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Figure 2: Negative and positive skewness of the distribution  

Figure 2 presents two types of asymmetry of the distribution of a variable.  
 

 
Source: (www.statisticshowto.datasciencecentral.com) 

 

Figure 3: Kurtosis of the distribution  

Figure 3 presents two types of peakedness of a distribution. 

 
Source: (www.statisticshowto.datasciencecentral.com) 

 

Also, a lot of researchers consider co-skewness and co-kurtosis. First, co-

skewness was used by Krauss and Litzenberger in 1976, and then by Harvey and 

Siddique in 2000. It was defined as a measure of securities’ risk in relation to market 

risk and is similar to covariance which measures systematic risk in CAPM. 

Investors like positive co-skewness more since it provides a higher probability of 

positive returns by two assets in excess of market returns. In other words, the assets 

with higher co-skewness increase the systematic skewness of an investor's portfolio 

(Adesi et al., 2004). Co-kurtosis is also used to measure a security’s risk in relation 

to the market risk based on historical price data and market data, but it considers 

extreme events. The risk-averse investors like low co-kurtosis, as it means no 

significant difference between securities’ returns and market returns, while risk-

lovers prefer high co-kurtosis in order to win in the case of extreme positive returns 

(Fang & Lai, 1997). 

To calculate skewness and kurtosis, such formulas are used: 
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𝑠𝑘𝑒𝑤$ = 𝐸 <
(𝑟$ − 𝐸(𝑟$))=

𝑉𝑎𝑟(𝐴)
=
5

A (3)	

𝑘𝑢𝑟𝑡$ = 𝐸 E
(𝑟$ − 𝐸(𝑟$))F

𝑉𝑎𝑟(𝐴)5 G (4),	

where 𝑠𝑘𝑒𝑤$ is skewness of asset A, 𝑘𝑢𝑟𝑡$ is kurtosis of asset A, 𝑉𝑎𝑟(𝐴) is the 

variance of asset A (Jondeau, 2003). 

 Also, it is important to define the excess kurtosis, which is equal to  

𝑒𝑥𝑐𝑒𝑠𝑠𝑘𝑢𝑟𝑡$ = 𝐸 J(KLMN(KL))
O

PQK($)R
S − 3	(5).	

In the CAPM, investors care only about two moments - mean and variance 

- for portfolio returns and one co-moment - covariance - for security returns. In 

general, investors may care about higher moments such as skewness, kurtosis, and 

higher co-moments such as co-skewness, co-kurtosis (Chung, 2006). On the one 

hand, the way to extend traditional CAPM is to add Fama - French factors such as 

the excess return of the companies with small capitalization over the companies 

with large capitalization (SMB), the excess return of the companies with high Book-

to-Market ratio over the companies with low ratio (HML), or the difference between 

the returns on diversified portfolios of stocks with robust and weak profitability 

(RMW), the difference between the returns on diversified portfolios of the stocks 

of low and high investment firms (CMA) (Fama & French, 2015). On the other 

hand, as normality of returns is the crucial assumption for CAPM, but in reality, it 

does not work, it is very important to add higher moments of distribution such as 

skewness and kurtosis in the CAPM. In our study, we will extend classical CAPM 

with these higher moments of the distribution.  

In the next part, we will explain our hypothesis and the main methodology 

which we use for the model. 

 

3.3 The hypothesis to be formally tested 

In order to investigate the effects of skewness and kurtosis on excess return 

based on CAPM, we will test such hypothesis:  

● Expected excess rate of return is explained by systematic skewness and 

systematic kurtosis as well as systematic variance: 

➔ investors are compensated with a higher expected return for bearing 

the systematic kurtosis risk; 

➔ investors forego the expected excess return for taking the benefit of 

increasing the systematic skewness. 
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● Whether and how after the financial crisis of 2008, the relations between the 

expected excess rate of return and systematic skewness and kurtosis have 

changed. 

 

3.4 The importance of conducting the test for normality 

 Since we decided to test the hypothesis described above, we need to start by 

checking the data for normality.  The higher moments such as skewness and kurtosis 

signalize whether data is normal or not. If the skewness is equal to 0 and excess 

kurtosis is also 0, the data will be normally distributed. As we will expand the 

CAPM with these higher moments, we need to be sure that the data is really 

abnormal, which also will be the confirmation one of the CAPM’s limitations. In 

the case of normal data, our model does not have any sense. In order to check the 

data for normality, we will use Jarque-Bera test. This method is used for testing the 

residuals for normality by testing whether the coefficient of skewness and the 

coefficient of excess kurtosis are jointly zero (Jarque & Bera, 1987). We have 

already written the formulas for excess kurtosis and skewness, but it can be shown 

with residuals estimated in OLS regression also: 

𝑏1 = 	 𝑠𝑘𝑒𝑤$ =
𝐸(𝑢$

=)

𝑉𝑎𝑟(𝐴)
=
5
(6)	

𝑏2 = 𝑘𝑢𝑟𝑡$ =
𝐸(𝑢$	F)
𝑉𝑎𝑟(𝐴)5

(7).	

The null-hypothesis 𝐻Z in this test: the coefficients of skewness and excess 

kurtosis are jointly zero. In order to check this hypothesis, we need to calculate the 

Jarque-Bera test statistics: 

𝑊 = 𝑁 E
𝑏]5

6 +
(𝑏5 − 3)5

24 G	(8),	

where N is the number of observations. 

 If the test-statistics exceeds a critical value, the null hypothesis will be 

rejected.  

So, it is important to conduct the test on normality in our model, and after 

the confirmation of the abnormal data, we can move to the main method of our 

research. 
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3.5 Fama Macbeth two-step procedure as a method for a model 

Skewness and kurtosis effects cannot be neglected unless there is a reason 

to believe that the rates of return have a normal probability distribution. Only if the 

excess returns of companies have a symmetric distribution, then the third and the 

fourth moments, i.e. skewness and excess kurtosis, will be zero and the 

corresponding term in the expansion, therefore, will be zero. In order to test the 

effects of skewness and kurtosis on excess return, we will use Fama Macbeth two-

step procedure. Fama Macbeth regressions perform in two steps, as it seems from 

the name of the procedure. Firstly, the estimated betas for different risk factors of 

each stock could be found by using time-series regressions. Before step two can be 

carried out, it is assumed that the estimated betas from the first step agree with the 

actual unknown betas. Secondly, it will be run the cross-sectional regression in 

order to find the estimates of the risk premium for different risk factors using 

estimated betas from the previous step. 

Moreover, Fama and Macbeth test the CAPM with a two-pass procedure 

that first sorts stocks into portfolios on the basis of historical beta estimates and then 

estimates the mean cross-sectional relationship between the portfolio returns and 

portfolio betas for each period. By sorting on beta they are able to maximize the 

cross-sectional variation in the variable of interest. However, Sylvain (2013) noted 

that portfolios can contain one or more securities (Fama & Macbeth, 1973; 

Bartholdy, 2005; Chung, 2006; Sylvain, 2013).  In order to run Fama Macbeth 

regressions, portfolio data or stock data could be used. The discussion about using 

stock versus portfolio data is provided in Section Data. 

On the first stage, we will run traditional CAPM with Fama Macbeth two-

step procedure. In such a way we are going to find a risk premium for holding a 

systematic risk and look whether a systematic risk is the only factor that explains 

the average excess return of companies. Firstly, a time-series OLS regression, 

equation (9), is run on each asset to generate an intercept, an estimate of the asset’s 

beta and residuals (Grauer et al., 2010; Bartholdy et al., 2005). 

𝑅`a − 𝑅(a = 𝛼` + 𝛽`+𝑅,a − 𝑅(a. + 𝜀`a(9),                       

where 𝑅`a − 𝑅(a is excess return of asset i, 𝑅,a − 𝑅(a is a market excess return, 𝛽` 

and 𝛼` are parameters estimates. 
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By using 𝛽`𝑠	(systematic risk) we can move toward to the second step where 

risk premium for holding systematic risk will be generated by running cross-

sectional regression, equation (10): 

𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a	(10), 

where 𝑟  is the average excess return of company i, 𝛽e	his systematic risk generated 

from equation (9), 𝛾Z and 𝛾]	are parameters estimates (Fama & Macbeth, 1973; 

Bartholdy, 2005). 

If the CAPM holds, only the second-order systematic co-moment (beta) 

should be priced (Chung, 2006). Moreover, 𝛾]	should be positive and significant. 

This is a direct measure of the ability of the beta estimate to explain differences in 

returns on individual stocks in the period following estimation (Bartholdy, 2005). 

If 𝛾Z is significantly different from zero, it will mean that systematic risk is not an 

only factor that explains the average excess return of companies. 

On the second stage, we will extend traditional CAPM with additional 

factors. The extension will make sense only in case if traditional CAPM faced 

omitted variables problem. We will run the cubic market model consistent with 

four-moment CAPM derived by Fang and Lai (1997) (equation 11): 

𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a.

− 𝛽5`+𝑅,a − 𝑅(a.
5 + 𝛽=`+𝑅,a − 𝑅(a.

= + 𝜀`a	(11), 

where +𝑅,a − 𝑅(a.
5 are +𝑅,a − 𝑅(a.

= are stochastic discount factors in the market 

return, 𝛽]`,	𝛽5`, 𝛽=` are market prices of the systematic variance, systematic 

skewness, and systematic kurtosis, respectively. 

The motivation for the model is that investors may care about skewness and 

kurtosis in addition to mean and variance. If so, then investors who hold the market 

portfolio would evaluate a marginal change in the holding of an asset in terms of its 

effect on variance, skewness, and kurtosis, and these marginal effects are captured 

by covariance, co-skewness, and co-kurtosis (Back, 2004). The quadratic form for 

the marginal rate of substitution implies an asset pricing model where the expected 

excess return on an asset is determined by its conditional covariance with both the 

market return and the square of the market return (conditional co-skewness) 

(Harvey et al., 2000). A cubic pricing kernel is consistent with investors’ 

preferences for higher order moments, specially kurtosis (Christoffersen et al., 

2017). The signs of the coefficients in equation (11) are based on the assumption 

that investors dislike variance, prefer positive skewness to negative skewness, and 

10110701010580GRA 19703



 

Page  
 

17 

dislike kurtosis. Thus, high covariance/ negative co-skewness/ high co-kurtosis 

assets are undesirable and consequently sell at low prices, producing high expected 

returns (Back, 2004).  

So, 𝛽],	𝛽5, 𝛽= are obtained by running time-series regression for each stock 

and depict systematic variance, systematic skewness, and systematic kurtosis, 

respectively. We will use these estimated coefficients for running cross-sectional 

regression to find risk premiums that investors should demand for holding stocks 

with different numbers for variance, skewness and kurtosis, equation (12):  

𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝜀`a	(12),                                                                                                         

where	𝛾], 𝛾5, 𝛾= are systematic market risk premia for an increase in systematic 

variance, a decrease in systematic skewness, and an increase in systematic kurtosis, 

respectively (Fama & Macbeth, 1973; Bartholdy, 2005). 𝛾Z should be zero, which 

means that we added all factors that define the excess return of the company. 

One important concern with our empirical approach is that the Fama 

MacBeth two-step method may be biased since the right-hand-side variables in the 

equation (12) are the estimates from the first-step time-series equation (11). We 

understand that the error-in-variables problem results in an underestimation of the 

price of beta risk and an overestimation of the other cross-sectional regression 

coefficients associated with variables observed without error (Kim, 1995). Chung 

(2006) suggested recalculating all standard errors using the Shanken adjustment in 

order to test for the errors-in-variables bias. Shanken (1992) modifies the traditional 

two-pass procedure and derives an asymptotic distribution of the cross-sectional 

regression estimator within a multifactor framework in which asset returns are 

generated by portfolio returns and prespecified factors. Chung (2006) stated that 

because of the way higher-order right-hand-side variables are created, the Shanken 

adjustment appears to be inappropriate for specifications that include such 

variables. Therefore, Chung concluded that although his estimates from Fama 

Macbeth two-step procedure are likely to have an errors-in-variables bias, the 

researcher did not believe that the bias is large enough to negate his overall 

conclusions. 

Instead of employing the two-pass procedure, Gibbons (1982) used the 

maximum likelihood estimation approach to eliminate the error-in-variables 

problem by simultaneously estimating betas and beta risk prices. Kim (1995) stated 

that Gibbons' estimator is thus still subject to an error-in-variables bias. Moreover, 

researcher performed the correction for the error-in-variables problem by 
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incorporating the extracted information about the relationship between the 

measurement error variance and the idiosyncratic error variance into the maximum 

likelihood estimation under either homoscedasticity or heteroscedasticity of the 

disturbance term of the market model. Kim (1995) concluded about the importance 

of implementation of correction when firm size is included as an additional 

explanatory variable. Moreover, the multivariate normality assumption imposed in 

Gibbons model is improper in cases when the stock returns are characterized by 

significant departures from normality as revealed by the high skewness and kurtosis 

of returns (Fang & Lai, 1997). A generalized method of moments used by Lim 

(1989) avoids the measure error problem and distributional assumption and it is 

subject to the sample size and computer time limitations (Fang & Lai, 1997). 

Barthodly (2005) mentioned that one possibility is the use of more 

sophisticated estimation techniques to deal with problems such as errors in variables 

which arise when a simple technique, namely Fama Macbeth two-step procedure, 

is used. However, the researcher stated that such techniques are probably cost 

prohibitive for individual firms, in particular, in relation to the amount of data 

required. This suggests that individual firms should use professional beta providers 

for obtaining their beta estimates instead of estimating them themselves and that 

professional beta providers should use more complex techniques than Fama 

Macbeth two-step procedure. 

