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Abstract 
 

This research paper examines to what extent information in the term structure can predict 

macroeconomic variables. We use Norwegian interest rates in the period April 2001 to 

December 2018 to investigate the forecast performance on inflation and unemployment. By 

using the Nelson-Siegel model as the core of the analysis, we derive a factor model. Further, 

by comparing this to an autoregressive benchmark model, we find that the level and slope 

factors are the most valuable factors when forecasting inflation and that the curvature factor is 

the most valuable factor when forecasting unemployment.
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1 Introduction 
 
To what extent can information in the term structure of interest rates predict 

macroeconomic variables? Previous studies on the relation between the yield curve 

and the macroeconomy show that the behavior of the yield can be relevant for 

forecasting business cycles (Soares, Martins, and Aguiar-Conraria, 2010). Business 

cycles are hard to predict, but certain measures, such as economic indicators, can 

provide signals about the progress of business cycles. In recessions, yields on short-

term bonds tend to be low while yields on long-term bonds tend to be high, which 

results in upward sloping yields curves (Ang, Piazzesi, and Wei, 2004). Since 

recessions are usually followed by periods of rapid growth, upward sloping yields 

can also indicate better times tomorrow. Based on this intuition, many researchers 

have used the shape of the yield curve as a leading economic indicator in models to 

predict the main macroeconomic variables.   

 

In this paper, we will investigate the relation between the yield curve and 

macroeconomic variables such as the rate of inflation and the unemployment rate. 

This relation can be interesting for policymakers in Norway, as it can be valuable 

for the forecasting of potential forthcoming movements in the business cycle. We 

will use the yields on Norwegian government bonds and Norwegian Interbank 

Offered Rates (NIBOR) to represent the Norwegian yield curve. 

 

Building on the classic work of Nelson and Siegel (1987), extended to a dynamic 

framework by Diebold and Li (2006), we will start to measure the shape of the 

Norwegian yield curve by adopting a decomposition of the curve into three latent 

factors, called level, slope, and curvature. This method has a long tradition in the 

finance literature as the factors together explain almost all of the cross-sectional 

variation of interest rates (Moench, 2012). Further, we will perform ordinary least 

squares (OLS) regressions with the latent factors as the independent variables, and 

then use the estimates to predict the macroeconomic variables. Our goal is to 

provide a characterization of the interactions between the yield curve and the 

macroeconomy by focusing on out-of-sample forecasts rather than in-sample 

forecasts. This is because an in-sample fit does not necessarily say much about a 

model’s forecast performance, which is what we want to evaluate.  
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We compare our model’s forecast performance to the performance of an 

autoregressive benchmark model, by looking at the Root Mean Squared Forecast 

Error (RMSFE) and the Cumulative Sum of Squared Forecast Error Difference 

(CSSED). These are two different forecast evaluation statistics that can give us 

information on whether or not we should include information of the yield curve 

when forecasting inflation and unemployment. We perform iterative forecasts one 

to twelve months ahead in a rolling window scheme. 

 

First, we find that our model has an overall poor out-of-sample performance relative 

to the benchmark model when including all the three Nelson-Siegel factors. 

However, when looking at the relative RMSFE, we find the level factor and the 

slope factor to be linked to inflation when forecasting at certain horizons. The 

relative RMSFE also show that the curvature factor is related to unemployment, 

independent of the forecast horizon. The latter contrasts with what is found in most 

previous research regarding the curvature factor, which tend to conclude that this 

factor happens to be the least predictive. Further, when looking at the CSSED over 

time, our results show that there are only specific periods in which the factor model 

and the autoregressive model show clearly different results. 

 

There is a large literature that investigates the forecasting of future business cycles 

using the term structure of interest rates. When examining the correlations between 

the three Nelson-Siegel factors and macroeconomic variables, Diebold, Rudebusch, 

and Aruoba (2005) finds that the level factor is highly correlated with inflation, and 

the slope factor is highly correlated with real activity. Aguiar-Conraria, Martins, 

and Soares (2012) also finds the slope factor to have some relevance to 

unemployment. It is harder to establish a relation between the curvature factor and 

the macroeconomic variables, but this factor has received increased attention in 

recent research. Modena (2008) suggests that the curvature factor could be a 

coincident indicator of economic activity. A change in the curvature could affect 

both the slope and the level factors and lead to a fall in real output. Other 

researchers, such as Aguiar-Conraria, Martins, and Soares (2012), claim that there 

is a reason to believe that the curvature factor relates significantly to 

unemployment. This statement is also supported by our results, in which the model 

including the curvature factor shows better performance when forecasting 

unemployment at all horizons. 
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Our research paper will proceed as follows. We review earlier literature on the 

relation between the factors and macroeconomic variables in section 2 and present 

the theoretical framework in section 3. In section 4, we present the data we use, and 

in section 5 we extract the three Nelson-Siegel factors level, slope, and curvature. 

Section 6 describes the empirical framework we use when forecasting the 

macroeconomic variables, focusing on the two forecast evaluation statistics. We 

present our forecasting results in section 7 and conclude in section 8. Finally, the 

references are listed in section 9. 
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2 Literature Review 
 

Some of the literature regarding the financial perspective is presented by Dai and 

Singleton (1998), who introduces the affine class of asset pricing. However, this 

way to describe the yield curve does not give proper insight to the underlying 

economic forces that cause movements. Researchers, therefore, started to include 

macroeconomic variables into the yield curve models. In fact, it is found that the 

yield curve conveys information about the development of economic activity, 

inflation, and monetary policy (Moench, 2012). The yield curve variation is 

captured by the three unobservable factors level, slope, and curvature, which will 

be featured in the following. 

 

The level factor is strongly associated with the target of inflation (Afonso and 

Martins, 2012). Diebold et al. (2005) shows that a surprise increase in actual 

inflation will result in a long-run boost to the level factor. This comes from the fact 

that a surprise increase in inflation indicates an expectation of higher future 

inflation, and that an increase in the level factor may be indicated as higher inflation 

expectations. According to Barr and Campbell (1997), long-term expected inflation 

explains almost 80% of the movements in long yields. 

 

The slope factor has a close relationship to monetary policy instruments. Also, 

Estrella and Mishkin (1998) and Wheelock and Wohar (2009) find that the slope 

factor outperforms other factors when forecasting output growth and recessions. 

The relation between the slope and the output growth is shown through the fact that 

unexpected increases of the slope factor are followed by an immediate decline in 

output (Moench, 2012). The term spread, i.e., the difference between long rates and 

short rates, is also useful to predict future GDP growth according to Hamilton and 

Kim (2000). The higher the slope or term spread, the larger GDP growth is expected 

to be in the future (Ang, Piazzesi, and Wei, 2004).  

 

The literature does not provide a clear interpretation of the curvature factor. Some 

researchers, such as Moench (2012), finds the curvature factor to have predictability 

about the future evolution of the yield curve and the macroeconomy. Other 

researchers find that it has a poor significance in case of forecasting macroeconomic 

variables.  
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These three factors are important to understand future economic activity. The level 

factor captures expected long-run inflation, and the slope factor may be used to 

forecast GDP growth, monetary policy instruments, recessions, and expansions. 

Although the curvature factor has no clear interpretation in the literature, the sum 

of the three factors gives the best overview of the expectation information contained 

in the yield curve. Chauvet and Senyuz (2016) finds that the components of the 

yield curve contain information that is useful for the forecasting of recessions and 

expansions. Also, Marcelle and Zeynep (2016) shows that components of the yield 

curve, especially the slope factor, provides information that is useful for forecasting 

business cycle turning points. However, even though the yield curve is a statistically 

significant predictor of future activity, the predictive power of the term spread is 

not stable over time, as found in Chauvet and Potter (2001). 
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3 Theoretical Framework  
 

3.1 The Term Structure of Interest Rates  

The term structure of interest rates measures the relationship among interest rates 

or bond yields that have different terms to maturity. It has become one of the most 

popular leading indicators of economic activity, and it plays a central role in an 

economy. The term structure of interest rates can be described using the yield curve, 

which is the line that plots maturity against yields for different bonds on a given 

date. Thus, yield to maturity is used to compare bonds of different coupons and 

maturity. Fixed-income securities that make a single payment at a specified future 

date are known as zero-coupon securities (Campbell, 1995). The price of a zero-

coupon bond can be found using the formula 

 

𝑍𝑒𝑟𝑜	𝐶𝑜𝑢𝑝𝑜𝑛	𝐵𝑜𝑛𝑑	𝑉𝑎𝑙𝑢𝑒 = 	 0
(234)6

  (3.1) 

 

where F is the face value of the bond, r is the yield, and t is the time to maturity. A 

zero-coupon bond is a bond that pays one lump sum at maturity, called the face 

value, instead of paying coupon payments. Zero-coupon bonds always show yields 

to maturity equal to their normal rates of return, in which the yield to maturity is 

often referred to as the “spot-rate”.  

 

U.S. Treasury securities is a frequently reported yield curve. It is often used as a 

benchmark for other debt in the market, comparing the three-month, two-year, five-

year, and thirty-year U.S Treasury debt (Campbell, 1995). Figure 3.1 shows U.S 

Treasury yield curves for four different dates, taken from Wolf Street (2018). 
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Figure 3.1 – US Treasury Yield Curves 

 
 

The horizontal axis shows the maturity of the different bonds, with the short 

maturities to the left and the long maturities to the right. The vertical axis is the 

annualized interest rates, which makes it easy to see how much you will get by 

investing bonds with different maturities. For instance, by looking at the figure, one 

can see that the spread between the one-month yield and the five-year yield on the 

9th of February 2018 was 1.23%. 

  

The shape of the yield curve may reflect expectations of future interest rate changes 

and business cycles. The yield curve is normally upward-sloping since long-term 

rates tend to be higher than short-term rates, representing positive yield spreads. 

This is typically the case when an economy seems to be in a good state. An upward-

sloping yield curve is also a hallmark at the end of recessions and in the early stages 

of economic expansions when short term interest rates are at relatively low levels. 

The additional interest in the higher long-term rates is to compensate for the risk 

that strong economic growth could set off a rise in prices, i.e., inflation. Hence, the 

slope of the yield curve will stay positive in the case when the market expects 

inflationary pressures in the future (Phillips, 2018). However, at the end of 

expansions, the slope of the curve tends to flatten out or become inverted, which 

indicates a market expectation of weak economic activity in the future, and thereby 

a fall in interest rates (Chauvet and Senyuz, 2016). 
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3.2 Macro-finance 

Macro-finance addresses the link between asset prices and macroeconomic 

variables (Cochrane, 2016). One popular way to analyze the movements in the yield 

curve is to do it within a financial perspective, in which the changes are captured in 

a no-arbitrage framework where yields are linear functions of a few unobservable 

or latent factors (Rudebusch and Wu, 2008). However, these no-arbitrage models 

do not provide sufficient information about the underlying forces that drive 

movements in interest rates. To include this information into the fundamental 

drivers of the yield curve, macroeconomic variables can be combined with the 

financial model (Rudebusch, 2010). This combination of the two perspectives 

results in the basis of the macro-finance literature. 

