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Abstract 

This master thesis tests and evaluates different asset pricing models for the 

Norwegian stock market. The models are made to explain the cross-section of 

expected stock returns, and we apply them to real-world data and compare their 

performance.  

 

This paper applies four models to the Norwegian stock market; CAPM, Fama and 

French Three-Factor Model (FF3), Fama and French Five-Factor Model (FF5), 

and the Carhart Four-Factor Model (C4). We evaluate their performance using the 

Fama and MacBeth (1973) procedure with both time-series and cross-sectional 

regressions and compare the models based on intercept analysis, explanatory 

power, and stability in results. The purpose of the comparison is to find a superior 

model that should be applied when analysing the Norwegian stock market.  

 

The Fama-French three-factor model is the most preferred amongst our models. 

We find no evidence that adding more factors, either the Momentum or the RMW 

and CMA factor, explain the cross-section of expected returns better than the 

three-factor model. Further, all models yield a significant intercept which entails 

that the models are missing priced risk factors for the Norwegian stock market. 

Other models with different risk factors should, therefore, be considered when 

conduction analysis in the Norwegian market. However, we find that the Fama-

French three-factor model is a relatively stable and applicable model. 
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1. Introduction 
 

Asset pricing models are applied daily all over the world and have an extensive 

list of purposes. From estimating expected future returns and the cost of equity for 

a company, to measuring and evaluating portfolio performance.  Its vast usage is 

reflected in all the literature and models created over the years. Despite this, 

studies conducting empirical tests of different models have not yet concluded 

which model best describes the data. 

 

The Capital Asset Pricing Model (CAPM) of William Sharpe (1964), John Lintner 

(1965) and Jan Mossin (1966) was a pioneering break-through for modern 

financial economics. The single-factor model describes the relationship between 

systematic risk and expected return for assets and is used in finance to determine a 

theoretically appropriate required return of an asset. The CAPM has been exposed 

to much criticism because of poor empirical results and unrealistic assumptions. 

Over the years, additional asset pricing models have been developed, such as the 

Intertemporal CAPM (Merton, 1973) and Arbitrage Pricing Theory (Ross, 1976). 

Also, researchers observed several “anomalies” in the US stock market. Banz 

(1981) found that small market cap stocks seemed to outperform large market cap 

stocks, and Basu (1983) found evidence that value stocks (high book-to-market 

ratio) tend to outperform growth stocks (low book-to-market ratio). These 

observations led to the development of the Fama and French three-factor model. 

Fama and French (1993) extended the CAPM and added two additional factors, 

small minus big (SMB) and high minus low (HML), to capture the size and B/M 

“anomalies”. Since then, researchers have found many new “anomalies” that the 

three-factor model fails to capture, which has resulted in the development of 

alternative models. In 1997, Carhart presented a four-factor model which captures 

the momentum “anomaly” from Jegadeesh and Titman (1993). He took the three-

factor model of Fama and French and added a momentum risk factor. More 

recently, Fama and French (2012) introduced a five-factor model, another 

extension of their three-factor model, where they add a profitability (robust minus 

weak, RMW) and an investment (conservative minus aggressive, CMA) factor. 
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Moreover, Fama and French (2015) show that the five-factor model outperforms 

the three-factor model in explaining expected returns.  

 

Many more explanations, theories, and models have arisen, yet, there is no 

consensus on a common model that is superior in explaining the cross-section of 

returns. Researchers and investors keep finding new strategies superior to the 

performance predicted by the pricing models. Hence, a central question in 

financial economics is to find an asset pricing model which includes all priced 

risk.  

 

In this study we evaluate four established asset pricing models and, to some 

degree, find the model best suited to explain expected returns in the cross-section 

in the Norwegian market. We do not believe that any model is perfect. However, 

we want to find the superior amongst the models tested. Hence, the research 

questions can be formulated as follows: 

 

Which asset pricing model is best suited to explain the cross-section of expected 

returns in the Norwegian stock market?  

 

The four models we compare are the CAPM, the Fama-French three-factor model, 

the Carhart four-factor model, and the Fama-French five-factor model. The three 

latter are all developed to capture “anomalies” that CAPM fails to do and thus 

leads one to believe that they will perform better than CAPM. However, we want 

to include CAPM in our study because the easy and intuitive model is still in use.  

 

We estimate the models using the methodology of Fama and MacBeth (1973), 

where the first step is to run time-series regressions followed by cross-sectional 

regressions. Further, we analyse and compare the models based on intercept 

analysis, explanatory power, and stability in results.  

 

09756980975122GRA 19703



3 
 

We find that the Fama-French three-factor model is the most preferred amongst 

our models. No evidence suggests that adding more factors, either the Momentum 

or the RMW and CMA factor, explains the cross-section of expected returns 

better than the three-factor model. Further, all models yield a significant intercept 

which entails that the models are missing priced risk factors for the Norwegian 

stock market. Other models with different risk factors should, therefore, be 

considered when conduction analysis in the Norwegian market. These findings are 

consistent with the research of Næs, Skjæltorp and Ødegaard (2009). They find 

that a three-factor model containing the market, a size factor, and a liquidity factor 

provides a reasonable fit for the cross-section of stock returns in Norway. 

However, we find that the Fama-French three-factor model is a relatively stable 

and applicable model to explain the cross-section of expected returns in the 

Norwegian market.   

 

This paper has the following outline: Section two briefly introduce the theory of 

asset pricing models, section three reviews literature, section four presents the 

models, section five describes the methodology, section six explains the data and 

includes descriptive statistics, section seven contains empirical results and 

discussion, and in section eight we conclude. 

 

2. Theory 

2.1 CAPM 

The Capital Asset Pricing Model is a single-factor model that was introduced by 

William Sharpe (1964) and John Lintner (1965) and was the birth of asset pricing 

theory. The theory is still being used and taught to this day, five decades later. The 

advantages with the model are its simple logic and intuitively pleasing predictions 

about how to measure risk and about the relationship between expected return and 

risk.  

 

The model assumes that all investors have homogenous expectations, and 

optimally will hold mean-variance efficient portfolios. In a frictionless market, 
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this implies that all investors will hold the market portfolio, which is a value-

weighted portfolio of all assets available in the financial market.  

 

CAPM, as mentioned, is still popular today due to its simplicity. However, the 

empirical record of the model is poor, mainly because it is not possible to observe 

the true market portfolio. Therefore, we need to apply a proxy for the true market 

portfolio to empirically test CAPM. 

 

The Sharpe and Lintner version of the CAPM assumes that investors can borrow 

and lend at a risk-free rate. For this version we have expected return for asset i: 

 𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖𝑚[𝐸(𝑅𝑚) − 𝑅𝑓] (1) 

 

Where, 

 
𝛽𝑖𝑚 =

𝐶𝑜𝑣[𝑅𝑖, 𝑅𝑚]

𝑉𝑎𝑟[𝑅𝑚]
 

(2) 

 

𝐸(𝑅𝑖) is the expected return on asset i, 𝐸(𝑅𝑚) is the expected return of the market 

portfolio, and 𝑅𝑓 is the risk-free return. 𝛽𝑖𝑚 is the regression coefficient between 

the asset and the market and is a risk measure that gives the amount of market risk 

of the asset. A beta higher than one implies that the asset is expected to earn a 

higher return than the market (given that the market is expected to yield positive 

return), but with a higher risk. Investors require compensation in the form of a risk 

premium for holding a risky asset. This implies that a risk-free asset should yield 

an expected return equal to the risk-free rate, and a risky asset is expected to yield 

a higher return.  

 

In CAPM, only systematic risk, the risk that cannot be reduced or eliminated 

through diversification, is rewarded with a higher expected return. 𝛽𝑖𝑚 only 

capture the asset´s systematic risk, which implies that the total risk of the asset 

does not equal the quantity of risk. The expected excess return on any asset is the 

price of risk times the quantity of risk. By rearranging equation (1) we get:  
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𝐸(𝑅𝑖) − 𝑅𝑓 =

𝐸(𝑅𝑚) − 𝑅𝑓

𝜎𝑚
∗ 𝜎𝑚𝛽𝑖𝑚 

(3) 

 

Where 𝐸(𝑅𝑖) − 𝑅𝑓 is the risk premium, 
𝐸(𝑅𝑚)−𝑅𝑓

𝜎𝑚
 is the price of risk and 𝜎𝑚𝛽𝑖𝑚 is 

the quantity of risk of asset i.  

 

2.2 APT 

Stephen Ross (1976) developed the Arbitrage Pricing Theory. The APT predicts a 

security market line, linking risk and expected return, and it allows for multiple 

risk factors. Also, the APT is anchored in observable portfolios such as the market 

index and does not require identification of the unobservable market portfolio. 

 

APT relies on three fundamental propositions: 

- Security returns can be described by a factor model. 

- There are sufficient securities to diversify away idiosyncratic risk. 

- Well-functioning security markets do not allow for the persistence of 

arbitrage opportunities. If any arbitrage opportunities were to exist, then 

investors will exploit the mispricing, bringing assets back to fair value. 

Assume returns can be described by the following K-factor model: 

 

 𝑅𝑖 = 𝛼𝑖 + 𝛽𝑖,1𝐹1 + 𝛽𝑖,2𝐹2 + ⋯ + 𝛽𝑖,𝐾𝐹𝐾 + 𝜀𝑖 (4) 

 

Where 𝛼𝑖 is a constant, 𝛽𝑖,𝐾 is the risk for asset i associated with factor K, 𝐹𝐾 is 

the systematic risk factor, and 𝜀𝑖 is the unsystematic risk component of asset i. 

Then, APT suggests that the expected return for an investment with no non-

systematic risk can be computed as: 
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 𝐸(𝑅𝑖) = 𝑅𝑓 + 𝛽𝑖,1𝜆1 + 𝛽𝑖,2𝜆2 + ⋯ + 𝛽𝑖,𝐾𝜆𝐾 (5) 

 

Where 𝜆𝑘, k = 1,…K is the risk premia (expected return) for factor k.  

 

APT, in contrast to CAPM, does not define the factors that determine the expected 

return of an asset. “The currently dominant approach to specifying factors as 

candidates for relevant sources of systematic risk uses firm characteristics that 

seem on empirical grounds to proxy for exposure to systematic risk. The factors 

chosen are variables that on past evidence seem to predict average returns well 

and therefore may be capturing risk premiums” (Bodie, Kane & Marcus, 2014, p. 

340). One example of this approach is the Fama and French three-factor model.  

 

3. Literature review 
 

3.1 CAPM 

There are several studies on the empirical performance of CAPM. Friend and 

Blume (1970) conducted one of the first studies which questioned the validity of 

CAPM. In the paper “Measurement of Portfolio Performance Under Uncertainty” 

(1970), they examine the relationship of one-parameter performance measures to 

risk for 200 random portfolios. The portfolios were selected from 788 stocks on 

the New York Stock Exchange through the period January 1960 to June 1968. The 

performance measures were Jensen, Treynor, and Sharpe, while the risk measure 

was beta. They found a bias in the performance measures relative to beta as the 

results show that performance and risk are strongly inversely correlated, where the 

risky portfolios perform poorer than the less risky portfolios. Friend and Blume 

(1970) also question the assumptions of CAPM, and they try to explain the bias 

through the unrealistic assumption that investors can borrow and lend unlimited 

quantities at the same risk-free rate. CAPM has been modified and extended 

numerous times in order to make a more realistic approach towards asset pricing. 

Fischer Black (1972) developed a new version where the risk-free rate is replaced 

with a zero-beta portfolio, which serves as the risk-free rate. Douglas Breeden 

(1979) developed the Consumption CAPM, which relies on the aggregate real 
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consumption growth rather than the market portfolio´s return, to estimate the 

expected return of an asset. Merton (1983) introduced the Intertemporal Capital 

Asset Pricing Model (ICAPM) as an extension to CAPM that also accounts for 

time-varying factors such as inflation and future returns.  

