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Abstract 

This thesis investigates the value drivers of wind and solar energy stocks. 

Through a lag-augmented vector autoregressive model, we test the impact of 

shocks to interest rates, oil prices and technology stocks on the stock performance 

of the two renewable energies. The study uses Granger causality tests, impulse 

response functions and variance decomposition in order to determine the 

relationships. The study is conducted before and after the Great Recession. The 

results show differences from the first period to the second, indicating that 

increases in technology stocks lead to increases in wind and solar stock prices in 

the pre-crisis period. This relationship is almost absent in the post-crisis period. 

Oil prices proves only to be weakly significant in the period after the crisis, and 

changes in interest rates are, surprisingly, not significant to the performance of the 

renewables in neither of the two periods. Our study presents findings on wind and 

solar energy stock prices, which contrast from previous research that investigated 

characteristics of renewable energy stock prices as a whole.     
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1. Introduction  

1.1. Problem description 

The development of innovative and sustainable ways of meeting the world’s 

increasing energy needs gives rise to a global energy transition. In recent years, 

the shift from fossil fuels towards renewable energy sources has accelerated 

worldwide. Climate concerns, advancements in renewable energy technologies 

followed by their rapidly falling costs are paving the way for this transition. New 

markets are created, billions of dollars are invested into renewables and policy 

makers are encouraging and facilitating the transition. There is nearly a global-

consensus that the renewable energy sector will strengthen its position in the 

world economy in the coming decades, becoming one of the most important 

drivers of sustained economic growth and development (IRENA, 2017). 

Understanding the economic and financial mechanisms in this sector is thus of 

high importance.     

A handful of studies have addressed the question of what variables affect the stock 

prices of alternative energy companies. Inspired by these studies, we dig deeper 

into the world of renewables and seek to find what drives the stock prices of 

companies operating in the two sectors of the most rapid growing energy sources 

among them: the wind and solar energies. The rationale of stripping down the 

renewable energy stocks into wind and solar stocks is easy: The two energy 

sources have played minor roles in the upcoming of the renewable energy era 

(early on dominated by hydro and bioenergy), but are now becoming the main 

drivers of renewable energy growth (Frankfurt & School-UNEP, 2017). How 

these stocks perform and what drives their performance is yet to be investigated in 

the research literature of renewable energy stocks. We want to fill this gap 

through a vector autoregressive (VAR) model, where we aim to detect causal 

relationships between the stock prices of wind and solar companies, and some 

hypothesized variables. More specifically we want to answer the question:  

What are the impacts of changes in oil prices, interest rates and technology stock 

prices to the stock prices of companies operating in the wind and solar sectors?  

In order to address the research question, we will outline theory and previous 

studies that have been conducted on the performance of alternative energy 
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companies. Our thesis will hopefully contribute to a better understanding of the 

price dynamics in the wind and solar sectors. This information is important to 

investors holding wind and solar stocks in their portfolios, or for those who want 

to invest in these companies. Policy makers also need to be aware of what factors 

influence the wind and solar stocks, so that they can implement effective 

instruments in order to stimulate the transition from fossil fuels to alternative 

energy sources. Furthermore, it could be of high interest to policy makers to know 

whether they should treat the different renewables all in the same way or not.  

1.2. Motivation 

According to a wide variety of measures, as for instance growth in new added 

capacity and growth in investments, renewable energy has become the fastest 

growing energy source. Especially in the electric power industry, renewables are 

growing at high rates outperforming the conventional energy sources. A report 

written by the International Renewable Energy Agency (IRENA, 2017) shows that 

the current share of renewable energy in final energy consumption
1
 stands at 

18.3%. It is estimated that in the most optimistic scenario this share will increase 

to 36% by 2030, while the most pessimistic scenario shows a share of 21% by the 

same year.  

As argued above, the growth in renewables is especially prevalent in wind and 

solar power. International Energy Agency (IEA, 2017a) estimates that wind and 

solar together will represent more than 80% of global renewable energy capacity 

growth the next five years. These are by far the two most popular renewable 

energy sources among investors and in 2015, 90% of all investments in renewable 

energy were in wind and solar power (IRENA, 2017). Technological 

advancements have led to decreased production costs. The decline in costs has 

especially been large and rapid for solar photovoltaic (PV) and onshore wind 

energy. Since 2010, the solar PV costs have halved (IRENA, 2017), whereas the 

costs of generating power from onshore wind have fallen by around a quarter 

                                                 

1 Final energy consumption can be defined as the total energy consumed by end users. It is the energy, which 

reaches the final consumer’s door including all energy users such as industry, transport, agriculture and 
households. It excludes the energy used by the energy sector itself.  
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(IRENA, 2018a). This has led to the two energy sources becoming competitive 

with conventional technologies in power markets in several countries.  

Solar power is defined as the conversion of energy from sunlight into electricity. 

Broadly spoken, there exist two main solar power technologies: photovoltaic (PV) 

and concentrated solar power (CSP). The former is by far the largest representing 

more than 98% of all solar power in the world (IEA, 2017c). The majority of 

companies in the solar index we investigate in this thesis operate within the PV 

market. In 2016, solar PV additions rose faster than any other fuel for the first 

time. The expansions accounted for a 50% increase from the previous year (IEA, 

2017b), and were mainly led by Chinese companies. The IEA (2017b) expects 

solar PV to represent the largest annual energy capacity additions the next five 

years, reaching a total installed capacity of 740 GW by 2022. As a comparison, 

this is more than the combined total power capacities of India and Japan today. 

China will continue to lead future solar growth accompanied by the US and India.  

Wind power, which is the conversion of airflow through wind turbines into 

electric power, can also be divided into two main technologies: onshore- and 

offshore wind energy. While the former is a more mature technology than the 

latter, both technologies will strengthen their positions in the world’s energy mix. 

According to the IEA (2017d), onshore wind electricity generation will increase 

by 80% during 2017-2022. As for the offshore wind, which has been less 

developed and more difficult to construct and maintain, the technological 

advancements accompanied by cost reductions will lead to more than a doubling 

from today’s levels by 2022 (IEA, 2017b). In the wind power sector, China and 

the European Union are expected to lead the growth in the coming years.  

As the growth in wind and solar energy increases, the sectors will become more 

dependent on private investors (Wüstenhagen & Menichetti, 2011). For several 

years, the sectors received large amounts of governmental subsidies such as feed-

in-tariffs
2
, and green certificates

3
. However, as argued in UNEP (2009), 

                                                 

2 A feed-in-tariff is an economic policy created to promote and accelerate active investment in renewable 

energy. Feed-in-tariffs usually include three key provisions. First is guaranteed grid access. Second, they offer 

long-term contracts, typically 15-25 years. Third, they offer cost-based purchase prices meaning that energy 

producers are paid in proportion to the resources and capital expended in order to produce the energy.  
3 A green certificate is a tradable commodity proving that certain electricity is generated using renewable 

sources. The certificates are issued and traded mainly because of governmental policies, which require 
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unsubsidized wind and solar power can now provide the lowest costs of electrical 

power in an increasing number of countries. Increased popularity and 

developments in “green investing” is helping this change to take place. Green 

investing includes investments that focus on environmentally conscious business 

practices, hereunder investments in alternative energy sources. As argued in the 

Financial Times (Tett, 2018), green investing has for a long time been associated 

with a “moral glow” yielding low returns. Consensus in the financial world today 

is that the previous associations now are changing, as green investing starts to 

produce commercially acceptable returns. This highlights the importance of 

understanding the financial aspects of the renewable energy markets, a motivating 

factor for our research.   

1.3. Contribution to the literature 

While there has been conducted some research on what drives the value of 

alternative energy companies in general, there is a lack of research that 

decomposes the alternative energy into the different energy sources and discusses 

differences among them. This research will try to fill this gap by exclusively 

focusing on wind and solar power. Given the clear trends described above, we 

find such a decomposition both relevant and interesting.  

Henriques and Sadorsky (2008) and Kumar, Shunsuke and Akimi (2012) found 

that there is causality between prices of technology stocks and prices of 

alternative energy stocks. The latter study found a more significant evidence of 

causality between oil prices and alternative energy stock prices than the former. 

Bondia, Ghosh and Kanjilal (2016) found that oil prices, technology stocks and 

interest rates impact the alternative energy stock prices in the short run. They 

found that the causalities were absent in the long run. We will apply the 

methodology of Henriques and Sadorsky (2008) to find whether the interest rates, 

oil prices and technology stock prices cause changes to the stock prices of wind 

and solar companies. In addition, we will use newer data, and we will estimate the 

model before the financial crisis of 2008 and after the crisis. This will allow us to 

see if the relationships have changed from one period to another.   

                                                                                                                                      

suppliers to have a certain percentage of renewable production in their energy mix. The certificates provide 

the renewable energy technologies with additional income to the market revenue.  
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The rest of this thesis is structured as follows. In section 2, we review existing 

literature and theory in our research area followed by a description of the 

methodology used in section 3. Section 4 consists of data description, and in 

section 5, we state our hypotheses. In section 6, we discuss the model. Finally, we 

discuss the results in section 7, followed by our conclusion in section 8. 

Bibliography and appendices are in section 9 and 10, respectively.      

2. Literature Review 

There exists numerous papers studying the casual drivers of oil prices and oil 

price companies; see for example Hamilton (1996), Papapetrou (2001) or Kilian 

(2009). Henriques and Sadorsky (2008) acknowledged the extensive research 

related to oil, and identified a literature gap in terms of renewable energy stock 

prices. Their paper sparked an interest for research related to clean energy stock 

prices, and there have since been several important contributions to the literature. 

In this section, we will discuss the most important ones where we empathize the 

papers that are most closely related to our research objective.  

Henriques and Sadorsky (2008) study data from 2001 to 2007 of alternative 

energy companies, interest rates, stock prices of technology companies and oil 

prices in a lag augmented vector autoregressive (LA-VAR) model. They find that 

oil prices, technology stock prices and interest rates each individually Granger 

cause the stock prices of alternative energy companies. They find that a shock to 

technology stock prices has a larger impact than a shock to oil prices. Based on 

their findings, they argue that oil price movements are less important than 

hypothesized because investors seem to view alternative energy companies, as 

more similar to other high technology companies rather than categorizing them as 

energy companies.  

