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Abstract 

This thesis aims to assess if the optimal asset allocation for the Norwegian 

Government Pension Fund – Global could be improved. We were curious to see if 

we were able to optimize the portfolio by only looking at the risk-return 

relationship, without taking political, economic or ethical interest into evaluation. 

Since Norges Bank Investment Management has expressed that they do not have 

the absolute answer for what is the optimal asset allocation, we were interested to 

research whether or not we could obtain better results by purely examine the 

financial performance. The research set out to calculate the optimal portfolio 

weighting from historical data collected from 2008 until 2018. To analyze and 

compare the results we used the FTSE Benchmark Index, which is the benchmark 

used for the Government Pension Fund – Global. Therefore, we tried to replicate 

the FTSE benchmark by using 25 of the same countries in our portfolio. Upon 

advice from our supervisor we chose to program our own portfolio optimizer from 

scratch with Python as our programming tool. We constructed the different 

portfolios and divided them into constant expected return and time-varying 

expected return. Even though this was much more time consuming than using 

another software, we found it to be rewarding. As expected, our results showed 

that with our asset allocation we did not outperform the benchmark, except one 

portfolio that is rather close. However, this portfolio was closer than one should 

assume – compared to the benchmark Norges Bank uses that has considerably 

more complexity and more political-economic decisions behind its investment 

strategy. So – is it possible to rather concentrate on the return and variance trade-

off instead off introducing the vast complexity of several influencing factors.  
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1. Introduction       

One of the most important objectives in asset management is to make decisions 

concerning the optimal asset allocation (Sharpe W. , 1964). The goal of asset 

managers is to realize the highest possible return corrected for risk, with the 

lowest value at risk (VaR) possible, and in response to news, prices of different 

asset classes changes in anticipation of future performance. When it comes to 

portfolio choices and in determining aggregate risk, the structure of variance and 

correlation across assets are extremely important. The goal of this thesis is to 

explore what is the best possible asset allocation for the Norwegian Government 

Pension Fund - Global. We will compare the FTSE Benchmark they are using 

today and try to optimize the portfolio by using asset allocation to change the 

weights they are investing in per country. 

 

The Norwegian Government Pension Fund - Global was founded in 1990 by The 

Norwegian Government as a fiscal policy tool to manage and preserve the rapid 

growing petroleum revenues into long-term investments. The purpose of the Fund 

is to benefit and save for future generations in Norway, as well as giving the 

Norwegian government a tool to stabilize and stimulate the economy. Further in 

this thesis we will refer to the Norwegian Government Pension Fund - Global as 

the Fund or the abbreviation GPFG, and Norges Bank Investment Management as 

the abbreviation NBIM. Today all the Norwegian government’s oil and gas 

revenues are transferred directly into the fund and invested into three categories 

which are divided as follows; 66,8 % in equity-, 31,6% in fixed income -, and 

2,5% in unlisted real estate investments. The market value for the Fund has 

increased steady over the last decade, making it one of the world's largest funds 

with a current market value of approximately NOK 8.500 billion as you can see in 

figure 1 below.  
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Figure 1: The market development in the Norwegian Pension Fund from 1998 to 2018. 

 

The GPFG is managed by Norges Bank Investment Management and 

Folketrygdfondet, respectively, under mandates laid down by the Ministry of 

Finance (Norwegian Ministry of Finance, 2017). All investments in the Fund are 

made global and are invested outside Norway to reduce the risk. The Fund is a 

well-diversified portfolio across different asset classes, countries and sectors. The 

portfolio is based on three different investment strategies; fund allocation, asset 

strategies and company investment. The Fund is invested in Asia, North America, 

Europe, Oceania, Latin America, Africa and the Middle East. The investments are 

measured against a benchmark index, which is set by the Ministry of Finance on 

the basis of indices from FTSE Group and Bloomberg Barclays Indices, where the 

strategic benchmark indices are divided into 30% fixed income and 70% equity 

investments.   

 

The main research topic of this thesis is efficient asset allocation, where applying 

better inputs in the mean-variance framework will reduce the realized variance by 

increasing the reliability of the diversification effects, and as a result one will 

know which risks to expect. We will limit our research to only look at the equity 

investments of the Fund and compare the results with the FTSE benchmark index. 

Our analysis will be entirely concentrated on the financial performance of the 

Fund, and any political or other non-financial values will not be considered or 

discussed in the thesis. The fundamental aspect in this approach is the predictions 

for return, variance and correlation coefficients by use of the historical price 

series. The model will be programmed in Python and assessed with performance 

test statistics like the Sharpe-ratio, since the goal of this thesis is to assess if it is 
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possible to improve and select the optimal model. However, it goes beyond this 

thesis to fully explain the causes of risk, and to elaborate on the changes in 

valuations of specific risks which aggregate in portfolio theory.  

 

The remaining part of this thesis is organized as follows: The second chapter is a 

literature review and the in third we elaborate the most relevant theories for our 

thesis. The fourth chapter outlines the methodology in detail and discusses the 

estimation procedures used. Chapter five explains our data sources, the data 

collection and also the software used to apply the research methodology. While 

the sixth chapter shows the analysis, where we discuss our results and findings. 

The last and seventh chapter concludes our findings.   

2. Literature review 

There exist numerous studies researching asset allocation of funds. However, we 

have chosen to only discuss the literature we find relevant for our research of asset 

allocation of the Norwegian Government Pension Fund – Global. The central part 

of this literature review will be on existing literature on modern portfolio theory, 

portfolio construction, geographical diversification, market efficiency, systematic 

risk factors among many. 

2.1 Modern portfolio theory  

In 1952, Harry Markowitz published a paper on Modern portfolio theory, where 

he proved that the saying “Don’t put all your eggs in one basket” is true. Before 

the paper was issued, people had an intuitive sense that they should not put too 

much of their total wealth in a single investment or type of asset. Markowitz was 

therefore the first person to prove mathematically, that it was a question of how 

many eggs to put into which basket. Modern portfolio theory attempts to find a 

combination of assets which maximizes the expected return of a portfolio for a 

given level of risk, or similarly minimizes the variance of a portfolio for a given 

amount of expected return (Markowitz, 1952). The rationale behind this theory is 

that investors are risk-averse and will therefore only choose a riskier portfolio, if 

they will be compensated by a higher expected return. The following 

mathematical rules supports this theory:  
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1. The expected return on the portfolio is a weighted average of the 

expected returns on individual securities 

2. The variance of return on the portfolio is a function of the 

variances of, and the covariances between, securities and their 

weights in the portfolio.  

 

The mathematical calculations in modern portfolio theory are a way to structure 

and discipline your thinking as a portfolio manager – in a way to reduce risk and 

improve overall return (Hudson-Wilson, 1990). Hudson-Wilson also states that 

the more advanced our thinking can become, the higher return we will be able to 

achieve. In his article, Markowitz (1952) showed that assets in a portfolio can be 

combined to provide an “efficient” portfolio. By doing this, on can achieve the 

highest possible level of portfolio return for any level of portfolio risk, measured 

by the variance or standard deviation. These portfolios are then combined to 

generate the “efficient frontier”. According to the investor's preferences, 

portfolios which have a combination below this efficient frontier will not 

maximize the efficient trade-off. Having established an efficient frontier, it is now 

necessary to decide where along the frontier the investor will choose a portfolio. 

2.2. Portfolio construction 

The main key in portfolio construction is how many properties an investor should 

hold to diversify risk. Risk is divided into non-systematic and systematic risk 

which can and cannot be diversified, respectively. Statman (1987) undertook a 

study to show how many stocks are needed in order to diversify all the 

nonsystematic risk and only be left with the market risk. Figure 2 show the 

average standard deviations of equally weighted portfolios by random selection as 

a function of the number of stocks. Statman proved that on average, portfolio risk 

does fall with diversification, but the power of diversification to reduce risk is 

limited by common risk or market risk. 
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Figure 2: Portfolio risk decreases as diversification increases 

 

Once the portfolio has been constructed the investor must measure and evaluate 

its actual behavior in relation to the expected performance. Such action usually 

involves selling certain investments and using the proceeds to acquire other 

investments for the portfolio. Portfolio Management therefore involves not only 

selecting a compatible group of investments that meet the investor’s objectives, 

but also monitoring and restructuring the portfolio as dictated by the actual 

behavior of the investments. 

2.3 Geographical diversification 

A highly discussed topic in portfolio management, are the challenges and benefits 

from using diversification as one of your investment strategies. This is an 

extremely relevant subject for the GPFG. When deciding where to invest there are 

several different factors that can cause risk or lead to variability in returns on your 

investment, and there exist many circumstances that may influence your 

investment. Factors such as uncertainty of income, interest rates, inflation, 

exchange rates, tax rates, the state of the economy, default risk and liquidity risk. 

One way to control portfolio risk is using diversification. Diversification is when 

investments are made in a wide variety of assets so that the exposure to the risk is 

reduced (Brentani, 2004).  

 

One way of diversifying is to use geographical diversification. That is the practice 

of diversifying an investment portfolio across countries, or over different 
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geographical regions. Based on the premise that markets in different parts of the 

world are not highly correlated, one uses diversification to reduce the overall risk, 

and to improve the returns on the portfolio. In essence one wants to safeguard the 

portfolio investments from political turbulence and potential recessions among 

many aspects. However, diversifying your investments cannot eliminate or reduce 

all risk in your portfolio, because mostly all securities are affected by common 

(risky) macroeconomics factors. One cannot eliminate all exposure to general 

economic risk, however it is possible to reduce the exposure to certain factors by 

using geographical diversification (Bodie, Kane, & Marcus, 2012). In their 

research, Morck & Yeung (1991), Bodnar, et al. (1999), and Allayannis and 

Weston (2001) all found positive value effects from geographical diversification.   

2.4 Market efficiency  

A highly debated topic is the efficient market hypothesis (EMH), and the 

academic research on this area is extensive. Fama (1991) defined the efficient 

market hypothesis to be that security prices fully reflect all available information. 

However, Jensen (1978) has a refined version of the hypothesis which states that 

prices reflect information to the point where the marginal benefit, and hence the 

profits do not exceed the marginal costs. This definition implies that investors 

cannot achieve a return over the average without assuming above-average risk 

(Malkiel, 2003). 

 

Furthermore, when it comes to using an active strategy that generates excess 

return, it often entails an investment strategy based on exploiting inefficiencies 

and mispricing in the market. This implies that these three elements are essential; 

interpretation of the EMH, the existence and identification of possible 

inefficiencies. Lakonishok et al. (1994) argues that anomalies are evidence of 

inefficiency and a potential to generate excess return with active management. On 

the contrary, Fama and French (1993) argues that anomalies and such 

inefficiencies are sources of risk premium and claim that these patterns of return 

may be consistent with an efficient market in which expected returns are 

consistent with risk. This is in accordance with more recent literature.  
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2.5 Systematic risk factors 

The efficient market hypothesis is an underlying assumption for the well-known 

capital asset pricing model (CAPM). The main assumption in the CAPM is that 

the systematic risk of a security depends on the co-variation between the return on 

the security and the return on the market portfolio, measured by β (Sharpe 1964, 

Lintner 1965, Black 1972). That said, more recent empirical research has shown 

that the relationship between risk and return is more complex than assumed by the 

CAPM. Arbitrage pricing theory (APT) was introduced by Stephen A. Ross in 

1976 and is a testable alternative to the CAPM. This is a theory that provides a 

solid theoretical framework for ascertaining whether multiple factors are “priced”, 

i.e. are associated with a risk premium. Chen, Ross and Roll (1986) used data for 

individual equities during the period from 1962 to 1972 and concluded that at 

least three factors are definitely present in the prices.  

 

There is extensive academic literature about which factors are associated with a 

persistent risk premium. Fama and French (1992) introduced two systematic risk 

factors in addition to the market factors in their so-called “three-factor-model”. 

Their research was based on U.S. stocks during the period from 1963-1990, and 

they found out that a size factor (small versus large capitalization) and a value 

factor (value versus growth stocks), are additional determinants of stock returns. 

A further expansion of the model was made by Mark. M Carhart (1997) by adding 

a fourth factor capturing the one-year momentum anomaly. Another researcher, 

Cochrane (2011) argues that there exist dozens of priced factors that describe the 

cross-sectional variation in expected returns. He further argues that characterizing 

risk premium variation has replaced efficiency as the central organizing question 

of asset pricing research.  

2.6 Active management and excess return 

In financial literature, there are several studies that investigate the benefit of 

active management. One is market efficiency, this describes investors who 

“chase” alphas by uncovering inefficiency priced asset in order to achieve excess 

return. The theories provide the framework for organizing asset-pricing research. 

However, more recent literature explains many of these inefficiencies as priced 
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systematic risk factors and how investors need to understand these factors in order 

to outperform the benchmark.  There are two fundamental approaches to 

implement active management and, in that way, deviate from the benchmark 

portfolio, they are market timing and stock selection. These assume that priced 

systematic risk factors are determinants of stock returns.  

2.6.1 Market timing  

Market timing is the decision to change the proportion of the benchmark itself. 

This can be done in two ways; the first alternative is to shift some of the 

investment from the benchmark into a riskless asset, and the second alternative is 

to borrow and buy more of the benchmark.  

 

In relevant literature on active management and performance, several researchers 

do not support the hypothesis that mutual fund managers are able to beat the 

market. Henriksson and Merton (1981) was one of them, he stated that managers 

are not able to follow an investment strategy that successfully times the return on 

the market portfolio. Their research emphasizes that the ability to earn superior 

returns are based on superior forecasting ability, and it would be a violation of the 

efficient market hypothesis with significant implications for the theory of finance. 

 

Becker, Ferson Myers and Schill (1999) has done a more recent study based on 

more than 400 mutual funds in the time period from 1976 to 1994, where they 

distinguish timing based on publicly available information from timing based on 

finer information. They discovered that the average timing performance of mutual 

funds is insignificant and sometimes even negative.  

2.6.2 Stock selection  

Stock selection is when the manager chooses to hold securities in different 

proportions than the capital weights. By using a benchmark based on the 

characteristics held by 125 portfolios in mutual funds in the period from 1975 to 

1994, Daniel et al. (1997) applied new measures of portfolio performance. Based 

on the benchmarks, “characteristic selectivity” and “characteristic timing” 

measures are developed to detect whether portfolio managers successfully time 

their portfolio weightings on these characteristics. Another part of the study 
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examines whether portfolio managers can select stocks that outperform the 

average stock having the same characteristics. The research shows that mutual 

funds, particularly aggressive-growth funds, exhibit some selective ability, yet the 

funds exhibit no characteristic timing ability.   

3. Theory 

3.1 Modern portfolio theory  

Markowitz made a difference between efficient and inefficient portfolios and 

proposed an optimization framework by geometrical analysis. In more 

mathematical terms and matrix notation, we can find the minimum portfolio 

variance, 𝜎"#, for any particular portfolio return, 𝜇". The weights, 𝑊& , invested in 

each asset, assuming N different assets exist, is limited to 1.  

 

∑ 𝑤& = 1+
&,-           (3.1)  

The weights are a (N x 1) vector, 𝒘 =  /
01
02…
04
5
#

 

The portfolio return, 𝑟7, is the weighed sum of the individual asset returns, 𝒓, 

where 𝑟7 is a (1 x 1) scalar and 𝒓	= /
:1
:2…
:4
5 is a (N x 1) vector of returns.  

𝑟7= w’𝑟	= (𝑤-,𝑤#, … ,𝑤+) /
:1
:2…
:4
5 

             =	𝑤-𝑟- +	𝑤#𝑟# + … + 𝑤+𝑟+                                      (3.2)  

 

This gives us the expected portfolio return,  

𝜇" = 𝐸[𝑟7] = w’𝐸[𝑟7] = w ’𝜇             , where 𝜇 = 𝐸[𝑟]          (3.3)  

 

The portfolio variance is given by, 

𝜎"#	= 𝒘′𝜮𝒘																																																																																									(3.4) 

     = (𝑤-,𝑤#, … ,𝑤+)D		

𝑉𝑎𝑟(𝑟-) 𝐶𝑜𝑣	(𝑟-, 𝑟#) ⋯ 𝐶𝑜𝑣	(𝑟-, 𝑟+)
𝐶𝑜𝑣	(𝑟#, 𝑟-) 𝑉𝑎𝑟(𝑟#) ⋯ 𝐶𝑜𝑣	(𝑟#, 𝑟+)

⋮ ⋮ ⋱ ⋮
𝐶𝑜𝑣	(𝑟+, 𝑟-) 𝐶𝑜𝑣	(𝑟+, 𝑟#) ⋯ 𝑉𝑎𝑟(𝑟+)

N/
01
02…
04
5  
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Where 𝜮 is a (N x N) covariance matrix containing the variance of all N assets 

returns and their pair wise covariance between the N assets returns. The minimum 

variance for a target portfolio return, µ∗, can be found by solving this quadratic 

function,  

 

Min 0.5𝜎"#, with respect to 𝜇" = µ∗ and ∑ 𝑤& = 1+
&,-          (3.5)  

 

By solving this problem, you get the optimal asset allocation weights that will 

minimize the risk for a given level of return. This optimal solution lies on the 

efficient frontier described by Markowitz (1952).  

