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3.1 Variables 

We will now go more in depth in describing the variables day–ahead spot 

price, hydrology, residual load, PVs, wind, coal, and gas. 

 

Figure 4. The graphs present the development of the variables from January 2014 to December 2018. The 
data is at level form with an hourly frequency for hydrology, PV, residual load, and wind. Coal and gas are at 
daily frequencies.  Coal and gas are the short–run marginal costs (SRMC) of the two with the price of 

2CO  

emissions included. Hydrology is the hydrological balance in water dams, lakes and snow in the mountain. 
Residual load is consumption subtracted from renewable energy production. Wind and PVs represent the 
power productions of these sources.  

 

 

The electricity price is the hourly day–ahead spot price at the Nord Pool 

exchange. The development of the spot price has been further analyzed over 

Figure 1 on page 6.  

Hydrology refers to the hydrological balance, also called the water 

balance. This balance represents the potential GWh amount of power stored 

within water dams, lakes, and snow in the mountains. Changes in this balance 

happen mainly because of precipitation and evaporation. The potential outflow is 

simply the inflow plus the change in storage levels (Goldscheider, 2010, pp. 305-

338). The hydrology then represents the potential production from hydro power 

plants. Therefore, it also reflects the production capacity of hydro power plants 

when excluding the constraints of facilities. Figure 4 above indicates that 

hydrology shows some seasonal behavior. In spring, we experience snowmelt and 

substantial rainfall. During summertime, the values are decreasing. This is 

because rainfall usually is at its minimum and the water built up during winter has 

been used. In autumn, we experience increasing precipitation. This is continuous 
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in wintertime. The reservoir levels are then increasing, and there is an 

accumulation of snow. This is the common behavior of hydrology over a year 

(Anghileri, Pianosi, & Soncini-Sessa, 2014). We also see that each year has large 

differences in the amount of GWh stored.  

We left hydro power production out of the model because the production 

from hydropower plants can be regulated according to the market unless there is a 

run–of–river power production. This means that hydropower production has the 

option to adjust its production quickly according to market demand and prices 

(Nunez, 2019). Hence, the production of hydropower plants will almost 

mechanically follow historical changes in price in the short run. This would then 

create a synthetically high 2R , and we might have issues with collinearity in our 

model. Even though the production from hydropower plants would be lagged one 

day behind price, we expect the correlation between historical changes in 

hydropower production and the price to be high.    

Residual load is the electricity consumption subtracted for the production 

from renewable energy sources. This load is then the MWh amount of electricity 

produced by conventional thermal power production using fuel such as coal, gas, 

and nuclear sources of energy (Seier & Schebek, 2017). These are sources of 

power production with significantly higher marginal costs of production 

compared to renewable sources (Appunn, 2015). Since residual load represents 

the consumption of electricity, it is the variable that represents the demand in the 

market. Thus, the residual load is also largely driven by social factors and 

temperature changes. The social factors of when people need electricity 

throughout the day is driven by their daily schedules of waking up, turning the 

lights on, using kitchen appliances, going to work, utilizing industry machinery 

and so on. The temperature is an important factor, as heating is a large source of 

electricity consumption in households (Pöyry, 2018). According to Figure 4 on 

page 19, residual load shows seasonality with a replicating pattern for every year. 

The expected increase in wintertime happens mainly due to the increased need for 

heating. Conversely, summertime shows low values because the outside 

temperature is higher (Group, 2014). The graph does not display any trending 

effect, so the consumption was been mean–reverting in this period.  

Photovoltaics (PV), also known as solar power, is the production of 

electricity in MWh from solar panels. This power production happens through the 
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conversion of photons from sunlight into electricity (Z. Zhang et al., 2019). The 

production of PVs has a strong seasonal pattern, and as expected the production is 

increasing during summertime (Figure 4 on page 19). PV also shows an 

increasing MWh of production throughout the years. This indicates the focus on 

the development of PV capacity in the Nordic countries.  

 Wind is the MWh amount of electricity produced from windmills. The 

production from both PVs and wind are highly dependent on weather. As we can 

see from Figure 4 on page 19, wind power production shows a seasonal pattern 

that is the opposite of PVs. Wind production increases during wintertime and 

decreases during summertime. Wind, like PVs, also shows increasing production 

throughout the years because of the increasing focus on renewable power 

production.  

Coal represents the short–run marginal cost (SRMC) of using coal as a 

fuel for thermal power production. The base price of the coal is the API2 spot 

price, which is a benchmark for high quality coal. It has a power delivery of 6,000 

kcal/kg and is delivered in northwest Europe in the Amsterdam, Rotterdam, and 

Antwerp (ARA) hubs (Konstantine & Konstantine, 2018). The production output 

from coal is corrected for a fuel efficiency of 40%, as mentioned by Wattsight AS 

in a phone call 07/05/2019. This indicates the ratio of electricity production to the 

input of fuel. Losses in fuel efficiency happen because of the production of waste 

heating.  

SRMC is the cost of producing one extra MWh of power with coal as fuel. 

SRMC captures the true change in the cost of the fuel and provides a more correct 

effect of coal prices on power production (Biskas, Bakirtzis, & Chatziathanasiou, 

2015). The coal SRMC also includes the price of 
2CO  emissions, which represent 

the price in EUR per ton of 
2CO  emitted. The SRMC of coal show steady 

development from the beginning of 2014 until a small drop in 2016, and then 

steadily increases up to 2018 (Figure 4 on page 19).  

Gas represents the SRMC of using gas as fuel for thermal energy 

production. The base price is the Dutch Title Transfer Facility (TTF) natural gas 

spot price that is traded on the Intercontinental Exchange (ICE). This is the price 

that European end–consumer contracts are pegged to (Xunpeng, 2016). The 

SRMC of gas, like coal, includes the 
2CO  emission cost and is corrected for a fuel 
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efficiency of 50%, as mentioned by Wattsight AS in a phone call 07/05/2019. 

Natural gas emits 50–60% less carbon dioxide compared with coal, and is 

therefore less affected by changes in 
2CO  prices than coal (Laboratory, 2010). 

