An efficient Pareto approach for solving the multi-objective flexible job-shop scheduling problem with regular criteria

a Facultad de Ingeniería, Programa de Ingeniería Industrial, Universidad de Ibagué, Ibagué, Colombia
${ }^{\text {b }}$ Department of Manufacturing Sciences and Logistics, Mines Saint-Etienne, Univ Clermont Auvergne, CNRS, UMR 6158 LIMOS, CMP, Gardanne, France
${ }^{\text {c }}$ Department of Accounting, Auditing and Business Analytics, BI Norwegian Business School, Oslo, Norway
${ }^{\mathrm{d}}$ College of Business and Economics, Qassim University, Saudi Arabia

ARTICLE IN F O

Article history:

Received 13 February 2018
Revised 19 February 2019
Accepted 9 April 2019
Available online 11 April 2019

Keywords:

Flexible job-shop scheduling
Multi-objective
Regular criteria
Pareto optimization
Local search

Abstract

In this paper, a general local search approach for the Multi-Objective Flexible Job-shop Scheduling Problem (MOFJSP) is proposed to determine a Pareto front for any combination of regular criteria. The approach is based on a disjunctive graph, a fast estimation function to evaluate moves and a hierarchical test to efficiently control the set of non-dominated solutions. Four search strategies using two neighborhood structures are developed. Numerical experiments are conducted on test instances of the literature with three sets of criteria to minimize and using metrics to evaluate and compare Pareto fronts. The results show that our approach provides sets of non-dominated solutions of good quality.

© 2019 The Authors. Published by Elsevier Ltd.
This is an open access article under the CC BY-NC-ND license.
(http://creativecommons.org/licenses/by-nc-nd/4.0/)

1. Introduction

In a strong competitive environment and with more and more demanding customers, manufacturing and service systems must be flexible (Johnzen et al., 2011) and able to deal with different objectives dynamically. Among the important operational decisions are scheduling decisions where several types of flexibility have been considered, and in particular operation flexibility that refers to the ability of an operation to be performed in different ways. The scheduling literature dealing with operation flexibility in the classical Job-shop Scheduling Problem (JSP) has accumulated over the last twenty five years (see the recent survey of Chaudhry and Khan, 2016), leading to the so-called Flexible Job-shop Scheduling Problem (FJSP). The FJSP is more realistic for modeling a wide range of real-life applications, as it can capture key features of modern manufacturing and service systems.

The Flexible Job-shop Scheduling Problem (FJSP) is defined as follows. A set \mathcal{M} of m machines are always available to process a set of n jobs $\mathcal{J}=\left\{J_{1}, \ldots, J_{n}\right\}$. Each machine can only perform one operation at a time. Each job consists of a sequence of operations,

[^0]called routing, which can differ from one job to another, i.e. there is not a single pre-specified order of machines for all jobs. The preemption of operations is not allowed, i.e. an operation cannot be interrupted once started. Each job J_{i} has a release date r_{i}, a weight w_{i} related to the priority of job J_{i}, and a due date d_{i} that specifies the date before which J_{i} should be completed. An important feature of the FJSP is that the machine needed to perform an operation j is not given but must be selected from a subset $\mathcal{R}_{j} \subseteq \mathcal{M}$ of eligible machines. The processing time p_{j} of an operation j depends on the selected machine in \mathcal{R}_{j}. Let us assume that these processing times are non-negative integer, known and include non sequencedependent setup times between operations. The FJSP consists in both assigning a machine to each operation and sequencing operations on the selected machines, to optimize a single criterion or multiple criteria.

In single criterion optimization, the most studied criterion for the FJSP is the minimization of the makespan $C_{\text {max }}$, which corresponds to the completion time of all jobs. However, minimizing other criteria that include the weight of jobs and their due dates are better suited to capture critical factors that affect the competitiveness of a firm (Zhang and Wu, 2011). Regular criteria are among the most common objectives considered in the scheduling literature. A criterion is said to be regular if it is an increasing function of the completion times of the jobs (see e.g. Mati et al., 2011 for the JSP). In addition to the makespan, the
following regular criteria are among the most popular ones in the scheduling literature: (1) Maximum tardiness $T_{\max }=\max T_{i}$, where $T_{i}=\max \left(0, C_{i}-d_{i}\right), C_{i}$ is the completion time of job J_{i} and d_{i} is its due date, (2) Total tardiness $\Sigma_{i} T_{i}$, (3) Total completion time $\Sigma_{i} C_{i}$, and (4) Number of tardy jobs $\Sigma_{i} U_{i}$, where $U_{i}=1$ if $T_{i}>0$ and 0 otherwise.

The Multi-Objective Flexible Job-shop Scheduling Problem (MOFJSP) is the optimization of the FJSP with multiple criteria that are in conflict to some extent. In this paper, we develop a general local search approach that optimizes any combination of regular criteria for the MOFJSP. The remainder of the paper is organized as follows. Section 2 reviews the related literature. Section 3 details the disjunctive graph model and the neighborhood structures that are used to solve the FJSP. Section 4 proposes a theoretical framework to evaluate the quality of the set of non-dominated solutions. Section 5 describes the proposed local search approach based on Pareto optimization with four new search strategies. Experiments that validate the efficiency of our approach are presented and discussed in Section 6. Finally, Section 7 concludes the paper and provides some directions for future research.

2. Literature review

The FJSP has been extensively studied in the literature to optimize a single criterion or multiple criteria. A recent survey covering the various techniques to solve the FJSP with a single objective and multiple objectives, can be found in Chaudhry and Khan (2016). This survey includes different comparative tables to classify the literature according to the performance measures and the types of techniques. It also gives, for each paper, the algorithm and shop details, the objective functions considered and the number of citations. Another survey can be found in Genova et al. (2015) that only covers techniques developed to solve the MOFJSP between 2005 and 2014. A recent literature review on genetic algorithms to solve the FJSP is presented in Amjad et al. (2018) where, for each paper, the considered objective functions, the parameters of the genetic algorithms and the benchmarks are presented.

By taking a closer look at the literature on the MOFJSP, one can observe that most papers focus on optimizing the makespan, the total workload of machines, and the workload of the critical machine. Chaudhry and Khan (2016) report (Table 3) that the makespan is used in combination with another objective function in 39.59% of papers, and 23.35% of them use the workload of machines. Even though the list of papers in Chaudhry and Khan (2016) is not exhaustive as they missed some papers, the observation and trend are the same. The makespan remains the most studied criterion for the FJSP, and is generally combined with the workload of machines in the MOFJSP. A similar observation can be drawn from Amjad et al. (2018) (Table 10) where 88.88% (i.e. 32 out of 36) of papers relying on genetic algorithms to solve the MOFJSP consider the makespan and workload of machines. Since there are a very large number of papers on the MOFJSP, we only focus in this section on the recent, state-of-the-art and closely related works where multiple criteria are optimized, with special attention to papers that consider regular criteria.

The MOFJSP is usually tackled in the literature using two types of approaches. The first one consists in transforming the multiobjective problem into a mono-objective problem by assigning different weights for each objective. Various heuristics in this category were proposed in the literature. A Tabu Search algorithm is presented in Li et al. (2014) that uses several neighborhood search rules for machine assignment and operation scheduling. A heuristic method that starts from an initial solution, and improves it using two move search algorithms, is introduced in Xing et al. (2009). Several hybrid heuristics are proposed such as
the hybridization of particle swarm optimization and Tabu Search in Zhang et al. (2009), genetic algorithms and Shifting Bottleneck in Gao et al. (2007), and Particle Swarm Optimization and Simulated Annealing in Xia and Wu (2005).

The second type of approaches that started about fifteen years ago is based on Pareto optimization where the goal is to determine the set of non-dominated solutions, i.e. the Pareto front. A hierarchical heuristic algorithm that is an adaptation of the Newton's method for continuous multi-objective unconstrained optimization problems is proposed in Pérez and Raupp (2016). Two adapted genetic algorithms are presented in Rahmati et al. (2013). A simple and effective evolutionary algorithm that needs only two parameters is developed in Chiang and Lin (2013), and a filtered-beam-search-based heuristic in Shi-Jin et al. (2008).

Many authors developed hybrid methods that combine two or more algorithms to improve the convergence while ensuring the diversity of solutions. Chun et al. (2013) combine an evolutionary algorithm with a local search heuristic. A Non-dominated Sorting Genetic Algorithm II is combined with a local search in Yuan and Xu (2015), a Scatter Search algorithm that uses Tabu Search and Path-Relinking is proposed in González et al. (2015), a Path-Relinking based on a Tabu Search algorithm with backjumping tracking is developed in Jia and Hu (2014), a hybrid discrete Particle Swarm Optimization and Simulated Annealing algorithm are proposed in Shao et al. (2013), a Pareto-based estimation of distribution algorithm is combined with a local search heuristic in Wang et al. (2013), a genetic algorithm and local search are combined in Xiong et al. (2012), a genetic algorithm is combined with a Simulated Annealing in Li (2011), and an approach hybridizing a discrete Artificial Bee Colony algorithm and local search approaches is proposed in Li et al. (2011).

All the above mentioned papers focus on optimizing the makespan, the total workload of machines, and the workload of the critical machine. There are only very few papers that consider other objectives such as regular criteria. In the FJSP with mono-objective, García-León et al. (2015) propose a general approach for optimizing any regular criteria, which presents new concepts to be used in local search methods. To minimize the total tardiness, Trkylmaz and Bulkan (2015) combine a genetic algorithm and a Variable Neighborhood Search, and Mousakhani (2013) presents a Mixed Integer Linear Programming model and an iterated local search. For the MOFJSP, Singh et al. (2016) propose a Particle Swarm Optimization algorithm to simultaneously minimize the makespan, mean flow time, and mean tardiness. Gao et al. (2014) minimize a weighted combination of the makespan and the mean of earliness and tardiness, using a discrete Harmony Search algorithm that makes use of several heuristics. A Variable Neighborhood Search algorithm is proposed in Bagheri and Zandieh (2011) to minimize a weighted sum of the makespan and the mean tardiness. Vilcot and Billaut (2011) present a version of Tabu Search that minimizes a linear combination of $C_{\text {max }}, \Sigma T_{i}$ and $L_{\text {max }}$. Tay and Ho (2008) consider the minimization of the weighted sum of the makespan, the mean tardiness, and the mean flow time, by using priority rules and the concept of genetic programming. A heuristic inspired from Particle Swarm Optimization and Variable Neighborhood Search is proposed in Liu et al. (2006) for minimizing a weighted linear combination of the makespan and the sum of completion times.

The MOFJSP has also been addressed under a variety of constraints, assumptions and practical issues. In Lei et al. (2018), the makespan and total tardiness are minimized under the constraint that the total energy consumption does not exceed a given threshold. Mokhtari and Hasani (2017) develop an evolutionary algorithm to minimize the makespan, the total availability of the system, and the total energy cost of both production and maintenance operations. The uncertainty in processing times is addressed
in Shen et al. (2017) to simultaneously minimize makespan, maximal machine workload, and robustness to uncertainties. Lu et al. (2017) investigate the problem under controllable processing times, i.e. the processing times of operations can be controlled by allocating additional resources, to find an efficient trade-off between the makespan and the total additional resource consumption. Fuzzy processing times and fuzzy due dates are addressed in Chun et al. (2013) using a memetic algorithm that combines genetic global optimization with a local search method. Ahmadi et al. (2016) address random machine breakdowns by considering the makespan and stability measures. Li et al. (2014) consider maintenance activities on machines and propose a discrete Artificial Bee Colony algorithm to deal with the makespan, the total workload of machines, and the workload of the critical machine. Random machine breakdowns are also considered in Xiong et al. (2013) with the objective of minimizing the makespan and the robustness. The dynamic FJSP with job release dates is addressed in Nie et al. (2013) to minimize the makespan, the mean flow time, and the mean tardiness. Sadrzadeh (2013) considers sequence-dependent setups using an Artificial Immune System and Particle Swarm Optimization to minimize an aggregate function of the makespan and the mean tardiness. Setup times are also considered in Bagheri and Zandieh (2011) using a Variable Neighborhood Search approach to minimize the makespan and the mean tardiness.

