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Abstract

In my thesis, I introduce a state-space representation of the present-value model to

analyze predictability in the aggregated German stock market. The proposed model

uses the information contained in annualized price-dividend ratios and realized div-

idend growth rates and defines relations to the latent state variables in the form of

expected returns and expected dividend growth rates. I apply the Kalman Filter to

generate estimates of the model parameters using a conditional Maximum Likeli-

hood Estimation. The corresponding optimization problem is solved via an adjusted

version of the Simulated Annealing algorithm. The final model produces good esti-

mates for dividend-growth rates, while it lacks quality in terms of the estimation of

stock returns.
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1 Introduction

The existence of stock return predictability has been of major interest over decades.

If a certain grade of predictability in the return of stocks would be present, it could

be used to generate portfolio strategies that could gain abnormal returns for the in-

vestors. Furthermore, the research in stock predictability goes hand in hand with the

search of factors that affect stock prices in the first place. Therefore, the studies of

stock prediction also build up and enhance the understanding of important relations

and drivers of stock returns.

Various approaches have been introduced to identify predictability. The results dif-

fer substantially from paper to paper. While some publications argue that there is

no predictability at all, others find significant evidence for it. Fundamentals such

as dividends appear to explain a big part of the variation of stock returns. More

specifically, there seems to be a relation between the price-dividend ratio, expected

returns and expected dividend growth. This relation was investigated in the present-

value model of Campbell and Shiller (1988b) and fostered the research in stock and

dividend predictability.

The state-space model of Van Binsbergen and Koijen (2010) builds up on Camp-

bell’s present-value identity and combines it with latent variables that follow sim-

ple time-series processes. In their concept, Binsbergen and Koijen make use of

the Kalman filter and obtain good estimates via a maximum likelihood estimation.

They find time variation and persistence in the expected returns and dividend growth

rates, which contradicts the popular assumptions of constant expected returns. They

achieve remarkable results considering the quality of the fit and of the out-of-sample

predictions in the US stock market.

In my thesis, I replicate and derive the state-space representation of the present-

value model according to Van Binsbergen and Koijen (2010) and apply it on the

aggregated German Stock market. I introduce the Kalman Filter and subsequently
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estimate the model parameters via an adjusted version of the Simulated Anneal-

ing algorithm. This is done in order to see if the patterns of time variation and

persistence in expected stock returns can also be found in the German stock mar-

ket.I compare the results to the reported findings on the aggregated American stock

market. Ultimately, I compare the model’s capability to estimate stock returns and

dividend growth rates in comparison to other common methods.
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2 Literature Review

Stock predictability has been an intensively researched and controversial topic for

a long time. During the last century, many famous researchers discussed multiple

methods, and many doubted the sheer existence of stock predictability. A classic

view assumes stock returns to be close to be unpredictable. Expected returns and

stock market volatility are not supposed to vary much over time (Cochrane, 2009a).

This classical view is closely linked to guiding principles like the random-walk the-

ory, the capital asset pricing model (CAPM) and the efficient market hypothesis

(Fama, 1965), which suggest that stock prices reflect all available information and

follow an unforeseeable path. Consequently, expected stocks returns were often

assumed to be constant when formulating asset pricing models. Ultimately, these

theories were initially seen as incompatible with the presence of return predictabil-

ity.

However, many of these initial beliefs were scrutinized through new empirical re-

search. Researchers found traces of predictability in stock returns, at least in the

long-term, and the volatility was considered as changing over time. A broader spec-

trum of literature reports evidence of predictability in stock returns while not neces-

sarily contradicting the classic financial theories. Often, the researchers instead try

to combine them with their own views and empirical results. Fama (1991) claims in

his review of previous work on market efficiency and predictability that expected re-

turns are time-varying, persistent, and show signs of predictability. However, Fama

also states that his findings are no conclusive evidence against efficient markets.

Markets remain to be reasonably competitive and therefore, also quite efficient to

some extent.

Subsequent research produced several equilibrium models that assume market effi-

ciency while allowing for time-variation in expected stock returns. These models

capture for example the effect of varying risk-aversion (Campbell and Cochrane,

1999), aggregate consumption risk (Bansal and Yaron, 2004) or variation in beliefs
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on expected returns (Timmermann, 1993). De Cesari and Huang-Meier (2015) an-

alyze the impact of private information and find a clear relation between returns

and dividend growth rates. They conclude that managers actively use the informa-

tion on stock prices to steer their dividend payout policies. It should be noted, that

asset return-predictability is not necessarily a sign of inefficient markets anymore,

and nowadays, a significant part of the literature reports time variation in expected

returns as given.

In the 1980s, more and more empirical publications revealed the predictability

of stock returns via financial ratios. Measures like the price-earning ratio, long-

term-short-term bond-yield-spreads, macroeconomic variables or corporate deci-

sion variables showed forecasting abilities and received much interest in the field.

Bollerslev et al. (2014) tries to predict aggregated stock market returns via the vari-

ance risk premium, defined as the difference between the risk-neutral and statistical

expectations of the future return variance. He finds significant evidence of pre-

dictability using this measure.

One of these financial ratios, the price-dividend ratio, became a popular research

subject in the literature (Ball, 1978; Campbell and Shiller, 1988a; Lewellen, 2004).

The increasing interest in the interdependence between the dividend-price ratio and

expected returns led other scientists to investigate the relation between these vari-

ables further. The discussion followed the basic intuition behind the renowned

Gordon Growth Model or Dividend-Discount Model (Gordon, 1959). The model

assumes that asset prices are worth the sum of all their future discounted dividends.

This implies that stock prices move according to changes in expected future cash

flows. If a stock is undervalued or, in other words, its price is relatively low com-

pared to future dividends, the price is expected to rise, generating higher returns

subsequently. Multiple publications apply the price-dividend ratio and prove its

usefulness. Several practitioners found significant evidence of return predictability

in simple uni-variate dividend-price ratio regression models (Campbell and Shiller,
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1988b; Cochrane, 1992; Fama and French, 1988). Asimakopoulos et al. (2017) also

find a significant forecasting capability of the dividend-price ratio for future divi-

dend growth rates. While most research aggregates data on an annual base because

of payout-policy and seasonality issues, they analyze monthly dividend data instead

of annual observations and argue that time aggregation erases important informa-

tion about the data. Stambaugh (1999) examines the power of predictive regression

models in detail. In his paper, he also makes use of the dividend-price ratio to

forecast future excess returns and further creates a trading strategy for investors

based on it. Ang and Bekaert (2006) further investigate the predictive power of the

dividend-yield and run several regression across multiple markets. While the divi-

dend yield as a sole regressor shows no capability of predicting excess returns, they

find that adding a second variable in the form of short-term interest rates results in a

bi-variate regression with significant predictive power. In the article of Wachter and

Warusawitharana (2015), the investors are even assumed to doubt predictability of

returns, but change their mind when they get confronted with the predictive power

of the price-dividend ratio.

Building upon the price-dividend ratio and the return-identity, John Y. Campbell and

Robert J. Shiller introduced the so-called present-value model that attempts to cap-

ture the dynamic relations between the stock price movements, the dividend-price

ratio, expected dividend growth rates and discount rates (1988a). An abstracted

version as mentioned in Cochrane (2009a) can be presented as follows:

pt − dt = a+ E
∞∑
j=1

cj−1(∆dt+j − rt+j)

where pt − dt is the log-price-dividend ration, ∆dt the log-dividend growth, rt the

log-return, and a and c are constant terms (a more detailed description is provided

in the section 5). It implies that high prices must, mechanically, come from high

future dividend growth or low future returns. Considering the decomposed variance

of the price-dividend ratio, the ratio itself can only vary if either returns or dividend
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growth are forecastable Cochrane (2009a). This approach, in particular, became the

foundation of several publications in recent years. According to this identity, the

analysis of general predictability in stock markets can be transformed into the ques-

tion if dividend growth or returns are predictable. For example, Cochrane (2007,

2011) analyzes the movement of the price-dividend ratio and finds evidence for

return-predictability, but not necessarily for dividend-growth predictability. Ang

and Bekaert (2006) also employ a present-value model in their paper. They find that

discount rates and short-term interest rates explain variation in the dividend-price

ratio.

The literature suggests many different settings for the present-value model with

varying assumptions, definitions and estimation methods. E.g. Pástor and Veronesi

(2003; 2006) define the price-dividend ratio as an infinite sum or indefinite inte-

gral of quadratic terms. Bekaert and Grenadier (2001) and Ang and Liu (2004)

estimate their model parameters via the generalized methods of moments. Lettau

and Van Nieuwerburgh (2007) define a linearized present-value model and derive

their parameters from reduced-form estimators. Thereby, they propose the critical

assumption that expected growth rates and expected returns are equally persistent.

Jules van Binsbergen and Ralph Koijen’s approach (2010) makes use of the price-

dividend ratio and the present-value equation in the form of a state-space model.

The state-space model comes along with the introduction of latent variables. Latent

variables represent variables, which cannot be observed directly but can be derived

via predefined relations to observed measurements. In their paper, these inferred

variables are represented by expected returns and expected dividend growth rates,

which are related to the price-dividend ratio, realized returns and realized dividend

growth. The latent variables in a state space model can be estimated via the Kalman

filter (Hamilton, 1994), which has been successfully applied in multiple return pre-

diction models (see also Brandt and Kang (2004), Pástor and Stambaugh (2009),

and Rytchkov (2012)). Koijen and Binsbergen further consider two different rein-
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vestment strategies for the dividend payouts of the analyzed stocks that should have

a considerable effect on their estimates and results. They consider dividends that

are reinvested at the risk-free rate and dividends reinvested in the stock market. The

impact of different reinvestment strategies in combination with the price-dividend

ratio has previously been investigated by Chen (2009). They find time variation and

persistence in the expected returns and dividend growth rates, which contradicts the

popular assumptions of constant expected returns. They achieve remarkable results

considering the quality of the fit and the out-of-sample predictions in the US stock

market.

There are also other publications which work with state-space representations of

the present-value identity. For example, Piatti and Trojani (2017) also introduces

a state-space representation to model expected returns and dividends. In their ap-

proach, the model contains time-varying risk instead of the homoscedastic constant

risk as it was assumed in Binsbergen & Koijen’s paper. As a result, they find dif-

ferent outcomes in terms of the persistence in the latent variables, but also confirm

evidence of predictability in the stock market in the end. In a follow-up paper, Piatti

and Trojani (2019) develop an asymptotic testing method that further confirms these

findings.

However, there is also a range of literature that doubt the sheer existence of pre-

dictability. Also more recent publications such as the ones of Goyal & Welch (2003,

2008) or Yongok Choi and Park (2016) criticize the capability of return forecast-

ing models. Some of the research results of the corresponding models revealed

some flaws in the measures. Dividend growth rates were commonly seen as hard

to forecast, and the empirical findings of several papers (Fama and French (1988);

Lior Menzly (2004)) found the price-dividend ratio to be an inaccurate proxy for

expected dividend growth. Especially, the out-of-sample prediction quality was

critically reviewed in these papers.
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The literature also deals with the statistical problems that prediction models face.

A standard issue is parameter-instability. Changing conditions, no matter of which

nature, can have an impact and lead to time-varying coefficients that can represent a

significant problem in the specifications of prediction models. Further, the linearity

condition of the standard Kalman Filter used in state-space model parameter esti-

mation causes criticism. Also, the log-linear approximation used in the derivation

of the present-value model might lead to inaccurate results (Van Binsbergen and

Koijen (2011) address these problems and use an unscented Kalman Filter, which

can deal with non-linear equations).

