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Abstract 

In this thesis, we are using consensus stock analyst recommendations which are 

applied to the Black-Litterman optimization model. We create a portfolio 

consisting of the Nordic Stock market between 2002 and 2017 to examine 

whether the analyst recommendations could add value to the model. The stocks in 

the portfolio are separated into portfolios based on the type of recommendation: 

“buy”, “hold”, and “sell”, and tracked historically to determine the stocks’ 

performance relative to the market. The investment period is divided into three 

investment periods surrounding the Great Recession. The portfolio created from 

the Black-Litterman model is then compared against benchmarks to determine the 

raw excess and risk-adjusted returns based on performance measures. The Black-

Litterman performed significantly better than the market portfolio before the 

Great Recession but underperformed in the period afterwards in terms of raw 

excess and risk-adjusted returns. This suggests that the consensus analyst 

recommendations may add value in certain situations for the Black-Litterman 

model separated by the type of rating.  
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1 Introduction 

Brokerage firms and analysts spend a large amount of time and resources 

analyzing stocks to inform and identify attractive stocks for investors. Information 

gathering is a costly activity that should compensate for their time and efforts with 

commensurate expected profits for both the investor and analyst through the 

brokerage services (Grossman and Stiglitz, 1980). A logical reasoning for 

obtaining brokerage services is excess stock returns following recommendations 

from equity analysts, i.e. the expected benefit from the advice should exceed the 

cost of the advice. The aim of this study is to apply consensus recommendations 

from stock analysts as views in the Black-Litterman optimization model. The 

Black-Litterman model distinguishes itself from traditional models as it allows the 

combination of the portfolio manager or investor’s tactical views in the portfolio 

optimization processes with the market equilibrium about the investment 

opportunities (Litterman, 2003). The Black-Litterman model uses a Bayesian 

approach to introduce subjective views regarding the equilibrium’s expected 

returns to form a new set of expected returns.  

Black and Litterman (1992) argued that Markowitz’ (1952) model was too 

theoretical and difficult to apply in practice. Unless the investor has perfect 

knowledge about the expected return and covariances, the mean-variance model 

may not yield the optimal results. It may be unrealistic to assume that a portfolio 

manager holds this information on all the assets. Also, even the slightest change in 

any of the input can lead to large differences in the optimal weights, thus the 

model is extremely sensitive to estimation errors. They started creating the 

foundation for their own model in 1990, coming up with improvements in 1991 

and 1992 before publishing the Black-Litterman model1 in 1992 in the paper 

“Global Portfolio Optimization”. In the following years after the publication, 

multiple authors have contributed with extensions to the model.  

Previous literature regarding the value of analyst recommendations suggests that 

analyst recommendations have economic value.  Bjerring et al. (1983) found that 

if investors followed the advices from analysts with favorable ratings they would 

earn significantly positive abnormal returns due to analysts’ possession of market 

                                                           
1 Black-Litterman will from now on be referred to as BL for simplicity 
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timing abilities. Elton et al. (1986) found excess returns in the same month and the 

following two months after a consensus analyst recommendation has changed, 

and excess returns of 3.43% over three months after the most favorable changes in 

recommendations. Furthermore, the returns from analyst recommendations are 

more significant and larger from the consensus compared to the brokerage firm or 

analyst level. Womack (1996) examined whether analysts can predict or influence 

stock prices. His findings suggest that the one-month post-recommendation 

returns are positive and significant for buy recommendations, and large and 

negative for sell recommendations. The returns are asymmetric with +2.4% for 

buy recommendations, and -9.1% for sell recommendations over six months. The 

recommendations align with the direction of the analysts’ predictions. Womack’s 

findings support the notion that consensus recommendations have stock selection 

and market timing capabilities. Stock selection is viewed as the ability to be right 

on the direction of the stocks, and market timing is the ability to take advantage of 

favorable market movements.  

We will use consensus analyst recommendations rather than top brokerage firms’ 

or star analysts’ recommendations. The choice of structuring the analyst 

recommendations to be applied in BL is imperfect, and consensus 

recommendations may not be the most optimal way of forming the views. 

Additionally, empirical evidence suggests that stock prices react slowly to 

information accommodated in the analyst recommendations (Womack, 1996; 

Barber et al. 2001), such that the model may fail to capitalize. Factors such as 

information may already be incorporated, but not all investors have access to 

analyst recommendations, while capital constraints and transaction costs may 

limit full incorporation of information from the analyst recommendations to the 

market prices. Searching for the optimal structure may be interesting, but it is out 

of scope of the purpose of this paper.  

1.1 Research Question  

This thesis will focus on the implementation of the BL model using historic 

consensus analyst recommendations applied on the Nordic stock market. The BL 

model is motivated by the weaknesses of Markowitz’ (1952) mean-variance 

optimization model due to unrealistic weightings, sensitivity to input parameters 

and unrealistic implementation. The BL model ought to solve the error-

maximization problem with a special case of Bayesian approach with views from 
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the market’s equilibrium expected returns. The user introduces an own set of 

views which acts as a statement for the expected returns of the assets which 

enables the derivation of the optimal portfolio weights. The portfolio starts from a 

neutral point determined by the market equilibrium and tilts in the direction of the 

investor’s views. Thus, the optimal portfolio is proportional to the market 

equilibrium and the investor’s portfolio from the views (He & Litterman, 1999). 

Intuitively, the investor starts with a portfolio determined by the market 

equilibrium and then invests according to her views, the views’ strength, 

covariance between views and equilibrium returns and the covariance among the 

views.  

The consensus analyst recommendations would be used in a BL setting by 

structuring the stocks according to the type of recommendation. With the 

application of the BL model, we can determine the economic and investment 

value from the consensus analyst recommendations. By dividing the stocks into 

sub-portfolios based on their consensus analyst recommendation, it allows the BL 

model to separate between types of stocks based on the recommendation to obtain 

the optimal portfolio. The type of stocks is separated into “buy”, “hold”, and 

“sell”-type recommendations. The performance of the stocks, based on their type, 

is then tracked, and the value of the analysis is derived from ac calendar-time 

rather than the event-studies approach on the Nordic stock market. This allows us 

to test the historic total returns and risk-adjusted performance of the BL model 

against competing strategies and portfolios, i.e. market portfolio, Markowitz’ 

mean-variance portfolio, minimum variance portfolio, buy-and-hold portfolio, and 

1/𝑁 portfolio on the Nordic stock market.  

Overall, the portfolio derived from the BL model can generate superior raw excess 

return from 2002 to 2017 compared to its peers. Especially before the 2007-08 

financial crisis, no other portfolio was able to exceed the performance of the BL 

model. Furthermore, the BL model generated better risk-adjusted performance 

measured by Sharpe, Treynor, information and Jensen’s alpha before compared to 

after the Great Recession. The information ratio is consistently high compared to 

most of its peers in all periods. In contrast, the portfolio underperforms the 

benchmark portfolios in raw excess and risk-adjusted returns from 2008 to 2017. 

The rationale behind the performance is its excessive risky positions due to the 

absent of constraints on the portfolio. Additionally, the consensus analyst 
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recommendation is resistant to making “sell”-type recommendations throughout 

the investment period, which makes the portfolio tilt towards stocks with poor 

returns.   

Section 2 reviews existing literature surrounding portfolio optimization and 

various contributions regarding BL. Section 3 explains the theory behind the 

frameworks of the BL and the Markowitz model. Section 4 describes how the data 

is structured and managed in this study. Section 5 introduces the methodology of 

the BL separated into portfolios based on the analyst recommendations. The 

results and conclusion are presented in section 6 and 7, respectively.  

 

2 Literature 

In this section we will provide an overview of the application of the BL model 

and briefly discuss existing literature regarding portfolio diversification. 

Markowitz (1952) argues that an investor should focus on achieving the highest 

risk-return tradeoff. He claimed that an investor could achieve this through 1) 

focusing on minimizing the risk while simultaneously keeping returns constant, or 

2) keeping the risk constant while maximizing the returns. This can be achieved 

through diversification, which Markowitz considers to be the only "free lunch" in 

finance. To maximize diversification benefits, the investor aims to find the assets 

with the lowest correlation with the existing assets to minimize the overall risk of 

the portfolio.  

The BL model was introduced in the early 1990s as an extended tool to the 

Markowitz’ mean-variance framework and the Capital Asset Pricing Model 

(CAPM) by Shape and Lintner. Black and Litterman (1992) argued that the 

unconstrained Markowitz’ original framework could provide solutions that would 

result in large short or long positions in a handful of assets. Even with constraints, 

such as through no shorting of the assets, the Markowitz model would still assign 

zero weights to multiple assets. They argued that the weights in the mean-variance 

model are extremely sensitive to even the smallest changes in expected returns. 

Thus, the results are unstable portfolios due to the high sensitivity to the inputs. 

Expected returns are hard to estimate, and the authors argued that historical 

returns are a poor proxy for expected returns. Rather, Black and Litterman (1992) 
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suggested that investors should use their own views about the prices of securities 

as a proxy for expected returns. By first finding the equilibrium risk premiums, 

and using them as a neutral point, investors can then add their own views, if they 

have any, to obtain the expected returns. Should they not have any views, the 

results of the weightings for the assets will equal the CAPM equilibrium market 

portfolio.  

He and Litterman (1999) gave a more intuitive interpretation of the mathematical 

workings behind the model than what Black and Litterman (1992) did. The 

authors explained how an investor should start by investing in the market portfolio 

and then add views. The views will allow the investor to deviate from the market 

portfolio according to the views and the confidence of the views. The authors aim 

to give investors a more general idea of the inner workings and provide a detailed 

clarification of the model than was provided from the original article.    

Idzorek (2005) provided an intuitive and detailed overview of the BL model and 

its steps by using eight assets from the U.S. stock market. The author introduced 

an alternative approach to derive the optimal portfolio with the views, called the 

New Combined Return Vector. Using a specified scalar and covariance matrix of 

the error terms, combined with the other parameters of the BL model, the New 

Combined Return Vector can be derived. By solving for a defined unconstrained 

maximization problem, it is possible to obtain the new weights in the optimal 

portfolio from the model. 

He, Grant and Fabre (2013) applied the BL model on the Australian stock market. 

The authors treated the consensus analyst recommendations as a proxy for the 

views in the model. Stocks on S&P/ASX 50 index with “buy”-type 

recommendations on average tend to outperform the market. In contrast, the 

stocks with unfavorable recommendations tend to underperform the benchmark 

S&P/ASX 50 index. By separating stocks according to the type of the 

recommendation and applying the BL model with frequent rebalancing, the 

investment strategy outperforms the market in terms of raw excess returns and 

risk-adjusted performance measures.  

Walters (2014) provided an overview of the earlier work of the BL model. He 

introduced three different reference models. The original BL model from Black 

and Litterman (1992) and He and Litterman (1999) applied a Bayesian approach, 
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while Walters used the term Canonical Reference Model (CRM) for these models. 

The non-Bayesian were split into two categories, with and without models that 

included the parameter tau often called “weight on views” (a scalar which will be 

introduced in the next section).  

Bessler, Opfer and Wolff (2017) used a multi-asset portfolio and compared the 

optimization problem with the BL model, the mean-variance model, and the naïve 

diversification portfolio. The authors defined the naïve diversification as the equal 

weighted multi-asset portfolio, while the BL model used the mean-variance model 

to overcome the problems of estimation. A comparison between the models was 

used in an out-of-sample context. They concluded that the BL model created an 

optimized portfolio that outperforms the other models, as the BL model gives the 

highest Sharpe ratio, even after controlling for different risk-aversion levels and 

portfolio constraints.  

 

3 Theory 

This section will introduce the concepts and parameters of the BL model. The 

section will start by introduction Markowitz’ Modern Portfolio Theory (MPT) 

before continuing with the BL model, as the latter builds upon the former. Finally, 

the mathematical and theoretical framework of the BL model will conclude this 

section. 

3.1 Markowitz 

The BL model was developed as an extension of Markowitz’ mean-variance 

model and the CAPM. The mean-variance model aims to find an optimal portfolio 

by minimizing the variance for the assets in the portfolio holding expected return 

constant. Alternatively, the investor may maximize the expected return for a given 

level of risk. Thus, the goal is to find a portfolio that maximizes the risk-return 

trade-off. Markowitz defined risk as the variance of the individual asset returns, 

but also the covariance in-between. Markowitz argued that by diversifying across 

assets, an investor can reduce the total risk while achieving the required rate of 

returns. Diversification was known long before Markowitz introduced his mean-

variance model in 1952, but his model illustrated the effect of diversification on 
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efficient and inefficient portfolios taking the risk-return tradeoff into account 

(Markowitz, 1999).  