To conclude, the MOFJSP has been solved in the literature using different methods that range from simple heuristics to sophisticated metaheuristics. Although the MOFJSP gained considerable attention from researchers during the last ten years, most studies consider the optimization of the makespan and two non-regular criteria (total workload and maximum workload of machines). A very limited number of papers address regular criteria even when optimizing a single criterion. Indeed, Chaudhry and Khan (2016) report that the optimization of the makespan combined with other regular criteria has little been studied, e.g. 2.5% of the papers consider maximum tardiness and 1.5% deal with total tardiness. When regular criteria are combined with the makespan, most papers do not aim at Pareto optimization and instead aggregate the criteria in one objective using a weight for each criterion. Moreover, the concepts of disjunctive graph and estimation functions are not exploited. One of the contributions of this paper is the design of an efficient Pareto optimization approach for the MOFJSP with regular criteria by developing different strategies to efficiently determine a set of non-dominated solutions.

3. Problem modeling and neighborhood structures for the FJSP

This section introduces the different concepts used in this paper to model and solve the MOFJSP, and illustrates these concepts using the example in Table 1 with three jobs and four machines. Each job J_{i} has four operations which are denoted $O_{i j}(i=1,2,3$ and $j=1,2,3,4)$. For example, the first operation of job J_{1} has two eligible machines M_{1} and M_{3} with processing times of 3 and 5 , respectively. The third operation of J_{2} has no flexibility, since it can only be performed on machine M_{4}.

The FJSP with regular criteria can be modeled using a disjunctive graph $\mathcal{G}=(\mathcal{V}, \mathcal{A}, \mathcal{E})$ where \mathcal{V} is the set of nodes and $\mathcal{A} \cup \mathcal{E}$ is the set of arcs (see Dauzère-Pérès and Paulli, 1997). Let us recall some important definitions. The set \mathcal{V} includes operations of jobs, a dummy node 0 that represents the start of each job, and n dummy nodes ϕ_{i} associated to the completions of jobs (see e.g. Mati et al., 2011). Nodes ϕ_{i} are necessary since regular criteria depend on the completion times of jobs. The set \mathcal{A} contains conjunctive arcs that connect two consecutive operations (i.e. in the routing) of a job, the node 0 and every first operation of each job, and the last operation of each job J_{i} to its corresponding node ϕ_{i}. The

Table 1
An illustrative example of the FJSP.

	Eligible machines and processing times for operations			
Job	1	2	3	4
J_{1}	$M_{1}(3) / M_{3}(5)$	$M_{2}(3) / M_{4}(4)$	$M_{1}(5) / M_{3}(1)$	$M_{3}(1)$
J_{2}	$M_{1}(5) / M_{3}(4)$	$M_{1}(4) / M_{2}(5)$	$M_{4}(1)$	$M_{2}(2)$
J_{3}	$M_{1}(2)$	$M_{3}(3) / M_{4}(4)$	$M_{2}(8)$	$M_{3}(2) / M_{4}(2)$

Table 2
Critical paths of jobs and their corresponding blocks for solution in Fig. 1(b).

Job	Critical path	Block
J_{1}	$0 \rightarrow O_{11} \rightarrow O_{31} \rightarrow O_{22} \rightarrow O_{13} \rightarrow O_{14} \rightarrow \phi_{1}$	$\left(O_{11} \rightarrow O_{31} \rightarrow O_{22} \rightarrow O_{13}\right)$
J_{2}	$0 \rightarrow O_{11} \rightarrow O_{31} \rightarrow O_{32} \rightarrow O_{33} \rightarrow O_{24} \rightarrow \phi_{2}$	$\left(O_{11} \rightarrow O_{31}\right),\left(O_{33} \rightarrow O_{24}\right)$
J_{3}	$0 \rightarrow O_{11} \rightarrow O_{31} \rightarrow O_{32} \rightarrow O_{33} \rightarrow O_{34} \rightarrow \phi_{3}$	$\left(O_{11} \rightarrow O_{31}\right)$

set $\mathcal{E}=\cup_{m \in \mathcal{M}} \mathcal{E}_{m}$ contains disjunctive arcs where \mathcal{E}_{m} includes arcs between pairs of operations that may use machine m. The arc from 0 to the first operation of a job J_{i} has a length which is equal to the release date r_{i} of J_{i}, and any remaining conjunctive or disjunctive arc has a length which is equal to the processing time of the operation from which it starts. Fig. 1(a) shows the disjunctive graph for the example in Table 1.

A feasible solution of the FJSP is obtained by assigning a machine to each operation (thus keeping only the relevant disjunctive arcs in E) and by fixing a direction to each disjunctive arc in \mathcal{E} such that the induced graph does not contain any directed cycle. To effectively exploit the structure and properties of the graph in a local search approach, the graph must be simplified by removing redundant arcs so that every node x has at most one predecessor and one successor on the machine that performs x. Fig. 1(b) shows a feasible solution for the example in Table 1. For example, the first operation O_{21} of job J_{2} is assigned to machine M_{3}. The sequences of jobs with their operations on machines are the following: $J_{1}\left(O_{11}\right) \rightarrow J_{3}\left(O_{31}\right) \rightarrow J_{2}\left(O_{22}\right) \rightarrow J_{1}\left(O_{13}\right)$ on $M_{1}, J_{1}\left(O_{12}\right) \rightarrow J_{3}\left(O_{33}\right) \rightarrow J_{2}\left(O_{24}\right)$ on $M_{2}, J_{2}\left(O_{21}\right) \rightarrow J_{3}\left(O_{32}\right) \rightarrow J_{1}\left(O_{14}\right)$ on M_{3}, and $J_{2}\left(O_{23}\right) \rightarrow J_{3}\left(O_{34}\right)$ on M_{4}.

The starting time h_{x} (called head) of a node x is given by the length of a longest path from 0 to x. The level l_{x} of node x is the maximum number of arcs from node 0 to x. The tail q_{x}^{i} of x to a dummy node ϕ_{i} is the maximum length from the completion of x to ϕ_{i} if a path exists from x to ϕ_{i} and $-\infty$ otherwise. Tails are needed since regular criteria are considered in this paper. For example, looking at Fig. 1(b), the head of operation O_{23} is 9 , its level is equal to 4 and its tail to ϕ_{3} is equal to 2 . However, the tail of operation O_{23} to ϕ_{1} is equal to $-\infty$ since there is no path from O_{23} to ϕ_{1}. The longest path from node 0 to node ϕ_{i} is called the critical path from 0 to ϕ_{i}, and its length is equal to $h_{\phi_{i}}$, which corresponds to the completion time of J_{i}. Every node x belonging to a critical path is critical according to J_{i}, and satisfies $h_{x}+p_{x}+$ $q_{x}^{i}=h_{\phi_{i}}$. Each arc (x, y) belonging to the critical path from 0 to ϕ_{i} is critical if nodes x and y are assigned to the same machine and belong to the routing of different jobs. A block is a maximum sequence of critical nodes assigned to the same machine. Table 2 shows the critical paths of jobs and their corresponding blocks for the solution in Fig. 1(b). Note that O_{31} is critical for all jobs, O_{24} is only critical for job J_{2}, whereas operations O_{12}, O_{21}, and O_{23} are not critical. The critical path of job J_{2} contains two blocks.

Neighborhood structures are used in local search to generate new solutions by performing small perturbations of a current solution. In the FJSP, a well-known perturbation proposed in DauzèrePérès and Paulli (1997) consists in moving (i.e. resequencing or reassigning) a critical operation in the graph of the current solution. In this paper, we consider two neighborhood structures (N_{1} and

Fig. 1. Disjunctive graph model and a feasible solution for the example in Table 1.
N_{2}), which differ from one another in the selection of operations that are moved. Neighborhood structure N_{1} focuses on all critical operations of jobs, while neighborhood structure $N_{2} \subset N_{1}$ focuses on operations that belong to blocks of critical paths of the jobs that affect the value of the criterion (e.g. jobs that are late for lateness criteria). Our motivation in defining these two neighborhood structures is to analyze whether the concept of blocks is helpful to generate sets of non-dominated solutions for the MOFJSP. To understand the difference between N_{1} and N_{2}, let us consider the minimization of ΣC_{i} in the solution of Fig. 1(b). According to the critical paths and blocks of Table 2, neighborhood structure N_{1} considers the critical operations $O_{11}, O_{13}, O_{14}, O_{22}, O_{24}, O_{31}, O_{32}$, O_{33} and O_{34}, whereas neighborhood structure N_{2} "only" focuses on $O_{11}, O_{13}, O_{22}, O_{24}, O_{31}$ and O_{33}. Table 3 gives the possible resequencing and reassignment moves for each critical operation in both neighborhood structures. For a given critical operation $O_{i j}$, the notation [a-b] means that $O_{i j}$ is moved between operations a and b. If $a=0$ (resp. $b=*$), $O_{i j}$ is moved in the first (resp. last) position of the sequence of the machine on which it is resequenced or reassigned. For example, O_{11} can be resequenced between O_{22} and O_{13}, and reassigned on machine M_{3} between O_{32} and O_{14}.

Moving an operation in both neighborhood structures N_{1} and N_{2} can generate directed cycles in the resulting graph, thus leading to unfeasible solutions of the FJSP. To check the feasibility of a move, the sufficient conditions proposed in GarcíaLeón et al. (2015) are used. Without actually transforming the graph, they validate that a cycle is not created in the new graph. These conditions generalize previous conditions of the literature by using the concepts of heads, tails and levels of operations. In

Table 3
Possible resequencing and reassignment moves in Fig. 1(b).