To a large extent, prediction literature is based on North American stock data, but

there are also multiple publications that examine the existence of predictability in

other markets. The studies by Lund and Engsted (1996) and Ang and Bekaert (2006)

analyze the interdependence between returns and dividends in the Danish, German,

Swedish, UK and multiple other stock markets. When it comes to the present-value

model literature, I find most published papers concentrate on US stock market data

which is mainly provided by the database of the Center for Research in Security

Prices (Campbell and Shiller, 1988a; Cochrane, 2007; Koijen and Van Nieuwer-

burgh, 2011; Van Binsbergen and Koijen, 2010). There were only a few attempts

that apply the present-value state-space representation in other markets, which mo-

tivates the application on the German stock exchange.
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3 Theory & Research Approach

To detect predictability in the German stock market, I introduce the famous present-

value identity by Campbell and Shiller (1988a). According to this identity, varia-

tion in the price-dividend ratio implies forecast ability of either returns or dividend

growth rates. If the price/dividend ratio is high, either dividends must rise or prices

must decline to maintain the identity. Based on this concept, I construct a linear

system which imposes model specifications for expected dividend growth rates and

expected returns. Then, I present and motivate a state-space representation for the

derived system as done in Van Binsbergen and Koijen (2010). Based on this model,

I describe the Kalman Filter recursion, for which I provide an extensive derivation

in Appendix B. This filter set-up generates estimates for the state variables of the

model and further provides us with a likelihood-function for the model parameter

estimation. Ultimately, I present Simulated Annealing as an optimization algorithm

and apply it on the log-likelihood of the system. In this way, I obtain optimal param-

eters for the system which again provides me with forecasts for returns and dividend

growth rates.

Building upon this approach, I evaluate the parameter estimates and analyze the

goodness of fit to the CDAX time series. To examine the results, I calculate R-

squared measures and compare them to simple benchmark models. Finally, I con-

duct hypothesis tests concerning the predictability in the German Stock market and

discuss the validity of my results.

All computations are executed via an extensive R-script which is provided in ad-

dition to this thesis. To ensure that the model-specifications and the R-code are

correct, I applied the algorithm on the same time period of the CRSP-data set as

done in the paper of Van Binsbergen and Koijen (2010) (see also Section 4). There

are small deviations in my summary statistics of CRSP time series compared to the

ones reported in the paper. However, the resulting parameter estimates (with one

exception, see Appendix D), plots and R-squared values are basically equal to the
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ones of Binsbergen and Koijen, which is why I can assume the correctness of my

model and the corresponding computations.

4 Data

In my paper, I want to model and analyze the stock predictability of German stocks

on the Frankfurt Stock Exchange using the present-value model. For the approach

I need to obtain cum- and ex-dividend price-levels of a representative index. A

prominent representative index of the German stock market is given by the DAX.

However, the DAX only gives a somewhat limited insight of stock and dividend

behavior, since it only includes the 30 largest companies on the exchange. We are

looking for a more general result, which should consist of all types of traded stock

on the market. A good representative of these stocks is the CDAX. It is a composite

stock market index that contains all shares which are traded on the Frankfurt Stock

Exchange and fulfill the requirements of General Standard and Prime Standard1.

Via the application of the present-value identity, I further investigate the relation-

ship between the price-dividend ratio, expected stock returns and expected dividend

growth. To obtain information about the dividends, it is therefore essential to collect

the cum-dividend and ex-dividend prices of the CDAX. These are given by the per-

formance index (total return index), which incorporates changes in the price-levels

as well as dividend-returns, and the stock price index, which excludes dividend

returns. I obtain data for the longest available time period from the Bloomberg Ter-

minal. Starting in December 1987 and ending in December 2018, I collect a sample

of 372 monthly observations.

The analysis of dividend payouts over time confronts us with a common challenge

in financial time series analysis. Dividend payouts are heavily centered in certain

months of the year and reveal a strong seasonal component which could distort our

1These are the two main segments including specific transparency requirements at the Frankfurt
Stock Exchange.
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Table 1: Average Dividend Payouts of the CDAX during the Year (1989-2018)

Month Average Dividend Payout

January 0.470
February 0.187
March 0.112
April 1.884
May 4.018
June 0.634
July 0.315
August 0.053
September 0.030
October 0.033
November 0.033
December 0.121

results when analyzing dividend-growth predictability. We can visualize this issue

by calculating the monthly average of the dividend payouts, see Table 1. Most of

the companies listed on the CDAX pay out their dividends in May.

We can avoid the monthly seasonality in the data by aggregating our data set to

annual observations. In terms of the dividends, this could be done by simply sum-

ming up the monthly values as in Ang and Bekaert (2006). However, by doing

so, we neglect the time value of money. For this reason, we should consider rein-

vestment strategies for our dividends. One strategy, which is often referred to as

Cash-Reinvestment, reinvests the received dividends at the risk-free asset. For this

purpose, we need to obtain a low-risk bond comparable to the 30-day treasury bills

on the US stock market. Unfortunately, the German Government has not been offer-

ing short-term bonds over the whole observed time horizon. Therefore, I consider

the 10-year German Government Bond yield (Bund Yield) as an adequate proxy for

the risk-free rate. Since the monthly quotes of the yield are commonly noted on

an annual base, I need to adjust the rates by multiplying the quotes to the power of

1/12 to obtain a monthly rate.
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Having obtained the data, we can subsequently calculate the basic measurements for

our model. We define Rt as the cum-dividend and Rex
t as the ex-dividend returns of

the CDAX as following:

Rt =
Pt +Dt

Pt−1

, (1)

Rex
t =

Pt
Pt−1

(2)

where Pt denotes the ex-dividend CDAX stock price and Dt denotes the paid out

dividends at time t. The annualized version of these returns is given by simply

compounding the twelve subsequent monthly returns:

R∗t = Rt ·Rt−1 · ... ·Rt−11

We can obtain the monthly dividends by deducting the ex-dividend return from the

cum-dividend return and multiplying the result by the ex-dividend price:

Dt = (Rt −Rex
t ) ∗ Pt−1

For the so-called cash-reinvestment, we denote rft as our risk-free rate in the form

of the monthly Bund-yield. To achieve annualized dividend values, I consider the

method mentioned Koijen and Van Nieuwerburgh (2011): Each monthly dividend

is compounded with every single monthly risk-free rate rft until the end of the year.

Consequentially, the annualized compounded dividend in month t is given n by:

D∗t = Dt−11 · (1 + rft−11) · (1 + rft−10) · ... · (1 + rft−1)

+Dt−10 · (1 + rft−10) · (1 + rft−9) · ... · (1 + rft−1)

...

+Dt−11 · (1 + rft−1)

+Dt
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Using these return and dividend definitions, the price-dividend ratio can be com-

puted as:

PDt =
Pt
D∗t

The yearly dividend growth is simply given by:

∆D∗t =
D∗t
D∗t−12

.

Since we are working in a log-linearized environment (as will be explained in Sec-

tion 5.1), we compute the logarithms of our measures Rt+1, Dt+1/Dt and PDt:

rt+1 = ln(R∗t+1) (3)

∆dt+1 = ln(∆D∗t ) (4)

pdt = ln(PDt). (5)

Note, that throughout my thesis I use lower case letters to denote the

log-representations of the variables. For the computations in Section 5 and 6, I

consider the annualized returns and dividend growth rates recorded in December of

each year. In this way, we obtain a set of 30 annual observations considering the

period from January to December in each year. The resulting summary statistics of

the data can be seen in Table 2.

Table 2: Annual Summary Statistics in the case of Cash-reinvested Dividends

(CDAX, 1990-2018)

∆dt rt pdt

Mean 0.0622 0.0586 3.7411
Median 0.0529 0.1073 3.7203
Standard Deviation 0.1801 0.2316 0.3213
Maximum 0.5800 0.3685 4.4261
Minimum -0.3187 -0.5548 2.9935
No. Observations 30 30 30

With only 30 observations, the size of my primary data set is quite limited, which

might have a negative impact on the validity of the results. Therefore, I create

a second data set in which I record observations semi-annually. The dividends re-
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main annualized, while the formulas of the dividend growth and returns are adjusted

according to the method explained in Ang and Bekaert (2006). In this case, we com-

pute the returns, dividend growth ad price-dividend ratio using the equations:

Rsemi
t = Rt ·Rt−1 · ... ·Rt−5 (6)

∆Dsemi
t =

D∗t
D∗t−6

(7)

PDsemi
t =

Pt
D∗t

(8)

The corresponding summary statistics are shown in Table 3. While the mean and

median of dividend growth and returns are as expected smaller for the semi-annual

series, the statistics of the price-dividend ratio are very similar.

Table 3: Semi-Annual Summary Statistics in the case of Cash-reinvested

Dividends (CDAX, 1989-2018)

∆dt rt pdt

Mean 0.0311 0.0293 3.7450
Median 0.0169 0.0582 3.7220
Standard Deviation 0.1134 0.1463 0.3075
Maximum 0.3856 0.2933 4.4261
Minimum -0.2000 -0.3925 2.9935
No. Observations 59 59 59

Further, I obtain cum- and ex-dividend returns and price levels for the aggregated

American stock market provided by the CRSP database from 1946–2018. This data

set is used in multiple publications that apply the Present-Value model in State-

Space form, including the papers of Van Binsbergen and Koijen (2010) and Piatti

and Trojani (2017). To validate the functionality of my model I have compared my

computations to the ones of Van Binsbergen and Koijen. For each of the following

computations, I have attached the results based on the CRSP data set in Appendix

D.
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5 Methodology

To construct the model as presented by Van Binsbergen and Koijen (2010), I start

by deriving the present-value identity. Then, I set up up the state-space representa-

tion and derive the Kalman Filter recursion. Based on the filtering process, I obtain

a likelihood-function which is subsequently maximized by the introduced Simu-

lated Annealing Algorithm. Ultimately, I obtain estimates for the parameters of our

model, which are going to be analyzed in Section 6. For simplicity, I denote annu-

alized dividends D∗t as Dt and the compounded annualized returns R∗t as Rt in the

following derivation, where t refers to the year of the observation (or a six-month

period in terms of the semi-annual data set).

5.1 The Present-Value Identity

The model used in my thesis is based on the present-value identity by Campbell

and Shiller (1988b). In this section, I derive the log-linearized return relation of the

price-dividend ratio and subsequently obtain the present-value equation, which is

essential for my approach. For transparency, I only describe the main steps of the

derivation while a more detailed derivation can be found in Appendix A.

I start by defining a simple return-identity using the cum-dividend return definition

1:

1 = R−1
t+1 ·Rt+1 = R−1

t+1 ·
Pt+1 +Dt+1

Pt

Multiplying by Pt/Dt results in

Pt
Dt

= R−1
t+1 ·

Pt+1 +Dt+1

Pt
· Pt
Dt

= R−1
t+1 ·

(
1 +

Pt+1

Dt

)
· Dt+1

Dt
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We can now take logs on both sides to obtain a log-linearized

expression of the price-dividend ratio pdt. By using the property

Pt/Dt = exp [ln(Pt/Dt)] = exp(pdt) and inserting the notations 3–5 we obtain:

pdt = −rt+1 + ∆dt+1 + ln [1 + exp(pdt+1)]

The last term, ln [1 + exp(pdt+1)], can be treated with a first-order Taylor Expansion

(see equation A2) around a point pd = E[pdt] (typically the historical mean) to get

the following log-linearized approximation of the price-dividend ratio:

pdt ' κ+ ρpdt+1 + ∆dt+1 − rt+1

where κ and rho are defined by

κ = ln
[
1 + exp(pd)

]
− ρpd and ρ =

exp(pd)

exp(1 + pd)
(9)

The use of this linearization might contain an approximation error which could lead

to biased results in the ultimate present-value model (further discussed in the valid-

ity check in Section 6.4). However, the interpretation of this equation corresponds

to common economic intuition: Given a fixed price-dividend ratio at time t, a higher

dividend growth rate at t+ 1 implies higher future dividend payments, which again

have a positive effect on future returns. If the price at time t is high and correspond-

ingly the price-dividend ratio is high, we expect the future returns to be lower. On

the other hand, a higher price-dividend ratio at t+ 1 should come along with higher

returns in this period.