The assumption regarding the mean-variance model is the maximization of the 

risk-return trade-off in respect of the risk-aversion of the investor. Once this is 

established, the model can be applied. Furthermore, a proxy for the expected 

returns, the variance, and covariance of the returns need to be established to obtain 

the asset allocation in the portfolio. The following mathematical expressions 

would need to be satisfied to obtain the weightings of the assets:  

min 𝑤𝑇 ∑𝑤      (1) 

s.t  

𝑤𝑇𝑟 =  𝑟𝑝 and 𝑤𝑇 = 1    (2) 

Alternatively, one can instead maximize the return:  

max 𝑤𝑇µ      (3) 

s.t  

𝑤𝑇∑𝑤 =  𝜎𝑝
2 and 𝑤𝑇 = 1    (4) 

Where 

𝑤𝑇   is a vector of the portfolio weights, i.e. 𝑤𝑇 = (𝑤1, 𝑤2, … , 𝑤𝑛)𝑇 

𝑤𝑇 ∑𝑤  is the total variance of the portfolio, ∑ being a covariance matrix 

𝑤𝑇𝑟   is the sum of the expected returns for the portfolio 

𝑟𝑝   is the required return for the portfolio 

𝜎𝑝
2   is the variance for the portfolio  

 

Solving any of these problems will produce optimal weights for the mean-

variance model. For problem (1) there will only be one unique solution that 

minimizes the variance for any given assets. However, problem (3) can have 

different suggestions for any given assets, as it depends on the risk tolerance of 

the investor. An investor with high risk-tolerance would require a higher expected 

return for the risk taken. In contrast, an investor with low risk-tolerance requires a 

lower expected return. 
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3.1.1 Markowitz Limitations  

It is necessary to have full knowledge of the expected returns and the covariance 

matrix of the returns for the Markowitz model to work. However, these inputs are 

often estimated with errors. The problem with the estimation technique is that 

even small estimation errors can lead to large adjustments in the portfolio 

structure. This is especially true for assets with high expected returns and low 

variance, which are the most prone to estimation errors.  

Additionally, the model assumes normal distribution of the returns of the assets. 

This assumption is often made in the theoretical finance world, but it is not a 

realistic assumption in practice as the returns tend to have fat tails. The reason 

being that there tend to be asymmetry in financial returns and volatility (Andersen 

et al., 2001), and during financial crisis’ asset returns have shown to exhibit 

kurtosis more than three.  

The model has shown to give final weights that may be extreme, i.e. it might 

suggest relatively large long or short positions for the assets. Implementing such a 

strategy in real life can be quite costly with respect to transaction costs. Let alone, 

several funds and other practitioners face constraints with respect to short sale, 

meaning the unconstrained mean-variance model might not be of use. It is 

possible to implement a no short constraint in the model, but the model will then 

tend to come up with “corner solutions” where multiple assets will have zero 

weights in the portfolio. Such solutions are not optimal either, as most of the 

diversification benefit might vanish, and this combined with the sensitivity of the 

estimation error make the model undesirable and excessively risky. 

3.2 Black-Litterman 

When Black and Litterman introduced their model in the early 1990s, they offered 

solutions to some of the drawbacks of the Markowitz framework. The very basics 

of the BL model build on the same framework as Markowitz’; maximize the risk-

return tradeoff. However, the BL model differs when it comes to the expected 

returns. Black and Litterman apply the market capitalization weights for the assets 

as a starting point in the portfolio. Rather than specifying the expected returns 

from historical returns, the expected returns are a weighted-average of the views 

and degree of confidences, and the market portfolio. The portfolio manager can 

then add her own views about the assets, and the new portfolio weights will be 
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tilted towards the assets according to her views. If the portfolio manager does not 

have any views, the weights from the benchmark2 will be used, thus the portfolio 

manager will end up holding the market equilibrium portfolio. Thus, the BL 

optimal portfolio is a set of deviations from the market capitalization weights 

tilted towards the views and balances the contributions from the expected returns 

from the views. The model adjusts the expected returns away from starting values 

in the direction of the views. In other words, the optimal portfolio is the market 

equilibrium portfolio plus a weighted sum of portfolios adjusted to the views. 

Because the BL model allows the user to specify her views, the model assumes 

the efficient market hypothesis does not hold. The efficient market hypothesis 

assumes that all available information is reflected in the stock prices. If the semi-

strong form does hold, then the market will already include all public information 

in the asset prices, and the investor will hold the market portfolio unless the 

investor is trading on private information. Therefore, the market should 

occasionally have mispriced securities such that an investor can generate their 

own views and deviate from the market portfolio. Using the formulas below for 

the BL model, the optimal weights from problem (3) of the mean-variance model 

can be obtained. 

The following formula represents BL model, and was presented by He and 

Litterman (1999):  

µ̅ = [(𝜏∑)−1 + 𝑃′Ω−1𝑃]−1[(𝜏∑)−1∏ +  𝑃′Ω−1𝑄]     (5) 

Where 

μ̅ is the vector of mean expected excess returns 

τ is a scalar indicating uncertainty of CAPM, also known as the “weight on 

views” and scales the covariance matrix of returns 

∑ is the covariance matrix of historical excess returns 

P is the 𝑘 × 𝑛 matrix expressing the 𝑘 view portfolios in terms of weights in 

𝑛 assets 

Ω is a diagonal covariance matrix representing the uncertainty of the views 

for the error terms 

                                                           
2 Henceforth, the benchmark (or market) portfolio mentioned throughout this paper will be referred 

to as the market-weighted stocks in the investment portfolio. Even though the 10 largest stocks in 

each stock exchange may not constitute the market portfolio in the CAPM world, calling it the 

market portfolio makes it simpler in context of writing the paper. 
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∏ is a 𝑛-vector of the equilibrium risk premiums 

Q is a 𝑘-vector expressing the expected excess returns on the 𝑘 view 

portfolios 

 

The BL model blends the market equilibrium with the views from the investor 

(Lee, 2000). The first bracket is a common multiplicator of the formula. 

According to the second bracket of (5), i.e. 𝑃′Ω−1𝑄, the model is a simple 

weighted average of the market equilibrium and the views. The first term in the 

second bracket, (𝜏∑)−1∏, is the market equilibrium from prior returns, while the 

second term, 𝑃′Ω−1𝑄 is the returns determined by the views. Thus, if the 

distribution of 𝜏∑ is narrow, then (𝜏∑)−1 will be large and more weight will be 

allocated to the equilibrium, ∏. Likewise, if the confidence on the views are high, 

Ω, is small, 𝑃′Ω−1𝑄 will be high and more weight will be allocated to the views 

represented by 𝑄. The formula gives an intuitive explanation of how the 

relationships between the parameters are connected to derive the posterior returns. 

Otherwise, if the views are absence for the investor, the second term, 𝑃′Ω−1𝑄, 

vanishes and the expected returns would be determined by the market equilibrium. 

For this reason, the BL model is the weighted average of the equilibrium and the 

views, where the weights on former and latter are established by the degree of 

uncertainty of the views.  

3.2.1 Reference Models 

To fully understand how the original BL model works, the reference models, 

CRM and Alternative Reference Model (ARM), are presented here by Walter 

(2014). The greatest difference between the two reference models are determined 

by which parameters are random or used as inputs. Upon explaining the 

difference, we will use the analogy from Walters (2014). 

Black and Litterman assumed the prior normal distribution of the expected returns 

as the following:  

𝑟 ~ 𝑁(µ, ∑)      (6)  

Where 𝜇 is the unknown mean and Σ is the variance. These values are needed as 

inputs into the portfolio optimization processes. Further, 𝜇, the distribution of the 

random mean of the returns is defined as: 
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µ ~ 𝑁(𝜋, ∑𝜋)      (7) 

𝜋 is the estimate of the mean, and ∑𝜋 is the variance of the estimate for the 

unknown mean, 𝜇. The variables can be expressed as a linear relationship:  

µ =  𝜋 +  𝜀      (8) 

We can interpret this as the prior returns being normally distributed around the 

estimates of 𝜋 with a disturbance value 𝜀. The disturbance value, 𝜀, is also 

normally distributed, but it has a mean of zero and variance ∑𝜋, and by 

assumption it is uncorrelated with 𝜇. Finally, it is possible to define a new 

equation for the variance, ∑𝑟, which is a product of the variance of the returns, 𝑟, 

and our estimates, 𝜋: 

∑𝑟 =  ∑ + ∑𝜋     (9) 

The CRM can now be defined for the expected returns:  

𝑟 ~ 𝑁(𝜋, ∑𝑟)       (10) 

Now with the posterior distribution available, the model allows for solving a 

mean-variance optimization. The main difference between equation (6) and 

equation (10) lies in the returns. Equation (10) uses a distribution, while equation 

(6) uses point estimate of the return, µ. Equation (6) is known as the ARM. There 

should be a clear distinction between the CRM and ARM when the BL model is 

applied to differentiate between the parameters, which will have a significant 

effect on the results depending on the model. For this study, we will only use the 

CRM, and will not go into more details of the ARM.  

3.2.2 Equilibrium Returns  

The original BL model uses the estimated excess returns from the CAPM market 

portfolio. In our thesis, we will work with the quadratic utility function and the 

standard assumptions required for the CAPM to hold. The CAPM can be defined 

as follows: 

𝐸(𝑟) =  𝛼 + 𝑟𝑓 +  𝛽 𝑟𝑚      (11) 
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Where 

𝐸(𝑟)  is the expected return 

𝛼 is the residual, or asset idiosyncratic excess return  

𝑟𝑓  is the risk-free rate 

𝛽 is a regression coefficient of the form 𝛽 =  𝜌
𝜎𝑝

𝜎𝑚
 

𝑟𝑚 is the excess market portfolio return, or market risk premium 

 

The residual risk from an asset should be uncorrelated with other assets, and thus 

it is possible to diversify away this non-systematic risk. Non-systematic risk is 

specific to the stock and not universal for the stocks in the portfolio or the market.  

Therefore, the CAPM states that an investor should only be rewarded for taking 

on systematic risk, that is 𝛽, and not residual risk that stems from 𝛼. Moreover, in 

the CAPM world, all investors should hold the same risky portfolio, i.e. the 

market portfolio, which is also the portfolio for a fully rational investor. If this 

holds, then in equilibrium the weights of the assets in the market portfolio will be 

determined by the market capitalization of the assets. No other portfolio will have 

a higher Sharpe ratio than the market portfolio on the efficient frontier under this 

scenario.  

3.2.3 Reverse Optimization  

It can further be stated that once we are in the equilibrium, all sub-markets must 

exist in equilibrium. That is, any sub-market the investor chooses to invest in will 

be a part of the global equilibrium. For our context, this implies that the Nordic 

stock market is also in equilibrium as a sub-market. The market portfolio assumes 

positions in the entire investable asset universe, which makes it hard to specify the 

expected returns due to the limitation of available information. Investors only pick 

a limited investable universe and optimize their portfolio according to the 

available assets. In equilibrium, however, reverse optimization can derive the 

expected excess returns given that the market capitalization and the covariance 

matrix are estimated. To reverse optimization, we start with the following 

quadratic utility function, as defined by Walters (2014):  

𝑈 =  𝑤𝑇∏ − (
𝛿

2
)𝑤𝑇∑𝑤     (12) 
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Where  

𝑈 is the investors utility, also known as the objective function 

𝑤 is a vector of weights for the assets 

∏ is a vector of equilibrium excess returns for the assets 

𝛿 is the risk aversion  

∑ is the covariance matrix of excess returns  

 

We can maximize the utility function with respect to the weights to get the 

solution of the reverse optimization by taking the first derivative of equation (12) 

with respect to w and solve for ∏ to obtain: 

∏  =  𝛿∑𝑤      (13) 

One common approach for the estimation of the covariance matrix, ∑, is the use 

of historical returns. The market weights, w, can be obtained directly from the 

market capitalization of the stocks. However, we still need a value for the risk 

aversion parameter; 𝛿. The risk aversion can be obtained by multiplying equation 

(13) with 𝑤𝑇 on both sides and replacing the vector terms with scalar terms, and 

thereby solving for the risk aversion, such that we get the following equation:  

𝛿 =  
(𝑟−𝑟𝑓)

𝜎2        (14) 

Where 

𝛿 is the risk-aversion coefficient  

𝑟 is the total market portfolio return (r = 𝑤𝑇∏ + 𝑟𝑓) 

𝑟𝑓 is the risk-free rate 

𝜎2 is the market portfolio variance (𝜎2 = 𝑤𝑇∑𝑤) 

An alternative method for calculating the risk aversion parameter is through the 

formula for Sharpe ratio. Equation (14) can then be rewritten as the following 

expression, where numerator denotes the Sharpe ratio and the denominator is the 

variance of the market portfolio:  

𝛿 =  
𝑆𝑅

𝜎𝑚
      (15) 
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Both equation (14) and (15) provides a risk aversion parameter that can be utilized 

in equation (13). Once a value for the risk aversion is found, we can plug the 

covariance matrix (∑), market weights (𝑤), and the risk aversion (𝛿) into equation 

(13) to get the (prior) equilibrium returns for the assets.  