Gas and coal will also be referred to together as fuel. The SRMC of gas has 

shown relatively drastic price changes. The lowest price recorded in 2016 was 

below 30 EUR. Two years later in 2018 it had more than doubled, and it peaked at 

about 70 EUR (Figure 4 on page 19). 

Table 2. Cross–correlations between the variables. Price is the day–ahead spot price. Coal and gas are the 

short–run marginal costs (SRMC) of the two. Hydro is the hydrological balance in water dams, lakes, and 

snow in the mountain. Residual load (load) is consumption subtracted for renewable energy production, and 
PVs and wind are the power productions of these sources. The variables are the first difference in the 

logarithm at hourly frequency of the full sample from January 2014–December 2018.  *, **, and *** 

represent the significance of the variable at the 10%, 5% and 1% levels respectively. 

 

The main correlations we are addressing are between the variables and 

price. Coal has a positive correlation with price, but the coefficient is insignificant 

both economically and statistically. Gas and load have, positive correlation with 

price and are significant. The positive correlation is expected as an increase in the 

SRMC of gas and a higher consumption presented by load will lead to an increase 

in prices. Gas has a weak correlation, while load has the strongest correlation of 

the variables. We can also see that the correlation between wind power production 

and price has a significant and strong negative coefficient. Hydrology also has a 

negative correlation with price, but it is weaker than the correlation of wind to 

price. The negative correlations for hydrology and wind were expected as both 

variables will lead to higher supplies in the market and that will drive the price 

down. PV power production is significant, but it is a bit surprising that it has a 

weak positive correlation.  

  Price Coal Gas Hydro Load PV Wind 

Price 1             

                

Coal 0.0039 1           

                

Gas 0.0267 0.0612 1         

  *** ***           

Hydro -0.0910 0.0114 -0.0216 1       

  *** ** ***         

Load 0.5869 0.0078 -0.0077 -0.1247 1     

  ***   *** ***       

PV 0.0194 -0.0113 0.0112 0.0404 0.0044 1   

  *** **   ***       

Wind -0.3551 0.0038 -0.0048 0.1079 -0.5140 -0.0686 1 

  ***     *** *** ***   
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A noticeable anomaly is the low correlations for gas and coal. Since they 

both are fossil fuels that include the 
2CO  price, one might expect their 

relationship to show higher correlation.  

Table 3. Descriptive statistics for the day–ahead spot price at an hourly frequency for 1,828 observations for 

the full sample period of January 2014–December 2018. The prices are reported in Euro per MWh. The mean 

is the average price for each hour. The median is the middle value found when the series is arranged in 

ascending order. The maximum and minimum values are simply the maximum and minimum values of price 

observed within the respective hour. Standard deviation is a measure for the dispersion of the observations. 

The higher the standard deviation is, the larger the distance between the data observations and the mean 

value. Skewness defines the shape of the distribution. A normal distribution is symmetric when the skewness 

is zero. Kurtosis is a measure of the fatness of the tails and how peaked the mean is. Normal distribution has 

a kurtosis of 3 and any value above this is viewed as excess kurtosis (Brooks, 2014). We have the hours 8–11 

(07:00–11:00 CET) and 17–19 (16:00–19:00 CET) in bold since we refer to them as the peak hours of the day 

where we experience the highest daytime volatility. 

 

 

Hours of high volatility are shown in the increase of standard deviation, 

skewness and kurtosis. These are referred to as higher moments of the series and 

are characteristics used to describe observations that are not perfectly normally 

distributed (Brooks, 2014, p. 66).  

We can see that the price experiences higher standard deviation, skewness 

and kurtosis in the periods between hour 8–11 (00:07–11:00 CET) and 17–19 

(16:00–19:00 CET). These are therefore the hours with highest volatility in prices. 

Hour  Mean  Median  Maximum  Minimum  Std. Deviation  Skewness  Kurtosis

1 27.38 26.59 57.36 2.17 9.57 0.50 3.84

2 26.50 25.94 55.91 1.72 9.56 0.42 3.74

3 25.98 25.48 55.32 1.14 9.55 0.37 3.68

4 25.77 25.32 54.27 1.27 9.54 0.33 3.60

5 26.06 25.77 53.99 1.18 9.50 0.27 3.56

6 27.37 26.73 56.67 1.15 9.65 0.37 3.59

7 29.41 28.30 63.08 1.39 10.06 0.48 3.64

8 32.22 30.21 160.00 1.93 12.16 1.92 17.01

9 33.71 31.18 199.97 2.58 13.72 3.47 37.69

10 33.32 30.99 168.64 2.71 12.28 2.29 20.59

11 32.71 30.74 120.05 2.86 10.99 1.21 7.81

12 32.14 30.42 78.79 2.92 10.40 0.79 4.17

13 31.55 29.98 76.62 2.77 10.24 0.74 3.95

14 31.17 29.73 76.62 2.32 10.24 0.74 3.99

15 30.90 29.46 77.14 2.11 10.32 0.74 4.03

16 31.02 29.40 95.01 2.96 10.81 1.00 5.38

17 31.64 29.66 149.95 3.99 12.08 2.08 15.90

18 32.78 30.34 199.94 5.02 13.47 3.38 34.58

19 32.78 30.51 150.08 6.84 12.07 1.87 14.14

20 31.80 30.11 81.61 6.57 10.44 0.81 4.27

21 30.77 29.38 64.68 6.07 9.81 0.68 3.86

22 30.17 28.84 62.73 5.71 9.55 0.69 3.96

23 29.34 28.12 59.64 5.46 9.37 0.68 3.95

24 27.98 27.06 56.84 3.27 9.31 0.57 3.93

Daily avg. 30.19 28.76 94.79 3.17 10.61 1.10 8.95

09790600978319GRA 19703



24 
 

These hours will henceforth be referred to in this paper as the peak hours of the 

day. We can also see that the extreme values of the maximum price (Figure 6, the 

appendix) and minimum price (Figure 7, the appendix) are present in those 

periods. This is expected, since these are the hours of the day where there is a lot 

of consumption (Ward et al., 2019). Standard deviation shows an increase in 

daytime compared to nighttime and has its peaks in the periods mentioned. 

