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Abstract

Over the last few decades, many robust statistics have been proposed in order to assess
the fit of structural equation models. To date, however, no clear recommendations have
emerged as to which test statistic performs best. It is likely that no single statistic will
universally outperform all contenders across all conditions of data, sample size, and model
characteristics. In a real-world situation, a researcher must choose which statistic to report.
We propose a bootstrap selection mechanism that identifies the test statistic that exhibits
the best performance under the given data and model conditions among any set of
candidates. This mechanism eliminates the ambiguity of the current practice and offers a
wide array of test statistics available for reporting. In a Monte Carlo study, the bootstrap
selector demonstrated promising performance in controlling Type I errors compared to
current test statistics.

Keywords: goodness-of-fit, robustness, structural equation modeling, bootstrapping
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Testing Model Fit by Bootstrap Selection

Assessment of overall model fit is a central concern in structural equation modeling
(SEM). Using a test statistic derived from the estimated model, researchers seek to
evaluate whether the model exhibits good fit to the data. Such test statistics are also used
to compare the fit of nested models, for example, in invariance testing of factor models. A
general framework of model testing is based on the minimum discrepancy function used
during parameter estimation (Browne, 1982). After estimating the model parameters
using, for example, the method of normal theory maximum likelihood (ML), model fit is
assessed by multiplying the minimum fit function value by the sample size. The resulting
test statistic Ty, converges in distribution to a weighted sum of independent chi-square
variables, each with one degree of freedom. Under ideal conditions (e.g., underlying
normally distributed data in the case of ML estimation), each weight is equal to one, and
the limiting distribution is a chi-square distribution. In a practical situation, however, the
chosen discrepancy function will most likely be misspecified with respect to the underlying
data, and the corresponding test statistic will not follow a chi-square distribution. Even in
situations such as ML estimation in conjunction with underlying normality, where the test
statistic asymptotically happens to follow a true chi-square distribution, the sample size
will often be small or moderate, so that the test statistic will have a finite sampling
distribution that does not match the nominal chi-square distribution.

Many attempts have been made to approximate the true asymptotic distribution
using a more refined approximation than a nominal chi-square distribution. The first such
approximation was proposed by Satorra and Bentler (1988), who replaced the weights in
the limiting distribution by their mean value, which resulted in a mean-scaled statistic Tsg.
Over the last decade, many more approximations have been suggested and evaluated using
Monte Carlo methods. Asparouhov and Muthén (2010) proposed a scaled-and-shifted
statistic, which we refer to as Tss, whereas Wu and Lin (2016) introduced a scaled F test,

here denoted by Tcr. Recently, Foldnes and Grgnneberg (2017) proposed eigenvalue block
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averaging (EBA), wherein the weights are estimated and replaced by mean values in blocks
of increasing order. In the present study, we include two EBA test statistics: the full
eigenvalue approximation Tggar and the two-block approximation Tggaz. See Wu (2017)

for a discussion and evaluation of other test statistics.

We remark that these statistics are based on an asymptotic theory and thus may
underperform when the sampling distribution of the test statistic strays from the
asymptotic distribution. For instance, in the ideal case of multivariate normal data, the
normal-theory ML test statistic may produce inflated Type I error rates in small sample
sizes. For further discussion on this issue, see Foldnes and Grgnneberg (2017, p. 110). To
evaluate the performance of the numerous approximations to test statistics, we must rely
on Monte Carlo studies. Despite the large number of such studies, no clear advice on which
test statistics to use has emerged. It is likely that no single statistic will universally
outperform all contenders as seen in recent studies by Wu and Lin (2016), Wu (2017), and
Foldnes and Grgnneberg (2017).

Researchers frequently must evaluate model fit based on moderately-sized data that
depart from multivariate normality. Given the large number of proposed test statistics
designed to handle such situations, researchers face the challenge of choosing a statistic
that serves as a basis for model-fit evaluation in terms of a p-value for correct model
specification and as a basis for calculating fit indices. The goal of the present paper is to
present and to evaluate a bootstrap-based selection procedure that will identify the most
reliable test statistic for the given data and model. An additional benefit of this selector is
its objectivity, which eliminates any potential temptation for researchers to report test

statistics that favor their proposed model.

In the next section, we formally present the selection algorithm. Next, we illustrate
the selector using a real-world example. In the section that follows, we report on the

performance of the selector in a Monte Carlo study.