Important to mention that OLS estimators could be not efficient. This is due 

to the fact that with the presence of high kurtosis in stock return distribution, the 

OLS estimators are fairly sensitive to outliers as pointed out by Lee and Wu (1985). 

An instrumental variable estimation can help to avoid the error-in-variables 

problem. An instrumental variable estimator is known to yield consistent estimators 

if a matrix of instrumental variables can be found which is uncorrelated with the 

disturbance term in the model (Fang & Lai, 1997). An instrumental variable 

estimator is used in cases when the second assumption about disturbances does not 

hold (Greene, 1997). So, it is used as an instrumental variable z, which is 

uncorrelated with the error term. If the second assumption about the unobservable 

error term does not hold, we will use slightly different adjustment which will be 

discussed in the section Model diagnostic tests. 

Conrad, Dittma, and Ghysels (2013) examined the importance of higher 

moments using a dramatically different approach as an alternative to adjusted or 

original Fama Macbeth two-step procedure. They exploited the fact that, if option 
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and stock prices reflect the same information, then it is possible to use options 

market data to extract estimates of the higher moments of the securities’ probability 

density function. Firstly, the advantages of that method could be that option prices 

are a market-based estimate of investors’ expectations. So, option market prices can 

capture the information of market participants. Secondly, the use of option prices 

eliminates the need for a long time series of returns to estimate the moments of the 

return distribution. Thirdly, options reflect a true ex-ante measure of expectations, 

they do not give us, as Battalio and Schultz (2006) note, the “unfair advantage of 

hindsight.” 

Based on all previous findings, we will run traditional Fama Macbeth two-

step procedure and will not proceed with the correction for the error-in-variables 

problem due to lack of argumentation that this correction will implement significant 

changes to our models. However, we will check for holding all assumptions 

underlying the classical linear regression model. If one of it does not hold, we will 

perform corresponding adjustments. In such a way we are going to eliminate the 

error-in-variables problem. A comparison between the different specification of 

models or using option prices is a topic for future research.  

 

3.6 Specification of the model 

As it was previously mentioned, we will expand the CAPM with higher 

moments such as skewness and kurtosis. Higher-order moments have been 

criticized for being unreliable and lacking intuition. Nevertheless, Chung et al. 

(2006) believe that both criticisms can be answered by looking at several co-

moments. Each co-moment may individually be unreliable, but the set of co-

moments should be relevant. That is why we will not test the effects of skewness 

and kurtosis separately, only both factors together. 

Also, it is important to consider the interaction term in our model. 

Interaction term shows how the effect of one variable changes due to another 

variable change (Buis, 2010). On the one hand, if two independent variables affect 

the outcome of the dependent variable in a non-additive way, an interaction term 

needs to be included in the model to capture this effect (Field, 2009). Moreover, in 

the case of statistically significant interaction terms, we need to interpret the main 

effects with considering the interactions. Also, sometimes the interaction term is 

used to liquidate the problem of multicollinearity between independent variables. 

In such a way, the researches take the interaction term of these variables instead of 
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them. On the other hand, Morris, Sherman, and Mansfield (1986) had noted a 

persistent failure of psychologists to detect interaction effects between continuous 

variables in multiple regression analysis. They mentioned that multicollinearity 

between interaction term and its components may exist and be the source of the 

problem in the model. In order to solve this problem, Cronbach (1987) suggested 

performing an additive transformation for a given predictor. However, based on 

Cronbach’s article, multicollinearity will only be a problem when it leads to 

computational errors within current computer algorithms. To sum up, it is unlikely 

that most empirical researches have such a high degree of multicollinearity, so there 

may be other factors that make it difficult to correctly detect moderated 

relationships (Jaccard et al, 1990).  

Based on mentioned above, we decided to proceed with the interaction term 

between skewness and kurtosis and try it in our model. It will be added in such a 

way: 

𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a.
− 𝛽5`+𝑅,a − 𝑅(a.

5 + 𝛽=`+𝑅,a − 𝑅(a.
=

+ 𝛽F`+𝑅,a − 𝑅(a.
5+𝑅,a − 𝑅(a.

= + 𝜀`a	(13),	
where +𝑅,a − 𝑅(a.

5+𝑅,a − 𝑅(a.
= is the interaction term between stochastic 

discount factors in the market return, 𝛽]`,	𝛽5`, 𝛽=`, 𝛽F` are market prices of the 

systematic variance, systematic skewness, systematic kurtosis and combination of 

systematic skewness and systematic kurtosis respectively. 

 

3.7 Model diagnostic tests 

The validity of a model can only be trusted when the few required 

assumptions are true. As it is a classical linear regression model, which is based on 

the OLS method, we need to check the next five assumptions about the 

unobservable error term. We need to be sure that we have BLUE (Best Linear 

Unbiased Estimators) what is desirable properties for estimated slopes and 

intercept.  

  For all diagnostic tests, we cannot observe the disturbances and so perform 

the tests of the residuals (Brooks, 2019). The next assumptions will be checked: 

1. 𝐸(𝑢𝑡) = 	0  

The mean of the residuals is zero. Generally, the mean of the residuals will always 

be zero provided that there is a constant term in the regression (Brooks, 2019). 

2. 𝑉𝑎𝑟(𝑢a) = 𝜎5 < ∞ 
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It is assumed that the variance of the residuals is constant and equal to 𝜎5, which is 

called as homoscedasticity. If the errors do not have a constant variance, we say 

that they are heteroscedastic, which is the violation of the second assumption. In 

order to check it, we apply White's test for heteroscedasticity, which is a very good 

method as it makes few assumptions about the form of the heteroscedasticity.  

The null-hypothesis 𝐻Z in White’s test for heteroscedasticity: the 

disturbances (we consider residuals) are homoscedastic (Brooks, 2019). 

 Firstly, we run our regression, estimate the model and obtain the residuals. 

Secondly, we need to run the auxiliary regression using the residuals: 

𝑢ka5 = 𝛼]	 + 𝛼5	𝑥5a + 𝛼=𝑥=a + 𝛼F𝑥5a5 + 𝛼l𝑥=a5 + 𝛼m	𝑥5a𝑥=a + 𝑣a	(14),	
where  𝑢ka  is the obtained residuals from the previous regression, 𝑥na – the 

independent variables from the previous regression. 

Thirdly, the null-hypothesis will be rejected or not rejected after calculation 

of chi-square test statistic: 

𝑇𝑅5~𝜒5(𝑚)	(15),	
where 𝑇 is the number of observations, 𝑅5  is taken from the auxiliary regression; 

m is the number of regressors in the auxiliary regression excluding the constant 

term. 

If chi-square test statistic is greater than the corresponding value from the 

statistical table, 𝐻Z about homoscedasticity will be rejected (Brooks, 2019). 

The heteroscedasticity is the problem in the model, as our estimators are still 

unbiased, but they are no longer BLUE. Moreover, the standard errors can be 

wrong, which causes the irrelevant interpretation of the estimators. 

In order to solve the problem, White’s heteroscedasticity consistent standard 

error estimates can be used. Due to this method, we receive new standard errors for 

the slope coefficients, and we would need more evidence against the null hypothesis 

before we would reject it (White, 1980). 

3. 𝐶𝑜𝑣+𝑢`, 𝑢t. = 0	𝑓𝑜𝑟	𝑖 ≠ 𝑗 

This assumption means that there is no pattern between disturbances (residuals), 

in other case the residuals are autocorrelated. In order to check it, the Breusch-

Godfrey test can be used. It is the test for 𝑟ay order autocorrelation, where such a 

regression will be run: 

𝑢a = 𝜌]	𝑢aM] + 𝜌5	𝑢aM5 + 𝜌=	𝑢aM= + ⋯+ 𝜌K𝑢aMK + 𝑣a	(16),	
where  𝜌K – autocorrelation between residuals, 𝑣a~𝑁(0, 𝜎|5). 
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The null-hypothesis 𝐻Z in this test: there is zero autocorrelation between error 

terms or 𝜌]	 = 0	𝑎𝑛𝑑	𝜌5 = 0	𝑎𝑛𝑑	𝜌= = 0	𝑎𝑛𝑑 …𝑎𝑛𝑑	𝜌K = 0	(Brooks, 2019). 

After running the linear regression using OLS and obtaining the residuals, we 

should put these residuals in the equation above. Then we obtain 𝑅5 and calculate 

the test statistics: 

(𝑇−𝑟)𝑅5~𝜒K5	(17),	
where 𝑇 is the number of observations, r is the number of lags, 𝑅5  is taken from 

the regression of residuals. 

If the test statistic is larger than the critical value from the statistical tables, 

we need to reject the null hypothesis of no autocorrelation, which means the 

violation of the third assumption of the classical linear regression model (Brooks, 

2019). In this case, we can receive inappropriate standard errors and wrong 

conclusion, as the estimators are unbiased, but not BLUE. To deal with it, it is 

possible to move to the model in first differences. 

4. The 𝑥` are not stochastic.  

This assumption means that there is no correlation between the residuals and 

the independent variables, as in other way the OLS estimators will not be even 

consistent. In order to check this assumption, we need to calculate the correlation 

between the residuals and each independent variable. 

5.  The disturbances are normally distributed. 

As we have already described in the section about testing on normality, the 

Jarque-Bera test is used to check the residuals on normality. In addition, it is very 

good to see on the histogram and time series plot of the estimated residuals. The 

fifth assumption is very important to make relevant conclusions about the model. 

 Also, we need to check the model on multicollinearity between explanatory 

variables, as high multicollinearity may become the problem in the model. In order 

to check it, we need just to calculate the correlation between independent variables. 

If the problem is ignored, there can be such results: 

1. High 𝑅5 but the coefficients can have large standard errors; 

2. If there are small changes in the specification, the regression can be very 

sensitive to this; 

3. The confidence intervals become very wide, so testing can give wrong 

conclusions (Brooks, 2019). 

To sum up, it is important to make all diagnostics tests in order to check the 

estimators. We will conduct these tests for our model in the next sections. 
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4. Data and Preliminary Analysis 

4.1 Data 

In this section, we will describe the data we used, sources, the way of 

collection and explain the variables. 

Generally, there are different opinions about data which we need to take for 

investigation of return-risk relationship: portfolios’ returns or stocks returns. The 

first approach is to aggregate stocks into portfolios for testing.  The motivation for 

creating portfolios is originally stated by Blume (1970) that betas are estimated with 

error and this estimation error is diversified away by aggregating stocks into 

portfolios. Numerous authors, Black, Jensen, and Scholes (1972), Fama and 

MacBeth (1973), and Fama and French (1993) have used this motivation to use 

portfolios as base assets in factor model tests. The second approach is to use the 

whole stock universe and run cross-sectional tests directly on all individual stocks. 

In creating portfolios, estimates of beta become more precise, but the dispersion of 

beta shrinks. It causes potentially larger efficiency losses in using portfolios versus 

individual stocks. In addition, using individual stocks permit more powerful tests 

of whether factors are priced (Ang et al., 2008). As a result, we decided to proceed 

with individual stocks. 

In order to find the data, we used The Center for Research in Security Prices 

(CRSP) from Wharton Research Data Services (WRDS). This database provides us 

with returns of individual securities traded on the NYSE, the AMEX, or The Nasdaq 

markets. This database includes more than 10000 stocks that were listed in different 

time periods. We analysed 3000 stocks and chose only 100 US securities that have 

information from January of 1986 to December of 2018, which gave us 396 periods. 

Other securities don’t have information exactly for all periods from January of 1986 

to December of 2018, so companies with missed data for one of the periods were 

excluded. On the one hand, it is enough to take 100 random stocks from the 

perspective of econometric science, as we have maximum four independent 

variables. On the other hand, it is better to analyse all stocks and choose stocks that 

have data for 1986-2018 years or take the portfolios’ returns which can also 

perfectly present the whole market, as 100 securities can be not enough to represent 

the market. We will proceed with both chosen 100 stocks and portfolios data in 
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order to capture the whole market and to define which is a better data approach in 

our model.  

This empirical research is based on monthly Holding Period Returns 

including dividends. The HPR for each company’s stock is calculated by using the 

next formula: 

𝐻𝑃𝑅a,a�] =
𝐷a�] + 𝑃a�]

𝑃a
− 1	(18),	

where 𝐷a�] is the dividends paid out, 𝑃a and 𝑃a�] are the prices of stock for 2 

periods. 

The CAPM includes risk-free rate and market portfolio which should 

consist of all companies (assets) in the world. Since it is impossible to consider all 

companies, the market proxy is always used. As it has already been described in the 

theory section, the common market proxy is value-weighted S&P Composite Index 

(Gómez, 2003). Nevertheless, we used Kenneth French’s data library to extract 

market proxy and the risk-free rate. In this case, market proxy is value-weight return 

of all CRSP firms incorporated in the US and listed on the NYSE, AMEX, or 

NASDAQ that have a CRSP share code of 10 or 11 at the beginning of month t, 

good shares and price data at the beginning of t, and good return data for t. 

Generally, Fama and MacBeth (1973) used the equal-weighted NYSE portfolio as 

a proxy for the market portfolio, although in theory, the market portfolio should be 

the value-weighted portfolio of total investors wealth which includes human capital 

and other assets not tradeable or readily measurable (Sylvain, 2013). That’s why 

we decided to proceed with the return of the value-weighted market portfolio. 

Moreover, Bartholdy (2005) proved that for the estimation of beta, it is irrelevant 

whether or not dividend adjusted indexes are used. So, we will use a value-weighted 

market portfolio including dividends. Risk-free is the one-month Treasury bill rate. 

All returns are presented in percentage.  

As it was discussed early in this section, we will use securities that have 

information from January of 1986 to December of 2018, which gave us 396 periods. 