Skewness and kurtosis are relatively stable except for strong peaks in the hours 

mentioned. A positive skewness, as we experience in Table 3 on page 23, means 

that the distribution has long tails to the right and most observations are more to 

the left. Economically, this means that we are more likely to experience the 

observations on the far right, which means high values of the price. The 

distribution shows excess kurtosis, which means kurtosis in excess of 3. This 

leptokurtic distribution is what we experience in the hours when kurtosis increases 

in the peak volatility hours. This means that we can experience higher peak values 

in the mean and more extreme values of price in the tails of the distribution 

(Brooks, 2014, pp. 66-67). 
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4. Methodology 
 

 In this section, we will go through the VAR model used, generalized 

impulse response function (GIRF), the lag length chosen based on Akaike 

information criterium (AIC), the hypothesis, the regression and the stationarity 

test provided by the augmented Dickey–Fuller (ADF) test.  

The prices for the 24 hours were calculated based on the information in the 

market today. This means that the hourly continuous day–ahead market data does 

not follow a times series process, but is a panel of 24 cross sectional hours that 

vary from day to day (Huisman et al., 2006). Since this hourly data does not 

follow a time series process one cannot use regular time series regressions such as 

least squares regressions, without merging or cleansing the data. This could lead 

to a loss of important information in the data set (Lee & Kim, 2018). Research on 

the topic of electricity pricing often uses daily average prices such as Würzburg et 

al. (2013) and Clò et al. (2015). The daily average price of electricity is a key 

reference price in the electricity market and is used in financial contracts for price 

hedging and risk management (Raviv, Bouwman, & Dijk, 2015). However, the 

electricity market has substantial volatility intraday and Raviv et al. (2015) 

suggest that a lot of valuable information would be forgone by averaging out the 

intraday behavior of electricity prices.  

 Paschen (2016) looked at wind power production, PV power production, 

total load (demand) and conventional power production (thermal energy 

production by coal, gas and nuclear sources of power), and the European Power 

Exchange (EPEX) spot prices for electricity. The main aim of his paper was to get 

a better understanding of the dynamic interrelationship between the spot price and 

the independent variables over time. He approached this by using a structural 

vector autoregressive (SVAR) model and the related structural impulse response 

function (SIRF). The raw data he used was at an hourly frequency, but he divided 

the data into nighttime and daytime. This is because he expects the presence of 

PV power production to be prominent during daytime and wind power during 

nighttime. We approached our analysis with similar variables, but we include the 

price of 
2CO  in the SRMC of coal and gas, and we also added the variable for 

hydrology to represent the longer–term effects of hydropower which are more 
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prominent in the Nordic region. Unlike Paschen (2016), we used hourly data to 

avoid the elimination of any relevant and valuable intraday information. We did 

so by addressing the issue of overlapping data by looking at the data as 24 

individual matrixes of data where there is one matrix for every hour of the day. 

This way, the matrix contained information about all the variables in hour 1 

(00:00–01:00 CET) of every day of the entire sample. The same was true for hour 

2 (01:00–02:00 CET), the hour 3 (02:00–03:00 CET), and so on. We then looked 

at the difference's day–by–day for every hour separately. This approach let us 

look further into the behavior of the variables for each hour, which means that we 

could look at the changes in explanatory power and coefficients throughout hours 

of high and low volatility and see if some variables are changing throughout the 

day.  

4.1 Vector Autoregressive Model  

With this setup, we used a vector autoregressive (VAR) model. The study 

of Raviv et al. (2015) also show that a multivariate model for the full panel of 

hourly prices outperformed univariate models using daily average prices. They 

found a reduction in root mean squared errors of 16%, implying increased 

precision using a multivariate model with hourly data. In a VAR model, all 

variables are endogenous, and it captures interdependencies in multivariate 

systems. It is therefore a natural generalization of the univariate autoregressive 

(AR) model. In a VAR model, each variable is explained by its own lagged 

values, the lagged values of the other variables in the model, and the error term. 

By resolving this setup with one regression for every hour of the day we could 

also have used a least squared model. Unlike the VAR model, a least squared 

model does not allow for the variables to depend on its own lags and the lags of 

other variables. This allows the VAR to capture more features of the data. 

Another advantage of VAR is that it performs well with large–scale datasets 

(Brooks, 2014, pp. 326-338).  

 In their study of the performance of different models in different 

electricity markets, Ziel and Weron (2018) found that the VAR performed best at 

the Nord Pool exchange compared to the other European electricity markets. It 

was also found by Raviv et al. (2015) that the VAR model outperformed the 

regular AR models with an improvement of mean absolute error (MAE) of 12% 

when forecasting day–ahead spot price listed on Nord Pool.  
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The lag lengths for the VAR models were chosen by the lag length criteria 

of the AIC which is supported by both Ziel et al. (2015) and Raviv et al. (2015). 

The AIC information criteria adds a penalty term to the 2R  when the model 

increases its parameters in order to correct for possible overfitting (Brooks, 2014, 

p. 275). The lag length is dynamic in the sense that we tested the AIC for each 

hour of the day and changed the lag length afterwards.  

Next the 2R , adjusted 2R  and the standard error of the regression were 

noted. To see how precisely the model describes variations in the dependent 

variable. To inspect the variables and their coefficients, generalized impulse 

response functions (GIRFs) were provided. The GIRFs map out the reactions of 

the price by describing the dynamics in the series conditional on both history and 

a shock of one standard deviation to the variables. We chose accumulated impulse 

responses in order to include the effect of previous lags of the variables. The 

number of periods included were equal to the lag length given by AIC. Then we 

can see whether the variations in the dependent variable have a positive or 

negative relation with the variables and the strength of this relation. The reason 

for the suitability of GIRFs for this setup is that they are invariant to the ordering 

of the variables (Koop, Pesaran, & Potter, 1996). A shock of one standard 

deviation also allows for proportional comparisons of effect with other markets, as 

a shock of a fixed size might have different effects in markets of different sizes 

(Würzburg et al. 2013). The GIRF was introduced by Koop et al. (1996), who 

argued its suitability for multivariate models in econometrics. Later on, Pen and 

Sévi (2010) proved its relevance in the commodity and electricity markets.  