The final sections contain discussion and concluding remarks. A theoretical analysis
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of the algorithm may be found in the Appendix.

The Bootstrap Selector

In the present article, we introduce a selection mechanism that will select a test
statistic and its associated p-value from a set of potential test statistics. The pool of
available test statistics should include current best-performing test statistics for SEM. The
aim of our proposed method is to select the most well-behaved test statistic for any given
situation among an array of available test statistics. As a welcome side effect, the method
eliminates the need for researchers to select a test statistic based on assumptions
alone—thereby promoting objectivity. Our approach is not based on approximating a
limiting distribution but on resampling techniques.

Simply stated, in a given sample, we resample with replacement to obtain bootstrap
samples. Each bootstrap sample is drawn from a transformed sample where the model fits
perfectly. This procedure was suggested by Beran and Srivastava (1985) and consequently
used by Bollen and Stine (1992) to produce the Bollen—Stine bootstrap test (here denoted
by BOST). Under correct model specification, the ideal test statistic will produce p-values
that are uniformly distributed on the unit interval. This guarantees that Type I error rates
exactly match any chosen level of significance. For each of the available test statistics, we
calculate the associated p-value. Next, we repeat this procedure over many bootstrap
samples, which enables us to approximate the distribution of the p-values for each method.
The test statistic with the p-values that most closely follow a uniform distribution is
chosen for model fit evaluation. In other words, we choose among the available test
statistics the one that best emulates an ideal test statistic. Our selector is inspired by the
nonparametric focused information criterion of Jullum and Hjort (2017).

Below we provide a more detailed description of our procedure. Let p,, denote the
p-value associated with a test of correct model specification based on an available test

statistic T;, with a sample size n. We remark that p, is a statistic in the same manner that
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T, is a statistic: It has a distribution under random sampling from the underlying
population. We wish to select the test statistic for which the sampling distribution of p,
most closely follows the uniform distribution under the null hypothesis. We formalize this
by estimating the supremum distance between the cumulative distribution function of p,
under the null hypothesis and the uniform distribution. For each test statistic, we

approximate

Dy = sup |Pp,(pn < x) — 2| (1)
0<z<1

and select the statistic with the smallest value of D,,. The probability Py, is the
probability measure induced by the data-generating distribution of ¥(6°)/2%71/2X;  where
¥ is the true covariance matrix and »(6°) is the population model-implied covariance
matrix evaluated at the population parameters 6y that minimizes the discrepancy function.
Under Py,, we know that p-values should be uniformly distributed, which necessitates
studying the transformed sample (under which Hj is true) instead of the original sample.

The approximation to D,, is accomplished via the nonparametric bootstrap, based on
the transformed sample, X; = E(é)l/ZS;l/in fori =1,2,...,n, as described in Algorithm
1, which chooses among L available test statistics. Here, S,, and E(é) denote the sample
and model-implied covariance matrices, respectively. The supremum in Algorithm 1 is the
Kolmogorov—Smirnov test statistic, which is implemented in most statistical software
packages.

We use the empirical distribution function P, of (X;) as an approximation to Py,
and approximate this probability distribution through resampling. Next, we plug this
approximation into D,, to generate D,, for each p-value approximation. The selector may
be used among any test statistics available for hypothesis testing in moment structures.
Also, note that D,, is one of many possible success criteria. A researcher could also
investigate the mean square error of the approximation or the distance from Py, (p, < x)
to  at a particular point x (e.g., z = .05).

In the Appendix, we provide an analytical overview of the proposed algorithm and
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Algorithm 1 Selection algorithm

1: procedure SELECT(sample, B)
2: X; = E(é)l/ZSglﬂXi fori=1,2,...,n.
3: for k< 1,...,B do

4: boot.sample < Draw with replacement from transformed sample X
5: forle1,...,L do

6: Dn,i < p-value based on boot.sample and test statistic 7, ;

7: end for

8: end for

9: forlel,...,L do

3 -1 B ~
10: Dp i <= supgcpey B s H{png < 2} — 2
11: end for
12: return argmin, ;. lA)an,l

13: end procedure

demonstrate that if there is a single consistent test statistic among the candidates, the
selector will choose the statistic with probability approaching one as sample size increases.
This means that the selector test is consistent as long as an asymptotically correct test
statistic is included among the candidates. The asymptotic distribution free test developed
by Browne (1984) or the full eigenvalue approximation (EBAF) proposed by Foldnes and
Grgnneberg (2017) are examples of consistent test statistics. We recommend including the
EBAF among the available test statistics because it can work with any minimum

discrepancy function.

