting time in queue.   

 Average waiting time: 

DDPM significantly outperforms DD, FCFS, RR, and Cμ  in terms of average waiting time in all 20 

systems. As shown in Table 8, the average waiting times of DD, FCFS, RR, and Cμ are 5.2, 7.5, 23.0, and 

5.7 times that of DDPM, respectively. DDPM significantly outperforms DDCPM in terms of average waiting 

time in 11 systems, whereas the performance difference is insignificant in the nine other systems. A 

considerable reduction in waiting time and queue lengths are achieved by simply coordinating preventive 

maintenance decisions with dispatching decisions. Meanwhile, DD and DDCPM are the optimal dispatching 
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policies without preventive maintenance and with condition-based preventive maintenance, respectively. This 

finding suggests that coordinating preventive maintenance decisions with dispatching decisions is important 

for production systems with dispatching-dependent deterioration.  

In addition, queue length directly reflects the work-in-process (WIP) level of a production system. A 

reduction in average waiting time implies that coordinating scheduling and preventive maintenance can reduce 

average WIP levels by an average of approximately 80%. Although lean manufacturing attempts to eliminate 

WIP and inventory in production systems, optimal preventive maintenance is key to achieving leaner 

production. 

 Average machine downtime:  

Over 50% reduction in machine downtime is observed when optimal preventive maintenance is adopted. 

Overall machine downtime may not decrease with better preventive maintenance decisions because such 

activity frequently requires different periods to complete. Our simulation results suggest that conducting 

optimal preventive maintenance may not only reduce unexpected machine failures but also average machine 

downtime.  

To evaluate the performance of DDPM in systems with more than two products, we randomly generate 20 

systems with three and four products using the parameters in Table 6. For each of the 20 randomly generated 

systems, DDPM outperforms all other policies by at least 0.6% and 16.5% in throughput and cycle time, 

respectively. However, although the simulation results suggest the superiority of DPPM in systems with more 

products, the required computational effort for solving large-scale MDP problems becomes a challenge. To 

overcome those computational challenges, we plan to combine artificial intelligence algorithms with MDP to 

control the required computational effort in the future. 

Model Validation in Non-Markovian Systems: Constant and Uniformly Distributed Processing Times 

 To respond to this well-known weakness of MDP models, i.e., assuming that the processing times of jobs 

follow an exponential distribution, we conduct a simulation study with uniformly distributed and constant 

processing times.  

 Uniform processing time distribution: Processing time is assumed to follow uniform random variables 

U(
.

𝝁𝒊
𝒌 , .

𝝁𝒊
𝒌), where 

𝝁𝒊
𝒌 represents the average processing time of a job 𝑖 on a health state 𝑘 machine, and 
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U(
.

𝝁𝒊
𝒌 , .

𝝁𝒊
𝒌) suggests that processing times are uniformly distributed between 80% and 120% of the average 

processing time.  

 Constant processing time: Constant processing time 
𝝁𝒊

𝒌  is assumed for job 𝑖  on a health state 𝑘 

machine. Under the constant processing time setting, no processing time uncertainty exists in the 

simulation. 

We conduct simulations using uniform and constant processing time distributions for all 20 systems, and 

the simulation results are summarized in Tables 10 and 11. Notably, DDPM performs equally well in systems 

with a non-Markovian processing time distribution.  

Table 10 Simulation results with uniformly distributed processing times 

 
Processing Time Distribution: Uniform U(

𝟎.𝟖

𝝁𝒊
𝒌 , 𝟏.𝟐

𝝁𝒊
𝒌 ) 

KPI DDPM DD DDCPM FCFS RR Cμ 

Throughput 1 1.0009 0.9884 0.9999 0.9855 1.00002 

Average processing time 1 1.1843 1.0012 1.2039 1.1932 1.1901 

Average waiting time 1 5.8329 1.5916 9.0932 30.8172 6.6703 

Average machine downtime 1 1.6173 1.4922 1.6442 1.6214 1.6325 

Throughput: A higher value is better. 

Processing time/waiting time/downtime: A lower value is better. 