To see how these variables affect variations in the day–ahead spot prices, 

we test the following hypotheses 

Ho: There is no relation between the variables X and the dependent Y.   

Ha: There is a relation between the variables X and the dependent Y.   

 for each variable by running the regression  

1 1 1 1 1 10 1 2 3 4 5 6t t t t t t
hydro load coal gas PV Windt tSpot

− − − − − −
      = + + + + + + +  

for every hour of the day. 
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The null hypothesis is the statement being tested and if we can statistically 

reject the null hypothesis, we can conclude that the alternative hypothesis is true 

and the variable being tested does have a relation to the price (Brooks, 2014, p. 

99).    

Since we want to see if changes in the explanatory variables can describe 

the variations in the day–ahead spot price, we looked at the first difference of the 

natural logarithm of the variables.  

( ) ( ), 1i t t tX LN x LN x + = −  

This was done to the raw data of the dependent and independent variables. 

The data then represents a percentage change in the variables and also addresses 

that the variables are stated in different units, (table 1 page 18) to facilitate 

comparison (Graff, 2014). Since the day–ahead spot price quoted today is the 

price of buying electricity for tomorrow, the day–ahead spot price is one day 

ahead of the explanatory variables. In other words, all explanatory variables lag 

one day behind the price. This way, we can see how changes in the variables at 

time 
tX  describe changes in the prices at time 

1tY +
.  

No weekend dummies were included in the modelling as there are few 

practical differences between weekends and weekdays in the power market 

suggested by Nord Pool in a phone call 28/05/2019.  

The VAR require stationary data, and the stationarity of the data set is 

presented by the ADF test for unit roots presented in Table 5 in the appendix.  
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5. Results and analysis 
 

Table 4. The rows show the coefficients that represents the generalized impulse response 
function (GIRF) in price by one standard deviation shock to the respective variable and their 

significance, lag length (lags) and 2R  for every hour of the day. Price is the day–ahead spot price. 
Coal and gas are the short–run marginal costs (SRMC) of the two with the price of 

2CO  included. 

Hydrology is the hydrological balance in water dams, lakes, and snow in the mountain. Load is 
consumption subtracted for renewable energy production. Wind and PVs are the power 
production of these sources. *, **, and *** represent the significance of the variables at 10%, 
5%, and 1% levels respectively. The hour represents the hour up to the noted value, e.g. hour 1 
represents (00:00–01:00 CET). X noted in hour four for PVs is due to collinearity issues in this 

hour. Extended version including adjusted 2R and the standard error of each regression (hour) 
and each variable are presented in Table 6 in the appendix.  

 

Hour Price Hydrology Load PV Wind Coal Gas lags R-2

1  0.0608 -0.0156  0.0290 -0.0080 -0.0197  0.0013  0.0073 7 0.1746

*** *** *** ***

2  0.0655 -0.0200  0.0313 -0.0031 -0.0219 -0.0008  0.0071 7 0.1973

*** *** *** ***

3  0.0754 -0.0194  0.0339  0.0015 -0.0224 -0.0017  0.0082 7 0.2150

*** *** *** ***

4  0.0783 -0.0185  0.0359 X -0.0249 -0.0014  0.0084 7 0.2338

*** ** *** ***

5  0.0713 -0.0192  0.0307 -0.0147 -0.0222 -0.0021  0.0078 7 0.2469

*** *** *** ** ***

6  0.0738 -0.0082  0.0449 -0.0092 -0.0157  0.0062  0.0083 8 0.3439

*** *** * ***

7  0.0810 -0.0060  0.0506  0.0082 -0.0116  0.0026  0.0079 8 0.4748

*** *** * **

8  0.0920 -0.0041  0.0627  0.0039 -0.0140 -0.0028  0.0124 8 0.5144

*** *** *** **

9  0.0930 -0.0041  0.0631 -0.0033 -0.0138 -0.0057  0.0183 8 0.4918

*** *** *** ***

10  0.0816 -0.0046  0.0558  0.0026 -0.0144 -0.0046  0.0144 8 0.4429

*** *** *** ***

11  0.0690 -0.0052  0.0487  0.0011 -0.0128 -0.0021  0.0117 8 0.3998

*** *** *** **

12  0.0637 -0.0063  0.0444  0.0030 -0.0126 -0.0005  0.0117 8 0.3736

*** *** *** ***

13  0.0649 -0.0060  0.0425  0.0034 -0.0125  0.0004  0.0095 8 0.3803

*** *** *** **

14  0.0681 -0.0066  0.0428  0.0032 -0.0124  0.0009  0.0088 8 0.3925

*** *** *** **

15  0.0706 -0.0076  0.0437  0.0023 -0.0123  0.0012  0.0077 8 0.4017

*** * *** *** *

16  0.0728 -0.0076  0.0437 -0.0010 -0.0120  0.0016  0.0077 8 0.3771

*** * *** *** *

17  0.0768 -0.0075  0.0430 -0.0037 -0.0116  0.0024  0.0102 8 0.3204

*** *** *** **

18  0.0501 -0.0074  0.0206 -0.0007 -0.0148 -0.0019  0.0122 7 0.2720

*** *** *** *

19  0.0704 -0.0075  0.0382  0.0012 -0.0128  0.0017  0.0149 8 0.2582

*** *** *** ***

20  0.0555 -0.0092  0.0327  0.0041 -0.0141  0.0030  0.0136 8 0.2231

*** ** *** *** ***

21  0.0506 -0.0103  0.0291  0.0002 -0.0143  0.0032  0.0088 8 0.1851

*** *** *** *** **

22  0.0490 -0.0101  0.0272  0.0036 -0.0139  0.0029  0.0078 8 0.1889

*** *** *** *** **

23  0.0476 -0.0102  0.0263  0.0113 -0.0154  0.0043  0.0073 8 0.1655

*** *** *** *** *** **

24  0.0537 -0.0140  0.0334 -0.0044 -0.0228  0.0033  0.0083 8 0.2205

*** *** *** *** *
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5.1 Analysis 

In this section we will analyze coefficients of the variables and their 

effects from Table 4 on page 29. Price, wind, and residual load all rejects the null 

hypothesis throughout the day. This means that these variables have a relation 

with price for all hours of the day. PV, gas and hydrology only rejects the null 

hypothesis for various hours of the day, while coal fails to reject the null 

hypothesis for every hour of the day. 