 

In a no-arbitrage model of the term structure, the model is estimated using data on 

yields but not on macroeconomic variables. This financial perspective states that 

the short-term interest rate is a linear function of some latent and unobserved 

factors, but with no economic interpretation. The long rates are risk-adjusted 

averages of expected future short rates and are related to the same unobserved 

factors (Rudebusch, 2010). This is different from the macroeconomic perspective. 

To understand the yield curve and its movements from a macroeconomic point of 

view, one uses the short-term interest rates set by the central bank and the 

expectation hypothesis of the term structure. Here, long-term yields are driven by 

expectations of future short-term interest rates, which depends on the expectations 

of the macroeconomic variables (Rudebusch, 2010). 

 

Together, these two perspectives provide an explanation of the movements in the 

short rates, by the understanding of how central banks control the short rate in 

response to fundamental macroeconomic shocks. Additionally, because of the 

consistency between the short rates and the long rates, the expected future 

macroeconomic variations should be a good predictor for movements later in the 

yield curve (Rudebusch and Wu, 2008). 

 

To explain the link between asset prices and the macroeconomy, the predictive 

effect for future asset returns is central. It is known that financial market variables 

have predictive power for future macroeconomic variables. Higher current expected 

returns are consistent with improving conditions, such as higher future output and 
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consumption growth. Correspondingly, a higher risk is consistent with declining 

conditions, like lower future economic activity (McMillan, 2018). 

 

3.3 Nelson-Siegel Model  

When it comes to investigating yield-curve dynamics, researchers have produced a 

vast amount of literature with many different models. Nelson and Siegel (1987) 

introduced a parametrically parsimonious model for yield curves that is able to 

represent the shapes – monotonic, humped, and S-shaped – that are generally 

associated with yield curves. During a certain period, they found that the model 

explains 96% of the variation in bill yields across different maturities. These results 

suggest that the model captures some essential features of the relationship between 

yield and maturity. This model, known as the Nelson-Siegel model, has become 

widely used among financial market practitioners and central banks as it provides 

an extremely good fit to the cross-section of yields in many countries (Christensen, 

Diebold, and Rudebusch, 2008). The Nelson-Siegel curve can be represented with 

the functional form 

 

𝑦(𝜏) 	= 	𝛽: 	+ 	𝛽2 <
2=>?@A

BC
D +	𝛽E <

2=>?@A

BC
−	𝑒=BCD   (3.2) 

 

where y(𝜏) is the zero-coupon yield, represented as a function of maturity 𝜏, while 

𝛽: , 𝛽2 , 𝛽E , and 𝜆 are model parameters (Christensen, Diebold, and Rudebusch, 

2008). 𝛽: is independent of time to maturity, and it is often interpreted as the long-

term yield. 𝛽2  is weighted by a function of time to maturity. This function 

exponentially decays to zero as 𝜏 grows, which makes 𝛽2 impact mostly at the short 

end of the curve. This function is also unity for 𝜏 = 0. 𝛽E  is also weighted by a 

function of 𝜏 , but this function is zero for 𝜏  = 0, before it increases and then 

decreases back to zero as 𝜏 grows. Thus, this function adds a hump to the curve. 

The functions multiplied with the coefficients are called loadings and show how 

much a one-percentage point increase in either of the coefficients, for a given 

maturity, will affect the zero-coupon yield. The parameter 𝜆 determines the position 

of the hump, i.e., it affects the loadings for 𝛽2	and 𝛽E (Gilli, Grosse, and Schumann, 

2010). 
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Based on the work of Nelson and Siegel (1987), Diebold and Li (2006) introduced 

a dynamic model to describe the yield curve over time and to show that it 

corresponds exactly to a statistical three-factor model. They show that the three 

coefficients in the Nelson-Siegel curve may be interpreted as latent level, slope, and 

curvature factors of the yield curve. Such a dynamic Nelson-Siegel model is easy 

to estimate and has resulted in good empirical performance (Christensen, Diebold, 

and Rudebusch, 2008). The dynamic representation of Diebold and Li (2006) 

contained a replacement of the beta parameters with factors that varies over time: 

 

𝑦(𝜏) 	= 	 𝐿I 	+ 	𝑆I <
2=>?@6A

B6C
D +	𝐶I <

2=>?@6A

B6C
−	𝑒=B6CD  (3.3) 

 

where they interpret Lt, St, and Ct as the Nelson-Siegel factors level, slope, and 

curvature, which have different impact responses to the yield curve. The names 

describe how the yield curve shifts or changes shape in response to a shock. 

Including such time-varying factors makes it possible to understand the evolution 

of the bond market over time (Christensen, Diebold, and Rudebusch, 2008). 

 

In this representation of the model, 𝜆I determines the exponential decay rate of the 

loading of the level factor. Small values of 𝜆I results in a slow decay, which will be 

a better fit to the curve at long maturities. Large values of 𝜆I, however, will generate 

faster decay and will better fit the curve at short maturities. Additionally, the 

parameter also determines the maturity where the curvature factor has its maximum 

loading. Following standard practice in the literature, we have chosen 𝜆I to equal 

0.0609 in our model (Diebold and Li, 2006). This is the value that maximizes the 

loading of the curvature factor at exactly 30 months, which corresponds to the line 

showing the curvature factor in figure 3.2. Fixing parameter 𝜆I at a prespecified 

value makes it easier to estimate the remaining parameters Lt, St, and Ct. We plot 

the three factor loadings in figure 3.2, using 𝜆 = 0.0609.  
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Figure 3.2 – Factor loadings from the Nelson-Siegel model 

 
 

The level factor, Lt, is the blue line in the figure, which influences interest rates at 

all maturities in the same way with its loading equal to one. Hence, a one percentage 

point increase in the level factor will lead to a one percentage point increase in all 

interest rates. Lt may, therefore, be interpreted as the overall level of the yield curve 

(Martins and Afonso, 2010). The red line is the slope factor, St, which has a 

maximum loading equal to one at the shortest maturity, 𝜏 = 0. The loading will then 

decline towards zero as the maturity increases. This means that a change in St will 

have a larger impact on the interest rates on short-term bonds relative to the interest 

rates on long-term bonds, which leads to a change in the slope of the yield curve. 

The last factor is the curvature, Ct, shown as the yellow line in the figure. This factor 

has a loading equal to zero at the shortest maturity and increases until an 

intermediate maturity. After that, the loading gets smaller and smaller as the 

maturity increases. A change in Ct will, therefore, lead to a change in the shape of 

the yield curve. 
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4 Data 
 

4.1 Yield Data 

We use two different interest rates in our study. For the interest rates with short 

maturities, we use Norwegian Interbank Offered Rate (NIBOR). NIBOR is a 

collective term for Norwegian money market rates with different maturities (NoRe, 

2017). For the long maturities, we use data on Norwegian government bond yields. 

All yields are continuously compounded and collected from Bloomberg, which is a 

platform that provides real-time and historical data on different topics. The data is 

collected end-of-month spanning from April 2001 until December 2018, including 

a total of 213 monthly observations. We have collected yields for maturities 1, 3, 6, 

12, 24, 36, 48, 60, and 120 months. Hence, the term structure information is 

extracted from a wide range of maturities.  

 

Figure 4.1 – A surface plot of the yield data  

 
 

In figure 4.1, we provide a three-dimensional plot of our yield curve data. The plot 

represents simultaneously the cross-section point of view, i.e., the yield on a given 

date as a function of the time to maturity, as well as the time series point of view, 

i.e., the yield of a given maturity as a function of the date. The first thing to notice 

is that yields vary significantly over time, with a maximum value of 7-8% in 2001. 

Especially in the period 2007-2009, the interest rates appeared to be volatile, and 

remarkable high during the financial crisis in 2008. This is clearly visible in the 
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figure, showing a gradual rise in all yields before and during the crisis. We also see 

that there is a stronger correlation between rates with similar maturities. This 

indicates that some common factors affect the movements of the yield curve. The 

descriptive statistics for the monthly yields at different maturities are shown in 

table 4.1.  

 

Table 4.1 – Descriptive statistics 

 
 

We see from table 4.1 that the long rates are less volatile and more persistent than 

the short rates. It is often the case that the mean is increasing in maturity, but this is 

not fully present among the medium-term rates in our data. The reason for this may 

be that the interval from 2001-2018 includes several volatile periods regarding the 

Norwegian economy. Especially the financial crisis in 2008 had a major economic 

impact, resulting in a recession. 

 

Long yields are a risk-adjusted average of expected short yields. Hence, there exists 

a reason to assume that the standard deviation should decrease as maturity increases 

(Rudebusch and Wu, 2008). We see that this corresponds to our results as well, with 

the exception of 48 months, showing a standard deviation of 1.830. Our results also 

show a decreasing interval between minimum and maximum yields as the maturity 

increases. 

 

The last three columns display the autocorrelation coefficients for each maturity. 

Yields for all maturities seem to be persistent, with the short-term yields being the 

least persistent, showing first-order autocorrelations of 0.975 and 0.977. However, 

these are still highly persistent, which is essential for econometric analyses 

(Koopman, Mallee, and van der Wel, 2007). 

 

 

Maturity (months) Mean Std. dev Minimum Maximum 
1 2.850 1.987 0.620 7.720 0.975 0.558 0.006
3 2.962 1.964 0.770 7.690 0.977 0.551 -0.010
6 3.061 1.929 0.860 7.810 0.977 0.553 -0.007
12 2.612 1.916 0.381 7.337 0.977 0.619 0.124
24 2.666 1.830 0.328 7.125 0.978 0.676 0.231
36 2.795 1.753 0.440 7.041 0.979 0.713 0.304
48 2.666 1.830 0.328 7.125 0.978 0.676 0.231
60 3.074 1.667 0.954 6.954 0.979 0.749 0.398
120 3.520 1.516 1.021 6.822 0.980 0.762 0.448

!"(1) !"(12) !"(30) 
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Table 4.2 – Correlation Matrix 

 
 

In table 4.2, showing the correlation between yields with different maturities, we 

see that all the yields are relatively highly correlated, with correlation coefficients 

between 0.831 and 1. As substantiated by the plot of the yield data in figure 4.1, 

the correlation matrix also indicates that rates with similar maturities are stronger 

related. 

 

4.2 Macro Data 

Our macroeconomic data includes a measure of unemployment and a measure of 

price inflation. The specific sample period, starting in 2001, is chosen based on the 

monetary policy in Norway. Norway introduced an inflation target as part of its 

monetary policy framework at the end of March 2001. The previous years were, 

therefore, a period of transition and instability when it came to the monetary policy 

in Norway, as the Norwegian authorities replaced a fixed exchange rate regime with 

an inflation-targeting regime. Using data after this period will increase the 

probability that our data is collected from a stable period and give us more 

representative data. 