 

Numerous empirical tests of the CAPM have been done. Some studies support the 

CAPM, such as Black, Jensen and Scholes (1972) and Fama and MacBeth (1973), 

who empirically find a relationship between risk (beta) and returns. However, 

other studies have challenged the CAPM and find no relationship between betas 

and returns. Banz (1981) suggests that CAPM is missing a factor. He finds that 

the size of a firm explains variation in return, where the average return of small 

firms was substantially higher than the average return of larger firms, after 

adjusting for risk. Fama and French (1992) support Banz (1981) and find that 

other explanatory variables, such as firm size and book to market equity ratio, 

seem to explain the cross-section of stock returns better than beta. Based on this 

evidence, Fama and French introduced the three-factor model in 1993.  

 

Some studies also challenge the challengers, where they argue that the poor 

empirical results are caused by a fault in the market proxy. Roll (1977) argues that 

the CAPM never has or will be empirically tested due to the unobservable true 

market portfolio.  

 

3.2 Fama-French three-factor model 

Fama and French (1993) make an extension of the CAPM by adding two 

additional risk factors related to firm size and book-to-market ratio. They find that 

this expanded model captures much of the variation in returns among stocks in the 

U.S. (Fama & French, 1996). The choice of factors is motivated by empirical 

evidence, which makes it difficult to interpret in a theoretical manner. They found 

that, on average, firms with high book-to-market equity ratio (B/M) tend to have 

persistently poor earnings, and firms with low B/M have persistently high 

earnings. Also, small firms tend to be more profitable than large firms. Fama and 
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French (1998) found that the three-factor model outperforms CAPM in explaining 

the cross-section of stock returns in 13 major markets.  

 

However, Fama and French (1996) admit that the main embarrassment of the 

three-factor model is its failure to capture the continuation of short‐term returns 

documented by Jegadeesh and Titman (1993) and Asness (1995). Jegadeesh & 

Titman (1993) found evidence that buying past winners and selling past losers 

gave significant abnormal returns, as the performance of a stock, good or bad, 

tend to persist over several months. Carhart (1997) purposed a solution to this 

problem, as he added momentum as an additional risk factor to the Fama-French 

three-factor model.  

 

3.3 Carhart four-factor model 

Carhart (1997) investigated mutual funds and found that the momentum factor 

was statistically significant alongside the value and size factors. Many other 

studies also examine momentum returns of firm value and firm size (Jagadeesh 

and Titman, 1993; Nijman, Swinkels & Verbeek, 2004), and the results show that 

the momentum effect is more substantial on small-cap growth stocks.  

 

3.4 Hou, Xue, Zhang’s q-factor model 

Hou. Xue and Zhang (2015) introduced a new four-factor model. They propose 

that the expected return of an asset is described by the sensitivities of its return to 

the market excess return, investment, size, and profitability (ROE). Their q-factor 

model is partly inspired by investment-based asset pricing, which in turn is built 

upon Tobin’s (1969) q-theory of investments. Tobin’s Q is calculated as the 

market value of a company divided by the replacement value of the firm's assets. 

The Q measures if a firm or market is relatively over- or under-valued. Hou, Xue 

and Zhang (2015) argue that “firms invest more when their marginal q (the net 

present value of future cash flows generated from an additional unit of assets) is 

high. Given expected profitability or cash flows, low discount rates imply high 

marginal q and high investment, and high discount rates imply low marginal q and 
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low investment” and that expected returns decrease with investment-to-assets. The 

purpose of the model is to capture “anomalies” that the Fama-French three-factor 

model was unable to, especially the impact of a firm´s investment behaviour and 

profitability on expected stock return. They tested the model on 80 “anomalies” in 

the U.S. market and concluded that the q-factor model outperforms both the 

Fama-French three-factor model and Carhart´s four-factor model in capturing 

many of the significant “anomalies”.   

 

3.5 Fama-French five-factor model 

Fama and French (2015) published the five-factor model in 2015 where they 

include operating profitability (RMW) and investment (CMA) as two additional 

factors to the three-factor model (Fama & French, 1993). Evidence shows that the 

three-factor model does not explain the variance in returns related to profitability 

and investment. Hence, they include them as factors in a new model (Fama-

French, 2015). Fama and French (2015) used U.S. data and argued that the five-

factor model performs better than the three-factor model on capturing patterns in 

the average stock return. However, they reject the GRS-test on the five-factor 

model, which implies that the model is not perfect. Nevertheless, it was still able 

to explain between 71 and 94 % of the variance in returns of the examined 

portfolios. Thus, they conclude that the five-factor model is superior between the 

two models.  

 

Fama and French (2017) also studied how the five-factor model performs in 

international markets (North America, Europe, Japan, and Asia Pacific). They find 

that “average stock returns for North America, Europe, and Asia Pacific increase 

with the book-to-market ratio and profitability and are negatively related to 

investment. For Japan, the relation between average returns and B/M is strong, but 

average returns show little relation to profitability or investment” (Fama & 

French, 2017). For the sample period 1990-2015, their findings indicate that all 

five factors have unique information about average returns in North America. 

However, CMA, the investment factor, is redundant for Japan and Europe. Hence, 

dropping CMA from the five-factor model has little effect on the explanation of 

average returns in those regions. 
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3.6 Similar studies 

The paper “Evaluating asset pricing model in the Korean stock market” by Kim, 

Kim and Shin (2012) evaluates and compares asset pricing models in the Korean 

stock market. The models which are evaluated and compared are the CAPM, 

several APT-motivated models, the CCAPM, and several ICAPM-motivated 

models. In the study, they conduct time-series tests and cross-sectional regression 

tests. They find that the Fama-French five-factor model performs best among the 

tested models. Then the Fama-French three-factor model and the Campbell model 

are next on explaining cross-sectional stock returns in Korea.  

 

In 2017, Hou, Xue and Zhang (2017) investigated and compared the performance 

of several empirical asset pricing models in explaining hundreds of significant 

“anomalies” in the broad cross-section. Their study includes the classical models 

such as CAPM, Fama-French three-factor model, and Carhart four-factor model. 

In addition to some newer models, such as Hou, Xue and Zhang q-factor model 

and Fama-French five-factor model. Their findings indicate that the q-factor 

model and the five-factor model are the two best performing models in explaining 

stock return “anomalies” in New York Stock Exchange (NYSE). Moreover, the q-

factor model outperforms the five-factor model in explaining momentum and 

profitability “anomalies”, but the five-factor model is better in explaining value-

versus-growth “anomalies”. Furthermore, they find that investment and 

profitability “are the key driving forces in the broad cross-section of expected 

return” (Hou et al., 2017).   

 

Despite a large amount of international empirical asset pricing studies, there are to 

our knowledge, just a few studies regarding the Norwegian stock market. Næs et 

al. (2009) have done substantial research on which factors affect the Oslo Stock 

Exchange. In their paper, they analyse return patterns in the Norwegian stock 

market in the period 1980-2006 and find that a three-factor model containing the 

market, a size factor and a liquidity factor provides a reasonable fit for the cross-

section of stock returns in Norway.   
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4. The models 
 

In this section, we outline the four models that are used in this study. Also, we 

explain why these particular models were selected. 

 

4.1 CAPM 

The Capital Asset Pricing Model is a centrepiece of modern financial economics 

and asset pricing literature. Although the CAPM does not adequately withstand 

empirical test, it is widely used because it is simple, gives good insight and 

because its accuracy is considered acceptable for essential applications (Bodie et 

al., 2014, p. 291). Thus, it is natural to include the model in this study. 

 

As mentioned earlier, to test the CAPM empirically, it is necessary to include a 

factor as a proxy for the unobservable market portfolio. We will use the factor 

ERM, the excess return for the Norwegian stock market, as a proxy to compute the 

expected return of the test assets. Hence, we obtain the CAPM model: 

 

 𝐸(𝑅𝑖) − 𝑅𝑓 = 𝛽𝑖,𝐸𝑅𝑀(𝐸𝑅𝑀𝑖) (6) 

 

where 𝐸(𝑅𝑖) − 𝑅𝑓 is the expected excess return of the test assets, 𝑅𝑓 is the risk-

free rate, and 𝛽𝑖,𝐸𝑅𝑀 is the coefficient loading for asset i to the excess return of the 

Norwegian stock exchange.   

 

4.2 Fama-French three-factor model 

Empirical research shows that returns are related to firm characteristics like size 

(Banz, 1981), earning/price (Basu, 1983), cash flow/price (Lakonishok, Shleifer & 

Vishny, 1994), book-to-market equity (Rosenberg, Reid & Lanstein, 1985), past 

sales growth, long-term past return, and short-term past return. As the CAPM 

does not explain these patterns, Fama and French introduced the three-factor 

model to take care of this problem. In addition to the excess return on market 
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portfolio, (E(Rm) – Rf), they introduced two new factors which are HML and 

SMB. HML is the difference between the return on a portfolio of high-book-to-

market stocks and the return on a portfolio of low-book-to-market stocks and 

SMB is the difference between the return on a portfolio of small stocks and the 

return on a portfolio of large stocks. The equation derives the expected excess 

return on asset i:  

 

 𝐸(𝑅𝑖) − 𝑅𝑓 = 𝛽𝑖,𝐸𝑅𝑀(𝐸𝑅𝑀𝑖) + 𝛽𝑖,𝑆𝑀𝐵(𝑆𝑀𝐵𝑖) + 𝛽𝑖,𝐻𝑀𝐿(𝐻𝑀𝐿𝑖) (7) 

 (Fama & French, 1996) 

where, 𝛽𝑖,𝑆𝑀𝐵and 𝛽𝑖,𝐻𝑀𝐿 are the sensitivities of asset i to risk factors SMB and 

HML.  

 

4.3 Carhart four-factor model  

The Carhart four-factor model was constructed using the Fama and French (1993) 

three-factor model plus an additional factor capturing Jegadeesh and Titman’s 

(1993) one-year momentum “anomaly”. Næs et al. (2009) state that “momentum 

strategies have also been shown to work outside the U.S. Rouwenhorst (1998) 

documents momentum strategies in 12 European stock markets over the period 

1980-95, while Chan, Hameed, and Tong (2000) find support for momentum 

strategies in 23 international stock indices, of which 9 Asian, 11 European, two 

North-American and one South-African”. Further, the four-factor model has 

shown to perform better than the Fama-French three-factor model (Hou et al., 

2017). Thus, it would be interesting to include the model in our study and assess 

its performance in Norway: 

 

 𝐸(𝑅𝑖) − 𝑅𝑓 = 𝛽𝑖,𝐸𝑅𝑀(𝐸𝑅𝑀𝑖) + 𝛽𝑖,𝑆𝑀𝐵(𝑆𝑀𝐵𝑖) + 𝛽𝑖,𝐻𝑀𝐿(𝐻𝑀𝐿𝑖)

+ 𝛽𝑖,𝑃𝑅1𝑌𝑅(𝑃𝑅1𝑌𝑅𝑡) 

(8) 

 (Carhart, 1997) 

where PR1YR are the returns on value-weighted, zero-investment one-year 

momentum in stock returns and 𝛽𝑖,𝑃𝑅1𝑌𝑅 is the sensitivity of asset i to the risk 

factor PR1YR.  
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4.4 Fama-French five-factor model  

The five-factor model is an extension of the three-factor model with a profitability 

and investment factor added. We find it interesting to include the five-factor 

model as it is a relatively new model compared to CAPM, Fama-French three-

factor model, and Carhart four-factor model. Also, several studies have presented 

evidence that it is better than CAPM and the three-factor model to determine 

expected returns. The model: 

 

 𝐸(𝑅𝑖) − 𝑅𝑓 = 𝛽𝑖,𝐸𝑅𝑀(𝐸𝑅𝑀𝑖) + 𝛽𝑖,𝑆𝑀𝐵(𝑆𝑀𝐵𝑖) + 𝛽𝑖,𝐻𝑀𝐿(𝐻𝑀𝐿𝑖)

+ 𝛽𝑖,𝑅𝑀𝑊(𝑅𝑀𝑊𝑖) + 𝛽𝑖,𝐶𝑀𝐴(𝐶𝑀𝐴𝑖) 

(9) 

 (Fama & French, 2015) 

 

Where 𝑅𝑀𝑊𝑖 is the difference between returns on diversified stocks with robust 

and weak profitability and 𝐶𝑀𝐴𝑖 is the difference in return on diversified 

portfolios of the stocks of low and high investment firms. 𝛽𝑖,𝑅𝑀𝑊 and 𝛽𝑖,𝐶𝑀𝐴 are 

the sensitivities of asset i to risk factors RMW and CMA.  