3.1.1 The efficient frontier 

The efficient frontier is a graph representing a set of portfolios that maximize 

expected return at each level of portfolio risk (Bode Z., 2003). Plotting the 

efficient frontier is very complex. It is necessary to calculate the future expected 

returns and standard deviation, along with the correlation coefficients between 

each pair of assets.  

The efficient frontier describes the collection of portfolios (i.e. asset mixes) that 

produces the highest expected return at various levels of risk as measured by the 

standard deviation of portfolio returns (Hudson-Wilson, 1990). Such portfolios 

can be seen as efficiently diversified. Figure 2 below, illustrates the graphical 

relationship of the individual assets and the efficient frontier. The expected return 

and standard deviation combinations for any individual asset end up inside the 

efficient frontier, because single asset portfolios are inefficient, in other words, 

they are not efficiently diversified. However, as you can see in figure 3 an 

investor can immediately discard portfolios below the minimum variance 

portfolio. The minimum variance portfolio is dominated or favored by portfolios 

on the upper half of the frontier because they yield a higher expected return with 

equal risk. Therefore, investors should only consider portfolios on the efficient 

frontier above the minimum – variance portfolio.  
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Figure 3: The graphical relationship of the individual assets and the efficient frontier. 

When we optimize every single portfolio by means of the modern portfolio theory 

and plot the results in a risk-return space, we will obtain a combination of optimal 

portfolios which will form a hyperbola. The upper part of this hyperbola is 

dubbed the efficient frontier. When a risk-free asset is included, the efficient 

frontier will no longer be a set of portfolios, but one specific portfolio of risky 

assets, called the tangency portfolio (sometimes also called the optimal risky 

portfolio). That is the portfolio that tangents the efficient frontier when you draw a 

line from the risk-free asset to the efficient frontier in a (𝜇", 𝜎")-space. The 

tangency portfolio together with the risk-free asset, will be the best fit for each 

investor’s individual risk tolerance. And the portfolio return, 𝑟"	is,  

 

𝑟" = w 𝑟Q∗ + (1-w) 𝑟R                                                          (3.6)  

 

Where 𝑟Q∗ denote return from the tangency portfolio, 𝑤 is the weight invested in 

the tangency portfolio and 𝑟R denotes the return on the risk-free asset. 𝑟" is called 

the best possible capital allocation line (CAL). Due to the fact that the variance 

and the risk of a risk-free asset is zero, the variance of this portfolio will be,  

 

𝜎"# = 𝑤#𝜎"# + (1 − 𝑤)#	𝜎:R# + 2𝑤#	(1 − 𝑤)#	𝑐𝑜𝑣(𝑟Q, 𝑟R) 

     = 𝑤#𝜎"# + (1 − 𝑤)#	0 + 2𝑤#	(1 − 𝑤)#	0                     (3.7) 

     = 𝑤#𝜎"#                                                                              
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Now that we know the portfolio return and we know that the standard deviation is 

the square root of the variance, we can compute the CAL as,  

𝑟" = 	 𝑟R + W
:XY	:Z
[X

\ 𝜎7                   (3.8)  

3.2 Capital Asset Pricing Model (CAPM) 

The Capital asset pricing model, referred to as CAPM, was developed from 

modern portfolio theory and is one of the most popular tools for quantifying and 

measuring risk for equities. The model relates the required rate of return on a 

security to its systematic risk as measured by beta, and the beta is estimated using 

a regression of the portfolio returns in excess of the risk-free rate on the 

benchmark returns (Risk and Return, NBIM 2016). The CAPM predicts the 

relationship between the risk and equilibrium expected returns on risky assets 

(Bodie, Kane, Marcus, 2013).  Systematic risk is non-diversifiable risk; therefore, 

beta is effectively measuring the systematic risk of a specific asset. The CAPM’s 

expected return/beta relationship is as follows: 

𝐸[𝑟]] = 	 𝑟R +	𝛽][𝐸(𝑟_) −	𝑟R]                                 (3.9) 

 

Where,     𝐸[𝑟]] = Expected return of Asset A 

                       𝑟R = Risk-free rate of return 

                      𝛽] = Contribution of Asset A to the risk of a portfolio 

                𝐸(𝑟_) = Expected return of the market  

 

Using the model requires certain assumptions and simplifications about the 

market and the investors. Assumptions such as, investors are risk averse and 

maximize expected utility, or that investors choose portfolios on the basis of their 

expected mean and variance returns among many. One of the forecasts of the 

CAPM is that in equilibrium, all assets should lie on the security market line. If 

the investment is located above the security market line, the investor will choose 

to invest because the return is higher than what is required for its level of risk. Or 

if the investment is located below the security market line, the investor will 

choose not to invest because the return is too low (Brentani, 2004). The security 

market line is defined as a visualization of the CAPM.  
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Figure 4: Capital asset pricing model with the security market line 

3.3 Risk aversion and utility functions  

We need to define a measure of preference towards risk, which allows us to rank 

portfolio decisions in order to model the strategic asset allocation problem. 

According to Jehle (2000) these preferences can be represented by a utility 

function, U(W), this is an analytical device summarizing the information 

contained in the investor’s preference relation. The concept is used as preferences 

over state-dependent return profiles. The basis of the concept is that higher 

preferred wealth levels will result in a higher utility value, which will naturally 

make the function strictly increasing in terminal wealth. If a zero-mean risk 

opportunity exists, often called a fair game, and the investors prefers her terminal 

wealth rather than entering into a game with risk, she is called a risk-averse 

investor. If the investor is risk-loving, she prefers the game, and if she is 

indifferent, she is said to be risk-neutral.  

 

In terminal wealth U(W) is increasing and is decreasing when U’(W) > 0 and 

U’’(W) < 0. This yields a concave function, where the extent of the concavity 

measures the risk aversion of the investor. Arrow-Pratt risk measure (Pratt, 1964; 

Arrow, 1971) define the absolute risk aversion (ARA) as the negative of the 

second derivative of the utility function, scaled by the first derivative, and are 

defined as 

𝐴𝑅𝐴(𝑊) = 	bcc(d)
b(d)

                   (3.10) 

The coefficient quantifies the aversion to a zero-mean risk around W, indicating 

the aversion towards an absolute sized risk.  
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Relative risk aversion (RRA) is another risk measure, and indicates the investor’s 

willingness to pay to avoid a gamble of a certain size relative to W. RRA can 

therefore be defined by taking investors wealth into account  

𝑅𝑅𝐴(𝑊) = 	dbcc(d)
bc(d)

                    (3.11) 

We desire to see decreasing absolute risk aversion in wealth and constant relative 

risk aversion.  

3.4 Short-term portfolio choice and asset allocation 

In portfolio management the common practice is a top-down approach when it 

comes to asset allocation. The first step is to decide on the weights of the country 

allocation. Further, step two involves the choice of stocks and their weights in the 

countries under consideration. This is a well-known method to diversify 

portfolios, since financial markets in different parts of the world are often not 

highly correlated with one another. For example, if the developed markets are 

declining because of recession in the economy, it can be more valuable to allocate 

part of this portfolio to emerging economies with higher growth rates such as 

China, Brazil and India. Green and Hollifield (1992) argued that if stocks or 

indices are highly correlated, and exhibit a high diversity of betas, then we can 

form portfolios with essentially zero factor risk. However, such a portfolio will 

take a large negative position in one stock and an even larger positive position in 

another stock, or indices. 

 

Markowitz (1952) mean-variance analysis is built on the theory that investors 

should choose assets if they care only about the mean-variance, or equivalently 

the mean and standard deviation - of portfolio returns over a single period. For 

simplicity, he used three assets: stocks, bonds and a short-term money market 

fund. As you can see in the figure below, the vertical axis shows expected return, 

and the horizontal axis shows risk as a measured by standard deviation.  
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Figure 5: Mean-standard deviation diagram (Markowitz, 1952). 

As you can see, stocks have high standard deviation, and therefore high expected 

return, while bonds are low. The curved line shows the set of means and standard 

deviations that can be achieved by combining stocks and bonds in a risky 

portfolio. A risk averse investor would choose a point on the straight line, which 

is the mean-variance efficient frontier.  

 

To make a short-term portfolio choice, NBIM must choose the weights on the 

risky assets. In a simple case with two assets, where one asset is riskless with 

simple return 𝑅𝑓Qf- from time t to time t + 1, and the other asset is risky with 

𝑅Qf- from time t to time t+1, with conditional mean 𝐸Q𝑅Qf- and conditional 

variance 𝜎Q#. The risk-free interest rate is realized at t + 1, and known one period 

in advance at time t. The conditional mean and variance are the mean and 

variance conditional on the investor’s information at time t; thus, they are written 

with t. The investor puts a share 𝛼Q of her portfolio into the risky asset. Then the 

portfolio return is 

𝑅7,Qf- = 𝛼Q𝑅	Qf- + (1 −	𝛼Q)𝑅R,Qf- 

           = 𝑅R,Qf- +	𝛼Q(𝑅	Qf- − 𝑅R,Qf-)                (3.12) 

With the mean portfolio return 

𝐸Q𝑅7,Qf- = 𝑅R,Qf- +	𝛼Q(𝑅	Qf- − 𝑅R,Qf-)            (3.13) 

and the variance is  

𝜎7Q# = 	𝛼Q#𝜎Q#	                                                       (3.14) 
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The preferred investment for the NBIM is a high mean and a low variance of 

portfolio returns. We assume that these trade-offs are linear, which means that she 

maximizes a linear combination of mean and variance, with a positive weight on 

mean and a negative weight on variance:  

max
kX

	( 𝐸Q𝑅7,Qf- −		
l
#
𝜎7Q# )                                    (3.15) 

 

Then, substituting in the mean and variance of portfolio returns, and subtracting  

𝑅R,Qf-, which can be written 

max
kX

		𝛼Q( 𝐸Q𝑅7,Qf- −		𝑅R,Qf-) −	
l
#
𝛼Q#𝜎7Q# )           (3.16) 

 

And the solution to this maximization problem is 

𝛼Q = 	
mXno,Xp1Y		nZ,Xp1

l	[X2
                                   (3.17) 

 

This formula tells us that the portfolio share in the risky asset should equal the 

expected excess return, also called risk premium, divided by conditional variance 

times the coefficient k that represents aversion to variance. However, for NBIM 

there will be many risky assets, and the definition of the portfolio return is the 

same, except the denotation of vectors and matrices. Thus, 𝑅Qf- is now a vector of 

risky returns with N elements. The mean vector is 𝐸Q𝑅	Qf- and a variance-

covariance matrix ΣQ . Also, αQ is now a vector of allocation to the risky assets. 

So, the maximization problem now becomes: 

max
kX

		𝛼′Q( 𝐸Q𝑅	Qf- −		𝑅R,Qf-𝜄) −	
l
#
𝛼QcΣQ𝛼Q)           (3.18) 

Here 𝜄 is a vector of ones, and (𝐸Q𝑅	Qf- −		𝑅R,Qf-𝜄) is the vector of excess returns 

on the N risky assets over the riskless interest rate. The variance of the portfolio 

return is 𝛼QcΣQ𝛼Q. The solution to this maximization problem is  

𝛼Q = 	
-
l
	ΣQY-	(	𝐸Q𝑅	7,Qf- −		𝑅R,Qf-𝜄)                        (3.19) 

The single excess return is replaced by a vector of excess returns, and the 

reciprocal of variance is replaced by ΣQY-, the inverse of the variance-covariance 

matrix of returns. The scalar term -
l
 is the investor’s preference. Thus, investors 

differ only in the overall scale of their risky asset portfolio, not in the composition 

of the portfolio. Tobin (1958) and his mutual fund theorem says that conservative 
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investors with a high k hold more of the riskless asset and less of all risky assets, 

but they do not change the relative proportions of their risky assets, which are 

determined by the vector ΣQY-	(	𝐸Q𝑅	7,Qf- −		𝑅R,Qf-𝜄). 

3.5 Volatility  

Volatility is the main measurement of risk and measures the spread in returns for 

a given security or market index. According to the rational expectation model, 

market excess return and market volatility is positively correlated over the long-

run in the cross-section of assets. The rational expectation model states that 

investors should receive a risk premium for taking on risk, i.e. the higher the 

volatility the higher excess return demanded. So, the higher the volatility, the 

higher the risk.   

 

French et al. (1987) argued that the negative relationship between market excess 

return and market volatility exist because excess return is positively correlated to 

expected volatility. However, volatility is highly persistent, so an increase in 

unexpected volatility would increase the future expected risk premium, hence, 

decrease the current stock price.  

3.6 Sharpe ratio  

The Sharpe ratio is the slope of the capital allocation line (CAL), and was 

developed by William F. Sharpe (1966). There are two essential versions from 

Sharpe (1994), ex-ante Sharpe ratio, which uses expected portfolio return in the 

calculations, and ex-post Sharpe ratio, which uses realized portfolio return. The 

Sharpe ratio aim to measure risk-adjusted performance by subtracting the risk-free 

interest rate from the portfolio rate of return, such that we get excess return of the 

portfolio, and then divide excess return by the standard deviation of the portfolio 

returns.  

Sharpe Ratio	= 	 :7Y:R
uv

                                            (3.20) 

                   𝑟𝑝 = The observed average return  

                   𝑟𝑓 = The average risk-free return 

                   𝜎𝑝 = The standard deviation of fund returns  
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The Sharpe ratio is popular in finance due to its simplicity and its ability to 

measure the tradeoff between risk and return. It follows the ideology of the 

rational expectation model in that an investor should be properly compensated for 

taking on additional risk. If the excess return on the investment is relatively low 

with respect to the risk, then the Sharpe ratio would be low. We want as high 

value as possible in the Sharpe ratio, just as we want as high α-value as possible in 

the Single Index Model.  

 

A drawback with the Sharpe ratio is that it includes standard deviation of excess 

return, which assumes that the excess return in the portfolio follows a normal 

distribution. Therefore, kurtosis and skewness can decrease the accuracy of the 

Sharpe ratio. The standard deviation is measured by the distance each return has 

from the mean, so a large observed return, positive or negative, in a series of 

relatively small returns will penalize the Sharpe ratio. An example from Harding 

(2002) is that a suddenly large positive return in a series of small, consistent and 

positive returns will generate a lower Sharpe ratio, due to the increased standard 

deviation. One solution to this problem is to use the Sortino rate, which produce a 

semi-standard deviation based on only negative returns to use in the denominator 

instead of standard deviation. Another flaw in an ex-ante Sharpe ratio is the 

estimation, if the estimates are spurious then the Sharpe ratio will be spurious.   

4. Methodology and Model     

In this chapter we will explain the methodology we have applied to make our 

estimations and assumptions about asset allocation of the Norwegian Government 

Pension Fund - Global. Additionally, we will elaborate on what models we have 

used in order to interpret these findings and estimations.  

 

To outline the model specifications and assumptions the following structure is 

applied. At first the models we used are considered briefly, and secondly, we will 

test if there are any differences between the models. Thirdly we make a 

comparison between the benchmark, the minimum variance portfolio and the 

Sharpe ratio portfolio. Then, at last we will elaborate on the distributions used in 

determining the optimal allocation. The Python source code used to compute our 
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empirical results is given in the appendix. This thesis excludes transaction cost 

and tax from the portfolios, because transaction cost is negligible, especially for 

institutional investors. Tax is constantly changing and is different from country to 

country, since tax often depends on the level of capital, and because dividend- and 

capital yield can have different tax rates too.  

4.1 Models implemented and estimation process 

The thesis is built on the perspective of a utility maximizing investor, with a main 

focus on maximizing the portfolio risk-adjusted return of the portfolio. Here, the 

return is measured and ranked by the Sharpe ratio and the minimizing variance. 

The dynamic asset allocation strategy on the portfolio can be considered as the 

“optimized” portfolio, in the sense that they aim to have the same characteristics 

as Markowitz Minimum Variance Portfolio. That is, their goal is to earn a high 

Sharpe ratio compared to the benchmark, by minimizing the portfolio risk. They 

do so by rebalancing the portfolio every month. In response they reduce the 

weights in the equally weighted portfolio, when the risk increases and respond by 

increasing the weights in the equally weighted portfolio when the risk declines. 

The two portfolios made in this thesis are made on the constraint of “long only”, 

meaning borrowing and short sale is restricted.  

 

It is assumed that risky-asset returns at time t, and follows a random walk which 

are given by:  

𝑟Q = 	𝜇 +	𝜀Q                                 (5.1) 

 

Where	𝑟Q is a (N x 1) vector of returns at time t, 𝜇 is a (N x 1) vector of mean 

returns, and 𝜀Q is a (N x 1) vector of random shock at time t, that is an i.i.d random 

variable with zero mean and constant variance. The rolling window covariance 

matrices are computed using the following method, demonstrated with two assets, 

where historical covariance between daily returns from asset 𝑖 and daily returns 

from asset 𝑗 is applied:  

   =	
∑ {|,X}
X~1 {�,X

�
                         (5.2) 
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Where 𝑇 is the length of the rolling window.  The constant mean return estimate, 

𝜇, is given as:  

�̂�Q = 	
-
�
  ∑ r&QY-

&,QY�                     (5.3)  

 

Where 𝑇 will be the length of the sample period, which is the distance from 

01.08.2008 to 01.04.2018. The computation of the portfolios is done in matrix -

and vector-form and is equivalent to the notation in equation (3.1) to (3.4).  