 

Inflation is defined as the yearly percentage change in the consumer price index 

(CPI), collected from the Organization for Economic Co-operation and 

Development (OECD). The data shows the monthly CPI, from April 2001 to 

December 2018. Regarding unemployment in Norway, there are two different 

measures to take into account. One applies to those registered as job seekers at 

NAV, while the other is a number based on a questionnaire published by Statistics 

Norway, called the Labour Force Survey (LFS). LFS provides the most 

comprehensive picture of total unemployment as it also includes the part that is job 

seekers, but not registered at NAV. Hence, LFS will show higher unemployment. 

Maturity (months) 1 3 6 12 24 36 48 60 120
1 1
3 0.997 1
6 0.991 0.997 1
12 0.971 0.970 0.972 1
24 0.948 0.944 0.945 0.992 1
36 0.925 0.919 0.920 0.978 0.995 1
48 0.948 0.944 0.945 0.992 1,000 0.995 1
60 0.887 0.880 0.880 0.946 0.975 0.990 0.975 1
120 0.842 0.832 0.831 0.902 0.939 0.962 0.939 0.990 1
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However, we will use data for registered unemployment to avoid any sample 

uncertainty. In fact, NAV unemployment has shown smaller short-term fluctuations 

than LFS unemployment (Nordbø, 2016). The development of the variables during 

the sample period are shown in figure 4.2. 

 

Figure 4.2 – Inflation and unemployment during the sample period 

(a) Inflation    (b) Unemployment 

 

As we see from figure 4.2, both variables have a visible variation over the period 

2001-2018. These variations can be explained by the many unexpected events 

during the sample period, influencing both inflation and unemployment. 
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5 Estimation of the Nelson-Siegel Model  
 

5.1 Extracting the factors 

We start by adopting a decomposition of the yield curve into three latent factors – 

level, slope, and curvature – using the Nelson-Siegel model shown in equation 3.3. 
Fixing parameter lt at the prespecified value substantiated in section 3.3, l = 

0.0609, makes us able to compute the values of the two factor loadings. Therefore, 

instead of estimating all the parameters using nonlinear least squares, we can now 

use ordinary least squares to estimate only the factors – Lt, St, Ct – for each month 

t. This gives us a time-series of estimates of the three factors. Doing it this way has 

several advantages. In addition to making it easier to estimate the three factors, it 

also facilitates highly precise estimation by replacing a large number of potentially 

challenging optimizations with trivial least-squares regressions. This will, however, 

depend on lambda being an appropriate value. 

 

Figure 5.1 reports the estimated factors as obtained from the Nelson-Siegel latent 

factor model. We see that the level factor is most persistent, while the slope and the 

curvature factors are more volatile. 

 

Figure 5.1 – Level, slope, and curvature 
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The descriptive statistics of the three estimated factors are presented in table 5.1, 

with the last three columns showing sample autocorrelations at displacements of 1, 

12, and 30 months. We see that the level factor is more persistent relative to the 

slope and the curvature factors. 

 

Table 5.1 – Descriptive statistics for level, slope, and curvature 

 
 

These observations are in line with some of the historical stylized facts concerning 

the yield curve, which state that spread dynamics are less persistent than yield 

dynamics and that long rates are more persistent than short rates (Diebold and Li, 

2006). In our framework, a strong persistence of the level factor corresponds to 

persistent yield dynamics. Correspondingly, weaker persistence of the slope factor 

can be interpreted as less persistent spread dynamics. We also know that the level 

factor is closely related to long-term yields. Since the level factor appears to be the 

most persistent factor, our results suggest that long-term yields will be more 

persistent than short-term yields. 

 

In the literature, the three factors have been interpreted as the long-term, short-term, 

and medium-term components of the yield curve (Diebold and Li, 2006). The long 

term factor is closely related to the yield curve level, which many researchers define 

as the 10-year yield, yt(120). The slope factor, however, can be interpreted as the 

short-term factor. Some authors such as Frankel and Lown (1994) represent the 

yield curve slope as the spread between long-term yields and short-term yields, 

yt(120) – yt(1), which turns out to give a number close to the slope factor, but with 

opposite sign. Finally, the medium-term factor is related to the curvature factor, 

which is defined in the literature as twice the 2-year yield minus the sum of the 1-

month and 10-year yield. In figure 5.2, the estimated factors obtained from the 

Nelson-Siegel model are compared with the common empirical level, slope, and 

curvature from our data. 

 

 

 

Factor Mean Std. Dev Minimum Maximum 
Level 3.996 1.457 1.336 6.906 0.977 0.756 0.555
Slope -0.901 1.370 -4.132 3.645 0.955 0.138 -0.448
Curvature -2.993 1.923 -8.986 1.832 0.901 0.244 -0.168

!"(1) !"(12) !"(30) 
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Figure 5.2 – Model-based level, slope, and curvature (i.e., estimated factors) 

vs. data-based level, slope, and curvature  

(a) Level, with proxy from data 

 
 

(b) Slope, with proxy from data  

 
 

(c) Curvature, with proxy from data 
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The figure confirms our assertion about the high correlation between our three 

estimated factors and our data-based proxies. Panel (a) shows that the level factor 

is very close to the 120-months yield, with a correlation of 0.9717. Panel (b) shows 

that the slope factor is highly related to the spread of 120- and 1-month yields, with 

a correlation of -0.9807. Lastly, panel (c) displays a close relationship between the 

curvature factor and the 24-months yield minus the 1- and 120-months yield, with 

a correlation of 0.9847. More significant deviations are, however, observed in 

certain periods, probably due to more volatile periods in the Norwegian economy, 

such as the financial crisis.	

 

As discussed earlier in this paper, it has been shown in past research (e.g., Diebold 

and Li, 2006) that the three Nelson-Siegel factors together explain almost all of the 

cross-sectional variation of interest rates of different maturities over time. This 

conclusion is confirmed by our results reported in table 5.2, which lists the nine 

different maturities of yields used in our analysis. The three columns to the right 

contain the cumulative shares of variance for each maturity, explained by the 

estimated factors level (L), slope (S), and curvature (C). It is clear that all yields, 

independent of maturity, are almost entirely explained by the three factors, with the 

level factor explaining the largest share and the curvature factor explaining the 

smallest. This indicates that almost no information about yield curve dynamics is 

left out when using the three factors further in our analysis. 

 

Table 5.2 – Yields and share of variance explained by the estimated factors 

 
 

Further, table 5.2 suggests that the longer the maturity of the yield, the more of the 

variation is explained by the level factor. This result should be expected since the 

level factor is closely related to long-term yields. In contrast, we see that the slope 

factor explains more of the variation in yields with shorter maturities. Therefore, 

Maturity L L,S L, S, C
1 month 0.5597 0.9939 0.9968
3 months 0.5380 0.9963 0.9996
6 months 0.5260 0.9867 0.9944
12 months 0.6248 0.9337 0.9975
24 months 0.7058 0.9175 0.9994
36 months 0.7676 0.9150 0.9987
48 months 0.7058 0.9175 0.9994
60 months 0.8697 0.9417 0.9988
120 months 0.9442 0.9705 0.9992
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the two factors together contain valuable information about movements in yields, 

especially for yields with a very short or a very long maturity, which is shown in 

the third column of table 5.2. By adding the curvature factor, the results indicate 

that between 99.44-99.66% of the variation in yields, dependent on maturity, is 

explained by the three factors. These observations are in line with what has already 

been documented in previous studies, in which the three factors have been 

interpreted as long-term, short-term, and medium-term. 

 

5.2 Relation Between the Factors and the Macroeconomic Variables  

In the previous section, we extracted the three Nelson-Siegel factors and showed 

that these factors capture almost all of the variation in the yield curve. In this 

section, we will examine whether or not the yield curve conveys information about 

inflation and unemployment by looking at the correlation between the three factors 

and the two macroeconomic variables. 

 

The statistics reported in table 5.3 give us information about the degree of co-

movement between each of the macroeconomic variables and the yield curve’s 

three components – level, slope, and curvature – over different lag/lead lengths. 

 

Table 5.3 – Cross-correlation tables of inflation and unemployment 

 
 

The contemporaneous correlation coefficients are shown in the x(t) column and tell 

us how much the time series are related to each other at the same point in time. A 

number close to one in absolute value indicates that there is a strong co-movement 

between the two time series. Whether the co-movement is positive or negative 

depends on the sign of the correlation coefficient. A value close to zero implies that 

the yield factor does not vary contemporaneously with the particular 

Variable x x(t-7) x(t-6) x(t-5) x(t-4) x(t-3) x(t-2) x(t-1) x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5) x(t+6) x(t+7)

Level -0.219 -0.223 -0.224 -0.212 -0.195 -0.178 -0.154 -0.130 -0.113 -0.101 -0.086 -0.061 -0.034 -0.010 0.018
Slope 0.258 0.291 0.311 0.315 0.308 0.309 0.314 0.305 0.271 0.225 0.163 0.091 0.017 -0.043 -0.097
Curvature 0.095 0.071 0.052 0.031 -0.003 -0.005 -0.027 -0.055 -0.081 -0.114 -0.140 -0.161 -0.167 -0.157 -0.163

(b) Cross Correlation of unemployment with

Variable x x(t-7) x(t-6) x(t-5) x(t-4) x(t-3) x(t-2) x(t-1) x(t) x(t+1) x(t+2) x(t+3) x(t+4) x(t+5) x(t+6) x(t+7)

Level 0.364 0.353 0.341 0.327 0.313 0.298 0.281 0.266 0.247 0.227 0.205 0.184 0.163 0.144 0.124
Slope -0.324 -0.374 -0.422 -0.469 -0.511 -0.550 -0.582 -0.607 -0.621 -0.628 -0.628 -0.621 -0.609 -0.591 -0.569
Curvature -0.274 -0.282 -0.285 -0.284 -0.275 -0.260 -0.237 -0.216 -0.184 -0.145 -0.099 -0.056 -0.012 0.022 0.053

(a) Cross Correlation of inflation with
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macroeconomic variable in any systematic way. In that case, the two time series 

happen to be uncorrelated. We can see from the table that the slope factor is the 

yield component that has the strongest contemporaneous co-movement with both 

inflation and unemployment, relative to the level and curvature factor.  

 

The remaining columns of the table also report correlation coefficients, but with a 

lead/lag relationship. That is, the time series of the yield factors have been shifted 

one to seven months either backward or forward, relative to the macroeconomic 

variables. These numbers carry some information about the co-movements with the 

macroeconomic variables, but they also indicate which of the two time series that 

leads the other. 

 

By looking at the level factor in panel (b), we can see that the largest coefficient is 

in column x(t-7) and that the correlation decreases as we move to the right. This 

indicates that the level factor is stronger related to future unemployment, and we 

say that the level factor leads the macroeconomic variable. In panel (a), the slope 

appears to be positively correlated to inflation, with the largest coefficient in 

column x(t-4). This indicates that the slope factor leads inflation and tend to peak 

about four months before inflation. The level factor also leads inflation, but by 

about five months. In contrast, a series that lags the macroeconomic variable would 

have the largest correlation coefficient in the column corresponding to x(t+j), where 

j > 0.  This will be the case for the slope factor in panel (b), which tend to peak 2-3 

months after unemployment. The curvature factor is the yield component that is 

least correlated with both inflation and unemployment. However, one cannot expect 

to find any systematic relation between this factor and the two macroeconomic 

variables, as the curvature factor tends to capture the smallest part of the variation 

in yields.  
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6 Empirical Framework 
 

In this section, we will turn to the specifics related to the methodology of our 

forecasting and explain the two criteria we use to evaluate the forecasting 

performance of the models.  