Kumar et al. (2012) do a similar study as the one of Henriques and Sadorsky 

(2008), where they use a VAR model to evaluate potential causality. They look at 

data from 2005 to 2008 of three different clean energy indices, carbon permit 

prices, oil prices, technology stock prices and US interest rates. Their findings 

indicate that the carbon permit prices do not affect the stock prices of the clean 

energy firms. They find evidence of oil prices, technology stock prices and 

09327790896196GRA 19502



 

Page 6 

interest rates influencing renewable energy stock prices. Their findings are very 

similar to Henriques and Sadorsky (2008). 

Building on the work of the above-mentioned studies, Managi and Okimoto 

(2013) extend the studies into the Markow-switching vector autoregressive 

(MSVAR) framework. They argue that because there are possible structural 

changes and asymmetric effects in the economic system that is analysed, a 

MSVAR model should be used. The results indicate a structural change in late 

2007, a period in which there was a significant increase in the price of oil. Before 

the structural change, the results comply with those of Henriques and Sadorsky 

(2008). After the structural change, they find that oil prices have positively 

affected clean energy stock prices.  

Bondia et al. (2016) criticizes the study of Managi and Okimoto (2013) for using 

the Johansen-Juselius cointegration methodologies, which assumes that the 

cointegrating relationship does not change over the entire period of the empirical 

study. Bondia et al. (2016) argue that this assumption is too unrealistic, especially 

when the time series is long. Their study uses threshold cointegration tests of 

Gregory and Hansen and Hatemi-J in order to detect cointegration relationship of 

stock prices of alternative energy companies with oil prices, technology stock 

prices and interest rates. Doing so, they are able to investigate long run 

relationship in the presence of possible regime shifts of underlying variables. The 

threshold cointegration tests of Bondia et al. (2016) show that there is 

cointegration among the variables with two endogenous structural breaks. 

Furthermore, the study finds that alternative energy stock prices are influenced by 

technology stock prices, oil prices and interest rates in the short run, but not in the 

long run.   

There has been some research with volatility approaches to the clean energy 

markets as well. Sadorsky (2012) utilizes a series of autoregressive conditional 

heteroscedasticity (GARCH) model in a volatility spillover framework. He finds 

that clean energy stocks correlate more with technology stocks than with oil 

prices. Reboredo (2014) uses copulas to determine the dependence-structure 

between oil prices and different subsectors of renewable energy, as well as 

conditional value-at-risk measurements. His results indicate that the solar index 
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behaves differently than its peers, showing asymmetry in its response to oil price 

shocks.  

Other papers have focused on abnormal profits, as for instance Ortas and Moneva  

(2013) who find that clean tech indices outperform the market in terms of return, 

but that this is mainly due to higher risk. Inchauspe, Ripple and Trück (2015) find 

that the MSCI World Index and technology stock prices influence clean energy 

stocks, but that the latter has underperformed since 2009. Henriques and Sadorsky 

(2017)  find that divesting from fossil fuels in favour of clean energy actually 

yields a positive risk/return trade-off.  

Few are the papers that look at the climate changes’ direct impact on stock prices. 

An exception is the paper by Hong, Li and Su (2016) where they forecast profit 

growth for food companies in 31 countries based on their long-term trends 

towards drought. Taking into account the climate risks’ effect on market 

efficiency, they provide an interesting approach to the climate question and 

financial performance among companies. The researchers find that in countries 

where drought is prevalent (based on long-term drought trends using the Palmer 

Drought Severity Index) it is forecasted poor profit growths and poor food stock 

returns for food companies. They conclude that the findings are consistent with 

food stock prices underreacting to climate change risk.  

We use these papers throughout the thesis, either as direct sources or as 

motivational means. In either way, they have inspired us and provided us with 

ideas of how to investigate and structure our research topic.   

3. Methodology 

As we are interested in casual relationships between multivariate time series, we 

find a VAR-methodology to be most suitable for our needs. A VAR model will 

also allow us to run Granger causality tests, impulse response functions and 

variance decompositions, which we will utilize in explaining the relationships 

between our variables of interest. The VAR model is a generalization of the 

univariate autoregressive model, which allows us to estimate coefficients and 

standard errors between our variables of interest. The VAR approach treats all 

variables as endogenous, where the value of a variable will depend on its own 

lags, and the lags of all the other variables in the model. The model is arranged 
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such that we have no contemporaneous terms, and it can therefore be estimated by 

simple OLS. The model was introduced by Sims in 1980, and has later received 

enormous attention. An example of a VAR(p) model with two variables is shown 

below. 

                                                                      

                                                                       

The VAR approach assumes certain properties, including stationarity, normality, 

stability and zero autocorrelation of the residuals. Another assumption is that the 

variables are not cointegrated, which occurs when the variables have a common 

trend. The conventional approach when one discovers cointegration is to use a 

vector error correction model (VECM).   

Instead of using a standard VAR approach, we intend to use the lag augmented 

VAR (LA-VAR, also known as the TY procedure) as proposed by Toda and 

Yamamoto (1994). A LA-VAR model is invariant to the order of integration in 

the variables, to cointegration, and it is a robust tool against pre-test bias rising 

from unit root tests and cointegration tests. We evaluate this methodology as most 

suitable for the purpose of this thesis as we want to avoid pre-test bias, and 

because a potentially cointegrated relationship is of no importance to our 

hypothesis. We do however intend to report Granger causality coefficients from 

standard VAR and VECM models to serve as a robustness test, complementing 

our main LA-VAR model. We also want to stress that when one is testing for 

cointegration and finds evidence that it exists in the data, there is some 

discrepancy in terms of whether one should use LA-VAR or a VECM. Toda and 

Yamamoto (1998) concluded that the choice between LA-VAR and VECM is a 

choice between size and power. LA-VAR performs better in terms of size, which 

means that it has a lower probability of committing a type 1 error (rejecting a true 

null hypothesis). VECM, on the other hand, performs better in terms of not 

committing a type 2 error (not rejecting a false null hypothesis). Clarke and Mirza 

(2006) revise the findings in Toda and Yamamoto (1998), and reach the same 

conclusion. We would rather be conservative in our estimates, as we are looking 

for casual relationships in our study. Therefore, we evaluate LA-VAR as superior 
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to VECM for the purpose of our research question (independent of whether there 

exists a cointegrated relationship or not).  

The steps for constructing a LA-VAR model consist of first estimating a VAR(p) 

model, by choosing the optimal number of lags (p) through different selection 

criteria. Next, we identify the maximum order of integration (d) through unit root 

tests, and we can then estimate a VAR(p+d) model in levels. The model has to 

have stable coefficients, and finally we run a modified Wald (MWald) statistics 

test on the first (p) parameters, treating the remaining (d) lags as exogenous. An 

example of the LA-VAR model with two variables is shown below: 

                                                                         

                                                                         

                                                                     

                                                                                         

As the coefficients themselves are of little interest to our hypotheses, we will 

focus on the results from the MWald tests, and we will investigate the 

relationships further with impulse response functions and forecast-error variance 

decompositions. The impulse response functions will show us whether the 

variables have a significant positive or negative impact on each other, and it 

reveals how long a shock will persist. The variance decompositions show the 

contribution of each shock to variation of each variable. This thesis will employ 

the generalized impulse response function (GIRF) and generalized variance 

decompositions proposed (GVD) by Pesaran and Shin (1998) which builds on 

Koop, Pesaran and Potter (1996). The alternative is the orthogonalized approach 

following Sims (1980) which is dependent on the ordering of the variables. The 

latter approach is problematic because different ordering may yield different 

results, and the correct ordering of the variables is often unclear and prone to 

discussion. The generalized methodology, on the other hand, is invariant to the 

ordering of the variables, and provides us with contemporaneous reactions, 

making it robust and more suitable for our thesis.  
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4. Data 

Most of the previous studies related to alternative energy stock prices, evaluated 

in section 2, have used the Wilder Hill clean energy index to measure the 

performance of alternative energy stocks. The index, consisting of approximately 

86 stocks, was the first index composed of only clean energy stocks. The 

companies in the index operate in the whole range of renewable energies 

including everything from biomass heat to hydropower. It also includes 

companies operating in the wind and solar sectors. As previously discussed, we 

will replace the Wilder Hill clean energy index with indices that exclusively 

consists of wind and solar stocks. Except of this, we will use the same variables as 

Henriques and Sadorsky (2008) and Managi and Okimoto (2013) as regressors in 

our model.  

The period we focus on stretches from December 21st 2005 to December 31st 

2017, as the data for the wind stocks is only available from December 2005. 

However, we divide the sample into two subsamples to avoid the disturbance 

caused by the financial crisis of 2008. As argued by Lütkepohl (2005), a method 

to adjust for potential structural breaks in the VAR model is to estimate the 

parameters before and after the breakpoints. The Financial Crisis Inquiry 

Commission (FCIC) argues that the primary features of the 2008 crisis were a 

financial shock starting in September 2008 followed by financial panic the 

preceding months (FCIC, 2011). Further, they set the end of the financial crisis to 

the first half of 2009. We exclude the data between September 2008 to June 2009 

and estimate two periods, hereafter named pre- and post-crisis. In figure 1, we 

have plotted the cumulative returns for the variables of interest. As shown in the 

figure, there seems to be a break in the variables by the beginning/middle of 2008. 

We see that, especially the wind and solar stocks are very volatile up to year 2008, 

before rapidly falling by March/April 2008. The oil prices seem to have reached a 

peak by 2008 before declining until the end of 2008. As for the technology stocks 

and S&P 500, they start to fall by April 2008 and reach bottom levels late 2008. 

All of the variables, except the wind and solar stocks, have started to increase 

again by mid-2009. In addition to avoiding the financial turmoil present during 

the crisis, we divide the sample to observe potential changes from one period to 

another.   
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Similarly to previous studies, we use weekly data containing Wednesday closing 

prices, because there are fewer holidays on Wednesdays relative to Fridays. When 

the Wednesday prices are missing, we use prices of the closest trading day. The 

data in our models include: a stock index of solar energy companies (hereafter 

named SUN), a stock index of wind energy companies (WIND) an index of 

technology stocks (TECH), oil prices (OIL) and US interest rates (TBILL). We 

also use the S&P 500 index as a benchmark in the descriptive part of our analysis. 

The stock and oil prices are gathered from Datastream, while the interest rates are 

retrieved from www.treasury.gov.  