 

Table 11 Simulation results with a constant processing time 

 Processing Time Distribution: Constant 

KPI DDPM DD DDCPM FCFS RR Cμ 

Throughput 1 0.9994 0.9992 0.9901 0.9851 0.9990 

Average processing time 1 1.1834 1.0029 1.2001 1.1928 1.1923 

Average waiting time 1 6.3279 1.6202 9.3582 34.3034 7.2445 

Average machine downtime 1 1.6226 1.5211 1.6521 1.6249 1.6451 

Throughput: A higher value is better. 

Processing time/waiting time/downtime: A lower value is better. 

Compared with the simulation results using exponentially distributed processing times, considerable 

improvements in average processing time/waiting time/machine downtime can still be observed, and 

throughput performance remains similar under all processing time settings. The simulation results suggest the 

robustness of the DDPM model in general systems that do not comply with the Markov assumption. 
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Conclusion 

This research develops a dynamic decision model that coordinates dispatching and preventive maintenance 

decisions for failure-prone parallel machines. The proposed DDPM model simultaneously considers two 

important features of production systems: dispatching-dependent deterioration of machines and machine-

health-dependent production rates. Although these features are common in production systems, our research 

is among the first to consider both features in dispatching and preventive maintenance decision problems. 

The proposed DDPM model is validated through a thorough numerical study. Compared with those of other 

widely used dispatching methods in the literature, the average waiting time and machine downtime can be 

reduced by at least 45.2% and 48.9%, respectively. Moreover, the proposed method is equally robust in non-

Markovian systems with constant and uniformly distributed processing times. Our numerical results suggest 

that coordination between dispatching and preventive maintenance is critical. Compared with the optimal 

dispatching policy without controlled preventive maintenance, waiting and production times are significantly 

reduced.  

Given that this study is limited to a single workstation, we plan to extend our research to multiple-stage 

serial production systems in the future. In addition, although the proposed DDPM model is a general model 

that allows any number of products, machines, and machine health states, the required computational effort 

for solving large-scale problems remains a challenge. Considering the recent developments in artificial 

intelligence (AI), particularly in reinforcement learning, we plan to develop efficient AI-based algorithms for 

solving large DDPM models in the future.  
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Appendix A: Detailed Results of the Numerical Experiments 

 Average Throughput 

Table A1. Normalized average throughput and confidence interval of 30 simulation replications 