4.1.1 Constant Expected Return (CER) analysis 

The assumption in the Constant Expected Return (CER) model is that an asset’s 

return over time is normally distributed with a constant mean and constant 

variance. The CER model constitutes the simplest specification of our general 

statistical model for asset returns. The model allows the returns on different assets 

to be simultaneously correlated, although the correlations are constant over time. 

Returns are independent over time both across assets and within the same asset.  

 

The CER model in which	𝐸[𝑟Qf-|ℒQ] = 𝐸[𝑟Qf-]	 = 𝜇, implies that each equation 

contains only one common regressor: a vector of ones. In this case we have for the 

i-th return: 

𝑦& = 	 𝑒�𝛿& +	𝑢&,  

Where,       𝑦& = �

𝑦&,-
𝑦&,#
⋮
𝑦&,�

�,             𝑋& = 𝑒� 	= �

1
1
⋮
1

�.              (5.4) 

The OLS/SURE estimates of the relevant parameters are then simply  

𝛿�� = 	
-
�
	∑ 𝑟&,Q =	�

Q,- 𝑟��        (5.5)                𝜎�-- = 	𝜎�-# = 	
-
�
	∑ (𝑟&,Q =	�

Q,- 𝑟��)# ,   (5.6) 

 

which is sample mean and sample variance. Before we obtained any results, we 

had to simulate 50.000 different portfolios that would give us the most optimized 

asset allocation. To display this, we have in figure 6 below plotted the simulation 

with constant expected return for only 50 portfolios. This is to give a clearer 

overview of the distribution of the portfolios.  
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Figure 6: The distribution of portfolios with constant expected return 

4.1.2 Time-Varying Expected Return (TVER) Analysis 

When reviewing a time-varying expected return, we select time-varying predictors 

that requires using the properties of observed data to predict future observations of 

the relevant variables. We used the sum-of-part (SOP) approach, where the idea is 

to decompose returns in several parts, and to implement simple times series 

analysis. This is done to predict the individual component, and then generate a 

time-varying expected (predicted) return by aggregating predictions.  

 

In chapter 4.1.1, we derived the tangency portfolio using the CER model and used 

the unconditional moments as inputs of the asset allocation optimization. While, 

when we used the TVER alternative we looked at univariate time series methods. 

We adopted the following specification for all countries stock market returns: 

 

𝑟Q,Qf��
����Q:� = �𝑝Qf��

����Q:� − 𝑝Q
����Q:�� +	∑

�Xp�
����X ¡

7Xp�
����X ¡

��
&,¢                                (5.7) 

�𝑝Q,Qf��
����Q:� − 𝑝Q

����Q:�� = 	𝐸Q�𝑝Qf��
����Q:� − 𝑝Q

����Q:��	+ 𝑢	-,Qf��
����Q:�  

𝐸Q�𝑝Qf��
����Q:� − 𝑝Q

����Q:�� = 	𝛽£
����Q:� +	𝛽-

����Q:� W𝑝Q
����Q:� − -

��
∑ 𝑝QY¢

����Q:���
¢,- \  

¤
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����Q:�
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In words, log-prices are mean reverting towards a trend that is estimated with the 

3-year moving average of past prices. Here we also simulate 50.000 different 

portfolios to give us the most optimized asset allocation with the TVER method. 

In figure 7 below we plotted the simulation with time-varying expected return for 

only 50 portfolios, to give a clearer overview of the distribution of the portfolios. 

 
Figure 7: The distribution of portfolios with time-varying expected return 

There are mathematical optimization techniques that would have resulted in the 

same result. However, we chose to use a Monte Carlo Simulation (a more manual 

method) to explain the whole concept of Efficient Frontier and optimal portfolios. 

4.2 Portfolio performance measurement  

4.2.1 Benchmark Comparison  

A benchmark portfolio is an index created to include different securities 

representing some aspects of the total market. It is used to compare the allocation, 

risk and return of a given portfolio. The most obvious, conventional method 

entails a comparison of the managed portfolio against a broad market index. If an 

investment portfolio has gained greater returns than a benchmark portfolio during 

the same time period, then the portfolio is said to have outperformed the 

benchmark. We have used the GPFG’s benchmark which is the FTSE.  

 

Even though comparing a portfolio to a benchmark is common practice today, it is 

not without complications. After all, the risk of the investment portfolio and the 

benchmark index may not be the same. Therefore, the gain could come with 

higher risk. It means that if the portfolio has performed better than the benchmark 
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portfolio, it may be a result of a managed portfolio being riskier than the 

benchmark portfolio. Consequently, that kind of comparison could lead to 

incomplete conclusions.  

4.2.2 Mean return and standard deviation  

Because the mean return is so applicable, it is useful to get an overall view of the 

empirical portfolios. The specific portfolio mean return is computed from 

equation (3.6), however, the portfolio mean return is annualized in this thesis by 

using this equation for simple interest:  

�̅�7 = 	 �̂�712                       (5.8) 

 

Here �̅�7 is the annual portfolio mean return, and �̂�7 is realized monthly portfolio 

mean return. The variance is the spread of the observations and is computed from 

equation (3.7). The standard deviation is the square root of variance. To annualize 

the portfolios monthly standard deviation, the monthly standard deviation of a 

given portfolio, 𝜎�7, is multiplied with the square root of 12.  

𝜎«7 = 	𝜎�7√12                 (5.9) 

 

Here 𝜎«7 is the annualized standard deviation of a given portfolio return. All result 

in this thesis are reported in annual terms, to simplify and avoid confusion.  

4.2.3 Skewness  

Skewness measures the deviation of symmetry in a dataset, if the dataset deviates 

to the left or to the right of the center point. A perfectly symmetric dataset, like 

the normal distribution, looks exactly the same on the right-hand side of the mean, 

as on the left-hand side of the mean. A dataset is symmetric if it has a skewness 

value of zero. The dataset has more values on the left-hand side of the mean if the 

skewness value is negative, meaning that the data are skewed to the left of the 

mean, and the left tail is longer than the right tail. Vice versa, if the skewness 

value is positive, then the right-hand side of the mean has a longer tail than the 

left-hand side of the mean, and the dataset is skewed to the right of the mean.  

In our empirical portfolios, a negative skewness will indicate that the mass of the 

returns is concentrated to the right of the mean, the portfolio has a tail of returns 
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that are lower than the mean; investors do generally not prefer this. A positive 

skewness indicate that the mass of the returns is concentrated to the left of the 

mean. The portfolio has a tail of returns that are higher than the mean; investors 

generally prefer positive skewness above and beyond their preference for a higher 

mean and lower volatility. Note that portfolio skewness unequal zero implies that 

the portfolios are not normally distributed. Skewness has this formula:  

S = 

∑ ( |
4
|~1 	¨®o)¯

4
[®o2

              (5.10) 

 

Where 𝑁 is the number of returns in the portfolio. 𝑟&,	�̂�7 and 𝜎�7 are monthly 

portfolio returns, monthly portfolio mean return and monthly portfolio standard 

deviation respectively, equivalent to previous notations.  

4.2.4 Sharpe ratio  

The Sharpe ratio is the main performance measurement in this thesis, since the 

ratio can compare portfolios with different exposure to risk. A rational investor 

will prefer the portfolio with the highest Sharpe ratio regardless of its limitations.  

In the evaluation process, we will use this version of the Sharpe ratio,  

𝑆𝑅²7 =	
𝜇�𝑝−	𝑟𝑓	

[®o
																															(5.11)		

5. Data sources and data collection  

To illustrate what occurs in practice we consider a Norwegian investor from 

NBIM which sees the Norwegian 3-Month rate as the risk-free rate. The dataset in 

this thesis is based upon publicly available databases where we gathered data on 

25 different countries consisting of each country’s 10-year benchmark bond, the 

Norwegian FIBOR 3-Month rate, consumer price index and the dividend yield for 

all countries. The risky assets available for portfolio allocation are Austria, 

Belgium, Canada, Czech Republic, Chile, China, Denmark, France, Germany, 

Hungary, Israel, Italy, Japan, Mexico, Netherland, Poland, Portugal, Russia, South 

Africa, South Korea, Spain, Sweden, Switzerland, United Kingdom and the 

United States.  
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Our data is at a monthly frequency and each variable consist of 118 observations. 

We have mainly collected data from sources such as Federal Reserve Economic 

Data, Bloomberg and Macrobond. All data is collected in US dollar. We will 

compare our asset allocation results with the Fund’s benchmark index, set by the 

Ministry of Finance on the basis of indices from the FTSE. However, we did not 

have the opportunity to incorporate all the countries from the benchmark, because 

the availability of data for certain countries were limited. Therefore, we chose to 

eliminate these countries since we could not collect complete data for the specific 

time period. This is done to achieve a more thorough analysis. The data has been 

collected from July 31, 2008 until April 31, 2018. This coincides with the time 

period for the FTSE Benchmark Index, and the timespan that was available for the 

individual country’s dividend yield, collected from Bloomberg.  

5.1. Python 

Python is a powerful programming language, that offers more flexibility and 

standard functions than the language and interface of Visual Basic available in 

Microsoft Excel. Based on this rationale, our supervisor strongly advised us to 

take the extra time and effort to make extensive use of Python in our research. 

Working on our thesis we have learned the language of programming in Python, 

and lengthy hours of debugging has enabled us to fully understand every facet of 

each model and its code.  

 

In the Python source code, included in the appendix, you find the entire code we 

wrote to calculate the optima and minima and to estimate our models. For the 

estimation procedure, functions to conduct rolling windows and to loop estimation 

procedures, were programmed. The modules that are used to conduct the 

procedures of Modern Portfolio Theory make use of the formulas that are standard 

functionality in Python, just like the program used to conduct the test procedures. 

To further enhance our effort and obtain a cross reference, we used a framework 

written by Carlo A. Favero, a professor of Finance at Bocconi University, as 

inspiration and a guideline for our programming and estimation of the Dynamic 

Asset Allocation. However, his program is written in MATLAB and not Python.   
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6. Results and analysis 

The results and analysis of the Fund with asset allocation, using both constant 

expected return and time-varying expected return, will be presented in this 

chapter. After extensive development of our models in Python, we can now use 

these models in practice and interpret the results. By applying different parameters 

to them and comparing these, we will be able to maximize the likelihood of 

finding the best combination of assets by configuring the model. As a result of 

trial and error, we will achieve the optimal Sharpe ratio and the minimum 

variance portfolio. After all, decisions for asset managers should be based on 

reliable and vast amounts of data and is dependent on the length of the investment 

horizon. As mentioned earlier, our analysis will only concentrate on financial 

performance and not political, economic or ethical factors. We will show the 

realized rolling Sharpe ratios over a measurement period of one and three years. 

 

The results will be presented in four parts. We begin with presenting the basic 

features of our research with descriptive statistics to create an overview of the 

results. Following, a presentation of the result from the CER model from the time 

period 2008-2018, where we use an efficient frontier with expected returns and 

the expected volatility to visualize the optimal portfolio. Further, we present the 

same efficient frontier models and weights with the univariate time series for 

TVER model. Here we use a roll forward of three years that gives us the time 

period of 2011-2018. For both the CER and TVER models we present the 

portfolio weights calculated for the Sharpe ratio portfolio and then the minimum 

variance portfolio. At the end we will compare our results and weights with the 

weights from NBIM. 	

6.1 Descriptive statistics 

In descriptive statistics we use figures and tables to describe the data and show 

general trends over time. In figure 8 below, we display the total return for each 

country with the CER method. This is provided to show an overview of the 

original dataset of all 25 countries from 2008-2018 and look for potential trends. 
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We can see that all the countries in this time period has a relative positive return, 

expect from a downturn in the period from 2008-2009 due to the financial crisis.  

 
Figure 8: The total returns with CER  

The second figure, figure 9 below, displays the total return for each country with 

the TVER method. We look for a general trend for the 25 countries of the second 

dataset where we roll forward 3 years, for the time period 2011-2018. Here we see 

the returns correlate around zero. Both figures confirm that there is no trend in the 

returns between 2008-2018. This is exactly the result one wishes for concerning 

returns, because returns are supposed to be fluctuating.   

 

Figure 9: The total returns with TVER 

The results in table 1 and 2 below, show the descriptive statistics of our 

simulation of the two portfolios between 2008-2018 and 2011-2018. In the table 

we see the variables for mean, standard deviation, min and max values, 

percentage quartiles for returns, volatility, Sharpe ratio and the weights of every 

country. The mean returns for the constant expected return portfolio and time-
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varying expected return portfolio are slightly different. The CER portfolio has a 

mean return of 2,98%, while the TVER portfolio has a mean return of 5,02%. The 

constant expected return portfolio has a standard deviation of 31,47% and the 

time-varying expected return has a standard deviation of 35,59%. 	

 

Table 1: The total returns with CER 

 
Table 2: The total returns with TVER  
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6.2 Constant Expected return method results 

When we simulated the asset allocation with the constant expected return method 

we received the two plots you can see below. The efficient frontier is the set of 

optimal portfolios that offers the highest expected return for a level of risk, which 

is presented as the standard deviation. The problem is to find the split across the 

assets that achieve a target return whilst minimizing this variance of return. This 

is a standard optimization problem that can be answered by our Python program, 

which contains iterative search methods for optimization. We simulated 50.000 

portfolios with different combinations of weights, that as a result generated 

different expected returns and expected volatility. Each point lying on the top of 

the green area represents an optimal combination of stocks, that maximizes the 

expected return for the given level of risk. 

	
Figure 10: Efficient frontier for the CER portfolio 
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On the second efficient frontier, we have now added two marks. The blue mark is 

the minimum variance portfolio, while the red mark is the maximum Sharpe ratio 

portfolio. These two points give the highest possible return for each portfolio, 

with the lowest risk possible.   

 

 
 
Figure 11: Efficient frontier for the CER portfolio with minimum variance portfolio (blue) and maximum 
Sharpe ratio portfolio (red). 
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The weights of the optimal portfolio with both minimum variance and Sharpe 

ratio are as follows: 

 
Table 3: Country weights for CER 
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6.3 Time-Varying Expected Return method results 

When we simulated the asset allocation with the time-varying expected return 

method we received the plots below. We used a rolling time window of three 

years to calculate the excess return. This simply means, that we conducted 

regressions over and over again to create “new” observations, using subsamples 

from our original dataset. We used Realized Rolling Sharpe ratios, which imply 

that we calculated the risk and return that would have resulted from using the 

investments weights recommended by the model.  

	

As mentioned above, the efficient frontier is the set of optimal portfolios with the 

highest expected return for a level of risk. Here we also simulated 50.000 

portfolios with different combinations of weights, and every point located on the 

outside of the green area is an optimal combination of stocks, that maximizes the 

expected return for the given level of risk.  

 

 
Figure 12: Efficient frontier for the TVER portfolio 
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On the second efficient frontier, we have now added two marks once more. The 

blue mark is the minimum variance portfolio, while the red mark is the maximum 

Sharpe ratio portfolio. These two points give the highest possible return for each 

portfolio, with the lowest risk possible.   

 
Figure 13: Efficient frontier for the TVER portfolio with minimum variance portfolio (blue) and maximum 
Sharpe ratio portfolio (red). 
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The results we achieved from the TVER method have some small differences 

from the CER method. The optimal portfolio with both minimum variance and 

Sharpe ratio is as follows: 

 

Table 4: Country weights for TVER  
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6.4 Comparison with the benchmark  

For comparison of models, we will analyze the two efficient frontier we have 

simulated, and especially look at the location of the tangency portfolio of the 

portfolios. Specifically, the portfolios that use the different forecasted returns, 

variances and correlations and compare this to a situation with full knowledge, in 

which we insert the realized returns and realized weights of the FTSE. In the table 

below, we have compared the different returns, volatility and Sharpe ratio for our 

models with the FTSE benchmark. 

 
Table 5: Comparison of the models return, volatility and Sharpe ratio with the FTSE benchmark portfolio 

Table 6 shows the different weights for every simulated portfolio compared with 

the FTSE benchmark index. While figure 14 and 15 visualize and compare the 

weighting for both CER and TVER portfolio with the benchmark in a histogram.  

 
Table 6: Comparison of the model's weights with the FTSE benchmark portfolio 
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Figure 14: CER vs Benchmark weights                                                  

                                                                                       

 Figure 15: TVER vs Benchmark weights 
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6.5 Discussion 

When we started this research, we wanted to examine if it is possible to optimize 

the asset allocation of the Norwegian Government Pension Fund – Global, 

without looking at influencing factors such as political, economic and ethical 

decisions, and rather concentrate on the risk and return relationship. After 

comparing the results from our estimation in Python with the realized data from 

the FTSE benchmark index, we see that the results are somewhat different.  