We can now continue with the expression of the prior distributions. However, we 

need the ∑𝜋 from the reference model. Black and Litterman assumed that the 

covariance matrix of the estimate is proportional to the covariance of the returns. 

The parameter 𝜏 was made as a constant of the proportionality, such that ∑𝜋 =

𝜏∑. The prior distribution can then be defined as:  

𝑃(𝐴) ~ 𝑁(∏ , 𝜏∑), 𝑟𝐴 ~ 𝑁(𝑃(𝐴), ∑)    (16) 

This is the prior distribution for the BL model, and it represents the estimate of the 

mean with a proportional variance. 𝜏 is typically given a low value in the literature 

which is close to zero. For example, Black and Litterman (1992), He and 

Litterman (1999), and Idzorek (2005) choose values of 𝜏 between 0.025 and 0.05. 

By using the CRM equation (10), we can rewrite the prior distribution equation 

(16) to the following expression:  

𝑟𝐴 ~ 𝑁(∏, (1 + 𝜏)∑)      (17) 

3.2.4 Views Matrix 

The BL model distinguishes itself from other optimal portfolios by allowing the 

investor’s or portfolio manager’s subjective views to be a function of the expected 

returns. The stronger the views (either through higher expected returns or lower 

uncertainty of the views) the greater would the tilt be towards the portfolios 

formed by the views (recall that the expected returns are a weighted-average of 

the portfolios derived from the views and market equilibrium). Adding a view 

creates a positive tilt towards the security if the view is more bullish than the 

expected return implied by the BL model without the views. In contrast, a 

negative tilt can be created if it is more bearish than the BL without the views. 

Black and Litterman (1992) defined the mathematical expressions of the 

investor’s views as following: 

𝑃 ∗ 𝐸(𝑅) = 𝑄 +  𝜀    (18)  
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Where 

𝐸(𝑅) is the expected returns 

𝑃 is the 𝑘 × 𝑛 matrix expressing the 𝑘 view portfolios in terms of weights in 

 𝑛 assets 

Q is a 𝑘-vector expressing the expected excess returns on the 𝑘 view 

 portfolios 

 𝜀 is the error term 

The views can be expressed either as relative or absolute, where the sums of the 

rows of the weights are 0 and 1, respectively. There is no universal way of how 

the weights of 𝑃 can be applied. In practice, the weights of the views depend on 

the conditions and processes of estimating the expected returns from the views 

(Walters, 2007; Litterman, 2003). Satchell and Scowcroft (2000) applied an equal 

weighted scheme in 𝑃 where each stock applies the same weight on views. 

However, both He and Litterman (1999) and Idzorek (2005) use the market 

capitalization as their weighting scheme. The 𝑃 matrix in its general form can be 

expressed as following:  

𝑃 =  [

𝑃1,1 ⋯ 𝑃1,𝑛

⋮ ⋱ ⋮
𝑃𝑘,1 ⋯ 𝑃𝑘,𝑛

]   (19) 

The 𝑃 matrix is not required to be invertible nor full rank (Walters, 2014), which 

makes it sometimes difficult to determine a distribution for the views in 𝑃. In the 

case that the 𝑃 matrix does not have a full rank; the incomplete or relative views 

may make the variance non-invertible. Walters (2014) provided the following 

conditional distribution for the views:  

𝑃(𝐵|𝐴) ~ 𝑁(𝑄 , 𝛺)     (20) 

𝑃(𝐵|𝐴) ~ 𝑁(𝑃−1𝑄, [𝑃𝑇𝛺−1𝑃]−1)   (21) 

As Walters (2014) pointed out, formula (21) is of no practical use, and no 

evaluation of formula (21) is needed for the BL model. Since 𝑃 can be either 

invertible or non-invertible, formula (21) is difficult to evaluate. However, it turns 

out that formula (21) can be of aid when discussing Bayes Theorem, which we 

will see later in the section. 
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𝑄 +  𝜀 =  [
𝑄1

⋮
𝑄𝑘

] + [

𝜀1

⋮
𝜀𝑘

]    (22) 

𝑄 represents a 𝑘 × 1  vector of the views, and ε is an error term. ε is an 

unobservable, normally distributed random variable with mean 0 and diagonal 

covariance matrix of the views, which is the uncertainty in the views. Recall that 

𝛺  is the diagonal covariance matrix representing the uncertainty of the views for 

the error terms. 𝛺 is diagonal because of the assumption that views are 

uncorrelated and independent. 𝑄 contains information about the weight of the 

views. It may be expressed in terms of expected returns of the assets either in 

absolute or relative form. In absolute form, the views express expected returns of 

an asset. In relative form, the views express the differential expected returns 

between securities. In absence of active views, the model will suggest holding the 

benchmark portfolio with no deviation and active trades. 𝜀 itself is not observable 

and does not enter the model. An error term is still needed, otherwise the investor 

would be 100% confident in all the views. The confidence of the views will be 

expressed as follows: 

𝛺 = 𝑑𝑖𝑎𝑔(𝑃(𝜏∑)𝑃𝑇)    (23) 

Thus, in the most general case, 𝛺 will have this form:  

𝛺 =  [
𝜔1 0 0
0 ⋱ 0
0 0 𝜔𝑘

]     (24) 

Since the error term is unobservable, 𝛺 can be applied to incorporate the error 

term. 𝛺 contains the variances of the error terms, 𝜔, that are connected to the 

views. By inverting 𝛺, a new matrix provides the confidence of the views.  The 

degree of confidence is the standard deviation around the expectation. The views 

that tilt the weights towards the assets are a function of the confidence and 

magnitude about the expected returns from the views. The total adjustment away 

from equilibrium may deviate from the views expressed in 𝑄 due to the associated 

uncertainty. In the case that the investor is absolute certain about a view, the 

diagonal is zero for 𝛺 and adjustment is fully reflected from the views and exactly 

proportional given 100% confidence.  

In the original BL model (Black and Litterman, 1992), the authors did not provide 

instructions for the calculation of the variance in 𝛺. There is no universal 

09982380967336GRA 19502



17 

 

agreement for how 𝛺 can be determined, and the most suitable way to specify 

omega may be context dependent. The most common method is to assume 

proportionality between the variance of the returns and the variance of the views, 

and that the two are independent of each other.  

3.2.5 Bayes Theorem  

The returns calculated from the BL model are a product of the implied 

equilibrium returns and the views of the investor. Both the views and the implied 

equilibrium returns are assumed to be normally distributed. We already defined 

the prior distribution in formula (16) as well as the conditional distribution (21). 

By applying Bayes Theorem on the prior and conditional distribution, we can 

create a new posterior distribution. The posterior distribution is defined as the 

precision weighted average from the prior and conditional estimates. According to 

Walters (2014), the posterior distribution, which can also be referred to as the BL 

master formula, can be defined in the following way:  

𝑃(𝐴|𝐵) ~ 𝑁([(𝜏∑)−1∏ + 𝑃𝑇𝛺−1𝑄][(𝜏∑)−1 +

𝑃𝑇𝛺−1𝑃]−1, [(𝜏∑)−1 + 𝑃𝑇𝛺−1𝑃]−1)    (25) 

Further, under this representation of the BL master formula, Walters (2014) 

provides an alternative representation of the mean returns, ∏̂, and the covariance, 

M, of expression (25) as following:  

∏̂ =  ∏  +  𝜏∑𝑃𝑇[(𝑃𝜏∑𝑃𝑇) + 𝛺]−1[𝑄 − 𝑃∏]  (26) 

𝑀 =  ((𝜏∑)−1 + 𝑃𝑇𝛺−1𝑃)−1    (27) 

It is worthwhile to give a better intuition of how these two equations work such 

that the reader can better understand the model fully. We will first take a closer 

look at equation (26), by presenting two extreme cases. In the first case we will let 

𝛺 → 0, meaning that there is 100% certainty about the views, which transforms 

(26) into the following:  

∏̂ =  ∏  + ∑𝑃𝑇[𝑃∑𝑃𝑇]−1[𝑄 − 𝑃∏]    (28) 

In this scenario where there is no uncertainty, 𝛺 and 𝜏 disappear. 𝜏 disappears 

because the estimated returns will be insensitive to the value of τ. Furthermore, if 

the investor sets a view for every asset, 𝑃 becomes invertible, and the following 

will hold:  
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∏̂ =  𝑃−1𝑄      (29) 

Equation (29) makes sense as if there is no uncertainty about the views, and then 

the expected returns should equal the views. On the other hand, we have the 

scenario in which the investor is not sure about any of the views, such that 𝛺 →

∞. Under this scenario, we will obtain the following mean return equation:  

∏̂ =  ∏      (30) 

The interpretation behind equation (30) is that the expected returns should equal 

the equilibrium returns given that the confidence of the views is very low when  

𝛺 converges toward a high value.  

The posterior variance, 𝑀, is the uncertainty in the posterior mean estimate, and 

not the variance of the returns. Thus, it is the variance of the estimate of the 

posterior mean. To test equation (27) under the two scenarios, we need to rewrite 

it with help from the Woodbury Matrix Identity to get an alternate formula for the 

variance:  

𝑀 =  𝜏∑  −  𝜏∑𝑃𝑇(𝑃𝜏∑𝑃𝑇 + 𝛺)−1𝑃𝜏∑    (31) 

In the case of 100% certainty of the views, that is, 𝛺 → 0, equation (31) will 

simply be 𝑀 = 0, which will create the largest departure from the weights in the 

benchmark portfolio for the assets specified in the views. In the case where the 

investment views have very low confidence, such that 𝛺 → ∞. then equation (31) 

will converge towards 𝑀 =  𝜏∑, i.e. convergence towards the benchmark 

portfolio with no views. Similarly, if the views are weak, the model does not 

depart from the prior (Meucci, 2008).  

3.2.6 The Impact of 𝜏 

The parameter 𝜏 has caused great confusion for many authors and practitioners of 

the BL model due to how the parameter should be expressed and its impact. The 

starting point will be the definition of 𝛺 from expression (23). However, now the 

entire covariance matrix of 𝛺 will be used:  

𝛺 = 𝑃(𝜏∑)𝑃𝑇     (32) 

By substituting expression (32) into formula (26), it is possible to obtain a new 

expression of the mean returns:  

09982380967336GRA 19502



19 

 

∏̂ =  ∏  + (
1

2
) [𝑃−1𝑄 − ∏𝑇]     (33) 

By setting 𝛺 proportional to 𝜏, the latter can be eliminated from equation (33). 

Hence, 𝜏 will be irrelevant for the outcome of the expected returns. However, it 

does not eliminate 𝜏 from the posterior variance formula (27) entirely. It is 

possible to rewrite 𝛺 in a more general form:  

𝛺 = 𝑃(𝛼𝜏∑)𝑃𝑇     (34) 

And rewrite equation (33) to obtain: 

∏̂ = ∏  +  (
1

1+𝛼
) [𝑃−1𝑄 − ∏]    (35) 

By substituting equation (32) into the posterior variance formula (27), the 

following expression will be obtained:  

𝑀 = (
1

2
) 𝜏∑       (36) 

However, 𝜏 is still not eliminated. In the CRM, when setting 𝛺 proportional to 𝜏∑, 

the posterior covariance of returns will depend on 𝜏. There are multiple 

approaches to derive 𝜏. The most common methods are to either use a maximum 

likelihood estimator or the best quadratic unbiased estimator:  

𝜏 =  
1

𝑇
   The maximum likelihood estimator  

𝜏 =  
1

𝑇−𝑘
 The best quadratic unbiased estimator 

𝑇 is the number of samples, and 𝑘 is the number of assets. This method for 

calibrating 𝜏 assumes that the covariance matrix is estimated from historical data, 

and the 𝜏 value will typically be close to zero. Alternatively, one can also 

determine 𝜏 by setting it as the amount invested in the risk-free given the prior 

distribution. In this case, the weights of the portfolio invested in the risky assets 

given prior views are:  

𝑤 =  ∏[𝛿(1 + 𝜏)∑]−1     
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Under this method, the weights of [
1

1+𝜏
] allocated to the risky assets will be 

smaller than suggested by the CAPM. This must hold because the investor, under 

Bayesian Theorem, is uncertain about the estimate of the prior, and do not want to 

be fully invested in the risky assets.   