Comparison With the Bollen—Stine Bootstrap

We here compare the proposed selection method and the classical bootstrap
procedure by Bollen and Stine (1992). The two methods share some similarities: They

both use the same data transformation and both are based on the nonparametric
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bootstrap. Otherwise, the two methods are quite different. The Bollen—Stine bootstrap
directly approximates the distribution of the test statistic, whereas the selection method
uses the bootstrap to approximate D,, in (1), resulting in D,,. Also, Bollen-Stine
bootstrapping is a fixed procedure, whereas the selection method is more flexible, allowing
for different sets of candidate test procedures and for different success criteria.
Furthermore, the selection method allows researchers to chooses among test procedures,
whereas the Bollen—Stine procedure is itself a test procedure. Whether our proposed
bootstrap approach performs better than the Bollen—Stine is an empirical question that
future researchers should investigate in Monte Carlo studies. We conducted a simple
simulation study and found that neither our selection method nor the Bollen—Stine
approach outperformed the other across all conditions. However, both approaches
outperformed other test statistics that do not rely on bootstrapping, which emphasizes the
promising performance of bootstrap techniques relative to more commonly used test

procedures and necessitates further study in SEM literature.

Illustration

We considered 10 self-report items taken from the International Personality Item
Pool (ipip.orig.org). From the original dataset of 2,800 subjects supplied in the R package
psych (Revelle, 2017), we took the first 200 rows as our illustrative dataset. Our goal was
to test a two-factor model, where latent factors Agreeableness and Conscientiousness each
have five indicators. The model has 34 degrees of freedom. We considered six test statistics
for evaluating model fit. The p-values associated with a test of correct model specification
for each statistic may be seen in Table 1. A researcher must decide which of these statistics
to use as a basis for evaluating model fit.

Next, we transformed the n = 200 sample so that the transformed sample shared a
covariance matrix identical to the model-implied covariance matrix obtained from the

original sample. Hence, the model fits perfectly for the transformed sample. We drew 5,000
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Test StatiStiC TML TSB TSS TCF TEBAF TEBA2

p-value .010 .037 .063 .065 .066 .055
Table 1

p-values for each of six model fit test statistics. ML = Normal-theory mazimum likelihood.
SB = Satorra—Bentler. SS = Scaled-and-shifted. CF = Scaled F test. EBAF = Full

eigenvalue approzimation. EBA2 = Two-block eigenvalue approximation.

bootstrap samples with replacement from the transformed sample and calculate the p-value

in each bootstrap sample for each of the six test statistics in Table 1.

The panels in Figure 1 present the distribution of these p-values. Under ideal
conditions, the p-values should be uniformly distributed. However, all the available test
statistics seem to produce skewed p-values, with p-values appearing more frequently in the
lower half of the unit interval. Ty, clearly produces too many low p-values in the current
condition, but this is partly alleviated by the mean-scaling in Tsg. Tss, TeBar, 1EBA2, and
Tcr seem less likely to produce small p-values compared to Ty, and Tsg. In order to
choose a test statistic, we calculated 15, which is a measure of the distance between the
observed distribution of p-values and the ideal uniform distribution. In Figure 2, we
present QQ plots with the uniform distribution for each of the six candidates, where the
distances D have been indicated by vertical line segments. In Figure 2, Ty, departs
substantially from the uniform distribution for all quantiles. Tsg generally displays a closer
fit but still differs from the nominal distribution in the lower quantiles. For the remaining
test statistics, the p-value distribution is close to uniform for low quantiles (normally the
area of most practical concern in hypothesis testing) but strays from the uniform

distribution at higher quantiles.

The values of D are presented in Table 2, which reveals that the smallest D was
obtained under Tggao. Therefore, we conclude that Tggas is the most reliable among the

candidates in the current condition, and we report the p-value of correct model
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Figure 1. Histograms of p-value distribution for each of six candidate test statistics. ML =
Normal-theory maximum likelihood. SB = Satorra—Bentler. SS = Scaled-and-shifted. CF
= Scaled F test. EBAF = Full eigenvalue approximation. EBA2 = Two-block eigenvalue

approximation.

specification to be .055.
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Figure 2. QQ-plot of p-values with the uniform distribution for each of the six candidate
test statistics. The vertical line segments indicate D. ML = Normal-theory maximum
likelihood. SB = Satorra—Bentler. SS = Scaled-and-shifted. CF = Scaled F test. EBAF =

Full eigenvalue approximation. EBA2 = Two-block eigenvalue approximation.