Throughput

System DDPM DD DDCPM FCFS RR Cμ 
DDPM 
Rank 

1 1 
1.0005 
0.0023 

0.9996
0.018 

1.0009
0.0021 

1.002
0.0022 

1.0013 
0.002 

5 

2 1 
0.9989 
0.0017 

0.9974
0.0017 

0.9853
0.0268 

0.9977 
0.0018 

1.0003 
0.0018 

2 

3 1 
1.0046 
0.0074 

1.0049
0.0078 

1.0041
0.008 

1.0038 
0.0076 

1.0042 
0.0067 

6 

4 1 
0.9999 
0.0025 

0.9808
0.0387 

1.0005
0.0023 

0.9364 
0.0029 

1 
0.0023 

3 

5 1 
0.9992 
0.0015 

1.0005
0.0018 

0.998
0.0014 

0.9786 
0.003 

0.9986 
0.0024 

2 

6 1 
1.0005 

0.002 
0.9989

0.002 
0.9989

0.0026 
0.9762 

0.0471 
0.9998 

0.0018 
2 

7 1 
1.0209 
0.0441 

1.0073
0.0516 

1.0211
0.0448 

1.0069 
0.0531 

1.0217 
0.0446 

6 

8 1 
1.0003 
0.0019 

1.0001
0.002 

0.9992
0.0014 

0.9998 
0.0016 

1.0009 
0.0016 

4 

9 1 
0.9991 
0.0019 

0.9987
0.0018 

0.9799
0.0398 

0.973
0.0021 

0.9994 
0.0023 

1 

10 1 
0.9996 
0.0019 

0.999
0.0022 

0.9994
0.0022 

0.987
0.0272 

1.0001 
0.0022 

2 

11 1 
1.0005 

0.003 
1.0026

0.0027 
0.9882

0.027 
0.9821 

0.0385 
0.9998 

0.003 
3 

12 1 
0.9982 
0.0026 

0.9979
0.002 

0.998
0.0028 

0.9994 
0.0023 

0.9997 
0.0026 

5 

13 1 
1.0005 
0.0026 

1.0001
0.0023 

1.0003
0.0021 

0.98
0.0031 

0.9983 
0.0022 

4 

14 1 
0.9998 
0.0018 

0.9999
0.0024 

0.978
0.0399 

1.0001 
0.0018 

1.001 
0.0024 

3 

15 1 
1.0011 
0.0015 

0.9987
0.0021 

0.9995
0.0022 

0.9219 
0.0024 

0.9966 
0.0067 

2 

16 1 
0.9996 
0.0025 

1.0003
0.0026 

0.9999
0.0024 

0.9979 
0.0025 

1.0001 
0.0022 

3 

17 1 
1.0001 
0.0017 

0.9987
0.0023 

0.9997
0.0024 

0.9988 
0.0022 

0.9815 
0.0371 

2 

18 1 
1.001 
0.0024 

0.999
0.0023 

0.9984
0.003 

0.9992 
0.0029 

0.9994 
0.0024 

2 

19 1 
0.9986 
0.0023 

0.9816
0.0361 

0.9992
0.0022 

0.9872 
0.0027 

1.0016 
0.0019 

2 

20 1 
0.9996 
0.0023 

1.0006
0.0026 

0.9818
0.0383 

0.9599 
0.0597 

0.9996 
0.002 

2 

Avg 1 1.0011 0.9982 0.9973 0.9857 1.0002 3 
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 Average processing time of jobs 