We can iterate this equation forward in time by gradually substituting for pdt+i:

pdt = κ+ ρpdt+1 + ∆dt+1 − rt+1

= κ+ ρ(κ+ ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

= κ+ ρκ+ ρ2pdt+2 + (∆dt+1 − rt+1) + ρ(∆dt+2 − rt+2)

= ...
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=
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

Since ρ < 1, by definition 9, we can assume that:

ρ∞pd∞ = lim
j→∞

ρjpdj = 0

If we additionally consider the properties of an infinite geometric series (see equa-

tion A3), we can can rewrite this equation:

pdt =
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j)

Now, we can take expectations conditional upon time to define a relation between

price-dividend ratio, expected returns and expected dividend growth. Because this

equation holds ex-ante and ex-post, the expectation operator can be added on the

right-hand side:

pdt = Et

[
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j)

]

=
κ

1− ρ
+
∞∑
j=1

ρj−1Et [∆dt+j − rt+j]

Before we continue, we have to define the time series properties of expected returns

and expected dividend growth rates. For the sake of the derivation, we follow the

common assumption, that both variables follow AR(1)-processes (see also Pástor

and Stambaugh (2009) or Van Binsbergen and Koijen (2010)). Consequentially, we

define:

Et[rt+1] = µt+1 = δ0 + δ1(µt − δ0) + εµt+1 (10)

Et[∆dt+1] = gt+1 = γ0 + γ1(gt − γ0) + εgt+1 (11)
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for expected returns and expected dividend-growth, where the error terms εµt+1 and

εgt+1 are assumed to have zero mean. We can now substitute µt and gt into the

equation:

pdt =
κ

1− ρ
+
∞∑
j=1

ρj−1Et [gt+j−1 − µt+j−1]

=
κ

1− ρ
+
∞∑
j=0

ρjEt [gt+j − µt+j]

and make use of the AR(1)-properties of the expected returns and expected dividend

growth (see equation A4):

pdt =
κ

1− ρ
+
∞∑
j=0

ρjEt [gt+j − µt+j]

=
κ

1− ρ
+
∞∑
j=0

ρj [γ0 + γ1(gt+j−1 − γ0)− δ0 − δ1(µt+j−1 − δ0)]

Note that the error-terms of the AR-processes have zero mean and can be omit-

ted after taking expectations. We can now substitute for gt and µt and iterate the

two terms forward considering the following property of the AR-process (see also

equation A4):

⇔ E[µt+j] = δ0 + δj1(µt − δ0)

The same can be applied to the AR-process of the expected dividend growth.

Thereby we reach:

pdt =
κ

1− ρ
+
∞∑
j=0

ρj [γ0 + γ1(gt+j−1 − γ0)− δ0 − δ1(µt+j−1 − δ0)]

=
κ

1− ρ
+
∞∑
j=0

ρj
[
γ0 + γj1(gt − γ0)− δ0 − δj1(µt − δ0)

]
=

κ

1− ρ
+
∞∑
j=0

ρj(γ0 − δ0) +
∞∑
j=0

ρj
[
γj1(gt − γ0)− δj1(µt − δ0)

]
We can now make use of the properties of infinite geometric series again and reach:

pdt =
κ

1− ρ
+
γ0 − δ0

1− ρ
+
gt − γ0

1− ργ1

− µt − δ0

1− ρδ1

.
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From here we can form the final present-value equation which links the price-

dividend ratio, the expected returns and the expected dividend growth:

pdt = A−B1(µt − δ0) +B2(gt − γ0) (12)

with

A =
κ

1− ρ
+
γ0 − δ0

1− ρ
(13)

B1 =
1

1− ρδ1

(14)

B2 =
1

1− ργ1

(15)

We can see that the log price-dividend ration can be expressed as a linear combina-

tion of the expected returns (µt) and the expected dividend growth rates (gt). The

impact of these two latent variables on the price-dividend ratio depends on their

relative persistence represented by the two constants δ1 and γ1.

5.2 The Present-Value Model

Having derived the identity, we can sum up the base for the present-value model.

First, let’s recall that expected dividend growth rates (gt) and expected stock returns

(µt) are following AR(1) processes:

µt+1 = δ0 + δ1(µt − δ0) + εµt+1

gt+1 = γ0 + γ1(gt − γ0) + εgt+1

where
µt = Et[rt+1]

gt = Et[∆dt+1]
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The dividend growth at t + 1 can be modeled as its expected value plus an error

term. Thus, using the latter expression, we obtain:

∆dt+1 = gt + εdt+1

Lastly, the present-value identity is given by

pdt = A−B1(µt − δ0) +B2(gt − γ0)

with

A =
κ

1− ρ
+
γ0 − δ0

1− ρ
(16)

B1 =
1

1− ρδ1

(17)

B2 =
1

1− ργ1

(18)

Through these equations, we obtain a dynamic linear system. The three defined

processes for expected returns, expected dividend growth rates and realized growth

rates contain three error-terms which can be inter-correlated: εµt+1, ε
g
t+1 and εdt+1.

We assume that each of these is independent and identically distributed (i.i.d.) over

time. They have zero mean and the following covariance matrix:

Σ = var



εgt+1

εµt+1

εdt+1


 =


σ2
g σgµ σgd

σgµ σ2
µ σµd

σgd σµd σ2
d

 .

This set of equations provides us with the base for a state-space representation of

the present-value model. However, we can further transform the system to obtain a

more convenient form of the desired model. Therefore, I define:

µ̂t = µt − δ0

ĝt = gt − γ0
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as the de-meaned state variables following the corresponding AR(1)-process:

µ̂t+1 = δ1µ̂t + εµt+1 (19)

ĝt+1 = γ1ĝt + εgt+1 (20)

These two expressions represent the so-called transition equations of the latent vari-

ables (also called state-equations, as described in Section 5.3). Consequentially,

dividend growth and price-dividend ratio are given by:

∆dt+1 = γ0 + ĝt + εdt+1

pdt = A−B1µ̂t +B2ĝt

with A, B1, and B2 as defined in the equations 13–15. Since there is no error term

in our price-dividend ratio equation, we can substitute it in one of the transition

equations to simplify the model. We start by rearranging:

pdt = A−B1µ̂t +B2ĝt

⇔ µ̂t =
1

B1

(A+B2ĝt − pdt)

⇔ µ̂t+1 =
1

B1

(A+B2ĝt+1 − pdt+1)

Substituting these terms into the AR(1)-equation of the expected returns (equation

19) results in:

µ̂t+1 = δ1µ̂t + εµt+1

⇔ 1

B1

(A+B2ĝt+1 − pdt+1) = δ1
1

B1

(A+B2ĝt − pdt) + εµt+1

⇔ A+B2ĝt+1 − pdt+1 = δ1(A+B2ĝt − pdt) +B1ε
µ
t+1

⇔ pdt+1 = −δ1(A+B2ĝt − pdt)−B1ε
µ
t+1 + A+B2ĝt+1

⇔ pdt+1 = −δ1(A+B2ĝt − pdt)−B1ε
µ
t+1 + A+B2(γ1ĝt + εgt+1)

⇔ pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1
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Ultimately, this leads to the final system for the present-value model under cash-

reinvested dividends:

ĝt+1 = γ1ĝt + εgt+1, (21)

∆dt+1 = γ0 + ĝt + εdt+1, (22)

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1. (23)

This leaves us with a vector of parameters that needs estimating:

Θ = (γ0, δ0, γ1, δ1, σg, σµ, σd, ρgµ, ρgd, ρµd). (24)

The process of estimation within a state-space representation is the core of the fol-

lowing sections.

5.3 State Space Models for Time Series Analysis

Introduced in a pioneering paper by Kalman (1960), State Space models (some-

times also called dynamic linear models) can model dynamic systems in which un-

observed and observed variables evolve over time and are causally connected with

each other. Even though this approach was initially invented for the field of control-

engineering, it turned out to be very useful for time series analysis in economics.

In this section, I will present the basic form of a linear Gaussian State Space Model

as described in Hamilton (1994) or Durbin and Koopman (2012) and relate it to the

present-value model.

The state space is a Euclidean Space in which the unobserved variables or states

can be described via a vector within this space. In its basic form, we can form the

so-called state equation as a vector AR-process:

Xt+1 = FXt + ΓεXt+1, with εXt+1 ∼ N (0,Σ) (25)

where Xt represents the r × 1 state-vector, F is a r × r matrix, and Γ is in our case

a subset of the Identity matrix and therefore also called selection matrix. The error
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terms contained in εXt+1 are assumed to be independent and identically distributed

(i.i.d.) over time (serial independence), have zero mean and a constant covariance

matrix Σ.

We cannot model the state in a classic manner like in a simple least squares regres-

sion since the states are assumed to be unobservable. However, in the State Space

approach, we introduce a vector of the observable variables Yt which is in itself a

linear transformed version of the state. Based on these measurements, we can infer

the values of the state variables, which are often called latent variables because of

this attribute. It follows the basic form of an observation (or measurement) equa-

tion:

Yt = C ′zt +H ′Xt (26)

where Yt and zt are vectors of the dimension (n×1) and (k×1). C ′ andH represent

predetermined matrices of the dimensions (n × k) and (n × r). C ′zt is the p ×m

observation matrix. It can include any external variables or previous values of Yt

that have an impact on the measurement.

5.3.1 The Present-Value State-Space Model

State space models can generate estimates for unobservable variables based on their

relation to observable variables. I am applying this approach on the dynamics be-

tween the unobserved state variables, in form of expected dividend growth-rates gt

and expected returns µt, and the causally related measurements of realized divi-

dend growth rates ∆dt and log-price-dividend ratios pdt as defined in the equations

21–23. The corresponding state-space model is given by:

ĝt+1 = γ1ĝt + εgt+1

∆dt+1 = γ0 + ĝt + εdt+1

pdt+1 = (1− δ1)A+B2(γ1 − δ1)ĝt + δ1pdt −B1ε
µ
t+1 +B2ε

g
t+1
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We can reformulate the model in a standardized State-Space form by defining:

Xt+1 = FXt + ΓεXt+1

as our state equation with the state vector:

Xt =



ĝt−1

εdt

εgt

εµt


and

F =



γ1 0 1 0

0 0 0 0

0 0 0 0

0 0 0 0


,Γ =



0 0 0

1 0 0

0 1 0

0 0 1


The vector of the error terms is given by:

εXt+1 =


εdt+1

εgt+1

εµt+1


which is assumed to be serial independent over time with zero-means and a covari-

ance matrix:

Σ = var



εgt+1

εµt+1

εdt+1


 =


σ2
d σdg σdµ

σdg σ2
g σgµ

σdµ σgµ σ2
µ

 .

The vector for the observed measurements is given by Yt = (∆dt, pdt), and we

can define the observation equation based on the present value model under cash-

reinvested dividends as following:

Yt = M0 +M1Yt−1 +M2Xt
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where

M0 =

 γ0

(1− δ1)A

 ,M1 =

0 0

0 δ1


and M2 =

 1 1 0 0

B2(γ1 − δ1) 0 B2 −B1

 .
Note that the product M0 + M1Yt−1 is the representative term for the observation

matrix C ′zt in equation 26.

5.4 The Kalman Filter

In time series analysis filtering describes the process of treating data by removing

unwanted components such as noise. In finance, one of the most applied filtering

algorithms is the Kalman Filter, which is set up on the base of a state-space model.

It proofed to be very useful for noisy observations as we often find them in many

economic time series systems. At each step in time, the Kalman filter is able to

generate optimal estimates for the unobservable state parameters of a system (in

our case the expected dividend growth). Further, it can compute predictions of the

state variables. The generated estimates are recursively adjusted at each step in

time based on the incoming observable measurements. In this section, I sum up the

Kalman-filtering process for the derived state-space model under cash-reinvested

dividends. A detailed derivation of each step in the process including the made

assumptions can be found in Appendix B.