 

6.1 Out-of-sample Forecasting  

While the in-sample statistics cover t = 1,…,T for which we have observations, the 

out-of-sample statistics cover T+h where h = 1,…,H, for which we do not yet know 

the true values (Bjørnland and Thorsrud, 2015). Researchers are usually more 

interested in looking at a model’s out-sample forecast performance rather than its 

in-sample performance when measuring a model’s ability to predict. In fact, a good 

in-sample fit of forecasting models has in many settings proven to be a poor 

indicator of forecast performance. Thus, we choose to focus on out-of-sample 

performance when predicting inflation and unemployment, using an iterative 

forecasting model. 

 

6.2 Rolling Window 
One of the most accurate ways to compare models and forecast out-of-sample is 

using rolling windows. By using rolling window estimation, one uses a fixed 

number of the most recent observations rather than all available observations 

(Inoue, Jin, and Rossi, 2016). This method is often used when parameter instability 

is suspected, which is considered as a crucial issue in forecasting.  

 

A common alternative to rolling statistics is to choose an expanding window, using 

all available data at any point of time. In general, it is not easy to say that one of 

these methods is better than the other, as it depends on the specific empirical 

application and on the properties of the time series data (Bjørnland and Thorsrud, 

2015). Our choice to adopt a rolling window approach is motivated by the fact that 

expanding windows do not take into account the possibility of structural breaks. If 

structural breaks characterize a particular time series, such as the financial crisis, 

using the full historical data series to estimate a forecasting model may lead to 

forecast errors that are no longer unbiased (Pesaran and Timmermann, 1999). 
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For rolling estimation, different window lengths lead to various forecast 

performances. More extended rolling window sizes are in general in the position to 

yield more precise estimates. However, a large window may result in too few 

estimates to enable us to test the forecast accuracy of our model. It will, therefore, 

be necessary to find a balance to fulfill this trade-off, since there is no strict criterion 

for selecting the window size in rolling window estimation (Balcilar, Ozdemir, and 

Arslanturk, 2010). We therefore use 60 observations, which we believe will give us 

an appropriate window size. Our goal is to forecast inflation and unemployment 

between time t and t+h, using information up to time t. 

 

6.3 Out-of-sample Forecast Criteria 
To evaluate the out-of-sample forecast, we applicate measures to be able to assess 

how good the model is. In the following, we present two measures used to examine 

the accuracy of the forecasting model when it comes to the overall forecast 

performance, as well as its forecast performance over time. 

 

6.3.1 RMSFE 

To evaluate whether or not we have a good forecasting model, we need to compare 

the value of our loss function with the loss function of another model. The root 

mean squared forecast error (RMSFE) is a symmetric loss function that is by far the 

most commonly used evaluation method for forecast accuracy. It simply measures 

the size of the forecast error by taking the square root of the mean squared error 

(Bjørnland and Thorsrud, 2015): 

 

𝑅𝑀𝑆𝐹𝐸 = 	O𝐸[(𝑒I3Q)E] = 	O𝐸[(𝑦I3Q − 𝑦SI3Q)E]  (6.1) 

 

where the forecast error, et+h, is a measure of the difference between the actual and 

the predicted value of a time series. A low RMSFE value indicates a better forecast 

performance, as we want the forecast error to be as small as possible. 

 

6.3.2 CSSED  

In addition to measuring the overall forecast performance using RMSFE, we will 

also evaluate the model’s out-of-sample performance over time relative to the 

AR(p) model. This will be done by looking at the Cumulative Sum of Squared 
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Forecast Error Difference (CSSED), which is another forecast evaluation statistic. 

Our CSSED statistics are computed as 

 

𝐶𝑆𝑆𝐸𝐷U,I3Q = 	∑ (�̂�YU,I3ZE − �̂�U,I3QE[=Q
I\]: )   (6.2) 

 

where �̂�bm,t+h is the forecast error of the benchmark model and �̂�m,t+h is the forecast 

error of the factor model, in period t+h. The time span of the forecasting is denoted 

by t and T-h, with t being the start of the forecasting period and T-h being the end. 

For this measure, an increasing curve of CSSED means that the factor model 

outperforms the benchmark model in the particular period, while a falling curve of 

CSSED means that the benchmark model has the best forecasting performance. 
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7 Empirical Results  
 

7.1 Benchmark Model 

The yield curve is only one set of predictive instruments available to forecast 

macroeconomic variables. To compare our out-of-sample forecasts, we choose to 

use the autoregressive (AR) process as the benchmark model in our analysis, since 

this is a model that has been widely used for forecasting. In fact, it is shown that if 

one uses a stable autoregressive process like the AR(p), and use the conditional 

expectations to derive the predictor, the forecasts will on average be equal to the 

true value. The AR(p) is defined as a time series process that links the value of a 

variable y, at time t, to its value in previous periods, t-i, and a random disturbance 

e, also at time t (Bjørnland and Thorsrud, 2015): 

  

𝑦I = ∑ 𝜙_𝑦I=_
`
_\2 +	𝑒I    (7.1) 

 

Under the assumption of stationarity, we will estimate AR(p) models using OLS 

with 60 observations at a time in a rolling window scheme, explained earlier. We 

will evaluate whether or not our model is better at forecasting the macroeconomic 

variables relative to the AR(p) model by comparing the values of the RMSFE, as 

well as looking at the CSSED. 

 

7.1.1 Model Selection 

The model selection involves the task of selecting a model from a set of candidate 

models. The most commonly used methods to select the best model is the Akaike 

Information Criterion (AIC) and the Bayesian Information Criterion (BIC). These 

methods give a measure of how good our models are in regard to what we aim to 

find (Bjørnland and Thorsrud, 2015). AIC and BIC can be written as: 

 

𝐴𝐼𝐶(𝑝) = ln <eef(`)
[

D + (𝑝 + 1) E
[
    (7.2) 

 

𝐵𝐼𝐶(𝑝) = ln <eef(`)
[

D + (𝑝 + 1) hi	([)
[

   (7.3) 

 

where SSR(p) = ∑ 𝜀Î𝜀Î[
I\2 . 
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In the process of selecting the number of lags to include in the AR(p) model, we 

have to choose a lag-length that contributes to remove autocorrelation in the 

residuals. Too few lags might result in autocorrelated residuals and omission of 

valuable information. On the other hand, too many lags might lead to additional 

estimation error in the model, which means that the parameter estimates become 

more uncertain (Bjørnland and Thorsrud, 2015). Using the two criteria together is 

suggested to give the best result in the model selection process. 

 

Table 7.1 - AIC and BIC for the different models with different lag-lengths 

 
 

The results shown in table 7.1 suggest that the most accurate way to forecast 

inflation is by using a model with two lags when forecasting inflation, emphasized 

by the lowest values for AIC, -10.5479, and BIC, -10.5956. This indicates that two 

lags should be enough to remove autocorrelation in the residuals. 

 

When forecasting unemployment, the recommended lag length from AIC and BIC 

is mismatched. The AIC suggests a model including four lags, with an AIC value 

of -14.4930, while the lowest BIC value of -14.6151 indicates that a model 

including eight lags should be used. Since several researchers argue that one should 

not choose only one of the criteria in favor of the other, we choose to continue with 

both the model with four lags and the model with eight lags in our analysis. As 

provided in the literature, more lags may imply less parameter uncertainty. The case 

where either AIC or BIC suggests a model of more lags could therefore indicate a 

more robust model (Aguiar-Conraria, Martins, and Soares, 2012). 

AIC BIC
1-lag -10.4670 -10.4986
2-lags -10.5479 -10.5956
3-lags -10.5203 -10.5841
4-lags -10.4941 -10.5740
5-lags -10.4734 -10.5696
6-lags -10.4448 -10.5575
7-lags -10.4159 -10.5451
8-lags -10.4219 -10.5678

1-lag -14.3699 -14.4015
2-lags -14.3599 -14.4075
3-lags -14.4526 -14.5163
4-lags -14.4930 -14.5730
5-lags -14.4847 -14.5810
6-lags -14.4688 -14.5815
7-lags -14.4529 -14.5821
8-lags -14.4693 -14.6151

Inflation 

Unemployment
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7.2 Augmented Dickey-Fuller Test 

A large amount of macroeconomic time series turns out to be non-stationary in the 

sense of having one or more unit roots. We will test for such unit roots by applying 

the augmented Dickey-Fuller (ADF) test, which is a widely used method. The ADF 

test examines the null hypothesis that a unit root is present in a time series sample 

against stationary alternatives. Once a value for the test statistic is computed, it can 

be compared to the relevant critical value for the ADF test. The ADF statistic used 

in the test is a negative number, and the more negative the number is, the stronger 

is the rejection of the null hypothesis at some level of confidence (Cheung and Lai, 

1995). We start by applying the ADF test to each individual time series from 2001-

2018, including the lag-lengths proposed by the AIC.  

 

Table 7.2 – Augmented Dickey-Fuller test for unit root, 2001-2018 

 
 

The coefficient estimates are reported in table 7.2. The 10%, 5%, and 1% critical 

values are -2.573, -2.883, and -3.473, respectively. The test statistics, -4.480 and  

-2.395, show that a unit root hypothesis can be rejected at the 1% level for inflation 

but cannot be rejected at any significance level for unemployment. The same 

conclusion can be drawn by looking at the p-values. These results suggest that 

inflation is stationary, while unemployment is non-stationary. Non-stationary 

behaviors can include trends, cycles, and random walks, which could make the time 

series unpredictable. Thus, traditional regression and forecasting results regarding 

unemployment can lead to incorrect inferences. 

 

There are different ways to make the times series of unemployment stationary in 

order to get more credible results. One alternative is to detrend the series by using 

a Hodrick-Prescott (HP) filter. The disadvantage of this method is that we do not 

have the information regarding the trend, which makes it necessary to compute the 

trend of the time series. This may result in a poor presentation of the series, which 

will make the estimates less trustworthy. One may also choose to estimate the time 

series using an expanding window, but this could result in large variations in the 

trend, which is not desirable in our case. 

Test 1% Critical 5% Critical 10% Critical 
Statistic Value Value Value 

Inflation -4.480 -3.473 -2.883 -2.573 0.0002
Unemployment -2.395 -3.473 -2.883 -2.573 0.1431

Test 1% Critical 5% Critical 10% Critical 
Statistic Value Value Value 

Unemployment -3.791 -3.457 -2.879 -2.570 0.0030

P-Value

P-Value
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Figure 7.2 – Inflation and unemployment over time 

(a) Inflation 

 
 

(b) Unemployment 

 
 

Instead, we look at other options to get the series stationary. Even though the null 

hypothesis cannot be rejected, we see from figure 7.2 (b) that the time series of 

unemployment looks quite close to stationary. Therefore, we choose to see if 

including more observations will change the results. Applying the ADF test to the 

expanded time series of unemployment, spanning from 1995-2018, we get the 

coefficient estimates presented in table 7.3. 
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Table 7.3 – Augmented Dickey-Fuller test for unit root, 1995-2018 

 
 

Using a longer time series of unemployment results in a p-value close to zero and 

a test statistic that is higher than the critical values in absolute value. We can, 

therefore, reject the null hypothesis stating the presence of a unit root at a 1% 

significance level. Although the time series seems to be non-stationary in specific 

periods, we choose to use our original sample size in the forecasting evaluation as 

the time series appears to be stationary in the long term. 