 

As mentioned in chapter 3.3 there are essentially two types of investors, a risk-

averse or a risk-loving investor. The risk-averse investor would construct the 

minimum variance portfolio. Which from our results, has an expected return of 

2,75% and an accompanying expected volatility of 24,51% and a Sharp ratio of 

0,11 for the CER portfolio, and the TVER portfolio has an expected return of 

4,06% with an accompanying expected volatility of 25,08% and a Sharp ratio of 

0,16. With the minimum variance portfolio, one will get the highest possible 

return, with the lowest level of risk. While an investor who is risk-neutral or a 

risk-lover, an investor seeking the maximum risk-adjusted return, would construct 

the maximum Sharpe ratio portfolio. This portfolio has an expected return of 

2,95% and an accompanying expected volatility of 24,52% and a Sharp ratio of 

0,12 for the CER portfolio, and the TVER portfolio has an expected return of 

8,59% with an accompanying expected volatility of 28,42% and a Sharp ratio of 

0,30. If an NBIM investor chooses the latter portfolio, then the investor is willing 

to take on more risk to achieve a higher return.  

 

Our results show a sizeable difference between the constant- and time-varying 

expected return results. This is as expected based on the literature. The 

assumption of constant risk premia implies that the composition of an optimal 

portfolio is constant over time for both short-term and long-term investors. 

However, much research suggests that expected asset returns seem to vary so that 

investment opportunities are not constant (Norges Bank Investment Management, 

2012). The fact that risk premia is time-varying, generates time variation in 

optimal portfolios. Both short-term and long-term investors should seek to “time 

the markets”, holding more risky assets when the rewards for doing so are high. 

Campbell and Viceira (1999) show that there are large utility losses from holding 
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a constant-mix portfolio when risk premia are time-varying. In other words, the 

simulation of the time-varying portfolio should be closer to reality.  

 

Further, when we look at the FTSE benchmark index it shows a result of 11,60% 

return with an accompanying volatility of 8,90% and a Sharpe ratio of 0,50, which 

is far-off from most of our simulated portfolios. However, the time-varying 

maximum Sharpe ratio portfolio has a slightly better return of 8,59%, but a higher 

volatility of 28,42%, which is a Sharpe ratio which is not far from the benchmark. 

After all, the benchmark includes more countries than we have in our research, 

suggesting that the index is more diversified than our portfolio. We are missing 

some countries in South America, the Middle East and Asia that may have an 

impact because many of them are emerging economies. Moreover, we have a time 

frame of ten years, which can be considered as somewhat short in a stock marked 

context. Regarding this, our results are not that far-off considering that we also do 

not take any political, economic or ethical decisions in our investment strategy. 	

 

Nevertheless, our portfolios have quite different weights than the FTSE 

benchmark index as you can see in figure 16. In this figure we have plotted the 

weights from the time-varying maximum Sharpe ratio portfolio and the weights 

from the benchmark. The biggest and most secure countries like Germany, 

France, United States and United Kingdom and emerging countries like China 

obtains the highest weights in the benchmark. The time-varying maximum Sharpe 

ratio portfolio invests in these countries as well, though the weights are more 

evenly distributed between all the countries than in the benchmark index. Our 

portfolio has higher weights in emerging countries like Russia, Poland and the 

Czech Republic which will naturally give the portfolio higher volatility because 

there is higher risk involved with these investments. It is also interesting to notice 

that our portfolios chose such a low weight in the United States compared with 

the benchmark, that might have something to do with us not looking at political or 

economic influencing factors.  
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Figure 16: Comparison of the TVER: sharpe ratio weights with the FTSE Benchmark Index 
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7. Conclusion and limitations 

Modern portfolio theory implies that there are benefits from investing in different 

countries to diversify and lower the overall risk. As the main purpose of this study 

– we wanted to examine if the optimal asset allocation for the Norwegian 

Government Pension Fund – Global can be improved without taking any political, 

economic or ethical assumptions. 

To test this, we programmed a mean-variance optimization model in Python, 

where the highest Sharpe ratio and the minimum variance was used as 

measurements for performance. Mean-variance optimization focuses on the first 

two moments of a distribution which assumes that the returns are normally 

distributed. We used excess return and standard deviation for all countries to 

calculate a constant expected return portfolio, and a rolling window of three years 

to simulate the time-varying expected return portfolio. Further we divided these 

two portfolios into a maximum Sharpe ratio portfolio and a minimum variance 

portfolio. The minimum variance portfolio is seeking the lowest volatility of 

return, while the maximum Sharpe ratio portfolio seeks the maximum risk-

adjusted return. Our computations gave us in the end four different portfolios with 

different optimal asset allocations.  

From our Python program and computations, the time-varying expected return 

Sharpe ratio portfolio has the highest Sharpe ratio and is the closest to the 

benchmark. This is simulated without having any political, economic or ethical 

decisions in the investment strategy. Our weights are more evenly diversified 

throughout the countries than the benchmark index and is targeting more 

emerging markets. As a result of this, our portfolio has higher volatility too. 

NBIM are investing more heavily in secure countries, where one is almost 

guaranteed a high return without unnecessary risk. We believe our research proves 

that it is possible to achieve a decent return by only concentrating on the return 

and variance trade-off. This could be of value as a correction to a more complex 

model – as increased complexity always introduces and increased chance for 

introducing errors. In the future this could be a possible investment strategy for 

NBIM if they are willing to take on more risk. Even though, our portfolios were 
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not too far below the benchmark. We conclude that we were not able to 

outperform the FTSE benchmark with our asset allocation by only looking at the 

risk-return relationship, and that even better results can be obtained by including 

other influencing factors such as political, economic and ethical decisions in the 

investment strategies.  

7.1 Limitations and recommendations for future research  

This study is subject to certain limitations regarding the number of the countries 

included. NBIM tend to disclose very limited public information. Therefore, there 

is not a well-designed and advanced database or other sources that give proper 

and complete data about the Norwegian Government Pension Fund’s transactions. 

Consequently, we have worked with 25 countries and their historical return data. 

Without doubt, if we had had more observations, our results would have been 

more reliable. We also have a somewhat limited time period of ten years, which is 

considered short in a stock market context, however it is considered a suited time 

period for a master thesis.  

Further studies could include more assets classes in the optimization model such 

as fixed income and real estate. This study limited the scope to only equity and 25 

countries. Additional research could analyze more in-depth when it comes to the 

influence of political-, economic- and ethical decisions and review other risk-

factors. An analysis of individual markets can also be done, rather than investing 

in a benchmark index. Currency hedging and short selling were not addressed in 

this study and therefore, further analysis on asset allocation could factor in these 

two elements.  
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Appendix 

Master Thesis Code   

1. In [192]:   
2.    
3. import numpy as np   
4. import pandas as pd   
5. from IPython.display import Image   
6. import matplotlib.pyplot as plt   
7. import cvxopt as opt   
8. from cvxopt import blas, solvers   
9. import seaborn as sns   
10. import scipy.optimize as sco   
11. import statsmodels.tsa.api as smt   
12. from statsmodels.tsa.stattools import adfuller, kpss   
13. %matplotlib inline   
14. Import data   
15. In [1]:   
16.    
17. data = pd.read_excel('MASTER.xlsx', "Monthly",index_col = 'Date')   
18. data.columns = data.columns.str.lower()   
19. data.head()   
20. Building returns   
21. Norway   
22. In [194]:   
23.    
24. norway = data.copy()   
25. norway = norway [['norwayltgovbondyield10y','norway3m','norwaycpi','norw

aydivyld']]   
26.    
27. #norway risk-free   
28. norway ['RiskFree'] = np.log(1+(norway['norway3m']).shift(1)/(100*12))   
29. norwayRiskFree = norway['RiskFree']   
30. Australia   
31. In [ ]:   
32.    
33. australia = data.copy()   
34. australia = australia[['australialtgovbondyield10y', 'australia3m', 'aus

traliacpi', 'australiadivyld']]   
35. australia.head()   
36.    
37. #Monthly log dividend yield   
38. australia['australiaStock_DY'] = australia['australiadivyld']   
39. australia['australiaLog_Stock_DY'] = np.log(australia['australiaStock_DY

'])   
40.    
41. #Monthly lagged stock index   
42. australia['australiaStock_Index'] = australia['australiacpi']   
43. australia['australialag_Stock_Index'] = (australia['australiaStock_Index

']).shift(1)   
44. lag_Stock_Index = australia['australialag_Stock_Index']   
45.    
46. #Stock Return   
47. australia['australiaStock_Ret'] = np.log(australia['australiaStock_Index

']/australia['australialag_Stock_Index']+australia['australiaStock_DY'])
                                        

48.                             
49. #Stock Excess Return   
50. australia['australiaStock_ExRet'] = australia['australiaStock_Ret'] - no

rway['RiskFree']   
51.    

09448990942547GRA 19502



   
 

Page 46 of 70 
 

52. australia1 = australia[['australiaLog_Stock_DY','australialag_Stock_Inde
x','australiaStock_Ret','australiaStock_ExRet']]   

53. australia1 = australia1[~np.isnan(lag_Stock_Index)]   
54. australia1.head()   
55. Austria   
56. In [ ]:   
57.    
58. austria = data.copy()   
59. austria = austria[['austrialtgovbondyield10y', 'austria3m', 'austriacpi'

, 'austriadivyld']]   
60. austria.head()   
61.    
62. #Monthly log dividend yield   
63. austria['austriaStock_DY'] = austria['austriadivyld']   
64. austria['austriaLog_Stock_DY'] = np.log(austria['austriaStock_DY'])   
65.    
66. #Monthly lagged stock index   
67. austria['austriaStock_Index'] = austria['austriacpi']   
68. austria['austrialag_Stock_Index'] = (austria['austriaStock_Index']).shif

t(1)   
69. lag_Stock_Index = austria['austrialag_Stock_Index']   
70.    
71. #Stock Return   
72. austria['austriaStock_Ret'] = np.log(austria['austriaStock_Index']/austr

ia['austrialag_Stock_Index']+austria['austriaStock_DY'])                
                        

73.                             
74. #Stock Excess Return   
75. austria['austriaStock_ExRet'] = austria['austriaStock_Ret'] - norway['Ri

skFree']   
76.    
77. austria1 = austria[['austriaLog_Stock_DY','austrialag_Stock_Index','aust

riaStock_Ret','austriaStock_ExRet']]   
78. austria1 = austria1[~np.isnan(lag_Stock_Index)]   
79. austria1.head()   
80. Belgium   
81. In [ ]:   
82.    
83. belgium = data.copy()   
84. belgium = belgium[['belgiumltgovbondyield10y', 'belgium3m', 'belgiumcpi'

, 'belgiumdivyld']]   
85. belgium.head()   
86.    
87. #Monthly log dividend yield   
88. belgium['belgiumStock_DY'] = belgium['belgiumdivyld']   
89. belgium['belgiumLog_Stock_DY'] = np.log(belgium['belgiumStock_DY'])   
90.    
91. #Monthly lagged stock index   
92. belgium['belgiumStock_Index'] = belgium['belgiumcpi']   
93. belgium['belgiumlag_Stock_Index'] = (belgium['belgiumStock_Index']).shif

t(1)   
94. lag_Stock_Index = belgium['belgiumlag_Stock_Index']   
95.    
96. #Stock Return   
97. belgium['belgiumStock_Ret'] = np.log(belgium['belgiumStock_Index']/belgi

um['belgiumlag_Stock_Index']+belgium['belgiumStock_DY'])                
                        

98.                             
99. #Stock Excess Return   
100. belgium['belgiumStock_ExRet'] = belgium['belgiumStock_Ret'] - nor

way['RiskFree']   
101.    
102. belgium1 = belgium[['belgiumLog_Stock_DY','belgiumlag_Stock_Index

','belgiumStock_Ret','belgiumStock_ExRet']]   
103. belgium1 = belgium1[~np.isnan(lag_Stock_Index)]   
104. belgium1.head()   
105. Canada   
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106. In [ ]:   
107.    
108. canada = data.copy()   
109. canada = canada[['canadaltgovbondyield10y', 'canada3m', 'canadacp

i', 'canadadivyld']]   
110. canada.head()   
111.    
112. #Monthly log dividend yield   
113. canada['canadaStock_DY'] = canada['canadadivyld']   
114. canada['canadaLog_Stock_DY'] = np.log(canada['canadaStock_DY'])   
115.    
116. #Monthly lagged stock index   
117. canada['canadaStock_Index'] = canada['canadacpi']   
118. canada['canadalag_Stock_Index'] = (canada['canadaStock_Index']).s

hift(1)   
119. lag_Stock_Index = canada['canadalag_Stock_Index']   
120.    
121. #Stock Return   
122. canada['canadaStock_Ret'] = np.log(canada['canadaStock_Index']/ca

nada['canadalag_Stock_Index']+canada['canadaStock_DY'])                 
                       

123.                             
124. #Stock Excess Return   
125. canada['canadaStock_ExRet'] = canada['canadaStock_Ret'] - norway[

'RiskFree']   
126.    
127. canada1 = canada[['canadaLog_Stock_DY','canadalag_Stock_Index','c

anadaStock_Ret','canadaStock_ExRet']]   
128. canada1 = canada1[~np.isnan(lag_Stock_Index)]   
129. canada1.head()   
130. Chech Republic   
131. In [ ]:   
132.    
133. chechrepublic = data.copy()   
134. chechrepublic = chechrepublic[['chechrepublicltgovbondyield10y', 

'chechrepublic3m', 'chechrepubliccpi', 'chechrepublicdivyld']]   
135. chechrepublic.head()   
136.    
137. #Monthly log dividend yield   
138. chechrepublic['chechrepublicStock_DY'] = chechrepublic['chechrepu

blicdivyld']   
139. chechrepublic['chechrepublicLog_Stock_DY'] = np.log(chechrepublic

['chechrepublicStock_DY'])   
140.    
141. #Monthly lagged stock index   
142. chechrepublic['chechrepublicStock_Index'] = chechrepublic['chechr

epubliccpi']   
143. chechrepublic['chechrepubliclag_Stock_Index'] = (chechrepublic['c

hechrepublicStock_Index']).shift(1)   
144. lag_Stock_Index = chechrepublic['chechrepubliclag_Stock_Index']   
145.    
146. #Stock Return   
147. chechrepublic['chechrepublicStock_Ret'] = np.log(chechrepublic['c

hechrepublicStock_Index']/chechrepublic['chechrepubliclag_Stock_Index']+
chechrepublic['chechrepublicStock_DY'])                                 
       

148.                             
149. #Stock Excess Return   
150. chechrepublic['chechrepublicStock_ExRet'] = chechrepublic['chechr

epublicStock_Ret'] - norway['RiskFree']   
151.    
152. chechrepublic1 = chechrepublic[['chechrepublicLog_Stock_DY','chec

hrepubliclag_Stock_Index','chechrepublicStock_Ret','chechrepublicStock_E
xRet']]   

153. chechrepublic1 = chechrepublic1[~np.isnan(lag_Stock_Index)]   
154. chechrepublic1.head()   
155. Chile   
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156. In [ ]:   
157.    
158. chile = data.copy()   
159. chile = chile[['chileltgovbondyield10y', 'chile3m', 'chilecpi', '

chiledivyld']]   
160. chile.head()   
161.    
162. #Monthly log dividend yield   
163. chile['chileStock_DY'] = chile['chiledivyld']   
164. chile['chileLog_Stock_DY'] = np.log(chile['chileStock_DY'])   
165.    
166. #Monthly lagged stock index   
167. chile['chileStock_Index'] = chile['chilecpi']   
168. chile['chilelag_Stock_Index'] = (chile['chileStock_Index']).shift

(1)   
169. lag_Stock_Index = chile['chilelag_Stock_Index']   
170.    
171. #Stock Return   
172. chile['chileStock_Ret'] = np.log(chile['chileStock_Index']/chile[

'chilelag_Stock_Index']+chile['chileStock_DY'])                         
               

173.                             
174. #Stock Excess Return   
175. chile['chileStock_ExRet'] = chile['chileStock_Ret'] - norway['Ris

kFree']   
176.    
177. chile1 = chile[['chileLog_Stock_DY','chilelag_Stock_Index','chile

Stock_Ret','chileStock_ExRet']]   
178. chile1 = chile1[~np.isnan(lag_Stock_Index)]   
179. chile1.head()   
180. China   
181. In [ ]:   
182.    
183. china = data.copy()   
184. china = china[['chinaltgovbondyield10y', 'china3m', 'chinacpi', '

chinadivyld']]   
185. china.head()   
186.    
187. #Monthly log dividend yield   
188. china['chinaStock_DY'] = china['chinadivyld']   
189. china['chinaLog_Stock_DY'] = np.log(china['chinaStock_DY'])   
190.    
191. #Monthly lagged stock index   
192. china['chinaStock_Index'] = china['chinacpi']   
193. china['chinalag_Stock_Index'] = (china['chinaStock_Index']).shift

(1)   
194. lag_Stock_Index = china['chinalag_Stock_Index']   
195.    
196. #Stock Return   
197. china['chinaStock_Ret'] = np.log(china['chinaStock_Index']/china[

'chinalag_Stock_Index']+china['chinaStock_DY'])                         
               