The Kalman filter loops through the observation set and generate estimates at each

time step according to the relations defined in the State-Space model. Before the

start of the recursion, we need to define an initial estimate of the state vector Xt

and its mean squared error (MSE) Pt. There are several ways to determine these

values, which are not based on any observations. If the applicant of the model has

a clue what the actual value of the state is, he or she could make an educated guess

as a starting value. However, the more general approach, which we will apply,
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is to assume that the initial values are given by the unconditional mean and the

unconditional covariance matrix of the state. For our model, the initial state is given

by:

X0|0 = E[X1] = E[Xt] = 0rx1 (27)

and the corresponding covariance matrix is:

P0|0 = E[(Xt − E[Xt])(Xt − E[Xt])
′] = E[XtX

′
t] (28)

which can be solved via the formula:

vec(P0|0) = [Ir2 − (F ⊗ F )]−1vec(ΓΣΓ′) (29)

where (F ⊗ F ) denotes the Kronecker product (see Appendix C). Having obtained

the initial values, we can start the Kalman Filter recursion. The first step is to

generate a forecast of the state at time t based on its previous updated version at

time t − 1 (on the first recursion, this version is given by X0|0). Based on the

definition of the state-equation, the forecast and the corresponding MSE are given

by:

X̂t|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + ΓΣΓ′

In the next step, we compute a forecast of the measurement Yt based on X̂t+1|t and

then compare it to the actual value of Yt by calculating the corresponding forecasting

error ηt. The forecasts for the observations are then given by:

Ŷt|t−1 = M0 +M1Yt−1 +M2X̂t|t−1

The error is computed via:

ηt = Yt −M0 −M1Yt−1 −M2X̂t|t−1
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We can further define the MSE of ηt, which will be essential for the log-likelihood

function presented in section 5.4.1. It is denoted as St and is obtained by calculating:

St = E[(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′] = M2Pt|t−1M
′
2

Lastly, the last step of the recursion updates our estimates of the state and the cor-

responding covariance matrix according to the obtained forecasting error and the

so-called Kalman-Gain Matrix, which is defined as:

Kt = Pt|t−1M
′
2[M2Pt|t−1M

′
2]−1

Lastly, we compute the updated state-vector and its covariance matrix by:

X̂t|t = X̂t|t−1 +Ktηt

Pt|t = (I4 −KtM2)Pt|t−1.

If we re-substitute the terms

ΓεXt+1 = vt+1, with E[vtv
′
τ ] =

 Q = ΓΣΓ′ for t = τ

0 otherwise
,

C ′zt = M0 +M1Yt−1,

we end up with the same process as described in Van Binsbergen and Koijen (2010):

X0|0 = E[X0] = 0r

P0|0 = E[XtX
′
t]

Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + ΓΣΓ′

ηt = Yt −M0 −M1Yt−1 −M2Xt|t−1

St = M2Pt|t−1M
′
2

Kt = Pt|t−1M
′
2S
−1
t
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Xt|t = Xt|t−1 +Ktηt

Pt|t = (Ir −KtM2)Pt|t−1

where r describes the size of the state vector.

5.4.1 Maximum Likelihood Estimation of the Model Parameters

In Appendix B, we derive the forecasts X̂t|t−1 and Ŷt|t−1 in the sense of linear pro-

jections. They therefore represent optimal linear forecasts conditional on the in-

formation contained in the previous observations Υt−1 = Yt−1, ..., Y1 in any case.

Furthermore, the errors in our state-space model are assumed to be normally dis-

tributed, which makes it possible to make an even stronger statement. Under these

circumstance the forecasts of our Kalman Filter are optimal in the light of any func-

tion of (Υt−1). It also implies that Yt, conditional on Υt−1, is normally distributed

with the mean Ŷt+1|t and variance St:

Yt|zt,Υt−1 ∼ N(Ŷt+1|t, St)

Consequentially, the distribution can be described by the Gaussian density function:

fYt|Υt−1(∆dt, pdt) =
exp

[
−1

2
(Yt − Ŷt+1|t)

′S−1
t (Yt − Ŷt+1|t)

]
√

(2π)2|St|

=
exp

(
−1

2
η′tS

−1
t ηt

)√
(2π)2|St|

We can now easily derive the log-likelihood function:

lt = ln(fYt|zt,Υt−1(∆dt, pdt))

= ln

[
exp

(
−1

2
η′tS

−1
t ηt

)]
− ln

(√
(2π)2|St|

)
= −1

2
η′tS

−1
t ηt −

1

2
ln
(
(2π)2|St|

)
= −1

2

[
η′tS

−1
t ηt + ln(|St|)

]
− ln(2π)
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We can omit the last term and the constant factor since they will not affect the

optimal solution which maximizes the likelihood. Ultimately, we obtain the log-

likelihood function of the Kalman Filter:

lt = −η′tS−1
t ηt − ln(|St|)

We want to choose the set of parameters Θ (see definition 24) which maximizes

the likelihood over the whole series of T observations of Yt. Therefore, we aim for

maximization of the aggregated likelihood function, which is given by:

L = −
T∑
t=1

ln(|St|)−
T∑
t=1

η′tS
−1
t ηt

We subsequently try to maximize this equation via the Simulated Annealing algo-

rithm described in Section 5.6.

5.5 Estimation Restrictions

Before getting started with the optimization of the likelihood function, a few con-

straints regarding the values of the estimation parameters need to be imposed. First,

the Kalman filter comes along with an identity issue, if we do not place any restric-

tions on F,Q,C and M2. If the parameters of our state-space model are uniden-

tified, there is more than one set of parameter values that could result in the same

likelihood-values. Consequentially, we would not be able to find the optimal param-

eter set for our present-value model. This is why we predetermine the correlation

between the error terms for realized dividend growth and for the expected dividend

growth to be zero:

ρdg = 0

Thereby, we make sure that all the parameters in the covariance matrix of the error-

terms are identified.

Second, we need to set upper and lower boundaries for the rest of the parameters

to be estimated. These will make sure that the covariance matrices in the model
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stay positive definite and that the AR-process of the state variable is covariance

stationary (which is also essential for the derivation of the Kalman Filter). We

ensure stationarity by defining:

|γ1| < 1 and |δ1| < 1

In the case of the cash-reinvestment model the covariance matrix of the shocks stays

positive definite by constraining the standard deviations of the shocks:

σg, σµ, σd > 0

The correlation parameters are bound between -1 and 1:

−1 < ρgµ , ρµd < 1

5.6 Simulated Annealing

Having its origin in the field of thermodynamics (which will be visible in the naming

of the parameters), Simulated Annealing (SA) represents a numerical optimization

algorithm that proofed to be particularly useful when searching for the optimal pa-

rameters of complex models in economics. Depending on the properties and the

complexity of an optimization problem, other conventional algorithms sometimes

struggle to find a global maximum. Often, these implementations cannot distinguish

between local and global maxima, use too many calculation steps (and thus compu-

tation time), converge to infinite parameter values or get stuck and do not find any

solution at all. Furthermore, the choice of the right starting values often plays a role

in the quality of the results, which can, for itself, create another problem, which has

to be solved first.

SA can be superior to many other algorithms considering these aspects. SA searches

for the global maximum across the whole surface of the treated function. In the

process, it moves both uphill and downhill, not getting caught at a single local
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maximum. Because of this attribute, the algorithm is, to a large extent, independent

of the choice of starting values for the parameters. Further, SA does not have strict

requirements for the function. It can handle functions that have ridges or plateaus,

are not continuous or are not defined for specific parameter values.

We find some of these aspects in our optimization problem in the form of the max-

imization of the likelihood implied by the Kalman filter. The function shows holes

in the surface, it has restricted parameters bound by certain intervals (e.g. the corre-

lation parameters), and it is, in general, a high-dimensional rather complex problem

to solve. Therefore, SA represents a good choice to find optimal parameters for our

present value model. In this paper, I use a slightly altered version of the simulated

annealing algorithm in the spirit of the approach of William L. Goffee and Rogers

(1994) that builds upon the SA implementation by Corana et al. (1987). I describe

the algorithm concerning our likelihood maximization in more detail in section 5.6.

We start by defining L(Θ) as our likelihood function with the parameter vector Θ.

We predefine the initial objects of the Kalman Filter, X0 and P0, and collect the

time series of observations Yt. We further impose boundaries for the estimation

parameters to limit the surface the algorithm has to search through according to the

definitions in Section 5.5. Furthermore, SA requires the presetting of the annealing

parameters for the initialization. These parameters decide on the accuracy and the

speed of the computation. So, before starting the algorithm, we need to choose the

initial values of the parameter vector Θ0 and store the corresponding function value

for this set. We define an initial step vector V0, its adjustment vector C and an initial

temperature value T0. For the termination criterion, I set a threshold value ε and a

numberNε. Further, we need to set the numbersNS andNT , which limit the number

of function evaluations before the step vector is adjusted, the termination criteria is

controlled or the temperature is reduced. Ultimately, we need to set a factor rT for

the temperature reduction after every NT loops and define a lower bound for the

temperature as additional termination criteria.
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Having defined these objects, we can start the main loop of the algorithm. In the

first step, we set a new parameter vector Θ′ by randomly altering each element of

the initial vector via the equation:

θ′i = θi + r ∗ vi

where θ′i, θi, and vi are elements of the respective vectors Θ′, Θ, and V , and r is

a uniformly distributed random on the interval [−1, 1]. If the generated parameter

value lies outside the predefined boundaries, we repeat the previous step as long as

the new parameter is valid. In the next step, the corresponding new function value

L′(Θ′) is computed. If L′(Θ′) is larger than the previous value L(Θ), we accept the

new parameters and set Θ to Θ′ (the algorithm is moving “uphill” in the surface).

Further, if L′(Θ′) is larger than any other previously found function value, we record

the value and the parameter vector as our new optimum in Lopt(Θopt) and Θopt. On

the other hand, if L′(Θ′) is lower than L(Θ), we apply the so-called Metropolis

criteria to decide whether the new point is accepted or rejected. The criterion uses

the probability measure:

p = exp

(
L′ − L
T

)

and compares it to an uniformly distributed random number p′ on the interval [0, 1].

The parameter vector is accepted if p is larger than p′. If that is the case, the algo-

rithm moves “downhill” to the smaller function value and Θ becomes Θ′. Other-

wise, the new parameters are rejected. Looking at the equation for p, we can see

that two terms affect the probability of rejection for lower function values. First,

the larger the difference between the new and old function value, the more likely is

the rejection. Second, the lower the temperature value, the higher the probability of

rejection. This implies, that with every reduction of the temperature, the probability

of a rejection rises.
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After NS loops through this procedure, the step-vector V is adjusted so that in the

next NS loops fewer parameter moves will be accepted. The step-length elements

vi can be quite large in the beginning so that the SA algorithm can build up a rough

overview of the function surface. They should then gradually decrease to restrict the

search for a maximum on the most promising areas. Corana et al. (1987) introduce a

criterion for this purpose that reduces the number of accepted moves by about 50%.

It alters every element of V , and thereby the step length in the parameter alteration,

in the following way:

v′i = vi

(
1 + ci

ni/NS − 0.6

0.4

)
if

ni
NS

> 0.6

v′i =
vi

1 + ci
0.4−ni/NS

0.4

if
ni
NS

< 0.4

v′i = vi else

where ni is the number of alterations of the i’th parameter that led to acceptance

during the last NS evaluations. The use of the ratio ni/NS implies that if more than

60% of the points are accepted for θi, then the corresponding vi increases leading

to more rejections in the ongoing process. On the contrary, if the percentage is

less than 40% the element of V decreases leading to fewer rejections (for a given

temperature level). It is very useful to analyze the values inside the step-vector at

the end of an optimization run. The values are supposed to be very small at the end

of a cycle since this implies that the algorithm focused on a minor area and is not

jumping over considerable distances in the function’s surface.