3.2.7 Limitations of the Black-Litterman Asset Allocation Model 

Like most models, the BL model has its shortcomings and weaknesses. In the 

original BL model, as well as the extensions, the investor is only required to come 

up with their views about the returns of the assets. However, there might be 

difficulties regarding the implementation of the views about the volatility of the 

assets. Instead, the investor is providing inputs about the expectations of expected 

returns by relying on the covariance matrix that utilizes historical and back-ward 

looking data as inputs. The standard, unconstrained BL does not allow the 

investor to create views regarding the volatility. For example, in periods of low 

volatility, the investor might believe that future volatility would be higher, and 

that would be difficult to implement in the model.  

The BL model uses variance as the risk measure, which might not be the universal 

measure of risk. The variance is normally distributed, which means that both the 

upside and the downside have equal importance. An investor who is more 

concerned about losses rather than gains may focus on other measures than the 

variance, as this can provide a false perception of the risk of the portfolio. In that 

case, the focus on the downside risk may have a greater importance.  

Furthermore, the BL model is also sensitive to changes. It is based on the 

Markowitz mean-variance model, which is sensitive to small estimation errors. 

Even though the BL model is less sensitive than the mean-variance model, small 

changes in the inputs can lead to different optimal weightings, though not as 

extreme as for the mean-variance model. Further, the original BL model does not 

give the best possible portfolio with the main objective of maximizing the risk-

adjusted return, but rather the optimal portfolio based on the views.   
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4 Data 

Our research design applies the BL model to equities on the Nordic stock markets 

which consists of Oslo (OSE), Stockholm (OMX), Copenhagen (CSE), and 

Helsinki Stock Exchange (HEX). The Islandic Stock Exchange (ICEX) is 

excluded from the research due to the limitation of data. The sample of the 

securities is limited to the ten largest stocks from each stock exchange (see table 

A1 in the appendix for a full list of the stocks) from January 1997 and held fixed 

until December 2017. This makes the sample tilt towards large-cap stocks. The 

constraints are less limited compared to using a sample of small-stocks only. Due 

to the size effect, fewer analysts follow small-cap stocks than large-cap stocks 

(Desai et al., 2000; Bauman et al., 1998). The choice of the stocks was due to 

simplicity and avoiding issues of singularity regarding the inverse optimization 

that may arise if the stocks are not listed throughout the whole period and 

complexity of structuring the inputs.  

Monthly data were collected from December 1996 to December 2017 from 

Thomson Reuter’s Datastream. The adjusted prices (which adjusts for stock splits, 

dividends etc.) are used to calculate the historical returns of the stocks. However, 

data from 1997 to 2001 was mainly used for the estimation of the inputs. The out-

of-sample period and start of the back testing is conducted from January 2002 to 

December 2017. As the time interval is 20 years, this gives a total of 252 monthly 

observations, which were sufficient for this research design. Furthermore, the 

stock prices are converted to the local currency, NOK, to avoid dealing with 

complications regarding currency risk and hedging strategies. However, Haavi 

and Hansson (1992) found that hedging currency risk between the Nordic stock 

exchanges did not add significant value over long investment horizons. The 

method of conversion was directly done in the Datastream software. The data 

analysis, presentation, and structuring will be managed in the programming 

language R. 
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Figure 1 illustrates the country profile and its market weights of the stocks in the 

portfolio from 2002 to 2017. According to figure 1, the ten largest stocks in the 

Swedish and Finnish stock market dominate the chosen portfolio with 34% and 

44% weighted approximately. The constituents of the portfolio change throughout 

the investment period as the market capitalization of the Finnish stocks reduce in 

half, and Danish stocks more than double in size while the Norwegian stocks 

exhibit little alterations. The Swedish and Finnish ten largest stocks are three to 

four times larger than the ten largest Norwegian stocks. For example, Ericsson 

‘B’, the largest Swedish stock as of January 2002, with a market capitalization of 

NOK 318.35 billion, exceeds the total market capitalization of the Norwegian 

stocks during the same period. This may have some effect regarding the weights 

of the optimal portfolio based on the consensus analyst recommendations and 

diversification.  

Table 1: Intercountry correlation coefficients for the Nordic portfolios 

 
Denmark Finland Norway Sweden 

Denmark 1.000 0.253 0.521 0.532 

Finland  1.000 0.288 0.564 

Norway   1.000 0.565 

Sweden    1.000 
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The results of the correlation coefficients between the market value weighted 

country portfolios in excess of the risk-free rate are exhibited in table 1. If the 

correlation coefficients between the countries are low, then international 

diversification may provide gains through reduction of non-systematic risk in the 

portfolio. The results of the correlation coefficients are far from perfectly 

correlated, but higher compared to the studies of Haavisto and Hansson (1992) 

and Booth et al. (1997). However, these authors use different data and time period 

in their research, which may contribute to the differences in the correlation 

coefficients found in our data.  

To obtain the weights implied by the market portfolio, data for the market 

capitalization of the stocks were obtained. The market capitalization from 

Datastream is defined as the share price multiplied by the ordinary shared issued. 

The 1-month NIBOR is used as the proxy for the risk-free in this context for 

estimating the inputs, as well as the risk-free rate used throughout this paper. The 

risk-free rate was converted from annual to monthly rates. The return series, 

which includes the historical stock returns and risk-free rates, were taken the 

natural logarithm to induce the normality assumption needed for the BL model. If 

not explicitly stated otherwise, “returns” will be referred to as the excess returns 

in what follows. 

Datastream standardizes the recommendations from various brokerage firms and 

systems to numeric investment intervals. The ratings provided by Thomson 

Reuters are classified as follows: a rating of 1 represents a "strong buy", 2 is a 

"buy", 3 is a "hold", 4 is a "underperform", and 5 is a "sell". This allows the 

research design to be flexible for manipulation and adjustments of the 

recommendations in a research setting.  

In total, there are 10,080 data points for each variable, i.e. stock returns, market 

capitalization and consensus analyst recommendations. However, not all stocks 

are rated in every month. For example, Orion and Stora Enso are not given any 

ratings in the sample period, but still included in the portfolio. Total 

recommendations are 9,170 for the 40 stocks with 5,258 changes from January 

1997 to December 2017. Consistent with earlier literature (Stickel, 1995; Elton et 

al., 1986; Stickel, 1995), “buy”-type ratings are more often recommended 

compared to “sell”-type ratings. The ratio between “buy”-type (“strong buy” and 

“buy”) and “sell”-type (“sell” and “underperform”) is 15.4:1. The explanation 
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behind the high ratio might be due the constraint of only large-cap stocks in the 

sample. About 45% of the recommendations in the sample are “buy”, 52% are 

“hold”, and 3% are “sell”. Large stocks tend to be less volatile, more profitable 

than small firms, and have greater coverage. Elton et al. (1986) reports a ratio of 

3.5:1 and Stickel (1995) reports ratio of 6:1, a lot lower than the ratio from the 

stocks in our sample.  

In contrast, all stocks listed on the Nordic stock exchanges that have been given a 

rating between 2002 and 2017 have a ratio of 4.7:1 between “buy”-type and 

“sell”-type ratings. This is more consistent with earlier literature. About 53% 

receives a “buy”-type recommendation, 36% receives “hold” recommendations, 

and 11% receives “sell”-type recommendations. Thus, there might be some 

selection bias in our sample set due to use of large-cap stocks which might be less 

prone to unfavorable recommendations from the analysts.   

Table 2 displays the descriptive statistics of the ten largest stocks under coverage 

from the consensus analysts from 2002 to 2017. About 91% of the stocks are 

under coverage during the sample period and remain stable around the average 

annually except for 2007 where it drops to 87.5%. The average annual rating was 

2.58 and remains stable around the average through the entire investment period. 

The period with the poorest ratings occurred from 2002 to 2006 where the average 

rating was 2.65. The period with most favorable ratings was between 2010 and 

2012 with the average rating of 2.46. The number of average analysts per covered 

stock has been on a steady increase from 2002 to 2017, even after the Great 

Recession.  

The consensus rated the stocks modestly with few ratings in “strong buy” and 

“sell” region. No stocks from 2002 to 2017 were given the most unfavorable 

rating “sell” (5), and only 0.2% of the ratings were “strong buy”. Similar 

distributions of “strong buy” and “sell” ratings were observed for the periods of 

pre- and post-crisis. Instead, more than 95% of the recommendation are 

distributed amongst “buy” and “hold” on average. Interestingly, there were no 

considerable increases in “sell”-type ratings after the Great Recession. 

Furthermore, the consensus was more pessimistic before compared to after the 

financial crisis of 2007-08. 
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Table 2: Descriptive statistics of the consensus analyst recommendations on the 

Nordic stock market 

 

Average 

analysts 

per 

stock 

Average 

rating 

Stocks 

covered 

(%) 

1 

(%) 

2  

(%) 

3 

(%) 

4 

(%) 

5 

(%) 

Buy 

(%) 

Hold 

(%) 

Sell 

(%) 

2002 17.5 2.61 90.6 0.2 36.6 60.9 2.3 0.0 33.3 64.6 2.1 

2003 17.8 2.70 92.5 0.2 34.5 56.1 9.2 0.0 32.1 59.4 8.5 

2004 17.5 2.61 92.5 0.7 38.7 57.4 3.2 0.0 36.5 60.6 2.9 

2005 17.5 2.70 92.5 0.2 26.1 70.7 2.9 0.0 24.4 72.9 2.7 

2006 17.6 2.64 92.5 0.0 34.7 61.0 4.3 0.0 32.1 64.0 4.0 

2007 18.0 2.53 91.5 0.0 44.9 51.2 3.9 0.0 41.0 55.4 3.5 

2008 18.4 2.48 90.0 0.2 52.5 44.4 2.8 0.0 47.5 50.0 2.5 

2009 19.3 2.69 90.0 0.0 33.6 64.1 2.3 0.0 30.2 67.7 2.1 

2010 20.3 2.48 91.7 1.6 50.4 47.6 0.5 0.0 47.7 51.9 0.4 

2011 21.2 2.42 92.7 0.2 57.1 42.7 0.0 0.0 53.1 46.9 0.0 

2012 22.0 2.49 91.5 0.0 49.2 50.8 0.0 0.0 45.0 55.0 0.0 

2013 21.5 2.65 90.0 0.0 33.1 65.5 1.4 0.0 29.8 69 1.2 

2014 20.1 2.64 90.0 0.0 33.8 65.0 1.2 0.0 30.4 68.5 1.0 

2015 20.3 2.61 90.0 0.0 40.3 56.5 3.2 0.0 36.2 60.8 2.9 

2016 20.2 2.64 89.6 0.0 37 61.2 1.9 0.0 33.1 65.2 1.7 

2017 19.7 2.69 87.5 0.0 29.3 66.0 4.8 0.0 25.6 70.2 4.2 

2002-

2007 

17.6 2.63 92.0 0.2 35.9 59.6 4.3 0.0 33.2 62.8 4.0 

2008-

2017 

20.3 2.58 90.3 0.2 41.6 56.4 1.8 0.0 37.9 60.5 1.6 

2002-

2017 

19.3 2.60 90.9 0.2 39.5 57.6 2.7 0.0 36.1 61.4 2.5 

Second column are the average number of analysts providing recommendations per stocks, the 

third column states the average rating given by the analysts, and fourth column is the 

percentage of stocks covered in the investment universe. The individual recommendation 

distributions are given as “strong buy”, “buy”, “hold”, “underperform”, and “sell”. Stocks that 

fall into the sub-portfolios “buy” with recommendation 1 (1 ≤ 𝐴 ≤ 2), “hold” with 

recommendation 2 (2 < 𝐴 ≤ 3) and “sell” (𝐴 > 3).  
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5 Methodology 

This section presents the approach of the methodology for the parameters of the 

BL model using the consensus analyst recommendations and separation into sub-

portfolios. The section will go through covariance-variance estimation technique, 

the choice of 𝜏 and risk-aversion coefficient, the views, and comparative 

benchmark portfolios. 