 

5.1.1 Price  

As expected, the price coefficients are strong, positive and significant at 

the 1% level for all hours, proving that the price are an important variable in 

describing price variations. The coefficients show their peaks in the morning 

hours of hours 7–10 (06:00–10:00 CET) and this is also when the 2R  is at its 

highest (Figure 5, page 36). Since we have not found any research that looks at 

the autoregressive effect on day–ahead spot prices on the prices itself, there is no 

relevant sources to compare this to.   

5.1.2 Hydrology 

The hydrology, as expected, has negative coefficients for every hour of the 

day, but the statistical significance varies within the day and the economic impact 

on price is weak. The negative coefficients imply that an increase in the hydrology 

would lead to a decrease in the day–ahead electricity price. This makes sense 

because a higher potential of electricity production can drive up the supply in the 

market and therefore drive prices down. Vice versa, lower potential production 

would lead to an increase in price. Hydrology seems to show significant 

coefficients during the hours of the day when the market shows the low volatility. 

They are significant from hours 1–5 (00:00–05:00 CET), and then the market 

volatility increases from hour 6 (table 3 on page 21) and hydrology loses its 

significance. When the volatility calms a bit down, hydrology becomes significant 

again during hours 15 and 16 before it stays insignificant until hour 20, from 

whereon it is significant for the rest of the day. This reaction is reasonable 

considering that the changes in hydrology happens slowly and steadily whereas 

the day–ahead prices have extreme volatility and spikes in peak hours. It looks as 

if the changes in hydrology is simply not keeping up with the changes in prices in 
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peak hours and is therefore insignificant in volatile hours. To our knowledge, 

there is no research available on the effect of hydrology on the day ahead spot 

price in the Nordic power market that we can compare our results to.  

5.1.3 Residual load 

The residual load has positive coefficients, as previous research has shown 

as well (Bublitz et al., 2017; Clò et al., 2015; Gürtler & Paulsen, 2018; Hirth, 

2018; Lagarde & Lantz, 2018; Mosquera-López & Nursimulu, 2019; Paraschiv et 

al., 2014; Paschen, 2016). The coefficients are significant at the 1% level for 

every hour of day and shows strong positive economic impact on the price. This is 

as expected, as the load represents the consumption in the market – in other 

words, the demand. Therefore, the positive coefficients mean that higher demand 

leads to higher prices, as supported by the classical economic theory. Residual 

load also has strong coefficients and is an important driver of the variance in 

prices throughout the day. The impact of residual load shows stronger coefficients 

in the hours of high volatility (Table 3, page 23). This is rather obvious because 

changes in residual load, which again represents changes in electricity demand, 

lead to variations in price, and not the other way around. The underlying factors of 

demand such as changes in temperature, social behavior, lifestyle, and the goods 

and services we acquire, all affect variations in electricity prices. Thus, the 

volatility in prices shown by Table 3 on page 23 is largely driven by residual load. 

Only beaten by price itself, residual load is the variable with the highest 

significance and strongest coefficients and is therefore the second strongest driver 

of variations in the day–ahead spot price.  

5.1.4 PV 

PV showed some significant coefficients early in the morning and for one 

hour in the evening, but the strength of the coefficients was of little economic 

impact. PV first becomes significant in hour 5, which is reasonable since it is 

around this time of day that the sun rises. As expected, the coefficient is negative, 

since an increase in the supply of electricity from renewable sources drives supply 

up and prices down. The same goes for hour 6, but for hour 7 the coefficient, 

slightly surprisingly, turn positive. This result is supported by Mosquera-Lopez et 

al. (2017), who found a positive relationship between price and PV production in 

the morning. They rationalized this behavior because in the morning the sun 

comes up and PV production increases. At the same time the demand for 
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electricity in the market is rapidly increasing. The increase in consumption alone 

increases the price, but also, high demand leads to more production from sources 

of high marginal costs like coal and gas, which will further increase the price. 

Therefore, in the hour 7 the increase in production from PVs and the increase in 

price have a positive relationship. It is also probable that the positive relationship 

in hour 23 has a similar, yet opposite, explanation. In the evening the supply from 

PVs is reduced since the sun goes down. The consumption of electricity also goes 

down as people tend to go to sleep around hour 23. This would lead to the effect 

of reduced consumption and reduced production from PVs happening at the same 

time. Therefore, they have a positive relationship.  

One might think that PVs would have more significant coefficients during 

daytime, as this is when the sun is shining. A reason for the insignificance of PV 

might be that even though the development of production facilities for PV 

production in the Nordic region has been increasing a lot in recent years. The 

production is still low compared to hydropower, wind, and fossil fuel. In 

comparison, according to our data from 2014 to 2018, the highest production for a 

single hour in the Nordic power market from PVs was 715 MWh, while the 

lowest production from total thermal generation, represented by residual load, was 

21,178 MWh. In other words, PVs maximum production in one hour equals just 

above 3% of the lowest production from thermal power. The low amount of 

electricity produced by PVs might be why a lack of impact is showing during the 

daytime.  

PV shows collinearity in the GIRF in hour 4 of the sample and did not 

receive a coefficient for this hour. However, this is during nighttime and we do 

not expect a significant coefficient that would have implications for our analysis. 

5.1.5 Wind 

Wind has negative significant coefficients for every hour of the day and 

shows the third strongest economic impact. It was also found by Mosquera-Lopez 

et al. (2017) when they were looking at wind speeds that the effects of wind 

speeds were always negative. However, it is a bit surprising that wind is 

significant at the 1% level throughout the day with the only exception of hour 7, at 

which it is significant at the 5% level. The strong significance of wind throughout 

the day was surprising since the production of electricity from wind has a high 

dependence on exogenous weather factors (Mosquera-Lopez et al., 2017). Since 
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the wind speeds tend to vary a lot, we were expecting wind power production to 

have some hours of weak or insignificant coefficients. The significance of 

electricity production from wind is not affected by whether it is daytime or 

nighttime or by the changing volatility in the market. There is a noticeably 

stronger impact of wind during the nighttime compared to the daytime. In their 

study of the drivers of daily average prices in Germany Mosquera-López and 

Nursimulu (2019) also found that wind is a good short–run indicator of price 

variations which supports our results. Paraschiv et al. (2014) found in their study 

on the German market that the impact of wind is stronger than the impact of PV, 

and that the impact on the price is stronger during nighttime. Paraschiv et al. 