 

5. Methodology 
 

Throughout this study, we apply the Fama and MacBeth (1973) procedure to 

determine which of the suggested asset pricing models is superior in explaining 

the cross-section of expected returns in the Norwegian stock market. We use test 

assets consisting of 28-30 portfolios. Further, intercept analysis, stability analysis, 

and explanatory power is evaluated and used as arguments to determine if there is 

a superior model.  

 

5.1 Fama and MacBeth – two-step regression 

The methodology applied by Fama and MacBeth (1973) is a two-step regression 

which enables us to see the relationship between risk and expected return. From 

the two-step regressions, we obtain estimates of loading’s and risk premiums for 
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each factor, and we apply several tests to determine the best model in explaining 

the cross-section of expected returns. 

 

The first step of the methodology is to do a time-series regression of the test assets 

on the factors to obtain estimates of beta for each factor in the different models. In 

these estimations we assume constant coefficients and constant expected returns. 

The regression is estimated using ordinary least squares, and we run the 

regression for all the test assets, 𝑖 = 1, … 𝑁, where N is the number of portfolios 

we use as test assets: 

 

 𝑅𝑖,𝑡 = 𝛼𝑖 + 𝛽𝑖,1𝐹1,𝑡 + 𝛽𝑖,2𝐹2,𝑡 + ⋯ + 𝛽𝑖,𝐾𝐹𝐾,𝑡 + 𝜀𝑖,𝑡     , 𝑡 = 1, … 𝑇 (10) 

 

From the regressions, 𝛼𝑖  is the intercept, 𝛽𝑖,1, 𝛽𝑖,2, … , 𝛽𝑖,𝐾 are the factor loadings 

on each of the K factors, 𝜀𝑖,𝑡  is the error term, and T is the number of time steps 

observations. The factor loadings are only estimations of the true factor loadings. 

Therefore, we label the estimates of the factor loadings �̂�𝑖,1, �̂�𝑖,2, … , �̂�𝑖,𝐾. 

 

The second step of the methodology is to regress return on the estimated factor 

loadings �̂�𝑖,1, �̂�𝑖,2, … , �̂�𝑖,𝐾 for each cross-sectional observation. This yields the 

estimated risk premium for each of the K factors. The cross-sectional regression 

is: 

 

 𝑅𝑖,𝑡 = 𝜆0,𝑡 + 𝜆1,𝑡�̂�𝑖,1 + 𝜆2,𝑡�̂�𝑖,2 + ⋯ + 𝜆𝐾,𝑡�̂�𝑖,𝐾 + 𝜀𝑖,𝑡   , 𝑖 = 1, … 𝑁 (11) 

 

Where 𝜆0,𝑡 is the intercept, 𝜆1,𝑡, 𝜆2,𝑡, … , 𝜆𝐾,𝑡 is the estimate of the risk premium 

(in period t) for the K factors, and 𝜀𝑖,𝑡 is the error term. From the OLS regressions 

for each cross-section, we obtain T estimates of the risk premium for each factor. 

Because they are estimates we name them �̂�1,𝑡, �̂�2,𝑡, … , �̂�𝐾,𝑡. 
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Further, we calculate the average risk premium, �̂�𝑘
̅̅ ̅,  for each factor 𝑘 = 1, … 𝐾: 

 

 

�̂�𝑘
̅̅ ̅ =

1

𝑇
∑ �̂�𝑘,𝑡   , 𝑘 = 1, … 𝐾

𝑇

𝑡=1

 

(12) 

 

After obtaining the average risk premium for each factor we can compute the t-

ratio as: 

 
𝑡 (�̂�𝑘

̅̅ ̅) =
√𝑇 ∗  �̂�𝑘

̅̅ ̅̅

�̂�𝜆,𝑘
   , 𝑘 = 1, … 𝐾 

(13) 

where,  

 

�̂�𝜆,𝑘 = √
1

𝑇 − 1
∑ (�̂�𝑘,𝑡 − �̂�𝑘

̅̅ ̅)
2

𝑇

𝑡=1

   , 𝑘 = 1 … 𝐾 

 

(14) 

 

According to Brooks (2019, p. 589), the test statistic is asymptotically normal, 

implying that it follows a t-distribution with T-1 degrees of freedom in finite 

samples. The t-statistics will give insight into whether the risk premiums are 

statistically significant or not. Noteworthy, according to Shanken (1992), the 

Fama and MacBeth approach with rolling window betas cause the series of 

estimates not to be independent, which is a criterion for the t-distribution. 

Moreover, he explains that if a single beta is estimated, which is the approach in 

this study, measurement error in beta decline as the sample size increases. In this 

case, he states that the second-pass estimator is T-consistent.  

 

5.2 Test assets  

The appropriate test assets to apply in an asset pricing model depends on how one 

can minimize errors in the estimation of the risk premia. As the cross-sectional 

regression in the Fama-MacBeth method uses estimated factor loadings from the 

time-series regression, this introduces an EIV (errors in variables) problem.  One 

widely used method to tackle this problem is to group stocks in portfolios, which 

Blume (1970) initially gave the idea to do. Fama and MacBeth (1973) argue that 

09756980975122GRA 19703



16 
 

using portfolios rather than individual stocks reduces the EIV problem 

significantly. An alternative approach that Litzenberger and Ramaswamy (1979) 

and others apply to reduce the EIV problem is to use the entire universe of stocks 

to estimate the cross-sectional risk premium.  

 

Further, in a study by Ang, Liu and Schwarz (2017) they find that the motivation 

for using portfolios instead of stocks is empirically wrong. The motivation being 

that the betas are estimated with errors and this estimation error is diversified 

away by aggregating stocks into portfolios. They find that the reduced uncertainty 

of the factor loadings does not translate to lower standard errors for risk premium 

estimates. Reason being that portfolios diversify away information contained in 

individual stocks factor loadings, and therefore reduces the dispersion of the 

cross-sectional betas. However, we will use portfolios in this study to try to tackle 

the EIV problem, and high dispersion in the cross-sectional betas between the 

portfolios will be an important criterion.  

 

We collect several portfolios from Bernt Arne Ødegaard (2019). He uses different 

characteristics to sort assets and creates portfolios based on this sorting.  One of 

the suggestions of Lewellen, Nagel and Shanken (2010) is to include other 

characteristics than the commonly used size-B/M portfolios due to problems tied 

to the strong covariance structure. Therefore, we collect portfolios sorted 

according to five different characteristics: Size, B/M, Momentum, Industry, and 

Spread. The Spread portfolios are according to Næs et al. (2009) “calculated as 

the difference between the closing bid and ask prices, relative to the midpoint 

price. Portfolio 1 contains the stocks with the lowest spread, i.e. the most liquid 

companies, while portfolio 10 contains companies with the biggest spread”. 

Following Fama and French (2015), who uses test assets consisting of 25-32 

portfolios, we construct test assets with a similar range of portfolios. Since the 

data from Ødegaard contains up to ten portfolios for each characteristic, this 

implies that we group the five characteristics in sets of three, to obtain ten sets of 

test assets (e.g., one set of test assets includes the ten portfolios of Size, B/M, and 

Momentum, which entails that the test assets hold 30 portfolios).  
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To find the appropriate test assets to use in our models, we want these test assets 

to minimize the errors in the estimation of the risk premia. We evaluate the 

different characteristics of dispersion in expected returns to get an indication of 

which characteristics might give a higher dispersion of the cross-sectional betas. 

The reason we want high dispersion in the cross-sectional betas is motivated by 

the logic of Ang et al. (2017), that higher dispersion in betas entails that more 

information is captured in the cross-section to estimate the risk premia. Thus, we 

believe that the estimation of the risk premia will be more accurate. Further, we 

examine the ten sets of test assets to see which test assets yield the highest 

dispersion of the cross-sectional betas and apply these test assets to our models.  

 

5.3 Model comparison 

To answer our research question, if one asset pricing model is superior to the 

others, we need to compare the models. For this, we need appropriate 

tests/analyses, which allows us to evaluate a model’s relative performance.  

 

Intercept analysis is a commonly used method to determine if an asset pricing 

model includes all priced risks. If the intercept is statistically different from zero, 

this implies that the model does not include all priced risk factors. We analyse the 

intercept from both the time-series and the cross-sectional regressions to 

determine if the model includes all priced risk factors. If one model yields a zero-

intercept, we conclude that this model performs better as it seems to include all 

priced risk factors. Further, we compare the models based on the cross-sectional 

adjusted-R2, which indicates how much of the variation in the cross-section of 

expected return the model explains, adjusted for the number of parameters. The 

motivation to use adjusted-R2, in addition to R2, is that some of the models are just 

an extension of another model, such as FF5 includes the factors of FF3 and two 

additional factors. This implies that the five-factor model’s R2, by definition, will 

be equal to, or higher, than that of the three-factor model. Therefore, we use 

adjusted-R2 as it corrects for the number of factors in the model. We show in 

Appendix A how the R2 and adjusted R2 are calculated. Lastly, we will test the 

models using different sets of test assets, in addition to our main test assets, to 
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measure the stability of the results. Hopefully, these tests/analyses give us enough 

insight to compare and determine which model is superior. 

 

5.3.1 Intercept analysis 

For the cross-sectional regressions, we estimate the average risk premium by 

averaging the T number of risk premiums for any factor. We also show how we 

calculate the t-ratio in equation (13). The same logic is applied for the intercept, 

𝜆0,𝑡. The null hypothesis is 𝜆0,𝑡 = 0, which implies that if the null hypothesis is 

rejected, the intercept is statistically significantly different from zero, and the 

model has cross-sectional pricing errors.  

 

For the time-series regressions, the intercept analysis is different. Reason being 

that we run N regressions, which results in N different alphas, one for each test 

asset. It is hard to evaluate a model’s performance based on 28-30 alphas, which 

is why we apply the GRS-test proposed by Gibbons, Ross and Shanken (1989). 

The GRS-test, similar to an F-test, examines the hypothesis that all the alphas 

from a set of time-series regressions are jointly equal to zero. The GRS-statistic is 

defined, following Cochrane (2000, p.217), as: 

 

 
𝐺𝑅𝑆 = (

𝑇 − 𝑁 − 𝐾

𝑁
)

�̂�′Σ̂−1�̂�

1 + 𝐸𝑇(𝑓)′Ω̂−1𝐸𝑇(𝑓)
~𝐹𝑁,𝑇−𝑁−𝐾 

(15) 

 

Where T is the number of cross-sectional periods, N is the number of test assets, 

K is the number of factors in the model. �̂� is an N × 1 vector with the estimated 

intercepts from the regressions, Σ̂ is an N × N unbiased estimate of the residual 

covariance matrix, 𝐸𝑇(𝑓) is a K × 1 vector of the factor portfolios means, and Ω̂ is 

an unbiased estimate of the factor portfolios covariance matrix. Further 

descriptions on how we calculate the GRS-statistic is shown in Appendix A. The 

motivation for using GRS-test rather than a 𝜒2-test is that according to Cochrane 

(2000, p.216) the 𝜒2-test is asymptotically valid whereas the GRS-test is valid for 

finite samples.  
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The GRS-statistic follows the F-distribution with numerator and denominator 

degrees of freedom equal to N and T-N-K, respectively. Calculating the GRS-

statistic as in equation (15) and finding the associated F-statistic will enable us to 

determine if the model’s intercepts are jointly statistically significantly different 

from zero. We again emphasise that the performance of the model is better if the 

intercepts are not significantly different from zero, as this entails that the model 

captures all the priced risks factors.   