After NT of these adjustments, the temperature T is reduced by the factor rT :

T ′ = rTT

As previously described, a lower temperature leads to more parameter rejections,

which makes downhill moves in the surface less likely. This leads to lower ni

values, which then leads to smaller step lengths represented by V . As a result, the
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algorithm is continuously focusing on a smaller and more promising area on the

surface.

The algorithm stops as soon as the predefined lower temperature boundary is

breached or the termination criterion is met. The criterion consists of two parts.

First, the difference between the current loop’s largest function value L(Θ) and the

optimal value Lopt(Θ) has to be smaller than ε. Is this the case, the second criterion

is checked: Before each temperature reduction, the highest function value out of

the current cycle is recorded and stored in a vector. Then, each of the last Nε of

these recorded values is compared to the largest function value of the current cycle.

If the differences between each of these values are smaller than ε, the criterion is

met and the SA algorithm terminates. Otherwise, the temperature is reduced again

and the cycle starts all over again (as long as the temperature boundary is not

breached). In this way, SA tries to ensure that a global and not a local maximum

was reached.

Note that R provides several filtering and optimization function (e.g. “Kalman-

Forecast(),” “nlm(),” or “optim()”), which I tried to apply on the Kalman filter es-

timation. However, none of the used functions could reach the optimal parameters

reported in Van Binsbergen and Koijen (2010), which is why I decided to program

the algorithm myself. Ultimately, I managed to obtain the optimal parameter values

of van Binsbergen based on the CRSP dataset which validates the applied R-script

attached to this thesis.
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6 Results

In this section, I am going to analyze the obtained estimates and the performance

of the final present-value model. I evaluate the goodness of fit via R2-measures and

compare it to the ones of simple predictive regressions. Then, I test for the presence

of predictability with Likelihood-Ratio tests.

6.1 Estimation Results

After maximizing the likelihood via Simulated Annealing, I obtain the optimal es-

timates of the model parameters, which are shown in Table 4.

The values of the model parameters δ0 and γ0 express the unconditional means of

the latent variables. For the annual data, we estimate an unconditional expected

return of 6.1%, while for the semi-annual data, we obtain a mean of 5.2%. This

is quite surprising considering the considerable difference between the mean of the

log-returns in the summary statistics. The unconditional expected dividend growth

rate is given 3.7% and 2.7% respectively. Furthermore, we find returns to be highly

persistent with a δ1 value of 0.82 in the annual data and even 0.94 in the semi-

annual data set. This is consistent with the results of Van Binsbergen and Koijen

(2010) for the CRSP data set. Comparing the estimates of the annual series of the

CDAX with the estimates based on the CRSP data set (Appendix D2), we can see

that there is a higher persistence in the returns on the American stock market, while

the persistence of the expected dividend growth is higher in the German stock mar-

ket. However, in both series, expected dividend-growth rates are far less persistent

as returns. In Section 6.3 we will further test for persistence via a likelihood-ratio

test. Looking at the parameters of the covariance matrix of the innovations in the

model, we detect highly negative values for the correlations between expected div-

idend growth and expected returns. This is very surprising since the intuition of the

present-value equation would suggest a positive correlation, which is also given in
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the CRSP data. In general, the estimates of correlation parameters in the present-

value model seem to be quite volatile. If the other parameters are fixed, changes

in the correlation parameter do not result in large jumps of the likelihood value.

Van Binsbergen and Koijen (2010) come to a similar conclusion as they calculate

bootstrapped standard errors and analyze the finite-sample properties of the param-

eters for the CRSP series (which in addition has more observations than our CDAX

data set).

Table 4: Maximum-Likelihood Parameter - Estimates (CDAX, 1990–2018)

Maximum Likelihood Estimates

Parameter Estimate (Annual Data) Estimate (Semi-Annual Data)

γ0 0.037 0.027

δ0 0.061 0.052

γ1 0.359 0.543

δ1 0.818 0.942

σg 0.081 0.041

σµ 0.024 0.007

σd 0.125 0.098

ρgµ -0.939 -0.969

ρµd 0.796 0.959

Log-Likelihood-Value 146.106 372.246

Implied Present-Value Model Parameters

A 3.731 3.693

B1 4.971 12.614

B2 1.540 2.130

ρ 0.977 0.977

6.2 In-Sample Performance

Having obtained the estimates of the present-value state-space model, we can now

analyze its performance. If the model works well with the analyzed time series, it

should be able to generate accurate estimates of dividend-growth and returns. In

this section, I examine the goodness of fit of the model via the calculation of in-
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sample R2-measures for returns and dividend growth rates. I further compare the

quality of the estimates compared to simple predictive regression models. For the

evaluation of the fit, I calculate the R2-measure as described in Harvey (1990). For

dividend-growth rates and returns, this measure is defined as:

R2
Div = 1− ˆvar(∆dt+1 − gFt )

ˆvar(∆dt+1)
(30)

R2
Ret = 1− ˆvar(rt+1 − µFt )

ˆvar(rt+1)
(31)

where gFt and µFt represent the state-estimates returned by the Kalman-Filtering

process. The difference in the t-indices between the filtered values and the actual

observations is explained by the fact that µt and gt describe the expected values of

returns and dividend-growth in the next period t+ 1:

gt = E[rt+1] and µt = E[∆dt+1]

Note that ĝt is a direct product of the Kalman Filter recursion, while µ̂t is an implied

value based on the present-value equation 12.

pdt = A−B1µ̂t +B2ĝt

⇔ µ̂t =
A+B2ĝt − pdt

B1

We also need to consider that the Filter estimates the demeaned version of the ex-

pected dividend growth. Thus, to obtain the true estimates of rt+1 and ∆dt+1, we

need to add the unconditional mean in form of γ0 and γ1

gt = ĝt + γ0 and µt = µ̂t + δ0

In this way, we obtain a series of values which we can subsequently use for the

R2 computation (equation 30 and 31). For the CDAX data set, I obtain the values

reported in table 5. We obtain a surprisingly high R2 value of 35.8 % for dividend

growth-rates, while the goodness of fit for returns is quite poor with 2.7% in the

annual time series. For the CRSP data set, I obtain higher R2 values for dividend
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growth compared to returns as well (11.7% vs. 9.0%). However, the difference is

less significant, and the fit for returns is better. For the semi-annual series, both

measures report lower values with 21.6% and 1.0% respectively. This is consis-

tent with the general assumption that returns are less predictable on the short-term

(Cochrane, 2009a).

Table 5: In-Sample R2 Values (CDAX, 1990–2018)

Annual Data Semi-Annual Data

R2
Div 35.8% 21.6%

R2
Ret 2.7% 1.0%

Table 6 and table 7 show the results of simple predictive regressions. We can see

that the present-value state-space model outperforms the simple regressions when

it comes to dividend-growth estimation. However, in terms of return predictability,

the present-value model seems to have no advantage compared to these basic tools.

Table 6: OLS Predictive Regressions (CDAX 1990-2018)

The table reports the OLS regression results of log returns and log dividend growth rates on the
lagged log price-dividend ratio using data between 1990 and 2018. The first two columns report
report the results for the annual data set and the last two columns for the semi-annual data set. Two
asterisks (**) indicate significance at the 5% level, and three asterisks indicate significance at the
1% level

Annual Data Semi-Annual Data

Dependent Variable rt ∆dt rt ∆dt

Constant 0.6030 -0.9159** 0.13697 -0.56846**

pdt−1 -0.1430 0.2558** -0.02897 0.15911***

R2 3.93% 28.94% 0.36% 18.98%

Adj R2 0.24% 26.21% -1.45% 17.51%

6.3 Hypothesis Testing

Provided with our optimal estimation parameters, I would like to assess the results

by the application of appropriate hypothesis tests. Having obtained our optimal es-
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Table 7: AR(1)-Regressions (CDAX 1990-2018)

The table reports the AR(1)-OLS regression results of log returns and log dividend growth rates
using data between 1990 and 2018. The first two columns report report the results for the annual
data set and the last two columns for the semi-annual data set. Two asterisks (**) indicate
significance at the 5% level, and three asterisks indicate significance at the 1% level

Annual Data Semi-Annual Data

Dependent Variable rt ∆dt rt ∆dt

Constant 0.07352 0.04449 0.0247 0.0254

AR(1)- Component -0.10473 -0.01175 0.11112 0.0901

R2 1.08% 0.02% 1.20% 0.84%

Adj R2 -2.72% -3.83% -0.60% -0.96%

timates via the maximum-likelihood estimation, we can make use of the likelihood-

ratio test. By using this ratio, I test the return predictability, dividend growth pre-

dictability and persistence of expected dividend growth and returns. The respective

test statistic is given by

LR = 2(L1 − L0),

where L1 represents the unconstrained model and L0 the constrained one. The test

statistic asymptotically follows a χ2-square distribution with as many degrees of

freedom as there are constrained parameters. For each conducted test, the results of

the constrained model estimation and the likelihood-ratio are presented in Appendix

E.

First, I test for the existence of return predictability. If the return predictability

would be absent within the model, expected returns should show no persistence nor

variation or correlation towards other variables. Hence, the corresponding hypoth-

esis

H0 : δ1 = σµ = ρµg = ρµd = 0

H1 : δ1 6= 0 or σµ 6= 0 or ρµg 6= 0 or ρµd 6= 0
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The likelihood-ratio, which follows a χ2
4-distribution, returns values of 54.65 for

the annual and 37.03 for the semi-annual CDAX data. Hence, we clearly reject the

null-hypothesis. However, the discussed low R2 values for the return series cause

doubt on the level of existent predictability.

Second, I test for a lack of dividend growth predictability. Again, if dividend-growth

predictability is absent, expected growth rates should have no persistence and no

variation or correlation towards other variables, where ρgd is already set to zero,

because of the identity problem discussed in section 5.5. Consequentially, the tested

hypothesis is given by

H0 : γ1 = σg = ρµg = 0

H1 : γ1 6= 0 or σg 6= 0 or ρµg 6= 0

The likelihood-ratio follows a χ2
3 distribution in this case. Again, we clearly reject

the hypothesis on a 1% level, which is further supported by a high R2 value for the

dividend growth.

Furthermore, I investigate whether the expected dividend growth is not persistent.

This is equivalent to testing the hypothesis

H0 : γ1 = 0

H1 : γ1 6= 0

The ratio follows a χ2
1 distribution and we strongly reject the H0 on a 1% sig-

nificance level for both CDAX time series, as I expected because of the large γ1

estimate.

Lastly, I test for the common assumption, that expected dividend-growth rates and

expected returns are equally persistent (see Cochrane (2007); Pástor and Stambaugh

(2009)). The corresponding hypothesis is

H0 : γ1 = δ1
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H1 : γ1 6= δ1

The ratio follows a χ2
1 distribution and we reject the hypothesis. Again, the results

is rather unsurprising considering the immense difference between the estimates of

the two parameters.

6.4 Validity of the Results

The present-value model contains a few assumptions and definitions that have been

criticized and further examined in the literature. In this section, I discuss the robust-

ness of the model and the validity of my results.

First, the considered sample size is very small, especially for the annual data. Look-

ing at the goodness of fit, the artificially increased sample size in the form of semi-

annual observations does not lead to more robust results. Considering that Van Bins-

bergen and Koijen (2010) reports large standard-errors for the correlation-parameter

ρµd and ρµg, the error for my estimates could be consequently larger. A longer ob-

servation period might have led to deeper insights.