5.1 Constructing the Black-Litterman Model 

5.1.1 Covariance Matrix 

The choice of covariance matrix estimation is important for fund management and 

can be essential for forecasting returns (Litterman and Winklemann, 1998). BL 

assumes that the expected excess returns are proportional to the covariance-matrix 

of historical returns by a multiple of 𝜏. Black and Litterman (1992) assumed that 

the returns follow a normal distribution. Thus, we will follow the same 

assumptions by imposing normal distribution of the returns by calculating the 

logarithmic returns. The covariance-matrix is estimated based on the rolling 60-

month previous log excess returns of the stocks.3 This method creates a 

covariance matrix for each month from January 2002 to December 2017 with a 

total of 192 covariance-variance matrices. The first covariance-matrix in January 

2002 is derived from the monthly log excess returns from January 1997 to 

December 2001. The second covariance matrix in February 2002 is derived from 

the monthly log excess returns from February 1996 to January 2002, and so on. 

The covariance matrices in the rolling windows are equally-weighted with no time 

decaying weighting.  

5.1.2 Tau 

The scalar 𝜏 is inversely related to the weight from the implied equilibrium excess 

returns. This means that the scalar adjusts the aggressiveness of overweighting or 

underweighting of the stocks based on the views. A higher scalar implies a greater 

divergence from equilibrium excess returns. There has been no agreement to how 

the scalar, 𝜏, should be set. The uncertainty of the mean is lower than the 

uncertainty of returns. Thus, 𝜏 for most application should hold a value close to 

                                                           
3 Shorter windows cause singular matrixes with determinant of 0 that cannot be used in the 

optimization problem. 
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zero (Black and Litterman, 1992; Lee, 2000; Meucci, 2008, Idzorak, 2006). He 

and Litterman (1999) determine the ratio of the error term to the scalar, 𝜔/𝜏, to be 

proportional to the variance of the views, 𝑃𝛺𝑃′, then the value of the scalar 

becomes irrelevant for the posterior returns. Increasing the value of  𝜏 causes 

sizable changes in 𝛺, but would leave posterior returns and the new optimal 

weights estimates unaffected. However, for consistency with earlier applications, 

we choose 𝜏 equal to 0.05, which is in the range of previous literature (Walters, 

2007; Lee, 2000, Blamont & Firoozye, 2003, He & Litterman; 1999). 

5.1.3 Risk Aversion 

To solve the vector of implied excess returns, the risk aversion coefficient is 

needed for the investor, which determines how much of the capital is invested in 

the risk-free and risky assets. Drobetz (2011) assumes the risk aversion of 3 for 

the Dow Jones STOXX of the European indices, Idzorek (2006) estimates the risk 

aversion to be 3.07 using U.S. and emerging markets equities, Szpiro and 

Outreville (1988) estimated the average global risk aversion of 2.89. Following 

previous literature, we use a risk-aversion of 3. A figure of the BL portfolio with 

the risk aversions 2, 2.5, and 3 can be found in the appendix (figure A1). The 

different risk aversions have limited effects on the performance of the BL 

portfolio, but it is evident that a higher risk aversion does generate slightly higher 

returns over the period. This might be explained due to the Great Recession.   

5.1.4 From Recommendations to Views 

This application of the BL model is inspired by the work of He et al. (2013). 

Investors specify views on expected returns that are blended with prior 

information. The model provides a quantitative framework for specifying the 

investor's views into the model to arrive at a new distribution. BL starts from 

market-weighted implied excess rate of returns, where investor's views and 

confidence levels adjust from the equilibrium implied returns. In this research, the 

investor's views are derived from the consensus analyst recommendations 

aggregated from Thomson Reuter's Datastream. To simplify and make the 

consensus analyst recommendations applicable in the research design, the 

rankings are simplified to a value between 1 and 2, which indicates "buy", a value 

between 2 and 3 is a "hold", and a value greater than 3 is a "sell". The assignment 

of new analyst recommendations is consistent with Thomson Reuters' rankings. 
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Furthermore, stocks that are not given an analyst recommendation are allocated a 

value of 2, i.e. hold, as this provides the stock a weighting implied by the market, 

or a BL model without views. The argument for assigning hold rating to stocks 

without consensus recommendations is that it implies a market equilibrium 

weighting with neither overweight nor underweight. This new method of rating 

stocks provides views for all stocks in the portfolio. 

The stock will be allocated in the consensus sub-portfolios if it receives a rating. 

If a stock is assigned a “buy” rating continuously over a period, then it will be 

included in the consensus “buy” portfolio, and only change portfolio if the “buy” 

recommendation is replaced with “hold” or “sell”. The sub-portfolios are 

weighted according to the relative weighting of the stocks with the same 

consensus recommendation. The relative weighting will be applied based on the 

stock’s market capitalization. As more stocks receive the same consensus 

recommendation, the lower will each stock’s weight be in the sub-portfolios. In 

contrary, if only one stock receives a “sell” recommendation, then the “sell” 

portfolio will be 100% invested in that single stock. 

Note the limitations of the consensus analyst recommendations in the optimization 

problem when the recommendations lag or fail to reflect the expected returns of 

the asset classes, especially in the short-term. For example, if the consensus may 

fail to identify sudden increases in the stock prices such as through mergers and 

acquisitions announcements, obtaining new business contracts, etc. the model 

might fail to assign the weights for optimal performance if the consensus does not 

allocate the right recommendation in the right month.  

5.1.5 From Views to Q and P 

To arrive at the relative views, the recommendations must be converted to stock 

returns. Through the conversion, we assume relative percentage overperformance 

(underperformance) for stocks with favorable (unfavorable) recommendations 

compared to the market portfolio. Tracking the historical returns of the three sub-

portfolios allow us to estimate the relative performance of the stocks against the 

market and use it as a parameter to construct the view and pick matrix. The rolling 

estimation periods of 60 months are used to estimate the relative performance of 
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the stocks against the market.4 The results of the rolling estimation windows can 

be found in table 3. The historic excess returns from the rolling estimation 

windows are treated as the relative views in the model as over- or 

underperformance of the stocks relative to the market. For example, the inputs of 

the views in 2002 (2003) are taken from the estimation period of 1997-2001 

(1998-2002). If the relative performance (over the market portfolio) of the “buy”-

portfolio was +1% during 1997-2001 (1998-2002), then 1% would be the view of 

the stocks with a buy recommendation for the months in 2002 (2003). This 

percentage underperformance or overperformance of the stock relative to the 

market portfolio is expressed in 𝑄, i.e. the relative view of the stocks. The past 

performance of the stocks will lead to over- or underweighting of the stocks 

relative to their counterparts. On the other hand, underperformance of the “buy”-

portfolio relative to the market allows the stocks to be subjected to mean-reversal 

over time. 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           
4 These rolling estimation periods are derived by first annualizing the returns, and then rolled over 

fixed 60 months windows. 

09982380967336GRA 19502



30 

 

Table 3: Annualized excess returns of the consensus analyst recommendation 

portfolios and the market portfolio over 5-year rolling estimation windows 

Estimation period 

(January to December) 
Buy Hold Sell Market 

1997-2001 26.69% 1.44% -23.23% 27.46% 

1998-2002 13.35 -14.80 -45.67 11.34 

1999-2003 7.94 -7.17 -35.85 11.02 

2000-2004 -7.66 -7.49 -38.20 -3.53 

2001-2005 -3.84 2.32 -43.98 -0.93 

2002-2006 12.17 8.56 -32.40 9.56 

2003-2007 20.19 14.64 -5.73 17.94 

2004-2008 8.30 -1.81 -18.65 4.61 

2005-2009 8.97 -2.56 -11.01 5.56 

2006-2010 5.90 -0.61 -2.60 5.89 

2007-2011 -5.24 -9.81 0.15 -3.21 

2008-2012 -2.35 -4.32 -2.91 0.64 

2009-2013 13.31 10.62 2.37 15.66 

2010-2014 12.94 13.28 -1.29 15.93 

2011-2015 15.31 7.32 -1.19 12.82 

2012-2016 20.94 11.12 2.05 17.05 

This table represents the annualized excess returns of the three consensus 

recommendation portfolios divided into “buy”, “hold”, and “sell” portfolio over 5-year 

rolling estimation windows. Stocks that fall into the sub-portfolios “buy” with 

recommendation 1 (1 ≤ 𝐴 ≤ 2), “hold” with recommendation 2 (2 < 𝐴 ≤ 3) and 

“sell” (𝐴 > 3).  

 

If the views of the stocks determine the returns to be greater than the returns from 

the market equilibrium, then the BL portfolio tilts towards the outperforming 

stock. The expressed views are compared to the implied excess equilibrium 

returns and establish the expected performance of the portfolios. If the expressed 

views of abnormal performance are higher (lower) than the implied equilibrium 

differential, then the views express an overperformance (underperformance). 
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Thus, the posterior returns are a function of historical performance of the stocks 

through the views. 

𝑄 = [

𝑅𝑝,𝐵 − 𝑅𝑚

𝑅𝑝,𝐻 − 𝑅𝑚

𝑅𝑝,𝑆 − 𝑅𝑚

] 

𝑄 (1 × 3 vector) displays the returns for each view. 𝑅𝑝,𝐵, 𝑅𝑝,𝐻, and 𝑅𝑝,𝑆 are the 

annualized returns of the sub-portfolios, and 𝑅𝑚 is the annualized returns of the 

market. 𝑄 is the annualized returns of the sub-portfolios less the annualized 

returns of the market portfolio. The abnormal returns are then converted back to 

monthly returns. The views in the 𝑄 matches with the assets in the 𝑃-matrix, 

which identifies the stocks in the views. Relative views are applied where the sum 

of the weights of the views are zero. The views need to be fully invested which 

implies that the sum of the weights in 𝑃 are zero (relative view) rather than one 

(absolute view). 

𝑃 = [

𝑊𝑝,1 − 𝑊𝑚,1 −𝑊𝑚,2 …

−𝑊𝑚,1 𝑊𝑝,2 − 𝑊𝑚,2 …

−𝑊𝑚,1 −𝑊𝑚,2 𝑊𝑝,3 − 𝑊𝑚,3

   

−𝑊𝑚,𝑘

−𝑊𝑚,𝑘

−𝑊𝑚,𝑘

] 

𝑃 (3 × 40 matrix) identifies the weights for each view, where 𝑊𝑝,𝑘 determines the 

weighting in each sub-portfolio, and 𝑊𝑚,𝑘 is the weight of the stock relative to the 

market portfolio. First row represents stocks with “buy” recommendations, second 

row represents “hold” recommendations, and third row represents “sell” 

recommendations. To identify the stocks in the model, 𝑃 consists of the market 

capitalization of the stock relative to the market capitalization of other stocks in 

the same portfolio. For example, if stock 1 at any point in time receives a "buy" 

recommendation, then the relative weight of the stock is its market capitalization 

divided by the market capitalization of all the stocks in the “buy” portfolio less its 

weight in the market portfolio. Similarly, if stock 2 receives a “hold” 

recommendation, its relative weight is derived from all the stocks in the “hold” 

portfolio less the market value in the market portfolio. If stock 2 does not receive 

a “buy” recommendation, then its relative weight will be its weight in the market 

portfolio, hence −𝑊𝑚,2. Assuming only stock 1 receives a “buy” 

recommendation, then the value of 𝑊𝑝,1 is 1. Thus, −(∑ 𝑊𝑚,𝑘 − 𝑊𝑚,1
𝑘
𝑖=2 ) equals 

−(1 − 𝑊𝑚,1) and the sum of the row is 0. To achieve the relative performance 

against the market, the optimization processes take long positions in the stocks of 

09982380967336GRA 19502



32 

 

the sub-portfolios and short position in the stocks by their weights in the market 

portfolio. Similar weighting method was adopted by Drobetz (2001). 

The variance of the consensus analyst recommendation portfolio is represented by 

𝑃′Ω−1𝑃. The confidence of the views, omega, is proportional to the variance of 

the prior returns following methods applied by He and Litterman (1999). 

Proportionality of the variance of prior return allows the portfolio to put less 

weight on the relative performance views and deviation from the equilibrium 

market weights when uncertainty across asset returns are high, such as during 

high volatility regimes. When variance levels are low, the confidence of the view 

vectors have more weight and create greater tilts towards the views.  

𝑤 = (𝛿∑)−1 µ̅ 

Pulling the inputs together, a new set of updated, posterior expected returns (1) 

given the views from the consensus analyst recommendations and the sub-

portfolios are obtained. Solving for the updated weights with the posterior returns, 

we can obtain the optimal weights of the stocks in the portfolio.   