 

5.3.2 Explanatory power 

As a practical matter, models are at best approximations of reality. It is therefore 

desirable to have a measure of “goodness of fit”. R2 is such a measure which 

describes how much of the variation in the dependent variable is explained by the 

independent variables. A high cross-sectional R2 should imply that the model 

captures most of the variation in expected return.  

 

However, according to Kan, Robotti and Shanken (2013), the cross-sectional R2 

has been treated mainly as a descriptive statistic in asset pricing research. Thus, 

we do not interpret R2 to be the realistic explanatory power of the model in the 

cross-section. Therefore, we solely use R2 to compare the performance of the 

different models against each other. Further, Kan et al. (2013) state that the R2 for 

average returns should be employed rather than the average of monthly R2s. 

Therefore, we will adjustment the cross-sectional regression to obtain R2 and 

adjusted-R2 for average returns: 

 

 𝐸(𝑅𝑖) = 𝜆0 + 𝜆1�̂�𝑖,1 + 𝜆2�̂�𝑖,2 + ⋯ + 𝜆𝐾�̂�𝑖,𝐾 + 𝜀𝑖    𝑖 = 1 … 𝑁 

 

(16) 

 

Where 𝐸(𝑅𝑖) is the average return on test asset i, 𝜆0 is the intercept for the sample 

period and 𝜆1, 𝜆2, … , 𝜆𝐾 are the factors risk premia for the sample period.  
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Both R2 and adjusted R2 are default outputs in MATLAB. Comparing the values 

gives insight into which model might be superior. However, we do this with 

caution as there are many critics to the cross-sectional R2. 

 

5.3.3 Stability analysis 

The test results from our models are evaluated based on our main test assets. 

However, an interesting approach is to change the test assets to determine if the 

results are stable, or differs, with the change applied. We want a good asset 

pricing model to work for any portfolio or stock, given that the estimation of the 

factor loadings is correct. Thus, stability in results will be an important analysis to 

determine the relative performance of the models. As previously mentioned, and 

explained in section “6.1 Main test assets”, we acquire ten sets of test assets which 

differs in the characteristics of the portfolios retained as test assets. We choose the 

set of assets that yields the highest dispersion in the cross-sectional betas as our 

main test assets, whereas the remaining nine sets are used in the stability analysis. 

Further, we apply some changes to the collected test assets, where we reduce the 

sample length for all models to equal the sample length collected for FF5. We also 

perform the analysis with equally-weighted test assets.   

 

Of course, the process is the same for every set of test assets, and the model that 

produces the most stable results will be favoured in terms of the stability analysis.  

 

6. Data 
 

The models compared in this study are the Fama-French three-factor model (FF3), 

Fama-French five-factor model (FF5), CAPM, and the Carhart four-factor model 

(C4). Thus, we need the factors for all models, where most of them are collected 

through Bernt Arne Ødegaard (2019). A description of the collected data is 

presented later in this section. Test assets are created based on five sets of 

portfolios which differ in characteristics: Industry, B/M, Momentum, Size, and 

Spread. For the CAPM, FF3, and C4 factor model, we have monthly data from 

July 1981 to December 2018, implying 450 observations. However, due to the 
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lack of data for Norwegian firms before 1995, the collected RMW and CMA only 

contain monthly data from January 1995 to December 2017. Hence, we have 276 

observations for the FF5 model.  

 

6.1 Main test assets  

Appendix B1 shows the descriptive analysis of the excess return for the five 

different characteristics sets of portfolios. As previously discussed, we favour the 

characteristics which yield the highest dispersion in expected returns as this may 

imply higher dispersion in the cross-sectional betas and therefore more 

information captured to estimate the risk premia. From Appendix B1, which 

includes the minimum, maximum, average, and standard deviation of excess 

return for the different characteristics portfolios, we observe that the highest 

average monthly returns of 2.7% and 2.2% are for the Size and Spread 

characteristic portfolios, respectively. The lowest of the average of minimum 

return is for the Industry characteristic portfolios with -32.9% and the highest of 

the average maximum return is also in the Industry portfolios with 58.7%. 

Further, the average standard deviation is the highest for the Industry, B/M and 

Momentum portfolio, with an average standard deviation of 0.089, 0.081, and 

0.078, respectively. As high standard deviation might imply higher dispersion in 

the cross-sectional beta, these portfolios are currently favoured.  

 

The most preferred test assets are the test assets with the highest dispersion in the 

cross-sectional betas. The test assets contain 28-30 portfolios and are sorted in the 

following way: 

First, we have five sets of characteristics portfolios, which are: 

Industry (I)  – 8 portfolios  

B/M (B)  – 10 portfolios 

Momentum (M)  – 10 portfolios 

Spread (Sp)   – 10 portfolios 

Size (Si)   – 10 portfolios 
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Lastly, we gather the characteristics in sets of three to create test assets, and with 

five characteristics, this implies ten sets of test assets:  

IBM  – 28 portfolios  

IBSp  – 28 portfolios 

IBSi  – 28 portfolios 

IMSp  – 28 portfolios 

IMSi  – 28 portfolios 

ISpSi  – 28 portfolios 

BMSp  – 30 portfolios 

BMSi  – 30 portfolios 

BSpSi  – 30 portfolios 

MSpSi – 30 portfolios 

 

Further, Appendix B2 shows the descriptive analysis of the cross-sectional betas. 

The highest of the average of the maximum betas are in the IMSi, IBSi, and ISpSi 

portfolios. The lowest of the average of the minimum betas are also in portfolio 

IMSi, IBSi, and ISpSi. Moreover, the highest average standard deviation of the 

cross-sectional betas using the four asset pricing models is the test asset IBSi with 

an average standard deviation of 0.19. Thus, IBSi will be used as main test assets 

in the main models due to the high dispersion in cross-sectional betas, which we 

believe will lower the estimation error of the risk premia.  

 

6.2 HML, SMB, and PR1YR 

We collect monthly data for the Fama-French factors HML and SMB and Carhart 

momentum factor (PR1YR) through Bernt Arne Ødegaard (2019), which has 

calculated the factor portfolios using Norwegian data. Ødegaard has constructed 

the HML and SMB factors as follows: “First companies at the OSE are sorted into 

three B/M portfolios (H,M,L). Thereafter companies in each B/M portfolio are 

sorted into two size portfolios (S,B). Finally, HML and SMB are constructed from 

the size cross-sorted portfolios (SH, SM, SL, BH, BM, BL) in such a manner that 

they are zero investments” (Næs et al., 2009): 
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𝐻𝑀𝐿 = (

𝑆𝐻 + 𝐵𝐻

2
) − (

𝑆𝐿 + 𝐵𝐿

2
) 

(17) 

 

 
𝑆𝑀𝐵 = (

𝑆𝐻 + 𝑆𝑀 + 𝑆𝐿

3
) − (

𝐵𝐻 + 𝐵𝑀 + 𝐵𝐿

3
) 

(18) 

 

where SH is Small-High, SM is Small-Medium, SL is Small-Low, BH is Big-

High, BM is Big-Medium, and BL is Big-Low portfolios.  

 

The PR1YR factor is constructed by sorting stocks into three portfolios at the end 

of each month, based on their previous 11-month return. The portfolios are losers 

(low return stocks), medium and winners (high return stocks), and are rebalanced 

each month. The PR1YR factor is the difference in return of portfolio three 

(winners) and one (losers). 

 

6.3 Market risk premium 

The market risk premium is the return of the market in excess of risk-free return: 

 

 𝐸𝑅𝑀𝑡 = 𝑅𝑚𝑎𝑟𝑘𝑒𝑡,𝑡 − 𝑅𝑓,𝑡 (19) 

 

Estimates of the monthly market return and risk-free rate are collected from 

Ødegaard (2019) for the entire sample period. We use the value-weighted market 

index, which is constructed from most of the stocks at Oslo Stock Exchange.   

 

6.4 CMA and RMW 

The last factors in the FF5 model are collected through former students, 

Kristiansen and Mahmood (2018), that have performed a similar study. With 

collected data from the Bloomberg terminal, they have created: 

- Operating Profitability (Revenue minus COGS, SGA and interest 

expenses, all divided by book equity) 
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- Investments (Total assets from year t-1 minus total assets from year t-2, 

divided by total assets from year t-2) 

They use a 2x2 sorting and the median of either operating profitability (OP) or 

investments (In) as breaking points. From OP, they obtain robust (R) and weak 

(W), and from In they obtain conservative (C) and aggressive (A). Splitting each 

of these four portfolios into small and big allows them to calculate RMW and 

CMA: 

 
𝑅𝑀𝑊 =

𝑆𝑅 + 𝐵𝑅

2
−

𝑆𝑊 + 𝐵𝑊

2
 

(20) 

 

Where SR, BR, SW, and BW are small-robust, big-robust, small-weak, and big-

weak, respectively. 

 
𝐶𝑀𝐴 =

𝑆𝐶 + 𝐵𝐶

2
−

𝑆𝐴 + 𝐵𝐴

2
 

(21) 

 

Where SC, BC, SA, and BA are small-conservative, big-conservative, small-

aggressive, and big-aggressive, respectively.  

 

6.5 Descriptive statistics for the factors 

Table 1 shows the descriptive statistics of the exogenous variables. We see from 

the table that there is some dispersion in the mean estimates, where ERM (excess 

market return) has the highest estimated mean of 1.35 %, and RMW has the 

lowest estimated mean of 0.35 %. ERM is also the most volatile independent 

variable, with an estimated standard deviation of 5.99 %, whereas RMW has the 

lowest standard deviation of 3.12%. 
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Table 1  Summary statistics of the factors   
 

    

Table 1 shows statistics for monthly excess returns for the factors 

   

        
Variable Mean Max Min Std. Dev. Skewness Kurtosis Observations 

ERM 1.35 % 18.61 % -25.06 % 5.99 % -0.57 4.84 450 

SMB 0.79 % 22.22 % -17.08 % 4.30 % 0.45 6.28 450 

HML 0.40 % 18.44 % -16.65 % 4.83 % -0.11 4.16 450 

PR1YR 0.95 % 15.43 % -16.78 % 4.81 % -0.41 4.31 450 

RMW 0.35 % 11.36 % -9.76 % 3.12 % 0.04 3.87 276 

CMA 0.61 % 16.57 % -10.64 % 3.41 % 0.91 7.24 276 

 

When using the Ordinary Least Squared estimation method, it is an implicit 

assumption that the explanatory variables are not correlated with one another. If 

the variables are highly correlated with each other, we have multicollinearity. 

Ignoring the presence of multicollinearity will impact the standard errors of the 

coefficients. Further, the regression will become very sensitive to small changes, 

so adding or removing an explanatory variable leads to substantial changes in the 

other variables’ significances and coefficient estimates. Lastly, significance tests 

may give inappropriate conclusions as the confidence intervals for the variables 

become very wide (Brooks, 2019, p. 215).  
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Table 2  Correlation between the factors            

Panel A shows the correlations between the factors in the Fama-French three-factor model and the Carhart's 

four-factor model for the time period 1981-2018 

Panel B shows the correlations between the factors in the Fama-French five-factor 

model for the time period 1995-2017. 