Test statistic Twr, Tsg  Tss  Tcr  Tesar  TEBA2

A

D 214 076 .079 .091 .072 .091
Table 2

D for each of siz candidate test statistics. ML = Normal-theory maximum likelihood. SB =
Satorra—Bentler. SS = Scaled-and-shifted. CF = Scaled F test. EBAF = Full eigenvalue

approximation. EBA2 = Two-block eigenvalue approrimation.
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Monte Carlo Evaluation

In this section, we evaluate the selection procedure in Monte Carlo studies. In the
first study, we considered the setting of goodness-of-fit testing for a single model. The
second study concerned chi-square difference testing for two nested models. In the third
study, we investigated in a concrete small-sample case how well the estimates D,
approximated their population counterpart D,, in (1).

In the first two studies, we evaluated the selection procedure of an Algorithm in
terms of Type I error control 1 using three candidate statistics: SB, EBA2, and EBAF. In
addition to reporting the performance of ML, SB, EBA2, EBAF, and the selector, we also
included the somewhat understudied Bollen-Stine (BOST) bootstrap test statistic. We
used the political democracy model discussed by Bollen in his textbook (Bollen, 1989),
depicted in Figure 3, where the residual errors are omitted for ease of presentation. Four
measures of political democracy were measured twice (in 1960 and 1965), and three
measures of industrialization were measured once (in 1960). The unconstrained model has
d = 35 degrees of freedom. For nested model testing, we also considered a constrained
model with d = 46 degrees of freedom, which impose 10 equalities among unique variances
and residual covariances and one equality between two factor loadings.

Three population distributions were considered. Distribution 1 was a multivariate
normal distribution. The nonnormal distributions were generated using the transformation
algorithm of (Vale & Maurelli, 1983); Distribution 2 had univariate skewness 1 and kurtosis
7, and Distribution 3 had skewness 2 and kurtosis 21.

Three sample sizes n were used: 100,300, and 900. Hence, the resulting full factorial
design has nine conditions. In each sample, we calculated p-values associated with the
established test statistics associated with ML, SB, EBA2, EBAF, and BOST. In the
selection algorithm (SEL), the p-value was calculated using a candidate set containing SB,
EBA2, and EBAF and using D,, as a criterion function.

Model estimation was done using the R package lavaan (Rosseel, 2012), and the
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Figure 3. Bollen’s political democracy model. dem60: Democracy in 1960. dem65:

Democracy in 1965. ind60: Industrialization in 1960.
Yy Vi | Y| | Y;

Ys dem60

p-values from EBA2 and EBAF were calculated using the imhof procedure in the
CompQuadForm (Duchesne & De Micheaux, 2010) package. In each simulation cell, we

generated 2,000 samples. For each sample, 1,000 bootstrap samples were drawn.

Results for Single Model Testing

In Table 3, we present Type I error rates for single model testing at the 5%
significance level. As expected, ML becomes inflated when data are nonnormally
distributed. The mean-scaling of SB reduces inflation, but with nonnormal data and small
sample sizes, Type I error rates are still higher than 10%. These findings match those of
previous studies (Foldnes & Olsson, 2015). BOST performs better than SB, coming close
to the nominal level even for highly nonnormal data and a medium sample size. Among
the eigenvalue-based approximations, EBA2 performs the best, whereas EBAF yields far
too low rejection rates with nonnormal data. The selection algorithm SEL also performs
generally well—on par with EBA2 and BOST. It is noteworthy that SEL outperforms ML
for normal data.