On the one hand, on the first stage of our model, we will run time-series regressions 

in order to generate estimated betas for selected securities. In general, for 

estimation, the more observations, the better. This suggests using as long time 

period as possible. Bai and Zhou (2015) demonstrated analytically and using Fama 

Macbeth two-step risk premia estimates that the standard OLS estimators can 

contain large bias when the time series sample size is small. On the other hand, with 
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a long estimation period for the beta, however, it is likely that the value of the true 

beta changes over the period. The resulting estimate for the beta will, therefore, be 

biased (Bartholdy, 2005). That fact motivated us to short the period. One way of 

obtaining more observations, over a shorter time period, is to increase the sampling 

frequency. However, moving from monthly to daily returns, for example, results in 

an increase in the amount of noise in the data, which reduces the efficiency of the 

estimates. Bartholdy (2005) suggested that using 5 years of monthly data appears 

to be appropriate. His findings were based on a comparison of R-square for models 

with different time horizons and frequency of data.  

That’s why we will run Fama Macbeth two-step procedure for the whole 

sample (396 periods) and for 5 year-horizons separately. We will use adjusted R-

square to rank different model specification and this criterion will be crucial for 

choosing the best model specification. Adjusted R-square is better than original R-

square because it takes into account not only goodness of fit statistics, but also the 

loss of degrees of freedom associated with adding extra variables (Brooks, 2019). 

The significance of 𝛽]`,	𝛽5`, 𝛽=`, 𝛽F` and correct signs will also be noted as this 

provides a necessary condition for the model to be of any use. 

In order to obtain portfolio data, we used Kenneth French’s data library. 

This database provides us with value weighted monthly returns of 32 Portfolios 

Formed on Size, Operating Profitability, and Investment. We used monthly returns 

from July 1963 to January 2019 (667 periods), since it was proven previously in 

our research that the more observations, the better. That’s why it suggests using as 

long time period as possible. 

The portfolios, which are constructed at the end of each June, are allocated 

to two Size groups (Small and Big) using NYSE median market cap breakpoint. 

Stocks in each Size group are allocated independently to four operating profit 

groups (Low OP to High OP for fiscal year t-1) and four Investment groups (Low 

Inv to High Inv for fiscal year t-1) using NYSE quartile breakpoints specific to the 

Size group. Operating profit for June of year t is annual revenues minus cost of 

goods sold, interest expense, and selling, general, and administrative expenses 

divided by book equity for the last fiscal year end in t-1. Investment for June of year 

t is the change in total assets from the fiscal year ending in year t-2 to the fiscal year 

ending in t-1, divided by t-2 total assets. The portfolios for July of year t to June of 

t+1 include all NYSE, AMEX, and NASDAQ stocks for which we have market 

equity data for June of t, (positive) book equity data for t-1, total assets data for t-2 
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and t-1, non-missing revenues data for t-1, and non-missing data for at least one of 

the following: cost of goods sold, selling, general and administrative expenses, or 

interest expense for t-1 (Kenneth R. French, 2019). 

The column titled “SMALL LoOP LoINV” contains the return in year t on 

a value-weighted portfolio that consists of the US stocks with small size (bottom 

50%), low profitability (bottom 25%), and low investment (bottom 25%) in year 

t- 1 (the low investment means low growth rate of total assets from year t-2 to year 

t-1). The next column is the return on a value-weighted portfolio with small size 

(bottom 50%), low profitability (bottom 25%) and the second lowest investment 

group (firms with investment in the 25-50 percentile) in year t-1, the following 

column is of firms with small size, low profitability and thirds lowest investment 

(firms with investment in the 50-75 percentile), the next one is small size, low 

profitability and firms in the top 25% percentile of investment), the next one is small 

firms, profitability in the 25-50 percentile, bottom 25% investment, etc (Computer 

assignment from course GRA 6534 Investments). 

 

4.2 Descriptive statistics 

The data for our research includes 100 US companies from different 

industries such as banking, investment, oil and gas, furniture and others. All 

descriptive statistics for stocks are presented in the Appendix. The average risk-free 

rate for 1986-2018 years is 0.26% with variation from 0.00% to 0.79% (see Figure 

4). Market return varied from -22.64% to 12.89% with mean value of 0.91% (see 

Figure 5). The average return of all companies for this period is equal to 1.28%, 

although there is a large variance between the maximum value of 60.17% and 

minimum value -37.01%. The average standard deviation of all companies is 

10.49%. The highest volatility of returns (31.82%) is presented in Immunomedics 

International company from Biotech and Pharma industry when Adam Express Co 

from Investment industry has the lowest standard deviation (4.47%). Also, the 

returns of these companies for 1986-2018 have average skewness of 0.57 and 

average kurtosis 9.20, which may signalize about non-normality of data, but we will 

check it in the next sections (see Figure 6 and 7). 
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Figure 4: Dynamic of monthly risk-free rate during 1986-2018 years 

Figure 4 presents the monthly measured average risk-free rate for 1986-2018 years 
in the US. Risk-free is the one-month Treasury bill rate. All returns are presented 
in percentage. 

 
Source: Kenneth French’s data library 

 

Figure 5: Dynamic of monthly market return during 1986-2018 years 

Figure 5 presents the monthly market return during 1986-2018 years. The market 
return is the value-weight return of all CRSP firms incorporated in the US and listed 
on the NYSE, AMEX, or NASDAQ that have a CRSP share code of 10 or 11 at the 
beginning of month t, good shares, and price data at the beginning of t, and good 
return data for t. 

 
Source: Kenneth French’s data library 
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Figure 6: Histogram of returns’ skewness during 1986-2018 years 

Figure 6 presents the calculated skewness for 100 individual stocks based on 
historical data 1986-2018 years. 

 
Source: based on data from the Center for Research in Security Prices (CRSP) 

 

Figure 7: Histogram of returns’ kurtosis during 1986-2018 years 

Figure 7 presents the calculated kurtosis for 100 individual stocks based on 
historical data 1986-2018 years. 

 
Source: based on data from the Center for Research in Security Prices (CRSP) 

  

Table with descriptive statistics for 32 value-weighted portfolios is 

presented in the Appendix. 
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4.3 Preliminary analysis 

As described in the section about methodology, we will run the model based 

on the Fama MacBeth procedure. In order to do it, first, excess returns are calculated 

in Excel by the following formulas: 𝑅`a − 𝑅(a- the difference between the stock 

return of each company and risk-free rate; 𝑅,a − 𝑅(a- the difference between the 

return of the market portfolio and the risk-free rate.    

In the model, we will use the second equation above to calculate stochastic 

discount factors for skewness and kurtosis. To sum up, the main goal of this 

research is to check whether the higher moments influence the expected return by 

the investor. We defined four steps and potential results of them: 

1. We will run time-series models for each company in order to generate betas. 

2. We will put these generated betas in cross-section CAPM to receive risk-

premium for systematic volatility. We expect to get a significant and positive 

risk-premium estimate and significant intercept to show that the volatility is not 

only one factor that explains expected return. 

3. If the second step holds, we will repeat the first step adding stochastic discount 

factors for systematic skewness and systematic kurtosis. 

4. In the last step, we will put the betas from previous models to generate risk-

premiums for different risk factors. We expect to receive insignificant intercept, 

which means that we included all factors that explain expected return. Also, the 

risk-premium for systematic skewness should have a negative sign, but the risk-

premium for systematic kurtosis should have a positive sign. 

5. All these steps will be done for different time-periods and we will also consider 

the interaction term between systematic skewness and systematic kurtosis in 

order to find the best model. Moreover, we will use stock data and portfolios 

data separately. All steps will be done in order to choose the best model 

specification. 

 

5. Results and analysis 
 As it was described in the previous sections, the main goal of our research 

is to define the relationships between the expected return and higher-order 

moments. In this section, we will describe the main results of our models. Firstly, 

we will check our data on normality. Secondly, we will run the CAPM with only 
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skewness and kurtosis, and after we will expand this model with the interaction 

term. Also, we will consider different time-periods in the models. 

 

5.1 Test for normality 

As we have already explained in the section about the value of the normality 

test, we need to do it to be sure that the data is abnormal. It is the main point of our 

model. In order to check that point, we used Jargue-Bera test and conducted the test 

in both Matlab and Excel. Firstly, we calculated skewness and kurtosis for each 

stock in Excel. Secondly, we used them to define Jargue-Bera t-statistics based on 

the formula from the previous section. Thirdly, we found critical value for 90%, 

95%, and 99% confidence intervals and rejected the null hypothesis about normality 

when Jargue-Bera t-statistics were higher than critical values. These results are 

presented in the Appendix. We can see that it was rejected the null hypothesis about 

normality for 99 stocks out of 100 based on 99%-confidence interval and for one 

stock we rejected the null hypothesis based on 90%-confidence interval. In addition, 

we repeated the same in Matlab and proved that data is abnormal for 99% of stocks. 

As a result, due to the non-normality of data, we can move to the model. 

 

5.2 CAPM with skewness and kurtosis 

This section presents and discusses the results of our research based on the 

CAPM and the expansion of this model with skewness and kurtosis in order to 

check whether these stochastic factors influence expected stock returns. It is done 

based on the methodology described above. It is used the returns of 100 stocks for 

396 time periods for regressions. 

Firstly, we run the time-series regression for each stock where excess 

returns of stock depend on excess market returns. The results of 100 regressions are 

presented in the Appendix and summary is shown in Table 1 below. 

 

Table 1: Summary of generated market prices for a systematic variance for 

100 stocks  

This table reports a summary of the estimated market prices (𝛽`) for a systematic 
variance under the two-moment CAPM based on time-series regressions for each 
of 100 stocks during 1986-2018. It includes mean, maximum value, minimum value 
and standard deviation for all betas. 
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  Mean  Min  Max Std.Dev 

Two-Moment CAPM: 𝑅`a − 𝑅(a = 𝛼` + 𝛽`+𝑅,a − 𝑅(a. + 𝜀`a    

𝛽` 1.022 0.296 2.355 0.404 

Notes:  𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is a market excess return; 
𝛽` and 𝛼` are parameters estimates. 
 

We can see that all betas are significantly different from zero on 99 % - 

confidence interval (see the Appendix). We will use these betas for the next step in 

order to generate a risk premium for holding systematic variance (see Table 2).  

 

Table 2: Output from running traditional CAPM for generating risk premium 

for holding systematic variance 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step of time-series regressions for 1986-2018. It includes estimated 
coefficients, their standard errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a  

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00341 0.00109 3.12080 0.00237 

𝛾] 0.00665 0.00665 6.68790 0.00000 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.004 

R-squared: 0.313, Adjusted R-Squared: 0.306 

F-statistic vs. constant model: 44.7, p-value = 1.4 ∗ 𝑒MZ� 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

From Table 2, we see that systematic risk explains the excess return of 

chosen companies (p-values is approximately equal to zero). Moreover, systematic 

risk has a positive impact on the excess return of companies, which is compliant 

with economic theory. Furthermore, the systematic variance is not the only factor 

10110701010580GRA 19703



 

Page  
 

32 

that explains the average excess return of companies, since we have significantly 

different from zero intercept on 99 % - confidence level (p-value is 0.002). So, we 

have found empirical evidence that the traditional CAPM should be extended with 

additional factors due to omitted variables problem. The R-squared is equal to 

31.3%, which could seem too high, but according to the analysis of traditional 

CAPM models based on CRSP securities for 1929-2004 years, the R-squared varied 

from approximately 0.1% to 40% (Sanchez, 2015). As a result, we can conclude 

that this value of R-squared is relevant. 

 Secondly, we run a cubic market model consistent with four-moment 

CAPM derived by Fang and Lai (1997) for each stock separately to extend the 

model with systematic skewness and systematic kurtosis. Market prices of the 

systematic variance, systematic skewness and systematic kurtosis obtained by 

running time-series regressions for each stock are presented in the Appendix and 

summary is shown in Table 3 below. 

 

Table 3: Summary of generated market prices for systematic variance, 

systematic skewness and systematic kurtosis for 100 stocks  

This table reports a summary of the estimated market prices for systematic variance 
(𝛽]`), systematic skewness (𝛽5`) and systematic kurtosis (𝛽=`) under the four-
moment CAPM based on time-series regressions for each of 100 stocks during 
1986-2018. It includes mean, maximum value, minimum value and standard 
deviation for all betas. 

  Mean  Min  Max Std.Dev 

Four-Moment CAPM: 
 𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a. − 𝛽5`+𝑅,a − 𝑅(a.

5 + 𝛽=`+𝑅,a − 𝑅(a.
= + 𝜀`a   

𝛽]` 0.967 0.275 2.473 0.450 

𝛽5` 0.739 -9.074 9.892 2.571 

𝛽=` 7.254 -33.109 64.333 14.019 

Notes: 𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is a market excess return; 
+𝑅,a − 𝑅(a.

5 are +𝑅,a − 𝑅(a.
= are stochastic discount factors in the market return. 

 

The betas from Appendix will be used for running cross-sectional regression 

in order to find risk premiums that investors will require for holding stocks 

considering variance, skewness, and kurtosis. The results of this regression are 

shown in the Table 4. 
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Table 4: Output from running expanded CAPM for generating risk premiums 

for holding systematic variance, systematic skewness and systematic kurtosis 

This table reports the estimated risk premium for holding systematic variance, 
systematic skewness and systematic kurtosis under the four-moment CAPM based 
on cross-section regression and betas generated in the previous step of time-series 
regressions for 1986-2018. It includes estimated coefficients, their standard errors, 
test-statistics, and p-values. 