 

7.3 Overall Forecast Performance 

In this section we will analyze out-of-sample forecast performances by comparing 

our benchmark model, AR(p), with our factor model. 

 

Factor model: 

AR(p) model: 

 

When doing forecast evaluation, we use RMSFE to measure the overall forecast 

performance. We will present the RMSFE ratios of our factor model relative to the 

benchmark model when forecasting one, three, six, and twelve months ahead. A 

ratio of less than one indicates that our model has a smaller RMSFE compared to 

the benchmark model and thus is better at forecasting the macroeconomic variable. 

We start by presenting the overall performance of the factor model. Then we show 

the results of the single factors analysis, in which we test the forecast performance 

of each factor. 

 

 

 

 

 

 

 

Test 1% Critical 5% Critical 10% Critical 
Statistic Value Value Value 

Inflation -4.480 -3.473 -2.883 -2.573 0.0002
Unemployment -2.395 -3.474 -2.883 -2.573 0.1431

Test 1% Critical 5% Critical 10% Critical 
Statistic Value Value Value 

Unemployment -3.791 -3.457 -2.879 -2.570 0.0030

P-Value

P-Value

yt+h = b0,t + b1,tLt + b2,tSt + b3,tCt + f1,tyt + f2,tyt-1 +...+ fp,tyt-p + et 

yt+h = f0,t + f1,tyt + f2,tyt-1 +...+ fp,hyt-p + et+h 
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7.3.1 Factor Model 

The overall performance of the factor model is shown in table 7.4. 

 

Table 7.4 – Relative RMSFE 

 
 

These forecast results confirm that including the yield factors in the model do not 

lead to clear forecast improvement compared to the benchmark model. This is the 

case for both inflation and unemployment when forecasting one, three, six, and 

twelve months ahead. 

 

We find the lowest relative RMSFE, 1.034, in the case of forecasting inflation six 

months ahead, including two lags. Still, the benchmark model performs better by a 

small margin. We also see that forecasting one- and twelve months ahead differs in 

that the factor model has a slightly better forecast performance at the shorter 

horizon. One reason why the factor model does not outperform the autoregressive 

model could be that the factor model makes bad forecasts in certain periods. This 

could have a negative impact on the average forecasts, which is reflected in the 

overall performance. 

 

7.3.2 Analyzing the Single Factors 

We have also tested the forecast performance of each factor for both inflation and 

unemployment. The results are shown in table 7.5. In most of the cases, the factor 

model is beaten by the benchmark model. We also see that in several cases, the two 

models have an equal forecast performance, showing a relative RMSFE equal to 

one. 

 

 

 

 

 

 

 

1 month 3 months 6 months 12 months
1.043 1.054 1.034 1.168
1.067 1.071 1.071 1.189
1.087 1.154 1.107 1.088

1 month 3 months 6 months 12 months
Level 1.000 0.989 1.000 1.107
Slope 1.000 1.000 0.983 1.053
Curvature 1.000 1.022 1.059 1.0763358778626

Level 1.015728569823621.000 1.000 0.981132075471698
Slope 1.028471921292951.000 1.035714285714291.15094339622642
Curvature 0.9885085142921340.9285714285714280.9285714285714280.981132075471698

Level 1.04426255817686 1.076923076923081.071428571428571.01754385964912
Slope 1.041662654469591.076923076923081.107142857142861.12280701754386
Curvature 0.9848499438292410.9230769230769230.8928571428571430.894736842105263

Inflation (2-lags)
Unemployment (4-lags)
Unemployment (8-lags)

Unemployment
(4-lags)

Unemployment
(8-lags)

Inflation
(2-lags)
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Table 7.5 – Relative RMSFE of the single factors  

 
 

When forecasting inflation, the benchmark model is beaten by the factor model in 

two cases. In the case of forecasting three months ahead, the model including the 

level factor performs better than the benchmark model, while in the case of 

forecasting six months ahead, the model including the slope factor performs better. 

 

These results indicate that the forecast accuracy can be improved by including the 

level factor in the model when forecasting inflation three months ahead, which is 

consistent with previous findings. For instance, it is found that the level factor is 

highly correlated to long-run inflation expectations. Hence, an increase in the level 

factor indicates higher inflation in the future. The slope factor, on the other hand, is 

according to earlier research able to predict inflation, since a rise in the short-term 

interest rate flattens the slope of the yield curve (Chen and Tsang, 2013). One 

reason why the slope factor is a good predictor when forecasting inflation comes 

from the fact that a downward sloping yield curve reflects expectations of a falling 

rate of inflation, while a steeply upward sloping yield curve indicates expectations 

of a rising rate of inflation (Mishkin, 1990). This is explained by the variation of 

term premiums over time.  

 

Forecasts of unemployment indicate that the factor model performs better than the 

benchmark model more often than what we found for the inflation forecasts. When 

forecasting unemployment using four lags, the model including the curvature factor 

performs better than the benchmark model at all horizons. This is also the case when 

forecasting unemployment with eight lags. Aguiar-Conraria, Martins, and Soares 

(2012) verify a link between the curvature factor and unemployment, in which 

increases in the curvature factor is associated with lagged decreases in 

1 month 3 months 6 months 12 months
1.043 1.054 1.034 1.168
1.067 1.071 1.071 1.189
1.087 1.154 1.107 1.088

1 month 3 months 6 months 12 months
Level 1.000 0.989 1.000 1.107
Slope 1.000 1.000 0.983 1.053
Curvature 1.000 1.022 1.059 1.076

Level 1.016 1.000 1.000 0.981
Slope 1.028 1.000 1.036 1.151
Curvature 0.989 0.929 0.929 0.981

Level 1.044 1.077 1.071 1.018
Slope 1.042 1.077 1.107 1.123
Curvature 0.985 0.923 0.893 0.895

Inflation (2-lags)
Unemployment (4-lags)
Unemployment (8-lags)

Unemployment
(4-lags)

Unemployment
(8-lags)

Inflation
(2-lags)
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unemployment. The benchmark model is also beaten by the model including the 

level factor when forecasting unemployment 12 months ahead, using four lags.  

 

Even though table 7.5 shows that the AR(p) model has an overall better 

performance relative to our factor model, there is a reason to believe that the factor 

model performs better than the benchmark model in several situations when 

forecasting unemployment. According to Aguiar-Conraria, Martins, and Soares 

(2012), level, slope, and curvature is related to unemployment. The yield curve 

level leads unemployment. This can be one of the reasons why the model including 

the level factor beats the benchmark model in one of the cases when forecasting 

unemployment. Further, an increase in unemployment anticipates a decrease in the 

slope, i.e., a steepening of the yield curve. This evidence can be interpreted as 

capturing the lead of higher unemployment to ease the monetary policy, which 

would result in steeper yield curves. Regarding the third factor, increases in the 

curvature are, as mentioned, associated with lagged decreases in unemployment. 

 

7.4 Forecast Performance Over Time  

The previous section showed that if we include only the level factor or the slope 

factor, the factor model turns out to predict inflation better than the benchmark 

model at a three- and six-months horizon, respectively. For unemployment, the 

model including only the curvature factor outperforms the benchmark model 

independent of the forecast horizon. Although RMSFE is a good measure to 

determine the accuracy of a forecast, a disadvantage is the high influence of outliers 

in the data. This means that more substantial errors in specific periods can have an 

excessively large effect on the value of RMSFE and thereby skew the results. It 

may, therefore, be interesting to analyze the models’ forecast performance over 

time, which we will do by computing the cumulative sum of squared forecast error 

difference, CSSED. As explained earlier in the paper, increasing values of CSSED 

indicate that the factor model outperforms the benchmark model. Correspondingly, 

decreasing values means that the benchmark model predicts better.  

 

Since we estimated several different models, we choose to comment on the forecast 

performance over time for particular models that we believe have some interesting 

intuitions. First, we start by analyzing the forecast performance for the models that, 
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according to the RMSFE measures, outperform the AR(2) model when predicting 

inflation. 

 

Figure 7.3 – The CSSED of the model including the slope factor at six months 

horizon, forecasting inflation using two lags 

 
 

Figure 7.3 displays the forecast performance over time for the model including the 

slope factor, forecasting inflation six months ahead. The CSSED starts to increase 

at the end of 2007 and continues to rise for about a year up to the end of 2008. This 

period includes the start of the financial crisis in Norway, in which inflation 

increased until the fourth quarter of 2008. In fact, in October 2008, the year-on-year 

rise in the consumer price index was as high as 5.4% before it decreased in the 

following periods. The model appears to predict the increase in inflation better than 

the autoregressive model. To be able to interpret these results, we need to explore 

the slope factor in the model in more detail. As mentioned earlier, the slope factor 

can be interpreted as the short-term factor and has been documented to be an 

excellent indicator to forecast GDP growth and monetary policy instruments, as 

well as recessions and expansions. By looking at the movements in the slope factor, 

our estimates show that the slope factor continued to increase until September 2008 

when the crisis took a new and dramatic turn, due to the bankruptcy of the Lehman 

Brothers. An increase in the slope factor may indicate a forthcoming recession, 

which was the case for Norway during this period. 
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Although the slope factor helps predict inflation better than the benchmark model 

in certain periods, Kozicki (1997) finds that the level of yields is a more useful 

predictor of inflation. As mentioned earlier, the level factor has been proven to 

contain information about future inflation. Figure 7.4 shows the overall forecast 

performance over time for the model including the level factor, at a forecasting 

horizon of three months. 

 

Figure 7.4 – The CSSED of the model including the level factor at three months 

horizon, forecasting inflation using two lags 

 
 

There are three periods, in which we see a significant increase in the CSSED 

followed by decreasing values of similar magnitude. The first period starts at the 

end of 2008. As substantiated when interpreting figure 7.3, this period refers to the 

financial crisis, which had a major impact on inflation. Another highly important 

element within this period is the exceptionally high price of oil. During the summer 

of 2008, the price of oil per barrel reached a peak compared to prior years, which 

was followed by a fear of a rise in future inflation. Together, these two events 

resulted in periods of highly volatile inflation in Norway. However, examining the 

movements of the level factor, our results do not show a clear pattern that indicates 

the level factor having a significant relevance in the forecasting of inflation during 

this period. 
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The next period containing an increase in the CSSED starts at the end of 2011, 

continuing until the third quarter of 2012. The inflation in Norway was unusually 

low in 2012. One of the features of the period preceding this was a decrease in the 

interest rate, which occurred over the period 2011-2012. This made people consume 

more, resulting in a rise in inflation the upcoming year. Also, the price of electricity 

in Norway faced a downturn throughout the summer of 2012. This decrease is 

attributed to large volumes of rainfall prior to, and during, this period, in addition 

to lower consumption linked to the summer season. From our data, we can see a 

fairly consistent relationship when looking at the level estimates over the 2011-

2012 period. The estimates show a decreasing trend, with the highest measure of 

the level factor at the start of 2011, reduced to a measure half the size at the end of 

2012. This could reflect expectations of lower future inflation and may signify why 

the factor model outperforms the autoregressive model in this particular period. 