(2014) expected that the impact of wind would increase during nighttime because 

wind speeds tends to increase in the evening and stay stronger during nighttime 

compared to daytime. This is supported by Paschen (2016), who also found a 

stronger negative impact from wind during the nighttime.  

5.1.6 Coal  

The results from coal shows positive insignificant coefficients for all hours 

of the day. This is supported by Mosquera-Lopez et al. (2017), who also presented 

positive statically insignificant coefficients of coal for almost all the percentiles 

that they were looking at. A reason for this lack of significant estimates could be 

the fact that coal is not a good hourly driver of variations in the day–ahead spot 

price but is more suitable in the longer term. This is because the price 

development of coal is strongly interrelated to the global market and coal supplies 

a third of all energy used worldwide (I. E. Agency, 2018). Coal is also regulated 

through climate policies due to its high emission levels (Krzemien, Fernandez, 

Sanchez, & Lasheras, 2015). We interpreted that since coal is affected by global 

and regulatory factors, the coal price is more stable than the electricity price. 

Therefore, the coal price cannot describe the more volatile short run changes in 

electricity spot price. This interpretation coincides with the findings of 

(Mosquera-López & Nursimulu, 2019). They used data on daily frequency and 

found poor performance from coal prices in the short–run but that coal was one of 

the main drivers of pricing in the future market.  

The study of Hirth (2018) found that coal was an economically important 

driver in the German market, but not for the Swedish market, where it was close 

to zero from 2008 to 2015. Sweden is a big participant in the Nordic market and 
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has a more similar production mix to the Nordic power market overall than the 

German market has (Appunn, Bieler, Haas, & Wettengel, 2019; Pöyry, 2018; 

Research, 2018). Therefore, the very low impact of coal in Sweden found by Hirth 

(2018) supports our results of a weak economic and insignificant impact of coal in 

the Nordic power market. While we have included the cost of 
2CO  emissions in 

the SRMC of coal, Hirth (2018) included 
2CO as a separate variable and he found 

that the impact of the cost of 
2CO emissions was rather weak – approximately 8%. 

This is a result that can neither confirm nor contradict the weak impact of coal 

with 
2CO costs included that we found. On the other hand, a strong effect of the 

2CO  price in Sweden could have indicated that our results are somewhat 

opposing.  

Since coal is the energy source that pollutes the most, it is a natural place 

to start reducing production when the object is to reduce emissions. From the 

period of 2010 to 2014, Gianfreda et al. (2016) found that the increase of 

renewable energy sources significantly reduced the production from coal in Great 

Britain and Spain. Therefore, the influence of coal prices on the electricity price 

was decreasing. The insignificant results we found in the Nordic power market 

could be an extension of the results of Gianfreda et al. (2016), considering that the 

coal production in the Nordic region is even lower than in the rest of Europe 

(Energiewende & Sandbag, 2019; Pöyry, 2018). 

5.1.7 Gas  

Gas is not significant during nighttime from hours 1–8 (00:00–08:00 CET) 

but stays significant throughout the rest of the day and the strongest impact is 

noted in the peak hours. Gas seems to show a stronger impact during the peak 

hours in the morning and evening as the coefficients are stronger in these periods. 

The coefficient of gas stays positive throughout the entire day, which means that 

an increase in the SRMC of gas leads to higher electricity prices. We can see that 

the significance levels show signs of clustering as the highest significance levels 

are during the peak hours of the day. As shown in the Table 3 on page 23, these 

are also the hours of the day with the highest kurtosis, skewness, and standard 

error. This shows that gas is a significant driver of the price through volatile 

periods and is insignificant during the calm night period. This is supported by the 

findings of (Würzburg et al., 2013) in their study of Germany and Austria. They 
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also found that gas prices are short–term determinants for spot prices, especially 

during times of high demand. This is also supported by Paraschiv et al. (2014), 

who found evidence of gas to be decreasing over time due to higher amounts of 

renewable energy, which again supports the MOE as gas, with the highest 

marginal costs, after oil, is the first source to be squeezed out of the market. 

 

5.2. Summary 
 

Price, wind, and residual load all rejects the null hypothesis throughout the 

day. PV, gas and hydrology rejects the null hypothesis for various hours of the 

day, while coal fails to reject the null hypothesis for every hour of the day.  

Our results are mostly as expected, but the strong significance of wind was 

slightly surprising. The strongest variables in describing the variations in the day–

ahead spot price was the price itself followed by the residual load due to its strong 

coefficient. Both had strong significance and positive coefficients throughout the 

day. Wind showed significant coefficients throughout the day but had noticeable 

weaker negative coefficients. While coal was insignificant, PVs, hydro, and gas 

showed varying significance throughout the day. This goes to show that the 

variables are not performing equally in different hours of the day. PV showed 

significant coefficients in the early morning hours and for one hour in the late 

evening, but the economically significance was low. Gas became significant in the 

morning and stayed significant from there on out with strongest impact during 

peak hours. Hydrology, on the other hand, stayed significant during the calm 

nighttime, midday and evening. It was during these significant hours that 

hydrology showed economically impact on price. The changing significance of 

the variables intraday tells us that they are affecting volatility differently. Price, 

gas, and load showed the strongest coefficients during the peak hours of the day. 

Hydrology showed the weakest coefficients in those hours. This means that price, 

gas, and load are better at describing the intraday price variation during hours of 

high price volatility and hydrology is better during hours of low price volatility. 