198.                             
199. #Stock Excess Return   
200. china['chinaStock_ExRet'] = china['chinaStock_Ret'] - norway['Ris

kFree']   
201.    
202. china1 = china[['chinaLog_Stock_DY','chinalag_Stock_Index','china

Stock_Ret','chinaStock_ExRet']]   
203. china1 = china1[~np.isnan(lag_Stock_Index)]   
204. china1.head()   
205. Denmark   
206. In [ ]:   
207.    
208. denmark = data.copy()   
209. denmark = denmark[['denmarkltgovbondyield10y', 'denmark3m', 'denm

arkcpi', 'denmarkdivyld']]   
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210. denmark.head()   
211.    
212. #Monthly log dividend yield   
213. denmark['denmarkStock_DY'] = denmark['denmarkdivyld']   
214. denmark['denmarkLog_Stock_DY'] = np.log(denmark['denmarkStock_DY'

])   
215.    
216. #Monthly lagged stock index   
217. denmark['denmarkStock_Index'] = denmark['denmarkcpi']   
218. denmark['denmarklag_Stock_Index'] = (denmark['denmarkStock_Index'

]).shift(1)   
219. lag_Stock_Index = denmark['denmarklag_Stock_Index']   
220.    
221. #Stock Return   
222. denmark['denmarkStock_Ret'] = np.log(denmark['denmarkStock_Index'

]/denmark['denmarklag_Stock_Index']+denmark['denmarkStock_DY'])         
                               

223.                             
224. #Stock Excess Return   
225. denmark['denmarkStock_ExRet'] = denmark['denmarkStock_Ret'] - nor

way['RiskFree']   
226.    
227. denmark1 = denmark[['denmarkLog_Stock_DY','denmarklag_Stock_Index

','denmarkStock_Ret','denmarkStock_ExRet']]   
228. denmark1 = denmark1[~np.isnan(lag_Stock_Index)]   
229. denmark1.head()   
230. France   
231. In [ ]:   
232.    
233. france = data.copy()   
234. france = france[['franceltgovbondyield10y', 'france3m', 'francecp

i', 'francedivyld']]   
235. france.head()   
236.    
237. #Monthly log dividend yield   
238. france['franceStock_DY'] = france['francedivyld']   
239. france['franceLog_Stock_DY'] = np.log(france['franceStock_DY'])   
240.    
241. #Monthly lagged stock index   
242. france['franceStock_Index'] = france['francecpi']   
243. france['francelag_Stock_Index'] = (france['franceStock_Index']).s

hift(1)   
244. lag_Stock_Index = france['francelag_Stock_Index']   
245.    
246. #Stock Return   
247. france['franceStock_Ret'] = np.log(france['franceStock_Index']/fr

ance['francelag_Stock_Index']+france['franceStock_DY'])                 
                       

248.                             
249. #Stock Excess Return   
250. france['franceStock_ExRet'] = france['franceStock_Ret'] - norway[

'RiskFree']   
251.    
252. france1 = france[['franceLog_Stock_DY','francelag_Stock_Index','f

ranceStock_Ret','franceStock_ExRet']]   
253. france1 = france1[~np.isnan(lag_Stock_Index)]   
254. france1.head()   
255. Germany   
256. In [ ]:   
257.    
258. germany = data.copy()   
259. germany = germany[['germanyltgovbondyield10y', 'germany3m', 'germ

anycpi', 'germanydivyld']]   
260. germany.head()   
261.    
262. #Monthly log dividend yield   
263. germany['germanyStock_DY'] = germany['germanydivyld']   
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264. germany['germanyLog_Stock_DY'] = np.log(germany['germanyStock_DY'
])   

265.    
266. #Monthly lagged stock index   
267. germany['germanyStock_Index'] = germany['germanycpi']   
268. germany['germanylag_Stock_Index'] = (germany['germanyStock_Index'

]).shift(1)   
269. lag_Stock_Index = germany['germanylag_Stock_Index']   
270.    
271. #Stock Return   
272. germany['germanyStock_Ret'] = np.log(germany['germanyStock_Index'

]/germany['germanylag_Stock_Index']+germany['germanyStock_DY'])         
                               

273.                             
274. #Stock Excess Return   
275. germany['germanyStock_ExRet'] = germany['germanyStock_Ret'] - nor

way['RiskFree']   
276.    
277. germany1 = germany[['germanyLog_Stock_DY','germanylag_Stock_Index

','germanyStock_Ret','germanyStock_ExRet']]   
278. germany1 = germany1[~np.isnan(lag_Stock_Index)]   
279. germany1.head()   
280. Hungary   
281. In [ ]:   
282.    
283. hungary = data.copy()   
284. hungary = hungary[['hungaryltgovbondyield10y', 'hungary3m', 'hung

arycpi', 'hungarydivyld']]   
285. hungary.head()   
286.    
287. #Monthly log dividend yield   
288. hungary['hungaryStock_DY'] = hungary['hungarydivyld']   
289. hungary['hungaryLog_Stock_DY'] = np.log(hungary['hungaryStock_DY'

])   
290.    
291. #Monthly lagged stock index   
292. hungary['hungaryStock_Index'] = hungary['hungarycpi']   
293. hungary['hungarylag_Stock_Index'] = (hungary['hungaryStock_Index'

]).shift(1)   
294. lag_Stock_Index = hungary['hungarylag_Stock_Index']   
295.    
296. #Stock Return   
297. hungary['hungaryStock_Ret'] = np.log(hungary['hungaryStock_Index'

]/hungary['hungarylag_Stock_Index']+hungary['hungaryStock_DY'])         
                               

298.                             
299. #Stock Excess Return   
300. hungary['hungaryStock_ExRet'] = hungary['hungaryStock_Ret'] - nor

way['RiskFree']   
301.    
302. hungary1 = hungary[['hungaryLog_Stock_DY','hungarylag_Stock_Index

','hungaryStock_Ret','hungaryStock_ExRet']]   
303. hungary1 = hungary1[~np.isnan(lag_Stock_Index)]   
304. hungary1.head()   
305. Israel   
306. In [ ]:   
307.    
308. israel = data.copy()   
309. israel = israel[['israelltgovbondyield10y', 'israel3m', 'israelcp

i', 'israeldivyld']]   
310. israel.head()   
311.    
312. #Monthly log dividend yield   
313. israel['israelStock_DY'] = israel['israeldivyld']   
314. israel['israelLog_Stock_DY'] = np.log(israel['israelStock_DY'])   
315.    
316. #Monthly lagged stock index   
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317. israel['israelStock_Index'] = israel['israelcpi']   
318. israel['israellag_Stock_Index'] = (israel['israelStock_Index']).s

hift(1)   
319. lag_Stock_Index = israel['israellag_Stock_Index']   
320.    
321. #Stock Return   
322. israel['israelStock_Ret'] = np.log(israel['israelStock_Index']/is

rael['israellag_Stock_Index']+israel['israelStock_DY'])                 
                       

323.                             
324. #Stock Excess Return   
325. israel['israelStock_ExRet'] = israel['israelStock_Ret'] - norway[

'RiskFree']   
326.    
327. israel1 = israel[['israelLog_Stock_DY','israellag_Stock_Index','i

sraelStock_Ret','israelStock_ExRet']]   
328. israel1 = israel1[~np.isnan(lag_Stock_Index)]   
329. israel1.head()   
330. Italy   
331. In [ ]:   
332.    
333. italy = data.copy()   
334. italy = italy[['italyltgovbondyield10y', 'italy3m', 'italycpi', '

italydivyld']]   
335. italy.head()   
336.    
337. #Monthly log dividend yield   
338. italy['italyStock_DY'] = italy['italydivyld']   
339. italy['italyLog_Stock_DY'] = np.log(italy['italyStock_DY'])   
340.    
341. #Monthly lagged stock index   
342. italy['italyStock_Index'] = italy['italycpi']   
343. italy['italylag_Stock_Index'] = (italy['italyStock_Index']).shift

(1)   
344. lag_Stock_Index = italy['italylag_Stock_Index']   
345.    
346. #Stock Return   
347. italy['italyStock_Ret'] = np.log(italy['italyStock_Index']/italy[

'italylag_Stock_Index']+italy['italyStock_DY'])                         
               

348.                             
349. #Stock Excess Return   
350. italy['italyStock_ExRet'] = italy['italyStock_Ret'] - norway['Ris

kFree']   
351.    
352. italy1 = italy[['italyLog_Stock_DY','italylag_Stock_Index','italy

Stock_Ret','italyStock_ExRet']]   
353. italy1 = italy1[~np.isnan(lag_Stock_Index)]   
354. italy1.head()   
355. Japan   
356. In [ ]:   
357.    
358. japan = data.copy()   
359. japan = japan[['japanltgovbondyield10y', 'japan3m', 'japancpi', '

japandivyld']]   
360. japan.head()   
361.    
362. #Monthly log dividend yield   
363. japan['japanStock_DY'] = japan['japandivyld']   
364. japan['japanLog_Stock_DY'] = np.log(japan['japanStock_DY'])   
365.    
366. #Monthly lagged stock index   
367. japan['japanStock_Index'] = japan['japancpi']   
368. japan['japanlag_Stock_Index'] = (japan['japanStock_Index']).shift

(1)   
369. lag_Stock_Index = japan['japanlag_Stock_Index']   
370.    
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371. #Stock Return   
372. japan['japanStock_Ret'] = np.log(japan['japanStock_Index']/japan[

'japanlag_Stock_Index']+japan['japanStock_DY'])                         
               

373.                             
374. #Stock Excess Return   
375. japan['japanStock_ExRet'] = japan['japanStock_Ret'] - norway['Ris

kFree']   
376.    
377. japan1 = japan[['japanLog_Stock_DY','japanlag_Stock_Index','japan

Stock_Ret','japanStock_ExRet']]   
378. japan1 = japan1[~np.isnan(lag_Stock_Index)]   
379. japan1.head()   
380. Mexico   
381. In [ ]:   
382.    
383. mexico = data.copy()   
384. mexico = mexico[['mexicoltgovbondyield10y', 'mexico3m', 'mexicocp

i', 'mexicodivyld']]   
385. mexico.head()   
386.    
387. #Monthly log dividend yield   
388. mexico['mexicoStock_DY'] = mexico['mexicodivyld']   
389. mexico['mexicoLog_Stock_DY'] = np.log(mexico['mexicoStock_DY'])   
390.    
391. #Monthly lagged stock index   
392. mexico['mexicoStock_Index'] = mexico['mexicocpi']   
393. mexico['mexicolag_Stock_Index'] = (mexico['mexicoStock_Index']).s

hift(1)   
394. lag_Stock_Index = mexico['mexicolag_Stock_Index']   
395.    
396. #Stock Return   
397. mexico['mexicoStock_Ret'] = np.log(mexico['mexicoStock_Index']/me

xico['mexicolag_Stock_Index']+mexico['mexicoStock_DY'])                 
                       

398.                             
399. #Stock Excess Return   
400. mexico['mexicoStock_ExRet'] = mexico['mexicoStock_Ret'] - norway[

'RiskFree']   
401.    
402. mexico1 = mexico[['mexicoLog_Stock_DY','mexicolag_Stock_Index','m

exicoStock_Ret','mexicoStock_ExRet']]   
403. mexico1 = mexico1[~np.isnan(lag_Stock_Index)]   
404. mexico1.head()   
405. Netherland   
406. In [ ]:   
407.    
408. netherland = data.copy()   
409. netherland = netherland[['netherlandltgovbondyield10y', 'netherla

nd3m', 'netherlandcpi', 'netherlanddivyld']]   
410. netherland.head()   
411.    
412. #Monthly log dividend yield   
413. netherland['netherlandStock_DY'] = netherland['netherlanddivyld']

   
414. netherland['netherlandLog_Stock_DY'] = np.log(netherland['netherl

andStock_DY'])   
415.    
416. #Monthly lagged stock index   
417. netherland['netherlandStock_Index'] = netherland['netherlandcpi']

   
418. netherland['netherlandlag_Stock_Index'] = (netherland['netherland

Stock_Index']).shift(1)   
419. lag_Stock_Index = netherland['netherlandlag_Stock_Index']   
420.    
421. #Stock Return   
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422. netherland['netherlandStock_Ret'] = np.log(netherland['netherland
Stock_Index']/netherland['netherlandlag_Stock_Index']+netherland['nether
landStock_DY'])                                        

423.                             
424. #Stock Excess Return   
425. netherland['netherlandStock_ExRet'] = netherland['netherlandStock

_Ret'] - norway['RiskFree']   
426.    
427. netherland1 = netherland[['netherlandLog_Stock_DY','netherlandlag

_Stock_Index','netherlandStock_Ret','netherlandStock_ExRet']]   
428. netherland1 = netherland1[~np.isnan(lag_Stock_Index)]   
429. netherland1.head()   
430. New Zealand   
431. In [ ]:   
432.    
433. newzealand = data.copy()   
434. newzealand = newzealand[['newzealandltgovbondyield10y', 'newzeala

nd3m', 'newzealandcpi', 'newzealanddivyld']]   
435. newzealand.head()   
436.    
437. #Monthly log dividend yield   
438. newzealand['newzealandStock_DY'] = newzealand['newzealanddivyld']

   
439. newzealand['newzealandLog_Stock_DY'] = np.log(newzealand['newzeal

andStock_DY'])   
440.    
441. #Monthly lagged stock index   
442. newzealand['newzealandStock_Index'] = newzealand['newzealandcpi']

   
443. newzealand['newzealandlag_Stock_Index'] = (newzealand['newzealand

Stock_Index']).shift(1)   
444. lag_Stock_Index = newzealand['newzealandlag_Stock_Index']   
445.    
446. #Stock Return   
447. newzealand['newzealandStock_Ret'] = np.log(newzealand['newzealand

Stock_Index']/newzealand['newzealandlag_Stock_Index']+newzealand['newzea
landStock_DY'])                                        

448.                             
449. #Stock Excess Return   
450. newzealand['newzealandStock_ExRet'] = newzealand['newzealandStock

_Ret'] - norway['RiskFree']   
451.    
452. newzealand1 = newzealand[['newzealandLog_Stock_DY','newzealandlag

_Stock_Index','newzealandStock_Ret','newzealandStock_ExRet']]   
453. newzealand1 = newzealand1[~np.isnan(lag_Stock_Index)]   
454. newzealand1.head()   
455. Poland   
456. In [ ]:   
457.    
458. poland = data.copy()   
459. poland = poland[['polandltgovbondyield10y', 'poland3m', 'polandcp

i', 'polanddivyld']]   
460. poland.head()   
461.    
462. #Monthly log dividend yield   
463. poland['polandStock_DY'] = poland['polanddivyld']   
464. poland['polandLog_Stock_DY'] = np.log(poland['polandStock_DY'])   
465.    
466. #Monthly lagged stock index   
467. poland['polandStock_Index'] = poland['polandcpi']   
468. poland['polandlag_Stock_Index'] = (poland['polandStock_Index']).s

hift(1)   
469. lag_Stock_Index = poland['polandlag_Stock_Index']   
470.    
471. #Stock Return   
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472. poland['polandStock_Ret'] = np.log(poland['polandStock_Index']/po
land['polandlag_Stock_Index']+poland['polandStock_DY'])                 
                       

473.                             
474. #Stock Excess Return   
475. poland['polandStock_ExRet'] = poland['polandStock_Ret'] - norway[

'RiskFree']   
476.    
477. poland1 = poland[['polandLog_Stock_DY','polandlag_Stock_Index','p

olandStock_Ret','polandStock_ExRet']]   
478. poland1 = poland1[~np.isnan(lag_Stock_Index)]   
479. poland1.head()   
480. Portugal   
481. In [ ]:   
482.    
483. portugal = data.copy()   
484. portugal = portugal[['portugalltgovbondyield10y', 'portugal3m', '

portugalcpi', 'portugaldivyld']]   
485. portugal.head()   
486.    
487. #Monthly log dividend yield   
488. portugal['portugalStock_DY'] = portugal['portugaldivyld']   
489. portugal['portugalLog_Stock_DY'] = np.log(portugal['portugalStock

_DY'])   
490.    
491. #Monthly lagged stock index   
492. portugal['portugalStock_Index'] = portugal['portugalcpi']   
493. portugal['portugallag_Stock_Index'] = (portugal['portugalStock_In

dex']).shift(1)   
494. lag_Stock_Index = portugal['portugallag_Stock_Index']   
495.    
496. #Stock Return   
497. portugal['portugalStock_Ret'] = np.log(portugal['portugalStock_In

dex']/portugal['portugallag_Stock_Index']+portugal['portugalStock_DY']) 
                                       

498.                             
499. #Stock Excess Return   
500. portugal['portugalStock_ExRet'] = portugal['portugalStock_Ret'] -

 norway['RiskFree']   
501.    
502. portugal1 = portugal[['portugalLog_Stock_DY','portugallag_Stock_I

ndex','portugalStock_Ret','portugalStock_ExRet']]   
503. portugal1 = portugal1[~np.isnan(lag_Stock_Index)]   
504. portugal1.head()   
505. Russia   
506. In [ ]:   
507.    
508. portugal = data.copy()   
509. portugal = portugal[['portugalltgovbondyield10y', 'portugal3m', '

portugalcpi', 'portugaldivyld']]   
510. portugal.head()   
511.    
512. #Monthly log dividend yield   
513. portugal['portugalStock_DY'] = portugal['portugaldivyld']   
514. portugal['portugalLog_Stock_DY'] = np.log(portugal['portugalStock