 

The third peak in the CSSED starts in 2016. An essential event preceding this period 

was the sudden decrease in the key policy rate in Norway, in which the rate got 

reduced to the historical low value of 0.75% during September 2015. In general, 

the reason why the key policy rate is adjusted down by Norges Bank is to make 

people consume more and thereby avoid too low economic activity and inflation 

relative to the inflation target. In 2015, the Norwegian oil industry experienced a 

significant slow-down due to the oil price decrease and the decline in oil 

investments in Norway, and the consequences started to appear. A rapid increase in 

unemployment and an economic activity lower than desired dominated the 

Norwegian economy. As a response to this, Norges Bank lowered the key policy 

rate, which resulted in a rise in inflation. Another event characterizing this period 

was the expensive electricity price. In 2016, Norway experienced an extraordinary 

increase in the electricity price, which occurred due to the developments in the 

Norwegian water reservoirs during the period, justified by abnormally low rainfalls 

(Dagens Næringsliv, 2017). Norwegian consumers of electricity paid on average 

12.1% more in 2016 than what they did the previous year (Pedersen, 2019). This 

caused an increase in inflation. Therefore, the rise in inflation can, among other 

things, be seen in the context of both the reduction in the key policy rate and the 

increased electricity prices. 
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To interpret how the level factor attributes to this, suggesting that an increasing 

level factor indicates higher future inflation, we look closer at how the level factor 

developed before and during this period. Our estimates at the beginning of this 

phase could resemble a pattern, containing decreasing numbers of the level factor. 

However, we cannot see a fully consistent pattern to be able to claim that it exists 

a relation between the level factor and inflation in this particular case. Still, the 

positive CSSED during this period indicates that the factor model happens to 

predict the increase in inflation better than the benchmark model. 

 

Now, we turn to the forecasts of unemployment and will continue the analysis by 

interpreting the CSSED of the model for the slope factor including four lags, 

forecasting unemployment three months ahead. This is one of the models that, 

according to the RMSFE measures, predicts unemployment as good as the AR(4) 

model. The CSSED is shown in figure 7.5. 

 

Figure 7.5 - The CSSED of the model including the slope factor at three months 

horizon, forecasting unemployment using four lags 

 
 

Figure 7.5 illustrates the forecast performance over time for the slope factor at a 

three months horizon when forecasting unemployment. There are two periods, in 

which an increase in CSSED is very noticeable. The first interval lasts from the 
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beginning of the forecasting period until the beginning of 2007, while the second 

period persists from the last quarter in 2007 until the first quarter of 2009. 

 

Unemployment is a result of the difference between labor supply and demand and 

is therefore strongly related to the economic situation within a country. An increase 

in demand usually leads to a rise in production and employment, and thereby a 

decrease in unemployment. Correspondingly, insufficient demand tends to cause a 

reduction in production, followed by an increase in unemployment. This was the 

case during the financial crisis in Norway, in which the economy faced a recession. 

Business sales and revenues decreased, which drove unemployment up. As the 

slope factor is known to be a good indicator of predicting both output growth and 

recessions, it also contains valuable information of future unemployment. 

 

The yield curve is typically upward sloping. Many empirical studies have found, 

however, that most recessions are preceded by a sharp decline in the slope of the 

yield curve and often by an inversion of the yield curve (i.e., by short-term yields 

exceeding long-term yields) (Wheelock and Wohar, 2009). This could be related to 

the fact that individuals prefer stable consumption over time, which is the central 

assumption of Harvey (1988). The desire to hedge will, therefore, lead consumers 

to buy long-term securities and sell short-term securities when expecting a 

recession in the future. The increased demand for long-term securities will increase 

the respective price and lead to a decrease in the yield to maturity. Simultaneously, 

the selling pressure of short-term securities cause a reduction in the respective price 

and, as a result of this, a rise in yields. Hence, if a recession is expected, long rates 

will decrease while short rates increase, resulting in flat or inverted yield curves. 

This is reflected in our data in the period 2007-2008, in which yields with one-

month maturity exceeds yields with a ten-year maturity, and the slope factor 

changes sign. Therefore, the change in the slope factor can indicate a forthcoming 

recession and, thereby, a rise in unemployment. This could be the reason for why 

our model predicts unemployment better than the benchmark model in the period 

preceding the financial crisis. However, Norway had a very mild recession relative 

to other countries, and unemployment was kept below 4% also in the years 

following the crisis. 
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By examining the movements of the slope factor and unemployment in Norway 

during the first interval, there is no clear relationship that corresponds to the 

increase in CSSED. Although the values of CSSED look very volatile up to 2010, 

it is important to point out that the differences are very small, reflected in the y-axis. 

An interesting aspect of figure 7.5 is, however, that it seems to be irrelevant 

whether or not to include the slope factor in the model in the period of 2010-2018, 

with the exception of 2015.  

 

A model that outperforms the AR(4) according to the RMSFE measures is the 

model including the curvature factor using four lags, forecasting unemployment 

three months ahead. The CSSED regarding this model is shown in figure 7.6. 

 

Figure 7.6 - The CSSED of the model including the curvature factor at three 

months horizon, forecasting unemployment using four lags 

 
 

The figure shows an increase in the CSSED starting in 2008 and lasts until the latter 

part of 2009. This indicates a period in which the model including the curvature 

factor has a better performance than the autoregressive model when forecasting 

unemployment three months ahead. The increase in the CSSED may have a 

relevance to the financial crisis in 2008, which was followed by a recession and 

thereby a rise in unemployment. Including information of interest rates may 

improve the forecast performance in this specific period since the interest rates 
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happened to be volatile during the crisis in 2008. To substantiate this, we look at 

how the curvature estimates develop relative to unemployment. As mentioned 

earlier, Aguiar-Conraria, Martins, and Soares (2012) finds that increasing measures 

of the curvature factor relates to lagged decreases in unemployment. From our 

estimates, we see that reductions in the curvature factor move in line with increased 

unemployment, which could justify why our factor model performs better than the 

benchmark in this particular period. 

 

As we can see from the figure, the CSSED also increases in the period from 2010 

to the first part of 2011. This period is characterized by the European debt crisis, 

which started in 2009 before it got more severe at the beginning of 2010. The crisis 

occurred as an effect of the financial crisis, resulting in several European countries 

being unable to repay their government debt. The European debt crisis, therefore, 

led many countries within the European Union (EU) into a recession, followed by 

a sudden increase in unemployment. The European Central Bank (ECB) 

contributed to solve the crisis by providing cheap loans and lower the interest rates, 

aiming to minimize the impacts of the recession. Although Norway is not a member 

of the EU, Norway was impacted by the crisis in several ways. Some of the affected 

EU-countries were important trading partners to Norway, which was the reason 

why the crisis indirectly caused a slowdown in the Norwegian economy, followed 

by an increase in unemployment. One of the main impacts on the economy was the 

global downturn in the oil price due to reduced investments and exports. As 

mentioned earlier, the curvature factor can be interpreted as the medium-term 

component of the yield curve. By looking at our data, the medium-term interest 

rates were reduced over the interval from 2010-2012. However, our estimates of 

the curvature factor do not show an evident pattern, which implies that we cannot 

see any clear connection between unemployment and the curvature factor during 

this period. 
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8 Conclusion 
 

This paper addresses the task of forecasting inflation and unemployment using the 

term structure of interest rates. Recent studies have shown that movements in the 

yield curve reflect expectations regarding future economic conditions and that it in 

some way leads the macroeconomic variables. To investigate this, we developed 

and estimated a factor model by using the three Nelson-Siegel factors level, slope, 

and curvature. Then we compared the forecasting performance of the factor model 

relative to an autoregressive benchmark model, AR(p), by computing the RMSFE 

and CSSED. 

 

From the comparison of the two models, we find that the factor model does not 

outperform the benchmark model when including all three factors. This applies for 

both inflation and unemployment at all forecast horizons used in our analysis. 

However, when analyzing the forecast performance of each individual factor, 

especially the curvature factor stands out in the case of forecasting unemployment. 

For instance, the model including the curvature factor beats the benchmark model 

when forecasting unemployment at all horizons. Regarding the forecasting of 

inflation, the model including either the level- or the slope factor beats the 

benchmark model at certain horizons. 

 

Lastly, by looking at the forecast performance over time, we find that our model 

performs better than the benchmark model in certain periods of time. Especially 

around the time of the financial crisis in Norway, including information of the yield 

curve will improve the out-of-sample forecasts of inflation and unemployment. 

However, all of the increases in the CSSED lasts for a considerably short time, 

which may be the reason why our model does not show an overall better 

performance when including all the three factors.  

 

Regarding our research, the results we have found may be coincidences and lack 

some important aspects. Looking at a larger dataset, containing several financial 

crises or volatile periods, may lead to different results. Also, future research of this 

topic should include GDP in their analysis to have a wider ranch of macroeconomic 

variables. This may increase the factors’ predictive power. 
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10 Appendix 
 

Estimation of the Nelson-Siegel Model 
 
clear all 
 
EstimationData = xlsread('YieldData.xlsx')  
EOMDates = xlsread('Dates.xlsx') 

 

Plot 
lambda_t = .0609 
TimeToMat = [1 3 6 12 24 36 48 60 120]'; 
X = [ones(size(TimeToMat)) (1 - exp(-
lambda_t*TimeToMat))./(lambda_t*TimeToMat) ... 
    ((1 - exp(-lambda_t*TimeToMat))./(lambda_t*TimeToMat) - exp(-
lambda_t*TimeToMat))] 
plot(TimeToMat,X,'LineWidth',2) 
xlabel('Maturity (months)', 'fontsize',18,'fontweight','bold') 
ylabel('Factor loading', 'fontsize',18,'fontweight','bold') 
ylim([0 1.1]) 
legend({'Level','Slope','Curvature'},'location','east', 'fontsize',20) 

 

Extracting level, slope and curvature 
Beta = zeros(size(EstimationData,1),3); 
 
for jdx = 1:size(EstimationData,1) 
    tmpCurveModel = 
DieboldLi.fitBetasFromYields(EOMDates(jdx),lambda_t*12,daysadd(EOMDates(j
dx),30*TimeToMat),EstimationData(jdx,:)'); 
    Beta(jdx,:) = [tmpCurveModel.Beta1 tmpCurveModel.Beta2 
tmpCurveModel.Beta3]; 
end 
 