𝑅𝐵𝐿 = ∑ 𝑤𝑖
𝑁
𝑖=1 𝑅𝑖Once the new weights are obtained, they are used in the 

calculation of historical excess returns for back testing of the BL portfolio, which 

allows comparison through time and against its benchmark portfolios.  

5.2 Benchmark Portfolios 

The BL model with consensus analyst recommendations are compared against 

five other benchmark portfolios: market,  1/𝑁, buy-and-hold, minimum-variance, 

and mean-variance portfolio. The market-capitalization weighted, or market 

portfolio would be the main benchmark in this study. Transaction costs and taxes 

will be ignored for simplicity. For consistency, the covariance matrix is estimated 

using the historic logarithmic excess returns for the minimum- and mean-variance 

portfolios using the same method applied to the BL model. Similarly, the 

benchmark portfolios are given no constraints regarding shorting. 

5.2.1 Market Portfolio 

The market-capitalization weighted portfolio applies the market capitalization 

weights for the 40 stocks and the weighting of the stocks change according to the 

market capitalization for each month. This could be compared to the investor 
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holding the ten largest stocks, weighted by their market capitalization, from each 

stock exchange without adjusting the weights. This portfolio will act as the market 

portfolio, the main benchmark, when compared against the BL portfolio. 

5.2.2 1/𝑁 

The equal-weighted, often called 1/𝑁, portfolio allocates an equal proportion of 

the weight to the assets: 𝑤𝑡 =
1

𝑁
. There is a total of 40 stocks in this investment 

universe, such that each stock will have a weight of 2.5%. The weights need to be 

rebalanced every month throughout the whole investment period to hold equal 

weighting. The equal-weighted portfolio overweight small-cap stocks and 

underweight large-cap stocks. In general, equal-weighted portfolios have the 

benefits of increasing the weights to smaller stocks in the portfolio, which may 

have higher return prospects than large-cap stocks, but also higher risk.  

5.2.3 Buy-and-Hold  

The weights in the portfolio will be based on the market capitalization of the 

stocks at the beginning of the investment period and would be held throughout the 

end. There will be monthly rebalancing to keep the portfolio weights fixed to the 

beginning weighting. For example, if the market capitalization weight for stock A 

is 2% in January 2002 (or January 2008), the weight will be 2% until December 

2017.  

5.2.4 Minimum-Variance  

The minimum variance portfolio is based on Markowitz’ model, where formula 

(1) and restriction (2) are being applied. The goal of the portfolio is to minimize 

the overall variance of the portfolio based on historical returns. The portfolio will 

produce new weights monthly, which will tend to overweight the low volatility 

stocks compared to the high volatility stocks. The portfolio intends to minimize 

the portfolio volatility without sacrificing returns.  

5.2.5 Mean-Variance  

This portfolio is based on formula (3) and restriction (4). The goal is to maximize 

the Sharpe ratio based on the historical and expected returns, thus risk is weighted 

against expected returns. Despite maximizing the Sharpe ratio, this does not mean 

that the portfolio will necessarily generate high returns, which will depend on the 
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risk taken. The mean of the historical returns of the stocks are used as the proxy 

for the expected and required rate of returns. Thus, for the first investment period 

in January 2002, the mean of each of the stocks historical returns from January 

1997 to December 2001 were used as the expected return. The mean of the 

historical returns from January 1997 to December 2001 where used as the 

required target return, and so on.  

 

6 Performance Analysis and Results 

In this section we will present the results and findings from our studies. The 

performance of the BL portfolio will be evaluated and compared against the 

benchmark portfolio in terms of raw excess returns and performance 

measurements. The investment periods are divided into three separate investment 

periods: pre-financial crisis, post-financial crisis, and overall. The time intervals 

are from January to December between 2002-2007, 2008-2017, and 2002-2017, 

respectively. This may provide a better analysis of the performance of the model 

during the different economic cycles. All else equal, higher performance 

measurements are better for the performance of the portfolio, unless otherwise 

stated. 

6.1 Performance Analysis 

6.1.1 Cumulative Returns 

The cumulative returns measure the aggregate gains or losses of an investment 

over time. Simply the returns of the portfolios are needed to calculate the 

cumulative returns from the start to the end of the investment period.  

𝑅𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 =  Π(1 + 𝑅𝑃) − 1 

where 𝑅𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 is the excess cumulative returns and 𝑅𝑃 is the monthly 

portfolio returns in excess of the risk-free rate.   

An alternative way to compare returns between the portfolios is the annualized 

returns. While the cumulative returns tell the investor how much value has been 

added for the investment period, the annualized return reveals how much the 

investment has gained or lost over specific time periods. The annualized return is 

the geometric average of the cumulative returns for 𝑁 years. 
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𝑅𝐴𝑛𝑛𝑢𝑎𝑙𝑖𝑧𝑒𝑑 =  (1 + 𝑅𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒)
12
𝑁 − 1 

6.1.2 Sharpe Ratio 

The Sharpe ratio is calculated as the excess returns of the portfolio less the risk-

free (𝐸(𝑟𝑃) − 𝑟𝑓) divided by the volatility of the portfolio (𝜎𝑃). The standard 

deviation of the excess returns will be used as the proxy for the volatility. The 

sample average is taken for the returns of the portfolio and the risk-free rate. The 

Sharpe ratio allows the investor to measure the reward-to-volatility trade-off. The 

attraction of the portfolio could be measured by the trade-off between reward and 

risk to examine if the investor is compensated for the risk taken. If the portfolio is 

well-diversified, the Sharpe will be close to the benchmark. The Sharpe ratio 

accounts for the total risk and is appropriate for the risk-adjusted performance of 

non-diversified portfolios because non-systematic risk is included in the risk 

measurement. The higher the value of the measure, the better is the portfolio.  

𝑆𝑃 =
𝐸(𝑟𝑃) − 𝑟𝑓

𝜎𝑃
 

6.1.3 Treynor Ratio 

The Treynor ratio gives the excess return per unit of risk over the systematic risk, 

beta, instead of total risk, standard deviation. The beta is measured for the 

portfolio against a benchmark, which is the market-weighted portfolio of the same 

stocks used in the portfolios. Treynor tend to be useful for well-diversified 

portfolio due to the use of the systematic risk. It could be argued that all the 

portfolios in this study are well-diversified as only a handful of stocks have a 

correlation higher than 0.7, i.e. stocks in the same sector, which are the stocks in 

the financial services industry. According to Solnik (1995), a European 

diversification can be achieved with only 20-40 stocks. The portfolios in our 

research hold 40 stocks and are enough regarding diversification.  

𝑇𝑃 =
𝐸(𝑟𝑃) − 𝑟𝑓

𝛽𝑃
 

𝐸(𝑟𝑃) denotes the expected return of the portfolio, 𝑟𝑓 denotes the risk-free rate, 

and 𝛽𝑃 denotes the beta of the portfolio relative to the market portfolio. Thus, the 

parameter in the numerator is the risk premium, while the denominator is the 
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measure of risk. All risk-averse investors prefer to maximize this value, except for 

when it is negative. A negative value may indicate a negative beta and non-

negative rate of return above the risk-free rate, which may not be considered 

unfavorable for some investors (Reilly & Brown, 2012).   

6.1.4 Information Ratio 

The information ratio (IR) is the residual excess returns of the portfolio compared 

with the residual risk, or the average excess returns per unit of volatility in excess 

returns. The residual excess return is the return not explained by the benchmark, 

but other factors, such as choices and skills of the manager or strategy. Similarly, 

the residual risk is the risk not explained by the benchmark, but risk derived from 

the manager’s portfolio choices. The measure can be used to quantify the 

information available to the manager compared to the public information available 

to the market, hence the name. Using this interpretation, the ratio measures the 

quality of the information discounted by the residual risk in taking the bets on the 

information. Thus, it is particularly useful for the evaluation of the BL model as 

the optimal portfolio is formed around the analysts’ superior information of the 

stocks in the views as analysts tend to incorporate private information into their 

forecasts and recommendations (Chen & Jiang, 2005). IR is useful in determining 

the performance of the portfolios if the value is added through over- or 

underweighting of the securities relative to the benchmark portfolio given the 

same market risk (Goodwin, 1998). In the evaluation, Grinold and Kahn (2000) 

states that an IR of 0.5 is “good”, 0.75 is “very good”, and 1.0 is “exceptional”. 

The IR is expressed as: 

𝐼𝑅 =
𝐸(𝑅𝑃) − 𝐸(𝑅𝐵)

𝜎(𝑅𝑃 − 𝑅𝐵)
  

𝑅𝑃 represents the return on the given portfolio, while  𝑅𝐵 is the return on the 

benchmark portfolio. The IR is also commonly written as the residual portfolio 

return, or alpha (𝛼𝑃), in the nominator and standard deviation of the residual 

return, or the tracking error (𝑒𝑃), in the denominator. 

𝐼𝑅 =
𝛼𝑃

𝜎(𝑒𝑃)
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6.1.5 Jensen’s Alpha 

Jensen’s alpha is the difference between the returns of the portfolio in excess of 

the risk-free rate and the return explained by the market model, or benchmark 

portfolio. The measure explains the value added from the choices a manager 

makes in excess of the returns from the benchmark. If the manager can forecast 

expected returns, or security prices, the intercept, alpha, will be positive (Jensen, 

1968). In contrast, if the manager or portfolio is underperforming the benchmark, 

then the alpha measure will be negative. The term 𝛽𝑃(𝐸(𝑅𝑀𝑡) − 𝑅𝑓𝑡) is the 

market premium determined by the CAPM, and 𝛼𝑃 determines the additional 

return due to the additional choices made by the portfolio manager or strategy. 

Jensen’s alpha does not allow for comparison across portfolios due to the different 

level of risks (Amenc & Le Sourd, 2003). The measure should be used to rank the 

portfolio throughout different periods rather than against the other benchmark 

portfolios. The measure is calculated by the regression equation: 

𝑅𝑃𝑡 − 𝑅𝑓𝑡 = 𝛼𝑃 + 𝛽𝑃(𝑅𝑀𝑡 − 𝑅𝑓𝑡) + 𝜀𝑃𝑡 

CAPM argues that 𝛼𝑃, or the intercept, would be zero for any portfolio. To make 

inferences about the portfolios forecasting abilities the standard error of the 

estimate of the performance measure are obtained. To evaluate the statistical 

significance of 𝛼𝑃, we run the regression above to obtain the t-statistic of the 

regression. The t-statistic of the alpha is estimated as the value of the alpha 

divided by its standard error to test if the alpha of the portfolio is statistically 

different from zero. If the t-statistic is greater than 1.96, then the probability of 

obtaining the alpha through luck is strictly less than 5%. This means that the alpha 

is statistically significantly different from zero.   
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6.2 Empirical Results 

6.2.1 Historic Returns  

 

In raw annualized excess returns, the BL portfolio exceeds their comparatively 

benchmark portfolios throughout the entire period and first sub-period (see figure 

2 above and table A2 in appendix). For the second subperiod, the BL portfolio 

underperformed the market, Min-var and the Mean-var portfolio. The BL 

portfolio experienced the most years with negative returns, a total of six years. 

Further, the BL portfolio fluctuates the most, which may be a result of the 

excessive risk taking in the model. Table A3 (from the appendix) illustrates the 

annualized standard deviation for all the portfolios. It is clear from table A3 that 

the BL portfolio had the highest volatility overall. Meanwhile the Min-var 

portfolio produced the lowest volatility for the three periods, consistent with the 

true intention of the portfolio. 
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Figure 3 displays the cumulative returns over the entire investment period from 

January 2002 to December 2017 for BL portfolio against the benchmark 

portfolios. The BL portfolio yields the highest cumulative return of 303% for the 

entire period, above the market and comparative benchmark portfolios. The Buy-

Hold strategy performs worst with 51% for the entire period, way less than the 

other strategies. The remaining strategies all lies in the interval 170 to 202%. It is 

clear from figure 3 that all the portfolios produced negative returns during the first 

couple of years from 2002 to 2004, but the Buy-Hold portfolio underperformed 

for most of the period. As figure 3 illustrates, the cumulative returns of the BL 

portfolio lie above the market and peers in most of the years. Furthermore, 1/𝑁 

portfolio produced similar cumulative returns compared to the comparative 

benchmark portfolios. This may indicate that simple, naïve diversification models 

such as the 1/𝑁 is able to generate returns similar or better than optimal portfolios 

(DeMiguel, 2007).   
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Figure 4 exhibits the first subperiod, or the pre-financial crisis period, from 2002-

2007. The period can be considered a bull market, as there were no major 

recessions during 2002 to mid-2007. The BL portfolio exhibits higher raw excess 

returns than the market portfolio and its peers, producing a cumulative return of 

123% for the period. The Buy-Hold portfolio is still the worst performer with a 

cumulative return of 2%. Figure 4 also shows that while the Min-var, Mean-var, 

and the market portfolio generate cumulative returns in the range of 48 to 53%, 

the 1/𝑁 portfolio improves, producing a cumulative return of 79%. At least 

during the first bull run, the BL portfolio with the consensus analyst 

recommendations performed sufficiently compared to the benchmark portfolios. 