Table 4 presents the selection proportions for SEL in each of the nine conditions and
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Distribution n ML SB BOST EBAF EBA2 SEL

100 .077 .086 023 .036 .050 .051
Normal 300 .055 .053 037 037 043 .045
900 .068 .067 .059 .063 .064 .065

100 .215 .108 035 021 048 .042
Distribution 2 300 .197 .070 053 024 045 .045
900 .219 .063 033 037 051 .051

100 .488 .164 038 .009 072 .031
Distribution 3 300 .591 .094 .068 013 050 .038
900 .685 .076 .059 015 042 .038

Table 3

Type I error rates for single model testing. Normal: multivariate normal distribution,
Distribution 2: skewness 1 and kurtosis 7. Distribution 3: skewness 2 and kurtosis 7. ML
= Normal-theory likelihood ratio test. SB = Satorra—Bentler. BOST = Bollen—Stine
bootstrap. EBAF = Full eigenvalue approximation. EBA2 = Two-block eigenvalue

approximation. SEL = bootstrap selector.

shows that the selection algorithm wisely chose EBA2 in the majority of conditions.
However, it is unexpected that SEL chose EBAF in 55% of the samples under Distribution
3 and n = 100, given the poor performance of EBAF in that condition, which had a 1%

rejection rate.

Results for Nested Model Testing

Rejection rates for the chi-square difference test using a 5% level of significance are
reported in Table 5. Again, the ML statistic was inflated by nonnormality in the data—a
tendency only partially corrected for by SB. For instance, under the most misspecified

condition (i.e., Distribution 3 and n = 100), SB rejection rates were 22%—far better than
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Distribution n SB EBA2 EBAF

100 .054 931 .015
Normal 300 .448 .16 .036
900 .507 .263 231

100 .001 .865 135
Distribution 3 300 .050 894 055
900 .153 783 063

100 .000 .449 551
Distribution 3 300 .001 733 .267
900 .004 .846 .150

Table 4
Choice proportions for selection algorithm, single model testing. SB = Satorra—Bentler.

EBAF = Full eigenvalue approximation. EBA2 = Two-block eigenvalue approrimation

the 91% obtained with ML. But in this condition, as in all conditions, BOST performed
better than SB, with a rejection rate of 13%. However, EBAF performed even better in this
condition, whereas the selection algorithm was only slightly worse than BOST. Overall,
EBAF outperformed the other test statistics, including SB and BOST. EBA2, which was
found to perform best in the nonnested case, did not perform as well as EBAF in the
nested case. The selection algorithm, SEL, also performed well, with better performance
than SB and BOST in most conditions, and only slightly worse than EBAF. The selection
proportions are presented in Table 6, where we unexpectedly found EBA2 to be the most

chosen procedure, despite the slightly better performance of EBAF in most conditions.

How Well Does D,, Approximate D,?

In this section, we present results for the third Monte Carlo study; our aim was to

A

investigate how closely the bootstrap estimates D,, approximate the population value D,,.



BOOTSTRAP SELECTOR

Distribution n ML SB BOST EBAF EBA2 SEL
100 .068 .080 037 062 069 .075
Normal 300 .054 .059 046 053 055 .058
900 .051 .053 051 051 052 .053
100 .582 .137 .096 076 099 .096
Distribution 2 300 .659 .088 081 052 066 .062
900 .702 .059 .053 035 043 .045
100 911 .221 129 115 159 135
Distribution 3 300 .961 .126 118 062 .089 .082
900 .976 .087 .089 044 .064 .061

Table 5

Type I error rates for nested model testing. Normal: multivariate normal distribution.

16

Distribution 2: skewness 1 and kurtosis 7. Distribution 3: skewness 2 and kurtosis 7. ML

= Normal-theory likelihood ratio test. SB = Satorra—Bentler. BOST = Bollen—Stine

bootstrap. EBAF = Full eigenvalue approximation. FBA2 = Half eigenvalue

approzimation. SEL = p-value obtained from selection algorithm

Because this is a Monte Carlo study, where the underlying distribution is known, we were

able to calculate D,, and make this comparison. We revisited the two-factor model

described in the Illustration section, which has five indicators for each factor. We drew 300

samples, each of size n = 150, from a multivariate normal distribution whose covariance

matrix is the model-implied covariance matrix when the two-factor model was fitted to the

original large dataset. For each simulated sample, B = 1,000 bootstrap samples were

drawn and D,, was calculated according to Algorithm 1 for each of the following test

statistics: T, TsB, 1ss, TeBAF, TEBA2, and Tep. Using 4,000 simulated n = 150 samples, we

approximated D,, with high precision. We present our results in Figure 4, where the D,, are

represented by triangles and the D, by boxplots. Because the data were normal, p-values
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Distribution n SB EBA2 EBAF

100 .601 397 042
Normal 300 .672 205 122
900 .593 .091 316

100 .116 714 170
Distribution 3 300 .209 .662 128
900 .263 .595 .142

100 .012 .663 .325
Distribution 3 300 .059 725 215
900 .104 714 1K2

Table 6
Choice proportions for selection algorithm, nested model testing. SB = Satorra—Bentler.