Critical operation	Resequencing Move	Reassignment	
		Machine	Move
O_{11}	$\begin{aligned} & {\left[\mathrm{O}_{31}-\mathrm{O}_{22}\right]^{\ddagger}} \\ & {\left[\mathrm{O}_{22}-\mathrm{O}_{13}\right]^{\ddagger}} \\ & {\left[\mathrm{O}_{13}-*\right]^{\otimes}} \end{aligned}$	M_{3}	$\begin{aligned} & {\left[0-O_{21}\right]^{\ddagger}} \\ & {\left[O_{21}-O_{32}\right]^{\ddagger}} \\ & {\left[O_{32}-O_{14}\right]^{\ddagger}} \\ & {\left[O_{14}-*\right]^{\otimes}} \end{aligned}$
O_{31}	$\begin{aligned} & {\left[0-O_{11}\right]^{\ddagger}} \\ & {\left[O_{22}-O_{13}\right]^{\ddagger}} \\ & {\left[O_{13}-*\right]^{\dagger}} \end{aligned}$		
O_{22}	$\begin{aligned} & {\left[0-O_{11}\right]^{\ddagger}} \\ & {\left[O_{11}-O_{31}\right]^{\ddagger}} \\ & {\left[O_{13}-*\right]^{\ddagger}} \end{aligned}$	M_{2}	$\begin{aligned} & {\left[0-O_{12}\right]^{\ddagger}} \\ & {\left[O_{12}-O_{33}\right]^{\ddagger}} \\ & {\left[O_{33}-O_{24}\right]^{\ddagger}} \\ & {\left[O_{24}-*\right]^{\otimes}} \end{aligned}$
O_{32}	$\begin{aligned} & {\left[0-O_{21}\right]^{\ddagger}} \\ & {\left[O_{14}-*\right]^{\ddagger}} \end{aligned}$	M_{4}	$\begin{aligned} & {\left[0-O_{23}\right]^{\ddagger}} \\ & {\left[O_{23}-O_{34}\right]^{\ddagger}} \\ & {\left[O_{34}-*\right]^{\otimes}} \end{aligned}$
O_{13}	$\begin{aligned} & {\left[0-O_{11}\right]^{\otimes}} \\ & {\left[O_{11}-O_{31}\right]^{\ddagger}} \\ & {\left[O_{31}-O_{22}\right]^{\ddagger}} \end{aligned}$	M_{3}	$\begin{aligned} & {\left[0-O_{21}\right]^{\ddagger}} \\ & {\left[O_{21}-O_{32}\right]^{\ddagger}} \\ & {\left[O_{32}-O_{14}\right]^{\ddagger}} \\ & {\left[O_{14}-*\right]^{\otimes}} \end{aligned}$
O_{33}	$\begin{aligned} & {\left[0-O_{12}\right]^{\ddagger}} \\ & {\left[O_{24}-*\right]^{\ddagger}} \\ & {\left[0-O_{23}\right]^{\ddagger}} \end{aligned}$		$\left[0-\mathrm{O}_{21}\right]^{\otimes}$
O_{34}		M_{3}	$\begin{aligned} & {\left[\mathrm{O}_{21}-\mathrm{O}_{32}\right]^{\otimes}} \\ & {\left[\mathrm{O}_{32}-\mathrm{O}_{14}{ }^{\ddagger}\right.} \\ & {\left[\mathrm{O}_{14}-*\right]^{\ddagger}} \end{aligned}$
O_{24} O_{14}	$\begin{aligned} & {\left[0-O_{12}\right]^{\dagger}} \\ & {\left[O_{12}-O_{33}\right]^{\ddagger}} \\ & {\left[0-O_{21}\right]^{\star}} \\ & {\left[O_{21}-O_{32}\right]^{\ddagger}} \end{aligned}$		

Table 3, feasible moves that are obtained by the sufficient conditions are denoted by the superscript \ddagger, unfeasible moves by the superscript ${ }^{\otimes}$, and moves that are feasible but cannot be validated by the sufficient conditions are denoted by the superscript \dagger.

The best move in the neighborhood of a solution is generally obtained using the value of the criterion of the generated solution. Previous studies on the FJSP have shown that using estimation functions is more appropriate to evaluate the quality of moves, because significant computational times can be saved and much more iterations can be performed to reach better solutions. Since regular criteria are considered in this paper, we need to estimate the new completion times of nodes ϕ_{i} after moving an operation (see Mati et al., 2011 for the classical job-shop scheduling problem). To do so, we use the estimation function proposed in GarcíaLeón et al. (2015) by considering forward and backward moves. A forward (resp. backward) move of a node x, currently sequenced between nodes p and q, between two nodes u and v is defined when $l_{x} \leq l_{u}$ (resp. $l_{x}>l_{u}$). The idea of the estimation function consists in considering the newly created paths after the move together with a suitable subset of paths that are available in the current and new graphs. This is performed by focusing not only on the operation x, but also on the operations involved in the move p, q, u and v, as well as on operations w for which $l_{w}=l_{x}$ (see Mati et al., 2011). In addition to its efficiency in estimating the value of the criterion, the estimation function is fast and guarantees whenever possible the lower bound property, i.e. the quality of a move is not overestimated (García-León et al., 2015).

4. Evaluating sets of non-dominated solutions

An effective approach for solving the MOFJSP with regular criteria is the Pareto approach, which aims at finding a set of nondominated solutions \mathcal{S}, called the Pareto front. In this section, let us briefly recall the main notions related to Pareto optimization and introduce the measures to evaluate the quality of the set \mathcal{S}.

4.1. Dominance of Pareto

Let \mathcal{C} be the set of criteria to minimize in Pareto manner and $f_{c}(s)$ be the value of the criterion c of a feasible solution s. Solution s_{1} dominates solution s_{2} if the following two conditions are true:

1. Solution s_{1} is not worse than solution s_{2} for all criteria, i.e. $\forall c \in$ $\mathcal{C}, f_{c}\left(s_{1}\right) \leq f_{c}\left(s_{2}\right)$,
2. Solution s_{1} is strictly better than s_{2} for at least one criterion, i.e. $\exists c \in \mathcal{C}$ such that $f_{c}\left(s_{1}\right)<f_{c}\left(s_{2}\right)$.

Accordingly, any two solutions of \mathcal{S} are non-dominated with respect to each other, and any solution not in \mathcal{S} is dominated by at least one solution in \mathcal{S}.

4.2. Quality measures of the set of non-dominated solutions

A good set of non-dominated solutions should satisfy two goals: Convergence and diversity. Convergence ensures that the set of solutions is as close as possible to the optimal Pareto front, and diversity is related to the sparsity of solutions to ensure that the decision maker has multiple representative trade-off solutions among conflicting objectives. Zitzler et al. (2003) state that it is difficult to define appropriate measures to approximate the optimal Pareto front when analyzing both goals, and that the discrepancies increase when considering stochastic approaches.

For the MOFJSP, most previous studies aim at improving the convergence and increasing the number of non-dominated solutions without considering diversity (see e.g. Jia and Hu, 2014). In this paper, we consider both the convergence and diversity to better evaluate the quality of sets of non-dominated solutions. Three
measures are selected to evaluate the convergence: (1) The elite solutions, (2) The mean ideal distance and (3) The hypervolume. Elite solutions correspond to the best values of the criteria. The Mean Ideal Distance (MID) is the average distance between nondominated solutions and the origin point (Singh et al., 2016), i.e. the point $(0,0)$ if two criteria are analyzed. MID is calculated using (1), where $|\mathcal{S}|$ is the number of non-dominated solutions.

MID $=\frac{\sum_{s \in \mathcal{S}} \sqrt{\sum_{c \in \mathcal{C}} f_{c}^{2}(s)}}{|\mathcal{S}|}$
The HyperVolume ($H V$) is the volume covered by the solutions of the front. When all criteria are minimized, a reference point having as coordinates the worst values of the criteria is used to limit this coverage (Zitzler et al., 2007). Thus, $H V=\sum_{s \in \mathcal{S}} V_{s}$, where V_{s} is the hypercube of s with respect to the reference point. Since the hypervolume can lead to large values, (2) is used to calculate $H V$, which corresponds to the ratio of the total volume $\mathcal{V}_{\mathcal{T}}$ covered by the reference point and the origin point.
$H V=\frac{\sum_{s \in \mathcal{S}} V_{s}}{|\mathcal{S}| \times \mathcal{V}_{\mathcal{T}}}$
The maximum spread (D) and spacing ($S P$) are selected to evaluate the diversity. The metric D is the longest diagonal of the hyperbox formed by the extreme values of the criteria in \mathcal{S} (Zitzler, 1999), and is calculated using (3), where $f_{c}^{\max }$ and $f_{c}^{\min }$ are the maximum and minimum values of criterion c for all solutions in \mathcal{S} :
$D=\sqrt{\sum_{c \in \mathcal{C}}\left(f_{c}^{\max }-f_{c}^{\min }\right)^{2}}$
The metric $S P$ is the average distance between consecutive solutions in \mathcal{S} (Schott, 1995). Let \hat{d}_{i} be the distance between solution s_{i} and its nearest solution, i.e. $\hat{d_{i}}=\min _{s_{p} \in \mathcal{S} ; p \neq i} \sum_{c \in \mathcal{C}}\left|f_{c}\left(s_{i}\right)-f_{c}\left(s_{p}\right)\right|$, and let \bar{d} be the average of these distances for all solutions in \mathcal{S}. Spacing is calculated using (4).
$S P=\sqrt{\frac{1}{|\mathcal{S}|} \sum_{i=1}^{|\mathcal{S}|}\left(\hat{d_{i}}-\bar{d}\right)^{2}}$
To ensure the quality of \mathcal{S}, the spacing and mean ideal distance must be minimized, the maximum spread and hypervolume must be maximized and elite solutions must be as close as possible to the optimal values of the criteria.

5. Solving the MOFJSP

The proposed Pareto approach for the MOFJSP with regular criteria aims at finding a set of non-dominated solutions \mathcal{S} whose convergence and diversity are optimized. Let us first describe how \mathcal{S} is managed, then present the framework of the approach and the initial solution, and finally propose four search strategies.

5.1. Controlling the set of non-dominated solutions

The control of the set of non-dominated solutions consists in managing solutions entering and leaving \mathcal{S} each time a new solution s is obtained by the search process. A schedule $s \in \mathcal{S}$ is called a reference schedule for criterion c if $f_{c}(s)$ is the best possible value for criterion c. The reference schedule for c is denoted by $s_{c}^{r e f}$, and the subset of \mathcal{S} with the reference schedules is denoted by $\mathcal{S}^{\text {ref }}$.

To efficiently control \mathcal{S}, we propose a fast hierarchical test in three steps to avoid performing too many evaluations to check

Fig. 2. Test to check whether s is added to \mathcal{S}.
whether s should be added to \mathcal{S}. The test is illustrated in Fig. 2. It first evaluates if the value of any criterion c of s is strictly lower than the best value for criterion c. If it is the case, then s becomes the reference schedule for criterion c, and s is added to $\mathcal{S}^{r e f}$ and \mathcal{S}, maybe replacing other solutions. Otherwise, the test validates the dominance between $s_{i} \in \mathcal{S}$ and s starting with the reference schedules. If no dominance is found, then s can be added to \mathcal{S}, maybe replacing other solutions. Hence, the step Update \mathcal{S} consists in adding s and removing the dominated solutions. Note that multiple solutions are not considered, i.e. if the values of all the criteria of s and of a solution $s_{i} \in \mathcal{S}$ are equal.

5.2. Framework of the approach

The approach consists of two alternating phases, namely an improving phase and a diversification phase. The improving phase is a steepest descent that performs iterative improvements until a local optimum is reached for a given criterion or all criteria. At each iteration, a set of neighbor solutions is generated using the neighborhood structures, the feasibility test and the move evaluation described in Section 3. The diversification phase starts from the local optimum of the improving phase and performs at most b iterations. During this phase, a critical operation is randomly selected and a move is randomly chosen. If the selected move is feasible, the heuristic advances to the next iteration, otherwise the above process is repeated until a feasible move is obtained. If a new best solution is obtained in the diversification phase for a given criterion, the search returns to the improving phase, otherwise it continues until b iterations are performed. The value of b is randomly selected in [4,10] which is fixed experimentally.

After performing a move in both phases, all local values of the criteria are updated, the hierarchical test to determine whether s is added to \mathcal{S} is performed, and \mathcal{S} is updated if s is added as described in Fig. 2. Additionally, the best values of the criteria are updated.

To deal with multiple criteria for the MOFJSP, we propose four versions of the above approach that differ mainly in the way the criterion to optimize is selected, the way the approach is alternating between the improving and diversification phases, and the way the solution is selected when each phase is resumed.

5.3. Initial solution

The initial solution is obtained using a constructive heuristic that selects an operation at each step according to an established order of the jobs. The main idea of the heuristic is to complete the selected operation as soon as possible to try to minimize the completion times of jobs. The jobs are ordered by non-decreasing weights when at least one criterion considers weights. The ties are broken using the due dates, and then the average processing times $\sum_{j=1}^{n_{i}} \frac{1}{\left|R_{j}\right|} \sum_{a \in R_{j}} p_{j}$ where n_{i} is the number of operations of job J_{i}. For a given operation x and for each eligible machine $M_{k} \in R_{x}$, the time t_{k} at which the machine completes its previous operation v on the sequence (if it exists) is calculated. Operation x is then assigned to the machine that completes x as soon as possible, i.e. the machine $M_{k} \in R_{x}$ that minimizes $t_{k}+p_{x}$. The graph is updated by adding arc (v, x) and the heuristic continues until all operations have been selected.