  
 

Panel A ERM SMB HML 

 
ERM 1.00 

   
SMB -0.41 1.00 

  
HML 0.05 -0.12 1.00 

 
PR1YR -0.12 0.12 -0.03 

 

     

     
Panel B ERM SMB HML RMW 

ERM 1.00 

   
SMB -0.47 1.00 

  
HML -0.20 -0.05 1.00 

 
RMW -0.32 0.00 0.21 1.00 

CMA 0.03 0.00 0.09 -0.12 

 

 

Table 2, panel A, shows the correlations between the variables in the Fama-

French three-factor model and Carhart four-factor model for the time period 1981-

2018, and table 2, panel B, reports the correlations between the variables in the 

Fama-French five-factor model, for the time period 1995-2017. We see from the 

table that the correlation between the explanatory variables is low overall. Hence, 

there is no indication of multicollinearity among the variables. The highest 

absolute correlation is between ERM and SMB in both panel A and B, with 

correlations of -0.41 and -0.47, respectively.  

 

When doing time-series analyses, it is important that the variables are stationary. 

Use of non-stationary data can lead to spurious regressions. Hence, provide 

misleading statistical evidence and impact our results. We are only working with 

asset returns, which are unit-free and stationary (Brooks, 2014, p. 7). Thus, 

spurious regressions are not an issue in this study.  
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7. Main results and discussion  
 

This section shows and describes the results of the tests for the selected asset 

pricing models. For the main analysis, we use value-weighted portfolios. To get a 

more thorough comparison, we also estimate each model for equally-weighted 

portfolios and value-weighted portfolios with sample length equal to the Fama-

French five-factor model (1995-2017). These results are reported in Appendix C2 

and Appendix C3, respectively.   

 

In the first subsection, we examine the risk premia of the risk factors from the 

Fama-Macbeth regressions. In the second and third subsection, we compare the 

models by analysing the intercepts and the coefficients of determination. The 

fourth subsection contains a stability analysis where we estimate the models using 

other sets of test assets.  

  

7.1 Fama-MacBeth cross-sectional regressions 

Table 3 presents the results from the Fama-MacBeth two-pass regressions, where 

we have tested the CAPM, Fama-French three-factor model (FF3), Carhart´s four-

factor model (C4) and Fama-French five-factor model (FF5) in the cross-section 

of our main test assets, IBSi.  
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Table 3  Results from cross-sectional regressions  
Table 3 reports the results from the cross-sectional regressions using the Fama and MacBeth procedure. All models 

are estimated using monthly excess return on the 28 IBSi portfolios. Column 2 reports the intercept, columns 3-7 

show the estimated risk premia and the corresponding t-statistic for each factor, and columns 8-9 show the R2 and 

adjusted R2 for the estimated model. *, ** and *** indicate the significance for the risk premia estimates at the 10, 

5 and 1 percent level, respectively.  

         
Panel A: CAPM 

1981-

2018 
𝜆0 𝜆𝐸𝑅𝑀         𝑅2 𝑅𝑎𝑑𝑗

2
 

CAPM         0.040     -0.025     0.466 0.445 

T-ratio     (-10.193)***    (-5.227)***       

         

Panel B: Fama French three factor model 

1981-

2018 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝐸𝑅𝑀     𝑅2 𝑅𝑎𝑑𝑗

2  

FF3 0.025       0.016 0.000 -0.012     0.727 0.693 

T-ratio        (4.956)***     (6.235)*** (0.060)     (-2.138)**     

         

Panel C: Carhart four factor model 

1981-

2018 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑃𝑅1𝑌𝑅 𝜆𝐸𝑅𝑀   𝑅2 𝑅𝑎𝑑𝑗

2  

C4 0.027       0.017 0.000 -0.005    -0.015  0.737 0.691 

T-ratio        (4.982)***     (6.249)*** (-0.097) (-0.563)  (-2.386)**    

         

Panel D: Fama French five factor model 

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑅𝑀𝑊 𝜆𝐶𝑀𝐴 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

FF5 0.015       0.017 0.000 -0.009 0.005 -0.002 0.773 0.722 

T-ratio       (3.441)***     (5.623)*** (0.018) (-1.314) (0.533) (-0.336)   

                  

 

 

Panel A shows the results for the estimated CAPM using value-weighted 

portfolios. In this subsection, we will focus on the second column, which shows 

the estimated risk premium for the market factor (value-weighted) and the 

associated t-statistic. We find that the market factor is significantly different from 

zero at the 1% level. Hence, the market portfolio is a priced risk factor, and the 

CAPM is a reasonably well-specified model for our main test assets. However, we 

did not expect the ERM to be negative. Modern Portfolio Theory argues that, in a 

market of risk-averse investors, higher risk should be associated with a higher 

expected return. So, the expected value of the risk premia, ERM, which is the 

slope of E(Rmarket) – E(Rf), is positive (Fama & Macbeth, 1973). Our findings are 

not consistent with this theory, as the results show a negative trade-off between 

risk and return on average. However, Asness, Frazzini, and Pedersen (2012) show 
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that “leverage aversion changes the predictions of modern portfolio theory: It 

implies that safer assets must offer higher risk-adjusted returns than riskier assets 

because leverage-averse investors tilt their portfolio toward riskier assets to 

achieve high unleveraged returns, thus pushing up the prices of risky assets and 

reducing the expected return on those assets”. Also, Frazzini and Pedersen (2014) 

find that a betting against beta factor, which is long leveraged low-beta assets and 

short high-beta assets, produces significant positive risk-adjusted returns.  

 

Panel B shows the results from the estimation of the Fama-French three-factor 

model. We find that SMB yields a significant risk premia at the 1% level, and the 

market factor is priced and significant at 5%. However, HML is insignificant and 

not a priced risk factor. Hence, our results from the Norwegian stock market are 

not consistent with the findings of Fama and French (1993) for the U.S.    

 

Panel C shows the results for Carhart´s four-factor model. Adding the PR1YR 

factor to the three-factor model do not result in any change of the significance of 

the other risk factors. The momentum factor is found insignificant and not priced 

in the Norwegian stock market.  

 

Looking at the five-factor model in panel D, we can see that the size factor is the 

only significant risk factor. Hence, when extending the three-factor model with 

RMW and CMA, the market factor becomes insignificant. Also, both the new risk 

factors seem not to be priced, which is inconsistent with what Fama and French 

(2015) found in the U.S., but somewhat consistent with Fama and French (2017) 

which finds that the investment factor is redundant for describing average returns 

in Europe. Interestingly, the profitability factor obtains a negative risk premia, 

which indicates that during the sample period, 1995-2017, there are no significant 

excess returns obtainable by investing in the RMW factor.  
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7.2 Intercept analysis 

7.2.1 Time-series intercept 

Table 4 reports the average absolute alpha, the standard deviation, and the 

computed GRS-statistics and its corresponding p-value, for the time-series 

intercept. The GRS-test is applied to test the null hypothesis that all intercepts are 

jointly equal to zero. Thus, if the null hypothesis is not rejected, the model seems 

to include all priced risk factors as the intercept is not significantly different from 

zero. However, if the null is rejected, the model has unexplained abnormal return, 

which implies that the model does not include all the priced risk factors.  

 

Table 4  Statistics for the time-series intercept 
The first column shows the sample years used for the models. The second column shows which model the 

data is reported for. The third column presents the average of absolute estimated time-series alphas. The 

fourth column presents the standard deviation of the estimated time-series intercepts. The fifth column 

reports the GRS-statistics, whereas the last column reports the corresponding p-value.   

      
    |�̅�| 𝜎𝛼 GRS p-GRS 

1981-

2018 

CAPM 0.006 0.008 5.467 0.000 

FF3 0.004 0.005 3.904 0.000 

C4 0.003 0.005 3.391 0.000 

1995-

2017 

FF5 0.004 0.005 2.948 0.000 

  
            

 

Similar to the results of Fama and French (2015) in the U.S., table 4 reports high 

GRS-statistics for all models. The p-value states, for all models, that the test 

rejects the null hypothesis on all commonly used significant levels. Thus, like 

Fama and French (2015), we conclude that all our models are incomplete 

descriptions of expected return. However, the GRS-test does not reject the null 

hypothesis for the IBM test assets, and this is discussed in the “Stability in 

results” subsection. 

 

Although the models are incomplete, the purpose of this paper is to evaluate the 

model’s relative performance to each other. Not surprisingly, CAPM has the 

highest GRS-statistic of 5.467. CAPM also has the highest value for the average 

absolute alpha and the standard errors, which is expected because it is the simplest 

of all our models. Further, FF3 has the second highest GRS-statistic of 3.904, 

while C4 and FF5 have the lowest GRS-statistic of 3.391 and 2.948, respectively.  
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Moreover, we see from table 4 that the average absolute intercept is lower for C4 

compared to FF5, and the standard deviation is marginally lower as well. Thus, 

we compute the GRS-statistic again, but this time, the sample length is reduced to 

that of FF5 for all models. The reason being that the GRS-statistic increases in T, 

and we, therefore, want to compare the models using the same sample length.  

 

Table 5  Statistics for the time-series intercept - equal sample length 
The first column shows the sample years used for the models. The second column shows which model the 

data is reported for. The third column presents the average of absolute estimated time-series alphas. The 

fourth column presents the standard deviation of the estimated time-series intercepts. The fifth column 

reports the GRS-statistics, whereas the last column reports the corresponding p-value.   

       
    |�̅�| 𝜎𝛼 GRS p-GRS  

1995-

2017 

CAPM 0.006 0.008 4.053 0.000  
FF3 0.004 0.005 2.925 0.000  
C4 0.004 0.005 2.532 0.000  
FF5 0.004 0.005 2.948 0.000  

   
 

Table 5 reports the GRS-statistics for all the models, with a reduction in sample 

length to that of FF5. Now, both FF3 and C4 has a lower GRS-statistic than FF5, 

with a GRS-statistic of 2.925 and 2.532, respectively. Still, the test rejects the null 

hypothesis, with high values for the GRS-statistics for all models. We conclude 

that, according to the time-series intercept analysis, no model appears superior, as 

the models fail to include all the priced risk factors. Thus, the factors included in 

our models are not sufficient to explain the cross-section of expected return for 

the Norwegian stock market, and it seems to be missing priced risk factors.    

 

7.2.2 Cross-sectional intercept 

Table 3 provides the statistics for the intercepts, 𝜆0, from the cross-sectional 

regressions. Noteworthy, the cross-sectional intercept is statistically significantly 

different from zero for all models. This implies, again, that all priced risk factors 

are not included to explain the cross-section of expected returns. According to 

Adrian, Etula and Muri (2014), a good pricing model features an economically 

small and statistically insignificant intercept. As all our intercepts are significantly 

different from zero, we favour a small intercept. 
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In table 3, we find that the largest intercept is for the CAPM and C4 model, with 

an intercept of 0.04 and 0.027, respectively. FF3 has an intercept of 0.025, and 

FF5 has the smallest estimated intercept of 0.015. However, these values are high, 

as the smallest intercept has an effect of 1.5% on expected monthly returns. Still, 

FF5 is favoured in terms of cross-section intercept as the model has the smallest 

cross-section intercept with the lowest t-ratio. 

 

Moreover, the estimation is conducted reducing the sample length so that each 

model has the same number of observations as FF5, and the results are shown in 

table 6. With the same sample length, we observe that both FF3 and C4 yields a 

marginally lower intercept than FF5. C4 yields the lowest intercept of 0.0146.  

 

Table 6  Results from cross-sectional regressions – equal sample length 
Table 6 reports the results from the cross-sectional regressions using the Fama and MacBeth procedure. All models 

are estimated using monthly excess return on the 28 IBSi portfolios. Column 2 reports the intercept, columns 3-7 

show the estimated risk premia and the corresponding t-statistic for each factor, and columns 8-9 show the R2 and 

adjusted R2 for the estimated model. *, ** and *** indicate the significance for the risk premia estimates at the 10, 

5 and 1 percent level respectively.  