Table A2. Normalized average processing time of jobs and confidence interval 

Average processing time of jobs

System DDPM DD DDCPM FCFS RR Cμ 
DDPM 
Rank 

1 1 
1.1457

0.0038 
0.9987
0.0021 

1.1647
0.0035 

1.1606
0.0043 

1.1627 
0.0038 

2 

2 1 
1.1299

0.0031 
1.0012
0.0015 

1.1836
0.0033 

1.1718
0.0032 

1.1298 
0.0034 

1 

3 1 
1.3655

0.0065 
0.9983
0.0021 

1.3765
0.0045 

1.3716
0.0055 

1.3737 
0.0057 

2 

4 1 
1.1646

0.0034 
0.9996
0.0025 

1.2065
0.0042 

1.195
0.003 

1.1978 
0.0044 

2 

5 1 
1.2569

0.0045 
0.9989
0.0022 

1.2812
0.0056 

1.284
0.0042 

1.2764 
0.005 

2 

6 1 
1.1856

0.0035 
1.0001
0.0020 

1.1985
0.0042 

1.1981
0.0043 

1.1961 
0.004 

1 

7 1 
1.1795

0.0033 
0.9995
0.0023 

1.2269
0.004 

1.2158
0.0048 

1.2118 
0.0047 

2 

8 1 
1.0948

0.003 
1.0147
0.0025 

1.0995
0.0029 

1.0977
0.0023 

1.1001 
0.0039 

1 

9 1 
1.13 
0.0024 

0.9997
0.0022 

1.1664
0.0034 

1.1615
0.0032 

1.1278 
0.0029 

2 

10 1 
1.2937

0.0049 
0.9997
0.0026 

1.2805
0.0061 

1.2854
0.0059 

1.2845 
0.0056 

2 

11 1 
1.2189

0.0047 
1.0095
0.0028 

1.2501
0.0054 

1.2357
0.0055 

1.2211 
0.0051 

1 

12 1 
1.0738

0.0033 
0.9987
0.0025 

1.0727
0.0021 

1.0753
0.003 

1.0763 
0.0029 

2 

13 1 
1.2254

0.0043 
0.9998
0.0023 

1.2499
0.0051 

1.2488
0.0052 

1.2467 
0.0042 

2 

14 1 
1.1112
0.0028 

1.0213
0.0026 

1.1101
0.003 

1.1084
0.003 

1.1089 
0.0029 

1 

15 1 
1.1128

0.003 
1.0014
0.0022 

1.1098
0.0034 

1.1293
0.0036 

1.1101 
0.003 

1 

16 1 
1.169 

0.004 
1.0008
0.0024 

1.2029
0.0037 

1.1977
0.0038 

1.1981 
0.0032 

1 

17 1 
1.1577

0.005 
1.0096

0.003 
1.1855

0.0051 
1.1721

0.0032 
1.1554 

0.0055 
1 

18 1 
1.2818

0.0043 
1

0.0027 
1.2815

0.0055 
1.2878

0.0051 
1.2827 

0.0048 
1 

19 1 
1.1512

0.0032 
1.0212
0.0067 

1.1987
0.004 

1.1916
0.0034 

1.1505 
0.0038 

1 

20 1 
1.1086

0.0027 
1.0002
0.0019 

1.1108
0.003 

1.1107
0.0034 

1.1116 
0.0024 

1 

Avg 1 1.1778 1.0036 1.1978 1.1949 1.1861 1 
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 Average waiting time of jobs in queues 

Table A3. Normalized average waiting time of jobs in queues and confidence interval 

Average waiting time of jobs

System DDPM DD DDCPM FCFS RR Cμ 
DDPM 
Rank 

1 1 
3.7505 
0.1168 

1.4190
0.0266 

5.2056
0.1895 

18.4688
0.3537 

4.1909 
0.1993 

1 

2 1 
3.649 
0.1771 

0.9795
0.0304 

7.7497
0.3819 

14.4849
0.4596 

3.787 
0.197 

2 

3 1 
7.4867 
0.3685 

1.0126
0.0268 

7.7539
0.262 

37.5004
1.2775 

7.737 
0.3292 

1 

4 1 
5.2791 
0.2302 

1.7312
0.2094 

12.1064
0.7163 

30.7202
0.5379 

9.1211 
0.5062 

1 

5 1 
13.5231

0.5595 
2.2757

0.0807 
18.4701

1.5422 
42.8866

0.9762 
15.0898 

0.6094 
1 

6 1 
3.3589 
0.1472 

0.9791
0.0428 

4.3531
0.2292 

13.9026
0.4455 

3.6689 
0.18 

2 

7 1 
4.8017 
0.2263 

0.9812
0.033 

10.0969
0.6601 

16.2172
0.7444 

6.2883 
0.3316 

2 

8 1 
2.7109 

0.09 
1.5932

0.0465 
2.7853

0.085 
20.1713

0.4306 
2.8832 
0.1224 

1 

9 1 
3.5351 
0.1507 

0.989
0.0284 

6.3814
0.4039 

23.0993
0.4014 

3.5015 
0.1545 

2 

10 1 
8.6658 
0.3587 

2.0031
0.082 

9.6552
0.3916 

38.7173
1.5326 

8.4015 
0.4684 

1 

11 1 
4.2629 
0.1701 

1.4029
0.0338 

5.8926
0.231 

33.5862
1.4611 

4.2518 
0.1602 

1 

12 1 
2.341 
0.1278 

0.9925
0.0391 

2.6197
0.1257 

9.6622
0.2759 

2.2700 
0.0876 

2 

13 1 
9.2207 
0.5352 

1.0125
0.0371 

11.7081
0.6212 

30.9423
0.8233 

9.7687 
0.4136 

1 

14 1 
4.9124 
0.2754 

2.7608
0.1029 

6.0297
0.3171 

12.8941
0.5844 

4.9782 
0.2761 

1 

15 1 
3.0507 
0.1608 

0.9904
0.0271 

3.532
0.2172 

17.0661
0.3992 

2.9431 
0.1558 

2 

16 1 
6.4099 
0.2745 

1.6855
0.0569 

11.9509
0.6781 

26.7849
0.9397 

8.2778 
0.3445 

1 

17 1 
4.4485 
0.1579 

1.8949
0.0783 

5.5042
0.2945 

18.3166
0.4805 

5.1133 
1.1468 

1 

18 1 
5.8697 
0.2016 

1.0004
0.0315 

5.5823
0.2434 

18.2243
0.6251 

5.7903 
0.1791 

1 

19 1 
5.0525 

0.222 
2.3306

0.1526 
10.9574

0.6314 
28.6026

0.7308 
5.0522 
0.2551 

1 

20 1 
1.9943 

0.068 
1.0122

0.0321 
2.4858
0.5624 

8.0891
0.3170 

2.2462 
0.1053 

1 

Avg 1 5.2162 1.4523 7.5410 23.0168 5.7680 1 
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 Average machine downtime 