 
Out-of-sample Forecasts 
 

% Inflation (similar codes for unemployment) 
clear; 
close all;  
 
% Load data 
Inflation = xlsread('Inflation.xlsx'); 

 
AIC and BIC 
p = 8; 
Bic = NaN(p,1); 
Aic = NaN(p,1); 
 
for i = 1:p 
    [yt, xt] = constructArModel(Inflation,i, 1, 213); 
    [~, betas, errors] = estimateArModel(yt(1+i:end),xt(1+i:end,:)); 
    Bic(i) = bic(errors,i); 
    Aic(i) = aic(errors,i); 
    if i == p 
        AICBIC = [Bic Aic]; 
    end 
end 
 
% The number of 2 lags is chosen based on both aic and bic 

 

10118061011449GRA 19703



 48 

Factor model – 2 lags 
clear; 
close all 
 
macro = readtable('betasmacro.xlsx'); 
 
Inflation = 
fints(datenum(macro.Date,'yyyymm'),macro.Inflation,'Inflation','M'); 
Level = fints(datenum(macro.Date,'yyyymm'),macro.Beta1,'Beta1','M'); 
Slope = fints(datenum(macro.Date,'yyyymm'),macro.Beta2,'Beta2','M'); 
Curvature = fints(datenum(macro.Date,'yyyymm'),macro.Beta3,'Beta3','M'); 
  
X = [fts2mat(lagts(Level)) fts2mat(lagts(Slope)) 
fts2mat(lagts(Curvature)) fts2mat(lagts(Inflation)) 
fts2mat(lagts(Inflation,2))]; 
y = fts2mat(Inflation); 
 
% OLS for 60 observations at a time  
windowlength = 60; 
n = length(y); 
p = n - windowlength; 
betaHatAlle = []; 
Forecasts1 = [];  
Forecasts2 = [];  
Forecasts3 = [];  
Forecasts4 = [];  
Forecasts5 = [];  
Forecasts6 = [];  
Forecasts7 = [];  
Forecasts8 = [];  
Forecasts9 = [];  
Forecasts10 = [];  
Forecasts11 = [];  
Forecasts12 = [];  
 
   for i = (3:p); 
     
    % Forecast 1 step ahead   
    lmK = fitlm(X(i:(windowlength+i-1), :),y(i:(windowlength+i-1))); 
    betaHat = lmK.Coefficients.Estimate; 
    X1 = X(i+windowlength, 1); 
    X2 = X(i+windowlength, 2); 
    X3 = X(i+windowlength, 3); 
    X4 = X(i+windowlength, 4); 
    X5 = X(i+windowlength, 5); 
    Yhat1 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*X4 + betaHat(6)*X5; 
    Forecasts1 = [Forecasts1, Yhat1];  
    betaHatAlle = [betaHatAlle, betaHat]; 
     
    % 2 steps ahead         
    Yhat2 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat1 + betaHat(6)*X4; 
    Forecasts2 = [Forecasts2, Yhat2]; 
     
    % 3 steps ahead         
    Yhat3 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat2 + betaHat(6)*Yhat1; 
    Forecasts3 = [Forecasts3, Yhat3]; 
     
    % 4 steps ahead         
    Yhat4 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat3 + betaHat(6)*Yhat2; 
    Forecasts4 = [Forecasts4, Yhat4]; 
     
    % 5 steps ahead         
    Yhat5 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat4 + betaHat(6)*Yhat3; 
    Forecasts5 = [Forecasts5, Yhat5]; 
     
    % 6 steps ahead         
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    Yhat6 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat5 + betaHat(6)*Yhat4; 
    Forecasts6 = [Forecasts6, Yhat6]; 
     
    % 7 steps ahead         
    Yhat7 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat6 + betaHat(6)*Yhat5; 
    Forecasts7 = [Forecasts7, Yhat7]; 
     
    % 8 steps ahead         
    Yhat8 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat7 + betaHat(6)*Yhat6; 
    Forecasts8 = [Forecasts8, Yhat8]; 
     
    % 9 steps ahead         
    Yhat9 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat8 + betaHat(6)*Yhat7; 
    Forecasts9 = [Forecasts9, Yhat9]; 
     
    % 10 steps ahead         
    Yhat10 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat9 + betaHat(6)*Yhat8; 
    Forecasts10 = [Forecasts10, Yhat10]; 
     
    % 11 steps ahead         
    Yhat11 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat10 + betaHat(6)*Yhat9; 
    Forecasts11 = [Forecasts11, Yhat11]; 
     
    % 12 steps ahead         
    Yhat12 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3 + 
betaHat(5)*Yhat11 + betaHat(6)*Yhat10; 
    Forecasts12 = [Forecasts12, Yhat12]; 
     
   End 

 

Root Mean Squared Forecast Error 
% 1 step ahead  
TrueValue1 = y(63:213); 
ForecastError1 = TrueValue1 - Forecasts1'; 
RMSFE1 = sqrt(sum(ForecastError1.^2)/(length(ForecastError1)+1)) 
 
% 3 steps ahead  
TrueValue3 = y(65:213); 
ForecastError3 = TrueValue3 - Forecasts3(1:end-3+1)'; 
RMSFE3 = sqrt(sum(ForecastError3.^2)/(length(ForecastError3)+1)) 
 
% 6 steps ahead  
TrueValue6 = y(68:213);  
ForecastError6 = TrueValue6 - Forecasts6(1:end-6+1)'; 
RMSFE6 = sqrt(sum(ForecastError6.^2)/(length(ForecastError6)+1)) 
 
% 12 steps ahead  
TrueValue12 = y(74:213); 
ForecastError12 = TrueValue12 - Forecasts12(1:end-12+1)'; 
RMSFE12 = sqrt(sum(ForecastError12.^2)/(length(ForecastError12)+1)) 

 

AR(2) 
clear; 
close all; 
 
macro = readtable('betasmacro.xlsx'); 
 
Inflation = 
fints(datenum(macro.Date,'yyyymm'),macro.Inflation,'Inflation','M'); 
Level = fints(datenum(macro.Date,'yyyymm'),macro.Beta1,'Beta1','M'); 
Slope = fints(datenum(macro.Date,'yyyymm'),macro.Beta2,'Beta2','M'); 
Curvature = fints(datenum(macro.Date,'yyyymm'),macro.Beta3,'Beta3','M'); 
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y = fts2mat(Inflation); 
LX = fts2mat(lagts(Inflation)); 
L2X = fts2mat(lagts(Inflation,2)); 
X = [LX L2X]; 
 
windowlength = 60; 
n = length(y); 
p = n - windowlength; 
betaHatAlle = []; 
Forecasts1 = [];  
Forecasts2 = [];  
Forecasts3 = [];  
Forecasts4 = [];  
Forecasts5 = [];  
Forecasts6 = [];  
Forecasts7 = [];  
Forecasts8 = [];  
Forecasts9 = [];  
Forecasts10 = [];  
Forecasts11 = [];  
Forecasts12 = [];   
 
   for i = (3:p); 
     
    % 1 step ahead    
    lmK = fitlm(X(i:(windowlength+i-1), :),y(i:(windowlength+i-1))); 
    betaHat = lmK.Coefficients.Estimate; 
    betaHatAlle = [betaHatAlle, betaHat]; 
    X1 = X(i+windowlength, 1); 
    X2 = X(i+windowlength, 2); 
    Yhat1 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2;  
    Forecasts1 = [Forecasts1, Yhat1];  
     
    % 2 steps ahead         
    Yhat2 = betaHat(1) + betaHat(2)*Yhat1 + betaHat(3)*X1; 
    Forecasts2 = [Forecasts2, Yhat2]; 
     
    % 3 step ahead         
    Yhat3 = betaHat(1) + betaHat(2)*Yhat2 + betaHat(3)*Yhat1; 
    Forecasts3 = [Forecasts3, Yhat3]; 
     
    % 4 steps ahead         
    Yhat4 = betaHat(1) + betaHat(2)*Yhat3 + betaHat(3)*Yhat2; 
    Forecasts4 = [Forecasts4, Yhat4]; 
     
    % 5 steps ahead         
    Yhat5 = betaHat(1) + betaHat(2)*Yhat4 + betaHat(3)*Yhat3; 
    Forecasts5 = [Forecasts5, Yhat5]; 
     
    % 6 steps ahead 
    Yhat6 = betaHat(1) + betaHat(2)*Yhat5 + betaHat(3)*Yhat4; 
    Forecasts6 = [Forecasts6, Yhat6]; 
     
    % 7 steps ahead  
    Yhat7 = betaHat(1) + betaHat(2)*Yhat6 + betaHat(3)*Yhat5; 
    Forecasts7 = [Forecasts7, Yhat7]; 
     
    % 8 steps ahead  
    Yhat8 = betaHat(1) + betaHat(2)*Yhat7 + betaHat(3)*Yhat6; 
    Forecasts8 = [Forecasts8, Yhat8]; 
     
    % 9 steps ahead  
    Yhat9 = betaHat(1) + betaHat(2)*Yhat8 + betaHat(3)*Yhat7; 
    Forecasts9 = [Forecasts9, Yhat9]; 
     
    % 10 steps ahead  
    Yhat10 = betaHat(1) + betaHat(2)*Yhat9 + betaHat(3)*Yhat8; 
    Forecasts10 = [Forecasts10, Yhat10]; 
     
    % 11 steps ahead  
    Yhat11 = betaHat(1) + betaHat(2)*Yhat10 + betaHat(3)*Yhat9; 
    Forecasts11 = [Forecasts11, Yhat11]; 
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    % 12 steps ahead  
    Yhat12 = betaHat(1) + betaHat(2)*Yhat11 + betaHat(3)*Yhat10; 
    Forecasts12 = [Forecasts12, Yhat12]; 
     
   End 

 

Root Mean Squared Forecast Error 
% 1 step ahead  
TrueValue1 = y(63:213); 
ForecastError1 = TrueValue1 - Forecasts1'; 
RMSFE1 = sqrt(sum(ForecastError1.^2)/(length(ForecastError1)+1)) 
 
% 3 steps ahead  
TrueValue3 = y(65:213); 
ForecastError3 = TrueValue3 - Forecasts3(1:end-3+1)'; 
RMSFE3 = sqrt(sum(ForecastError3.^2)/(length(ForecastError3)+1)) 
 
% 6 steps ahead  
TrueValue6 = y(68:213);  
ForecastError6 = TrueValue6 - Forecasts6(1:end-6+1)'; 
RMSFE6 = sqrt(sum(ForecastError6.^2)/(length(ForecastError6)+1)) 
 
% 12 steps ahead  
TrueValue12 = y(74:213); 
ForecastError12 = TrueValue12 - Forecasts12(1:end-12+1)'; 
RMSFE12 = sqrt(sum(ForecastError12.^2)/(length(ForecastError12)+1)) 

 
Forecasting inflation using a single factor 
% Level (similar codes for slope and curvature) 
 
clear; 
close all; 
 
macro = readtable('betasmacro.xlsx'); 
 