What is noticeable is that the explanatory power of the model (Figure 5, page 36), 

performs best during the hours of the day when the volatility is highest (Table 3 

page 21. This shows that the model captures rapid changes in price well. The 

model provides an 2R  of around 50% for hours 8 and 9, which are noted as the 
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most volatile hours of the day (Figure 5, page 36). It is during these hours that we 

experienced the highest prices (Figure 6, the appendix) and the lowest prices 

(Figure 7, the appendix). This strongly supports the notion from Raviv et al. 

(2015) that valuable and important information about price development will be 

lost when you average out hourly prices to daily prices.  

Figure 5. The explanatory power of the model represented by the 2R  for every hour of the day.  
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6. Concluding remarks  

Our thesis addressed the volatile Nordic power market with a model setup 

that has not been done by previous research. This is to provide better insights 

about the drivers of variations in the day-ahead spot price on the Nord Pool power 

exchange, and intraday changes in these drivers from 2014 to 2018.  

The VAR model was used because of its rich structure and suitability to 

large-scale simultaneous equations, and the supplementary GIRF was provided to 

analyze the variables. We had 24 individual matrixes, one for each hour of the 

day, containing all the variables. The variables we approached were residual load, 

production from wind and PVs, the hydrological balance, and the SRMCs of coal 

and gas with the price of included. 

Our findings are largely as expected, but the strong significance of wind 

throughout the day was slightly surprising. Price and residual load were the main 

drivers due to its strong coefficients. Price itself, as expected, was the most 

important driver. The coefficients were strongest during the peak hours of the day 

and they were positive and significant for every hour. Like price, the residual load 

showed significant and positive coefficients throughout the day and had the 

second strongest coefficients. Residual load also showed its strongest impact 

during peak hours and a weaker impact during calm hours. Wind had negative and 

significant coefficients for every hour of the day, but showed noticeably weaker 

coefficients than price and residual load. The negative coefficients for wind were 

strongest during nighttime. The variables gas, PV, and hydrology were significant 

in different hours of the day and showed far weaker coefficients than the main 

drivers. Gas had positive and significant coefficients during the daytime hours of 

high and medium volatility in the spot price but were insignificant during the calm 

night hours. On the other hand, the hydrology showed the opposite pattern, as it 

was significant during the hours of low volatility and always showed negative 

coefficients. This is expected as the changes in hydrology are slower than the 

extreme behavior of price during volatile hours, and therefore hydrology does not 

significantly explain the price variations in those hours. PV mostly showed 

significant coefficients during the less volatile hours in the morning, but the weak 

coefficients imply little economic impact. Coal had insignificant coefficients 

throughout the day, this is slightly as expected because coal is unable to capture 
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the volatility in the power market. The setup of the VAR model performs better 

during hours of high volatility as this is when the explanatory power is highest 

(Figure 5, page 36).  

We addressed the hourly effect of hydrology. This has not been done by 

previous research in the Nordic power market. The changing strength of the 

coefficients and significance of the variables throughout the day, reveal that there 

is valuable information intraday that many researchers have forgone by averaging 

out hourly data, such as Clò et al. (2015) and Würzburg et al. (2013). Our results 

provide information about the intraday changes in the variables that affects the 

day–ahead spot price. This can help investors better understand which variables 

and exogenous effects are driving the variations in price hour by hour. This is 

essential for investors who are to inform Nord Pool about the amount and price of 

the electricity they are supplying or buying, especially in hours of high volatility 

and extreme spikes in prices intraday.  

 The findings should be interpreted with caution as there is little previous 

research and literature to compare our approach and the variables with. Further 

research should be done within the area to eventually replicate the study. An 

appealing supplementation of our research would be to address the dataset with 

periodical breaks. We have delineated and focused our data on a continuous 

sample hour by hour, but it would be interesting to see how periodical breaks 

based on seasonal changes between summer and wintertime affect the variables, 

especially for the renewable sources. The renewables, PV and wind, show large 

seasonal changes in production, see figure 4 on page 19, therefore their impact on 

the price might also change.  
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7. Appendix 
 

Table 5. Augmented Dickey Fuller (ADF) test for 
stationarity at hourly frequency. The lags in this 
test are chosen by the Akaike information criterion 
(AIC). The coefficients noted are the probabilities. 

 

 

Figure 6. The maximum prices at level achieved for each hour of the day through 2014-2018. There 
are two spikes intraday and they are a clear indicator of higher consumption and demand during the 
hours when people wake up around hour 7, and when they get back from work and daily activities 
around hour 16.  
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Figure 7. The minimum price at level achieved for each hour of the day through 2014-2018. There is one 
spike that gradually starts around hour 15 (14:00-15:00 CET) and peaks around hour 19 (18:00-19:00 
CET). During these hours we do not experience the low prices as we are during nighttime and until hour 
15.   

 

 

Figure 8. Shows the average price for each hour from 2014-2018. Here we can see that spikes shown in 
figure 4 and 5 are smoothed, but still shows two peak hours, hour 9 and 19.   
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Table 6. The table presents the lags, 2R  (R-2), the adjusted 2R  (adj. R-2) and the 
standard error (SE) from the Vector Autoregressive model (VAR). Also, the 
coefficients, Standard deviation (SE) and their significance of the Generalized 
Impulse Response Function (GIRF) for each variable with a shock of one standard 
deviation. *, **, *** represent the significance of the variables respectively, 10%, 
5% and 1% level. The results are based on hourly data from January 2014 – 
December 2018. The lags of the VAR are chosen based on the Akaike Information 
Criteria (AIC).  