Table A4. Normalized average machine downtime and confidence interval 

Average downtime of machines (maintenance + repair time) 

System DDPM DD DDCPM FCFS RR Cμ 
DDPM 
Rank 

1 1 
2.2374 

0.0364 
1.9860

0.0329 
2.2332

0.0367 
2.2544

0.0403 
2.2514 

0.0381 
1 

2 1 
1.3966 

0.0268 
0.9941

0.0216 
1.3913

0.0496 
1.4156

0.0265 
1.4046 

0.0266 
2 

3 1 
1.2487 

0.0279 
0.9935

0.0209 
1.2490

0.0207 
1.2393

0.0234 
1.2417 

0.0192 
2 

4 1 
1.8502 

0.0281 
1.9262

0.0832 
2.0927

0.0262 
1.9024

0.0245 
2.0469 

0.3300 
1 

5 1 
2.1412 

0.0326 
1.9705

0.0253 
2.1228

0.0266 
2.0712

0.0223 
2.1113 

0.0305 
1 

6 1 
1.3271 

0.0270 
1.0020

0.0197 
1.3657

0.026 
1.3244

0.0673 
1.3575 

0.0299 
1 

7 1 
1.3354 

0.0535 
0.9979

0.0470 
1.3896

0.0603 
1.3498

0.0751 
1.3666 

0.0552 
2 

8 1 
1.8377 

0.0370 
2.0003

0.0318 
1.8362

0.0319 
1.8395

0.0278 
1.8461 

0.0274 
1 

9 1 
1.2508 

0.0206 
1.0026

0.0174 
1.2788

0.0539 
1.2707

0.0234 
1.2599 

0.0205 
1 

10 1 
2.0956 

0.0385 
2.0319

0.0355 
2.1482

0.0447 
2.1434

0.0774 
2.1202 

0.0334 
1 

11 1 
1.8645 

0.0355 
2.0074

0.0345 
1.9221

0.0628 
1.8707

0.0786 
1.8876 

0.0332 
1 

12 1 
1.4447 

0.0855 
1.0253

0.0551 
1.4331

0.0717 
1.4451

0.0824 
1.4469 

0.0799 
1 

13 1 
1.5420 

0.0258 
0.9986

0.0188 
1.5072

0.0275 
1.4709

0.0249 
1.5209 

0.0251 
2 

14 1 
1.6250 

0.023 
1.9499

0.0222 
1.6434

0.0686 
1.6623

0.0235 
1.6711 

0.0246 
1 

15 1 
1.1211 

0.0152 
0.9968

0.0142 
1.1204

0.016 
1.0490

0.0162 
1.1214 

0.0206 
2 

16 1 
2.1184 

0.0409 
1.9889

0.0377 
2.1161

0.0354 
2.1212

0.0363 
2.1065 

0.0305 
1 

17 1 
2.0111 

0.0321 
2.0063

0.0335 
1.9675

0.0375 
2.0213

0.0328 
1.9807 

0.0818 
1 

18 1 
1.4255 

0.0213 
1.0047

0.0174 
1.4061

0.0196 
1.4403

0.0178 
1.4177 

0.0223 
1 

19 1 
1.6291 

0.0274 
1.8812

0.079 
1.7185

0.0231 
1.6989

0.0288 
1.6255 

0.0296 
1 

20 1 
1.0785 

0.0226 
1.0054

0.023 
1.0955

0.0471 
1.0591

0.0674 
1.1129 

0.0201 
1 

Avg 1 1.6290 1.4885 1.6519 1.6325 1.6449 1 

 