4.1. Solar energy stocks: SUN 

In order to measure the performance of the solar energy stocks, we use the MAC 

Global Solar Energy stock index (ticker symbol: SUNIDX). The index consists of 

23 solar stocks listed on exchanges in different countries. The majority of the 

stocks, 56%, are listed on US stock exchanges, 22% are listed in Europe and the 

remaining 22% are listed on Asian stock exchanges. The companies in the index 

include all major solar technologies such as crystalline and thin-film PV
4
 as well 

as solar thermal
5
. Furthermore, it covers the entire value chain of solar energy, 

including everything from raw materials, manufacturers, and installers to solar 

plant operators. Some of the companies in the index also operate in the markets of 

solar equipment such as inverters and trackers. The index has a modified market 

cap weighting, meaning that it is dividing the index weighting of stocks that have 

solar revenues between 1/3 and 2/3 of total revenues by half. Such companies are 

named Medium-Play stocks. Pure-play solar stocks, on the other hand, are solar 

companies with solar revenues above 2/3 of total income. These stocks have an 

exposure factor of 1.  

                                                 

4 Thin-film PV is a different kind of solar panel than the standard mono- or polycrystalline PV cells. It is 

made of light absorbing layers which are about 350 times smaller that that of the standard panels. Thin film 

solar cells are the lightest PV cells and are commercially used in several technologies including Cadmimum 
Telloride (CdTe), Amorphous silicon (A-si) and Copper indium Gallium Selenide (CIGS).   

5 Solar thermal is an alternative technology to solar photovoltaic (PV) systems. Rather than generating 
electricity as the PV systems, solar thermal creates heat through warming up water or other fluids.  
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4.2. Wind Energy stocks: WIND  

The ISE Clean Edge Global Wind Energy Index (ticker symbol: GWE) serves as 

the reference index for wind energy stocks. It is a float-adjusted modified market 

capitalization-weighted index designed to track the performance of public 

companies that are primarily engaged in the wind energy industry (Clean & Inc, 

2018). To what degree the companies are involved in wind energy, and thus 

whether they should be included in the index, is based on analysis of their 

products and services performed by Clean Edge Incorporation. Similarly to the 

solar index, the companies in the GWE index operate in the whole range of the 

wind energy value chain. Furthermore, the index includes companies listed on 

exchanges in different countries, making it global and suitable for our research.  

4.3. Technology stocks: TECH 

The Arca Tech 100 index (ticker symbol: PSE) is modelled as a multi-industry 

technology index. It is a price-weighted index composed of 100 common stocks 

and American depository receipts of technology-related companies. The 

companies in the index are all listed on US stock exchanges. The index provides 

as a benchmark for measuring the performance of companies using technology 

innovation across a broad spectrum of industries and markets. As Henriques and 

Sadorsky (2008) pointed out “it may be the case that investors view alternative 

energy companies as similar to other technology companies”. Furthermore, as 

discussed in section 2, all of the previous studies have found positive significant 

relationships between technology stock prices and the stock prices of alternative 

energy companies. Having in mind that wind and solar energy technologies have 

been heavily reliant on technology development (IRENA, 2017), we will expect a 

significant relationship between the technology stocks and wind and solar stocks.  

4.4. Oil prices: OIL 

Because we want to test whether there is a positive relationship between stock 

prices of renewable energy companies and oil prices, we need to include oil prices 

in our model. The oil prices will be measured using the average of weekly closing 

futures prices of West Texas Intermediate (WTI). The commodity is traded on the 

New York Mercantile (NYMEX) and is, alongside with Brent Crude from the 

North Sea, a common reference and benchmark of oil prices (Bern, 2011). 
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4.5. Interest rates: TBILL 

As argued by Henriques and Sadorsky (2008) and Bondia et al (2015), previous 

research shows significant relationships between interest rates and stock price 

movements. In line with the previous studies, we will use the yield on a 3-month 

U.S T bill to reflect the interest rate in our study.      

4.6. The market benchmark: S&P 500 

The Standard and Poor 500 (S&P 500) is used as a benchmark index for the stock 

market. It is based on the market capitalizations of 500 large companies listed on 

US stock exchanges. We use the S&P 500 primarily to compare returns of the 

energy stocks with the market.  

4.7. Descriptive analysis  

Table 1 and 2 summarize the descriptive statistics of the data. There are a total of 

141 weekly observations in the pre-crisis sample and 444 observations in the post-

crisis sample. We have compounded the annual average returns by multiplying the 

average weekly continuously compounded returns with a factor of 52.    

Prior to the financial crisis of 2008, the wind and solar stocks outperformed both 

TECH and the S&P 500 in terms of annual risk-adjusted average return (measured 

by the Sharp ratio). Table 1 shows that even though SUN and WIND have higher 

standard deviations, they have high ex-post Sharpe ratios, 0.127 and 0.172 

respectively, due to their great yearly average returns of 38.9% and 45.5%. TECH 

and the S&P 500, on the other hand, have yearly Sharpe ratios of –0.037 and –

0.012. The reason why we see these negative Sharpe ratios is that the markets 

started to decline prior to the financial crisis (remembering that we only have 141 

observations prior to the crisis). As can be seen in table 2, this completely changes 

after the financial crisis. SUN obtains an annual Sharpe ratio of –0.381, while 

WIND obtains a slightly positive ratio of 0.007. Compared to the performance of 

TECH (Sharpe ratio of 0.143) and the S&P 500 (Sharpe ratio of 0.125), the two 

renewable energy indices are doing much worse in terms of risk-adjusted return in 

the post-crisis period.   

We have set the price series to 100 from the start of the sample periods to better 

illustrate the development of the series relative to one another (Figure 1). The  
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Table 1. Descriptive statistics for the pre-crisis period. 

figure illustrate a more volatile performance of SUN and WIND compared to 

TECH and the S&P 500. The volatility pattern is especially clear in the pre-crisis 

period. Furthermore, we see that despite growth opportunities in both the wind 

and solar sectors, the stocks perform poorly in the post-crisis period. There are 

numerous factors contributing to the weak financial performance in the second 

period. Firstly, in several countries, there have been cuts in governmental 

subsidies negatively affecting the company performances (research, 2018). 

Secondly, in the post- crisis period the competition in the sectors has intensified 

leading to sharp drops in material and components prices. Especially in the US 

and Germany overcapacity in wind and solar manufacturing has resulted in 

company failures and even factory closures during the post-crisis years (Reuters, 

2012). Chinese companies producing at low-costs have helped trigger the 

increased competition (Bloomberg, 2018b). Thirdly, as described in UNEPs post 

crisis report (2009) on renewable energy finance (2009), fear and risk-aversion 

after the financial crisis have made investors underprioritize the renewables. The 

increased risk-aversion has led to increased capital costs, which combined with 

lower prospected earnings, can help explain the poor performance of the wind and 

solar stocks in the post-crisis period.  

 
Table 2. Descriptive statistics for the post-crisis period. 

 

SUN WIND TECH S&P500 OIL TBILL

 Mean  0.455  0.389  0.026  0.006  0.261 0.039

 Median  0.446  0.524  0.132  0.054  0.424 0.047

 Maximum  8.104  6.122  2.677  2.079  5.666 0.052

 Minimum -10.634 -7.974 -2.659 -3.252 -4.242 0.006

 Std. Dev.  3.284  2.052  1.054  0.911  2.164 0.013

 Skewness -0.682 -0.811 -0.394 -0.631 -0.066 -0.927

 Kurtosis  4.404  5.171  3.058  4.135  2.308 2.294

 Sharpe 0.127 0.172 -0.012 -0.037 0.103 na

 Observations 140 140 140 140 140 140

SUN WIND TECH S&P500 OIL TBILL

 Mean -0.152  0.004  0.163  0.128 -0.017 0.002

 Median  0.023  0.108  0.278  0.195  0.092 0.001

 Maximum  8.354  5.136  3.371  3.679  10.194 0.014

 Minimum -9.685 -7.000 -6.248 -6.103 -8.428 0.000

 Std. Dev.  2.917  1.470  1.131  1.009  2.277 0.003

 Skewness -0.115 -0.388 -0.817 -0.812  0.152 2.292

 Kurtosis  3.646  4.277  5.934  7.245  4.907 7.379

 Sharpe -0.053 0.001 0.143 0.125 -0.008 na

 Observations 444 444 444 444 444 444
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Figure 1. Cumulative returns for all variables in both periods. The grey area represents 

the financial crisis, which is left out of our estimations.  

As for the oil prices, they are relatively volatile both before and after the financial 

crisis with standard deviations of 2.164 and 2.277 respectively (Table 1 and 2). 

Moreover, we observe in figure 1 a sharp drop in the oil prices in the middle of 

2014. Among the most important reasons to the 2014-drop is the decrease in oil 

demand by large economies such as China (Forum, 2016). A second reason is 

related to the North-American countries, the US and Canada, which increased 

their oil-production resulting in decreased oil imports from these countries 

(reduced North-American demand). This further pressured the oil prices down.  

Finally, because Saudi-Arabia, the world’s largest oil exporter (OPEC, 2018), 

could withstand the low oil prices, they decided to not cut the oil production in 

order to pressure prices upwards. Saudi-Arabia has the world’s second largest oil 

reserves (about 22% of the proven reserves in the world). Mainly due to their 

onshore reserves which require less capital spending and production cost, Saudi-

Arabia can produce oil at very low costs relative to other oil producers such as for 

instance North American shale oil extraction or Norwegian offshore production. 

Due to this they could maintain their high production levels, supporting the low 

oil prices we saw in the wake of the 2014 oil crisis.  

4.8. Correlations  

Table 3 and 4 report the correlation coefficients among the variables in our model 

in the pre- and post-crisis periods respectively. We have also included the S&P  
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Table 3. Correlations in the pre-crisis period.  

500 in the correlation matrix. As expected, there is a strong positive correlation 

between the two renewable energy indices and TECH prior to the crisis. The 

correlations dramatically change after the crisis and the correlation between SUN 

and TECH becomes strongly negative (-0.607), whereas the correlation between 

WIND and TECH halves down to 0.293. This is surprising, but could be 

explained by the weak performances of the wind and solar stocks in the post-crisis 

period discussed in section 4.7. Nevertheless, this is important information for 

investors because they can no longer assume the two renewables to move in the 

same direction as the technology stocks. This finding is going to be tested more 

formally later on.   

Another interesting change in correlation regards OIL and the renewables. Prior to 

the crisis both SUN and WIND correlated positively with OIL (0.803 and 0.644), 

but again, the correlations changed significantly after the great recession. In the 

post-crisis period SUN and OIL obtain a correlation coefficient of 0.309 and OIL 

and WIND a coefficient of -0.457.  