_DY'])   
515.    
516. #Monthly lagged stock index   
517. portugal['portugalStock_Index'] = portugal['portugalcpi']   
518. portugal['portugallag_Stock_Index'] = (portugal['portugalStock_In

dex']).shift(1)   
519. lag_Stock_Index = portugal['portugallag_Stock_Index']   
520.    
521. #Stock Return   
522. portugal['portugalStock_Ret'] = np.log(portugal['portugalStock_In

dex']/portugal['portugallag_Stock_Index']+portugal['portugalStock_DY']) 
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523.                             
524. #Stock Excess Return   
525. portugal['portugalStock_ExRet'] = portugal['portugalStock_Ret'] -

 norway['RiskFree']   
526.    
527. portugal1 = portugal[['portugalLog_Stock_DY','portugallag_Stock_I

ndex','portugalStock_Ret','portugalStock_ExRet']]   
528. portugal1 = portugal1[~np.isnan(lag_Stock_Index)]   
529. portugal1.head()   
530. South Africa   
531. In [ ]:   
532.    
533. southafrica = data.copy()   
534. southafrica = southafrica[['southafricaltgovbondyield10y', 'south

africa3m', 'southafricacpi', 'southafricadivyld']]   
535. southafrica.head()   
536.    
537. #Monthly log dividend yield   
538. southafrica['southafricaStock_DY'] = southafrica['southafricadivy

ld']   
539. southafrica['southafricaLog_Stock_DY'] = np.log(southafrica['sout

hafricaStock_DY'])   
540.    
541. #Monthly lagged stock index   
542. southafrica['southafricaStock_Index'] = southafrica['southafricac

pi']   
543. southafrica['southafricalag_Stock_Index'] = (southafrica['southaf

ricaStock_Index']).shift(1)   
544. lag_Stock_Index = southafrica['southafricalag_Stock_Index']   
545.    
546. #Stock Return   
547. southafrica['southafricaStock_Ret'] = np.log(southafrica['southaf

ricaStock_Index']/southafrica['southafricalag_Stock_Index']+southafrica[
'southafricaStock_DY'])                                        

548.                             
549. #Stock Excess Return   
550. southafrica['southafricaStock_ExRet'] = southafrica['southafricaS

tock_Ret'] - norway['RiskFree']   
551.    
552. southafrica1 = southafrica[['southafricaLog_Stock_DY','southafric

alag_Stock_Index','southafricaStock_Ret','southafricaStock_ExRet']]   
553. southafrica1 = southafrica1[~np.isnan(lag_Stock_Index)]   
554. southafrica1.head()   
555. South Korea   
556. In [ ]:   
557.    
558. southkorea = data.copy()   
559. southkorea = southkorea[['southkorealtgovbondyield10y', 'southkor

ea3m', 'southkoreacpi', 'southkoreadivyld']]   
560. southkorea.head()   
561.    
562. #Monthly log dividend yield   
563. southkorea['southkoreaStock_DY'] = southkorea['southkoreadivyld']

   
564. southkorea['southkoreaLog_Stock_DY'] = np.log(southkorea['southko

reaStock_DY'])   
565.    
566. #Monthly lagged stock index   
567. southkorea['southkoreaStock_Index'] = southkorea['southkoreacpi']

   
568. southkorea['southkorealag_Stock_Index'] = (southkorea['southkorea

Stock_Index']).shift(1)   
569. lag_Stock_Index = southkorea['southkorealag_Stock_Index']   
570.    
571. #Stock Return   
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572. southkorea['southkoreaStock_Ret'] = np.log(southkorea['southkorea
Stock_Index']/southkorea['southkorealag_Stock_Index']+southkorea['southk
oreaStock_DY'])                                        

573.                             
574. #Stock Excess Return   
575. southkorea['southkoreaStock_ExRet'] = southkorea['southkoreaStock

_Ret'] - norway['RiskFree']   
576.    
577. southkorea1 = southkorea[['southkoreaLog_Stock_DY','southkorealag

_Stock_Index','southkoreaStock_Ret','southkoreaStock_ExRet']]   
578. southkorea1 = southkorea1[~np.isnan(lag_Stock_Index)]   
579. southkorea1.head()   
580. Spain   
581. In [ ]:   
582.    
583. spain = data.copy()   
584. spain = spain[['spainltgovbondyield10y', 'spain3m', 'spaincpi', '

spaindivyld']]   
585. spain.head()   
586.    
587. #Monthly log dividend yield   
588. spain['spainStock_DY'] = spain['spaindivyld']   
589. spain['spainLog_Stock_DY'] = np.log(spain['spainStock_DY'])   
590.    
591. #Monthly lagged stock index   
592. spain['spainStock_Index'] = spain['spaincpi']   
593. spain['spainlag_Stock_Index'] = (spain['spainStock_Index']).shift

(1)   
594. lag_Stock_Index = spain['spainlag_Stock_Index']   
595.    
596. #Stock Return   
597. spain['spainStock_Ret'] = np.log(spain['spainStock_Index']/spain[

'spainlag_Stock_Index']+spain['spainStock_DY'])                         
               

598.                             
599. #Stock Excess Return   
600. spain['spainStock_ExRet'] = spain['spainStock_Ret'] - norway['Ris

kFree']   
601.    
602. spain1 = spain[['spainLog_Stock_DY','spainlag_Stock_Index','spain

Stock_Ret','spainStock_ExRet']]   
603. spain1 = spain1[~np.isnan(lag_Stock_Index)]   
604. spain1.head()   
605. Sweden   
606. In [ ]:   
607.    
608. sweden = data.copy()   
609. sweden = sweden[['swedenltgovbondyield10y', 'sweden3m', 'swedencp

i', 'swedendivyld']]   
610. sweden.head()   
611.    
612. #Monthly log dividend yield   
613. sweden['swedenStock_DY'] = sweden['swedendivyld']   
614. sweden['swedenLog_Stock_DY'] = np.log(sweden['swedenStock_DY'])   
615.    
616. #Monthly lagged stock index   
617. sweden['swedenStock_Index'] = sweden['swedencpi']   
618. sweden['swedenlag_Stock_Index'] = (sweden['swedenStock_Index']).s

hift(1)   
619. lag_Stock_Index = sweden['swedenlag_Stock_Index']   
620.    
621. #Stock Return   
622. sweden['swedenStock_Ret'] = np.log(sweden['swedenStock_Index']/sw

eden['swedenlag_Stock_Index']+sweden['swedenStock_DY'])                 
                       

623.                             
624. #Stock Excess Return   
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625. sweden['swedenStock_ExRet'] = sweden['swedenStock_Ret'] - norway[
'RiskFree']   

626.    
627. sweden1 = sweden[['swedenLog_Stock_DY','swedenlag_Stock_Index','s

wedenStock_Ret','swedenStock_ExRet']]   
628. sweden1 = sweden1[~np.isnan(lag_Stock_Index)]   
629. sweden1.head()   
630. Switzerland   
631. In [ ]:   
632.    
633. switzerland = data.copy()   
634. switzerland = switzerland[['switzerlandltgovbondyield10y', 'switz

erland3m', 'switzerlandcpi', 'switzerlanddivyld']]   
635. switzerland.head()   
636.    
637. #Monthly log dividend yield   
638. switzerland['switzerlandStock_DY'] = switzerland['switzerlanddivy

ld']   
639. switzerland['switzerlandLog_Stock_DY'] = np.log(switzerland['swit

zerlandStock_DY'])   
640.    
641. #Monthly lagged stock index   
642. switzerland['switzerlandStock_Index'] = switzerland['switzerlandc

pi']   
643. switzerland['switzerlandlag_Stock_Index'] = (switzerland['switzer

landStock_Index']).shift(1)   
644. lag_Stock_Index = switzerland['switzerlandlag_Stock_Index']   
645.    
646. #Stock Return   
647. switzerland['switzerlandStock_Ret'] = np.log(switzerland['switzer

landStock_Index']/switzerland['switzerlandlag_Stock_Index']+switzerland[
'switzerlandStock_DY'])                                        

648.                             
649. #Stock Excess Return   
650. switzerland['switzerlandStock_ExRet'] = switzerland['switzerlandS

tock_Ret'] - norway['RiskFree']   
651.    
652. switzerland1 = switzerland[['switzerlandLog_Stock_DY','switzerlan

dlag_Stock_Index','switzerlandStock_Ret','switzerlandStock_ExRet']]   
653. switzerland1 = switzerland1[~np.isnan(lag_Stock_Index)]   
654. switzerland1.head()   
655. United Kingdom   
656. In [ ]:   
657.    
658. uk = data.copy()   
659. uk = uk[['ukltgovbondyield10y', 'uk3m', 'ukcpi', 'ukdivyld']]   
660. uk.head()   
661.    
662. #Monthly log dividend yield   
663. uk['ukStock_DY'] = uk['ukdivyld']   
664. uk['ukLog_Stock_DY'] = np.log(uk['ukStock_DY'])   
665.    
666. #Monthly lagged stock index   
667. uk['ukStock_Index'] = uk['ukcpi']   
668. uk['uklag_Stock_Index'] = (uk['ukStock_Index']).shift(1)   
669. lag_Stock_Index = uk['uklag_Stock_Index']   
670.    
671. #Stock Return   
672. uk['ukStock_Ret'] = np.log(uk['ukStock_Index']/uk['uklag_Stock_In

dex']+uk['ukStock_DY'])                                      
673.                             
674. #Stock Excess Return   
675. uk['ukStock_ExRet'] = uk['ukStock_Ret'] - norway['RiskFree']   
676.    
677. uk1 = uk[['ukLog_Stock_DY','uklag_Stock_Index','ukStock_Ret','ukS

tock_ExRet']]   
678. uk1 = uk1[~np.isnan(lag_Stock_Index)]   
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679. uk1.head()   
680. United states   
681. In [ ]:   
682.    
683. us = data.copy()   
684. us = us[['usltgovbondyield10y', 'us3m', 'uscpi', 'usdivyld']]   
685.    
686. #Monthly log dividend yield   
687. us['usStock_DY'] = us['usdivyld']   
688. us['usLog_Stock_DY'] = np.log(us['usStock_DY'])   
689.    
690. #Monthly lagged stock index   
691. us['usStock_Index'] = us['uscpi']   
692. us['uslag_Stock_Index'] = (us['usStock_Index']).shift(1)   
693. lag_Stock_Index = us['uslag_Stock_Index']   
694.    
695. #Stock Return   
696. us['usStock_Ret'] = np.log(us['usStock_Index']/us['uslag_Stock_In

dex']+us['usStock_DY'])                                        
697.                             
698. #Stock Excess Return   
699. us['usStock_ExRet'] = us['usStock_Ret'] - norway['RiskFree']   
700.    
701. us1 = us[['usLog_Stock_DY','uslag_Stock_Index','usStock_Ret','usS

tock_ExRet']]   
702. us1 = us1[~np.isnan(lag_Stock_Index)]   
703. us1.head()   
704. Constant Expected Return (CER) Analysis   
705. In [222]:   
706.    
707. df = pd.concat([austria.loc['2008-08-01':'2018-04-

01'],                   
708.                 belgium1.loc['2008-08-01':'2018-04-01'],    
709.                 canada.loc['2008-08-01':'2018-04-01'],   
710.                 chechrepublic.loc['2008-08-01':'2018-04-01'],   
711.                 chile.loc['2008-08-01':'2018-04-01'],    
712.                 china.loc['2008-08-01':'2018-04-01'],   
713.                 denmark.loc['2008-08-01':'2018-04-01'],     
714.                 france.loc['2008-08-01':'2018-04-01'],    
715.                 germany.loc['2008-08-01':'2018-04-01'],    
716.                 hungary.loc['2008-08-01':'2018-04-01'],    
717.                 israel.loc['2008-08-01':'2018-04-01'],    
718.                 italy.loc['2008-08-01':'2018-04-01'],   
719.                 japan.loc['2008-08-01':'2018-04-01'],   
720.                 mexico.loc['2008-08-01':'2018-04-01'],    
721.                 netherland.loc['2008-08-01':'2018-04-01'],   
722.                 poland.loc['2008-08-01':'2018-04-01'],    
723.                 portugal.loc['2008-08-01':'2018-04-01'],    
724.                 russia.loc['2008-08-01':'2018-04-01'],    
725.                 southafrica.loc['2008-08-01':'2018-04-01'],    
726.                 southkorea.loc['2008-08-01':'2018-04-01'],    
727.                 spain.loc['2008-08-01':'2018-04-01'],    
728.                 sweden.loc['2008-08-01':'2018-04-01'],    
729.                 switzerland.loc['2008-08-01':'2018-04-01'],    
730.                 uk.loc['2008-08-01':'2018-04-01'],    
731.                 us.loc['2008-08-01':'2018-04-01']], axis=1)   
732. In [ ]:   
733.    
734. CERportfolio = df[['austriaStock_ExRet',   
735.         'belgiumStock_ExRet',   
736.         'canadaStock_ExRet',   
737.         'chechrepublicStock_ExRet',   
738.         'chileStock_ExRet',   
739.         'chinaStock_ExRet',   
740.         'denmarkStock_ExRet',   
741.         'franceStock_ExRet',   
742.         'germanyStock_ExRet',   
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743.         'hungaryStock_ExRet',   
744.         'israelStock_ExRet',   
745.         'italyStock_ExRet',   
746.         'japanStock_ExRet',   
747.         'mexicoStock_ExRet',   
748.         'netherlandStock_ExRet',   
749.         'polandStock_ExRet',   
750.         'portugalStock_ExRet',   
751.         'russiaStock_ExRet',   
752.         'southafricaStock_ExRet',   
753.         'southkoreaStock_ExRet',   
754.         'spainStock_ExRet',   
755.         'swedenStock_ExRet',   
756.         'switzerlandStock_ExRet',   
757.         'ukStock_ExRet',   
758.         'usStock_ExRet']]   
759.    
760. plt.figure(figsize=(20, 10))   
761. plt.plot(CERportfolio, alpha=20);   
762. plt.xlabel('Date')   
763. plt.ylabel('Returns')   
764. In [ ]:   
765.    
766. #Compute the cumulative sum of excess returns   
767. Ri = np.log(CERportfolio).diff().diff().dropna()*12   
768. Ri = pd.DataFrame(Ri)   
769.    
770. plt.figure(figsize=(20, 10))   
771. plt.plot(Ri, alpha=20);   
772. plt.xlabel('Date')   
773. plt.ylabel('Returns')   
774. A common way to present the "effect" of a mutual fund's performan

ce over time is to show the cumulative return with a visual such as a mo
untain graph.   