EBA2 = Half eigenvalue approzimation. EBAF = Full eigenvalue approximation.

from Ty, most closely followed the uniform distribution. Ideally, the selector should
therefore select Ty, every time, but in a real-world setting, we do not know D,,, only its
bootstrap approximation D,,. The selector chose Ty, as the preferred test statistic in 206
of the 300 samples, so it was able to identify the best statistic in the majority of samples.
However, the second best statistic (in terms of D,,), Tsp, was only chosen seven times,
whereas Tss and Tggao were chosen 38 and 49 times, respectively. In other words, the
selector was not able to detect that Tgg was the second best statistic in terms of D,, and
generally preferred Tss and Tggas to Tsg. As seen in Figure 4, the reason is that ﬁn tended
to overestimate D,, for Tsg and to a lesser degree also for Ty,. For the remaining four test
statistics, D,, offered good approximations to D,,. In this condition with multivariate
normal samples of size n = 150, D,, was usually larger than its population counterpart in

the Tsp case.
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Figure 4. Boxplots of D,, for six test statistics. Triangles represent D,,. ML =
Normal-theory maximum likelihood. SB = Satorra—Bentler. SS = scaled-and-shifted. CF
= Scaled F test. EBAF = Full eigenvalue approximation. EBA2 = Two-block eigenvalue

approximation.
Discussion

In the first two Monte Carlo studies, we evaluated the bootstrap selector in two
scenarios: the test of a single model and nested-model testing. The selector was given three
candidate test statistics to choose from: the well-established SB mean-adjusted test and

two newly proposed tests, EBAF and EBA2, based on eigenvalue approximation.

Overall, EBA2 performed best when testing single models. In the scenario of nested
model testing, however, EBAF maintained the best Type I error control. This illustrates
the central problem addressed in the present paper: It is difficult to identify a priori which
test statistic will perform best. The proposed selection method is an attempt to remedy
this problem, based on choosing the statistic whose bootstrap distribution best matches a

particular criterion (e.g., that p-values should be uniformly distributed).

In the third Monte Carlo study, we investigated a single normal data condition with
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sample size n = 150, wherein we sought to evaluate how well the bootstrap estimates D,
approximated the true target value D,,. We generally found that, despite the small sample
size, D,, offered good approximations to D,,. In most samples, the selector was able to
identify the best test statistic. However, we also found that for some samples, the selector
chose a test statistic not among the best performing statistics. This illustrates that a
different sample from the same population might lead the selector to choose a different test

statistic.

The present study had some limitations. We considered only one selection criterion,
namely the minimization of the Kolmogorov—Smirnov distance between the bootstrap
distribution and the theoretical uniform distribution. Other criteria may be considered, for
example, matching the observed rejection rates at a specific significance level (i.e., 5%) to
the nominal level. In other words, we may choose the test whose rejection rate under
bootstrap resampling most closely echoes a specific nominal level. We consider this topic
important in future research. Another limitation was that we considered only six test
candidates in our Monte Carlo studies. Adding more test statistics to the pool may
improve the performance of the selector because some of the added test statistics may
outperform the ones already included. Our Monte Carlo study was limited to Type I error
control and did not investigate power. A practical limitation is the running time needed for
bootstrap-based procedures. The selector and the Bollen—Stine had similar running
times—much longer than calculating test statistics such as SB and the EBA variants. With
current and future computers containing multiple units that can perform computation
simultaneously (multi-core central processing units and multi-core graphical processing
units supporting general purpose calculations), using the selector does not take much time
to run. In our prototype implementation in the scripting language R (which means our
code is not compiled, and therefore slow), it takes a couple of additional minutes compared
to standard p-value approximations, which often perform considerably worse. Considering

the enormous amount of time and effort many researchers use in gathering and analyzing
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data, the extra time spent on using the selector may be worthwhile.

Conclusion

This paper deals with the fundamental problem of hypothesis testing in moment
structure models. We present a new bootstrap-based selector which, based on the model
and the available sample, identifies the most reliable test statistic. This means that
researchers no longer must choose one candidate among the many available test statistics
on which to base their assessment of model fit. The objectivity of the selector also
addresses the concern that researchers may be tempted to use the test statistics that favor
their model. Monte Carlo studies indicate that the selector performs relatively well in
terms of controlling Type I errors.