         
Panel A: CAPM 

1995-

2017 
𝜆0 𝜆𝐸𝑅𝑀         𝑅2 𝑅𝑎𝑑𝑗

2
 

CAPM         0.027     -0.011     0.167 0.135 

T-ratio     (7.786)***   (-2.289)**       

         

Panel B: Fama French three factor model 

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝐸𝑅𝑀     𝑅2 𝑅𝑎𝑑𝑗

2  

FF3 0.015       0.017 0.000 -0.001     0.757 0.727 

T-ratio        (3.409)***     (5.912)*** (-0.075)  (-0.233)     

         

Panel C: Carhart four factor model 

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑃𝑅1𝑌𝑅 𝜆𝐸𝑅𝑀   𝑅2 𝑅𝑎𝑑𝑗

2  

C4 0.015       0.017 0.000 0.004    -0.001  0.758 0.716 

T-ratio        (3.111)***     (5.866)*** (-0,015) (0.488)  (-0.129)**    

         

Panel D: Fama French five factor model 

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑅𝑀𝑊 𝜆𝐶𝑀𝐴 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

FF5 0.015       0.017 0.000 -0.009 0.005 -0.002 0.773 0.722 

T-ratio       (3.441)***     (5.623)*** (0.018) (-1.314) (0.533) (-0.336)   
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Based on the analysis of the cross-sectional intercept, we conclude that FF3 is the 

most favoured model. The first argument is that both the FF3 and C4 models 

produced a lower intercept relative to FF5 with the same sample length as the 

FF5. The second argument is that FF3 has a smaller intercept than C4 when using 

the full sample length. However, we emphasise that the differences are marginal 

and that FF3 did not produce a cross-sectional intercept that was extremely 

superior to the other models, except for the CAPM. 

 

7.3 Explanatory power 

The R2 and adjusted R2 estimates are also presented in table 3. We again 

emphasise that R2 for the cross-sectional regressions are solely used for 

comparison purposes, and not interpreted as the true explanatory power of the 

model (Kan et al., 2013). CAPM has a low R2 (0.466) relative to the other models. 

C4 has a slightly higher R2 of 0.737 than FF3 with 0.727. However, as C4 

includes all factors of FF3 plus an additional factor, the R2 measure must be 

higher. Thus, comparing the adjusted R2, which corrects for the number of 

parameters, we observe that FF3 yields a higher adjusted R2 (0.693) than C4 

(0.691). Further, FF5 has the largest R2 and adjusted R2 of the models of 0.773 

and 0.722, respectively.  

 

However, using the same sample length for all models, we see in table 6 that FF3 

has a higher adjusted R2 than FF5. This implies that we find no evidence that 

adding more factors, either the momentum factor or the RMW and CMA factors, 

improves the model’s explanatory power. Thus, this analysis favours the FF3 

model.  

 

7.4 Stability in results  

In this subsection, we present the most interesting results from our varying model 

estimation. In addition to our main test assets, we estimate the models using nine 
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different sets of test assets. Further, we do the estimation on the full sample size 

obtained for each model and estimations where all models have the same sample 

size, due to lack of data for the factors in FF5. Moreover, we originally obtain 

value-weighted portfolios to use as test assets, but we also estimate the models 

with equally-weighted portfolios as test assets. The portfolio characteristics are 

the same for both value- and equally-weighted.  

 

7.4.1 Discussion of risk premia  

In the CAPM (Appendix C1), the market factor is negative and significant for all 

test assets except for IBM, which yields an insignificant, but positive, coefficient 

of 0.010. The market factor in IBM is both positive and significant when using 

equally-weighted portfolios (Appendix C2) and value-weighted portfolios with a 

shorter sample length (Appendix C3). The lowest coefficient of -0.030 is obtained 

for MSpSi, which mean that there is a dispersion of 0.041.  

 

In Appendix C1, the estimates for SMB in FF3 are consistently positive and 

significant for all sets of test assets. The factor has low dispersion and ranges from 

0.012 in BSpSi to 0.018 in IMSi. HML is positive in half of the sets, where BSpSi 

has the highest value of 0.007, and MSpSi has the lowest of -0.008. Only HML in 

BSpSi is significant at 10%. Further, the market factor is positive only in IBM and 

BMSp and negative in the remaining sets, where five of the negative estimates are 

significant. The market factor ranges from -0.019 in BSpSi to 0.004 in IBM. Thus, 

FF3 has a lower dispersion in the market factor than the CAPM. For equally-

weighted portfolios (Appendix C2) both SMB and HML are priced risk factors 

and statistically significant at 5%. The market factor is not at priced factor when 

using equally-weighted portfolios. 

 

In similarity to FF3, the SMB factor in C4 (Appendix C1) is positive and 

significant for all sets. BSpSi has the lowest value of 0.012, and IMSi has the 

highest value of 0.018. HML ranges from -0.010 in MSpSi to 0.007 in BSpSi and 

has negative estimates in six sets. As in FF3, HML in BSpSi is the only 

significant at 10% level. Moreover, PR1YR is negative in four sets and positive in 
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four sets; none are significant. PR1YR ranges from -0.007 in BSpSi to 0.009 in 

IBSp. Further, the market factor is negative in six sets and ranges from -0.021 in 

BSpSi to 0.005 in BMSp.  

 

In some similarity to FF3 and C4, SMB in FF5 (Appendix C1) is stable and 

positive for all sets, but not significant for IBM. SMB ranges from 0.011 in IBM 

to 0.017 in BSpSi. As in FF3, HML is positive in five sets, but not significant in 

any of the sets. HML has low dispersion and with the lowest value of -0.003 in 

BSpSi and the highest value of 0.003 in MSpSi. RMW is negative in all sets, with 

a dispersion of 0.008. RMW in BMSi is the only significant at 10% level. When 

using equally-weighted portfolios (Appendix C2), RMW is positive in nine of the 

ten sets of test assets. CMA and the market factor are both negative in six sets, has 

dispersions of 0.010 and 0.012, and no significant estimates.  

 

Interestingly, HML is more stable in terms of the sign when using equally-

weighted portfolios (Appendix C2). This is the case for all three models, where 

nine of the ten sets of test assets gave positive estimates. 

 

Comparing the models using the same sample length as in FF5 (Appendix C3), we 

can see that SMB is equal in terms of signs and with low dispersion in all three 

models. HML has a lower dispersion for FF5. However, in terms of signs, FF3 

and C4 are more stable with eight negative estimates against five negative and 

five positive estimates for FF5. Further, it is consistently the same factors that are 

significant in FF3, C4, and FF5, except SMB in one test asset in FF5. The market 

factor has the highest dispersion of 0.033 in CAPM and the lowest dispersion of 

0.010 in FF3.  

 

Consequentially, all the models, except the CAPM, are pretty stable in terms of 

significance. However, C4 and FF3 have lower dispersions between the sets of 

test assets and are more stable in terms of risk premia signs.  
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Further, the estimated risk premia for a factor should equal the expected return of 

that factor, e.g. 𝐸(𝜆𝑆𝑀𝐵) = 𝐸(𝑆𝑀𝐵𝑡) (Fama and MacBeth, 1973). Comparing the 

mean returns for the factors from table 1 with the estimated risk premia’s in 

Appendix C1, we see that this is seldom the case. It appears that the risk premia, 

on average, is overestimated for the most often significant factor SMB, while 

underestimated for other factors.  

 

7.4.2 Discussion of intercept and explanatory power 

Table 7 reports the average absolute alpha, the standard deviation, and the 

computed GRS-statistics and its corresponding p-value, for the time-series 

intercept for the IBM portfolio. All models keep the null hypothesis at the normal 

significance levels. Keeping the null hypothesis implies that all the time-series 

intercepts are not statistically significantly different from zero, which again means 

that the intercepts, when using the IBM test assets, are zero and that the model 

includes all the priced risk factors. This result suggests that the models include all 

factors explaining returns for the set of portfolio characteristics: Industry, B/M, 

and Momentum. However, this is not the result for any other set of test assets and 

not the result when using the equally-weighted portfolios for IBM. Thus, we 

believe that the stand-out observation for the IBM test assets is related to the 

composition of the characteristics and the value-weighted returns for the 

portfolios. Further research is required to explain this.  

 

Table 7  Statistics for the time-series intercept for IBM - equal sample length 
The first column shows the sample years used for the models. The second column shows which model the data 

is reported for. The third column presents the average of absolute estimated time-series alphas. The fourth 

column presents the standard deviation of the estimated time-series intercepts. The fifth column reports the 

GRS-statistics, whereas the last column reports the corresponding p-value.   

      

    |�̅�| 𝜎𝛼 GRS p-GRS 

1995-

2017 

CAPM 0.003 0.004 1.382 0.102 

FF3 0.003 0.003 1.050 0.402 

C4 0.003 0.004 0.986 0.490 

FF5 0.003 0.004 1.261 0.179 
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Moreover, Appendix C1 reports, amongst other results, the estimated cross-

sectional intercept for the IBM test assets. Like the result for the time-series 

intercept, the cross-sectional estimates also yield non-significant intercepts for 

IBM. The results are believed to be connected since the conclusion for this 

observation is in both cases that the models include all priced risk factors to 

explain expected return on the test assets IBM. Further, no such observation for 

all models is found for any of the other sets of test assets.  

 

The conclusion is the same as in the subsection “7.3 Explanatory power” 

regarding the explanatory power for all ten sets of value-weighted test assets. 

However, when equally-weighted test assets are applied, there is a rather large 

decline in R2. From Appendix C1 & C2, we calculated the average R2 for all ten 

sets of test assets, both value- and equally-weighted. The average R2 for the value-

weighted test assets is 0.35, 0.63, 0.64, and 0.60 for CAPM, FF3, C4, and FF5, 

respectively. Note that the average R2 can be lower for FF5 relative to FF3 due to 

the difference in sample length. Moreover, the average R2 for the equally-

weighted test assets are 0.20, 0.41, 0.43, and 0.44 for CAPM, FF3, C4, and FF5, 

respectively. This indicates a decline in the explanatory power of around 0.2 for 

all the models.  

 

Although R2 is not interpreted as the true explanatory power of the model, the 

decline is rather substantial and worth discussing. One explanation might be that 

the returns for smaller stock are more volatile, thus giving these smaller stocks a 

higher weight makes the portfolio more volatile. As the returns of the portfolios 

vary more in the cross-section, the models seem to weaken its explanatory power. 

However, one could argue that an asset pricing model is designed to explain 

expected returns for all stock/portfolios. Therefore, these results indicate that the 

models perform poorly when smaller stocks are given more weight, and suggests 

that the models are not as efficient in explaining the cross-section of expected 

returns for small and volatile stocks.  
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From Appendix C1, we want to highlight that the R2 is higher for all sets of test 

assets that includes the portfolio characteristic Size. This is also believed to be 

connected to the usage of value-weighted portfolios, as we do not see this 

difference for the equally-weighted portfolios.  

 

8. Conclusion 
 

This thesis compares the performance of the CAPM, Fama-French three-factor 

model, Carhart four-factor model, and Fama-French five-factor model and 

questions which model is superior in explaining the cross-section of expected 

returns in the Norwegian Stock market.  

 

We analyse value- and equally-weighted portfolios sorted on five characteristics 

which are grouped into sets of test assets. To minimize the errors in the estimation 

of the risk premia, we create ten sets of test assets composed of the different 

portfolios based on characteristics and apply the set which yields the highest 

dispersion in cross-sectional betas as our main test assets. Then, we assess the 

Fama-Macbeth two-pass regression to determine which risk factors that are priced 

in the Norwegian stock market. Further, we compare the models based on 

intercept analysis, explanatory power, and stability in results.  