Four-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝜀`a 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00237 0.00133 1.77850 0.07849 

𝛾] 0.00745 0.00119 6.25090 0.00000 

𝛾5 -0.00050 0.00027 -1.83110 0.07019 

𝛾= 0.00014 0.00005 2.80130 0.00616 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.00399 

R-squared: 0.328, Adjusted R-Squared: 0.307 

F-statistic vs. constant model: 15.6, p-value = 2.43 ∗ 𝑒MZ� 

Notes: 𝑟  denotes average excess return of company i;𝛽ef , 𝛽5eh , 𝛽=eh  depict systematic 
variance, systematic skewness, and systematic kurtosis, respectively; 𝛾], 𝛾5, 𝛾= are 
systematic market risk premia for an increase in systematic variance, a decrease in 
systematic skewness, and an increase in systematic kurtosis, respectively. All rates 
in the table are measured in percent per month. 
 

In order to interpret the results of this model, we need to check the next five 

assumptions about the unobservable error term which were described in the section 

about model diagnostics tests. 

 Firstly, the mean of the residuals is equal to zero, as there is an interaction 

term in the model. In addition, we conducted the test and found out that we can’t 

reject the null hypothesis about a zero mean of the residuals. So, the first assumption 

is not violated. Secondly, we need to reject the null hypothesis about 

homoscedasticity of the residuals’ variance, as we received p-value of 0.00002 in 

White’s test. So, the model has a heteroscedasticity problem. In order to solve the 
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problem, we will apply White’s heteroscedasticity consistent standard error 

estimates. The new results are presented in Table 5. Due to fixing the 

heteroscedasticity problem, we received changes in the interpretation of the 

estimators. Systematic skewness became insignificant although it was significantly 

different from zero on 90%-confidence interval. 

 

Table 5: Output from running expanded CAPM for generating risk premium 

for holding systematic variance, systematic skewness, and systematic kurtosis 

respectively with White’s heteroscedasticity consistent standard error 

estimates 

This table reports new values of standard errors, test-statistics and p-values due to 
conducting White’s heteroscedasticity consistent standard error estimates in order 
to eliminate the heteroscedasticity problem in the model. The estimators are the 
same as in the previous table. 

White’s heteroscedasticity consistent standard error estimates 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00237 0.00141 1.67700 0.09674 

𝛾] 0.00745 0.00133 5.59620 0.00000 

𝛾5 -0.00050 0.00035 -1.43300 0.15504 

𝛾= 0.00014 0.00008 1.76590 0.08052 

 

Thirdly, we can conclude that there is no pattern between disturbances 

(residuals) as the p-value is equal to 0.7250, so we cannot reject the null-hypothesis 

about zero autocorrelation in Breusch-Godfrey test. In addition, there is no 

correlation between residuals and independent variables, so the independent 

variables are not stochastic (see Table 6). 

 

Table 6: Correlation matrix between the residuals and the independent 

variables 

This table reports the values of correlation between the residuals and the 
independent variables such as systematic variance, systematic skewness, and 
systematic kurtosis in order to check the third assumption about the residuals in the 
model. 
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Correlation matrix       

 Systematic variance Systematic skewness Systematic kurtosis 

Residuals -0.1187*e-15 0.2356*e-15 0.4067*e-15 

 

Nevertheless, the results of Jarque-Bera test showed that the disturbances 

are not normally distributed as p-value is equal to 0.00013 and we should reject the 

null hypothesis about the normal distribution of the residuals. Also, the histogram 

and time series plot of the estimated residuals are presented in Figures 8 and 9 that 

proves non-normality of the residuals (positive-skewed disturbances). 

 

Figure 8: Time series plot of the estimated residuals in the model 

The figure presents the estimated residuals of the model for different US-listed 
stocks. 

 
 

Finally, we need to check the independent variables on multicollinearity 

with the correlation matrix. Based on the results presented in Table 7, we can 

conclude that there is no problem of multicollinearity between the explanatory 

variables. The correlation between systematic skewness and systematic kurtosis 

achieves 67%, but it is not too high number for model 
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Figure 9: Histogram of the estimated residuals in the model 

The figure presents the frequency of different estimated residuals for US-listed 
stocks in the model. 

 
 

Table 7: Correlation matrix of independent variables 

This table reports the values of correlation between the independent variables such 
as systematic variance, systematic skewness, and systematic kurtosis in order to 
check the problem of multicollinearity in the model. 

Correlation matrix       

    Systematic variance  Systematic skewness    Systematic kurtosis 

Systematic variance 1.0000 0.2759 -0.2626 

Systematic skewness 0.2759 1.0000 0.6706 

Systematic kurtosis -0.2626 0.6706 1.0000 

 

After conducting all diagnostics tests, we can sum up that this model has 

some problems such as heteroscedasticity of the residuals which was fixed and 

abnormal distribution of the residuals. Nonetheless, all other assumptions such as 

zero residuals’ mean, zero autocorrelation between residuals, zero correlation 

between the independent variables and residuals are not violated. Moreover, 

independent variables do not have a high level of correlation too.  
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After conducting White’s heteroscedasticity consistent standard error 

estimates in order to solve the problem of heteroscedasticity, we can interpret the 

results of this model in a such way: the systematic market risk premia for an 

increase in systematic variance is significantly different from zero on 99%-

confidence interval and positively correlated with expected return by investors; the 

systematic market risk premia for a decrease in systematic skewness is not 

significantly different from zero; and the systematic market risk premia for an 

increase in systematic kurtosis is significantly different from zero on 90%-

confidence interval and positively correlated with expected return, which means 

that investors will require a higher premium for stock with excess kurtosis. 

Moreover, the intercept in the model is not significantly different from zero on 95%-

confidence interval as p-value is equal to 0.097, which means that there are no other 

factors that also define expected excess return of the company. Nevertheless, if we 

take 90%-confidence interval, we will conclude that the intercept is not zero. In 

addition, these factors explain the average excess return of companies on 31 % (look 

at adjusted R-square). 

 To sum up, as this model has the problem in diagnostics test and not all 

factors are significant on a 95%-confidence interval, we need to try other 

specification of the model, which is likely to give a better result. One of such 

specifications is CAPM with skewness, kurtosis, and an interaction term between 

them, which is presented in the next section. 

 

5.3 CAPM with skewness, kurtosis, and an interaction term between them 

(1986-2018) 

This section presents and contains a discussion of the results of our research 

based on the expanded CAPM with skewness, kurtosis and interaction term 

between them. It is used the excess monthly return of 100 US companies for 1986-

2018 (396 periods) in regressions.  

Firstly, on the previous stage of our research, we have found empirical 

evidence that systematic risk is not the only factor that explains the excess return of 

companies. 

Secondly, we will extend traditional CAPM with systematic skewness, 

systematic kurtosis and an interaction term between these risk factors. In order to 

do that, we will run 100 cubic market models consistent with four-moment CAPM 

derived by Fang and Lai (1997) for each stock separately. Market prices of the 
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systematic variance, systematic skewness, systematic kurtosis, and interaction term 

between systematic skewness and kurtosis, respectively for each stock are presented 

in the Appendix. The summary for each type of betas is shown in Table 8. These 

betas are obtained by running time-series regressions and only depict different risk 

factors since stochastic discount factors in the market return were used. 

 

Table 8: Summary of generated market prices for systematic variance, 

systematic skewness, systematic kurtosis and an interaction term for 100 

stocks  

This table reports a summary of the estimated market prices for systematic variance 
(𝛽]`), systematic skewness (𝛽5`), systematic kurtosis (𝛽=`) and the interaction term 
between systematic skewness and systematic kurtosis (𝛽F`) based on time-series 
regressions for each of 100 stocks during 1986-2018. It includes mean, maximum 
value, minimum value and standard deviation for all betas. 

 Mean Min Max Std.Dev 

Four-Moment CAPM with interaction term: 
𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a.

− 𝛽5`+𝑅,a − 𝑅(a.
5 + 𝛽=`+𝑅,a − 𝑅(a.

=

+ 𝛽F`+𝑅,a − 𝑅(a.
5+𝑅,a − 𝑅(a.

= + 𝜀`a 

𝛽]` 0.967 0.298 2.710 0.456 

𝛽5` 0.739 -9.023 9.526 2.553 

𝛽=` 7.339 -112.256 114.057 35.191 

𝛽F` -1.661 -1484.060 1824.518 585.182 

Notes: 𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is a market excess return; 
+𝑅,a − 𝑅(a.

5 are +𝑅,a − 𝑅(a.
= are stochastic discount factors in the market return. 

 

We will use these estimated coefficients for running cross-sectional 

regression to find risk premiums that investors should demand for holding stocks 

with variance, skewness, kurtosis, and interaction term between skewness and 

kurtosis (see Table 9).  

Before we can interpret the results of the model, we should check for holding 

of all assumptions underlying the classical linear regression model. So, we will 

check the validity and adequacy of the model.   
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Table 9: Output from running expanded CAPM for generating risk premium 

for holding systematic variance, systematic skewness, systematic kurtosis, and 

an interaction term between systematic skewness and kurtosis respectively 

This table reports the estimated risk premium for holding systematic variance, 
systematic skewness, systematic kurtosis, and systematic skewness and systematic 
kurtosis at once under the four-moment CAPM with interaction term based on 
cross-section regression and betas generated in the previous step of time-series 
regressions for 1986-2018. It includes estimated coefficients, their standard errors, 
test-statistics, and p-values. 
Four-Moment CAPM with interaction term:  

𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝛾F𝛽Feh + 𝜀`a 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00135 0.00127 1.06830 0.28808 

𝛾] 0.00829 0.00113 7.33330 0.00000 

𝛾5 -0.00059 0.00025 -2.32520 0.02219 

𝛾= 0.00018 0.00005 3.74680 0.00031 

𝛾F 0.00001 0.00000 3.91450 0.00017 

Number of observations: 100, Error degrees of freedom: 95 

Root Mean Squared Error: 0.00372 

R-squared: 0.423, Adjusted R-Squared: 0.398 

F-statistic vs. constant model: 17.4, p-value =  9.88 ∗ 𝑒M]] 

Notes: 𝑟  denotes average excess return of company i;	𝛽𝑖f , 𝛽5eh , 𝛽=eh , 𝛽Feh  depict 
systematic variance, systematic skewness, systematic kurtosis, and an interaction 
term between systematic skewness and kurtosis respectively; 𝛾],𝛾5, 𝛾=, 𝛾F are 
systematic market risk premia for an increase in systematic variance, a decrease in 
systematic skewness, and an increase in systematic kurtosis, and an increase in 
interaction between systematic skewness and systematic kurtosis, respectively. All 
rates in the table are measured in percent per month. 
 

The mean of the residuals is equal to zero because there is a constant term 

in the regression. Also, we rejected the assumption that the variance of the residuals 

is constant on 99 % - confidence interval (p-values is equal to 0.0025). That means 

that our model faces with heteroscedasticity problem. We will fix this problem by 

applying White’s heteroscedasticity consistent standard error estimates (see Table 
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10). Moreover, there is no pattern between disturbances (residuals) (p-value is equal 

to 0.7027 and we cannot reject the null-hypothesis in Breusch-Godfrey test that 

there is zero autocorrelation between error terms). Furthermore, there is no 

correlation between the residuals and the independent variables (see Table 11). So, 

the fourth assumption is not violated. Finally, the disturbances are normally 

distributed (p-value is equal to 0.1957 and we cannot reject the null in Jarque-Bera 

test) and the histogram and time series plot of the estimated residuals are presented 

in Figures 10 and 11. These two figures graphically prove that the disturbances are 

normally distributed.  

 

Table 10: Output from running expanded CAPM for generating risk premium 

for holding systematic variance, systematic skewness, systematic kurtosis, and 

an interaction term between systematic skewness and kurtosis respectively 

with White’s heteroscedasticity consistent standard error estimates 

This table reports new values of standard errors, test-statistics and p-values due to 
conducting White’s heteroscedasticity consistent standard error estimates in order 
to eliminate the heteroscedasticity problem in the model. The estimators are the 
same as in the previous table. 

White’s heteroscedasticity consistent standard error estimates 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00135 0.00146 0.92323 0.35815 

𝛾] 0.00829 0.00139 5.97970 0.00000 

𝛾5 -0.00059 0.00030 -1.97310 0.05130 

𝛾= 0.00018 0.00007 2.54570 0.01247 

𝛾F 0.00001 0.00000 2.72430 0.00763 

 

Table 11. Correlation matrix between the residuals and the independent 
variables 
This table reports the values of correlation between the residuals and the 
independent variables such as systematic variance, systematic skewness, systematic 
kurtosis and an interaction term between systematic skewness and systematic 
kurtosis in order to check the third assumption about the residuals in the model. 
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Correlation matrix         

 
Systematic 

variance 

Systematic 

skewness 

Systematic 

kurtosis 

Interaction 
term between 
  systematic 

skewness and 

kurtosis  

Residuals -0.0116*e-14 0.0116*e-14 0.1058*e-14 -0.1156*e-14 

 

Figure 10: Time series plot of the estimated residuals in the model 

The figure presents the estimated residuals of the model for different US-listed 
stocks. 

 
 

Also, we checked the model on multicollinearity between explanatory 

variables (see Table 12). We can observe high correlation only between systematic 

kurtosis and interaction term between systematic skewness and kurtosis. 

Nevertheless, in our case high correlation between these two risk factors can be 

ignored because interaction term directly consists of systematic kurtosis. 
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Figure 11: Histogram of the estimated residuals in the model 

The figure presents the frequency of different estimated residuals for US-listed 
stocks in the model. 

 
 

Table 12: Correlation matrix of independent variables 

This table reports the values of correlation between the independent variables such 
as systematic variance, systematic skewness, systematic kurtosis and an interaction 
term between the systematic skewness and systematic kurtosis in order to check the 
problem of multicollinearity in the model. 