The bootstrap method contained in this paper can be generalized in several
directions, including SEM with ordinal variables and in multi-group settings. Additional
simulation experiments should be performed on the bootstrap selector, such as power
studies, allowing the selector to choose among more candidate test statistics, and

experimenting with different selection criteria.



BOOTSTRAP SELECTOR 21

Appendix
Mathematical derivations

We here derive the consistency of the bootstrap selector assuming that one—and only
one—of the candidate procedures is consistent and hence produces an asymptotically
uniform p-value. This places the bootstrap selector as the fourth consistent testing
procedure for SEM, in addition to the Bollen—Stine bootstrap, the ADF, and the EBAF.
From such an asymptotic perspective, these four procedures are equally good. However,
the bootstrap selector continuously seeks the best possible finite sample performance.
Consistency is a desirable property, but it is not the motivation for using the method.

The proof of consistency we present here is an elaboration of an observation of
Hannan and Quinn (1979, p. 191) and is well-known in the model selection literature.
Hannan and Quinn (1979) noted that the model chosen by a consistent model selection
method can be used as if the correct model was known in terms of the asymptotic
behaviour of the model. We here show that such a conclusion also holds for the bootstrap
selector under mild assumptions. The main assumption is an asymptotic uniqueness
assumption. Going outside this assumption increases the complexity of the required
arguments considerably, and we consider this outside the scope of the paper, especially
because uniqueness is reasonable in the current context.

Suppose we have L competing methods for computing a certain p-value. Denote the
p-value of method j based on n observations by U, ;. A population parameter measuring
the quality of the j'th method is denoted by D, ;. An empirical estimate of D, ; is denoted

A

by D, ;.
Assumption 1. 1. We assume that lA)w- >0 and D, ; > 0.
2. We assume that lA)nyj - D, ; n_}%> 0forj=1,2,...,L
3. We assume that the function j — ﬁn,j over j =1,2,...,L has only one minimizer.

Assumption 1 (2) is fulfilled by the bootstrap approximation of the
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Kolmogorov—Smirnov type procedure suggested in the main part of the paper using
arguments such as Beran and Srivastava (1985), see also Efron and Tibshirani (1994).

Under Assumption 1 (3) we denote

kn, = argmin ﬁny
1<<L

The following assumption means that D, , is asymptotically closest to zero and is an
asymptotic uniqueness assumption. If the Kolmogorov—Smirnov procedure is used, the
assumption means that there is a specific testing procedure which has the least uniform
distance between the asymptotic distribution of the p-value and the uniform distribution.
If a consistent method is included, this minimum is zero, because consistent methods have

asymptotically uniform p-values.

Assumption 2. Fora x € {1,..., L}, we suppose that lim,_,o.(D, . — D, ;) <0 for

jell,... L3\ {x).

The asymptotically best procedure is therefore k. We are interested in identifying
when the asymptotic distribution of U, s, is the same as U, ,,. In the case when a consistent
procedure is in the set of considered methods, this means U, , is asymptotically uniform
on [0,1] as shown in the following theorem. We note that stronger conclusions outside the

scope of the current paper, such as lim,, o |[P(A, N {Uns, = Unx}) — P(An)| = 0 for any

o0

o ., follow through a simple extension of the proof of Lemma 2.

sequence of events (A,)

Theorem 1. Suppose U, YHLOJ Ul0,1]. Under Assumption 1 and 2 we have that

Uni —2— U0, 1].
n—oo

Proof. Let 0 < x < 1. We have

|P(Upi <z)—z|=|P(Upi <z)— P(Up,x <z)— (x — P(U,, < x))|. By the triangle
inequality, this is bounded by |P(U,z < z) — P(Upx < )| + |z — P(U,, < x)|. The second
term goes to zero by assumption. The first term goes to zero by the conclusion of Lemma

2. [l
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Lemma 1. Under Assumption 1 and 2, we have that lim,_,. P(k, = k) = 1.
Proof. We have
P(n = £) = P(Mi<j<rjwn{ Dnw < Dnj})
= P(mlngL,j;én{Dn,n - Dn,/@ + Dn,n < Dn,j - Dn,j + Dn,j})

- P(mlgng,j;ﬁn{(Dn,n - Dn,n) - (Dn,j - Dn,j) + Dn,n - Dn,j < 0})

By Assumption 1 (2), we have that

A A

(Dn,ﬁ - Dn,ﬁ) - (Dn,j - Dn,j) + Dn,n - Dn,j = OP(l) + Dn,n - Dn,j-
Because lim,,_,o0 D, x — D,,j < 0 by Assumption 2, the conclusion follows. O

Lemma 2. Under Assumption 1 and 2, we have that

lim |P(U,z <z)—PU,, <) =0

n—oo

for all x.