775. In [ ]:   
776.    
777. CERportfolio.kurtosis()   
778. In [ ]:   
779.    
780. CERportfolio.skew()   
781. In [227]:   
782.    
783. norwayRiskFree = norwayRiskFree.loc['2008-08-01':'2018-04-01']   
784. In [228]:   
785.    
786. Rreturns_annual = CERportfolio.mean()   
787. cov_annuals = CERportfolio*100   
788. Rcov_annual = cov_annuals.cov()   
789. In [229]:   
790.    
791. # empty lists to store returns, volatility and weights of imigina

ry portfolios   
792. Rport_returns = []   
793. Rport_volatility = []   
794. Rsharpe_ratio = []   
795. Rstock_weights = []   
796. In [230]:   
797.    
798. # set the number of combinations for imaginary portfolios   
799. Rnum_assets = 25   
800. Rnum_portfolios = 50000   
801. In [231]:   
802.    
803. #set random seed for reproduction's sake   
804. np.random.seed(101)   
805. In [232]:   
806.    
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807. # populate the empty lists with each portfolios returns,risk and 
weights   

808. for single_portfolio in range(Rnum_portfolios):   
809.     weights = np.random.random(Rnum_assets)   
810.     weights /= np.sum(weights)   
811.     returns = np.dot(weights, Rreturns_annual)   
812.     volatility = np.sqrt(np.dot(weights.T, np.dot(Rcov_annual, we

ights)))   
813.     sharpe = returns/ volatility   
814.     Rsharpe_ratio.append(sharpe)   
815.     Rport_returns.append(returns)   
816.     Rport_volatility.append(volatility)   
817.     Rstock_weights.append(weights)   
818. In [ ]:   
819.    
820. sum(weights)   
821. In [234]:   
822.    
823. # a dictionary for Returns and Risk values of each portfolio   
824. portfolio = {'Returns': Rport_returns,   
825.              'Volatility': Rport_volatility,   
826.              'Sharpe Ratio': Rsharpe_ratio}   
827. In [235]:   
828.    
829. # extend original dictionary to accomodate each ticker and weight

 in the portfolio   
830. for counter,symbol in enumerate(CERportfolio):   
831.     portfolio[symbol+' Weight'] = [Weight[counter] for Weight in 

Rstock_weights]   
832. In [236]:   
833.    
834. # make a nice dataframe of the extended dictionary   
835. df1 = pd.DataFrame(portfolio)   
836. In [237]:   
837.    
838. # get better labels for desired arrangement of columns   
839. column_order = ['Returns', 'Volatility','Sharpe Ratio'] + [stock+

' Weight' for stock in CERportfolio ]   
840. In [ ]:   
841.    
842. # reorder dataframe columns   
843. df1 = df1[column_order]   
844. df1.head()   
845. In [ ]:   
846.    
847. # plot frontier, max sharpe & min Volatility values with a scatte

rplot   
848. plt.style.use('seaborn-dark')   
849. df1.plot.scatter(x='Volatility', y='Returns', c='Sharpe Ratio', c

map='RdYlGn',    
850.                 edgecolors='black', figsize=(10, 10), grid=True) 

  
851. plt.xlabel('Volatility(Std. Deviation)')   
852. plt.ylabel('Expected Returns')   
853. plt.title('Efficient Frontier')   
854. plt.show()   
855. In [240]:   
856.    
857. # find min Volatility & max sharpe values in the dataframe (df)   
858. min_volatility1 = df1['Volatility'].min()   
859. max_sharpe1 = df1['Sharpe Ratio'].max()   
860. In [241]:   
861.    
862. # use the min, max values to locate and create the two special po

rtfolios   
863. sharpe_portfolio1 = df1.loc[df1['Sharpe Ratio'] == max_sharpe1]   
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864. min_variance_port1 = df1.loc[df1['Volatility'] == min_volatility1
]   

865. In [ ]:   
866.    
867. ## plot frontier, max sharpe & min Volatility values with a scatt

erplot   
868. plt.style.use('seaborn-dark')   
869. df1.plot.scatter(x='Volatility', y='Returns', c='Sharpe Ratio',   
870.                 cmap='RdYlGn', edgecolors='black', figsize=(10, 1

0), grid=True)   
871. plt.scatter(x=sharpe_portfolio1['Volatility'], y=sharpe_portfolio

1['Returns'], c='red', marker='D', s=200)   
872. plt.scatter(x=min_variance_port1['Volatility'], y=min_variance_po

rt1['Returns'], c='blue', marker='D', s=200 )   
873. plt.ylabel('Expected Returns')   
874. plt.xlabel('Volatility (Std. Deviation)')   
875. plt.title('Efficient Frontier')   
876. plt.show()   
877. In [ ]:   
878.    
879. # print the details of the 2 special portfolios   
880. print(min_variance_port1.T)   
881. In [ ]:   
882.    
883. print(sharpe_portfolio1.T)   
884. Time Varying Expected Return (TVER) Analysis   
885. Create returns at different frequencies   
886. In [245]:   
887.    
888. austriaStock_Ret1y = austria['austriaStock_Ret'].rolling(window=1

2).mean()*12   
889. austriaStock_Ret3y = austria['austriaStock_Ret'].rolling(window=3

6).mean()*36   
890. austriaStock_Ret3Ya = austriaStock_Ret3y/3    
891.    
892. belgiumStock_Ret1y = belgium['belgiumStock_Ret'].rolling(window=1

2).mean()*12   
893. belgiumStock_Ret3y = belgium['belgiumStock_Ret'].rolling(window=3

6).mean()*36    
894. belgiumStock_Ret3Ya = belgiumStock_Ret3y/3    
895.    
896. canadaStock_Ret1y = canada['canadaStock_Ret'].rolling(window=12).

mean()*12    
897. canadaStock_Ret3y = canada['canadaStock_Ret'].rolling(window=36).

mean()*36    
898. canadaStock_Ret3Ya = canadaStock_Ret3y/3    
899.    
900. chechrepublicStock_Ret1y = chechrepublic['chechrepublicStock_Ret'

].rolling(window=12).mean()*12    
901. chechrepublicStock_Ret3y = chechrepublic['chechrepublicStock_Ret'

].rolling(window=36).mean()*36    
902. chechrepublicStock_Ret3Ya = chechrepublicStock_Ret3y/3    
903.    
904. chileStock_Ret1y = chile['chileStock_Ret'].rolling(window=12).mea

n()*12    
905. chileStock_Ret3y = chile['chileStock_Ret'].rolling(window=36).mea

n()*36    
906. chileStock_Ret3Ya = chileStock_Ret3y/3    
907.    
908. chinaStock_Ret1y = china['chinaStock_Ret'].rolling(window=12).mea

n()*12    
909. chinaStock_Ret3y = china['chinaStock_Ret'].rolling(window=36).mea

n()*36    
910. chinaStock_Ret3Ya = chinaStock_Ret3y/3    
911.    
912. denmarkStock_Ret1y = denmark['denmarkStock_Ret'].rolling(window=1

2).mean()*12    
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913. denmarkStock_Ret3y = denmark['denmarkStock_Ret'].rolling(window=3
6).mean()*36    

914. denmarkStock_Ret3Ya = denmarkStock_Ret3y/3    
915.    
916. franceStock_Ret1y = france['franceStock_Ret'].rolling(window=12).

mean()*12    
917. franceStock_Ret3y = france['franceStock_Ret'].rolling(window=36).

mean()*36    
918. franceStock_Ret3Ya = franceStock_Ret3y/3    
919.    
920. germanyStock_Ret1y = germany['germanyStock_Ret'].rolling(window=1

2).mean()*12    
921. germanyStock_Ret3y = germany['germanyStock_Ret'].rolling(window=3

6).mean()*36    
922. germanyStock_Ret3Ya = germanyStock_Ret3y/3    
923.    
924. hungaryStock_Ret1y = hungary['hungaryStock_Ret'].rolling(window=1

2).mean()*12    
925. hungaryStock_Ret3y = hungary['hungaryStock_Ret'].rolling(window=3

6).mean()*36    
926. hungaryStock_Ret3Ya = hungaryStock_Ret3y/3    
927.    
928. israelStock_Ret1y = israel['israelStock_Ret'].rolling(window=12).

mean()*12    
929. israelStock_Ret3y = israel['israelStock_Ret'].rolling(window=36).

mean()*36    
930. israelStock_Ret3Ya = israelStock_Ret3y/3    
931.    
932. italyStock_Ret1y = italy['italyStock_Ret'].rolling(window=12).mea

n()*12    
933. italyStock_Ret3y = italy['italyStock_Ret'].rolling(window=36).mea

n()*36   
934. italyStock_Ret3Ya = italyStock_Ret3y/3    
935.    
936. japanStock_Ret1y = japan['japanStock_Ret'].rolling(window=12).mea

n()*12    
937. japanStock_Ret3y = japan['japanStock_Ret'].rolling(window=36).mea

n()*36    
938. japanStock_Ret3Ya = japanStock_Ret3y/3    
939.    
940. mexicoStock_Ret1y = mexico['mexicoStock_Ret'].rolling(window=12).

mean()*12    
941. mexicoStock_Ret3y = mexico['mexicoStock_Ret'].rolling(window=36).

mean()*36    
942. mexicoStock_Ret3Ya = mexicoStock_Ret3y/3    
943.    
944. netherlandStock_Ret1y = netherland['netherlandStock_Ret'].rolling

(window=12).mean()*12    
945. netherlandStock_Ret3y = netherland['netherlandStock_Ret'].rolling

(window=36).mean()*36    
946. netherlandStock_Ret3Ya = netherlandStock_Ret3y/3   
947.    
948. polandStock_Ret1y = poland['polandStock_Ret'].rolling(window=12).

mean()*12    
949. polandStock_Ret3y = poland['polandStock_Ret'].rolling(window=36).

mean()*36    
950. polandStock_Ret3Ya = polandStock_Ret3y/3    
951.    
952. portugalStock_Ret1y = portugal['portugalStock_Ret'].rolling(windo

w=12).mean()*12    
953. portugalStock_Ret3y = portugal['portugalStock_Ret'].rolling(windo

w=36).mean()*36    
954. portugalStock_Ret3Ya = portugalStock_Ret3y/3    
955.    
956. russiaStock_Ret1y = russia['russiaStock_Ret'].rolling(window=12).

mean()*12    

09448990942547GRA 19502



   
 

Page 63 of 70 
 

957. russiaStock_Ret3y = russia['russiaStock_Ret'].rolling(window=36).
mean()*36    

958. russiaStock_Ret3Ya = russiaStock_Ret3y/3    
959.    
960. southafricaStock_Ret1y = southafrica['southafricaStock_Ret'].roll

ing(window=12).mean()*12    
961. southafricaStock_Ret3y = southafrica['southafricaStock_Ret'].roll

ing(window=36).mean()*36    
962. southafricaStock_Ret3Ya = southafricaStock_Ret3y/3    
963.    
964. southkoreaStock_Ret1y = southkorea['southkoreaStock_Ret'].rolling

(window=12).mean()*12    
965. southkoreaStock_Ret3y = southkorea['southkoreaStock_Ret'].rolling

(window=36).mean()*36    
966. southkoreaStock_Ret3Ya = southkoreaStock_Ret3y/3    
967.    
968. spainStock_Ret1y = spain['spainStock_Ret'].rolling(window=12).mea

n()*12    
969. spainStock_Ret3y = spain['spainStock_Ret'].rolling(window=36).mea

n()*36    
970. spainStock_Ret3Ya = spainStock_Ret3y/3    
971.    
972. swedenStock_Ret1y = sweden['swedenStock_Ret'].rolling(window=12).

mean()*12    
973. swedenStock_Ret3y = sweden['swedenStock_Ret'].rolling(window=36).

mean()*36    
974. swedenStock_Ret3Ya = swedenStock_Ret3y/3    
975.    
976. switzerlandStock_Ret1y = switzerland['switzerlandStock_Ret'].roll

ing(window=12).mean()*12    
977. switzerlandStock_Ret3y = switzerland['switzerlandStock_Ret'].roll

ing(window=36).mean()*36    
978. switzerlandStock_Ret3Ya = switzerlandStock_Ret3y/3    
979.    
980. ukStock_Ret1y = uk['ukStock_Ret'].rolling(window=12).mean()*12    
981. ukStock_Ret3y = uk['ukStock_Ret'].rolling(window=36).mean()*36    
982. ukStock_Ret3Ya = ukStock_Ret3y/3    
983.    
984. usStock_Ret1y = us['usStock_Ret'].rolling(window=12).mean()*12    
985. usStock_Ret3y = us['usStock_Ret'].rolling(window=36).mean()*36   
986. usStock_Ret3Ya = usStock_Ret3y/3    
987.    
988. norway_RF_Ret3y = norwayRiskFree.rolling(window=36).mean()*36   
989. Excess returns 3Y horizon   
990. In [246]:   
991.    
992. austriaStock_ExRet3Y = austriaStock_Ret3y - norway_RF_Ret3y   
993. belgiumStock_ExRet3Y = belgiumStock_Ret3y - norway_RF_Ret3y   
994. canadaStock_ExRet3Y = canadaStock_Ret3y - norway_RF_Ret3y   
995. chechrepublicStock_ExRet3Y = chechrepublicStock_Ret3y - norway_RF

_Ret3y   
996. chileStock_ExRet3Y = chileStock_Ret3y - norway_RF_Ret3y   
997. chinaStock_ExRet3Y = chinaStock_Ret3y - norway_RF_Ret3y   
998. denmarkStock_ExRet3Y = denmarkStock_Ret3y - norway_RF_Ret3y   
999. franceStock_ExRet3Y = franceStock_Ret3y - norway_RF_Ret3y   
1000. germanyStock_ExRet3Y = germanyStock_Ret3y - norway_RF_Ret3y   
1001. hungaryStock_ExRet3Y = hungaryStock_Ret3y - norway_RF_Ret3y   
1002. isrealStock_ExRet3Y = israelStock_Ret3y - norway_RF_Ret3y   
1003. italyStock_ExRet3Y = italyStock_Ret3y - norway_RF_Ret3y   
1004. japanStock_ExRet3Y = japanStock_Ret3y - norway_RF_Ret3y   
1005. mexicoStock_ExRet3Y = mexicoStock_Ret3y - norway_RF_Ret3y   
1006. netherlandStock_ExRet3Y = netherlandStock_Ret3y - norway_RF_Ret3y

   
1007. polandStock_ExRet3Y = polandStock_Ret3y - norway_RF_Ret3y   
1008. portugalStock_ExRet3Y = portugalStock_Ret3y - norway_RF_Ret3y   
1009. russiaStock_ExRet3Y = russiaStock_Ret3y - norway_RF_Ret3y   
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1010. southafricaStock_ExRet3Y = southafricaStock_Ret3y - norway_RF_Ret
3y   

1011. southkoreaStock_ExRet3Y = southkoreaStock_Ret3y - norway_RF_Ret3y
   

1012. spainStock_ExRet3Y = spainStock_Ret3y - norway_RF_Ret3y   
1013. swedenStock_ExRet3Y = swedenStock_Ret3y - norway_RF_Ret3y   
1014. switzerlandStock_ExRet3Y = switzerlandStock_Ret3y - norway_RF_Ret

3y   
1015. ukStock_ExRet3Y = ukStock_Ret3y - norway_RF_Ret3y   
1016. usStock_ExRet3Y = usStock_Ret3y - norway_RF_Ret3y   
1017. Make dataframes of the Excess returns 3Y horizon   
1018. In [247]:   
1019.    
1020. austriaStock_ExRet3Y = pd.DataFrame(austriaStock_ExRet3Y)   
1021. belgiumStock_ExRet3Y = pd.DataFrame(belgiumStock_ExRet3Y)   
1022. canadaStock_ExRet3Y = pd.DataFrame(canadaStock_ExRet3Y)   
1023. chechrepublicStock_ExRet3Y = pd.DataFrame(chechrepublicStock_ExRe

t3Y)   
1024. chechrepublicStock_ExRet3Y = pd.DataFrame(chechrepublicStock_ExRe

t3Y)   
1025. chileStock_ExRet3Y = pd.DataFrame(chileStock_ExRet3Y)   
1026. chinaStock_ExRet3Y = pd.DataFrame(chinaStock_ExRet3Y)   
1027. denmarkStock_ExRet3Y = pd.DataFrame(denmarkStock_ExRet3Y)   
1028. franceStock_ExRet3Y = pd.DataFrame(franceStock_ExRet3Y)   
1029. germanyStock_ExRet3Y = pd.DataFrame(germanyStock_ExRet3Y)   
1030. hungaryStock_ExRet3Y = pd.DataFrame(hungaryStock_ExRet3Y)   
1031. isrealStock_ExRet3Y = pd.DataFrame(isrealStock_ExRet3Y)   
1032. italyStock_ExRet3Y = pd.DataFrame(italyStock_ExRet3Y)   
1033. japanStock_ExRet3Y = pd.DataFrame(japanStock_ExRet3Y)   
1034. mexicoStock_ExRet3Y = pd.DataFrame(mexicoStock_ExRet3Y)   
1035. netherlandStock_ExRet3Y = pd.DataFrame(netherlandStock_ExRet3Y)   
1036. polandStock_ExRet3Y = pd.DataFrame(polandStock_ExRet3Y)   
1037. portugalStock_ExRet3Y = pd.DataFrame(portugalStock_ExRet3Y)   
1038. russiaStock_ExRet3Y = pd.DataFrame(russiaStock_ExRet3Y)   
1039. southafricaStock_ExRet3Y = pd.DataFrame(southafricaStock_ExRet3Y)

   
1040. southkoreaStock_ExRet3Y = pd.DataFrame(southkoreaStock_ExRet3Y)   
1041. spainStock_ExRet3Y = pd.DataFrame(spainStock_ExRet3Y)   
1042. swedenStock_ExRet3Y = pd.DataFrame(swedenStock_ExRet3Y)   
1043. switzerlandStock_ExRet3Y = pd.DataFrame(switzerlandStock_ExRet3Y)

   
1044. ukStock_ExRet3Y = pd.DataFrame(ukStock_ExRet3Y)   
1045. usStock_ExRet3Y = pd.DataFrame(usStock_ExRet3Y)   
1046. In [248]:   
1047.    
1048. austriaStock_ExRet3Y.columns = ['austriaStock_ExRet3Y']   
1049. belgiumStock_ExRet3Y.columns = ['belgiumStock_ExRet3Y']   
1050. canadaStock_ExRet3Y.columns = ['canadaStock_ExRet3Y']   
1051. chechrepublicStock_ExRet3Y.columns = ['checkrepublicStock_ExRet3Y