5.4. Search strategy T_{1}

The idea of this strategy is to concentrate on optimizing a given criterion by performing an improving phase followed by a diversification phase. More precisely, a random criterion c is selected in \mathcal{C}, and the improving phase performs iterative improvements of c until reaching a local optimum for this criterion. The diversification phase starts from this local optimum and, if the value of the criterion c is improved during this phase, the search returns to the improving phase with the same criterion c. However, if the maximum number of iterations b is reached, the search sets all local values of the criteria to ∞, randomly selects a new criterion to minimize from the set $\mathcal{C}-\{c\}$ and returns to the improving phase.

5.5. Search strategy T_{2}

This strategy gives more attention to the improving phase since most of the promising solutions are obtained in this phase. The strategy intensifies the search in the improving phase until reaching the local optimum of all criteria. To apply this strategy, the concept of forbidden criterion or criteria is introduced. This concept is defined and applied, for a given criterion c, only during
the improving step when the local optimum of c is reached. More precisely, a criterion becomes forbidden when, in the improving phase, it is selected to create a move and it cannot generate an improving move. A criterion is authorized to be selected as soon as its local value is improved or in the finalization of the diversification phase.

More precisely, Strategy T_{2} starts by setting the set of forbidden criteria $\mathcal{C}^{\text {for }}$ to \emptyset to specify that initially all criteria are authorized. Then, at each iteration of the improving phase, a criterion c is randomly selected from the set $\mathcal{C}-\mathcal{C}^{\text {for }}$ of authorized criteria. The search optimizes c whenever it is possible to generate an improving move, and any forbidden criterion becomes authorized if its local value is improved. However, if an improving move is not possible with c, this criterion becomes forbidden and the search continues with a criterion randomly selected in the set of authorized criteria. If all criteria are forbidden, i.e. $\mathcal{C}-\mathcal{C}^{\text {for }}=\emptyset$, the search goes to the diversification phase.

An important problem with the continuity of the search can be caused by criterion $T_{\text {max }}$ since, if it is equal to zero, criteria ΣT_{i} and ΣU_{i} will also be equal to zero, and it is not possible to create a move. In this case, the search removes all forbidden criteria from $\mathcal{C}^{f o r}$ and the selected criterion c is either $C_{\max }$ or ΣC_{i} if the latter criterion belongs to \mathcal{C}.

The diversification phase starts from the solution generated by the neighborhood structure of the last forbidden criterion. If a local value of any criterion is improved in this phase, the criterion becomes authorized, and the search returns to the improving phase using the neighborhood of this criterion. In case of several improved criteria, a random choice is performed. If it is not possible to improve any criterion during b iterations, all criteria are authorized, all local values of the criteria are set to ∞ and the search goes to the improving phase with a random criterion.

5.6. Search strategy T_{3}

This strategy is a variant of T_{2}, the only difference is in the improving phase in which it is possible that criterion c is changed in each iteration even if the last iteration was an improving move for c. This means that, rather than continuing with a single criterion until reaching its local optimum, T_{3} can modify the optimized criterion by using a random selection from the set of non-forbidden criteria. More precisely, in each iteration, a random criterion c is selected to create a move from the set $\mathcal{C}-\mathcal{C}^{f o r}$. If this move improves the criterion, the set of forbidden criteria $\mathcal{C}^{\text {for }}$ is emptied. If it is not possible to create an improving move using c, this criterion becomes forbidden and it is added to $\mathcal{C}^{f o r}$. If it is not possible to create an improving move with all criteria, the search goes to the diversification phase considering the neighborhood of the last forbidden criterion and the same guidelines than Strategy T_{2}.

5.7. Search strategy T_{4}

Strategy T_{4} operates as Strategy T_{3} but uses the concept of global value of the criterion c. The only difference is in the improving phase in which, if the global value of a criterion $c^{\prime} \neq c$ is improved, this criterion becomes the optimized criterion in the next iteration even if the search with the current criterion was improving. The motivation is that it is more suitable to shift the search to optimize c^{\prime} with the aim of finding new reference schedules for c^{\prime}, since these schedules can be lost if the search process does not focus on c^{\prime} at this iteration. If several global values are improved, a random choice is performed. Further, in the diversification phase, the search can return to the improving phase with a criterion that improves its global value.

6. Computational results

This section analyzes the efficiency of the general approach proposed in the previous section, which was developed in Java. In the remainder of the paper, this approach is denoted GMD. The experiments were conducted on a PC with 3.40 GHz and 8GB RAM. The computational time for each search strategy and each neighborhood structure was set to 300 seconds. Hence, the computational time for an instance is 2400 seconds for a set of criteria to optimize in Pareto manner, i.e. 300 seconds multiplied by four search strategies and two neighborhood structures. Three sets of criteria to optimize are considered: $\mathcal{C}_{A}, \mathcal{C}_{B}$ and $\mathcal{C}_{C} . \mathcal{C}_{A}$ includes three criteria: $\mathcal{C}_{\text {max }}, T_{\max }$ and $\Sigma T_{i} \cdot \mathcal{C}_{B}$ adds criterion ΣU_{i} to the criteria in \mathcal{C}_{A}, and \mathcal{C}_{C} adds criterion ΣC_{i} to the criteria in \mathcal{C}_{B}.

The analysis was conducted in six phases that are described in the following sections. Sections 6.1-6.5 use the problem instances from Brandimarte (1993) by setting the due date of each job J_{i} to $1.3 \times \sum_{j=1}^{n_{i}} \frac{1}{\left|R_{j}\right|} \sum_{a \in R_{j}} p_{j}$, where n_{i} is the number of operations of job J_{i}. Section 6.1 analyzes the Net Front Contribution (NFC) and the Weak OutPerformance (WOP) of the two neighborhood structures to check if one is dominating the other. Then, the same analysis is performed for the search strategies. The impact of adding criteria in the set of criteria to optimize on the number of non-dominated solutions is studied in Section 6.2. Elite solutions for five regular criteria are analyzed in Section 6.3. The diversity is studied in Section 6.4. The analysis of the hypervolume and the mean ideal distance is presented in Section 6.5. Finally, Section 6.6 compares our approach to previous approaches to optimize the makespan and the total tardiness.

6.1. Analysis of the Net Front Contribution (NFC) and Weak OutPerformance (WOP)

The Net Front Contribution (NFC) is the percentage of solutions of the reference front that are included in a specified set of nondominated solutions (Deb et al., 2001). For example, if the NFC of Strategy T_{1} is 25%, then 25% of the solutions of the reference front belong to T_{1}. The Weak OutPerformance metric $\left(\mathrm{WOP}_{x, 0}\right)$ evaluates the dominance between two sets of non-dominated solutions s_{x} and s_{O} (see Vilcot and Billaut, 2011). The set s_{X} weakly outperforms s_{o} if no solution in s_{X} is dominated by a solution in s_{o} and at least one solution in s_{X} dominates a solution in s_{o}. Hence, $\mathrm{WOP}_{x, 0}$ takes value 1 if s_{X} weakly outperforms s_{o} and 0 otherwise. To further improve the analysis of dominance between s_{X} and s_{0}, we extend the numerical scale to three values $-1,0$ and 1 : $\mathrm{WOP}_{x, o}$ is equal to 1 (resp. -1) if s_{χ} (resp. s_{o}) weakly outperforms s_{o} (resp. s_{χ}) and 0 otherwise.

Table 4 presents, over ten runs of the algorithm, the average NFC and the average percentage for $\mathrm{WOP}_{N_{1}, N_{2}}$ (WOP) when it is equal to 1 or -1 for each set of criteria and for each neighborhood structure. As an example, $m k 01$ has six machines (m), 10 jobs (n) and a flexibility level (flex) of 2.09 , i.e. one operation has on average 2.09 eligible machines. For \mathcal{C}_{A}, the average NFC for neighborhood N_{1} is 50% and 53.3% for N_{2}. N_{1} weakly outperforms N_{2} (1 in column WOP) in 33.3% of cases and N_{2} weakly outperforms N_{1} (-1 in column WOP) in 60% of cases. Additionally, the neighborhood structure with the average largest NFC and WOP are written in bold.

Table 4 shows that there is not a dominant neighborhood structure, even though N_{2} is slightly better, which confirms the benefit of using the concept of blocks to solve the flexible job-shop scheduling problem. Using the NFC metric, neighborhood structure N_{2} generates larger contributions for 17 instances over 30 instances: mk01, mk03, mk07, mk08 and mk10 for $\mathcal{C}_{A} ; m k 02, m k 03$, $m k 04, m k 05, m k 08$ and $m k 09$ for \mathcal{C}_{B}, and $m k 03, m k 04, m k 05, m k 06$, $m k 07$ and $m k 08$ for $\mathcal{C}_{C} . N_{1}$ generates larger contributions for the

Table 4
Average NFC and WOP for N_{1} and N_{2}.

Inst	Size$(m \times n)$	flex	\mathcal{C}_{A}				$\mathcal{C}_{\text {B }}$				\mathcal{C}_{C}			
			NFC(\%)		WOP(\%)		NFC(\%)		WOP(\%)		NFC(\%)		WOP(\%)	
			N_{1}	N_{2}	1	-1	N_{1}	N_{2}	1	-1	N_{1}	N_{2}	1	-1
mk01	6×10	2.09	50.0	53.3	33.3	60.0	85.2	20.8	26.7	0.0	71.0	29.6	6.7	0.0
mk02	6×10	4.1	66.7	56.7	33.3	26.7	53.3	80.0	13.3	40.0	67.8	33.3	53.3	26.7
mk03	8×15	3.01	43.3	63.3	40.0	53.3	39.2	60.8	6.7	53.3	32.4	67.6	20.0	53.3
mk04	8×15	1.91	55.7	44.3	33.3	53.3	47.6	52.9	0.0	0.0	31.8	68.2	0.0	0.0
mk05	4×15	1.71	61.8	38.2	66.7	26.7	48.4	51.8	0.0	0.0	49.5	50.5	0.0	0.0
mk06	15×10	3.27	93.3	46.7	53.3	6.7	100.0	93.3	6.7	0.0	40.0	60.0	33.3	53.3
mk07	6×10	2.83	41.6	58.4	26.7	53.3	60.9	39.3	6.7	0.0	47.7	52.3	0.0	0.0
mk08	5×20	1.43	46.7	53.3	46.7	53.3	6.5	93.5	0.0	80.0	8.3	91.7	0.0	80.0
mk09	10×20	2.53	63.9	36.1	46.7	26.7	49.6	52.2	20.0	0.0	64.2	35.8	20.0	0.0
mk10	15×20	2.98	46.6	53.4	40.0	40.0	53.0	47.4	6.7	0.0	55.2	44.8	13.3	0.0

Table 5
Analysis of NFC for the different strategies and N_{2}.