  

Hour Price Coal Gas Hydro Load PV Wind lags R-2 adj. R-2 SE

1  0.0608  0.0013  0.0073 -0.0156  0.0290 -0.0080 -0.0197 7 0.17 0.15 0.17

 (0.0055)  (0.0061)  (0.0060)  (0.0061)  (0.0056)  (0.0061)  (0.0054)

*** *** *** ***

2  0.0655 -0.0008  0.0071 -0.0200  0.0313 -0.0031 -0.0219 7 0.20 0.18 0.20

 (0.0061)  (0.0068)  (0.0066)  (0.0067)  (0.0063)  (0.0068)  (0.0060)

*** *** *** ***

3  0.0754 -0.0017  0.0082 -0.0194  0.0339  0.0015 -0.0224 7 0.21 0.19 0.21

 (0.0068)  (0.0075)  (0.0073)  (0.0074)  (0.0069)  (0.0072)  (0.0066)

*** *** *** ***

4  0.0783 -0.0014  0.0084 -0.0185  0.0359 X -0.0249 7 0.23 0.22 0.22

 (0.0069)  (0.0075)  (0.0073)  (0.0074)  (0.0069) X  (0.0066)

*** ** *** ***

5  0.0713 -0.0021  0.0078 -0.0192  0.0307 -0.0147 -0.0222 7 0.25 0.23 0.21

 (0.0063)  (0.0070)  (0.0068)  (0.0069)  (0.0064)  (0.0067)  (0.0062)

*** *** *** ** ***

6  0.0738  0.0062  0.0083 -0.0082  0.0449 -0.0092 -0.0157 8 0.34 0.32 0.18

 (0.0050)  (0.0058)  (0.0056)  (0.0057)  (0.0052)  (0.0054)  (0.0052)

*** *** * ***

7  0.0810  0.0026  0.0079 -0.0060  0.0506  0.0082 -0.0116 8 0.47 0.46 0.16

 (0.0043)  (0.0052)  (0.0050)  (0.0050)  (0.0044)  (0.0049)  (0.0046)

*** *** * **

8  0.0920 -0.0028  0.0124 -0.0041  0.0627  0.0039 -0.0140 8 0.51 0.50 0.16

 (0.0048)  (0.0056)  (0.0054)  (0.0055)  (0.0045)  (0.0054)  (0.0050)

*** ** *** ***

9  0.0930 -0.0057  0.0183 -0.0041  0.0631 -0.0034 -0.0138 8 0.49 0.48 0.16

 (0.0050)  (0.0059)  (0.0056)  (0.0057)  (0.0047)  (0.0055)  (0.0052)

*** *** *** ***

10  0.0816 -0.0046  0.01444 -0.0046  0.0558  0.0026 -0.0145 8 0.44 0.43 0.14

 (0.0046)  (0.0054)  (0.0051)  (0.0052)  (0.0044)  (0.0047)  (0.0047)

*** *** *** ***

11  0.0690 -0.0021  0.0117 -0.0052  0.0487  0.0011 -0.0128 8 0.40 0.38 0.13

 (0.0042)  (0.0048)  (0.0046)  (0.0047)  (0.0039)  (0.0041)  (0.0042)

*** ** *** ***

12  0.0637 -0.0005  0.0117 -0.0063  0.0444  0.0030 -0.0126 8 0.37 0.35 0.12

 (0.0039)  (0.0045)  (0.0043)  (0.0044)  (0.0037)  (0.0038)  (0.0039)

*** *** *** ***

13  0.0649  0.0004  0.0095 -0.0060  0.0425  0.0034 -0.0125 8 0.38 0.36 0.12

 (0.0039)  (0.0044)  (0.0042)  (0.0042)  (0.0037)  (0.0037)  (0.0038)

*** ** *** ***

14  0.0681  0.0009  0.0088 -0.0066  0.0428  0.0032 -0.0124 8 0.39 0.37 0.12

 (0.0039)  (0.0044)  (0.0042)  (0.0043)  (0.0037)  (0.0038)  (0.0039)

*** ** *** ***

15  0.0706  0.0012  0.0077 -0.0076  0.0437  0.0023 -0.0123 8 0.40 0.38 0.12

 (0.0039)  (0.0045)  (0.0043)  (0.0044)  (0.0038)  (0.0039)  (0.0040)

*** * * *** ***

16  0.0728  0.0016  0.0077 -0.0076  0.0437 -0.0010 -0.0120 8 0.38 0.36 0.13

 (0.0041)  (0.0046)  (0.0045)  (0.0046)  (0.0039)  (0.0043)  (0.0041)

*** * * *** ***

17  0.0768  0.0024  0.0102 -0.0075  0.0430 -0.0037 -0.0116 8 0.32 0.30 0.13

 (0.0044)  (0.0050)  (0.0048)  (0.0049)  (0.0043)  (0.0048)  (0.0044)

*** ** *** ***

18  0.0501 -0.0019  0.0122 -0.0074  0.0206 -0.0007 -0.0148 7 0.27 0.25 0.14

 (0.0044)  (0.0049)  (0.0048)  (0.0048)  (0.0041)  (0.0046)  (0.0043)

*** * *** ***

19  0.0704  0.0017  0.0149 -0.0075  0.0382  0.0012 -0.0128 8 0.26 0.23 0.12

 (0.0044)  (0.0049)  (0.0047)  (0.0048)  (0.0043)  (0.0048)  (0.0043)

*** *** *** ***

20  0.0555  0.0030  0.0136 -0.0092  0.0327  0.0041 -0.0141 8 0.22 0.20 0.10

 (0.0036)  (0.0039)  (0.0038)  (0.0039)  (0.0035)  (0.0037)  (0.0034)

*** *** ** *** ***

21  0.0506  0.0032  0.0088 -0.0103  0.0291  0.0002 -0.0143 8 0.19 0.16 0.08

 (0.0033)  (0.0035)  (0.0034)  (0.0035)  (0.0031)  (0.0034)  (0.0031)

*** ** *** *** ***

22  0.0490  0.0029  0.0078 -0.0101  0.0272  0.0036 -0.0140 8 0.19 0.16 0.07

 (0.0031)  (0.0033)  (0.0032)  (0.0033)  (0.0030)  (0.0031)  (0.0029)

*** ** *** *** ***

23  0.0476  0.0043  0.0073 -0.0102  0.0263  0.0113 -0.0154 8 0.17 0.14 0.08

 (0.0032)  (0.0034)  (0.0033)  (0.0034)  (0.0032)  (0.0034)  (0.0030)

*** ** *** *** *** ***

24  0.0537  0.0033  0.0083 -0.0140  0.0334 -0.0044 -0.0228 8 0.22 0.20 0.14

 (0.0045)  (0.0049)  (0.0047)  (0.0049)  (0.0045)  (0.0049)  (0.0043)

*** * *** *** ***
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