 

Our results show that the market portfolio is a priced risk factor in CAPM, but 

with a negative risk-return relationship, which is not consistent with Modern 

Portfolio Theory. Thus, there seems to be a betting against beta effect in the 

Norwegian stock market, similar to the findings of Frazzini and Pedersen (2014) 

in the U.S.  Further, we find that SMB seems to be a risk factor which demands 

risk compensation in the Norwegian stock market. However, the other empirically 

motivated factors linked to B/M, momentum, profitability, and investment do not 

seem relevant in the Norwegian stock market, as we find them insignificant.   
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The time-series intercept estimates are not jointly zero for any model. Hence, the 

models are incomplete descriptions of expected return. Additionally, in terms of 

cross-sectional intercepts, the Fama-French three-factor model is marginally 

superior even though all the models have a significant cross-sectional intercept. 

However, the factors in our models are not sufficient as the models seem to be 

missing priced risk factors for the Norwegian stock market.  Different models 

should be tested and evaluated to asses if other risk factors are priced.   

 

Moreover, the Fama-French three-factor model is also superior in terms of 

explanatory power, as it has the highest adjusted-R2 amongst the models. 

However, when equally-weighted test assets are applied the R2 drops significantly 

for all models. This result indicates that the models explain less of the variation in 

the cross-section of expected returns when the smaller stocks are given more 

weight. The result is believed to be an effect of the more volatile returns for small 

stocks, thus reducing the explanatory power. This implies that the models struggle 

to explain volatile returns.   

 

Furthermore, analysing the stability of the models in terms of coefficients signs 

and significance, our results indicate that all the models are relatively stable, but 

C4 and FF3 are more favourable.   

 

Interestingly, we find that both the time-series and the cross-sectional intercepts 

are insignificant in all models when using IBM as test assets. Hence, the models 

include all priced risk factors when the portfolio characteristics Industry, B/M, 

and Momentum are applied. However, the conclusion is that there are missing 

priced risk factors since this is the result for nine out of ten sets of test assets, but 

further research should be done to examine why the results are like this for the 

IBM test assets. 

 

Consequently, our findings indicate that amongst the tested models, Fama-French 

three-factor is best suited to explain the cross-section of expected returns in the 

Norwegian stock market. SMB is a priced risk factor, and the excess market 
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returns seem to be significant as this is the result for most of the observations 

using value-weighted test assets. However, it appears to be missing priced risk 

factors as the intercept is different from zero. These findings are consistent with 

the research of Næs et al. (2009). They find that a three-factor model containing 

the market, a size factor, and a liquidity factor provides a reasonable fit for the 

cross-section of stock returns in Norway. However, we find that the Fama-French 

three-factor model is a relatively stable and applicable model to explain the cross-

section of expected returns in the Norwegian market.   

 

As all of the investigated models are missing priced risk factors, it would be 

interesting to include other models such as a macroeconomic model, the q-factor 

model, and a model containing a liquidity factor. Another suggestion for future 

research might be to look for one or a few factors which can account for several 

“anomalies” since adding a factor for each “anomaly” might add noise to the 

model. Finally, some weaknesses in our study should be pointed out.  

 

In this study we try to tackle the EIV problem, that arises when estimated factor 

loadings are used as independent variables in the cross-sectional regressions, by 

grouping the stocks in portfolios. However, Ang et al. (2017) find that the reduced 

uncertainty of the factor loadings, by using portfolios, does not translate to lower 

standard errors for risk premia estimates. Other methods to reduce the EIV 

problem could, therefore, be used to obtain more accurate estimates. Further, 

Fama and MacBeth (1973) use rolling window estimates of the factor loadings, 

thus allowing for time-varying betas. In this thesis, we estimate constant factor 

loadings. Using time-varying betas is therefore recommended for future research. 
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10. Appendices 

10.1 Appendix A: Computing GRS-statistic and (adjusted)-R2   

GRS-statistic: 

From the time-series regressions we save all the intercepts in a N×1 vector, �̂�. We 

obtain the residuals from each regression, which we store in a T×N matrix, 𝜀̂. 

 

Further, Σ̂ is calculated as: 

Σ̂ =
𝜀̂′𝜀

𝑇
 

Let 𝐹 be a T×K matrix with all the factor returns. 𝐸𝑇(𝑓) is a K×1 matrix with 

each factor mean. And Ω̂ is calculated as: 

Ω̂ =
(𝐹 − 𝐸𝑇(𝑓)′)′(𝐹 − 𝐸𝑇(𝑓)′)

𝑇
 

Lastly, inserting all calculated variables gives the GRS-statistic: 

𝐺𝑅𝑆 = (
𝑇 − 𝑁 − 𝐾

𝑁
)

�̂�′Σ̂−1�̂�

1 + 𝐸𝑇(𝑓)′Ω̂−1𝐸𝑇(𝑓)
~𝐹𝑁,𝑇−𝑁−𝐾 

R2 

R2 is calculated from the cross-sectional regression for average returns: 

𝐸(𝑅𝑖) = 𝜆0 + 𝜆1�̂�𝑖,1 + 𝜆2�̂�𝑖,2 + ⋯ + 𝜆𝐾�̂�𝑖,𝐾 + 𝜀𝑖   𝑖 = 1 … 𝑁 

From Brooks (2014, pp. 152-155), R2 is defined as: 

𝑅2 =
∑ (�̂�𝑖 − �̅�)2𝑁

𝑖=1

∑ (𝑦𝑖 − �̅�)2𝑁
𝑖=1

 

Where �̂�𝑖 is the fitted values of the dependent variable i, 𝑦𝑖 is the actual value for 

the dependent variable (𝐸(𝑅𝑖) in our case), and �̅� is the mean value of the 

dependent variable.  

Further, adjusted R2 can be calculated as follows:  

𝑅𝑎𝑑𝑗
2 = 1 − [

𝑁 − 1

𝑁 − 𝐾
(1 − 𝑅2)] 

Where N is the number of test assets and K is the number of parameters. 
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10.2 Appendix B1: Descriptive statistic of the excess return for the five 

characteristic sets of portfolios 

 
Panel A-D shows the descriptive statistics for the B/M, Momentum, Size and Spread portfolios respectively, where 

portfolio 1 indicates that stocks with the lowest values for the characteristic is sorted in this portfolio and portfolio 

10 indicates that stocks with the highest value for the characteristic is stored in this portfolio. Panel E shows the 

descriptive statistics for the Industry sorted portfolios where the number of the portfolios: 10, 15, 20, 25, 30, 35, 40 

and 45, is the GICS code for Energy, Material, Industry, Consumer discretionary, Consumer staples, Health, Finance 

and IT, respectively. The first columns display the calculated properties of the portfolios, where min (max) is the 

minimum (maximum) excess return for the portfolios, mean is the average excess return for the portfolios and 

Std.Dev is the standard deviation of excess return for the portfolios. The last column reports the average of the min, 

max, mean and Std.Dev for all the characteristic sorted portfolios. The last column is assessed in the discussion of 

which test assets should be applied as main test assets. 

            
Panel A: B/M sorted portfolios  

1981-2018 1 2 3 4 5 6 7 8 9 10 Average 

Min -0.393 -0.203 -0.368 -0.331 -0.281 -0.317 -0.263 -0.257 -0.271 -0.283 -0.297 

Max 0.650 0.381 0.325 0.275 0.341 0.323 0.261 0.506 0.435 0.380 0.388 

Mean 0.017 0.018 0.016 0.018 0.016 0.021 0.024 0.022 0.024 0.020 0.020 

Std.Dev  0.091 0.073 0.080 0.071 0.075 0.082 0.078 0.090 0.086 0.083 0.081 

            
Panel B: Momentum sorted portfolios  

1981-2018 1 2 3 4 5 6 7 8 9 10 Average 

Min -0.285 -0.412 -0.268 -0.277 -0.262 -0.322 -0.247 -0.281 -0.275 -0.307 -0.294 

Max 0.427 0.437 0.265 0.258 0.331 0.252 0.306 0.380 0.604 0.465 0.373 

Mean 0.022 0.027 0.018 0.015 0.018 0.019 0.017 0.017 0.015 0.024 0.019 

Std.Dev  0.084 0.102 0.078 0.075 0.070 0.067 0.070 0.073 0.080 0.081 0.078 

            
Panel C: Size sorted portfolios  

1981-2018 1 2 3 4 5 6 7 8 9 10 Average 

Min -0.267 -0.121 -0.263 -0.212 -0.170 -0.158 -0.234 -0.211 -0.250 -0.279 -0.217 

Max 0.698 0.371 0.403 0.332 0.354 0.303 0.278 0.554 0.252 0.219 0.376 

Mean 0.040 0.035 0.028 0.026 0.028 0.029 0.024 0.024 0.019 0.016 0.027 

Std.Dev  0.090 0.076 0.075 0.070 0.068 0.069 0.066 0.070 0.073 0.063 0.072 

            
Panel D: Spread sorted portfolios  

1981-2018 1 2 3 4 5 6 7 8 9 10 Average 

Min -0.261 -0.283 -0.228 -0.228 -0.189 -0.215 -0.208 -0.179 -0.150 -0.206 -0.215 

Max 0.276 0.205 0.407 0.530 0.318 0.308 0.402 0.425 0.872 0.381 0.413 

Mean 0.018 0.017 0.022 0.019 0.022 0.021 0.022 0.022 0.028 0.033 0.022 

Std.Dev  0.066 0.069 0.079 0.074 0.067 0.068 0.075 0.066 0.084 0.071 0.072 

            
Panel D: Industry sorted portfolios    

1981-2018 10 15 20 25 30 35 40 45 Average   
Min -0.282 -0.447 -0.259 -0.347 -0.299 -0.351 -0.245 -0.402 -0.329   
Max 0.273 1.490 0.278 0.658 0.288 0.420 0.283 1.007 0.587   
Mean 0.017 0.017 0.018 0.023 0.021 0.019 0.015 0.022 0.019   

Std.Dev  0.078 0.120 0.070 0.101 0.072 0.084 0.068 0.114 0.089   
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10.3 Appendix B2: Descriptive statistic for factor loadings with different test 

assets 
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Appendix B2 (continued)
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Appendix B2 (continued) 
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10.4 Appendix C1: Fama-Macbeth for different value-weighted sets of test 

assets 

Results for Fama-Macbeth second-pass regressions for ten different sets of test assets. All portfolios are 

value-weighted. The first column shows the different set of test assets (see section “6.1 Main test assets” for 

a description of each test asset). Second to seventh column shows the estimated risk premia for each factor. 

*, ** and *** indicate the level of significance at respectively 10%, 5% and 1%.  