The correlation between TBILL and the renewables is negative (-0.685 for sun 

and -0.546 for wind) prior to the crisis. After the crisis only SUN has a negative 

correlation coefficient (-0.325) with TBILL. WIND has now a positive correlation 

with the interest rates (0.347). We find no rationale for this, as we would assume 

the correlations to remain negative because higher capital costs make investments 

in renewable energy more expensive (and thus affect the renewable stocks 

negatively), regardless of time period. Finally, we observe that the strong 

correlation between SUN and WIND in the pre-crisis period (0.892) is reduced to 

0.376 in the post-crisis period. This could be explained by better post-crisis 

performance among the wind stocks relative to the solar stocks.  

SUN WIND TECH SP500 OIL TBILL

SUN 1.000

WIND 0.892 1.000

TECH 0.581 0.605 1.000

SP500 0.414 0.612 0.824 1.000

OIL 0.803 0.644 0.113 -0.115 1.000

TBILL -0.685 -0.546 -0.024 0.188 -0.876 1.000
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Table 4. Correlations in the post-crisis period.  

Clearly, it has been harder to make profits on solar energy in the years after the 

crisis compared to wind energy. This might, to some degree, be explained by 

higher costs of PV projects. Even though the costs are rapidly declining (as 

discussed in section 1), the global weighted average levelised cost of electricity 

(LCOE) of utility-scale solar projects was 0.10 USD per kilowatt-hour (kWh) in  

2017 (IRENA, 2018b). Compared to a LCOE of 0.06 USD per kWh for onshore 

wind, we see that there still is a remarkable cost difference among the two power 

sources. It will be interesting to see how further technology improvements can 

push the costs of PV projects the coming years, and how this will affect the 

profitability of solar energy companies.  

4.9. Financial structure   

As we shall test whether the interest rates influence the stock performances of the 

companies in the renewable energy indices, we want to look at how the renewable 

energy companies are financed. Our initial assumption was that the renewable 

energy companies are largely financed by debt. After investigating some of the 

key leverage ratios of all companies in the indices, we find evidence that this 

assumption holds. As can be seen in appendix 12, the companies in the solar 

energy index had an average yearly debt/equity ratio of 2.25 from 2014-2017. The 

companies in the wind index seem to be less leveraged with a yearly average debt 

to equity ratio of 1.31 the same period. The debt to equity ratio indicates whether 

the companies use debt or equity to finance their assets.   

Because the companies in the two indices operate in different parts of the wind 

and solar power value chains (some are manufacturers, some are system 

integrators etc.), and because the company sizes differ, it is not straightforward to 

tell whether these ratios are high or low. As with most ratios, it is important to 

consider comparable companies when evaluating the ratios. According to data 

from Bloomberg (2016), the S&P 500 had an average debt to equity ratio of 1.1 in 

SUN WIND TECH SP500 OIL TBILL

SUN 1.000

WIND 0.376 1.000

TECH -0.607 0.293 1.000

SP500 -0.595 0.332 0.996 1.000

OIL 0.309 -0.457 -0.548 -0.575 1.000

TBILL -0.325 0.347 0.311 0.323 -0.518 1.000
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2016. We hence see that the debt ratios of the solar companies, on average, are 

relatively much higher, whereas the wind companies have a slightly higher ratio.  

We thus have reasons to believe that the wind and solar companies we investigate 

have important debt levels, and that the interest expenses could be important parts 

of the companies' costs.    

5. Hypotheses 

The main objective of this thesis is to determine the drivers of wind and solar 

stock performance. Because these stocks are alternative energy stocks, we expect 

our results to be similar to the findings of the research discussed in section 2. 

However, as we shall describe in detail below, we expect to find some differences. 

Further, we explore how potential causal relationships change over time by 

investigating whether there are differences in the pre- and post-crisis periods. 

Based on outlined theory and existing literature, we have formulated five 

hypotheses to be investigated. 

The relationship between interest rates and stock market is a widely discussed 

topic in financial settings. Common beliefs suggest that an increase in interest 

rates should be followed by a decrease in stock prices. The main argument for 

such thinking says that higher rates make borrowing more expensive, making it 

more difficult for companies to invest into new projects. We suggest that this 

reasoning is especially true in the wind and solar sectors because as we discussed 

in section 4.9, the sectors are very capital intensive. Capital costs are the most 

important costs of wind and solar energy, and financing becomes more expensive 

when interest rates increase. This will affect the performance of the companies 

negatively. We anticipate that:   

H1) An increase in interest rates will have a negative effect on wind and solar 

energy stock prices.    

As argued by Henriques and Sadorsky (2008): despite the alternative energy 

production and usage being small compared to petroleum-based energy, the 

alternative energy sources might benefit from increased oil prices. The authors 

argue that rising oil prices provide a strong stimulus for investors, consumers, 

governments and other industries to seek for alternative energy sources. They 

emphasize that a substitution-effect is more realistic for the industry in the long 
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run, but they stress that it is important to understand the relationships in the short 

run. Henriques and Sadorsky (2008), as well as Managi and Okimoto (2013), 

discover that increases in oil prices influence the performance of alternative 

energy companies positively. As we have seen, both wind and solar energy have 

increased their importance in the world’s energy mix the recent years as well as 

their competitiveness, becoming direct competitors to the fossil fuels in many 

countries. In line with the previous findings on alternative energy companies, we 

suggest that:    

H2) An increase in oil prices will lead to increased wind and solar stock prices.   

However, due to the recent increase in competitiveness of wind and solar 

companies, we believe the substitution-effect from oil to wind and solar energy to 

be more significant in the post-crisis period than in the pre-crisis period. We 

hypothesize that:  

H3) After the financial crisis of 2008, increases in oil prices have more significant 

impact on prices in wind and solar energy stocks than prior to the crisis.  

Furthermore, Henriques and Sadorsky (2008) write that investors seem to 

categorize alternative energy stocks as technology stocks. They find that 

movements in technology stock prices can explain the movements of alternative 

energy stock prices. Their findings are supported by Managi and Okimoto (2013) 

who, in addition, suggest that alternative energy becomes cheaper via technology 

improvement. Consensus in renewable energy clusters is that both wind and solar 

energy are highly dependent on technology development. We believe that:  

H4) An increase in technology stock prices will be followed by an increase in 

wind and solar stock prices.  

Nevertheless, as with the oil prices, we expect different significance of causality 

between technology stock prices and wind and solar stock prices in the pre- and 

post crisis periods. This time we expect the opposite of what we expected for the 

oil prices. Particularly, we expect a more significant relationship between 

technology stock prices before the 2008-crisis than after, because in the post-crisis 

period the renewables might have established themselves in the energy markets 

becoming direct competitors to the conventional energy sources. Rather than 

being strongly impacted by technology stocks, we hypothesize that:  
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H5) After the financial crisis of 2008, increases in technology stock prices have 

less significant impact on prices in wind and solar energy stocks than prior to the 

crisis.  

6. Model 

As discussed in section 4, we have five variables that we wish to investigate, and 

we will do so before and after the financial crisis. We have no interest in the 

relationship between SUN and WIND, so they will be divided into separate 

equations (see table 5). To mitigate heteroscedasticity (which may potentially 

invalidate the coefficients), we have taken the natural logarithm of all five 

variables (which reduces extreme values), hereafter; LSUN, LWIND, LTECH, 

LOIL and LTBILL. 

               

Table 5. Description of the four models.  

We will in this section present the model choices for all four models, and we will 

begin with the first period. 

6.1. Pre-crisis 

For the first step in the LA-VAR framework, we determine the order of 

integration for all variables. The unit root tests are conducted using the 

Augmented Dickey Fuller-test, Phillips and Perron tests and the Kwiatkowski–

Phillips–Schmidt–Shin tests. Appendix 1 shows that all variables are integrated of 

order one, except LWIND that has two unit roots. For the model with LWIND, we 

therefore have to add two lags, while it is sufficient to add one lag for the LSUN 

model. Next, we need to determine the lag length of the models, which we have 

assessed using Akaike Information Criterion (AIC), Hannan-Quinn criterion 

(HQ), Schwarz Information Criterion (SC) and the Likelihood Ratio test (LR), 

appendix 2. Where the criteria suggests different lag lengths, we choose the model 

that is most stable, determined through autocorrelation (of residuals) and with  

Model Variables Period

(1) LSUN LTECH, LOIL, LTBILL Pre crisis

(2) LWIND LTECH, LOIL, LTBILL Pre crisis

(3) LSUN LTECH, LOIL, LTBILL Post crisis

(4) LWIND LTECH, LOIL, LTBILL Post crisis

09327790896196GRA 19502



 

Page 21 

Table 6. VAR model fit for model (1) and (2). 

assessment of the unit root properties of the residuals. It is worth noting that 

dynamic stability is not a necessary assumption for the TY-approach to yield 

reliable MWald statistics, but it is a crucial part for estimating impulse response 

functions. This approach gives us a recommended seven lags for the LSUN(1) 

model (based on LR recommendation being the most stable) and two lags for the 

LWIND(2) model (supported by the most stable properties from LR and AIC), 

yielding a       (7+1) and a       (2+2) model.  

Testing for autocorrelated residuals with a Lagrange multiplier test (10 lags), 

displays no problems with serial correlation in either of the models. The results 

are reported in appendix 3, where the null hypothesis (zero autocorrelation) is not 

rejected for any lags at the 5% level, and it is robust at the 10% level for most 

lags. Furthermore, none of the roots (28 for model (1) and 8 for model (2)) lie 

outside the unit root circle (appendix 4). 

Table 6 shows the VAR model fit. The two models display very similar 

properties, with all the adjusted R-squared values being above 0.9, which is very 

high and indicates a good fitting model, even for equations estimated in levels. 

The standard error of the equation measures the dispersion between the predicted 

and actual values of the dependent variable. These numbers are also low and 

display good fitting models. The standard error of the LWIND equation in model 

(2) is lower than what we see from LSUN in model (1).  The standard error is 

relatively high in both equations where LTBILL is the depend variable, which 

should convey caution when interpreting the corresponding results. The F-

statistics shows that all independent variables are collectively significant at the 1% 

level for all equations. Overall, the properties are satisfactory and we have a good 

fitting model that is viable for further investigation.  