Second, the assumptions of the proposed state-space present-value model can be

criticized. In the present-value model derivation, I made use of an approximation

to obtain a log-linearized return relation. Consequentially, this could lead to an

approximation error in the final model. A possible solution would be the application

of the unscented Kalman Filter, which is not reliant on the linearity of the underlying

system. Van Binsbergen and Koijen (2011) apply this concept on a non-linear state-

space model. For the CRSP data set, they could not find a significant impact of

an approximation error caused by the log-linearized version. However, it would be

interesting to see if this also holds for my CDAX data set.

Another aspect which should be critically reviewed is the assumption of a constant

risk in the Kalman Filter procedure. We assume that the covariance matrix of our

model innovation Σ does not vary over time. This is unrealistic considering that the
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volatility on the stock market is varying over time. Ang and Liu (2007) show in their

paper that the price-dividend ratio and expected returns are heteroscedastic. Piatti

and Trojani (2017) adapts this thought and creates a state-space representation of the

present-value model, that contains a time-varying risk component. They find dif-

ferences in the persistence of dividend-growth rates compared to the homoscedastic

model. A time-varying risk component could eventually also help to understand the

negative correlation between expected returns and expected dividend growth in our

model. Therefore, it would be interesting to apply the model of Piatti and Trojani

on the CDAX data set.
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7 Conclusion

In the thesis, I replicate and derive the state-space representation of the present-

value model according to Van Binsbergen and Koijen (2010). Because of the lim-

ited available sample size for yearly observations of the CDAX, I construct a semi-

annual time series of the CDAX and compare the results. I further construct the

Simulated Annealing algorithm to solve the Maximum Likelihood optimization

problem and obtain optimal estimates based on the CDAX data set.

I find a high level of persistence in the expected stock returns and lower levels for

expected dividend growth rates. This is consistent with the findings of Van Binsber-

gen and Koijen on the American stock market. On the other hand, we surprisingly

find a strong negative correlation between expected dividend growth and expected

returns in both of the time series. This speaks against the intuition of the present-

value identity, which expects an increase in returns to come along with higher divi-

dends. It also opposes the estimates which is found in the CRSP data set. It would

be interesting to examine whether this negative correlation remains when the model

is applied on a longer annual time series of the German stock market.

The in-sample performance shows a two-sided result. The model seems to estimate

realized dividend growth rates efficiently, but lacks quality in terms of the return es-

timates. In the application into the CRSP data set, the difference in the the goodness

of fit is similar for returns and growth rates (R2-value of 9% and 12% respectively).

However, with regards to the CDAX, we obtain a R2 value of 35.8% for dividend

growth and a value of only 2.7% for returns, which questions the model’s ability to

estimate returns. On the other hand, the benchmark models in the form of simple

predictive regressions perform worse in the estimation of dividend growths while

they also fail to model returns appropriately.

Last but not least, I conduct several hypothesis tests to detect predictability of re-

turns and dividend growth rates. The likelihood-ratio tests strongly reject the hy-
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potheses that there is no return predictability nor dividend growth predictability in

the data, which is consistent with the findings in the CRSP data set. The tests further

underline the persistence of dividend growth.

Further research via the state-space representation of the present-value model

should try to apply the method to a larger sample to detect long-term trends in the

data. Considering the heteroscedasticity in the stock data, an application of model

with a time varying risk component would be interesting to examine. Furthermore,

the restriction on a linear system through the requirements of the Kalman Filter

might weaken the model’s performance. Therefore, another potential extension

would include the application of the unscented Kalman Filter to analyze non-linear

relationships in the data.
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Appendices

A The Derivation of the Present-Value Model

The model used in this paper is based on the present-value identity by Campbell

and Shiller (1988b). In the following, I am going to derive the log-linearized re-

turn relation of the price-dividend ratio and subsequently derive the present value

equation, which is essential for my approach. We start by a simple return identity:

1 = R−1
t+1 ∗Rt+1 = R−1

t+1 ·
Pt+1 +Dt+1

Pt

Multiplying by Pt/Dt results in

Pt
Dt

= R−1
t+1 ·

Pt+1 +Dt+1

Pt
· Pt
Dt

= R−1
t+1 ·

Pt+1 +Dt+1

Dt

= R−1
t+1 ·

(
Pt+1

Dt

+
Dt+1

Dt

)
= R−1

t+1 ·
(

1 +
Pt+1

Dt

)
· Dt+1

Dt

Taking the logs will result in a log-linearized expression of the price-dividend ration

pdt:

ln

(
Pt
Dt

)
= pt − dt = pdt = ln

(
R−1
t+1

)
+ ln

(
1 +

Pt+1

Dt

)
+ ln

(
Dt+1

Dt

)

Using the property Pt/Dt = exp (ln(Pt/Dt)) = exp(pdt) leads to

pdt = −rt+1 + ∆dt+1 + ln (1 + exp(pdt+1))

The last term, ln (1 + exp(pdt+1)), can be treated with a first-order Taylor Expan-

sion around some point pd = E[pdt] to get the following approximation:

pdt ' −rt+1 + ∆dt+1 + ln (1 + exp(pt+1 − dt+1)) (A1)

' −rt+1 + ∆dt+1 + ln
(
1 + exp(pd)

)
+

exp(pd)

1 + exp(pd)
∗
[
pdt+ 1− pd

]
(A2)
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After substituting part of the terms for κ = ln(1+exp(pd))−ρpd and ρ = exp(pd)

exp(1+pd)

the log-linearized price-dividend ratio relation is given by:

pdt = κ+ ρpdt+1 + ∆dt+1 − rt+1

We can iterate this equation forward by gradually substituting for pdt+i:

pdt = κ+ ρpdt+1 + ∆dt+1 − rt+1

= κ+ ρ(κ+ ρpdt+2 + ∆dt+2 − rt+2) + ∆dt+1 − rt+1

= κ+ ρκ+ ρ2pdt+2 + (∆dt+1 − rt+1) + ρ(∆dt+2 − rt+2)

= ...

=
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

Since ρ < 1 (Cochrane (2009b) reports a value of 0.96 based on a historical-average

price-dividend ratio of 25), we can assume that

ρ∞pd∞ = lim
j→∞

ρjpdj = 0

and make use the properties of a infinite geometric series

∞∑
j=0

ajb =
b

1− a
(A3)

Hence, we get:

pdt =
∞∑
j=0

ρjκ+ ρ∞pd∞ +
∞∑
j=1

ρj−1(∆dt+j − rt+j)

=
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j)

Now, we can take expectations conditional upon time to define a relation among the

price-dividend ratio, expected returns and expected dividend growth. Because this
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equation holds ex-ante and ex-post, the expectation operator can be added on the

right-hand side:

pdt = Et

[
κ

1− ρ
+
∞∑
j=1

ρj−1(∆dt+j − rt+j)

]

=
κ

1− ρ
+
∞∑
j=1

ρj−1Et [∆dt+j − rt+j]

By inserting µt = Et[rt+1] and gt = Et[∆dt+1] and adjusting the index of the sum

operator, we find:

pdt =
κ

1− ρ
+
∞∑
j=1

ρj−1Et [gt+j−1 − µt+j−1]

=
κ

1− ρ
+
∞∑
j=0

ρjEt [gt+j − µt+j]

We can now make use of the AR(1)-properties of the expected returns and expected

dividend growth defined in equation (10):

pdt =
κ

1− ρ
+
∞∑
j=0

ρjEt [gt+j − µt+j]

=
κ

1− ρ
+
∞∑
j=0

ρj [γ0 + γ1(gt+j−1 − γ0)− δ0 − δ1(µt+j−1 − δ0)]

Note that the error-terms of the AR-processes have zero mean and can be omitted

after taking expectations. We can now substitute for gt and µt and iterate the two

terms forward considering the following property of the AR-process:

µt+1 = δ0 + δ1(µt − δ0) + εµt+1

⇔ E[µt+1] = δ0 + δ1(µt − δ0)

⇔ E[µt+2] = δ0 + δ1(µt+1 − δ0)

= δ0 + δ1[δ0 + δ1(µt − δ0)− δ0]

= δ0 + δ2
1(µt − δ0)

⇔ E[µt+3] = δ0 + δ3
1(µt − δ0)

⇔ E[µt+j] = δ0 + δj1(µt − δ0) (A4)
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The same can be applied to the AR-process of the expected dividend growth and so

we reach

pdt =
κ

1− ρ
+
∞∑
j=0

ρj [γ0 + γ1(gt+j−1 − γ0)− δ0 − δ1(µt+j−1 − δ0)]

=
κ

1− ρ
+
∞∑
j=0

ρj
[
γ0 + γj1(gt − γ0)− δ0 − δj1(µt − δ0)

]
=

κ

1− ρ
+
∞∑
j=0

ρj(γ0 − δ0) +
∞∑
j=0

ρj
[
γj1(gt − γ0)− δj1(µt − δ0)

]
We can now make use of the properties of infinite geometric series:

pdt =
κ

1− ρ
+
γ0 − δ0

1− ρ
+
∞∑
j=0

ρj
[
γj1(gt − γ0)− δj1(µt − δ0)

]
=

κ

1− ρ
+
γ0 − δ0

1− ρ
+
∞∑
j=0

ρjγj1(gt − γ0)−
∞∑
j=0

ρjδj1(µt − δ0)

=
κ

1− ρ
+
γ0 − δ0

1− ρ
+
gt − γ0

1− ργ1

− µt − δ0

1− ρδ1

.

From here we can form the final present-value equation which connects the price-

dividend ratio, the expected returns and expected dividend growth:

pdt = A−B1(µt − δ0) +B2(gt − γ0)

with

A =
κ

1− ρ
+
γ0 − δ0

1− ρ

B1 =
1

1− ρδ1

B2 =
1

1− ργ1
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B The Kalman Filter

In time series analysis, filtering describes the process of treating data by removing

unwanted components. In finance, one of the most applied filtering algorithms is

the Kalman Filter, which is set up on the base of a state-space model. It proofed

to be very useful for noisy observations as we often find them in many economic

time series systems. At each step in time, the Kalman filter is able to generate

optimal estimates for the unobservable state parameters of a system (in our case

the expected dividend growth). Further, it can compute predictions of the state

variables. The generated estimates are recursively adjusted at each step in time

based on the incoming observable measurements. In the following section, I will

derive the Kalman filter with respect to the two defined present-value state-space-

representations. I will mainly stick to the elaborations described in Hamilton (1994)

and Durbin and Koopman (2012), but will adjust the notation to the case presented

in this thesis.

For transparency, we transform the state and the measurement equation of our state-

space model in a general compact form as described in Hamilton (1994):

Xt+1 = FXt + vt+1, (State Equation)

Yt = C ′zt +M2Xt, (Observation Equation)

where

ΓεXt+1 = vt+1, with E[vtv
′
τ ] =

 Q = ΓΣΓ′ for t = τ

0 otherwise
,

C ′zt = M0 +M1Yt−1,

with C ′ =

 γ0 0

(1− δ1)A δ1

 , and zt =

 1

pdt

 .
The dimensions of the used vectors and matrices can differ depending on the speci-

fications of the present value model (such as the considered dividend-reinvestment
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strategy). I will therefore derive the set-up for a general case in which Xt,Yt and

zt are vectors of the dimension (r × 1), (n× 1) and (k × 1). Correspondingly, the

innovations vector vt+1 is a (r × 1) vector as well. F,C ′ and M2 represent prede-

termined matrices of the dimensions (r × r), (n × k) and (n × r). To start, I need

to make a few assumptions, which are critical for further derivation. First, I assume

that zt has no information about the future values of Xt+s besides the one contained

in the past observations of Yt. I further assume that the error-vector vt at time t

contains no info about the initial value of the state X1:

E[vt, X1] = 0 for t = 1, 2, ..., T

Iterating backwards within the AR state equation and making use of this assumption

result in

Xt = FXt−1 + vt = F (FXt−2 + vt−1) + vt = F 2Xt−2 + Fvt−1 + vt

= ... = vt + Fvt−1 + F 2vt−2 + ...+ F t−2v2 + F t−1X1

which implies

E[vt, X
′
τ ] = 0 for τ = t− 1, t− 2, ..., 1

Considering the measurement equation, we can similarly derive

E[vtY
′
τ ] = 0

One of the primary purposes of the Kalman Filter is to estimate the unobserved

state Xt while we only know about the observations Yt. The filter creates least

square forecasts of Xt to handle this task:

X̂t+1|t = E[Xt+1|Υt]
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with Υt = Yt, Yt−1, ..., Y1, zt, zt−1, ..., z1. The mean squared error coming along

with these forecasts is denoted as

Pt+1|t = E
[
(Xt+1 − X̂t+1|t)(Xt+1 − X̂t+1|t)

′
]

At each step in time, these state-forecasts are used to generate forecasts for the ob-

servation Yt itself. The forecast Ŷt|t−1 is compared to the actual Yt and the resulting

forecasting error is then used to update the state-forecast Xt|t−1 to Xt|t. These steps

are calculated recursively for each step in time until the end of the sample t = T is

reached. How this is happening in detail is described in the following subsections

and the summary at the end of this chapter. Lastly, I first assume the initial values

X0|0 and P0|0 for the recursion of the filtering process to be given, but will later

explain, how to calculate these.