Inst	$\mathcal{C}_{\text {A }}$				$\mathcal{C}_{\text {B }}$				\mathcal{C}_{C}			
	T_{1}	T_{2}	T_{3}	T_{4}	T_{1}	T_{2}	T_{3}	T_{4}	T_{1}	T_{2}	T_{3}	T_{4}
mk01	0.0	100.0	100.0	100.0	0.0	0.0	25.0	75.0	0.0	7.7	92.3	0.0
mk02	0.0	100.0	100.0	100.0	33.3	0.0	66.7	33.3	0.0	100.0	100.0	100.0
mk03	0.0	100.0	0.0	0.0	0.0	50.0	25.0	25.0	0.0	0.0	80.0	20.0
mk04	0.0	100.0	50.0	50.0	0.0	18.4	46.9	36.7	0.0	7.9	47.4	44.7
mk05	0.0	83.3	16.7	0.0	0.0	30.8	48.7	20.5	0.0	7.7	30.8	61.5
mk06	100.0	0.0	0.0	0.0	100.0	0.0	0.0	0.0	0.0	100.0	100.0	100.0
mk07	0.0	0.0	100.0	100.0	0.0	4.6	50.0	45.5	0.0	0.0	88.0	12.0
mk08	0.0	100.0	100.0	100.0	0.0	81.5	18.5	0.0	0.0	0.0	0.0	100.0
mk09	20.0	80.0	0.0	0.0	0.0	19.1	38.1	42.9	0.0	0.0	24.0	76.0
mk10	0.0	0.0	100.0	20.0	0.0	33.3	22.2	44.4	0.0	0.0	10.0	90.0

remaining 13 instances. Concerning the metric WOP, N_{2} weakly outperforms N_{1} in 11 instances: $m k 01, m k 03, m k 04, m k 07$ and $m k 08$ for $\mathcal{C}_{A} ; m k 02, m k 03$ and $m k 08$ for \mathcal{C}_{B} and $m k 03, m k 06$ and $m k 08$ for \mathcal{C}_{C}, and N_{1} weakly outperforms N_{2} in 13 instances (4 for $\mathcal{C}_{A}, 5$ for \mathcal{C}_{B} and 4 for \mathcal{C}_{C}). Additionally, no neighborhood structure weakly outperforms the other in five instances: $m k 04$ and $m k 05$ for \mathcal{C}_{B} and \mathcal{C}_{C}, and $m k 07$ for \mathcal{C}_{C}.

Table 5 helps us to analyze the contribution of each search strategy to the reference front by considering only neighborhood structure N_{2} for each set of criteria. Note that the values in this table are average values over ten runs of the algorithm.

The results of Table 5 reveals that the contribution of T_{1} is equal to zero except for $m k 09$ with $\mathcal{C}_{A}, m k 02$ with \mathcal{C}_{B}, and $m k 06$ for \mathcal{C}_{A} and \mathcal{C}_{B}. When using T_{2}, the entire solutions of the reference front is obtained in 5 instances for \mathcal{C}_{A} ($m k 01, m k 02, m k 03, m k 04$ and $m k 08$) and 2 instances for \mathcal{C}_{C} ($m k 02$ and $m k 06$). However, the NFC of T_{2} is equal to zero in 11 instances (3 for $\mathcal{C}_{A}, 3$ for \mathcal{C}_{B} and 5 for \mathcal{C}_{C}). Besides, T_{2} has the largest number of non-dominated solutions in 2 instances ($m k 05$ and $m k 09$ for \mathcal{C}_{A}), and 2 instances ($m k 03$ and $m k 08$) for \mathcal{C}_{B}. The contribution of T_{2} for the \mathcal{C}_{C} is really low, which implies that this search strategy is not adequate for minimizing ΣC_{i}. Further, T_{3} and T_{4} seem to be the best search strategies and their results are comparable with a slight advantage to the former for the three sets of criteria. Indeed, T_{3} generates the highest contribution in 9 instances (1 for $\mathcal{C}_{A}, 4$ for \mathcal{C}_{B}, and 4 for \mathcal{C}_{C}) whereas T_{4} obtains the highest contribution in 7 instances (3 for \mathcal{C}_{B} and 4 for \mathcal{C}_{C}). Both T_{3} and T_{4} reach all the solutions of the reference front in 6 instances (4 for \mathcal{C}_{A} and 2 for \mathcal{C}_{C}). The largest number of non-dominated solutions is obtained by T_{3} or T_{4} in 73.33% of instances.

To extend the analysis of the four search strategies, Table 6 shows the WOP by considering again neighborhood structure N_{2}. It can be seen from WOP_{1-2} (column $1-2$), WOP_{1-3} (column $1-3$) and WOP_{1-4} (column $1-4$) that T_{1} is dominated by the
other search strategies except for instance $m k 06$ for \mathcal{C}_{A}. Strategy T_{2} dominates Strategies T_{3} and T_{4} in only two instances ($m k 03$ and $m k 09$) for \mathcal{C}_{A}, although T_{2} is better for \mathcal{C}_{A} regarding the metric NFC. The comparison between T_{3} and T_{4} does not show any obvious dominance since WOP_{3-4} is equal to zero in the largest number of instances (90% of instances for $\mathcal{C}_{A}, 50 \%$ of instances for \mathcal{C}_{B}, and 70% of instances for \mathcal{C}_{C}). T_{3} is better than T_{4} in 4 instances and worst in 5 instances.

It can be concluded from the analysis in this section that Strategy T_{1} is not suitable to optimize the three sets of criteria, T_{2} is effective for solving \mathcal{C}_{A} regarding the NFC but does not appear interesting when considering the WOP, and Strategies T_{3} and T_{4} are the most efficient when considering both NFC and WOP, in particular for sets \mathcal{C}_{B} and \mathcal{C}_{C}.

6.2. Analysis of the number of non-dominated solutions

Table 7 is used to analyze the number of non-dominated solutions considering three outputs: The minimum (Min), average ($A v$), and maximum (Max) numbers of non-dominated solutions when running ten times each set of criteria. For example, after executing the approach ten times with set \mathcal{C}_{A} for instance $m k 01$, the minimum number of non-dominated solutions was 1 , the maximum was 2 and on average 1.3 solutions were obtained. In an ideal situation, it is desired that the three outputs are equal.

The addition of criteria and the flexibility level affects the number of non-dominated solutions, but there is not a clear behavior in function of the flexibility level since different trends can be identified. More precisely, in instances with a large flexibility level (flex >3), one or two solutions solve the problem, i.e. in instance $m k 06$ (flex $=3.27$) only one solution is generated for the three sets of criteria. In instance $m k 02$ (flex $=4.10$), no more than two nondominated solutions for the three sets of criteria were obtained, and this is also the case for instance $m k 03$ when optimizing sets \mathcal{C}_{A}

Table 6
Analysis of WOP for N_{2}.

Inst	\mathcal{C}_{A}						$\mathcal{C}_{\text {B }}$						\mathcal{C}_{C}					
	1-2	1-3	1-4	2-3	2-4	3-4	1-2	1-3	1-4	2-3	2-4	3-4	1-2	1-3	1-4	2-3	2-4	3-4
mk01	-1	-1	-1	0	0	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	1
mk02	-1	-1	-1	0	0	0	1	0	0	-1	-1	0	-1	-1	-1	0	0	0
mk03	-1	-1	-1	1	1	0	-1	-1	-1	-1	0	1	-1	-1	-1	-1	-1	0
mk04	-1	-1	-1	0	0	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0
mk05	-1	0	0	-1	1	1	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0
mk06	1	1	1	0	0	0	-1	-1	-1	-1	-1	0	-1	-1	-1	0	0	0
mk07	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	0
mk08	-1	-1	-1	0	0	0	-1	-1	-1	0	-1	1	-1	-1	-1	-1	-1	-1
mk09	-1	-1	-1	1	1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	0
mk10	-1	-1	-1	-1	-1	0	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1	-1

Table 7
Analysis of the number of non-dominated solutions.

Inst	Size $m \times n$	flex	$\mathcal{C}_{\text {A }}$			$\mathcal{C}_{\text {B }}$			\mathcal{C}_{C}		
			Min	Av	Max	Min	$A v$	Max	Min	$A v$	Max
mk01	6×10	2.09	1	1.3	2	4	4.8	5	10	15.8	28
mk02	6×10	4.10	1	1.5	2	1	1.5	2	1	1.5	2
mk03	8×15	3.01	1	1.3	2	1	1.8	2	2	7.3	17
mk04	8×15	1.91	1	2.3	4	22	35.0	51	30	36.0	41
mk05	4×15	1.71	4	6.8	11	17	26.0	30	27	30.3	32
mk06	15×10	3.27	1	1	1	1	1	1	1	1	1
mk07	5×20	2.83	4	6.0	10	20	27.8	32	12	20.8	26
mk08	10×20	1.43	1	1.3	2	2	16.8	27	3	6.0	9
mk09	10×20	2.53	1	2.8	4	19	33.0	51	22	27.8	38
mk10	15×20	2.98	4	6.8	10	16	23.8	30	14	17.0	24

Table 8
Elite solutions for makespan.

Inst	BKV	$\mathcal{C}_{\text {A }}$			$\mathcal{C}_{\text {B }}$			\mathcal{C}_{C}		
		Min	Av	$\operatorname{Per}(\%)$	Min	$A v$	$\operatorname{Per}(\%)$	Min	$A v$	$\operatorname{Per}(\%)$
mk01	40	42	42.0	5.0	$\underline{40}$	40.0	0.0	$\underline{40}$	40.0	0.0
mk02	26	28	29.0	11.5	29	30.0	15.4	28	29.0	11.5
mk03	204	$\underline{204}$	204.8	0.4	$\underline{204}$	204.0	0.0	$\underline{204}$	204.0	0.0
mk04	60	67	68.8	14.6	$\underline{60}$	61.5	2.5	62	63.8	6.3
mk05	172	176	176.3	2.5	174	174.8	1.6	175	175.5	2.0
mk06	57	67	69.5	21.9	69	71.3	25	70	70.5	23.7
mk07	139	144	146.3	5.3	142	143.0	2.9	148	148.3	6.7
mk08	523	523	523.0	0.0	523	523.0	0.0	523	523.0	0.0
mk09	307	320	327.5	6.7	307	308.0	0.3	307	309.3	0.7
mk10	196	221	223.0	13.8	216	216.5	10.5	228	231.3	18.0

and \mathcal{C}_{B}. In instances with a small flexibility level (flex <2), the average number of non-dominated solutions increases when adding criteria, such as the case of instances $m k 04$ and $m k 05$. However, in instance $m k 08($ flex $=1.43)$, this average number increases from set \mathcal{C}_{A} to set \mathcal{C}_{B} (1.3 to 16.8) and decreases when ΣC_{i} is added (6.0). The same observation can be drawn for the maximum number of non-dominated solutions. The addition of criterion ΣU_{i} to \mathcal{C}_{A} increases the number of non-dominated solutions, and adding ΣC_{i} to \mathcal{C}_{B} increases the number of non-dominated solutions in 50% of instances, i.e. instances mk01, mk03, mk04, mk05 and mk09.

6.3. Analysis of elite solutions

In the previous analysis of the number of non-dominated solutions, the values of the criteria were not considered. Now, let us evaluate elite solutions to determine which set of criteria effectively leads to improving the convergence of the front. The first criterion considered is the makespan since it is the most studied in the literature and its quality can strongly explain the efficiency
of our approach. Then the other criteria are analyzed. Only neighborhood structure N_{2} is considered in the analysis.

6.3.1. Elite solutions for the makespan

The results for the makespan for each set of criteria are illustrated in Table 8, which details the minimum value Min, the average value $A v$ and the percentage of error $\operatorname{Per}(\%)$ generated by the average value with respect to the best known value $B K V$ (González et al., 2015) after running ten times our approach. The value of the makespan is underlined for instances where the best known value is obtained, and the minimum value is written in bold for the remaining instances.

Minimizing the makespan performs better when the approach optimizes Set \mathcal{C}_{B} since, in 6 instances, the best known value is obtained ($m k 01, m k 03, m k 04, m k 07, m k 08$ and $m k 09$). Fig. 3 shows the sequences of operations on machines for instance $m k 01$ when the makespan is minimized. Besides, Set \mathcal{C}_{B} has the best performance compared to Sets \mathcal{C}_{A} and \mathcal{C}_{C} in instances mk05 with an error of 1.6% and $m k 10$ in spite of the large error (9.9\%). In the

Fig. 3. Gantt diagram when minimizing makespan in instance mk01.

Table 9
Elite solutions for $T_{\max }$.