 

Systematic 
variance 

Systematic 
skewness 

Systematic 
kurtosis 

The interaction 
term between 

systematic 
skewness and 

kurtosis 
Systematic 
variance 1.0000 0.2429 -0.2870 0.1912 

Systematic 
skewness 0.2429 1.0000 0.3331 -0.0806 

Systematic 
kurtosis -0.2870 0.3331 1.0000 -0.9199 

Interaction term 
between 

systematic 
skewness and 

kurtosis 0.1912 -0.0806 -0.9199 1.0000 
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To sum up, we made all the diagnostics tests in order to check the estimators. 

Only the second assumption about the constant variance of the residuals is violated, 

but we calculated White’s heteroscedasticity consistent standard error estimates in 

order to solve this problem. We will interpret the model after the implementation 

of White’s heteroscedasticity consistent standard error estimates, because we 

received new increased standard errors for the coefficients, and we would need 

more evidence against the null hypothesis before we would reject it. White’s 

heteroscedasticity consistent standard error estimates only change standard errors 

for coefficients. Firstly, the intercept is equal to zero (p-value is higher than 0.1), 

which means that we added all factors that define excess return charged by 

investors. Moreover, our factors explain the average excess return of companies on 

40 % (look at adjusted R-square). Secondly, all factors are significantly different 

from zero on 95 % - confidence interval (p-value for systematic skewness is 

approximately equal to 0.05). The signs of different risk factors are consistent with 

theory (systematic variance and systematic kurtosis have positive signs, while 

systematic skewness has a negative sign).  

Based on that we can conclude that CAPM with skewness, kurtosis, and an 

interaction term between them is a better specification of the model in comparing 

to the previous one. Firstly, the model with interaction term has higher adjusted R-

square, which means a better explanation of the average excess return of companies. 

Secondly, we have to take into consideration that after calculation of White’s 

heteroscedasticity consistent standard error estimates in the model without 

interaction term, systematic skewness and systematic kurtosis are equal to zero on 

95 % - confidence interval. So, these two factors do not explain the average excess 

return of companies. Nevertheless, in this model, the systematic skewness becomes 

significant after adding the interaction term. It is caused by considering both 

systematic skewness and systematic kurtosis together. In other words, this 

interaction term helps to find how the required return by the investors will be 

changed when the stock has the problems of skewness and excess kurtosis together. 

Based on Appendix, we can say that most of the stocks have skewness and excess 

kurtosis simultaneously. That’s why considering the interaction term between 

systematic skewness and systematic kurtosis improved our model and made the 

factor of systematic skewness significant. 

Moreover, the results of the investigation show that investors expect a lower 

return when the distribution of stock returns demonstrates positive co-skewness.  
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The economic interpretation of this phenomena is very important. Our model 

specifications can also be viewed as competing approximations for the discount 

factor or the intertemporal marginal rate of substitution. A beta coefficient near co-

skewness can be considered as relative risk aversion. A negative beta implies that 

with an increase in the next period's market return, the marginal rate of substitution 

declines. This decline in the marginal rate of substitution is consistent with 

decreasing marginal utility. According to Arrow (1964), nonincreasing absolute 

risk aversion is one of the essential properties for a risk-averse individual. 

Nonincreasing absolute risk aversion for a risk-averse utility-maximizing agent can 

also be linked to prudence as defined by Kimball (1990). Prudence relates to the 

desire to avoid disappointment and is usually linked to the precautionary savings 

motive. Nonincreasing absolute risk aversion implies that in a portfolio an increase 

in total skewness is preferred. Since adding an asset with negative co-skewness to 

a portfolio makes the resultant portfolio more negatively skewed (i.e., reduces the 

total skewness of the portfolio), assets with negative co-skewness must have higher 

expected returns than assets with identical risk-characteristics but zero-co-

skewness. Thus, in a cross section of assets, the slope of the excess expected return 

on conditional co-skewness with the market portfolio should be negative. Thus, the 

premium for skewness risk over the risk-free asset's return (assuming that the risk-

free asset possesses zero betas with respect to all the factors being examined to 

explain the cross-section of returns) should also be negative (Harvey &Siddique, 

2000). 

To sum up, the second model with the interaction term is better and has a 

practical implication in investors’ relationship. That’s why in the next section we 

will use this model to explore different time-horizons.  

 

5.4 CAPM with skewness, kurtosis, and an interaction term between them for 

5 year-horizons 

In this section, we will repeat exactly the same procedure as in the previous 

section. The only difference is that we will use 5 year-horizons in order to find the 

best specification of the model. Based on the theory, there is an assumption that the 

model can give better results if it is based on 5 year-horizons. So, we will check it 

and repeat all steps from the previous section 5 times (1993-1997, 1998-2002, 

2003-2007, 2008-2012, 2013-2017 year). Each model will have 60 observations.  
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The common feature for different time horizons: percentage of abnormal 

data (vary from 34 percent to 53 percent) and percentage of significant betas on the 

first stage is relatively low (if to compare with full data sample where we have 100 

% of significant betas). The first phenomenon looks strange, as theoretically the 

more sample size, the more probably sample distributions will follow a normal 

distribution. We observed a reversed trend. 99 % of monthly stock returns are non- 

normally distributed when we increase the sample size to 396 periods. Now we will 

consider 5 different periods separately. 

1993-1997. We can see that systematic risk explains the excess return of 

chosen companies (p-values is approximately equal to zero) (see Table 13). 

Furthermore, the systematic variance is not the only factor that explains the average 

excess return of companies, since we have significantly different from zero 

intercept on 95 % - confidence level (p-value is 0.02). After expanding traditional 

CAPM with systematic skewness, systematic kurtosis and an interaction term 

between these risk factors, we can observe that systematic skewness is equal to zero 

(p-value is equal to 0.5) and has a wrong positive sign (see Table 14).  

 

Table 13: Output from running traditional CAPM for generating a risk 

premium for holding systematic variance (1993-1997) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step of time-series regressions for 1993-1997. It includes estimated 
coefficients, their standard errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a      

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00504 0.00213 2.36540 0.01998 

𝛾] 0.01051 0.00198 5.31110 0.00000 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.0115 

R-squared: 0.224, Adjusted R-Squared: 0.216 

F-statistic vs. constant model: 28.2, p-value = 6.81 ∗ 𝑒MZ� 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
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Table 14: Output from running expanded CAPM for generating risk 

premiums for holding systematic variance, systematic skewness, systematic 

kurtosis and an interaction term between systematic skewness and kurtosis 

(1993-1997) 

This table reports the estimated risk premium for holding systematic variance, 
systematic skewness, systematic kurtosis and an interaction term between 
systematic skewness and systematic kurtosis at once under the four-moment CAPM 
with interaction term based on cross-section regression and betas generated in the 
previous step of time-series regressions for 1993-1997. It includes estimated 
coefficients, their standard errors, test-statistics, and p-values. 
Four-Moment CAPM with interaction term:  

𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝛾F𝛽Feh + 𝜀`a 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00485 0.00219 2.20840 0.02962 

𝛾] 0.01071 0.00207 5.17880 0.00000 

𝛾5 0.00007 0.00010 0.67536 0.50109 

𝛾= 0.00003 0.00001 4.39010 0.00003 

𝛾F 0.00000 0.00000 3.14470 0.00222 

Number of observations: 100, Error degrees of freedom: 95 

Root Mean Squared Error: 0.0116 

R-squared: 0.232, Adjusted R-Squared: 0.199 

F-statistic vs. constant model: 7.16, p-value = 4.41 ∗ 𝑒MZl 

Notes: 𝑟  denotes average excess return of company i;	𝛽𝑖f , 𝛽5eh , 𝛽=eh , 𝛽Feh  depict 
systematic variance, systematic skewness, systematic kurtosis, and an interaction 
term between systematic skewness and kurtosis respectively; 𝛾],𝛾5, 𝛾=, 𝛾F are 
systematic market risk premia for an increase in systematic variance, a decrease in 
systematic skewness, and an increase in systematic kurtosis, and an increase in 
interaction between systematic skewness and systematic kurtosis, respectively. All 
rates in the table are measured in percent per month. 
 

1998-2002. We can see exactly the same results for traditional CAPM as in 

1993-1997 (see Table 15). In expanded CAPM we observe that all additional risk 

factors are not significantly different from zero (see Table 16). That means that 

systematic risk is not the only factor that explains the average excess return of 
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companies, but expanded CAPM with systematic skewness, systematic kurtosis and 

an interaction term between them looks like a wrong model specification for that 

time period (all additional factors do not contain any significantly different from 

zero information).  

 

Table 15: Output from running traditional CAPM for generating a risk 

premium for holding systematic variance (1998-2002) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step for 1998-2002. It includes estimated coefficients, their standard 
errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a  

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) -0.00285 0.00149 -1.91850 0.05795 

𝛾] 0.01196 0.00143 8.37690 0.00000 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.0107 

R-squared: 0.417, Adjusted R-Squared: 0.411 

F-statistic vs. constant model: 70.2, p-value = 6.81 ∗ 𝑒MZ� 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

Table 16: Output from running expanded CAPM for generating risk 

premiums for holding systematic variance, systematic skewness, systematic 

kurtosis and an interaction term between systematic skewness and kurtosis 

(1998-2002) 

This table reports the estimated risk premium for holding systematic variance, 
systematic skewness, systematic kurtosis and an interaction term between 
systematic skewness and systematic kurtosis at once under the four-moment CAPM 
with interaction term based on cross-section regression and betas generated in the 
previous step for 1998-2002. It includes estimated coefficients, their standard 
errors, test-statistics, and p-values. 
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Four-Moment CAPM with interaction term: 
𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝛾F𝛽Feh + 𝜀`a 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) -0.00117 0.00171 -0.68806 0.49309 

𝛾] 0.00934 0.00168 5.57580 0.00000 

𝛾5 0.00027 0.00030 0.91347 0.36331 

𝛾= 0.00005 0.00004 1.29580 0.19817 

𝛾F 0.00000 0.00000 0.46761 0.64114 

Number of observations: 100, Error degrees of freedom: 95 

Root Mean Squared Error: 0.01 

R-squared: 0.502, Adjusted R-Squared: 0.481 

F-statistic vs. constant model: 24, p-value = 1.01e-13 1.01 ∗ 𝑒M]= 

Notes: 𝑟  denotes average excess return of company i;	𝛽𝑖f , 𝛽5eh , 𝛽=eh , 𝛽Feh  depict 
systematic variance, systematic skewness, systematic kurtosis, and an interaction 
term between systematic skewness and kurtosis respectively; 𝛾],𝛾5, 𝛾=, 𝛾F are 
systematic market risk premia for an increase in systematic variance, a decrease in 
systematic skewness, and an increase in systematic kurtosis, and an increase in 
interaction between systematic skewness and systematic kurtosis, respectively. All 
rates in the table are measured in percent per month. 
 

2003-2007. While we have evidence for extending traditional CAPM with 

additional risk-factors (see Table 17), adding systematic skewness, systematic 

kurtosis and an interaction term between them does not bring any significantly 

different from zero information (see Table 18).  

 

Table 17: Output from running traditional CAPM for generating a risk 

premium for holding systematic variance (2003-2007) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step for 2003-2007. It includes estimated coefficients, their standard 
errors, test-statistics, and p-values. 
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Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a   

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) -0.00285 0.00149 -1.91850 0.05795 

𝛾] 0.01196 0.00143 8.37690 0.00000 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.0147 

R-squared: 0.075, Adjusted R-Squared: 0.0655 

F-statistic vs. constant model: 7.94, p-value = 0.00584 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

Table 18: Output from running expanded CAPM for generating risk 

premiums for holding systematic variance, systematic skewness, systematic 

kurtosis and an interaction term between systematic skewness and kurtosis 

(2003-2007) 

This table reports the estimated risk premium for holding systematic variance, 
systematic skewness, systematic kurtosis and an interaction term between 
systematic skewness and systematic kurtosis at once under the four-moment CAPM 
with interaction term based on cross-section regression and betas generated in the 
previous step of time-series regressions for 2003-2007. It includes estimated 
coefficients, their standard errors, test-statistics, 
 and p-values. 
Four-Moment CAPM with interaction term: 

𝑟 = 𝛾Z + 𝛾]𝛽]eh − 𝛾5𝛽5eh + 𝛾=𝛽=eh + 𝛾F𝛽Feh + 𝜀`a 

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00693 0.00298 2.32410 0.02225 

𝛾] 0.00444 0.00210 2.10970 0.03752 

𝛾5 -0.00002 0.00012 -0.19344 0.84703 

𝛾= 0.00000 0.00001 -0.03059 0.97566 

𝛾F 0.00000 0.00000 -1.22620 0.22314 
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Table 18 (continued)  

Number of observations: 100, Error degrees of freedom: 95 

Root Mean Squared Error: 0.0143 

R-squared: 0.154, Adjusted R-Squared: 0.118 

F-statistic vs. constant model: 4.31, p-value = 0.003 

Notes: 𝑟  denotes average excess return of company i;	𝛽𝑖f , 𝛽5eh , 𝛽=eh , 𝛽Feh  depict 
systematic variance, systematic skewness, systematic kurtosis, and an interaction 
term between systematic skewness and kurtosis respectively; 𝛾],𝛾5, 𝛾=, 𝛾F are 
systematic market risk premia for an increase in systematic variance, a decrease in 
systematic skewness, and an increase in systematic kurtosis, and an increase in 
interaction between systematic skewness and systematic kurtosis, respectively. All 
rates in the table are measured in percent per month. 
 