B.1 Forecasting Yt

One of our main goals is to calculate forecasts of our unobserved state Xt. Consid-

ering that zt provides no additional information aboutXt (besides the one contained

in Υt−1) we can define this forecast estimate based on Υt−1 as following:

E[Xt|zt,Υt−1] = E[Xt|Υt−1] = X̂t|t−1

The Kalman Filter is making use of the relation between Yt and Xt to reach an

optimal estimate and forecast of the state. Therefore, we are going to forecast Yt

first, which will provide us with the base for generating estimates for Xt+1|t and

Pt+1|t in the end:

Ŷt|t−1 = E[Yt|zt,Υt−1]

Inserting the measurement equation gives us:

E[Yt|zt, Xt] = C ′zt +M2Xt
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We can now make use of the law of iterated projections (for two random variables

X and Y : E[X] = E [E[X|Y ]]), which gives us our forecasting equation:

Ŷt|t−1 = C ′zt +M2E[Xt|zt,Υt−1]

= C ′zt +M2X̂t|t−1

The corresponding forecasting error is:

Yt − Ŷt|t−1 = C ′zt +M2Xt − C ′zt −M2X̂t|t−1

= M2(Xt − X̂t|t−1)

and its mean squared error (MSE) is given by

E[(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′] = E[M2(Xt − X̂t|t−1)(Xt − X̂t|t−1)′M ′
2]

= M2E[(Xt − X̂t|t−1)(Xt − X̂t|t−1)′]M ′
2

= M2Pt|t−1M
′
2

B.2 Updating the State

We still need to define how to forecast the state and how to subsequently update it

in consideration of the prediction errors of the measurements. I will first explain

how to do the latter and then continue with the generation of forecasts for the state.

Ultimately, I will sum up the whole recursion in the final subsection.

We want to update and adjust the initially forecasted estimate of the state Xt|t−1

by evaluating the forecasting error of the measurement Yt. This adjusted state is

defined as:

X̂t|t = Ê[Xt|yt, zt,Υt−1] = Ê[Xt|Υt]
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We can obtain the optimal estimate X̂t|t by making use of the formulas for updating

a linear projection via a block triangular factorization. The formula for three random

vectors Y1, Y2 and Y3 is provided below:

E[Y3|Y2, Y1] = E[Y 3|Y1] +H32H
−1
22

[
Y2 − Ê[Y2|Y1]

]
with

H22 = E[[Y2 − E[Y2|Y1]][Y2 − E[Y2|Y1]′]

H32 = E[[Y3 − E[Y3|Y1]][Y2 − E[Y2|Y1]′]

Using this scheme we obtain:

E[Xt|Yt, zt,Υt−1] =E[Xt|zt,Υt−1]+

E[(Xt − E[Xt|zt,Υt−1])(Yt − E[Yt|zt,Υt−1])′]·

E[(Yt − E[Yt|zt,Υt−1])(Yt − E[Yt|zt,Υt−1])′]−1·

[Yt − E[Yt|zt,Υt−1],

which is equal to

X̂t|t =X̂t|t−1 + E[(Xt − X̂t|t−1)(Yt − Ŷt|t−1)′]

· E[(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′]−1[Yt − Ŷt|t−1]

The second term can be expressed by the definitions of Pt|t−1, M2 and the forecast

error of Yt:

E[(Xt − X̂t|t−1)(Yt − Ŷt|t−1)′] = E[(Xt − X̂t|t−1)(M2(Xt − X̂t|t−1)′]

= E[(Xt − X̂t|t−1)(Xt − X̂t|t−1)′M ′
2 = Pt|t−1M

′
2
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Inserting this result and the formula of the forecasting error of Yt leads to our final

update equation for the state vector:

X̂t|t = X̂t|t−1 + Pt|t−1M
′
2[M2Pt|t−1M

′
2]−1[Yt − C ′zt −M2X̂t|t−1]

The corresponding MSE follows according to the rules of a linear projection:

E[(Y3 − Y3|Y2, Y1])(Y3 − Y3|Y2, Y1])′] = H33 −H32H
−1
22 H23

with H32 and H22 as previously defined and

H33 = E[(Y3 − Y3|Y1])(Y3 − Y3|Y1])′]

Using this concept we obtain

Pt|t = E[(Xt − X̂t|t)(Xt − X̂t|t)
′]

= E[(Xt − X̂t|t−1)(Xt − X̂t|t−1)′]−

E[(Xt − X̂t|t−1)(Yt − Ŷt|t−1)′][E[(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′]−1·

E[(Yt − Ŷt|t−1)(Xt − X̂t|t−1)′]

= Pt|t−1 − Pt|t−1M
′
2(M2Pt|t−1M

′
2)−1M2Pt|t−1

B.3 Forecasting the State

Based on the obtained measures, we can now forecast the state vector for the next

time step. Via the definition of the state equation we derive

X̂t+1|t = E[Xt+1|Υt]

= E[FXt + vt+1|Υt]

= FE[Xt|Yt] + E[vt+1|Υt]

= FX̂t|t
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We can now insert the previously derived update equation for the state:

X̂t+1|t = F
[
X̂t|t−1 + Pt|t−1M

′
2[M2Pt|t−1M

′
2]−1[Yt − C ′zt −M2X̂t|t−1]

]
= FX̂t|t−1 + FPt|t−1M

′
2[M2Pt|t−1M

′
2]−1[Yt − C ′zt −M2X̂t|t−1]

The term Pt|t−1M
′
2[M2Pt|t−1M

′
2]−1 is often named as Kalman Gain matrix in the

filtering process and is denoted by Kt. The Kalman Gain tells us how much we

should change our estimate according to the incoming measurement at time t. So

we can write:

X̂t+1|t = FX̂t|t−1 + FKt[Yt − C ′zt −M2X̂t|t−1]

Lastly, we can derive the corresponding MSE of the forecast. We make use of the

previous finding X̂t+1|t = FX̂t|t and the formulation of the state equation:

Pt+1|t = E[(Xt+1 − X̂t+1|t)(Xt+1 − X̂t+1|t)
′]

= E[(FXt + vt+1 − FX̂t|t)(FXt + vt+1 − FX̂t|t)
′]

= E[(F (Xt − X̂t|t) + vt+1)(F (Xt − X̂t|t) + vt+1)′]

The covariance between Xt and vt+1 is again zero and so we can rewrite

Pt+1|t = FE[(Xt − X̂t|t)(Xt − X̂t|t)
′]F ′ + E[vt+1 + v′t+1]

and define

Pt+1|t = FPt|tF
′ +Q

B.4 Initialization Values

Before we start the recursion of the filtering process, we need to define the starting

values of the state and its covariance matrix for the initialization of the filter. These
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values are not based on any observation and are simply given by the unconditional

mean and the unconditional covariance matrix of the state:

X0|0 = E[X0]

P0|0 = E [(X0 − E[X0])(X0 − E[X0])′]

This is a common procedure in the literature even though some authors initialize the

recursion with the forecasts X1|0 and P1|0 instead (as in (Hamilton, 1994)). While

our definition starts the recursion by forecasting X1|0 and P1|0 based on X0|0 and

P0|0, the ladder method starts by calculating the updated state X1|1 and P1|1 straight

away. This can lead to slightly different results at the beginning of the filtering

process. However, in both approaches, the unconditional mean and the associated

MSE are the applied starting values. If the VAR(1)-process of the state equation is

covariance-stationary, these initial values are relatively easy to obtain. A process

is covariance-stationary if it has a constant mean and if the covariance between the

two states at different points in time depends solely on the relative positions of the

two terms:

1. E[Xt] = µ (independent of t)

2. E[(Xt − µ)(Xt+k − µ)′] = γ(k) (solely dependent on k and not on t)

This condition is given if all eigenvalues of F are within the unit circle (|λ| < 1).

Since we assume in our model that γ1 < 1, the matrix F of our present-value

model fulfills this criterion. The unconditional mean can then be derived by taking

expectations in both sides of our state equation. With E[vt] = 0, we obtain:

E[Xt+1] = E[FXt + vt+1] = FE[Xt]

Because of the constant mean of our process, we can rewrite these terms as

E[Xt] = FE[Xt]
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⇔ E[Xt]− FE[Xt] = 0

⇔ (Ir − F )E[Xt] = 0

Because we assume γ1 to be less than one, F has no eigenvalue equal to one. This

implies that the matrix resulting from (Ir − F ) is non-singular and that the only

solution to the equation is the trivial one:

E[Xt] = 0

We can now obtain the unconditional variance of Xt by taking the expectation of

the product XtXt and subsequently substituting with the equation for our state in

the model. Considering E[vtX
′
t] = 0 and E[vt] = 0 we derive

P0|0 = E [(Xt − E[Xt])(Xt − E[Xt])
′]

= E[XtX
′
t]

= E[(FXt + vt+1)(FXt + vt+1)′]

= E[(FXt + vt+1)(X ′tF
′ + v′t+1)]

= E[FXtX
′
tF
′ + vt+1X

′
tF
′ + FXtv

′
t+1 + vt+1v

′
t+1]

= E[FXtX
′
tF
′] + E[vt+1v

′
t+1]

After defining G = E[XtX
′
t] (a constant term because of the stationarity) we can

rewrite these terms and obtain the equation:

G = FGF ′ +G

which can be solved via the application of a vectorization and the Kronecker Prod-

uct (denoted by X ⊗ Y , see Section C). Making use of the property vec(ABC) =

(C ′ ⊗ A)vec(B)) we get:

G = FGF ′ +G

⇔ vec(G) = vec(FGF ′) + vec(Q)
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⇔ vec(G) = (F ⊗ F )vec(G) + vec(Q)

⇔ vec(G)− (F ⊗ F )vec(G) = vec(Q)

⇔ [Ir2 − (F ⊗ F )]vec(G) = vec(Q)

⇔ vec(G) = [Ir2 − (F ⊗ F )]−1vec(Q)

This represents the unconditional covariance matrix of our starting value and we

can define:

vec(P0|0) = [Ir2 − (F ⊗ F )]−1vec(Q)

B.5 Summary of the Kalman Filter for the Present-Value Model

We can now sum up the filtering process of our Present-Value State-Space model.