']   
1052. chileStock_ExRet3Y.columns = ['chileStock_ExRet3Y']   
1053. chinaStock_ExRet3Y.columns = ['chinaStock_ExRet3Y']   
1054. denmarkStock_ExRet3Y.columns = ['denmarkStock_ExRet3Y']   
1055. franceStock_ExRet3Y.columns = ['franceStock_ExRet3Y']   
1056. germanyStock_ExRet3Y.columns = ['germanyStock_ExRet3Y']   
1057. hungaryStock_ExRet3Y.columns = ['hungaryStock_ExRet3Y']   
1058. isrealStock_ExRet3Y.columns = ['isrealStock_ExRet3Y']   
1059. italyStock_ExRet3Y.columns = ['italyStock_ExRet3Y']   
1060. japanStock_ExRet3Y.columns = ['japanStock_ExRet3Y']   
1061. mexicoStock_ExRet3Y.columns = ['mexicoStock_ExRet3Y']   
1062. netherlandStock_ExRet3Y.columns = ['netherlandStock_ExRet3Y']   
1063. polandStock_ExRet3Y.columns = ['polandStock_ExRet3Y']   
1064. portugalStock_ExRet3Y.columns = ['portugalStock_ExRet3Y']   
1065. russiaStock_ExRet3Y.columns = ['russiaStock_ExRet3Y']   
1066. southafricaStock_ExRet3Y.columns = ['aouthafricaStock_ExRet3Y']   
1067. southkoreaStock_ExRet3Y.columns = ['southkoreaStock_ExRet3Y']   
1068. spainStock_ExRet3Y.columns = ['spainStock_ExRet3Y']   
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1069. swedenStock_ExRet3Y.columns = ['swedenStock_ExRet3Y']   
1070. switzerlandStock_ExRet3Y.columns = ['switzerlandStock_ExRet3Y']   
1071. ukStock_ExRet3Y.columns = ['ukStock_ExRet3Y']   
1072. usStock_ExRet3Y.columns = ['usStock_ExRet3Y']   
1073. Return decomposition 3Y horizon   
1074. In [249]:   
1075.    
1076. austriaStock_CG3Y = (np.log((austria['austriaStock_Index'])/(aust

ria['austriaStock_Index']).shift())).rolling(window=36).mean()*36    
1077. belgiumStock_CG3Y = (np.log((belgium['belgiumStock_Index'])/(belg

ium['belgiumStock_Index']).shift())).rolling(window=36).mean()*36    
1078. canadaStock_CG3Y = (np.log((canada['canadaStock_Index'])/(canada[

'canadaStock_Index']).shift())).rolling(window=36).mean()*36   
1079. chechrepublicStock_CG3Y = (np.log((chechrepublic['chechrepublicSt

ock_Index'])/(chechrepublic['chechrepublicStock_Index']).shift())).rolli
ng(window=36).mean()*36    

1080. chileStock_CG3Y = (np.log((chile['chileStock_Index'])/(chile['chi
leStock_Index']).shift())).rolling(window=36).mean()*36    

1081. chinaStock_CG3Y = (np.log((china['chinaStock_Index'])/(china['chi
naStock_Index']).shift())).rolling(window=36).mean()*36    

1082. denmarkStock_CG3Y = (np.log((denmark['denmarkStock_Index'])/(denm
ark['denmarkStock_Index']).shift())).rolling(window=36).mean()*36    

1083. franceStock_CG3Y = (np.log((france['franceStock_Index'])/(france[
'franceStock_Index']).shift())).rolling(window=36).mean()*36    

1084. germanyStock_CG3Y = (np.log((germany['germanyStock_Index'])/(germ
any['germanyStock_Index']).shift())).rolling(window=36).mean()*36    

1085. hungaryStock_CG3Y = (np.log((hungary['hungaryStock_Index'])/(hung
ary['hungaryStock_Index']).shift())).rolling(window=36).mean()*36     

1086. israelStock_CG3Y = (np.log((israel['israelStock_Index'])/(israel[
'israelStock_Index']).shift())).rolling(window=36).mean()*36    

1087. italyStock_CG3Y = (np.log((italy['italyStock_Index'])/(italy['ita
lyStock_Index']).shift())).rolling(window=36).mean()*36    

1088. japanStock_CG3Y = (np.log((japan['japanStock_Index'])/(japan['jap
anStock_Index']).shift())).rolling(window=36).mean()*36    

1089. mexicoStock_CG3Y = (np.log((mexico['mexicoStock_Index'])/(mexico[
'mexicoStock_Index']).shift())).rolling(window=36).mean()*36    

1090. netherlandStock_CG3Y = (np.log((netherland['netherlandStock_Index
'])/(netherland['netherlandStock_Index']).shift())).rolling(window=36).m
ean()*36    

1091. polandStock_CG3Y = (np.log((poland['polandStock_Index'])/(poland[
'polandStock_Index']).shift())).rolling(window=36).mean()*36    

1092. portugalStock_CG3Y = (np.log((portugal['portugalStock_Index'])/(p
ortugal['portugalStock_Index']).shift())).rolling(window=36).mean()*36  
  

1093. russiaStock_CG3Y = (np.log((russia['russiaStock_Index'])/(russia[
'russiaStock_Index']).shift())).rolling(window=36).mean()*36    

1094. southafricaStock_CG3Y = (np.log((southafrica['southafricaStock_In
dex'])/(southafrica['southafricaStock_Index']).shift())).rolling(window=
36).mean()*36    

1095. southkoreaStock_CG3Y = (np.log((southkorea['southkoreaStock_Index
'])/(southkorea['southkoreaStock_Index']).shift())).rolling(window=36).m
ean()*36    

1096. spainStock_CG3Y = (np.log((spain['spainStock_Index'])/(spain['spa
inStock_Index']).shift())).rolling(window=36).mean()*36    

1097. swedenStock_CG3Y = (np.log((sweden['swedenStock_Index'])/(sweden[
'swedenStock_Index']).shift())).rolling(window=36).mean()*36    

1098. switzerlandStock_CG3Y = (np.log((switzerland['switzerlandStock_In
dex'])/(switzerland['switzerlandStock_Index']).shift())).rolling(window=
36).mean()*36   

1099. ukStock_CG3Y = (np.log((uk['ukStock_Index'])/(uk['ukStock_Index']
).shift())).rolling(window=36).mean()*36    

1100. usStock_CG3Y = (np.log((us['usStock_Index'])/(us['usStock_Index']
).shift())).rolling(window=36).mean()*36    

1101. Portfolio Allocation with univariate TS models   
1102. In [250]:   
1103.    
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1104. Ret3y = pd.concat([norway_RF_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1105.                    austriaStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1106.                    belgiumStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1107.                    canadaStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1108.                    chechrepublicStock_Ret3y.loc['2008-07-
01':'2018-04-01'],   

1109.                    chileStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1110.                    chinaStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1111.                    denmarkStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1112.                    franceStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1113.                    germanyStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1114.                    hungaryStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1115.                    israelStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1116.                    italyStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1117.                    japanStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1118.                    mexicoStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1119.                    netherlandStock_Ret3y.loc['2008-07-01':'2018-
04-01'],   

1120.                    polandStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1121.                    portugalStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1122.                    russiaStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1123.                    southafricaStock_Ret3y.loc['2008-07-01':'2018-
04-01'],   

1124.                    southkoreaStock_Ret3y.loc['2008-07-01':'2018-
04-01'],   

1125.                    spainStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1126.                    swedenStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1127.                    switzerlandStock_Ret3y.loc['2008-07-01':'2018-
04-01'],   

1128.                    ukStock_Ret3y.loc['2008-07-01':'2018-04-
01'],   

1129.                    usStock_Ret3y.loc['2008-07-01':'2018-04-
01']], axis=1)   

1130. In [251]:   
1131.    
1132. Ret = pd.concat([norwayRiskFree.loc['2008-07-01':'2018-04-01'],   
1133.                  austria['austriaStock_Ret'].loc['2008-07-

01':'2018-04-01'],   
1134.                  belgium['belgiumStock_Ret'].loc['2008-07-

01':'2018-04-01'],   
1135.                  canada['canadaStock_Ret'].loc['2008-07-

01':'2018-04-01'],   
1136.                  chechrepublic['chechrepublicStock_Ret'].loc['200

8-07-01':'2018-04-01'],   
1137.                  chile['chileStock_Ret'].loc['2008-07-01':'2018-

04-01'],   
1138.                  china['chinaStock_Ret'].loc['2008-07-01':'2018-

04-01'],   
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1139.                  denmark['denmarkStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1140.                  france['franceStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1141.                  germany['germanyStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1142.                  hungary['hungaryStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1143.                  israel['israelStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1144.                  italy['italyStock_Ret'].loc['2008-07-01':'2018-
04-01'],   

1145.                  japan['japanStock_Ret'].loc['2008-07-01':'2018-
04-01'],   

1146.                  mexico['mexicoStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1147.                  netherland['netherlandStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1148.                  poland['polandStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1149.                  portugal['portugalStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1150.                  russia['russiaStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1151.                  southafrica['southafricaStock_Ret'].loc['2008-
07-01':'2018-04-01'],   

1152.                  southkorea['southkoreaStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1153.                  spain['spainStock_Ret'].loc['2008-07-01':'2018-
04-01'],   

1154.                  sweden['swedenStock_Ret'].loc['2008-07-
01':'2018-04-01'],   

1155.                  switzerland['switzerlandStock_Ret'].loc['2008-
07-01':'2018-04-01'],   

1156.                  uk['ukStock_Ret'].loc['2008-07-01':'2018-04-
01'],   

1157.                  us['usStock_Ret'].loc['2008-07-01':'2018-04-
01']],axis=1)   

1158. In [252]:   
1159.    
1160. ExRet = pd.concat([austria['austriaStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1161.                    belgium['belgiumStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1162.                    canada['canadaStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1163.                    chechrepublic['chechrepublicStock_ExRet'].loc[

'2008-07-01':'2018-04-01'],   
1164.                    chile['chileStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1165.                    china['chinaStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1166.                    denmark['denmarkStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1167.                    france['franceStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1168.                    germany['germanyStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1169.                    hungary['hungaryStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1170.                    israel['israelStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1171.                    italy['italyStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
1172.                    japan['japanStock_ExRet'].loc['2008-07-

01':'2018-04-01'],   
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1173.                    mexico['mexicoStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1174.                    netherland['netherlandStock_ExRet'].loc['2008-
07-01':'2018-04-01'],   

1175.                    poland['polandStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1176.                    portugal['portugalStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1177.                    russia['russiaStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1178.                    southafrica['southafricaStock_ExRet'].loc['200
8-07-01':'2018-04-01'],   

1179.                    southkorea['southkoreaStock_ExRet'].loc['2008-
07-01':'2018-04-01'],   

1180.                    spain['spainStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1181.                    sweden['swedenStock_ExRet'].loc['2008-07-
01':'2018-04-01'],   

1182.                    switzerland['switzerlandStock_ExRet'].loc['200
8-07-01':'2018-04-01'],   

1183.                    uk['ukStock_ExRet'].loc['2008-07-01':'2018-04-
01'],   

1184.                    us['usStock_ExRet'].loc['2008-07-01':'2018-04-
01']],axis=1)   

1185. In [253]:   
1186.    
1187. ExRet3y = pd.concat([austriaStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1188.                      belgiumStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1189.                      canadaStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1190.                      chechrepublicStock_ExRet3Y.loc['2011-07-

01':'2018-04-01'],   
1191.                      chileStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1192.                      chinaStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1193.                      denmarkStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1194.                      franceStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1195.                      germanyStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1196.                      hungaryStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1197.                      isrealStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1198.                      italyStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1199.                      japanStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1200.                      mexicoStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1201.                      netherlandStock_ExRet3Y.loc['2011-07-

01':'2018-04-01'],   
1202.                      polandStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1203.                      portugalStock_ExRet3Y.loc['2011-07-

01':'2018-04-01'],   
1204.                      russiaStock_ExRet3Y.loc['2011-07-01':'2018-

04-01'],   
1205.                      southafricaStock_ExRet3Y.loc['2011-07-

01':'2018-04-01'],   
1206.                      southkoreaStock_ExRet3Y.loc['2011-07-

01':'2018-04-01'],   
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1207.                      spainStock_ExRet3Y.loc['2011-07-01':'2018-
04-01'],   

1208.                      swedenStock_ExRet3Y.loc['2011-07-01':'2018-
04-01'],   

1209.                      switzerlandStock_ExRet3Y.loc['2011-07-
01':'2018-04-01'],   

1210.                      ukStock_ExRet3Y.loc['2011-07-01':'2018-04-
01'],   

1211.                      usStock_ExRet3Y.loc['2011-07-01':'2018-04-
01']] ,axis=1)   

1212. In [254]:   
1213.    
1214. #Compute the cumulative sum of excess returns   
1215. TVERportfolio = np.log(ExRet3y).diff().diff().dropna()*12   
1216. TVERportfolio = pd.DataFrame(TVERportfolio)   
1217. In [ ]:   
1218.    
1219. plt.figure(figsize=(20, 10))   
1220. plt.plot(TVERportfolio, alpha=20);   
1221. plt.xlabel('date')   
1222. plt.ylabel('returns')   
1223. In [ ]:   
1224.    
1225. TVERportfolio.skew()   
1226. In [ ]:   
1227.    
1228. TVERportfolio.kurtosis()   
1229. In [258]:   
1230.    
1231. ExRreturns_annual = TVERportfolio.mean()*-100   
1232. ExRcov_annual = TVERportfolio.cov()*100   
1233. In [259]:   
1234.    
1235. # empty lists to store returns, volatility and weights of imigina

ry portfolios   
1236. EXport_returns = []   
1237. EXport_volatility = []   
1238. EXsharpe_ratio = []   
1239. EXstock_weights = []   
1240. In [260]:   
1241.    
1242. # set the number of combinations for imaginary portfolios   
1243. ExRnum_assets = 25   
1244. ExRnum_portfolios = 50000   
1245. In [261]:   
1246.    
1247. #set random seed for reproduction's sake   
1248. np.random.seed(101)   
1249.    
1250. # populate the empty lists with each portfolios returns,risk and 

weights   
1251. for single_portfolio in range(ExRnum_portfolios):   
1252.     weights = np.random.random(ExRnum_assets)   
1253.     weights /= np.sum(weights)   
1254.     returns = np.dot(weights, ExRreturns_annual)   
1255.     volatility = np.sqrt(np.dot(weights.T, np.dot(ExRcov_annual, 

weights)))   
1256.     sharpe = returns/ volatility   
1257.     EXsharpe_ratio.append(sharpe)   
1258.     EXport_returns.append(returns)   
1259.     EXport_volatility.append(volatility)   
1260.     EXstock_weights.append(weights)   
1261. In [262]:   
1262.    
1263. # a dictionary for Returns and Risk values of each portfolio   
1264. portfolio = {'Returns': EXport_returns,   
1265.              'Volatility': EXport_volatility,   
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1266.              'Sharpe Ratio': EXsharpe_ratio}   
1267.    
1268. # extend original dictionary to accomodate each ticker and weight

 in the portfolio   
1269. for counter,symbol in enumerate(TVERportfolio):   
1270.     portfolio[symbol+' Weight'] = [Weight[counter] for Weight in 

EXstock_weights]   
1271. In [263]:   
1272.    
1273. # make a nice dataframe of the extended dictionary   
1274. df2 = pd.DataFrame(portfolio)   
1275. In [264]:   
1276.    
1277. # get better labels for desired arrangement of columns   
1278. column_order = ['Returns', 'Volatility', 'Sharpe Ratio'] + [stock

+' Weight' for stock in TVERportfolio]   
1279. In [ ]:   
1280.    
1281. # reorder dataframe columns   
1282. df2 = df2[column_order]   
1283. df2.head()   
1284. In [ ]:   
1285.    
1286. # reorder dataframe columns   
1287. df2 = df2[column_order]   
1288. df2.head()   
1289. In [267]:   
1290.    
1291. # find min Volatility & max sharpe values in the dataframe (df)   
1292. min_volatility2 = df2['Volatility'].min()   
1293. max_sharpe2 = df2['Sharpe Ratio'].max()   
1294. In [268]:   
1295.    
1296. # use the min, max values to locate and create the two special po

rtfolios   
1297. sharpe_portfolio2 = df2.loc[df2['Sharpe Ratio'] == max_sharpe2]   
1298. min_variance_port2 = df2.loc[df2['Volatility'] == min_volatility2

]   
1299. In [ ]:   
1300.    
1301. # plot frontier, max sharpe & min Volatility values with a scatte

rplot   
1302. plt.style.use('seaborn-dark')   
1303. df2.plot.scatter(x='Volatility', y='Returns', c='Sharpe Ratio',   
1304.                 cmap='RdYlGn', edgecolors='black', figsize=(10, 8

), grid=True)   
1305. plt.scatter(x=sharpe_portfolio2['Volatility'], y=sharpe_portfolio

2['Returns'], c='red', marker='D', s=200)   
1306. plt.scatter(x=min_variance_port2['Volatility'], y=min_variance_po

rt2['Returns'], c='blue', marker='D', s=200 )   
1307. plt.xlabel('Volatility (Std. Deviation)')   
1308. plt.ylabel('Expected Returns')   
1309. plt.title('Efficient Frontier')   
1310. plt.show()   
1311. In [ ]:   
1312.    
1313. # print the details of the 2 special portfolios   
1314. print(min_variance_port2.T)   
1315. In [ ]:   
1316.    
1317. print(sharpe_portfolio2.T)   
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