2008-2012, 2013-2017. We can observe that systematic variance does not 

explain the average excess return of companies for both periods as betas are not 

significantly different from zero (see Tables 19 and 20). As Bartholdy (2015) 

proved that if this value is not significant and positive, then beta is not able to 

explain the excess return on the left-hand side. Thus, the significance of this value 

is a necessary condition for the model to be of any use. Based on that we are not 

allowed to extend the non-working model as even beta alone is not able to explain 

the excess return of chosen companies. That’s why we cannot move to the next step 

of the Fama-MacBeth procedure. One of the reasons that CAPM does not hold may 

be the fact that returns are not normally distributed. 

 

Table 19: Output from running traditional CAPM for generating a risk 

premium for holding systematic variance (2008-2012) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step for 2008-2012. It includes estimated coefficients, their standard 
errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a   

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00627 0.00220 2.84540 0.00540 

𝛾] 0.00252 0.00159 1.58650 0.11584 
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Table 19 (continued) 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.00947 

R-squared: 0.025, Adjusted R-Squared: 0.0151 

F-statistic vs. constant model: 2.52, p-value = 0.116 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

Table 20: Output from running traditional CAPM for generating a risk 

premium for holding systematic variance (2013-2017) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step of time-series regressions for 2013-2017. It includes estimated 
coefficients, their standard errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a   

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00962 0.00240 3.99860 0.00012 

𝛾] 0.00317 0.00186 1.70460 0.09143 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.01 

R-squared: 0.0288, Adjusted R-Squared: 0.0189 

F-statistic vs. constant model: 2.91, p-value = 0.0914 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

Moreover, one of the hypotheses we wanted to test was whether the relations 

between the expected excess rate of return and systematic skewness and kurtosis 

have changed after the financial crisis of 2008. So, we tried to run the Fama-

MacBeth procedure based on data for 2008-2018. The first step gave us evidence 

that traditional CAPM does not work as the market price for systematic variance is 
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not significantly different from zero (see Table 21). As a result, we cannot move to 

the next steps. 

 

Table 21: Output from running traditional CAPM for generating risk 

premium for holding systematic variance after the financial crisis (2008-2018) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
the previous step for 2008-2018. It includes estimated coefficients, their standard 
errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a   

Estimated Coefficients:         

  Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.00905 0.00186 4.87110 0.00000 

𝛾] 0.00026 0.00141 0.18154 0.85632 

Number of observations: 100, Error degrees of freedom: 98 

Root Mean Squared Error: 0.00706 

R-squared: 0.000336, Adjusted R-Squared: -0.00986 

F-statistic vs. constant model: 0.033, p-value = 0.856 

Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾]are parameters estimates. All rates in the table are 
measured in percent per month. 
 

To sum up, we have found empirical evidence that it can be concluded that 

CAPM is not a suitable descriptor of asset prices, especially after the financial 

crisis. Beta stopped to predict excess return at all after the financial crisis. It 

signalizes that investors’ behaviour has changed significantly after the crisis. It 

could be explained by the development of behavioural economics after the financial 

crisis of 2008. It does not mean that investors became irrational, it could be evidence 

that investors started to price other market risk factors.  
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5.5 CAPM with skewness, kurtosis, and an interaction term between them 

(1967-2019) for portfolio data 

In order to consider the whole market, we performed the same procedure as 

with 100 individual stocks, but in this case, we used data of value-weighted monthly 

returns of 32 Portfolios Formed on Size, Operating Profitability, and Investment. 

We took monthly returns from July 1963 to January 2019 (667 periods). Firstly, we 

run a normality test and found that 94 % of data are not normally distributed with a 

95 % confidence interval (see Appendix). Secondly, we run the time-series 

regression for each portfolio where excess returns of stock depend on excess market 

returns. After we used these betas for the next step in order to generate a risk 

premium for holding systematic variance (see Table 22). As we can see beta is not 

significant and positive, which means that beta is not able to explain the excess 

return on the left-hand side. As Bartholdy (2015) proved that the significance of 

this value is a necessary condition for the model to be of any use, we are not allowed 

to move to the next steps of Fama McBeth two-step procedure. 

 

Table 22: Output from running traditional CAPM for generating risk 

premium for holding systematic variance using portfolio data (July 1963-

January 2019) 

This table reports the estimated risk premium for holding systematic variance under 
the two-moment CAPM based on cross-section regression and betas generated in 
time-series regressions for value weighted monthly returns of 32 Portfolios Formed 
on Size, Operating Profitability, and Investment during July 1963-January 2019. It 
includes estimated coefficients, their standard errors, test-statistics, and p-values. 

Two-Moment CAPM: 𝑟 = 𝛾Z + 𝛾]𝛽ef + 𝜀`a   

Estimated Coefficients:       

 Estimate Std.error t-stat p-value 

Intercept (𝛾Z) 0.01039 0.00307 3.38030 0.00203 

𝛾] -0.00327 0.00287 -1.14050 0.26311 

Number of observations: 32, Error degrees of freedom: 30 

Root Mean Squared Error: 0.00255 

R-squared: 0.0416, Adjusted R-Squared: 0.00961 

F-statistic vs. constant model: 1.3, p-value = 0.263 
Notes: 𝑟  denotes average excess return of company i; 𝛽ef  is systematic risk generated 
from equation (9); 𝛾Z and 𝛾] are parameters estimates. All rates in the table are 
measured in percent per month. 
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We can see that portfolio data is not the best variant for running four-

moment CAPM since CAPM does not hold at all. We understand that 100 stocks 

are not enough to describe the whole market, but from econometrics point of view 

these stocks were chosen randomly and we have maximum four independent 

variables. So, portfolio data provide a picture of the whole market, but it causes 

potentially larger efficiency losses versus individual stocks. 

 

6. Conclusions 
The main aim of our research was to investigate how higher order moments 

such as skewness and kurtosis influence investors’ behaviour and their expected 

returns. The motivation of this research question is based on previous investigations 

mentioned in the literature review, namely Harvey&Siddique and Fang&Lai, and 

the importance of defining additional risk factors since traditional CAPM, which 

considers only systematic variance, was criticized a lot. In addition, capital markets 

are developing and the role of risk-return relationship for investors is becoming 

more and more significant.  

Firstly, we found empirical evidence that CAPM is not enough for 

explaining investors’ behaviour in the US context. The intercept that is expected to 

be zero in CAPM is found to be significant, which means that only the variance 

cannot explain the expected return by investors and there are other factors that 

should be significant. This fact signalizes that traditional CAPM should be 

expanded with additional risk factors. 

Secondly, we proved that returns do not follow a normal distribution, so, 

measuring risk requires more than just measuring covariance, and higher order 

systematic co-moments should be important to risk-averse investors who are 

concerned about the extreme outcomes of their investments. If investors know that 

the asset returns have conditional co-skewness and co-kurtosis, expected returns 

should include a component attributable to conditional co-skewness and co-

kurtosis. That’s why we expanded CAPM with systematic skewness and systematic 

kurtosis as additional higher-moments risk factors. 

Our model formalizes this intuition by incorporating measures of 

conditional co-skewness and co-kurtosis. In the absence of normality, investors 

should be very concerned with the shape of the tails of the distribution of portfolio 

returns, which can be measured with a set of higher-order co-moments. Also, we 

found out that investors charge market prices for not only systematic variance, but 
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also systematic skewness and kurtosis. Based on our investigation, investors require 

a higher return for bearing higher systematic variance, negative systematic 

skewness, and higher systematic kurtosis. If investors observe positive systematic 

skewness, investors will require a lower return, since positive systematic skewness 

increases the probability of gains. So, investors are significantly concerned about 

negative systematic skewness, systematic kurtosis and downside risk that increase 

the uncertainty of their expected returns. High covariance, or negative co-skewness, 

or high co-kurtosis assets are undesirable and consequently sell at lower prices, 

producing high expected returns. Moreover, since returns are not normally 

distributed, investors should focus more on downside risk (or negative skewness) 

instead of standard deviations. 

Thirdly, we proved that CAPM with systematic skewness, systematic 

kurtosis, and an interaction term between them is a better specification of the model 

in comparing to the model without the interaction term. The model with the 

interaction term has higher adjusted R-square, which means a better explanation of 

the average excess return of companies. Moreover, after adding the interaction term 

all risk factors became significant. What is more, the interaction term helps to find 

how the required return by the investors will be changed when the stock has the 

problems of skewness and excess kurtosis together. Based on the analysis, most of 

the stocks have skewness and excess kurtosis simultaneously. That’s why 

considering the interaction term between systematic skewness and systematic 

kurtosis was important to improve our model.  

Fourthly, we ran regressions on 5-year time-horizons and a full sample to 

find the best model specification. Since 5-year time-horizons models gave us 

mostly insignificant result or inappropriate estimators, we conclude that the whole 

sample model is a better description of investors’ behaviour. Moreover, we 

performed the same procedure with portfolio data and concluded that even though 

portfolio data provide a picture of the whole market, it causes potentially larger 

efficiency losses versus individual stocks. 

Fifthly, we identified empirical evidence that CAPM is not a relevant 

explanation of asset prices especially after the financial crisis of 2008, systematic 

variance stopped to predict excess return at all after the financial crisis. As 

Bartholdy (2015) proved that if the systematic variance is not significant and 

positive, then beta is not able to explain the excess return. Thus, the significance of 

this value is a necessary condition for the model to be of any use. It signalizes that 
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investors’ behaviour has changed significantly after the crisis. This phenomenon 

could be explained by the development of behavioural economics after the financial 

crisis of 2008. 

Implications: If investors’ preferences contain portfolio skewness and 

kurtosis measures, each stock’s contribution to systematic skewness (co-skewness) 

and kurtosis (co-kurtosis) may determine a stock’s relative attractiveness and 

therefore required return. Our model will be useful for investors as it helps them to 

define the required returns based on historical skewness and kurtosis as now they 

know market premiums of these co-moments. In addition, investors can define 

whether stocks are underpriced or overpriced, which helps them to buy underpriced 

stocks and receive gains in the future. 

As we described in the section about Fama MacBeth procedure, this method 

could have the errors-in-variables problem. However, we did not find enough 

argumentation that the correction for the errors-in-variables problem will 

implement the significant changes to our model. That’s why we recommend trying 

the instrumental variable method for future research as an alternative method to 

OLS estimation. Moreover, we recommend investigating investors’ behaviour after 

the financial crisis of 2008 using another model, namely Fama-French three- or 

five-factor models. Furthermore, since CAPM based on portfolio data did not work, 

we recommend considering all possible stocks with the appropriate time horizon in 

future research. 
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Appendix  
Table 1: Descriptive statistics of companies and stocks’ returns 

This table reports the descriptive statistics of 100 US companies and their stocks’ 
returns for 1986-2018 years which are used for our regression analysis. It includes 
the company name, industry where the company operates, mean, maximum and 
minimum value and standard deviation of returns. In addition, the table presents the 
calculated returns’ skewness, kurtosis, and test-statistics for Jarque-Bera test. 
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ADAMS EXPRESS 
CO 

Investment 0.8 21 -17 4 -0.3 5.4 98.9 *** 

ABBOTT 
LABORATORIES 

Health care 1.3 22 -21 6 -0.2 3.9 16.1 *** 

FIRST FINANCIAL 
BANCORP OHIO 

Banking 1.1 44 -34 7 0.3 8.1 434.6 *** 

FIRST MIDWEST 
BANCORP DE 

Commercial 
Banking, 
Financial 
Services 

0.9 26 -50 8 -0.8 8.9 620.6 *** 

ROGERS CORP Advanced 
Specialty 
Materials 

1.3 54 -33 11 0.4 4.9 69.7 *** 

ROLLINS INC Commercial 
Services 1.3 25 -23 6 0.1 4.5 35.8 *** 

SEABOARD CORP Agriculture 
and Shipping 
Conglomerate 

1.6 74 -33 11 1.1 8.6 596.8 *** 

1ST SOURCE CORP Banking 1.2 45 -26 9 0.6 7.0 288.7 *** 

SHERWIN 
WILLIAMS CO 

General 
building 
materials 

1.5 23 -33 7 -0.3 5.1 76.7 *** 

FLEXSTEEL 
INDUSTRIES INC 

Home & 
Office 
Products 

0.9 39 -25 9 0.4 4.7 55.6 *** 

FOSTER L B CO Manufactured 
Goods 1.2 65 -41 14 0.7 5.4 124.6 *** 

FRANKLIN 
ELECTRIC INC 

Electrical/Elec
tronic 
Manufacturing  

1.5 39 -30 8 0.4 5.7 130.0 *** 

FRANKLIN 
RESOURCES INC 

Financial 
Services 1.6 50 -30 10 0.5 5.7 142.8 *** 

FULLER H B CO Adhesives 1.2 39 -35 9 0.1 4.9 57.3 *** 
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GENTEX CORP Auto Parts 2.1 48 -43 12 0.6 5.0 87.1 *** 