The initial state vector is defined as

X0|0 = E[X1] = E[Xt] = 0rx1

with the corresponding MSE / Covariance matrix

P0|0 = E[(Xt − E[Xt])(Xt − E[Xt])
′] = E[XtX

′
t]

which can be solved via the formula

vec(P0|0) = [Ir2 − (F ⊗ F )]−1vec(Q)

We then start the filtering loop by generating forecasts of the state and calculating

the corresponding MSE:

X̂t+1|t = FX̂t|t−1 + FKt[Yt − C ′zt −M2X̂t|t−1]

Pt|t−1 = FPt−1|t−1F
′ +Q
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with the Kalman Gain matrix defined as

Kt = Pt|t−1M
′
2[M2Pt|t−1M

′
2]−1

The forecasts for the observations are then given by

Ŷt|t−1 = C ′zt +M2X̂t|t−1

To keep the following formulas simple and stick to the implementation in the code,

I notate the corresponding forecasting error and its associated MSE ηt and St. They

are given by:

ηt = Yt − C ′zt −M2X̂t|t−1

St = E[(Yt − Ŷt|t−1)(Yt − Ŷt|t−1)′] = M2Pt|t−1M
′
2

Lastly, the updated state and its MSE are calculated as following:

X̂t|t = X̂t|t−1 + Pt|t−1M
′
2[M2Pt|t−1M

′
2]−1[Yt − C ′zt −M2X̂t|t−1]

= X̂t|t−1 +Ktηt

Pt|t = Pt|t−1 − Pt|t−1M
′
2(M2Pt|t−1M

′
2)−1M2Pt|t−1

= (Ir −KtM2)Pt|t−1

If we re-substitute the terms

ΓεXt+1 = vt+1, with E[vtv
′
τ ] =

 Q = ΓΣΓ′ for t = τ

0 otherwise

C ′zt = M0 +M1Yt−1

we end up with the same process as described in Van Binsbergen and Koijen (2010):

X0|0 = E[X0] = 0r

P0|0 = E[XtX
′
t]
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Xt|t−1 = FXt−1|t−1

Pt|t−1 = FPt−1|t−1F
′ + ΓΣΓ′

ηt = Yt −M0 −M1Yt−1 −M2Xt|t−1

St = M2Pt|t−1M
′
2

Kt = Pt|t−1M
′
2S
−1
t

Xt|t = Xt|t−1 +Ktηt

Pt|t = (Ir −KtM2)Pt|t−1

where r describes the size of the state vector.

B.6 Maximum Likelihood Estimation of the Model Parameters

We have derived the forecasts X̂t|t−1 and Ŷt|t−1 in the sense of linear projections.

They therefore present optimal linear forecasts conditional on zt and Υt−1 in any

case. Furthermore, the errors in our state-space model are assumed to be normally

distributed, which makes it possible to make an even stronger statement. Under

these circumstances, the forecasts of our Kalman Filter are optimal in the light

of any function of (zt,Υt−1). It also implies that Yt conditional on (zt,Υt−1) is

normally distributed with mean Ŷt+1|t and variance St:

Yt|zt,Υt−1 ∼ N(Ŷt+1|t, St)

The corresponding density function is then given by

fYt|zt,Υt−1(∆dt, pdt) =
exp

[
−1

2
(Yt − Ŷt+1|t)

′S−1
t (Yt − Ŷt+1|t)

]
√

(2π)2|St|

=
exp

(
−1

2
η′tS

−1
t ηt

)√
(2π)2|St|

We can now easily derive the log-likelihood function:

lt = ln(fYt|zt,Υt−1(∆dt, pdt))
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= ln

[
exp

(
−1

2
η′tS

−1
t ηt

)]
− ln

(√
(2π)2|St|

)
= −1

2
η′tS

−1
t ηt −

1

2
ln
(
(2π)2|St|

)
= −1

2

[
η′tS

−1
t ηt + ln(|St|)

]
− ln(2π)

We can omit the last term and the constant factor since they will not affect the

optimal solution which maximizes the likelihood:

lt = −η′tS−1
t ηt − ln(|St|)

We want to maximize the likelihood over the whole series of T observations, which

is why we aim for maximization of the aggregated likelihood function. Ultimately,

this provides us with the following likelihood function, which will be optimized via

the Simulated Annealing algorithm:

L = −
T∑
t=1

ln(|St|)−
T∑
t=1

η′tS
−1
t ηt

Estimation Restrictions. Before getting started with the optimization of the likeli-

hood function, a few constraints regarding the values of the estimation parameters

need to be imposed. First, the Kalman filter comes along with an identity issue

if we do not place any restrictions for F,Q,C and M2. If the parameters of our

state-space model are unidentified, there is more than one set of parameter values

that could result in the same likelihood-values. Consequentially, we would not be

able to find the optimal parameter set for our present-value model. This is why we

predetermine the correlation between the error terms for realized dividend growth

and expected dividend growth to be zero:

ρdg = 0

Thereby, we make sure that all the parameters in the covariance matrix of the error-

terms are identified.
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Second, we need to set upper and lower boundaries for the rest of the parameters

to be estimated. These will make sure that the covariance matrices in the model

stay positive definite and that the AR-process of the state variable is covariance

stationary. We ensure stationarity by defining:

|γ1| < 1 and |δ1| < 1

In the case of the cash-reinvestment model, the covariance matrix of the shocks

stays positive definite by constraining the standard deviations of the shocks:

σg, σµ, σd > 0

The correlation parameters are bound between -1 and 1:

−1 < ρgµ , ρµd < 1
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C The Kronecker Product

For the derivation of the initial covariance matrix of the Kalman Filter, I made use

of the Kronecker Product (see Appendix C). For a m × n matrix A and p × q, it is

given by

A⊗B =


a11B · · · a1nB

... . . . ...

am1B · · · amnB

, (C1)

More explicitly, the result is a mp × nq-matrix (which explains the dimension of

the unity matrix in equation 29:

A⊗B =



a11b11 a11b12 · · · a11b1q · · · · · · a1nb11 a1nb12 · · · a1nb1q

a11b21 a11b22 · · · a11b2q · · · · · · a1nb21 a1nb22 · · · a1nb2q

...
... . . . ...

...
... . . . ...

a11bp1 a11bp2 · · · a11bpq · · · · · · a1nbp1 a1nbp2 · · · a1nbpq

...
...

... . . . ...
...

...
...

...
... . . . ...

...
...

am1b11 am1b12 · · · am1b1q · · · · · · amnb11 amnb12 · · · amnb1q

am1b21 am1b22 · · · am1b2q · · · · · · amnb21 amnb22 · · · amnb2q

...
... . . . ...

...
... . . . ...

am1bp1 am1bp2 · · · am1bpq · · · · · · amnbp1 amnbp2 · · · amnbpq



.

(C2)
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D Estimation Results for the CRSP Data Set

D.1 Results for the CRSP time series from 1946–2018

Table D1: Annual Summary Statistics in the case of Cash-reinvested Dividends

(CRSP, 1946–2018)

∆dt rt pdt

Mean 0.0609 0.1000 3.5000
Median 0.0544 0.1325 3.4514
Standard Deviation 0.0695 0.1639 0.4252
Maximum 0.2602 0.4082 4.4571
Minimum -0.1875 -0.4830 2.7307
No. Observations 73 73 73

Table D2: Maximum-Likelihood Parameter Estimates (CRSP, 1946–2018)

Maximum Likelihood Estimates

Parameter Estimate

γ0 0.061
δ0 0.087
γ1 0.263
δ1 0.922
σg 0.067
σµ 0.016
σd 0.001
ρgµ 0.253
ρµd -0.913
Log-Likelihood-Value 519.102

Implied Present-Value Model Parameters
A 3.627
B1 9.487
B2 1.344
ρ 0.971

R2
Div 11.7

R2
Ret 9.0
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D.2 Replication: Comparison of the Results with the Present-
Value model by Van Binsbergen and Koijen (2010)

Table D3: Summary Statistics of Annual Data (CRSP Data, 1946–2007)

∆dt rt pdt ∆dt (Paper)

Mean 0.0613 0.1064 3.4417 0.0611
Median 0.0538 0.1335 3.3847 0.0540
Standard Deviation 0.0622 0.1549 0.4323 0.0622
Maximum 0.2602 0.4082 4.4571 0.2616
Minimum -0.0555 -0.3277 2.7307 -0.0579
No. Observations 62 62 62 62

Table D4: Maximum-Likelihood Parameter - Estimates (CRSP, 1946–2007)

Maximum Likelihood Estimates

Parameter Estimate Estimate (Paper)

γ0 0.062 0.062
δ0 0.088 0.090
γ1 0.357 0.354
δ1 0.929 0.932
σg 0.058 0.058
σµ 0.016 0.016
σd 0.001 0.002
ρgµ 0.387 0.417
ρµd -0.888 -0.147
Log-Likelihood-Value 459.207

Implied Present-Value Model Parameters
A 3.624 3.571
B1 10.043 10.334
B2 1.529 1.523
ρ 0.969 0.969

R2
Div 13.4% 13.9%

R2
Ret 8.7% 8.2%
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E Likelihood-Ratio Test Results

Table E1: Likelihood-Ratio Test 1

Likelihood-Ratio-Test 1

H0 : δ1 = σµ = ρgµ = ρµd = 0

Parameter Estimate (Annual Data) Estimate (Semi-Annual Data)

γ0 0.0287 0.0216
δ0 0.0531 0.0461
γ1 0.7315 0.8787
δ1 0 0
σg 0.0719 0.0221
σµ 0 0
σd 0.1278 0.1044
ρgµ 0 0
ρµd 0 0

Log-Likelihood-Value (H0) 322.31 353.73
Log-Likelihood-Value (H1) 349.63 372.25
Likelihood-Ratio 54.65 37.03
Critical Value of χ2

4, 5% Level 9.49 9.49
Critical Value of χ2

4, 1% Level 13.28 13.28

Table E2: Likelihood-Ratio Test 2

Likelihood-Ratio-Test 2

H0 : γ1 = σg = ρgµ = 0

Parameter Estimate (Annual Data) Estimate (Semi-Annual Data)

γ0 0.0439 0.0281
δ0 0.0674 0.0594
γ1 0 0
δ1 0.8444 0.9658
σg 0 0
σµ 0.0454 0.0101
σd 0.1502 0.1113
ρgµ 0 0
ρµd 0.5064 0.5741

Log-Likelihood-Value (H0) 328.68 355.82
Log-Likelihood-Value (H1) 349.63 372.25
Likelihood-Ratio 41.92 32.86
Critical Value of χ2

3, 5% Level 7.81 7.81
Critical Value of χ2

3, 1% Level 11.34 11.34
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Table E3: Likelihood-Ratio Test 2

Likelihood-Ratio-Test 3

H0 : γ1 = 0

Parameter Estimate (Annual Data) Estimate (Semi-Annual Data)

γ0 0.0404 0.0271
δ0 0.0638 0.0521
γ1 0 0
δ1 0.7467 0.9105
σg 0.1504 0.0963
σµ 0.0505 0.0150
σd 0.0130 0.0558
ρgµ 0.1422 0.1166
ρµd -0.3626 0.3553

Log-Likelihood-Value (H0) 342.39 366.43
Log-Likelihood-Value (H1) 349.63 372.25
Likelihood-Ratio 14.49 11.63
Critical Value of χ2

1, 5% Level 3.84 3.84
Critical Value of χ2

1, 1% Level 6.63 6.63

Table E4: Likelihood-Ratio Test 2

Likelihood-Ratio-Test 4

H0 : γ1 = δ1

Parameter Estimate (Annual Data) Estimate (Semi-Annual Data)

γ0 0.0366 0.0242
δ0 0.0604 0.0480
γ1 0.5958 0.8292
δ1 0.5958 0.8292
σg 0.0692 0.0379
σµ 0.0448 0.0149
σd 0.1267 0.0967
ρgµ -0.6317 0.5743
ρmud 0.9302 0.9851

Log-Likelihood-Value (H0) 339.95 366.87
Log-Likelihood-Value (H1) 349.63 372.25
Likelihood-Ratio 19.38 10.76
Critical Value of χ2

1, 5% Level 3.84 3.84
Critical Value of χ2

1, 1% Level 6.63 6.63
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