Proof. Recall that if A;, A, ..., A are disjoint and UleAj is the whole probability space
Q, we have for an event B that P(B) = P(BNQ) = P(BNUJ_A;) = JL:1 P(BNA;j).

Therefore,
L
j=1
L
j=1

I
3
=
By

w <z, R=K)+ Z PU,,; <z,k=j)

1<j<L,j#k
For j # k, we have 0 < P(U,,; < z,k = j) < P(k =j) < P(k # k) — 0 by Lemma 1.
Further, we have P(U,,, < z) = P(U,x <2,k = k) + P(U, . < x,k # k) so that
PU,x <z, =k)=PU,, <z)— PU,x <,k # k). Because
0<PUnx <x,k#k) <Pk #k)—0, wehave P(U,, <x,k=k)=PU,, <x)—0(1),

proving the result. O



BOOTSTRAP SELECTOR 24

References

Asparouhov, T., & Muthén, B. (2010). Simple second order chi-square correction.
Unpublished manuscript. Retrieved from
www . statmodel . com/download/WLSMV_new_chi21.pdf

Beran, R., & Srivastava, M. S. (1985). Bootstrap tests and confidence regions for functions
of a covariance matrix. The Annals of Statistics, 95-115.

Bollen, K. A. (1989). Structural equations with latent variables. New York: Wiley. doi:
10.1002/9781118619179

Bollen, K. A., & Stine, R. A. (1992). Bootstrapping goodness-of-fit measures in structural
equation models. Sociological Methods & Research, 21(2), 205-229.

Browne, M. W. (1982). Covariance structures. Topics in applied multivariate analysis,
72-141.

Browne, M. W. (1984). Asymptotically distribution-free methods for the analysis of
covariance structures. British Journal of Mathematical and Statistical Psychology,
37(1), 62-83.

Duchesne, P.; & De Micheaux, P. L. (2010). Computing the distribution of quadratic
forms: Further comparisons between the Liu—Tang—Zhang approximation and exact
methods. Computational Statistics & Data Analysis, 54(4), 858-862.

Efron, B., & Tibshirani, R. J. (1994). An introduction to the bootstrap. CRC press.

Foldnes, N., & Gronneberg, S. (2017). Approximating test statistics using eigenvalue block
averaging. Structural Fquation Modeling: A Multidisciplinary Journal, 1-14.

Foldnes, N., & Olsson, U. H. (2015). Correcting too much or too little? The performance
of three chi-square corrections. Multivariate behavioral research, 50(5), 533-543.

Hannan, E. J., & Quinn, B. G. (1979). The determination of the order of an autoregression.
Journal of the Royal Statistical Society. Series B (Methodological), 190-195.

Jullum, M., & Hjort, N. L. (2017). Parametric or nonparametric: The fic approach.
Statistica Sinica, 27, 951-981.



BOOTSTRAP SELECTOR 25

Revelle, W. (2017). psych: Procedures for psychological, psychometric, and personality
research [Computer software manual]. Evanston, Illinois. Retrieved from
https://CRAN.R-project.org/package=psych (R package version 1.7.8)

Rosseel, Y. (2012). lavaan: An R package for structural equation modeling. Journal of
Statistical Software, 48(2), 1-36.

Satorra, A., & Bentler, P. (1988). Scaling corrections for statistics in covariance structure
analysis (UCLA statistics series 2). Los Angeles: University of California at Los
Angeles, Department of Psychology.

Vale, C. D., & Maurelli, V. A. (1983). Simulating multivariate nonnormal distributions.
Psychometrika, 48(3), 465-471.

Wu, H. (2017). Approximations to the distribution of a test statistic in covariance
structure analysis: A comprehensive study. British Journal of Mathematical and
Statistical Psychology.

Wu, H., & Lin, J. (2016). A scaled F distribution as an approximation to the distribution
of test statistics in covariance structure analysis. Structural Equation Modeling: A

Multidisciplinary Journal, 23(3), 409-421.