(1) LSUN LTECH LWTI LTBILL

 Adj. R-squared 0.979 0.902 0.977 0.946

 S.E. equation 0.060 0.021 0.040 0.110

 F-statistic 198.068 39.145 178.552 72.829

(2) LWIND LTECH LWTI LTBILL

 Adj. R-squared 0.987 0.913 0.975 0.941

 S.E. equation 0.038 0.019 0.041 0.113

 F-statistic 663.484 90.485 337.346 137.678

09327790896196GRA 19502



 

Page 22 

6.2. Post-Crisis 

In this section we will follow the exact same procedure as above, but this time for 

the post-crisis models: LSUN(3) and LWIND(4). Similar to the pre-crisis 

estimates, we observe that all variables have one unit root, except LWIND, which 

has two (appendix 1). Next, we assess the appropriate lag length (reported in 

appendix 2). In model (3) we see that LR and AIC suggests a lag length of two, 

which is more stable than the lag length suggested by the other criteria. For model 

(4), the appropriate lag length is six, decided by the LR criteria. These 

specifications results in a       (2+1) and a       (6+2) model. We found no 

evidence of autocorrelation in the residuals in either of the models (appendix 3), 

and none of the roots lie outside the unit root circle (appendix 4). 

The model fit properties are displayed in table 7. The adjusted R-squared values 

are very high for all equations, indicating a high explanatory power. The standard 

error of each equation is very low and satisfactory, expect for the equations with 

LTBILL as the dependent variable in model (3) and (4). These high standard 

errors for the LTBILL equations indicate unreliable results when interpreting the 

corresponding coefficients. The F-statistics display the importance of the 

explanatory variables, showing that they are all collectively significant at the 1% 

level. Overall, the model fit properties are satisfactory for moving on to the next 

steps. 

Table 7. VAR model fit for model (3) and (4). 

7. Results and discussion 

With the assertion of the most suitable models, we will here present the output 

from the MWALD statistics, the impulse response functions (IRFs) and the 

variance decompositions from the corresponding VARs. We also present results 

from equations serving as a robustness test. The section ends with a discussion on 

the results related to the stated hypotheses. 

(3) LSUN LTECH LWTI LTBILL

 Adj. R-squared 0.991 0.996 0.984 0.934

 S.E. equation 0.056 0.021 0.043 0.320

 F-statistic 3756.857 9728.798 2165.095 511.268

(4) LWIND LTECH LWTI LTBILL

 Adj. R-squared 0.987 0.996 0.984 0.937

 S.E. equation 0.027 0.021 0.042 0.312

 F-statistic 1021.973 3661.921 822.987 195.103
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7.1. Granger causality 

 
Table 8. Toda and Yamamoto modified Wald statistics. ***, ** and * denotes statistically 

significance at the 1%, 5% and 10% level. Model (1) has 7 degrees of freedom for each 

independent variable, and model (2) has 2. 

Table 8 reports the MWALD statistics for model (1) and (2), displaying the 

Granger causality for LSUN and LWIND in the pre-crisis period. Surprisingly, 

model (1) shows no sign of causality between any variables, besides technology 

stock prices influencing LSUN. Model (2) shows bidirectional granger causality 

between LTECH and LWIND, and indicates a unidirectional relationship running 

from LTECH to LTBILL. These results are contradicting previous literature that 

has found causality running from oil prices and interest rates to renewable energy 

stock prices, which we will discuss later. 

The MWALD output for the second period is reported in table 9. Interestingly, we 

see no Granger causality running from any of the variables to either LSUN or 

LWIND.  Model (3) does show that past movements in LTBILL influence both 

LTECH and LOIL, but no other relationships are revealed.  Model (4) shows a 

unidirectional relationship between LTECH and LOIL, as well as for LTECH and 

LTBILL. In addition, we see that LWIND help to explain movements in LTECH.  

Table 9. Toda and Yamamoto (1995)  modified Wald statistics. ***, ** and * denotes statistically 

significance at the 1%, 5% and 10% level. Model (3) has 2 degrees of freedom for each 

independent variable, and model (4) has 6. 

(1) LSUN LTECH LOIL LTBILL

LSUN -  3.099  9.400  7.754

LTECH  16.199** -  6.777  5.071

LOIL  2.127  3.094 -  9.310

LTBILL  8.647  4.642  4.261 -

(2) LWIND LTECH LOIL LTBILL

LWIND -  5.498*  1.064  0.599

LTECH  6.532** -  1.071  7.428**

LOIL  3.252  0.428 -  0.799

LTBILL  2.905  4.938  0.731 -

Dependent variable

(3) LSUN LTECH LOIL LTBILL

LSUN -  1.167  1.183  1.306

LTECH  2.044 -  0.329  1.105

LOIL  0.414  0.024 -  2.659

LTBILL  1.198  6.704**  4.816* -

(4) LWIND LTECH LOIL LTBILL

LWIND -  14.906**  8.417  6.673

LTECH  6.684 -  11.369*  14.432**

LOIL  10.219  10.752* -  7.800

LTBILL  3.208  18.510***  9.114 -

Dependent variable
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7.2. Generalized impulse response functions 

Figure 2 presents the output from the generalized impulse response functions, 

where we see how the variables react in the next ten weeks to a one standard 

deviation shock to one of the other variables. The solid lines are the responses, 

and the dotted lines show two analytically calculated standard errors in each 

direction for each response. If both the response and the standard errors are above 

or below zero, the response is interpreted as positively or negatively significant. 

The figure shows the responses to LSUN and LWIND both before and after the 

financial crisis. For the remaining impulse response functions with the remaining 

variables as the dependent one, see appendix 5 to 8. 

Figure 2 shows the response of LSUN and LWIND to the other three variables, in 

all four models. In model (1) we observe that the solar index has a significant 

impact on itself for the first six weeks, which is gradually declining thereafter.  

 
Figure 2. Generalized impulse response functions with LSUN and LWIND as dependent variables, in all four  
models. 

(1)

(2)

(3)

(4)

Response of LSUN to LSUN Response of LSUN to LTBILLResponse of LSUN to LOILResponse of LSUN to LTECH

Response of LWIND to LWIND Response of LWIND to LTBILLResponse of LWIND to LOILResponse of LWIND to LTECH

Response of LSUN to LSUN Response of LSUN to LTBILLResponse of LSUN to LOILResponse of LSUN to LTECH

Response of LWIND to LWIND Response of LWIND to LTBILLResponse of LWIND to LOILResponse of LWIND to LTECH
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A shock to LTECH will significantly increase LSUN for the next seven weeks, a 

result that is in line with the MWALD statistics. We find no signs of oil prices 

affecting LSUN, but the interest rate has a positive significant increase on the 

stock prices of solar companies in the first week. Model (2) displays similar 

properties, with LWIND and LTECH having a positive significant impact 

initially, which gradually diminishes with increasing standard errors. A one 

standard deviation shock to LWTI has a small and short-lived impact on LWIND, 

and we reveal no relationship between the stock prices of wind and the interest 

rates in the first period. Overall, the results from the generalized impulse response 

functions are very similar to what we discovered in the previous section. The 

relationship between our selected renewables and technology stock prices is in 

line with previous research, while it is still very surprising that we reveal no large 

significant impact from neither LOIL nor LTBILL.  

In model (3) and (4), the most dramatic response to LSUN and LWIND comes 

from their own innovations, with a significant increase for at least ten weeks into 

the future. Surprisingly, we observe that technology stock prices are also 

positively significant to both LSUN and LWIND for ten weeks into the future. 

These results are in direct contradiction to the results obtained within the MWald 

methodology, making the true relationship between these variables unclear in the 

second period. Another observation is the ten weeks significant reactions to 

LWIND from a one standard deviation shock to LOIL. The response is positive 

and increasing, displaying a strong reaction. Oil does also have a positive impact 

on the solar index, though this effect is just significant for the first four weeks. 

Interest rates have no significant effect on neither LSUN nor LWIND in the 

second period, consistent with the MWALD statistics.  

7.3. Generalized forecast-error variance decompositions 

In this section, we look at the generalized forecast-error variance decompositions. 

Table 10 shows how the variance of LSUN and LWIND is affected by all 

variables in the system, where we report the contemporaneous reaction, and the 

reaction for every other week up to week number ten. For the variance 

decomposition of the remaining variables, see appendix 9 and 10. Note that when 

using the generalized methodology, the sum of each row does not necessarily sum 

up to one, as opposed to the orthogonalized calculations.  
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As expected, the variation of each variable does mainly come from its own 

innovations. Looking at the first period, we can see that variations in the two 

indices of interest are highly influenced by LTECH, where more than 50% of their 

variation after ten weeks is due to previous shocks in LTECH. These findings are 

in line with the MWALD statistics, and the initial reaction shown in the impulse 

response functions. Furthermore, we observe that LOIL does not seem to have a 

large impact on either LSUN or LWIND, as expected by the results reported in 

section 7.1 and 7.2. The interest rates do seem to cause some amount of variation 

in the two renewable indices, with 8-9% after 10 weeks.  

Do note that we cannot compare the results related to the variance decomposition 

analysis to any previous research, as neither Sadorsky and Henriques (2008), 

Kumar et al. (2012) nor Managi and Okimoto (2013) use variance decompositions 

in their papers.   

Next, we look at the second period, where it is interesting to see that LTECH is 

responsible for 30-40% of all variation in both LSUN and LWIND. These results 

contradict the granger-statistics in section 7.1, but they correspond well to the 

results of the impulse response functions. The real relationship running from 

LTECH to the indices of sun and wind is therefore somewhat unclear. There still 

seems to be a connection there, though the relationship is weaker than it was 

before the financial crisis of 2008. Besides technology stock prices, LSUN is 

mostly under influence by itself in terms of variance. LWIND however has a 

strong and increasing influence from LOIL, with 32% after 10 weeks. This 

relationship is consisten with the GIRF estimates, though it was not revealed 

Table 10. Generalized forecast-error variance decompositions for all four models. 

(1) Horizon LSUN LTECH LOIL LTBILL  (2) LWIND LTECH LOIL LTBILL

LSUN 0 1.000 0.478 0.022 0.051  LWIND 1.000 0.306 0.035 0.014

2 0.950 0.538 0.015 0.027 0.941 0.402 0.056 0.006

4 0.822 0.575 0.012 0.046 0.846 0.481 0.043 0.013

6 0.725 0.569 0.014 0.080 0.730 0.525 0.038 0.030

8 0.665 0.567 0.012 0.089 0.620 0.540 0.039 0.055

10 0.610 0.555 0.012 0.090 0.529 0.537 0.043 0.084

(3) Horizon LSUN LTECH LOIL LTBILL  (4) LWIND LTECH LOIL LTBILL

LSUN 0 1.000 0.371 0.106 0.009  LWIND 1.000 0.433 0.162 0.002

2 0.996 0.334 0.089 0.005 0.993 0.391 0.185 0.001

4 0.992 0.346 0.078 0.003 0.987 0.368 0.204 0.001

6 0.984 0.361 0.067 0.002 0.968 0.342 0.245 0.001

8 0.973 0.376 0.057 0.003 0.942 0.318 0.283 0.001

10 0.959 0.389 0.047 0.004 0.912 0.297 0.316 0.003

Pre-crisis

Post-crisis
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Within the MWALD framework. 