Inst	\mathcal{C}_{A}			$\mathcal{C}_{\text {B }}$			\mathcal{C}_{C}		
	Min	Av	$\operatorname{Per}(\%)$	Min	$A v$	$\operatorname{Per}(\%)$	Min	Av	$\operatorname{Per}(\%)$
mk01	10	11.5	15.0	9	9.0	0.0	9	9.0	0.0
mk02	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0
mk03	77	77.0	0.0	77	77.0	0.0	77	77.0	0.0
mk04	27	27.5	1.9	20	20.0	0.0	20	20.3	1.3
mk05	100	101.0	0.5	98	98.0	0.0	99	99.8	0.8
mk06	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0
mk07	73	78.0	6.8	70	70.3	0.4	76	77.3	1.6
mk08	310	310.0	0.0	310	310.0	0.0	310	310.0	0.0
mk09	137	143.0	4.4	123	127.3	3.5	123	125.5	2.0
mk10	38	42.8	12.5	30	31.3	4.2	50	50.5	1.0

Table 10
Elite solutions for ΣT_{i}.

Inst	$\mathcal{C}_{\text {A }}$			$\mathcal{C}_{\text {B }}$			\mathcal{C}_{C}		
	Min	Av	$\operatorname{Per}(\%)$	Min	Av	$\operatorname{Per}(\%)$	Min	$A v$	$\operatorname{Per}(\%)$
mk01	39	44.8	14.7	18	18.2	1.1	19	20.5	7.9
mk02	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0
mk03	523	576.3	10.2	275	278.0	1.1	321	325.8	1.5
mk04	170	198.0	16.5	108	112.4	4.1	125	130.5	4.4
mk05	1102	1179.3	7.0	788	811.2	2.9	854	916.0	7.3
mk06	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0
mk07	895	995.3	11.2	808	840.0	4.0	845	887.5	5.0
mk08	4786	4832.0	1.0	2932	3102.4	5.8	3387	3496.5	3.2
mk09	2060	2292.5	11.3	1048	1144.0	9.2	1270	1321.8	4.1
mk10	496	566.8	14.3	340	395.2	16.2	482	548.0	13.7

instances mk02 and mk06, the best known value is not obtained for any set and the error is quite large, e.g. 11.5% and 21.9% with Set \mathcal{C}_{A}. As illustrated in Section 6.2, few solutions are determined for these two instances that have large flexibility levels. This means that, to improve the convergence of the makespan, new strategies might be needed, in particular for instances with large flexibility levels.

6.3.2. Elite solutions for maximum tardiness and total tardiness

The performances of the approach with criteria $T_{\text {max }}$ and ΣT_{i} are shown in Tables 9 and 10. The meaning of columns is similar to Table 8, except for Column $\operatorname{Per}(\%)$ that corresponds to the percentage of error generated by the average and the minimum value. This is due to the fact that there is a lack of results in the literature on instances from Brandimarte (1993). However, $\operatorname{Per}(\%)$ gives insights on the homogeneity of our approach in generating good solutions in all ten runs.

It can be observed from Table 9 that optimizing Set \mathcal{C}_{B} provides the best results for $T_{\max }$ in all instances. This means that the addition of ΣU_{i} improves the convergence not only for the makespan but also for $T_{\text {max }}$. Besides, including ΣC_{i} does not affect the quality of $T_{\text {max }}$, since the minimum value is obtained in 7 instances. For the remaining 3 instances, the obtained $T_{\max }$ is very close to the best value in instance $m k 05$ (99 for set \mathcal{C}_{C} against 98 for set \mathcal{C}_{B}), and the only bad result is obtained for instance $m k 10$ where the gap is really large (30 for \mathcal{C}_{B} and 50 for \mathcal{C}_{C}). This table also shows that the approach is quite stable for $T_{\max }$ as the average value is always close to the minimum value for the three sets $\mathcal{C}_{A}, \mathcal{C}_{B}$ and \mathcal{C}_{C}.

For ΣT_{i}, optimizing Set \mathcal{C}_{B} provides much better results than when optimizing the two other sets, since not only the best solutions are always obtained for \mathcal{C}_{B}, but there is also a large gap between the value obtained with \mathcal{C}_{B} and the ones obtained with the two other sets (e.g. in instance mk08 where 2932 is obtained

Table 11
Elite solutions for ΣU_{i} and ΣC_{i}.

Inst	ΣU_{i}						ΣC_{i}		
	\mathcal{C}_{B}			\mathcal{C}_{C}			\mathcal{C}_{C}		
	Min	$A v$	$\operatorname{Per}(\%)$	Min	Av	$\operatorname{Per}(\%)$	Min	Av	$\operatorname{Per}(\%)$
mk01	3	3.0	0.0	3	3.0	0.0	272	274.0	0.7
mk02	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	237	241.0	1.7
mk03	5	5.8	15.0	6	6.5	8.3	2100	2159.0	2.8
mk04	6	6.3	4.2	7	7.3	3.6	653	656.0	0.5
mk05	12	12.5	4.2	12	12.8	6.3	1789	1851.0	3.5
mk06	$\underline{0}$	0.0	0.0	$\underline{0}$	0.0	0.0	657	662.0	0.7
mk07	15	15.5	3.3	15	15.0	0.0	2142	2177.0	1.6
mk08	16	17.0	6.3	17	17.8	4.4	7021	7130.0	1.5
mk09	13	14.8	13.5	15	15.8	5.0	4873	4919.0	0.9
mk10	11	12.3	11.4	14	14.3	1.8	3773	3835.0	1.6

Table 12
Results for maximum spread D and spacing $S P$ for \mathcal{C}_{B}.

Inst	AvNDS	D				SP			
		Min	Av	Max	σ	Min	Av	Max	σ
mk01	4.8	7.9	9.4	10.2	1.0	1.2	2.0	2.6	0.6
mk02	1.5	0.0	1.3	3.2	1.6	0.0	0.1	0.5	0.2
mk03	1.8	0.0	17.6	30.7	13.5	0.0	0.3	0.8	0.3
mk04	35.0	74.7	79.9	84.2	4.3	3.8	6.3	11.4	3.5
mk05	26.0	293.9	341.6	396.7	43.7	5.3	8.7	10.0	2.3
mk06	1.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0	0.0
mk07	27.8	154.1	243.9	311.1	65.9	8.3	13.1	16.0	3.6
mk08	16.8	98.1	482.5	728.9	289.0	0.5	18.0	29.8	12.4
mk09	33.0	410.5	567.4	710.8	136.1	13.7	18.5	21.7	3.4
mk10	23.8	251.1	321.6	384.1	60.6	19.3	23.7	32.2	5.9

with \mathcal{C}_{B} whereas 4786 and 3387 are obtained with \mathcal{C}_{A} and \mathcal{C}_{C}, respectively). Contrary to the case with $T_{\max }$, the value of $\operatorname{Per}(\%)$ is sometimes large such as in instance mk10 for the three sets. This can be explained by the fact that the criterion ΣT_{i} is more difficult to solve than $T_{\text {max }}$, which implies that additional strategies might be needed to make the approach more stable for ΣT_{i}.

6.3.3. Elite solutions for total number of tardy jobs and total completion times

ΣU_{i} is one of the most difficult criteria to minimize, since it is nonlinear. This is because U_{i} is equal to 1 as soon as the completion time of job J_{i} is strictly larger than its due date. The results obtained wih sets \mathcal{C}_{B} and \mathcal{C}_{C} are illustrated in Table 11. Note that \mathcal{C}_{B} still leads to the best results for all instances. Further, adding criterion ΣC_{i} to \mathcal{C}_{C} has a small effect on the value of ΣU_{i}, in particular for instances with 15 and 20 jobs, i.e. $m k 03, m k 04, m k 08, m k 09$ and $m k 10 . \operatorname{Per}(\%)$ is sometimes large for \mathcal{C}_{B}, which can be explained by the small values of ΣU_{i} such as in instance $m k 05$ in which Min $=5$ and $A v=5.8$ leading to $\operatorname{Per}=15.0$. For criterion ΣC_{i}, the only observation that can be drawn is that $\operatorname{Per}(\%)$ is quite small, which confirms the homogeneity of our approach for this criterion.

6.4. Analysis of the diversity

This section aims at validating that the front of Pareto is diverse in solutions, so that the decision maker can choose among representative solutions in different regions of the front. The evaluation of the diversity is only presented for set \mathcal{C}_{B}, because this is the set of criteria for which our approach found the best results. Table 12 includes the minimum value (Min), the average value ($A v$), the maximum value ($M a x$) and the standard deviation (σ) for each instance. Column AvNDS recalls the average number of non-dominated solutions of Table 7. For example, for instance $m k 01$, on average 4.8 non-dominated solutions are generated (Column $A v N D S$) and, when considering the maximum spread D, the
minimum (resp. maximum) distance between extreme solutions is 7.9 (resp. 10.2), the average distance is 9.4 and $\sigma=1.0$. Besides, for the average distance between nearest solutions (spacing $S P$), the minimum (resp. maximum) distance is 1.2 (resp. 2.6) with an average of 2.0 and $\sigma=0.6$. If an ideal situation is taken as reference, the tendency of σ is to be equal to zero.

When analyzing the spacing $S P$, the ideal performance corresponds to small values of $S P$ and σ. Looking at Table 12, it is possible to infer that, in the instances with high flexibility mk02, mk03 and $m k 06$ (i.e. flex>3), the spacing values are very close to zero, which is mainly explained by the results of Table 7 in which only there are very few solutions in the set of non-dominated solutions. Further, it is possible to infer two other trends. The first trend is that spacing seems to increase with the size of the problem, in particular for instances $m k 07, m k 09$ and $m k 10$ with 20 jobs. The second trend is that the number of non-dominated solutions does not affect the spacing since, even though there are large values for AvNDS in instances $m k 04, m k 05$ and $m k 08$, the spacing is small (3.8, 5.3 and 0.5). Moreover, for instance $m k 04, A v N D S=35.0$ and the average spacing is 6.3 while, in instance $m k 10$ with a lower number of non-dominated solutions ($A v N D S=23.8$), the average spacing is 23.7.

Concerning the maximum spread D, an efficient value corresponds to a large average and a low σ. When looking at Table 12 , it is possible to infer that the maximum spread is large for instances with medium flexibility $(2<$ flex $<3)$ such as instances mk07, mk09 and $m k 10$. However, the size of the problem, especially the number of jobs, seems to not influence the maximum spread as the values (i.e. Min, $A v, M a x)$ obtained in instance $m k 05$ with 15 jobs are larger than the corresponding values in instances mk07, mk08 and $m k 10$. It is also possible to infer, by observing for example instances mk07 and mk10, that there is no trend between the number of non-dominated solutions and the maximum spread. These observed trends of diversity can be considered as additional arguments to confirm the performance of our approach.

Table 13
Analysis of $H V$ and MID for \mathcal{C}_{B}.

Inst	Size$m \times n$	flex	HyperVolume (HV)					Mean Ideal Distance (MID)				
			Min	Av	Max	$\operatorname{Per}(\%)$	σ	Min	Av	Max	$\operatorname{Per}(\%)$	σ
mk01	6×10	2.09	0.80	0.82	0.85	3.4	0.01	43.22	43.95	45.29	1.69	0.49
mk02	6×10	4.10	0.95	0.98	1.00	1.3	0.02	29.00	30.21	31.00	4.19	0.65
mk03	8×15	3.01	0.75	0.77	0.80	3.7	0.01	219.02	224.34	231.47	2.43	4.60
mk04	8×15	1.91	0.65	0.67	0.69	3.2	0.01	73.86	75.41	77.68	2.10	1.15
mk05	4×15	1.71	0.50	0.51	0.52	2.3	0.00	218.26	221.08	227.37	1.29	2.38
mk06	15×10	3.27	0.99	0.99	0.99	0.0	0.00	69.00	71.33	73.00	3.38	1.50
mk07	5×20	2.83	0.53	0.54	0.55	2.0	0.01	173.05	176.19	182.29	1.82	3.01
mk08	10×20	1.43	0.47	0.48	0.49	2.2	0.01	640.25	652.11	662.71	1.85	6.27
mk09	10×20	2.53	0.54	0.55	0.57	2.8	0.01	364.68	376.42	384.45	3.22	5.35
mk10	15×20	2.98	0.55	0.58	0.60	3.4	0.01	230.97	238.25	246.64	3.15	4.72

Table 14
Comparison of GMD and MODE.