DONNELLEY R R & 
SONS CO 

Commercial 
printing, 
Logistics and 
Supply Chain, 
Digital 
Marketing 

0.3 62 -37 10 0.4 8.4 495.1 *** 

AMREP CORP Land 
Development, 
Media 
Services 

0.9 98 -40 15 1.5 9.3 807.0 *** 

STANDARD 
MOTOR PRODUCTS 
INC 

Automobile 
1.3 57 -45 12 0.3 5.2 86.1 *** 

APACHE CORP Petroleum  1.1 36 -33 10 0.1 3.5 5.3 * 

MATTEL INC Entertainment 0.9 47 -39 10 0.1 5.2 83.5 *** 

BECTON 
DICKINSON & CO 

Medical 
equipment, 
Consulting 

1.4 27 -22 7 0.1 4.6 44.0 *** 

GRACO INC Diversified 
Industrials 1.8 45 -30 9 0.5 7.1 291.0 *** 

BARNES GROUP 
INC 

Manufacturing
, Aerospace 1.2 32 -28 8 -0.1 4.2 24.1 *** 

WEYERHAEUSER 
CO 

Real estate 
investment 
trust 

0.9 29 -37 8 -0.2 4.5 38.3 *** 

INTERNATIONAL 
FLAVORS & FRAG 
INC 

Specialty 
chemicals, 
Research and 
development 

1.0 26 -28 7 -0.3 4.5 43.1 *** 

AVON PRODUCTS 
INC 

Personal 0.7 42 -43 11 -0.1 5.5 107.4 *** 

HAWAIIAN 
ELECTRIC 
INDUSTRIES INC 

Utilities 
0.9 19 -35 5 -0.7 9.7 777.3 *** 

HAVERTY 
FURNITURE COS 
INC 

Furniture 
1.1 41 -34 11 0.3 4.3 34.1 *** 

HEALTHCARE 
SERVICES GROUP 
INC 

Hospitality 
1.5 52 -45 10 -0.1 6.4 185.7 *** 
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PARKER HANNIFIN 
CORP 

Motion and 
control 
technologies 

1.3 37 -37 9 0.2 4.9 63.3 *** 

WEIS MARKETS 
INC 

Retail 0.6 25 -25 6 0.5 5.0 80.1 *** 

WOLVERINE 
WORLD WIDE INC 

Textile 1.5 34 -35 10 -0.1 3.9 14.5 *** 

BARNWELL 
INDUSTRIES INC 

Oil, Gas & 
Coal 0.9 107 -43 13 1.9 16.8 3409.4 *** 

SMUCKER J M CO Packaged 
Foods 1.0 30 -23 7 0.4 4.7 54.8 *** 

MOOG INC Aerospace, 
Defense, 
Industrial 
Automation, 
and Motion 
Control 

1.0 33 -32 8 0.1 5.0 70.1 *** 

MEREDITH CORP Mass media 1.0 51 -31 8 0.7 7.6 381.9 *** 

HUNT J B 
TRANSPORT 
SERVICES INC 

Transportation 
& Logistics 1.5 30 -44 10 -0.1 5.1 70.5 *** 

HUNTINGTON 
BANCSHARES INC 

Banking 1.0 68 -62 9 -0.2 18.0 3705.1 *** 

HURCO COMPANY Scientific & 
Technical 
Instruments 

1.9 85 -48 17 1.4 7.7 499.1 *** 

SYNALLOY CORP Steel 1.5 73 -45 13 0.5 7.2 307.5 *** 

MCDONALDS 
CORP 

Restaurants 1.3 18 -26 6 -0.3 4.0 21.2 *** 

STANDEX 
INTERNATIONAL 
CORP 

Food service 
equipment, 
electronics 
and hydraulics 

1.2 51 -28 9 0.1 6.4 186.6 *** 

V F CORP Apparel, 
Accessories 1.3 35 -30 7 -0.1 4.9 62.1 *** 

IMMUNOMEDICS 
INC 

Biotech & 
Pharma 3.5 423 -55 32 6.3 78.4 96548.5 *** 

BEMIS CO INC Packaging 1.2 26 -26 7 0.2 4.3 33.3 *** 

KENNAMETAL INC Metals 1.1 50 -34 10 0.0 4.8 54.8 *** 
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P & F INDUSTRIES 
INC 

Logistics and 
Supply Chain 1.2 80 -41 14 1.3 8.4 596.7 *** 

TELEFLEX INC Medical 
Device 
Manufacturing 

1.4 28 -36 8 -0.3 4.6 47.4 *** 

INTEGRATED 
DEVICE 
TECHNOLOGY 

Semiconducto
r industry 1.9 66 -47 17 0.4 3.8 21.6 *** 

AUTOMATIC DATA 
PROCESSING INC 

Business 
services 1.3 27 -18 6 0.4 4.4 40.8 *** 

DIODES INC Semiconducto
rs 2.5 109 -53 18 1.4 7.9 522.9 *** 

INVACARE CORP  
Medical 
Devices  

1.0 39 -57 11 0.0 5.1 72.1 *** 

MARSH & 
MCLENNAN COS 
INC 

Insurance 
brokers, 
Professional 
services 

1.1 43 -39 7 0.0 8.9 576.2 *** 

ISRAMCO INC Oil and gas 2.6 167 -62 21 2.3 14.9 2701.1 *** 

SAFEGUARD 
SCIENTIFICS INC 

Venture 
Capital & 
Private Equity 

1.6 90 -45 17 1.3 8.9 688.6 *** 

CLOROX CO Consumer 
household 
products, 
Healthcare, 
Food 

1.3 33 -24 6 0.1 5.3 89.7 *** 

GENUINE PARTS 
CO 

Automotive 1.0 38 -18 6 0.6 7.9 426.3 *** 

CABOT CORP Chemicals 1.3 45 -28 10 0.3 4.7 55.1 *** 

RITE AID CORP Retail 0.7 150 -53 16 2.2 23.3 7116.3 *** 

KAMAN CORP Aerospace 
industry 1.0 46 -39 9 0.0 5.9 138.8 *** 

KELLY SERVICES 
INC 

Staffing and 
Recruiting  0.6 43 -30 9 0.1 5.5 100.6 *** 

NEW YORK TIMES 
CO 

Newspapers 0.7 46 -32 9 0.5 6.1 178.1 *** 

KEY TRONICS 
CORP 

Computer 
peripherals 1.7 373 -58 25 8.6 125.5 252299 *** 
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C N A FINANCIAL 
CORP 

Insurance 0.6 44 -41 8 -0.2 7.8 383.6 *** 

FEDERAL SIGNAL 
CORP 

Public safety 1.1 47 -38 9 0.2 5.0 64.8 *** 

KIMBALL 
INTERNATIONAL 
INC 

Furniture 
1.0 32 -31 10 0.3 4.2 29.1 *** 

KULICKE & SOFFA 
INDS INC 

 
Semiconducto
rs  

2.2 94 -52 19 0.7 5.0 94.3 *** 

LAM RESH CORP Semiconducto
rs 2.4 115 -40 17 1.3 9.6 824.7 *** 

LANCASTER 
COLONY CORP 

Consumer 
Products 1.5 31 -27 7 -0.1 4.5 39.8 *** 

HUMANA INC Managed 
health care 1.6 50 -52 11 -0.3 6.2 180.1 *** 

UNION PACIFIC 
CORP 

Transportation 1.3 22 -34 7 -0.3 4.9 70.0 *** 

LAWSON 
PRODUCTS INC 

Logistics and 
Supply Chain 0.8 30 -33 10 0.1 4.0 16.2 *** 

LINCOLN 
NATIONAL CORP 

Insurance, 
Asset 
management 

1.2 69 -59 10 0.7 14.6 2238.0 *** 

SIFCO INDUSTRIES 
INC 

Metal 1.2 113 -33 15 1.5 11.3 1270.8 *** 

ALEXANDERS INC Real estate 
investment 
trust 

1.1 71 -39 10 1.2 12.9 1719.6 *** 

BLOCK H & R INC Commercial 
Services 1.2 27 -26 8 -0.2 3.7 9.8 *** 

DANAHER CORP Conglomerate 2.0 37 -52 8 0.0 9.0 597.6 *** 

SERVOTRONICS 
INC 

Machinery 1.1 75 -41 14 1.4 7.4 452.1 *** 

LEE ENTERPRISES 
INC 

Media 1.1 166 -61 18 3.9 37.8 20955.0 *** 

M T S SYSTEMS 
CORP 

Scientific & 
Technical 
Instrument 

1.2 35 -31 9 0.1 3.8 10.6 *** 

PENNSYLVANIA 
REAL ESTATE 
INVT TR 

Real estate 
investment 
trust 

0.9 118 -60 11 2.8 38.4 21248.0 *** 
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LILLY ELI & CO Pharmaceutica
ls 1.2 31 -29 7 0.2 4.7 51.4 *** 

SEMTECH CORP Semiconducto
rs 2.4 95 -42 16 1.0 6.2 239.4 *** 

WINNEBAGO 
INDUSTRIES INC 

Manufacturing 1.4 66 -54 14 0.8 6.0 187.6 *** 

SONY CORP Conglomerate 1.0 55 -30 10 0.5 4.8 68.1 *** 

MANITOWOC CO 
INC 

Manufacturing 1.6 82 -40 14 1.0 8.1 485.2 *** 

TERADYNE INC Test & 
Automation 1.6 78 -46 15 0.5 5.2 100.9 *** 

MARCUS CORP Hospitality, 
Entertainment 1.3 50 -36 9 0.4 5.8 140.3 *** 

MARINE 
PETROLEUM 
TRUST 

Oil, Gas & 
Coal 0.8 35 -28 9 0.2 4.3 28.4 *** 

SERVICE CORP 
INTERNATIONAL 

Death care 1.3 120 -58 13 2.3 26.0 9058.8 *** 

SYSCO CORP Wholesale 1.3 26 -24 6 -0.1 3.9 14.5 *** 

MCCORMICK & CO 
INC 

Processed & 
Packaged 
goods 

1.4 28 -21 6 0.0 4.8 51.2 *** 

JACOBS 
ENGINEERING 
GROUP INC 

Engineering, 
Architect, 
Construction 

1.7 58 -33 10 0.6 6.0 176.6 *** 

SUPERIOR 
INDUSTRIES INTL 
INC 

Automotive  
0.9 41 -42 10 -0.1 4.5 39.2 *** 

EQUIFAX INC Credit risk 
assessment 1.3 34 -26 8 0.0 4.5 36.0 *** 

COCA COLA 
BOTTLING CO 
CONS 

Food 
processing 0.8 33 -28 8 0.1 4.3 27.2 *** 

DYCOM 
INDUSTRIES INC 

Telecommuni
cations  2.0 74 -55 16 0.5 5.0 80.5 *** 

G A T X CORP Railway 
Equipment 
Leasing 

1.2 49 -28 9 0.4 6.0 161.8 *** 

GENERAL 
DYNAMICS CORP 

Aerospace, 
Defense, 
Shipbuilding 

1.3 34 -28 7 -0.1 5.3 84.6 *** 
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GENERAL 
ELECTRIC CO 

Conglomerate 0.7 25 -27 7 -0.3 4.5 44.2 *** 

Average - 1 60 -37 10 0.6 9.2 4383.7 - 

Notes: * indicates a significance level of 0.1; ** indicates a significance level of 
0.05; *** indicates a significance level of 0.01.  
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Table 2: Descriptive statistics of 32 portfolios’ returns 

This table reports the descriptive statistics of 32 portfolios’ returns for 1963-2019 
years which are used for our regression analysis. It includes the portfolio name, 
mean, maximum and minimum value and standard deviation of returns. In addition, 
the table presents the calculated returns’ skewness, kurtosis, and test-statistics for 
Jarque-Bera test. 
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SMALL LoOP LoINV 1,1 43 -32 7 0,1 3,7 15,0 *** 
ME1 OP1 INV2 1,3 32 -32 6 -0,2 3,0 4,0 

 

ME1 OP1 INV3 1,0 28 -33 7 -0,2 0,8 138,8 *** 
SMALL LoOP HiINV 0,4 35 -35 8 -0,2 2,6 8,6 ** 
ME1 OP2 INV1 1,3 27 -33 6 -0,5 3,1 30,1 *** 
ME1 OP2 INV2 1,3 25 -26 5 -0,5 3,4 34,9 *** 
ME1 OP2 INV3 1,3 24 -28 5 -0,4 1,2 107,4 *** 
ME1 OP2 INV4 1,0 27 -33 6 -0,5 2,0 54,0 *** 
ME1 OP3 INV1 1,5 24 -28 6 -0,5 2,3 37,3 *** 
ME1 OP3 INV2 1,3 25 -22 5 -0,4 1,6 77,0 *** 
ME1 OP3 INV3 1,3 26 -25 5 -0,4 1,0 137,0 *** 
ME1 OP3 INV4 1,1 27 -32 6 -0,5 2,0 52,8 *** 
SMALL HiOP LoINV 1,6 27 -26 6 -0,3 3,0 13,5 *** 
ME1 OP4 INV2 1,4 25 -29 5 -0,5 3,3 28,9 *** 
ME1 OP4 INV3 1,4 28 -26 5 -0,5 2,8 24,1 *** 
SMALL HiOP HiINV 1,1 29 -32 6 -0,5 3,5 30,2 *** 
BIG LoOP LoINV 1,0 19 -27 5 -0,3 1,3 92,6 *** 
ME2 OP1 INV2 0,7 20 -36 5 -0,8 3,6 83,5 *** 
ME2 OP1 INV3 0,9 22 -21 5 -0,3 4,0 36,4 *** 
BIG LoOP HiINV 0,8 18 -26 6 -0,5 1,0 137,1 *** 
ME2 OP2 INV1 1,0 20 -18 4 -0,1 3,3 3,4 

 

ME2 OP2 INV2 0,9 14 -18 4 -0,4 2,7 18,3 *** 
ME2 OP2 INV3 1,0 18 -27 5 -0,5 2,1 48,6 *** 
ME2 OP2 INV4 0,7 22 -22 5 -0,2 1,9 37,7 *** 
ME2 OP3 INV1 1,1 22 -20 4 -0,2 5,9 240,4 *** 
ME2 OP3 INV2 1,0 17 -18 4 -0,3 2,8 9,4 *** 
ME2 OP3 INV3 0,8 20 -21 4 -0,3 1,0 116,7 *** 
ME2 OP3 INV4 0,9 25 -27 5 -0,3 2,1 35,8 *** 
BIG HiOP LoINV 1,1 17 -23 4 -0,3 0,5 183,9 *** 
ME2 OP4 INV2 1,0 14 -23 4 -0,4 0,4 205,4 *** 
ME2 OP4 INV3 0,9 19 -23 4 -0,4 0,6 180,2 *** 
BIG HiOP HiINV 1,0 20 -23 6 -0,3 3,1 9,6 *** 

Notes: * indicates a significance level of 0.1; ** indicates a significance level of 
0.05; *** indicates a significance level of 0.01.  
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Table 3: Generated market prices for a systematic variance for 100 stocks  
This table reports the estimated market prices for systematic variance (𝛽]`) based 
on time-series regressions of traditional CAPM for each of 100 stocks during 1986-
2018.  