7.4. Robustness testing 

In this section we will run Granger causality tests through VECM or standard 

VAR (depending on results from cointegration tests) to see if we get similar 

results as the aforementioned LA-VAR statistics.  

In table 11 we report the results from Johansen cointegration tests, where we use 

number of lags according to the findings in section 6. The variables are all I(1) 

going into the Johansen tests; LSUN, d(LWIND) (LWIND differentiated one 

time), LTECH, LOIL, LTBILL (see section 6 for unit root tests). Table 11 reveals 

a possible cointegrated relationship in model (1), while the tests discover no 

evidence of cointegration for the remaining models. Accordingly, we will run a 

VECM for model (1), and standard VAR for the three remaining models.  

Table 12 shows the test statistics from the Granger causality tests, on the first two 

models. Model (1) is run as a VECM with all variables differentiated one time in 

order to become stationary, the order of cointegration is set as two, and with 7 lags 

(these specifications are discussed in section 6). The results are similar to the 

MWALD statistics, with technology stock prices influencing the solar index, and 

no causality is found running from oil prices or interest rates towards LSUN. The 

VECM displays Granger causality running form LSUN and LTBILL towards oil 

prices, contradicting the LA-VAR results regarding that equation. In model (2) we 

have to differentiate LWIND twice (d2(LWIND)) to make it stationary, while the 

remaining variables are differentiated once. In model (2) we run a standard VAR, 

as we found no proof of cointegration, and we run the information criteria anew 

since we have differentiated the variables (differentiating is not necessary in the 

 
Table 11. Trace statistics from Johansen cointegration tests. ***, ** and * denotes statistically 

significance at the 1%, 5% and 10% level.  

(1) (2) (3) (4)

None 59.826*** 99.933*** 24.515 84.765***

At most 1 35.093** 17.578 10.385 14.028

At most 2 13.6967* 5.359 4.473 4.652

At most 3 1.644 0.007 1.007 0.076
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Table 12. Granger causality tests. ***, ** and * denotes statistically significance at the 1%, 5% 

and 10% level.  

LA-VAR framework). The results from the lag selection criteria are reported in 

appendix 11 for all four models. The criteria suggests 2 and 3 lags for model (2), 

but these specifications perform very poorly in terms on autocorrelated residuals, 

so we run the model with 4 lags. The Granger causality for model (2) still shows 

that past movements of LTECH influence LWIND, though the relationship is not 

bidirectional as it was in the LA-VAR framework. Furthermore, it shows LTECH 

influencing LTBILL, consistent with the results in section 7.1.  

Table 13 shows the results from the Granger causality tests for model (3) and (4). 

Model (3) is calculated with 1 lag, consistent with the lag selection 

recommendation, and with no problems regarding autocorrelated residuals. The 

results are very similar to the LA-VAR results, with the sole exception of no 

Granger causality running from TBILL to OIL. In model (4) we use 10 lags as 

recommended by the LR criteria, while having the most stable residuals. These 

results differ greatly from the previous evidence reported in section 7.1. Most 

notably, we see a strong influence from LTECH running to LWIND. This is not 

revealed with the MWALD statistics within the LA-VAR framework, though we  

 
Table 13. Granger causality tests. ***, ** and * denotes statistically significance at the 1%, 5% 

and 10% level.  

(1) d(LSUN) d(LTECH) d(LOIL) d(LTBILL)

d(LSUN) - 4.101 13.097* 7.349

d(LTECH) 12.074* - 6.959 5.142

d(LOIL) 3.162 3.005 - 10.002

d(LTBILL) 5.621 1.830 12.610* -

(2) d2(LWIND) d(LTECH) d(LOIL) d(LTBILL)

d2(LWIND) - 4.602 2.335 1.213

d(LTECH) 8.991* - 2.784 10.138**

d(LOIL) 2.599 5.840 - 1.762

d(LTBILL) 3.428 2.359 1.701 -

Dependent variable

(3) d(LSUN) d(LTECH) d(LOIL) d(LTBILL)

d(LSUN) - 0.792 0.288 0.734

d(LTECH) 1.895 - 0.342 1.119

d(LOIL) 0.200 0.016 - 1.691

d(LTBILL) 1.304 5.557** 0.715 -

(4) d2(LWIND) d(LTECH) d(LOIL) d(LTBILL)

d2(LWIND) - 12.759 18.444** 6.272

d(LTECH) 30.913*** - 21.244** 11.436

d(LOIL) 9.529 12.402 - 15.133

d(LTBILL) 6.439 18.259* 15.300 -

Dependent variable
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suspect that there is a relationship between the variables through the previous 

GIRF and GVD tests. 

In summary, this section shows results that are very similar to the findings in 

section 7.1. We find no evidence of oil price movements or interest rates 

influencing neither sun nor wind stock prices, and we still find that technology 

stock prices seem to influence the renewables prior to the financial crisis. The 

biggest difference between the MWALD-statistics and these results is that tech 

prices have a significant impact on the wind index after the financial crisis within 

the standard VAR framework, a relationship we did not discover in the LA-VAR 

framework. 

7.5. Discussion 

H1 

Neither by using MWALD tests, IRFs nor variance decomposition, we find any 

evidence that interest rates influence the performance of wind or solar stocks. This 

goes for both the pre- and post-crisis periods. Our first hypothesis (H1) can thus 

be rejected. This is a surprising result, and contradicts the findings of Henrqiues 

and Sadorsky (2008), as well as the other papers discussed in section 2 that found 

granger causality running from interest rates to the alternative energy stocks.  

A reason to the non-existing relationships, at least for the post-crisis period, could 

be that the interest rates have been historically low after 2009. A model-specific 

reason to the absent causalities could be related to the findings in section 7 where 

we saw that the equations with LTBILL as dependent variable displayed high 

standard errors, which may make the corresponding results somewhat unreliable.  

Nevertheless, the importance of interest rates and capital costs should not be 

neglected when discussing wind and solar valuations. As argued in 

Greentechmedia (2011) and supported by Best (Best, 2017), the cost of capital can 

have a much greater impact on solar project value than other costs. They argue 

that for solar projects (mostly financed by debt), there are two primary factors that 

contribute to the cost of capital: the long-term interest rates and the premium that 

must be paid above the interest rates. The second factor was in the wake of the 

crisis very high as investors were unsecure about investments in renewables. This 

has changed lately, and investors’ confidence in the renewables seem to have 
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increased, causing debt costs to fall despite rising treasury yields (Bloomberg, 

2018a). It will be interesting to see how further increases in interest rates will 

impact the performance of the two renewables in the coming period.  

H2 and H3 

Only in the second period do we find some evidence, through the IRF-tests, that 

an increase in oil prices leads to increased wind and solar stock prices. The 

relationships in the post-crisis period are further confirmed by the GVD-tests 

where we see that the variation in the stocks can be explained by the variation in 

oil prices. These results are much stronger for the wind stocks than for the solar 

stocks. It is clear that the relationships between the renewable stocks and oil 

prices have changed from period 1 to period 2, indicating some evidence for H3, 

claiming that increases in oil prices have more significant impact on wind and 

solar stock performance after the crisis. The lack of granger causality, however, 

makes us unsure of how to interpret the relationships, and makes it difficult to 

reach a clear conclusion regarding H2.  

Our findings differ from the research papers discussed in section 2, where all, 

expect of Henriques and Sadorsky (2008), found very significant relationships 

between oil prices and alternative energy stocks. This could be an indication that 

wind and solar stocks, in isolation, do not react to the same variables as the 

renewables in the alternative energy stocks used in the previous research 

(remembering that these stocks included all kinds of alternative energy). Worth 

noticing is that our time period before the crisis does not exactly match other 

papers’ time periods, as our data only is available from 2005. This could, to some 

extent, help explain the difference in results.         

There are also other possible reasons to the absence in significant relationships 

between oil prices and wind and solar stock performance. One is related to the 

markets in which oil, wind and solar compete. Oil is mostly used for 

transportation and petrochemicals (Statista, 2018). Wind and solar energies are 

mostly used to create electricity. One could argue that it would be better to use 

natural gas prices in the model, because gas is to a larger degree used to generate 

electricity than oil (IEA, 2018). Unfortunately, finding an appropriate proxy for 

natural gas prices proved difficult because these prices are highly dependent on 

local supplies. As most economic theory suggests (Villar & Joutz, 2006), natural 
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gas prices are linked to oil prices, which is not locally dependent and thus a better 

variable for our purposes. To conclude this argument: the non-perfect link in the 

usage of oil and wind and solar energy, could help explain our findings of a 

reduced relationship between oil prices and wind and solar stock performance.  

Another explanation is the limitations of where wind and solar energy can be 

produced and used. Obviously, wind and solar energy can only be well utilized in 

locations around the globe where there is frequent wind and sunlight for long 

periods. Oil, on the other hand, can easily be transported and compete in more 

markets. As a result, the energy sources are only direct competitors in certain 

markets where the nature permits it.  

Finally, it could simply be that because the wind and solar energies are only (as 

per today) competitive with the fossil fuels in some markets, we don’t have 

enough evidence to prove a substitution-effect from fossil fuels to the two 

renewables when the prices of the former rise.   

H4 and H5 

In the pre-crisis period, all of the three methodologies provide us with strong 

evidence of causality running from LTECH to both LSUN and LWIND. Looking 

at the IRFs, it is fair to say that an increase in technology stock prices will be 

followed by an increase in wind and solar stock prices, and we can confirm H4 for 

the first period. The relationships are absent in the post-crisis period indicating 

that H5 holds. It might be that investors do not treat wind and solar stocks as 

technology stocks anymore. As we suggested in H5, this could be due to the 

increased competitiveness of the wind and solar energies in the power markets 

making the two renewables more comparable to other energy stocks. An extension 

of this argument can be related to the increased knowledge investors have gained 

of the renewable stocks the recent years. Because both wind and solar stocks were 

relatively new before 2008, investors might not have known where to "place 

them" and as a result, categorized them in the same group as pure technology 

stocks due to their similarities. As the wind and solar technologies have become 

more common, it might be that investors today are more able to understand the 

behavior of wind and solar stocks.   