Inst	GMD		MODE		SCM ${ }_{1}$	SCM ${ }_{2}$	WOP
	NDS	Solutions	NDS	Solutions			
dpp02a	8	$(2285,15141)(2573,14383)$	11	(2412, 16073.65) (2471, 15602.65)	1.00	0.00	1
		$(2290,14716)(2579,14381)$		$(2413,15994.65)(2481,15478.65)$			
		$(2313,14469)(2582,14344)$		$(2433,15857.65)(2513,15452.65)$			
		$(2556,14457)(2583,14313)$		$(2435,15754.65)(3195,15403.65)$			
				$(2456,15679.65)(3352,15339.65)$			
				$(2463,15663.65)$			
dpp09a	12	$(2146,21689)(2239,19839)$	14	(2168, 21022.3) (2196, 20098.3)	0.71	0.50	0
		$(2148,21337)(2280,19692)$		(2170, 20909.3) $(2198,20088.3)$			
		$(2150,20253)(2284,19659)$		(2172, 20734.3) (2200, 20068.3)			
		$(2155,20244)(2288,19637)$		(2173, 20691.3) (2201, 20015.3)			
		$(2176,19953)(2290,19571)$		(2174, 20228.3) (2204, 19650.3)			
		$(2180,19951)(2306,19474)$		(2191, 20101.3) (2207, 19600.3)			
				(2193, 20099.3) (2220, 19430.3)			
dpp11a	17	$(2155,20829)(2194,20070)$	9	$(2234,21190.61)(2330,20385.61)$	1.00	0.00	1
		$(2172,20821)(2195,20033)$		$(2238,21109.61)(2866,20301.61)$			
		$(2176,20503)(2196,19948)$		(2273, 21073.61) (2951, 20296.61)			
		$(2177,20298)(2203,19935)$		$(2282,20537.61)(3152,20226.61)$			
		$(2178,20265)(2332,19894)$		(2307, 20496.61)			
		$(2184,20246)(2345,19886)$					
		$(2185,20181)(2459,19489)$					
		$(2186,20137)(2461,19486)$					
		$(2193,20086)$					
dpp16a	10	$(2389,31441)(2545,30303)$	11	(2582, 33004.83) (2643, 31674.83)	1.00	0.00	1
		$(2392,30779)(2597,30180)$		$(2584,32930.83)(2644,31577.83)$			
		$(2399,30760)(2607,30177)$		(2607, 32909.83) (2652, 31294.83)			
		$(2409,30360)(2607,30127)$		$(2610,32426.83)(2657,31187.83)$			
		$(2435,30313)(2865,30020)$		$(2636,32159.83)(3552,31130.83)$			
				(2642, 32009.83)			
dpp18a	7	(2237, 29053) (2298, 28626)	16	$(2227,26698.92)(2254,25651.92)$	0.00	1.00	-1
		$(2238,29033)(2321,28563)$		$(2229,26431.92)(2256,25447.92)$			
		$(2246,28924)(2327,28530)$		(2233, 26428.92) $(2276,25307.92)$			
		(2280, 28722)		$(2234,26363.92)(2277,25190.92)$			
				$(2237,26354.92)(2278,25123.92)$			
				$(2238,26135.92)(2280,24991.92)$			
				$(2251,26097.92)(2282,24789.92)$			
				$(2253,25754.92)(2789,24078.92)$			
mk04	6	$(61,479)(64,455)$	6	$(64,445.46)(67,390.46)$	0	0.50	-1
		$(62,464)(73,438)$		$(65,439.46)(69,388.46)$			
		$(63,457)(75,429)$		$(66,401.46)(74,386.46)$			
mk07	5	$(144,1661)(184,1618)$	7	(143, 1789.49) (150, 1424.49)	0	1.00	-1
		$(147,1660)(198,1599)$		$(144,1492.49)(152,1413.49)$			
		$(150,1629)$		(146, 1476.49) ($154,1341.18$)			
mk09			7	(147, 1465.49)	0	1.00	
	7	$(307,3498)(328,3342)$		$(307,3216.1)(403,3166.1)$			-1
		$(311,3454)(332,3338)$		(309, 3206.1) (409, 3084.1)			
		$(325,3386)(334,3295)$		$(311,3191.1)(418,2993.1)$			
		$(326,3347)$		$(315,3190.1)$			

6.5. Analysis of HyperVolume (HV) and Mean Ideal Distance (MID)

In this section, we expand the analysis for \mathcal{C}_{B} using the $H V$ and MID measures, which must be maximized and minimized, respectively. Table 13 gives the minimum value (Min), the average value ($A v$) and the maximum value (Max) of these measures for
each instance after running ten times our approach. The value $\operatorname{Per}(\%)=(A v-M i n) / M i n$ for MID and $\operatorname{Per}(\%)=(M a x-A v) / M a x$ for $H V$. To calculate $H V$, the coordinates of the reference point is fixed to 10,000 for $C_{\text {max }}$ and $T_{\max }$, to 100,000 for ΣT_{i} and to two times the number of jobs for ΣU_{i}. For example, the coordinates of the reference point are (10,$000 ; 10,000 ; 100,000 ; 20$) for instances

Fig. 4. Set of non-dominated solutions for instance $d p p 02 a$ and set \mathcal{C}_{A}.
with 10 jobs. To improve the scale of distance when calculating MID, the criterion ΣT_{i} of each solution has been divided by the number of jobs.

It is very difficult to assess the quality of our approach due to the lack of previous values for $H V$ and MID for the regular criteria studied in this paper. However, we can observe that the values of HV tend to 100% for instances $m k 02$ and $m k 06$ with few solutions and large flexibility. Our approach is stable since σ is closer to zero for all instances and $\operatorname{Per}(\%)$ is lower than 3.4%. The analysis of MID also reveals uniformity in the results, which is explained by small values of σ and $\operatorname{Per}(\%)$ except for two instances: $m k 08(\sigma=6.27)$ and $m k 09$ ($\sigma=5.35$), which could be explained by the number of jobs.

6.6. Comparison with previous approaches

The performance of our approach is compared against the Multi-Objective Differential Evolution algorithm (MODE) proposed in Wisittipanich and Kachitvichyanukul (2014) to minimize the makespan and the total tardiness. In MODE, the Pareto front was obtained by evaluating five search strategies (MODE-ms1, MODE-ms2, MODE-ms3, MODE-ms4 and MODE-ms5) and the MOPSO algorithm proposed in Nguyen and Kachitvichyanukul (2010). Note that the solutions of the Pareto front are mainly obtained from those determined by MODE-ms1, MODE-ms2, MODE-ms3 and MODE-ms5. The comparison is based on a set of eight problem instances used in Wisittipanich and Kachitvichyanukul (2014), which includes five problem instances from Dauzère-Pérès et al. (1998) (dpp02a, dpp09a, dpp11a, dpp16a and dpp18a) and three problem instances from Brandimarte (1993) ($m k 04, m k 07$ and $m k 09$). The due dates of jobs were determined using the expression provided in He et al. (1993). Fig. 4 shows the non-dominated solutions obtained by N_{1} and N_{2} for instance $d p p 02 a$ with set \mathcal{C}_{A}.

To compare the results of GMD with MODE, the Weak OutPerformance metric $\left(\mathrm{WOP}_{x, 0}\right)$ and the set coverage metric $\left(S C M_{x, 0}\right)$ are analyzed. WOP $_{x, 0}$ evaluates the dominance between two sets of non-dominated solutions s_{x} and s_{0}. $S C M_{x, o}$ is the ratio of solutions of s_{o} weakly dominated by solutions of s_{X} (Zitzler, 1999).

Table 14 provides for both GMD and MODE the number of non-dominated solutions in column NDS, the Pareto set in column Solutions, the set coverage metric in column $S^{2} C M_{1}$ and $S C M_{2}$, and the Weak OutPerformance metric in column WOP. For example in instance dpp09a, our approach finds 12 non-dominated solutions when MODE finds 14 non-dominated solutions, and 71%

Fig. 5. Comparison of GMD and MODE using the instance dpp02a.
(10 of 14) of the solutions of MODE are weakly dominated by at least one solution of $G M D$, and $W O P=0$ means that there are weakly dominated solutions in both sets of non-dominated solutions. Table 14 also shows that the performance of GMD and MODE are comparable. Our approach is better for three instances (dpp02a, $d p p 11 a$ and $d p p 16 a$, since $W O P$ and $S C M_{1}$ are equal to 1 and $S C M_{2}$ is equal to 0), and $M O D E$ is better for three instances ($d p p 18 a$, $m k 07$ and $m k 09$). Fig. 5 depicts the sets of non-dominated solutions obtained by GMD and MODE for instance dpp02a. Note that GMD was ran with criteria $C_{\max }$ and ΣT_{i}.

7. Conclusions

In this paper, we proposed a general local search approach to determine Pareto fronts for the Multi-Objective Flexible Jobshop Scheduling Problem (MOFJSP) for any combination of regular scheduling criteria. Regular criteria correspond to various customer service objectives, which are important in a competitive environment. The local search approach is based on two neighborhood structures (N_{1} and N_{2}), that consist in moving a critical operation in the conjunctive graph, sufficient conditions to determine the feasibility of a move without transforming the graph, and an estimation function to select the best move. A hierarchical test is proposed to quickly update the set of non-dominated solutions during the search, and four search strategies (T_{1}, T_{2}, T_{3} and T_{4}) have been proposed.

Three sets of criteria to optimize are considered in our experiments. The experiments showed that N_{2} is the dominant neighborhood structure and generates the largest number of nondominated solutions. Besides, a combination of Strategies T_{3} and T_{4} is sufficient to solve the MOFJSP with all sets of criteria.

In future research, we would like to study how our approach can be improved for specific regular criteria. New dedicated properties could be used to accelerate the search or avoid being stuck in local optima for criteria such as ΣT_{i} or ΣU_{i}, that are more complex to handle. Another research avenue is the use of sophisticated metaheuristics that could help to better diversify the search process to reach promising regions. We also intend to work on extending our approach to search for more diverse solutions by better considering different types of criteria.

Acknowledgements

This research is partially supported by the government of Colombia in the program of fellowships Colfuturo, the embassy of

France in Colombia, and by the project "Formulation and validation of heuristics for optimizing the customer service in flexible configurations in the Tolima region", identified with the code 17-465-INT, which is financed by the Universidad de Ibagué (Colombia) and with the advisory of École des Mines de Saint Etienne (France) and Qassim University (Saudi Arabia).

References

Ahmadi, E., Zandieh, M., Farrokh, M., Emami, S.M., 2016. A multi objective optimization approach for flexible job shop scheduling problem under random machine breakdown by evolutionary algorithms. Comput. Oper. Res. 73, 56-66.
Amjad, M., Butt, S., Kousar, R., Ahmad, R., Hassam, M., Faping, Z., Anjum, N., Asgher, U., 2018. Recent research trends in genetic algorithm based flexible job shop scheduling problems. Math. Prob. Eng. 2018, 1-32.
Bagheri, A., Zandieh, M., 2011. Bi-criteria flexible job-shop scheduling with sequence-dependent setup times-variable neighborhood search approach. J. Manuf. Syst. 30 (1), 8-15. doi:10.1016/j.jmsy.2011.02.004.
Brandimarte, P., 1993. Routing and scheduling in a flexible job shop by tabu search. Ann. Oper. Res. 41 (3), 157-183. doi:10.1007/BF02023073.
Chaudhry, I.A., Khan, A.A., 2016. A research survey: review of flexible job shop scheduling techniques. Int. Trans. Oper. Res. 23 (3), 551-591. doi:10.1111/itor. 12199.