Inflation = 
fints(datenum(macro.Date,'yyyymm'),macro.Inflation,'Inflation','M'); 
Level = fints(datenum(macro.Date,'yyyymm'),macro.Beta1,'Beta1','M'); 
Slope = fints(datenum(macro.Date,'yyyymm'),macro.Beta2,'Beta2','M'); 
Curvature = fints(datenum(macro.Date,'yyyymm'),macro.Beta3,'Beta3','M'); 
  
X = [fts2mat(lagts(Level)) fts2mat(lagts(Inflation)) 
fts2mat(lagts(Inflation,2))]; 
y = fts2mat(Inflation); 
 
% OLS for 60 observations at a time  
windowlength = 60; 
n = length(y); 
p = n - windowlength; 
betaHatAlle = []; 
Forecasts1 = [];  
Forecasts2 = [];  
Forecasts3 = [];  
Forecasts4 = [];  
Forecasts5 = [];  
Forecasts6 = [];  
Forecasts7 = [];  
Forecasts8 = [];  
Forecasts9 = [];  
Forecasts10 = [];  
Forecasts11 = [];  
Forecasts12 = [];  
 
   for i = (3:p); 
     
    % Forecast 1 step ahead    
    lmK = fitlm(X(i:(windowlength+i-1), :),y(i:(windowlength+i-1))); 
    betaHat = lmK.Coefficients.Estimate; 
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    X1 = X(i+windowlength, 1); 
    X2 = X(i+windowlength, 2); 
    X3 = X(i+windowlength, 3); 
    Yhat1 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3; 
    Forecasts1 = [Forecasts1, Yhat1];  
    betaHatAlle = [betaHatAlle, betaHat]; 
     
    % 2 steps ahead         
    Yhat2 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat1 + 
betaHat(4)*X2; 
    Forecasts2 = [Forecasts2, Yhat2]; 
     
    % 3 steps ahead         
    Yhat3 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat2 + 
betaHat(4)*Yhat1; 
    Forecasts3 = [Forecasts3, Yhat3]; 
     
    % 4 steps ahead         
    Yhat4 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat3 + 
betaHat(4)*Yhat2; 
    Forecasts4 = [Forecasts4, Yhat4]; 
     
    % 5 steps ahead         
    Yhat5 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat4 + 
betaHat(4)*Yhat3; 
    Forecasts5 = [Forecasts5, Yhat5]; 
     
    % 6 steps ahead         
    Yhat6 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat5 + 
betaHat(4)*Yhat4; 
    Forecasts6 = [Forecasts6, Yhat6]; 
     
    % 7 steps ahead         
    Yhat7 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat6 + 
betaHat(4)*Yhat5; 
    Forecasts7 = [Forecasts7, Yhat7]; 
     
    % 8 steps ahead         
    Yhat8 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat7 + 
betaHat(4)*Yhat6; 
    Forecasts8 = [Forecasts8, Yhat8]; 
     
    % 9 steps ahead         
    Yhat9 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat8 + 
betaHat(4)*Yhat7; 
    Forecasts9 = [Forecasts9, Yhat9]; 
     
    % 10 steps ahead         
    Yhat10 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat9 + 
betaHat(4)*Yhat8; 
    Forecasts10 = [Forecasts10, Yhat10]; 
     
    % 11 steps ahead         
    Yhat11 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat10 + 
betaHat(4)*Yhat9; 
    Forecasts11 = [Forecasts11, Yhat11]; 
     
    % 12 steps ahead         
    Yhat12 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat11 + 
betaHat(4)*Yhat10; 
    Forecasts12 = [Forecasts12, Yhat12]; 
     
   end 

 
Root Mean Squared Forecast Error 
% 1 step ahead  
TrueValue1 = y(63:213); 
ForecastError1 = TrueValue1 - Forecasts1'; 
RMSFE1 = sqrt(sum(ForecastError1.^2)/(length(ForecastError1)+1)) 
 
% 3 steps ahead  
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TrueValue3 = y(65:213); 
ForecastError3 = TrueValue3 - Forecasts3(1:end-3+1)'; 
RMSFE3 = sqrt(sum(ForecastError3.^2)/(length(ForecastError3)+1)) 
 
% 6 steps ahead  
TrueValue6 = y(68:213);  
ForecastError6 = TrueValue6 - Forecasts6(1:end-6+1)'; 
RMSFE6 = sqrt(sum(ForecastError6.^2)/(length(ForecastError6)+1)) 
 
% 12 steps ahead  
TrueValue12 = y(74:213); 
ForecastError12 = TrueValue12 - Forecasts12(1:end-12+1)'; 
RMSFE12 = sqrt(sum(ForecastError12.^2)/(length(ForecastError12)+1)) 
 
 

Forecast Performance Over Time 
 

% 2 lags - Factor model with a single factor  
% Level (similar codes for slope and curvature) 
 
clear; 
close all; 
 
macro = readtable('betasmacro.xlsx'); 
 
Inflation = 
fints(datenum(macro.Date,'yyyymm'),macro.Inflation,'Inflation','M'); 
Level = fints(datenum(macro.Date,'yyyymm'),macro.Beta1,'Beta1','M'); 
  
X = [fts2mat(lagts(Level)) fts2mat(lagts(Inflation)) 
fts2mat(lagts(Inflation,2))]; 
y = fts2mat(Inflation); 
 
% OLS for 60 observations at a time  
windowlength = 60; 
n = length(y); 
p = n - windowlength; 
betaHatAlle = []; 
Forecasts1 = [];  
Forecasts2 = [];  
Forecasts3 = [];  
Forecasts4 = [];  
Forecasts5 = [];  
Forecasts6 = [];  
 
   for i = (3:p); 
        
    % Forecast 1 step ahead 
    lmK = fitlm(X(i:(windowlength+i-1), :),y(i:(windowlength+i-1))); 
    betaHat = lmK.Coefficients.Estimate; 
    X1 = X(i+windowlength, 1); 
    X2 = X(i+windowlength, 2); 
    X3 = X(i+windowlength, 3); 
    Yhat1 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*X2 + betaHat(4)*X3; 
    Forecasts1 = [Forecasts1, Yhat1];  
    betaHatAlle = [betaHatAlle, betaHat]; 
     
    % 2 steps ahead         
    Yhat2 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat1 + 
betaHat(4)*X2; 
    Forecasts2 = [Forecasts2, Yhat2]; 
     
    % 3 steps ahead         
    Yhat3 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat2 + 
betaHat(4)*Yhat1; 
    Forecasts3 = [Forecasts3, Yhat3]; 
     
    % 4 steps ahead         
    Yhat4 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat3 + 
betaHat(4)*Yhat2; 
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    Forecasts4 = [Forecasts4, Yhat4]; 
     
    % 5 steps ahead         
    Yhat5 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat4 + 
betaHat(4)*Yhat3; 
    Forecasts5 = [Forecasts5, Yhat5]; 
     
    % 6 steps ahead         
    Yhat6 = betaHat(1) + betaHat(2)*X1 + betaHat(3)*Yhat5 + 
betaHat(4)*Yhat4; 
    Forecasts6 = [Forecasts6, Yhat6]; 
   
   end 

 
AR(2) 
XAR = [fts2mat(lagts(Inflation)) fts2mat(lagts(Inflation,2))]; 
 
betaHatAlleAR = []; 
Forecasts1AR = [];  
Forecasts2AR = [];  
Forecasts3AR = [];  
Forecasts4AR = [];  
Forecasts5AR = [];  
Forecasts6AR = [];    
 
   for i = (3:p); 
     
    % 1 step ahead    
    lmKAR = fitlm(XAR(i:(windowlength+i-1), :),y(i:(windowlength+i-1))); 
    betaHatAR = lmKAR.Coefficients.Estimate; 
    betaHatAlleAR = [betaHatAlleAR, betaHatAR]; 
    X1AR = XAR(i+windowlength, 1); 
    X2AR = XAR(i+windowlength, 2); 
    Yhat1AR = betaHatAR(1) + betaHatAR(2)*X1AR + betaHatAR(3)*X2AR;  
    Forecasts1AR = [Forecasts1AR, Yhat1AR];  
     
    % 2 steps ahead         
    Yhat2AR = betaHatAR(1) + betaHatAR(2)*Yhat1AR + betaHatAR(3)*X1AR; 
    Forecasts2AR = [Forecasts2AR, Yhat2AR]; 
     
    % 3 steps ahead         
    Yhat3AR = betaHatAR(1) + betaHatAR(2)*Yhat2AR + betaHatAR(3)*Yhat1AR; 
    Forecasts3AR = [Forecasts3AR, Yhat3AR]; 
     
    % 4 steps ahead         
    Yhat4AR = betaHatAR(1) + betaHatAR(2)*Yhat3AR + betaHatAR(3)*Yhat2AR; 
    Forecasts4AR = [Forecasts4AR, Yhat4AR]; 
     
    % 5 steps ahead         
    Yhat5AR = betaHatAR(1) + betaHatAR(2)*Yhat4AR + betaHatAR(3)*Yhat3AR; 
    Forecasts5AR = [Forecasts5AR, Yhat5AR]; 
     
    % 6 steps ahead 
    Yhat6AR = betaHatAR(1) + betaHatAR(2)*Yhat5AR + betaHatAR(3)*Yhat4AR; 
    Forecasts6AR = [Forecasts6AR, Yhat6AR]; 
   end 

 
Forecast error 
% 1 step ahead  
TrueValue1 = y(63:213); 
ForecastError1 = TrueValue1 - Forecasts1'; 
ForecastError1AR = TrueValue1 - Forecasts1AR'; 
 
% 3 steps ahead  
TrueValue3 = y(65:213); 
ForecastError3 = TrueValue3 - Forecasts3(1:end-3+1)'; 
ForecastError3AR = TrueValue3 - Forecasts3AR(1:end-3+1)'; 
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% 6 steps ahead  
TrueValue6 = y(68:213); 
ForecastError6 = TrueValue6 - Forecasts6(1:end-6+1)'; 
ForecastError6AR = TrueValue6 - Forecasts6AR(1:end-6+1)'; 

 
CSSED - 3 steps ahead 
SED3 = (ForecastError3AR.^2-ForecastError3.^2); 
CSSED3cumsum = cumsum(SED3); 
 
% Cumulative sum plot 
k = (1:length(SED3))'; 
Dates = (2006+8/12:1/12:2018+12/12)'; 
subplot(1,2,1); plot(Dates,SED3); axis('tight'); 
subplot(1,2,2); plot(Dates,CSSED3cumsum); axis('tight'); 
 
% import to excel  
xlswrite('CSSED3cumsum.xls',CSSED3cumsum) 

 
CSSED - 6 steps ahead 
SED6 = (ForecastError6AR.^2-ForecastError6.^2); 
CSSED6cumsum = cumsum(SED6); 
 
% Cumulative sum plot  
k = (1:length(SED6))'; 
Dates = (2006+11/12:1/12:2018+12/12)'; 
subplot(1,2,1); plot(Dates,SED6); axis('tight'); 
subplot(1,2,2); plot(Dates,CSSED6cumsum); axis('tight'); 
 

10118061011449GRA 19703