09327790896196GRA 19502



 

Page 32 

7.6. Summary and limitations 

To sum up, we have found results confirming some of our hypothesis, but we also 

found some surprising results contradicting what was initially hypothesized and 

what other research on alternative energy stock performance has found. The 

differences can potentially be explained by the unique art of wind and solar 

stocks, and/or by limitations in our model.   

We have deliberately chosen to focus on three explanatory variables to make our 

LA-VAR model comparable to previous studies. Nevertheless, we accept that 

other variations of the model could have been conducted. First and foremost, it 

should be mentioned that a lot of variables were left out during the preparation of 

the model. The most important ones are polysilicon prices
6
, US-Yuan exchange 

rates and electricity prices. Especially the latter would potentially be an important 

factor, but is left out due to the high variation in electricity prices across borders.  

It should also be stressed that regulatory issues play important roles in renewable 

stock performance. Examples of influencing factors are governmental subsidies, 

global political issues such as trade barriers or political crisis, and local matters 

such as access to electricity grids. Factors like these are difficult to implement in a 

model used to test empirics in a global scope, but are important in a discussion.        

Some critique may also be directed at our choice of literature, as none of the 

papers used as primary inspiration are published in what may be considered as top 

journals within the field of finance (with the exception of Toda and Yamamoto 

(1995)). We have however chosen to use these particular papers in our thesis as 

they are the only ones treating the topic of interest. We find their theme and 

methodology interesting, and most suitable for answering our research question.  

8. Conclusion 

The rise of renewable energy will influence energy markets worldwide in the 

upcoming decades. Especially wind and solar power will be dominant in what 

many refer to as the energy transition, moving away from fossil fuels. Different 

                                                 

6 Polysilicon is the main material used to create solar PV cells. It is a hyper pure form of silicon and is the 
earth’s second most abundant element.  
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factors are driving the transition and among the most important we find climate 

concerns, technology advancements and cost reductions.  

The understanding of the renewable energy markets becomes more and more 

important. This study takes a financial approach to understanding the wind and 

solar energy sectors. The study investigates the relationships among wind and 

solar stock prices, interest rates, oil prices and technology stock prices. Through a 

four-variable lag-augmented vector autoregressive model it investigates the 

relationships in two different time periods, the years before the financial crisis of 

2008, and the years after the crisis. It discovers that the behaviours of the indices 

change after the financial crisis. Comparing the wind stocks to the solar stocks, 

the study finds a close resemblance in how the two energy sources react to 

changes in the variables of interest.  

According to Granger causality tests, technology stock prices influence the stock 

prices of wind and solar stocks in the pre-crisis period, while interest rates and oil 

prices have no significant impact on the renewables. This finding is further 

strengthened through the generalized impulse response functions where we find 

that a positive shock to technology stocks results in increased wind and solar 

stock prices, while interest rates and oil prices still show no significance. The 

generalized forecast-error variance decomposition further supports these findings.  

The relationships change in the post-crisis period. We see that neither oil prices, 

interest rates nor technology stock prices Granger cause the wind or solar stock 

prices. According to the impulse response function, there is evidence that an 

increase in technology stock prices and in oil prices lead to an increase in wind 

and solar stock prices. The generalized forecast-error variance decomposition also 

shows that technology has an impact on the renewables, and shows that the wind 

stocks are influenced by oil to a larger degree than the solar stocks. The interest 

rates show no importance in any of the models. In summary, we see that 

technology still impacts the indices of interest, though to a smaller degree that in 

the pre-crisis period, while oil plays a bigger part than before the financial crisis. 

Due to the lack of significant Granger causality, it is however difficult to make 

any clear conclusion regarding technology and oil prices.  

As robustness test, we ran the variables anew in a VECM model and in VAR 

models (not lag-augmented), and we have reported the corresponding Granger 
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causality estimators. The results were very similar to our main model, with the 

exception of technology prices playing a larger role on the wind index in the post-

crisis period.  

All over, our results differ from previous research on renewable energy in that we 

find no big causality running from oil prices and interest rates to the renewable 

energy stocks. Because the previous studies focus on indices consisting of all 

kinds of renewable energy companies, our results might indicate that wind and 

solar stocks, separately, have different characteristics than when investigated in a 

renewable energy index containing all kinds of renewables. We have also 

discovered that the relationships have changed in the two periods we looked at, 

indicating that the indices and their characteristics are changing over time. The 

latter statement makes sense when considering that the renewable sector is still 

relatively new, and it is growing at an incredible rate, making it hard to know its 

drivers and to know what to compare it with. Investors and policy makers should 

have this in mind when investing or choosing political measures.  

We encourage future research to continue investigating the financial 

characteristics of renewable energy companies, and preferably treat the different 

energy sources separately, as done in this paper. When investigating wind and 

solar companies, it could be interesting to also include other factors than the ones 

in our models, such as silicon prices, political regulations, gas prices and different 

price estimates of electricity.  
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10. Appendix 

10.1. Appendix 1 – Unit root testing 

Unit root tests using Augmented Dickey Fuller-test (ADF), Phillips and Perron (PP) tests 

and the Kwiatkowski–Phillips–Schmidt–Shin tests (KPSS). Parenthesis shows selected 

lags using Schwarz information criteria for the ADF tests, and the Newey-West 

bandwidth using Bartell Kernel for the PP and KPSS tests. . ***, ** and * denotes 

statistically significance at the 1%, 5% and 10% level. 

 

 

ADF(lags) PP(NWBW) KPSS(NWBW) ADF(lags) PP(NWBW) KPSS(NWBW)

LSUN -1.333(0) -1.354(4) 1.224(2)*** -10.573(0)*** -10.555(4)*** 0.082(2)

LTECH -1.896(0) -1.969(5) 0.499(9)** -13.390(0)*** -13.285(4)*** 0.064(4)

LOIL -0.545(0) -0.545(0) 1.028(10)*** -12.617(0)*** -12.619(1)*** 0.127(1)

LTBILL -0.541(1) -0.545(5) 1.050(9)*** -15.454(0)*** -15.883(7)*** 0.214(9)

LWIND -2.453(0) -2.436(4) 1.268(10)*** -10.986(0)*** -10.997(5)*** 0.381(5)*

LSUN -1.675(0) -1.694(2) 1.310(16)*** -20.358(0)*** -20.360(1)*** 0.1855(2)

LTECH -1.270(1) -1.025(13) 2.636(16)*** -24.257(0)*** -24.432(10)*** 0.082(14)

LOIL -1.315(0) -1.349(6) 1.550(16)*** -21.604(0)*** -21.590(7)*** 0.123(6)

LTBILL -1.343(1) -1.806(8) 0.800(16)*** -26.780(0)*** -28.630(9)*** 0.220(18)

LWIND -1.258(0) -1.328(6)  0.691(16)** -21.225(0)*** -21.248(6)***  0.361(6)*

Levels First differences

First period

Second period
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10.2. Appendix 2 – Lag length criteria 

 
Lag length criteria for model 1-4, using Akaike Information Criterion (AIC), Hannan-

Quinn criterion (HQ), Schwarz Information Criterion (SC) and the Likelihood Ratio test 

(LR). The stars indicates the suggested lag length recommended by the different criteria.  

10.3. Appendix 3 – Multivariate LM testing 

Shows the multivariate LM test statistics for all four models, up to 10 lags. The LM-Stat is 

calculated using Breusch-Godfrey a test, the Prob shows the significance with null 

hypothesis of no serial correlation.  

(1) (2)

Lag LR AIC SC HQ Lag LR AIC SC HQ

0 NA -3.710737 -3.622945 -3.675063 0 NA -3.601687 -3.513894 -3.566013

1  1259.139  -13.45963*  -13.02066*  -13.28126* 1  1344.514 -14.02816  -13.58920*  -13.84979*

2  24.06986 -13.41265 -12.62251 -13.09158 2   37.17619*  -14.08860* -13.29847 -13.76754

3  24.13219 -13.37288 -12.23158 -12.90912 3  25.47625 -14.06023 -12.91893 -13.59647

4  9.692517 -13.21363 -11.72116 -12.60717 4  8.888370 -13.89392 -12.40145 -13.28747

5  15.23859 -13.10789 -11.26425 -12.35873 5  13.84870 -13.77555 -11.93191 -13.02639

6  10.87308 -12.96619 -10.77138 -12.07434 6 8.869103 -13.61494 -11.42014 -12.72309

7   27.92178* -12.99566 -10.44968 -11.96111 7  21.95457 -13.58591 -11.03993 -12.55136

8  14.87353 -12.90315 -10.00601 -11.72591 8  14.90822 -13.49376 -10.59661 -12.31652

9  15.69970 -12.82589 -9.577580 -11.50596 9  17.20242 -13.43249 -10.18417 -12.11255

10  21.46820 -12.82016 -9.220672 -11.35752 10  23.19157 -13.44590 -9.846413 -11.98327

(3) (4)

Lag LR AIC SC HQ Lag LR AIC SC HQ

0 NA  5.148331  5.187513  5.163832 0 NA  3.676599  3.715781  3.692100

1  6699.148 -11.31473  -11.11882*  -11.23722* 1  6728.186 -12.85816  -12.66225*  -12.78065*

2   45.79833*  -11.35089* -10.99825 -11.21138 2  48.00165  -12.89981* -12.54718 -12.76030

3  18.14725 -11.31855 -10.80918 -11.11703 3  23.77181 -12.88164 -12.37228 -12.68012

4  10.73742 -11.26782 -10.60173 -11.00430 4  17.67269 -12.84856 -12.18247 -12.58504

5  25.60173 -11.25559 -10.43277 -10.93006 5  22.63790 -12.82871 -12.00589 -12.50318

6  22.02992 -11.23476 -10.25521 -10.84723 6   29.40524* -12.82704 -11.84749 -12.43950

7  20.18790 -11.20970 -10.07342 -10.76016 7  16.22726 -12.79158 -11.65530 -12.34204

8  21.53840 -11.18878 -9.895774 -10.67723 8  20.16852 -12.76703 -11.47402 -12.25548

9  22.59031 -11.17130 -9.721561 -10.59774 9  21.90549 -12.74771 -11.29797 -12.17416

10  8.543601 -11.11640 -9.509938 -10.48084 10  5.303359 -12.68403 -11.07757 -12.04847

(1) (2) (3) (4)

Lags LM-Stat Prob LM-Stat Prob LM-Stat Prob LM-Stat Prob

1 5.435 0.993 17.088 0.380 19.044 0.266 16.042 0.450

2 21.080 0.175 22.873 0.117 18.070 0.320 21.343 0.166

3 12.801 0.687 8.409 0.936 9.464 0.893 19.818 0.229

4 19.904 0.225 11.360 0.787 19.105 0.263 18.204 0.312

5 23.856 0.093 12.616 0.701 24.256 0.084 30.018 0.018

6 16.807 0.398 24.733 0.075 11.815 0.757 15.233 0.508

7 13.888 0.607 17.184 0.374 19.380 0.249 20.376 0.204

8 13.135 0.663 7.654 0.959 19.774 0.231 14.010 0.598

9 25.242 0.066 26.013 0.054 10.816 0.821 7.934 0.951

10 24.421 0.081 13.695 0.621 8.903 0.917 26.227 0.051
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10.4. Appendix 4 – Unit root testing 

Reports the inverse roots of the characteristic AR polynomial. If the absolute value of the 

root is less than 1, the root lies inside the unit root circle, and the model can be 

considered as stable. Number of roots is decided by number of endogenous variables (4 

for all four models), times the number of lags; 7, 2, 2 and 6 for model (1), (2), (3) and (4), 

respectively.  