Chiang, T.-C., Lin, H.-J., 2013. A simple and effective evolutionary algorithm for multiobjective flexible job shop scheduling. Int. J. Prod. Econ. 141 (1), 87-98. doi:10.1016/j.ijpe.2012.03.034.
Chun, W., Zhicheng, J., Yan, W., 2013. A novel memetic algorithm based on decomposition for multiobjective flexible job shop scheduling problem. Math. Prob. Eng. 2017, 1-20. doi:10.1155/2017/2857564. Meta-heuristics for manufacturing scheduling and logistics problems
Dauzère-Pérès, S., Paulli, J., 1997. An integrated approach for modeling and solving the general multiprocessor job-shop scheduling problem using tabu search. Ann. Oper. Res. 70, 281-306. doi:10.1023/A:1018930406487.
Dauzère-Pérès, S., Roux, W., Lasserre, J., 1998. Multi-resource shop scheduling with resource flexibility. Eur. J. Oper. Res. 107 (2), 289-305.
Deb, K., et al., 2001. Multi-Objective Optimization Using Evolutionary Algorithms, vol. 2012. John Wiley and Sons Chichester.
Gao, J., Gen, M., Sun, L., Zhao, X., 2007. A hybrid of genetic algorithm and bottleneck shifting for multiobjective flexible job shop scheduling problems. Comput. Ind. Eng. 53 (1), 149-162. doi:10.1016/j.cie.2007.04.010.
Gao, K., Suganthan, P., Pan, Q., Chua, T., Cai, T., Chong, C., 2014. Discrete harmony search algorithm for flexible job shop scheduling problem with multiple objectives. J. Intell. Manuf. 1-12.
García-León, A., Dauzère-Pérès, S., Mati, Y., 2015. Minimizing regular criteria in the flexible job job-shop scheduling problem. In: 7th Multidisciplinary International Scheduling Conference: Theory and Applications, pp. 443-456.
Genova, K., Kirilov, L., Guliashki, V., 2015. A survey of solving approaches for multiple objective flexible job shop scheduling problems. Cybern. Inf. Technol. 15 (2), 3-22. doi:10.1515/cait-2015-0025.
González, M.A., Vela, C.R., Varela, R., 2015. Scatter search with path relinking for the flexible job shop scheduling problem. Eur. J. Oper. Res. 245 (1), 35-45. doi:10. 1016/j.ejor.2015.02.052.
He, Z., Yang, T., Deal, D., 1993. A multiple-pass heuristic rule for job shop scheduling with due dates. Int. J. Prod. Res. 31 (11), 2677-2692.
Jia, S., Hu, Z.-H., 2014. Path-relinking tabu search for the multi-objective flexible job shop scheduling problem. Comput. Oper. Res. 47, 11-26. doi:10.1016/j.cor.2014. 01.010.

Johnzen, C., Dauzère-Pérès, S., Vialletelle, P., 2011. Flexibility measures for qualification management in wafer fabs. Prod. Plann. Control 22 (1), 81-90.
Lei, D., Li, M., Wang, L., 2018. A two-phase meta-heuristic for multiobjective flexible job shop scheduling problem with total energy consumption threshold. IEEE Trans. Cybern. 1-13.
Li, J.J.W.M.L., 2011. Hybrid genetic algorithm for flexible job-shop scheduling with multi-objective. J. Inf. Comput. Sci. 8 (11), 2197.
Li, J.-Q., Pan, Q.-K., Gao, K.-Z., 2011. Pareto-based discrete artificial bee colony algorithm for multi-objective flexible job shop scheduling problems. Int. J. Adv. Manuf.Technol. 55 (9), 1159-1169. doi:10.1007/s00170-010-3140-2.
Li, J.-Q., Pan, Q.-K., Tasgetiren, M.F., 2014. A discrete artificial bee colony algorithm for the multi-objective flexible job-shop scheduling problem with maintenance activities. Appl. Math. Modell. 38 (3), 1111-1132. doi:10.1016/j.apm.2013.07.038.
Liu, H., Abraham, A., Choi, O., Moon, S.H., 2006. Variable neighborhood particle swarm optimization for multi-objective flexible job-shop scheduling problems. In: Simulated Evolution and Learning. Springer, pp. 197-204.
Lu, C., Li, X., Gao, L., Liao, W., Yi, J., 2017. An effective multi-objective discrete virus optimization algorithm for flexible job-shop scheduling problem with controllable processing times. Comput. Ind. Eng. 104, 156-174.
Mati, Y., Dauzère-Pérès, S., Lahlou, C., 2011. A general approach for optimizing regular criteria in the job-shop scheduling problem. Eur. J. Oper. Res. 212 (1), 33-42. doi:10.1016/j.ejor.2011.01.046.

Mokhtari, H., Hasani, A., 2017. An energy-efficient multi-objective optimization for flexible job-shop scheduling problem. Comput. Chem. Eng. 104, 339-352.
Mousakhani, M., 2013. Sequence-dependent setup time flexible job shop scheduling problem to minimise total tardiness. Int. J. Prod. Res. 51 (12), 3476-3487. doi:10. 1080/00207543.2012.746480.
Nguyen, S., Kachitvichyanukul, V., 2010. Movement strategies for multi-objective particle swarm optimization. Int. J. Appl. Metaheuristic Comput. 1 (3), 59-79.
Nie, L., Gao, L., Li, P., Li, X., 2013. A gep-based reactive scheduling policies constructing approach for dynamic flexible job shop scheduling problem with job release dates. J. Intell. Manuf. 24 (4), 763-774.
Pérez, M.A.F., Raupp, F.M.P., 2016. A newton-based heuristic algorithm for multiobjective flexible job-shop scheduling problem. J. Intell. Manuf. 27 (2), 409-416. doi:10.1007/s10845-014-0872-0.
Rahmati, S.H.A., Zandieh, M., Yazdani, M., 2013. Developing two multi-objective evolutionary algorithms for the multi-objective flexible job shop scheduling problem. Int. J. Adv. Manuf.Technol. 64 (5), 915-932. doi:10.1007/ s00170-012-4051-1.
Sadrzadeh, A., 2013. Development of both the ais and pso for solving the flexible job shop scheduling problem. Arab. J. Sci. Eng. 38 (12), 3593-3604.
Schott, J.R., 1995. Fault Tolerant Design Using Single and Multicriteria Genetic Algorithm Optimization.. Technical Report. ir Force Inst of Tech Wright-Patterson AFB OH .
Shao, X., Liu, W., Liu, Q., Zhang, C., 2013. Hybrid discrete particle swarm optimization for multi-objective flexible job-shop scheduling problem. Int. J. Adv. Manuf.Technol. 67 (9), 2885-2901. doi:10.1007/s00170-012-4701-3.
Shen, X.-N., Han, Y., Fu, J.-Z., 2017. Robustness measures and robust scheduling for multi-objective stochastic flexible job shop scheduling problems. Soft Comput. 21 (21), 6531-6554.
Shi-Jin, W., Bing-Hai, Z., Li-Feng, X., 2008. A filtered-beam-search-based heuristic algorithm for flexible job-shop scheduling problem. Int. J. Prod. Res. 46 (11), 3027-3058. doi:10.1080/00207540600988105.
Singh, M.R., Singh, M., Mahapatra, S.S., Jagadev, N., 2016. Particle swarm optimization algorithm embedded with maximum deviation theory for solving multi--objective flexible job shop scheduling problem. Int. J. Adv. Manuf.Technol. 85 (9), 2353-2366.

Tay, J.C., Ho, N.B., 2008. Evolving dispatching rules using genetic programming for solving multi-objective flexible job-shop problems. Comput. Ind. Eng. 54 (3), 453-473.
Trkylmaz, A., Bulkan, S., 2015. A hybrid algorithm for total tardiness minimisation in flexible job shop: genetic algorithm with parallel vns execution. Int. J. Prod. Res. 53 (6), 1832-1848. doi:10.1080/00207543.2014.962113.
Vilcot, G., Billaut, J.-C., 2011. A tabu search algorithm for solving a multicriteria flexible job shop scheduling problem. Int. J. Prod. Res. 49 (23), 6963-6980.
Wang, L., Wang, S., Liu, M., 2013. A pareto-based estimation of distribution algorithm for the multi-objective flexible job-shop scheduling problem. Int. J. Prod. Res. 51 (12), 3574-3592. doi:10.1080/00207543.2012.752588.
Wisittipanich, W., Kachitvichyanukul, V., 2014. A pareto-archived differential evolution algorithm for multi-objective flexible job shop scheduling problems. Logist. Oper. Supply Chain Manag.Sustain. 325-339.
Xia, W., Wu, Z., 2005. An effective hybrid optimization approach for multi-objective flexible job-shop scheduling problems. Comput. Ind. Eng. 48 (2), 409-425. doi:10.1016/j.cie.2005.01.018.
Xing, L.-N., Chen, Y.-W., Yang, K.-W., 2009. An efficient search method for multiobjective flexible job shop scheduling problems. J. Intell. Manuf. 20 (3), 283293. doi:10.1007/s10845-008-0216-z.

Xiong, J., Tan, X., Yang, K.-w., Xing, L.-n., Chen, Y.-w., 2012. A hybrid multiobjective evolutionary approach for flexible job-shop scheduling problems. Math. Prob. Eng. 2012, 1-27. doi:10.1155/2012/478981.
Xiong, J., ning Xing, L., wu Chen, Y., 2013. Robust scheduling for multi-objective flexible job-shop problems with random machine breakdowns. Int. J. Prod. Econ. 141 (1), 112-126. Meta-heuristics for manufacturing scheduling and logistics problems
Yuan, Y., Xu, H., 2015. Multiobjective flexible job shop scheduling using memetic algorithms. IEEE Trans. Autom. Sci.Eng. 12 (1), 336-353. doi:10.1109/TASE.2013. 2274517.

Zhang, G., Shao, X., Li, P., Gao, L., 2009. An effective hybrid particle swarm optimization algorithm for multi-objective flexible job-shop scheduling problem. Comput. Ind. Eng. 56 (4), 1309-1318. doi:10.1016/j.cie.2008.07.021.
Zhang, R., Wu, C., 2011. A simulated annealing algorithm based on block properties for the job shop scheduling problem with total weighted tardinessobjective. Comput. Oper. Res. 38 (5), 854-867. doi:10.1016/j.cor.2010.09.014.
Zitzler, E., 1999. Evolutionary Algorithms for Multiobjective Optimization: Methods and Applications. ETH Zurich, Switzerland Ph.D. thesis.
Zitzler, E., Brockhoff, D., Thiele, L., 2007. The hypervolume indicator revisited: on the design of Pareto-compliant indicators via weighted integration. In: Evolutionary multi-criterion optimization. Springer, pp. 862-876.
Zitzler, E., Thiele, L., Laumanns, M., Fonseca, C.M., Da Fonseca, V.G., 2003. Performance assessment of multiobjective optimizers: an analysis and review. IEEE Trans. Evol. Comput. 7 (2), 117-132.

[^0]: * Corresponding author at: Facultad de Ingeniería, Programa de Ingeniería Industrial, Universidad de Ibagué, Ibagué, Colombia.

 E-mail addresses: andres.garcia@unibague.edu.co (A.A. García-León), dauzereperes@emse.fr (S. Dauzère-Pérès), matie@qu.edu.sa (Y. Mati).