The results are consistent with the findings of He et al. (2013) in respect of the 

same investment period.  
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Figure 5 displays the second subperiod from 2008 to 2017 that includes the start 

of the Great Recession. All the portfolios start off with negative returns for the 

first few months of 2008 due to the financial crisis. On the other hand, the Buy-

Hold portfolio outperformed the other portfolios, returning 170%. The great 

returns of the Buy-Hold portfolio during the start of 2017 can be explained by 

multiple stocks achieving more than 10% returns during March 2017. The 1/𝑁 

portfolio is now the worst performer with a cumulative return of 61%. The BL 

portfolio generates a cumulative return of 80%, performing worse than the market 

portfolio during the last sub-period.  

The optimal BL portfolio calls for high levels of standard deviation in all periods 

compared to its peers. Overall, the standard deviation was 30.2% compared to the 

market of 19.0%. The risk is mostly non-systematic as the systematic risk, beta, is 

0.93 and less than 1.0, for the overall investment period. This can be explained by 

the unconstrained nature of the BL model where there were not imposed 

constraints on shorting.  

6.2.2 Ratios and Performance Measures 

To measure and evaluate the risk-adjusted returns from the portfolios, we can use 

the ratios introduced above (see table 4 below for the results). The BL portfolio 

did not achieve higher risk-adjusted returns than the comparative benchmark 

portfolios, except for the market portfolio. The total Sharpe ratio across the 

investment period was 0.30, and only higher than the Buy-Hold portfolio of 0.10. 
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Prior the financial crisis, the BL model and the Market portfolio achieved 

annualized Sharpe ratio of 0.46 and 0.36, respectively, but underperformed 

compared to the other benchmark portfolios. The BL portfolio did well before 

2011 when the Sharpe ratio was higher than Min-var portfolio and Mean-var 

portfolio 7 out of 10 years from 2002 to 2011. The poor risk-adjusted results 

could be explained by the high volatility and excessive risk-taking of the BL 

portfolio, as shown by the significantly higher standard deviation employed by the 

BL portfolio compared to the benchmark portfolios. Overall, the Min-var portfolio 

produces the highest Sharpe ratios among the comparative portfolios, and the BL 

portfolio underperforms the market for the entire investment period in terms of the 

Sharpe ratio. 

Similarly, the Treynor ratio of the BL portfolio was lower compared to the Mean-

var and Min-var portfolio. However, this time, the BL portfolio achieves a higher 

total Treynor ratio than the 1/𝑁 and Buy-Hold portfolios. According to the 

Treynor ratio, the BL portfolio did not provide the investor with compensation for 

taking on additional investment risk compared to the Mean-var and Min-var 

portfolio. Naturally, taking on additional risk would increase the beta, which again 

reduce the value of the Treynor measure. Furthermore, the values of the Treynor 

ratio is consistent with the other performance measures in the sense of more 

positive results before than after the 2007-08 financial crisis. The results of the 

Treynor ratio confirms with the notion of excessive risk-taking of the BL 

portfolio.    

Beta5 of the BL portfolio was 0.93 during the overall investment period, close to 

taking the same systematic risk as the market portfolio. 1/𝑁, Buy-Hold, Min-var, 

and Mean-var have a beta of 0.90, 0.74, 0.33, and 0.33, respectively. The 

information ratio rewards portfolios that take on less risk than the market with a 

higher information ratio (Goodwin, 1998). Furthermore, the Goodwin found that 

the top 25% performers achieve an IR of 0.40 of the market-oriented large-cap 

active money managers and regarded as exceptional according to Grinold and 

Kahn (1999) before the Great Recession. The BL portfolio produces the highest 

IR of 1.13 through the first sub-period, and overall. This implies that the BL 

                                                           

5 Beta is derived from CAPM using formula 𝛽𝑝 =
𝐶𝑜𝑣(𝑟𝑝,𝑟𝑚)

𝑉𝑎𝑟(𝑟𝑚)
, where 𝑟𝑝 denotes the excess 

returns of portfolio 𝑝, and 𝑟𝑚 denotes the excess returns of the market portfolio. 
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portfolio achieves higher abnormal return per unit of non-systematic risk with 

greater diversification compared to holding the market portfolio. During the 

second subperiod, most of the benchmark portfolios underperform the market 

with negative values of IR, meaning negative alpha values.  

Alpha of the BL portfolio during pre-crisis and post-crisis, and overall were 0.07, 

-0.008, and 0.02, respectively. Similarly, the other benchmark portfolios decline 

in their alpha measures after the financial crisis. The test statistic of the BL 

portfolio exceeds 1.96, the critical value at the 5% significance level, and we can 

say that the alpha of the BL portfolio is different from zero and statistically 

significant in the period of 2002-2007, but statistically insignificant for 2008-2017 

and overall. This implies that the choices made by the consensus may have 

investment value for the portfolio, consistent with the IR before the Great 

Recession. The results of the ratios are consistent through the investment periods 

in the sense that the BL portfolio performs at its best prior to the 2007-08 

financial crisis.  

Alternatively, the statistical significance can be tested by performing the two-

tailed t-test where the null hypothesis is that Jensen’s alpha is zero. The Jensen’s 

alpha is significant if the null hypothesis can be rejected, i.e. the investment 

strategy or portfolio outperforms the benchmark. Jensen’s alpha for the BL 

portfolio is large and significant at the 5% in the pre-crisis era of 2002-2007. 

Comparatively, its alpha is the greatest compared to the peers. However, the 

measures are not so large nor statistically significant in the post-crisis era and the 

overall investment period. Intuitively, the BL portfolio is generating excess 

returns more than the required return that might be explained by the reverse 

optimization of the model and predictability skills of the consensus analyst 

recommendations.  

Even though the Mean-var and Min-var portfolios allow for short-selling as well, 

they do yield significantly better risk-adjusted returns than the BL portfolio. This 

can be explained by the fact that these two models have constraints with respect to 

the risk taking due to how they are constructed. Thus, the two models can provide 

better risk-adjusted returns, but in terms of raw excess returns the BL portfolio 

outperforms them. 
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The BL portfolio performs poorly during and after the 2007-08 financial crisis as 

it experiences the longest period of drawdown compared to the benchmarks. This 

might imply that the consensus recommendations were too optimistic regarding 

the forecasts of the stocks which would cause the BL portfolio to tilt excessively 

in favor of stocks with buy-type recommendations in alignment with the views. 

This will cause overweight of stocks that would otherwise would perform poorly, 

and have a weighting not suggested by the market equilibrium. The average 

consensus analyst recommendations change before, during, and after the Great 

Recession. Observing the build-up to the financial crisis from the bottom of post-

dotcom crisis of August 2002 to August 2008, the average consensus analyst 

rating was 2.63. From the top to the bottom of the financial crisis, the average 

recommendation was 2.42. Accordingly, this suggests that analysts were more 

bullish during the financial crisis than the build-up to the financial crisis. 

Furthermore, the average recommendation after the financial crisis between 2008 

and 2017 was upgraded to 2.58 (from table 2) suggesting that the consensus may 

have become more optimistic post- compared to pre-crisis. This may indicate that 

“buy”-type recommendation should have been “hold”-type, and “hold”-type 

should have been “sell”-type, as there was no sell (5) and very few underperform 

(4) recommendations throughout the investment period. 

Consistent with Baret et al. (2001) and Mikhail et al. (2004), equity analysts 

covering the Nordic stock markets are reluctant to use the two negative ratings. 

The ratio between “buy”-type and “sell”-type recommendations is large. The cost 

of issuing sell recommendations is greater than buy recommendations causing the 

latter to be more favorable for the analysts. Pratt (1993) argues that sell 

recommendations can harm the brokerage firm’s investment banking relationships 

and are discouraged by them, and the flow of information through executives and 

investment contacts can be cut off from sell recommendations. The conflict of 

interest is present from unfavorable ratings. Furthermore, sell recommendations 

are less common and more visible with asymmetric costs with the wrong 

recommendation compared to favorable ratings. This may suggest that 

underperforming stocks may not be given the appropriate recommendation or 

downgrade which causes the model to allocate wrong weights to the stocks. 
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Table 4: Annualized Sharpe ratio, Treynor ratio, information ratio, and 

Jensen’s alpha for the portfolios divided into pre- and post-crisis, and 

overall 

Year BL 1/N Buy-Hold Min-var Mean-var Market 

Sharpe ratio       

2002-2007 0.46 0.61 0.01 0.74 0.70 0.36 

2008-2017 0.20 0.24 0.36 0.58 0.50 0.39 

2002-2017 0.30 0.36 0.10 0.64 0.56 0.38 

Treynor 

ratio 

      

2002-2007 0.45 0.49 0.02 0.94 0.85  

2008-2017 0.25 0.17 0.39 0.67 0.57  

2002-2017 0.34 0.26 0.12 0.75 0.66  

Information 

ratio 

      

2002-2007 1.13 1.10 -1.07 0.13 0.08  

2008-2017 -0.18 -1.37 0.46 -0.10 -0.31  

2002-2017 0.28 -0.12 -0.7 -0.01 -0.16  

Jensen’s 

Alpha 

      

2002-2007 0.07 

3.67 

0.05 

6.62 

-0.04 

-2.24 

0.06 

7.77 

0.05 

7.20 

 

2008-2017 -0.00 

-0.08 

-0.02 

-4.68 

0.04 

1.87 

0.04 

5.31 

0.03 

4.01 

 

2002-2017 0.02 

1.17 

0.00 

0.65 

-0.03 

-1.45 

0.05 

6.17 

0.04 

5.11 

 

This table represents the comparable ratios and alpha annualized for the different 

portfolios in the three investment periods. For the Treynor and information ratio, as well 

as the alpha, the market portfolio is used as the benchmark, and thus does not get a value. 

To get the annualized Treynor and information ratios, the monthly ratios for the periods 

are multiplied with the square root of 12. For the annualized Sharpe ratio, the annualized 

mean excess returns are divided by the annualized monthly standard deviations of the 

excess returns. To get the annualized alpha, see section 6.1.5. The numbers below 

Jensen’s alpha are the t-statistic. See appendix for the annualized yearly Jensen’s alpha, 

Sharpe, Treynor, and information ratios. 

 

09982380967336GRA 19502



46 

 

6.2.3 Sub-Portfolios of the Consensus Analyst Recommendations 

 

Figure 6 illustrates the three sub-portfolios and the market portfolio for the overall 

investment period. The sub-portfolios for “buy”-type, “hold”-type, and “sell”-type 

recommendations are value weighted, where each stock in each portfolio are 

given a weight according to the peers in with the same type of recommendations. 

The portfolio with “buy”-type recommendations overperforms the market from 

2002 to 2007 and underperforms afterwards, consistent with the performance of 

the BL portfolio. The “hold” portfolio underperforms the market portfolio in all 

periods. Stocks with “buy”-type recommendations pulls the average returns of the 

market portfolio upwards, while the analysts allocate too optimistic ratings for the 

stocks in the “hold” portfolio. The “sell” portfolio has negative cumulative returns 

and never recovers. In some periods, stocks are not allocated sell-type 

recommendations at all, which caused the returns to become flat and never 

recovers. This is seen in the period between January 2010 and December 2013, 

which also is the period where the average ratings were the most optimistic and 

the BL portfolio underperformed the benchmark portfolios. This further supports 

the argument that analyst recommendations added less economic value to the BL 

model in the post-crisis compared to the pre-crisis period. 

Overall, the BL portfolio outperformed the other portfolios in raw excess returns 

from 2002 to 2017 and overall, but it comes at the price of excessive risk-taking. 

The results were consistent with the findings from He et al. (2013) when 

implemented during the same period. However, the model weakened after the 
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financial crisis when the characteristics of the consensus analyst recommendations 

changed, and the portfolio underperformed relative to its peers. All the 

performance measures show that the BL model with the consensus analyst 

recommendations are not able to generate higher risk-adjusted returns compared 

to the market and the alternative benchmark portfolios in all periods. One 

explanation for the higher volatility of the BL portfolio compared to the other 

portfolios is due to its leveraging because of lack of constraints on the portfolio. 