(1) (2) (3) (4)

# Root      Root Modulus      Root Modulus      Root Modulus      Root Modulus

1 0.981 0.981 0.987 0.987 0.997 0.997 1.000 1.000

2 0.981 0.981 0.987 0.987 0.991 0.991 0.983 0.984

3 0.908 0.916 0.897 0.897 0.978 0.979 0.983 0.984

4 0.908 0.916 0.897 0.897 0.978 0.979 0.982 0.982

5 -0.865 0.865 -0.217 0.239 -0.313 0.313 -0.758 0.758

6 0.320 0.861 -0.217 0.239 -0.097 0.097 0.757 0.757

7 0.320 0.861 -0.090 0.090 0.079 0.079 -0.575 0.722

8 -0.543 0.846 -0.047 0.047 0.003 0.003 -0.575 0.722

9 -0.543 0.846 0.473 0.700

10 0.761 0.836 0.473 0.700

11 0.761 0.836 0.245 0.671

12 0.003 0.780 0.245 0.671

13 0.003 0.780 0.566 0.659

14 -0.691 0.778 0.566 0.659

15 -0.691 0.778 -0.355 0.644

16 0.747 0.759 -0.355 0.644

17 0.747 0.759 -0.174 0.624

18 0.563 0.743 -0.174 0.624

19 0.563 0.743 0.139 0.610

20 -0.328 0.723 0.139 0.610

21 -0.328 0.723 -0.506 0.602

22 -0.076 0.697 -0.506 0.602

23 -0.076 0.697 -0.334 0.334

24 -0.565 0.689 0.278 0.278

25 -0.565 0.689

26 0.266 0.666

27 0.266 0.666

28 -0.652 0.652
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10.5. Appendix 5 – Generalized impulse response functions model 1 

Generalized impulse response functions for all variables in model (1). 

10.6. Appendix 6 - Generalized impulse response functions model 2 

Generalized impulse response functions for all variables in model (2). 
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10.7. Appendix 7 - Generalized impulse response functions model 3 

Generalized impulse response functions for all variables in model (3). 

10.8. Appendix 8 - Generalized impulse response functions model 4 

Generalized impulse response functions for all variables in model (4). 
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10.9. Appendix 9 – Generalized forecast-error variance decompositions 

for model 1 and 2 

Generalized forecast-error variance decompositions for model (1) and (2), showing lag week 0, 5 

and 10 for all five variables. 

10.10. Appendix 10 - Generalized forecast-error variance 

decompositions for model 3 and 4 

Generalized forecast-error variance decompositions for model (3) and (4), showing lag week 0, 5 

and 10 for all five variables. 

(1) Horizon LSUN LTECH LOIL LTBILL (2) LWIND LTECH LOIL LTBILL

LSUN 0 1.000 0.478 0.022 0.051 LWIND 1.000 0.306 0.035 0.014

5 0.761 0.576 0.014 0.065 0.789 0.508 0.039 0.021

10 0.610 0.555 0.012 0.090 0.529 0.537 0.043 0.084

LTECH 0 0.478 1.000 0.020 0.054 LTECH 0.306 1.000 0.009 0.067

5 0.256 0.832 0.136 0.028 0.132 0.827 0.075 0.031

10 0.166 0.741 0.151 0.027 0.107 0.677 0.087 0.107

LOIL 0 0.022 0.020 1.000 0.007 LOIL 0.035 0.009 1.000 0.005

5 0.111 0.019 0.930 0.037 0.082 0.070 0.883 0.039

10 0.218 0.126 0.794 0.038 0.102 0.392 0.517 0.034

LTBILL 0 0.051 0.054 0.007 1.000 LTBILL 0.014 0.067 0.005 1.000

5 0.207 0.221 0.042 0.823 0.048 0.453 0.047 0.651

10 0.147 0.168 0.032 0.848 0.085 0.671 0.098 0.269

Period 1

(3) Horizon LSUN LTECH LOIL LTBILL (4) LWIND LTECH LOIL LTBILL

LSUN 0 1.000 0.371 0.106 0.009 LWIND 1.000 0.433 0.162 0.002

5 0.988 0.353 0.072 0.002 0.977 0.353 0.226 0.001

10 0.959 0.389 0.047 0.004 0.912 0.297 0.316 0.003

LTECH 0 0.371 1.000 0.132 0.005 LTECH 0.433 1.000 0.131 0.005

5 0.380 0.993 0.121 0.015 0.482 0.964 0.179 0.007

10 0.350 0.969 0.124 0.050 0.431 0.854 0.216 0.080

LOIL 0 0.106 0.132 1.000 0.003 LOIL 0.162 0.131 1.000 0.005

5 0.067 0.101 0.950 0.057 0.125 0.109 0.984 0.023

10 0.031 0.058 0.826 0.130 0.084 0.068 0.948 0.013

LTBILL 0 0.009 0.005 0.003 1.000 LTBILL 0.002 0.005 0.005 1.000

5 0.028 0.011 0.058 0.950 0.003 0.015 0.046 0.915

10 0.107 0.048 0.186 0.813 0.003 0.020 0.053 0.889

Period 2
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10.11. Appendix 11 – Lag length selection for robustness testing 

Lag length criteria for model 1-4, using Akaike Information Criterion (AIC), Hannan-

Quinn criterion (HQ), Schwarz Information Criterion (SC) and the Likelihood Ratio test 

(LR). The stars indicates the suggested lag length recommended by the different criteria.  

10.12. Appendix 12 – Leverage ratios 

 
Yearly average of each leverage ratio for all companies in the wind and solar indices from year 

2014-2017. The averages have been calculated by taking the average of each company´s yearly 

average in the time span. Because the indices consist of different companies each year, the 

averages are of the companies presented in the MAC Global Solar Energy stock index and in the 

ISE Global Wind Energy index as of year 2018. Due to limitations in the data set, the time period 

for this calculation starts in year 2014. The debt/equity, which is the ratio referred to in the text, is 

calculated by dividing total debt by shareholders equity.  

(1) (2)

Lag LR AIC SC HQ Lag LR AIC SC HQ

0 NA -3.710737 -3.622945 -3.675063 0 NA -13.23476 -13.14609* -13.19873

1  1259.139 -13.45963* -13.02066* -13.28126* 1 42.04308 -13.32576 -12.88237 -13.1456

2  24.06986 -13.41265 -12.62251 -13.09158 2 63.81816 -13.60951* -12.81143 -13.28523*

3  24.13219 -13.37288 -12.23158 -12.90912 3 27.75114* -13.60068 -12.44789 -13.13228

4  9.692517 -13.21363 -11.72116 -12.60717 4 19.67807 -13.52832 -12.02082 -12.91579

5  15.23859 -13.10789 -11.26425 -12.35873 5 13.57447 -13.40595 -11.54374 -12.6493

6  10.87308 -12.96619 -10.77138 -12.07434 6 16.16257 -13.31329 -11.09639 -12.41252

7  27.92178* -12.99566 -10.44968 -11.96111 7 12.0778 -13.18601 -10.6144 -12.14111

8  14.87353 -12.90315 -10.00601 -11.72591 8 15.70353 -13.10153 -10.17521 -11.9125

9  15.69970 -12.82589 -9.577580 -11.50596 9 23.51381 -13.10905 -9.828025 -11.7759

10  21.46820 -12.82016 -9.220672 -11.35752 10 22.06695 -13.11175 -9.476018 -11.63448

(3) (4)

Lag LR AIC SC HQ Lag LR AIC SC HQ

0 NA -11.32498 -11.28559* -11.30939* 0 NA -11.89715 -11.85768 -11.88153

1 49.27657* -11.36894* -11.17195 -11.29098 1 259.3621 -12.46512 -12.26777* -12.38701

2 18.58629 -11.33701 -10.98243 -11.19669 2 82.19593 -12.59335 -12.23811 -12.45275*

3 12.76139 -11.29078 -10.7786 -11.08809 3 46.25433 -12.63223 -12.1191 -12.42914

4 23.69363 -11.27291 -10.60313 -11.00785 4 49.12204 -12.67969* -12.00867 -12.41411

5 21.19296 -11.24919 -10.42182 -10.92176 5 26.69689 -12.67021 -11.84131 -12.34215

6 20.07466 -11.22312 -10.23815 -10.83332 6 14.99057 -12.63074 -11.64395 -12.24019

7 20.35889 -11.19835 -10.05579 -10.74619 7 36.49102 -12.64871 -11.50404 -12.19568

8 22.68276 -11.18038 -9.88022 -10.66585 8 27.04354 -12.6424 -11.33984 -12.12687

9 7.669481 -11.12248 -9.664729 -10.54559 9 13.47602 -12.6001 -11.13966 -12.02209

10 11.95843 -11.07653 -9.461184 -10.43727 10 29.01420* -12.60077 -10.98244 -11.96027

Leverage ratios Solar index Wind index

Assets/Equity 5.8932 4.0523

Debt/Equity 2.2473 1.3087

Long Term Debt to Total Capital 0.3955 0.3610

(Total Debt - Cash) / EBITDA 7.9240 3.6492
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