 

 

Panel A: CAPM 

   
1981-2018 𝜆0 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi       0.040***        -0.025*** 0.466 0.445 

IBM 0.004 0.01 0.123 0.089 

IBSP      0.025***     -0.011** 0.202 0.171 

IMSp      0.025***     -0.011** 0.152 0.119 

IMSi    0.04***       -0.026*** 0.404 0.381 

ISpSi     0.042***       -0.028*** 0.570 0.554 

BMSp     0.024***     -0.010** 0.111 0.079 

BMSi     0.042***       -0.027*** 0.405 0.384 

BSpSi     0.042***       -0.027*** 0.564 0.549 

MSpSi     0.044***     -0.03*** 0.523 0.506 

 

 

Panel B: Fama-French three-factor model 

   
1981-2018 𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi       0.025***   0.016*** 0.000     -0.012** 0.727 0.693 

IBM 0.008 0.013** -0.001 0.004 0.399 0.323 

IBSP       0.015***   0.012*** 0.000 -0.002 0.544 0.486 

IMSp     0.013**   0.015*** -0.005 -0.002 0.581 0.528 

IMSi       0.025***   0.018*** -0.007     -0.012** 0.720 0.685 

ISpSi       0.029***   0.015*** -0.006       -0.017*** 0.701 0.664 

BMSp 0.008   0.015*** 0.001 0.004 0.576 0.527 

BMSi       0.023***   0.017*** 0.002   -0.011* 0.694 0.659 

BSpSi       0.033***   0.012***   0.007*       -0.019*** 0.710 0.676 

MSpSi       0.026***   0.016*** -0.008     -0.014** 0.659 0.620 
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Appendix C1 (continued) 

Panel C: Carhart four-factor model 

     
1981-2018 𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑃𝑅1𝑌𝑅 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi       0.027*** 0.017*** 0.000 -0.005     -0.015** 0.737 0.691 

IBM        0.007  0.014** -0.001 0.004 0.005 0.410 0.308 

IBSP  0.012* 0.013*** 0.001 0.009 0.001 0.565 0.489 

IMSp    0.013** 0.015*** -0.005 0.003 -0.001 0.582 0.509 

IMSi      0.027*** 0.018*** -0.008 -0.001     -0.015** 0.729 0.682 

ISpSi      0.031*** 0.015*** -0.007 -0.003       -0.019*** 0.708 0.658 

BMSp        0.007 0.015*** 0.001 0.003 0.005 0.581 0.514 

BMSi      0.024*** 0.017*** 0.002 -0.001     -0.012** 0.699 0.651 

BSpSi      0.034*** 0.012*** 0.006* -0.007       -0.021*** 0.722 0.677 

MSpSi      0.028*** 0.016*** -0.01 -0.002     -0.016** 0.668 0.614 

 

 

 

Panel D: Fama-French five-factor model 

      
1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑅𝑀𝑊 𝜆𝐶𝑀𝐴 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi 

                                                      

0.015***       0.017*** 0.000 -0.009 0.005 -0.002 0.773 0.722 

IBM 0.007 0.011 -0.001 -0.01 0.001 0.006 0.492 0.377 

IBSP     0.011**       0.012*** -0.001 -0.004 -0.002 0.003 0.497 0.383 

IMSp     0.011**      0.013*** -0.002 -0.005 -0.005 0.003 0.524 0.416 

IMSi       0.015***      0.017*** 0.000 -0.009 0.000 -0.002 0.748 0.691 

ISpSi       0.017***      0.015*** -0.002 -0.003 -0.006 -0.003 0.686 0.615 

BMSp     0.011**      0.013*** 0.000 -0.007 -0.003 0.002 0.375 0.244 

BMSi       0.018***      0.016*** 0.001 -0.01* 0.004 -0.004 0.703 0.641 

BSpSi     0.02***      0.013*** 0.003 -0.003 -0.004 -0.006 0.631 0.554 

MSpSi      0.018***      0.015*** -0.003 -0.006 -0.005 -0.005 0.603 0.520 
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10.5 Appendix C2: Fama-Macbeth for different equally-weighted sets of test 

assets 

Results for Fama-Macbeth second-pass regressions for ten different sets of test assets. All portfolios are 

equally-weighted. The first column shows the different set of test assets (see section “6.1 Main test assets” 

for a description of each test asset). Second to seventh column shows the estimated risk premia for each 

factor. *, ** and *** indicate the level of significance at respectively 10%, 5% and 1%.  

 

 

Panel A: CAPM (EW)       

1981-2018 𝜆0 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗
2  

IBSi       0.020***       -0.011*** 0.161 0.129 

IBM 0.003    0.009* 0.085 0.049 

IBSP       0.017***   -0.008* 0.077 0.042 

IMSp       0.014*** -0.004 0.035 -0.003 

IMSi       0.016***   -0.007* 0.105 0.071 

ISpSi       0.021***       -0.014*** 0.398 0.374 

BMSp      0.018***   -0.01** 0.074 0.041 

BMSi      0.022***      -0.013*** 0.163 0.133 

BSpSi      0.027***     -0.020*** 0.454 0.435 

MSpSi      0.024***     -0.017*** 0.430 0.410 

 

 

 

 

Panel B: Fama-French three factor model (EW)       

1981-2018 𝜆0 𝜆𝑆𝑀𝐵       𝜆𝐻𝑀𝐿 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗
2  

IBSi     0.014***     0.007**        0.007** -0.007 0.420 0.347 

IBM     0.001 0.009      0.006* 0.006 0.339 0.257 

IBSP     0.010***     0.008**        0.007** -0.003 0.359 0.279 

IMSp 0.007*     0.010**    0.001 -0.001 0.195 0.094 

IMSi     0.011***       0.008***   0.000 -0.004 0.234 0.138 

ISpSi     0.019***   0.005*   0.003       -0.012*** 0.421 0.349 

BMSp     0.001       0.016***      0.008** 0.003 0.509 0.452 

BMSi     0.009***       0.011***      0.008** -0.003 0.462 0.400 

BSpSi     0.024***   0.005*        0.010***       -0.017*** 0.663 0.624 

MSpSi    0.021***       0.009*** -0.009       -0.015*** 0.504 0.447 
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Appendix C2 (continued) 

Panel C: Carhart four-factor model (EW)           

1981-

2018 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑃𝑅1𝑌𝑅   𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi      0.014***   0.007** 0.007** 0.003     -0.006 0.420 0.319 

IBM     -0.002 0.011* 0.007**   0.008*      0.009 0.413 0.311 

IBSP      0.007   0.010**   0.008** 0.011      0.001 0.378 0.270 

IMSp      0.006     0.011***   0.002 0.005      0.001 0.214 0.077 

IMSi     0.010***     0.008***   0.001 0.002     -0.003 0.236 0.103 

ISpSi     0.022***        0.005   0.001 -0.008     -0.015*** 0.440 0.343 

BMSp    -0.001    0.017***  0.008*** 0.006      0.005 0.532 0.457 

BMSi  0.008**    0.011***   0.008** 0.004     -0.002 0.468 0.383 

BSpSi    0.026***       0.004   0.010***  -0.014*     -0.021*** 0.688 0.638 

MSpSi    0.023***   0.009***  -0.011* -0.001    -0.017*** 0.512 0.434 

 

 

 

Panel D: Fama-French five-factor model 

(EW) 
            

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑅𝑀𝑊  𝜆𝐶𝑀𝐴  𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi 0.008**     0.013*** 0.006 0.01 0.002 0.001 0.529 0.422 

IBM 0.001 0.013* 0.006 0.005 -0.004 0.008 0.547 0.444 

IBSP 0.007**   0.011** 0.006 0.002 -0.001 0.001 0.229 0.054 

IMSp 0.005*   0.011** 0.003 0.002 -0.003 0.003 0.356 0.209 

IMSi 0.006**     0.012*** 0.003 0.012 -0.001 0.003 0.559 0.459 

ISpSi 0.010***     0.009*** 0.002 0.007 0.001 -0.001 0.386 0.247 

BMSp 0.005**     0.014*** 0.006 -0.002 0.005 0.001 0.355 0.221 

BMSi 0.006***     0.014*** 0.007* 0.010 0.004 0.002 0.534 0.437 

BSpSi 0.013***     0.008*** 0.006 0.006 0.003 -0.005 0.453 0.339 

MSpSi 0.011***   0.01*** -0.009 0.003 0.004 -0.002 0.452 0.338 
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10.6 Appendix C3: Fama-Macbeth for different value-weighted sets of test 

assets with shorter sample length 

Results for Fama-Macbeth second-pass regressions for ten different sets of test assets. All portfolios are 

value-weighted and have sample length 1995-2017. The first column shows the different set of test assets 

(see section “6.1 Main test assets” for a description of each test asset). Second to seventh column shows the 

estimated risk premia for each factor. *, ** and *** indicate the level of significance at respectively 10%, 

5% and 1%.  

 

 

Panel A: CAPM 
   

1995-2017 𝜆0 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗
2  

IBSi     0.027***  -0.011** 0.167 0.135 

IBM       -0.001   0.016** 0.299 0.272 

IBSP    0.017***          -0.002 0.007 -0.031 

IMSp    0.016***           0.000 0.000 -0.038 

IMSi    0.026***         -0.010** 0.108 0.073 

ISpSi    0.027***         -0.010** 0.172 0.140 

BMSp    0.021***         -0.006 0.050 0.016 

BMSi   0.033***         -0.017*** 0.280 0.255 

BSpSi   0.032*** -0.016*** 0.404 0.383 

MSpSi  0.032*** -0.015*** 0.280 0.255 

 

 

 

Panel B: Fama-French three-factor model 
   

1995-2017 𝜆0 𝜆𝑆𝑀𝐵       𝜆𝐻𝑀𝐿 𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗
2  

IBSi   0.015***     0.017*** 0.000 -0.001 0.757 0.727 

IBM   0.008        0.014* -0.001 0.005 0.458 0.391 

IBSP   0.01**     0.013*** -0.001 0.003 0.494 0.431 

IMSp   0.011**      0.013*** -0.003 0.003 0.508 0.446 

IMSi  0.015***    0.018*** -0.002 -0.002 0.730 0.697 

ISpSi  0.016***    0.015*** -0.003 -0.002 0.675 0.635 

BMSp   0.011**     0.013*** -0.001 0.003 0.350 0.275 

BMSi  0.017***     0.017*** 0.001 -0.003 0.674 0.636 

BSpSi  0.019***    0.013*** 0.002 -0.005 0.623 0.580 

MSpSi  0.018***    0.015*** -0.005 -0.005 0.584 0.536 

 

09756980975122GRA 19703



55 
 

Appendix C3 (continued) 

Panel C: Carhart four-factor model      

1995-2017 𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑃𝑅1𝑌𝑅   𝜆𝐸𝑅𝑀 𝑅2 𝑅𝑎𝑑𝑗
2  

IBSi   0.015***   0.017*** 0.000 0.004 -0.001 0.758 0.716 

IBM   0.008 0.016** -0.001 0.004 0.006 0.470 0.378 

IBSP   0.01**   0.013*** -0.001 0.003 0.004 0.496 0.408 

IMSp   0.01**   0.013*** -0.003 0.003 0.004 0.513 0.428 

IMSi  0.015***   0.018*** -0.002 0.005 -0.001 0.735 0.689 

ISpSi  0.016***   0.015*** -0.002 0.004 -0.002 0.677 0.621 

BMSp   0.011**   0.013*** -0.001 0.002 0.003 0.352 0.248 

BMSi  0.017***   0.017*** 0.001 0.004 -0.003 0.676 0.624 

BSpSi  0.019***   0.013*** 0.002 0.001 -0.005 0.624 0.563 

MSpSi  0.018***   0.015*** -0.005 0.004 -0.004 0.586 0.519 

 

 

  

 

Panel D: Fama-French five-factor model      

1995-

2017 
𝜆0 𝜆𝑆𝑀𝐵 𝜆𝐻𝑀𝐿 𝜆𝑅𝑀𝑊  𝜆𝐶𝑀𝐴  𝜆𝐸𝑅𝑀  𝑅2 𝑅𝑎𝑑𝑗

2  

IBSi 0.015***     0.017*** 0.000 -0.009 0.005 -0.002 0.773 0.722 

IBM 0.007     0.011 -0.001 -0.01 0.001 0.006 0.492 0.377 

IBSP 0.011**    0.012*** -0.001 -0.004 -0.002 0.003 0.497 0.383 

IMSp 0.011**    0.013*** -0.002 -0.005 -0.005 0.003 0.524 0.416 

IMSi 0.015***    0.017*** 0.000 -0.009 0.000 -0.002 0.748 0.691 

ISpSi 0.017***    0.015*** -0.002 -0.003 -0.006 -0.003 0.686 0.615 

BMSp 0.011**    0.013*** 0.000 -0.007 -0.003 0.002 0.375 0.244 

BMSi 0.018***    0.016*** 0.001  -0.01* 0.004 -0.004 0.703 0.641 

BSpSi 0.02***    0.013*** 0.003 -0.003 -0.004 -0.006 0.631 0.554 

MSpSi 0.018***    0.015*** -0.003 -0.006 -0.005 -0.005 0.603 0.52 
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