Two-Moment CAPM: 𝑅`a − 𝑅(a = 𝛼` + 𝛽`+𝑅,a − 𝑅(a. + 𝜀`a    

Estimated Coefficients (𝛽`): 

0,882*** 0,58*** 0,559*** 0,806*** 1,027*** 0,472*** 0,804*** 0,669*** 

1,112*** 0,717*** 1,428*** 0,973*** 1,279*** 1,198*** 0,913*** 1,247*** 

0,7*** 1,034*** 1,028*** 1,247*** 0,813*** 1,136*** 0,296*** 0,881*** 

0,515*** 1,006*** 0,823*** 0,482*** 0,794*** 1,051*** 1,053*** 0,986*** 

0,715*** 0,795*** 0,941*** 2,355*** 0,821*** 1,264*** 0,66*** 0,928*** 

1,868*** 0,883*** 0,822*** 0,953*** 2,072*** 0,607*** 0,677*** 1,158*** 

1,03*** 1,138*** 1,57*** 1,012*** 1,01*** 0,894*** 2,308*** 2,105*** 

0,854*** 0,756*** 1,382*** 1,164*** 0,718*** 0,635*** 1,063*** 0,687*** 

1,051*** 0,697*** 1,364*** 1,599*** 1,115*** 1,624*** 2,058*** 1,022*** 

0,709*** 0,527*** 0,979*** 1,089*** 0,893*** 0,553*** 1,673*** 1,119*** 

0,918*** 0,896*** 0,614*** 1,216*** 2,052*** 1,28*** 0,605*** 1,295*** 

0,683*** 0,832*** 1,242*** 1,086*** 0,845*** 0,886*** 0,925*** 0,901*** 

0,493*** 0,832*** 1,086*** 1,131***     

Notes:  𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is market excess return; 
𝛽` and 𝛼` are parameters estimates. 
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Table 4: Generated market prices for systematic variance, systematic 

skewness and systematic kurtosis for 100 stocks  

This table reports the estimated market prices for systematic variance (𝛽]`), 
systematic skewness (𝛽5`) and systematic kurtosis (𝛽=`) based on time-series 
regressions of expanded CAPM for each of 100 stocks during 1986-2018.  
Four-Moment CAPM:  

𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a. − 𝛽5`+𝑅,a − 𝑅(a.
5 + 𝛽=`+𝑅,a − 𝑅(a.

= + 𝜀`a, 

Estimated Coefficients (𝛽]`): 

0.911*** 0.552*** 0.717*** 0.809*** 1.084*** 0.397*** 0.816*** 0.701*** 

0.779*** 0.589*** 0.946*** 0.652*** 1.419*** 0.817*** 1.054*** 1.187*** 

0.784*** 1.238*** 0.75*** 0.555*** 0.692*** 0.87*** 1.002*** 1.172*** 

0.716*** 1*** 0.275*** 0.693*** 0.3680 1.096*** 0.413*** 0.966*** 

0.681*** 0.427*** 0.714*** 0.98*** 1.055*** 1.077*** 1.006*** 1.273*** 

0.729*** 0.689*** 0.828*** 2.473*** 0.724*** 1.297*** 0.544*** 0.806*** 

2.262*** 0.798*** 1.959*** 0.805*** 0.813*** 0.4040 2.192*** 0.552*** 

0.631*** 1.085*** 1.08*** 0.801*** 0.922*** 1.036*** 1.381*** 1.128*** 

0.954*** 0.831*** 2.373*** 2.089*** 0.42*** 0.733*** 0.765*** 0.744*** 

1.367*** 1.186*** 0.739*** 0.582*** 0.815*** 0.554*** 1.376*** 0.816*** 

0.981*** 0.627*** 1.616*** 1.421*** 1.148*** 1.699*** 2.051*** 0.993*** 

0.421*** 1.159*** 0.559*** 0.441*** 1.077*** 1.029*** 0.835*** 0.516*** 

1.719*** 1.036*** 0.766*** 1.081***     

Estimated Coefficients (𝛽5`): 

-0.061 1.399 0.378 -1.255 -3.092* 0.421 -0.671 -1.477 

1.897* 0.953 3.166 -0.153 2.858* 1.603 0.492 2.11 

-4.071 2.714 0.587 1.8 -2.408** 2.848** -0.365 2.345** 

2.73*** -0.036 -0.045 2.887 -0.459 2.507* 0.313 -2.782* 

-3.558 -0.762 -1.723 1.235 -0.988 0.504 2.631 -5.79*** 
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Table 4 (continued) 

-0.557 0.65 -0.256 6.581 3.426*** -0.11 -9.074*** 0.029 

0.814 3.081*** -0.677 0.201 1.418 4.52 -0.937 1.72 

1.648* 3.31** 9.892*** -0.089 2.225 3.818** 7.656* -0.431 

-1.073 0.38 3.927 4.309 1.034 -1.189 0.369 0.491 

-0.719 -2.916 -1.557 -0.225 1.061 -0.044 3.067 -2.36 

3.237* 0.789 1.918 6.077** -1.262 1.537 3.541 -0.742 

2.453 -1.488 2.179** -0.036 0.72 0.425 -0.661 -1.673 

0.358 1.626 0.108 2.7***     

Estimated Coefficients (𝛽=`): 

-2.974 6.415 -14.118* -3.591 -13.578 8.244 -2.845 -6.956 

18.26*** 11.49 24.151 5.87 8.343 19.086* 22.814* 6.621 

1.607 7.985 15.485 31.236*** -5.602 23.142*** 1.475 13.336* 

16.411** 12.959 1.892 25.551** 22.28* 20.498** 10.562 -3.52 

4.212 3.265 3.094 10.022 -2.738 -7.389 26.998 -33.109** 

-2.81 11.78 10.179 6.115 18.253** -3.395 -12.858 11.831 

-17.955 12.588** -10.442 8.013 4.583 64.333** -13.939 9.755 

8.745 15.636 45.147** 7.859 16.232* 19.858** 38.24 -12.232 

2.537 6.994 4.136 12.878 20.409** 15.249 9.499 2.408 

-0.446 -9.769 -6.047 4.443 26.511*** 12.558 0.304 1.944 

15.21 8.764 -19.047 33.069** -6.414 -3.173 10.07 0.816 

13.303 -10.918 20.136*** 8.147 -7.469 6.905 3.737 -0.9 

-3.41 12.176 6.552 11.812*     

Notes: 𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is market excess return; 
+𝑅,a − 𝑅(a.

5 are +𝑅,a − 𝑅(a.
= are stochastic discount factors in the market return. 
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Table 5: Generated market prices for systematic variance, systematic 

skewness, systematic kurtosis and combination of systematic skewness and 

systematic kurtosis for 100 stocks  

This table reports the estimated market prices for systematic variance (𝛽]`), 
systematic skewness (𝛽5`), systematic kurtosis (𝛽=`) and a combination of 
systematic skewness and systematic kurtosis (𝛽F`) based on time-series regressions 
of expanded CAPM with an interaction term for each of 100 stocks during 1986-
2018.  
Four-Moment CAPM with interaction term: 

𝑅`a − 𝑅(a = 𝛼` + 𝛽]`+𝑅,a − 𝑅(a.

− 𝛽5`+𝑅,a − 𝑅(a.
5 + 𝛽=`+𝑅,a − 𝑅(a.

=

+ 𝛽F`+𝑅,a − 𝑅(a.
5+𝑅,a − 𝑅(a.

= + 𝜀`a 

Estimated Coefficients (𝛽]`): 

0,817*** 0,65*** 0,602*** 0,787*** 1,13*** 0,421*** 1,03*** 0,824*** 

0,845*** 0,559*** 1,009*** 0,859*** 1,257*** 0,825*** 0,885*** 1,11*** 

0,755** 1,327*** 0,756*** 0,468*** 0,687*** 0,713*** 0,934*** 1,085*** 

0,713*** 0,794*** 0,298*** 0,736*** 0,623*** 1,114*** 0,535*** 1*** 

0,718*** 0,493*** 0,813*** 0,931*** 0,832*** 1,085*** 1*** 1,287*** 

0,726*** 0,691*** 0,807*** 2,71*** 0,878*** 1,373*** 0,587** 0,953*** 

2,238*** 0,779*** 1,79*** 1,106*** 0,744*** 0,418 2,217*** 0,589*** 

0,673*** 1,093*** 0,772*** 0,754*** 0,674*** 0,997*** 1,031** 0,92*** 

0,872*** 0,83*** 2,578*** 2,098*** 0,429*** 0,424** 0,957*** 0,96*** 

1,05*** 1,149*** 0,779*** 0,706*** 1,021*** 0,45 1,525*** 0,787*** 

0,791*** 0,652*** 2,046*** 1,274*** 1,09*** 1,427*** 2,077*** 1,062*** 

0,545*** 1,221*** 0,523*** 0,497*** 1,046*** 0,997*** 0,783*** 0,742*** 

1,694*** 0,898*** 0,855*** 0,99***     

Estimated Coefficients (𝛽5`): 

-0,173 1,515 0,241 -1,281 -3,037 0,449 -0,417 -1,331 

1,976* 0,917 3,241 0,093 2,665* 1,612 0,292 2,018 
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Table 5 (continued)  

-4,105 2,819 0,594 1,697 -2,415** 2,662* -0,446 2,242* 

2,726*** -0,28 -0,017 2,938 -0,156 2,528* 0,459 -2,743* 

-3,515 -0,683 -1,606 1,176 -1,253 0,513 2,624 -5,773*** 

-0,56 0,652 -0,281 6,864 3,609*** -0,02 -9,023*** 0,205 

0,785 3,059*** -0,877 0,558 1,336 4,537 -0,907 1,764 

1,697* 3,319** 9,526*** -0,145 1,931 3,772** 7,24 -0,679 

-1,171 0,378 4,171 4,321 1,045 -1,556 0,597 0,748 

-1,096 -2,96 -1,51 -0,077 1,307 -0,167 3,244 -2,395 

3,011 0,818 2,429 5,903** -1,33 1,214 3,572 -0,66 

2,601 -1,415 2,136** 0,03 0,682 0,388 -0,722 -1,405 

0,328 1,462 0,214 2,591**     

Estimated Coefficients (𝛽=`): 

17,399** -14,842 10,861 1,212 -23,597 3,239 -49,209 -33,442 

3,936 18,039 10,431 -38,985* 43,444* 17,352 59,299* 23,427 

7,801 -11,131 14,27 49,989* -4,455 57,171** 16,221 32,063* 

17,132 57,593* -3,09 16,324 -32,873 16,556 -15,99 -10,768 

-3,761 -11,045 -18,211 20,79 45,521* -9,175 28,245 -36,094 

-2,238 11,482 14,643 -45,408 -15,122 -19,845 -22,088 -20,12 

-12,785 16,647 26,111 -57,208* 19,493 61,355 -19,459 1,722 

-0,3 14,022 111,962** 18,056 69,819*** 28,207 114,057 32,91 

20,424 7,322 -40,318 10,737 18,403 82,106*** -32,185* -44,382 

68,279** -1,723 -14,705 -22,442 -18,296 35,102 -32,118 8,32 

56,345* 3,35 -112,256** 64,832 6,049 55,712 4,365 -14,026 
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Table 18 (continued) 

-13,57 -24,264 27,86* -3,89 -0,66 13,798 14,998 -49,853** 

1,963 42,111* -12,785 31,694*     

Estimated Coefficients (𝛽F`): 

-398,8*** 416,109 -488,95 -94,017 196,11 97,968 907,553 518,427 

280,37 -128,197 268,559 878,02** -687,09 33,94 -714,18 -328,956 

-121,24 374,186 23,77 -367,077 -22,444 -666,08 -288,66 -366,564 

-14,12 -873,688 97,53 180,605 1079,58* 77,166 519,73 141,885 

156,063 280,111 417,04 -210,789 -944,66* 34,948 -24,412 58,419 

-11,208 5,835 -87,39 1008,529 653,3* 322,01 180,673 625,43* 

-101,204 -79,451 -715,5 1276,67** -291,84 58,293 108,05 157,236 

177,05 31,595 -1307,9 -199,605 -1048,9** -163,42 -1484,06 -883,63** 

-350,133 -6,422 870,16 41,908 39,256 -1308,7** 815,9** 915,891* 

-1345,3*** -157,497 169,47 526,27 877,07** -441,293 634,646 -124,817 

-805,207 105,975 1824,5** -621,73 -243,953 -1152,63* 111,664 290,523 

526,026 261,247 -151,19 235,61 -133,294 -134,94 -220,439 958,21** 

-105,189 -585,967 378,52 -389,17     

Notes: 𝑅`a − 𝑅(a denotes excess return of asset i; 𝑅,a − 𝑅(a is market excess return; 
+𝑅,a − 𝑅(a.

5 are +𝑅,a − 𝑅(a.
= are stochastic discount factors in the market return. 
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