However, the consensus analyst recommendations may contribute positively to 

the construction of an optimal portfolio in a regime of less optimistic view of the 

market.  

 

7 Conclusion 

In this thesis we have implemented the BL model on the Nordic stock markets. 

The portfolio optimization processes were conducted on the ten largest stocks on 

each of the Nordic stock markets from January 2002 until December 2017. The 

consensus analyst recommendations for the stocks are used as input for the 

“views” in the BL portfolio to divide the stocks into “buy”, “hold”, and “sell” sub-

portfolios. The portfolio of the BL model was compared against benchmark 

portfolio including the market, 1/𝑁, buy-and-hold, mean-variance, and minimum-

variance portfolio. Performance measures were applied to evaluate the risk-

adjusted returns of the portfolio against its peers. The research and back testing of 

the portfolios were divided into three periods of 2002-2007, 2008-2017 and 2002-

2017 to test the performance during different market environments.  

In raw excess returns, the BL model outperforms the market and benchmark 

portfolios overall and before the Great Recession but underperforms in the period 

of 2008 to 2017 in terms of cumulative and annualized returns. This may be due 

to non-alignment between the performance of the stocks and the consensus 

analyst recommendations. After 2008 the average consensus analyst 

recommendation was higher than before the financial crisis. In regards of risk-

adjusted returns, the BL portfolio has mixed results regarding its performance. 

The performance is by a large extent superior between 2002 and 2007 compared 

to 2008 and 2017, where Sharpe, Treynor, and information ratio are higher. 

Comparatively, the risk-adjusted performances are lower against the benchmark 
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portfolios. On the other hand, its information ratio may suggest that there could be 

information in the analyst recommendations that could assist the decision-making 

regarding the optimization processes. 

In sum, the unconstrained BL portfolio using consensus analyst recommendations 

can generate high excess returns, but at the cost of high volatility. This is 

especially clear after recessions, where the BL portfolio tend to underperform the 

other portfolios, suggesting that the analyst recommendations are too optimistic. 

However, there is evidence that the consensus analyst recommendation does 

indeed add investment value for the BL portfolio, as the BL portfolio yield both a 

positive alpha and information ratio in the performance evaluation.  

 

8 Further research 

The BL model was purposely built for asset allocation, and the most common 

application of the model was with country and industry sector allocations. It might 

be interesting to test He et al. (2013)’s approach using countries and the 

aggregated average consensus analyst recommendations as a proxy for the views 

of the countries. That approach would reduce the number of the assets in the 

model as well as potential estimation errors.  

Furthermore, different choices regarding the parameters could yield different 

results. The covariance-variance matrix could be estimated using different 

approaches such as with time-decay or expanding matrix. The confidence of the 

views (Ω) could be estimated using Idzorek (2014)’s approach with implied 

confidence of views. It might also be interesting to test for no shorting constraint 

to inspect whether the constrained BL model would improve the risk-adjusted 

returns due to lower risk-taking.  
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Appendix 
 

 

 

Table A1: Company names and tickers 

Company Ticker 

DNB DNB 

NORSK HYDRO NHY 

ORKLA ORK 

STOREBRAND STB 

ATEA ATEA 

SCHIBSTED 'A' SCHA 

BONHEUR BON 

TOMRA SYSTEMS TOM 

PETROLEUM GEO SERVICES PGS 

STOLT-NIELSEN SIN 

NORDEA BANK NDA 

VOLVO 'B' VOLVB 

SANDVIK SAND 

SWEDBANK 'A' SWEDA 
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ERICSSON 'B' ERICB 

SVENSKA HANDBKN. 'A' SHBA 

HENNES & MAURITZ 'B' HMB 

SEB 'A' SEBA 

INVESTOR 'B' INVEB 

SKANSKA 'B' SKAB 

NOVO NORDISK 'B' NOVOB 

DANSKE BANK DANSKE 

COLOPLAST 'B' COLOB 

CARLSBERG 'B' CARLB 

AP MOELLERMAERSK 'B' MAERSKB 

TDC TDC 

WILLIAM DEMANT HLDG. WDH 

KOBENHAVNS LUFTHAVNE KBHL 

FLSMIDTH & CO. 'B' FLS 

CARLSBERG 'A' CARLA 

NOKIA NOKIA 

SAMPO 'A' SAMPO 

UPMKYMMENE UPM 

METSO METSO 

STORA ENSO 'A' STEAV 

KEMIRA KEMIRA 

OUTOKUMPU 'A' OUT1V 

RAISIO RAIVV 

ORION 'A' ORNBV 

STORA ENSO 'R' STERV 

The table represents the different company names of the stocks 

that were used in the thesis, and their respective tickers. Some 

of the companies have several share groups, where the letters 

‘A’, ‘B’, and ‘R’ represents which of the share groups were 

used.  
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Table A2: Annualized returns of the BL and benchmark portfolios 

Year BL 1/N Buy-Hold Min-var Mean-var Market 

2002 -23.3% -31.1% -34.7% -8.4% -15.4% -38.3% 

2003 -7.2 36.7 -6.0 5.4 5.2 26.8 

2004 67.8 24.2 17.7 8.7 9.4 19.9 

2005 47.5 27.6 38.9 13.1 16.5 26.7 

2006 65.4 28.6 30.3 12.2 13.1 21.9 

2007 -23.3 -6.5 -22.2 15.3 18.0 2.2 

2008 -51.2 -46.8 -64.1 -22.4 -23.8 -38.3 

2009 42.3 42.6 25.5 9.2 7.4 25.6 

2010 12.0 25.7 1.3 7.7 7.5 28.7 

2011 -11.7 -25.6 -24.3 -8.0 -8.7 -23.6 

2012 16.6 19.8 33.0 24.3 22.4 23.4 

2013 18.6 23.5 20.6 16.7 14.8 35.9 

2014 34.2 14.0 6.9 30.0 28.6 24.5 

2015 26.3 6.8 65.8 9.2 6.2 13.6 

2016 -10.5 8.3 10.5 4.5 9.0 -3.7 

2017 25.3 16.1 37.7 8.1 6.0 16.9 

2002-2007 14.3 10.2 0.3 7.4 7.2 6.8 

2008-2017 6.1 4.9 10.5 6.9 5.9 7.4 

2002-2017 9.1 6.8 2.6 7.1 6.4 7.1 

This table represents the annualized (from monthly) excess returns for all the portfolios. See 

section 6.1.1 for an explanation as to how to annualize the returns. The first 16 rows show 

the annualized yearly excess returns, while the three last rows show the annualized excess 

returns for three different entire periods. 
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Table A3: Annualized standard deviation of the BL and benchmark portfolios 

Year BL 1/N Buy-Hold Min-var Mean-var Market 

2002 33.4% 18.6% 31.1% 6.5% 7.3% 25.0% 

2003 33.9 14.0 24.2 12.6 12.4 11.8 

2004 29.2 17.6 13.0 9.4 9.4 24.2 

2005 17.1 11.1 23.1 7.0 7.0 9.0 

2006 30.8 17.7 12.8 15.7 15.3 18.3 

2007 34.8 15.2 21.2 5.7 5.5 15.2 

2008 42.6 27.8 44.4 13.2 12.9 25.2 

2009 45.5 29.6 29.8 13.9 15.2 27.2 

2010 27.5 12.0 17.3 12.8 12.7 11.6 

2011 17.4 18.9 15.1 9.8 9.3 20.0 

2012 7.1 23.6 26.8 9.0 9.1 22.8 

2013 12.7 13.1 9.0 9.6 9.7 13.5 

2014 25.7 15.9 12.7 14.1 14.4 15.3 

2015 36.4 16.5 40.9 10.9 10.9 17.4 

2016 29.6 13.0 12.8 11.4 12.4 12.4 

2017 29.2 9.3 27.7 9.0 8.7 9.9 

2002-2007 31.0 16.9 22.4 10.0 10.3 19.0 

2008-2017 29.8 20.0 29.4 11.8 12.0 19.0 

2002-2017 30.2 18.8 25.7 11.1 11.3 19.0 

This table represents the annualized (from monthly) standard deviations for all the 

portfolios. To get the annualized standard deviations, the monthly standard deviations are 

multiplied with the square root of 12. The first 16 rows show the annualized yearly standard 

deviations, while the three last rows show the annualized standard deviations for three 

different periods of before and after the 2007-08 financial crisis, and overall.   
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Table A4: Annualized yearly Treynor ratio for the different portfolios  

Year BL 1/N Buy-Hold Min-var Mean-var 

2002 -0.336 -0.708 -0.644 -5.625 -11.816 

2003 -0.047 0.499 0.242 0.072 0.070 

2004 0.625 0.354 0.360 0.318 0.341 

2005 0.439 0.288 0.301 0.486 0.523 

2006 0.435 0.304 0.604 0.204 0.223 

2007 -0.143 -0.068 -0.261 0.666 0.788 

2008 -0.339 -0.461 -0.858 -0.621 -0.669 

2009 -27.806 0.404 0.489 0.521 0.350 

2010 0.072 0.271 0.013 0.202 0.192 

2011 -0.146 -0.275 -0.580 -0.338 -0.390 

2012 0.783 0.196 0.387 1.260 1.097 

2013 0.258 0.251 0.354 0.345 0.296 

2014 0.244 0.141 0.096 0.436 0.411 

2015 0.283 0.075 0.390 0.215 0.141 

2016 -0.064 0.089 0.142 0.085 0.188 

2017 0.132 0.196 0.454 0.127 0.101 

This table represents the annualized yearly (from monthly) Treynor ratio for the 

different portfolios. The market portfolio is used as the benchmark when 

computing the Treynor ratio, therefore it is not listed with its own column. 

Excessively high Treynor ratios are explained by low betas which cause the values 

to scale up.  
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Table A5: Annualized yearly Information ratio for all the portfolios  

Year BL 1/N Buy-Hold Min-var Mean-var 

2002 0.503 0.348 0.117 1.174 0.888 

2003 -0.834 0.295 -0.773 -0.751 -0.762 

2004 1.131 0.134 -0.077 -0.366 -0.342 

2005 0.668 0.029 0.445 -0.464 -0.349 

2006 1.347 0.309 0.367 -0.349 -0.322 

2007 -0.513 -0.266 -0.614 0.532 0.647 

2008 -0.233 -0.188 -0.504 0.568 0.518 

2009 0.323 0.386 -0.003 -0.596 -0.635 

2010 -0.517 -0.131 -1.181 -1.143 -1.153 

2011 0.494 -0.074 -0.024 0.692 0.652 

2012 -0.263 -0.099 0.230 0.032 -0.040 

2013 -0.705 -0.498 -0.654 -1.016 -1.113 

2014 0.238 -0.339 -0.629 0.180 0.131 

2015 0.354 -0.298 1.667 -0.177 -0.292 

2016 -0.167 0.467 0.519 0.289 0.446 

2017 0.191 -0.032 0.730 -0.335 -0.418 

This table represents the annualized yearly (from monthly) information ratio for 

all the portfolios. The market portfolio is uses as the benchmark and is therefore 

not included.  
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Table A6: Annualized yearly Jensen’s alpha 

Year BL 1/N Buy-Hold Min-var Mean-var 

2002 0.008 -0.013 -0.010 -0.006 -0.013 

2003 -0.033 0.012 0.002 -0.010 -0.010 

2004 0.028 0.007 0.005 0.002 0.003 

2005 0.012 0.001 0.003 0.005 0.006 

2006 0.019 0.005 0.013 -0.000 0.000 

2007 -0.021 -0.007 -0.021 0.011 0.013 

2008 0.005 -0.010 -0.044 -0.006 -0.008 

2009 0.037 0.010 0.011 0.004 0.002 

2010 -0.023 -0.000 -0.017 -0.001 -0.001 

2011 0.007 -0.003 -0.013 -0.001 -0.002 

2012 0.008 -0.002 0.009 0.014 0.013 

2013 -0.004 -0.006 0.000 0.000 -0.001 

2014 0.000 -0.007 -0.007 0.009 0.008 

2015 0.013 -0.004 0.028 0.002 0.000 

2016 -0.001 0.009 0.010 0.005 0.009 

2017 -0.003 0.001 0.018 -0.001 -0.002 

This table represents the annualized (from monthly) yearly alphas for all the 

different portfolios. The market portfolio is used as the benchmark portfolio for 

all the portfolios and is therefore not represented in its own column.   
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