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6. Conclusion 

 

Throughout this thesis, we examine the performance of 1704 actively managed 

U.S. open-end, domestic equity mutual funds in the period of January 1995 to 

December 2017. In line with previous research, we do not find evidence that fund 

managers in general have sufficient skill to cover their costs. However, when we 

add back the management fee of each fund, the results reveal that fund managers 

on average are able to beat a passive benchmark portfolio. 

 

We use a bootstrap procedure to distinguish skill from luck. When t(α) is 

estimated on net returns, the bootstrap simulations suggest that a few active fund 

managers have sufficient skill to cover their costs, while the majority of active 

fund managers lack skill. This is consistent with Kosowski et al. (2006) and 

Cuthbertson et al. (2008), Berk and Van Binsbergen (2015) and contrary to Fama 

and French (2010). When t(α) is estimated on gross returns, the bootstrap 

simulations suggest that the majority of active fund managers have sufficient skill 

to beat a passive benchmark portfolio, while a few active fund managers lack 

skill. This is consistent with Berk and Green (2004). 

 

Under the normality assumption that true alpha is symmetric around 0 with 

standard deviation σ, we find that the annual standard deviation of true α is about 

1.25% per year for the right tail and about 0.75% for the left tail. In addition, σ is 

unlikely to be less than 0.25% or more than 1.75%. The right tail estimate is 

consistent with Fama and French (2010), while the left tail estimate is in contrast 

to their study. 
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6.1 Limitations 

We have made our best efforts to minimize limitations, but there are certain 

aspects of the thesis that needs to be addressed. First, our sample of fund returns is 

subject to survivorship and incubation bias, which is likely to result in an 

overestimation of historical performance. The second concern is that we were 

unable to obtain consistent historical data on assets under management (AUM). 

Thus, we were not able to construct a value-weighted portfolio, which is regarded 

as more accurate than an equal-weighted portfolio. The third and final limitation 

is that management fees were not available to us in time series in the Bloomberg 

database, which prevented us from constructing accurate gross returns.  
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Appendix A - Figures 

 

 

 

 

Figure A1: Total net assets in the U.S. mutual fund industry 

 

This figure shows the growth of total net assets in the U.S. mutual fund industry 

from 1995 to 2017, which corresponds to our sample period. This data is retrieved 

from the Investment Company Fact Book (2018). 
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Figure A2: Total number of active mutual funds 

 

This figure shows the total number of active mutual funds included in our dataset. 
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Appendix B - Technical details of the bootstrap procedure 

 

In the following paragraphs, we provide technical details of the bootstrap 

procedure used in this thesis. This procedure follows the methodology of Fama 

and French (2010). We have chosen MATLAB as our programming tool. 

 

The first step is to create matrices of dependent and independent variables in 

MATLAB. The benchmark model for the bootstrap procedure is the Fama-French 

three-factor model. We import monthly excess net and gross fund returns, excess 

market returns, size returns and value-growth returns from Excel to MATLAB. 

The time period is from January 1995 to December 2017. We create a matrix of 

excess net fund returns and a matrix of excess gross fund returns, which are the 

dependent variables. We create two matrices of dependent variables, because we 

run bootstrap simulations on both net and gross returns. We also create a matrix of 

independent variables, consisting of the excess market returns, size returns and 

value-growth returns. 

 

The next step is to estimate benchmark regressions for each fund. We calculate 

the lag selection parameter for the standard Newey-West HAC estimate (Andrews 

and Monahan, 1992) as follows: 

𝑚𝑎𝑥𝑙𝑎𝑔 = 𝑓𝑙𝑜𝑜𝑟(4 ∗ (
𝑇

100
)

2
9

) 

 

where 𝑇 is the number of observations for each fund. We estimate the standard 

Newey-West OLS coefficient covariance using the command ‘hac’ by setting the 

bandwidth to ‘maxLag+1’. We save coefficient estimates and corresponding 

standard errors. We compute t-statistics for each coefficient estimate. We sort the 

t(α) estimates and convert them into selected percentiles. In addition, standard 

error of residuals for each fund are calculated. 

 

To setup the simulation runs, we create a matrix of uniformly distributed 

pseudorandom integers using the ‘randi’ command. From this uniform 

distribution, we draw random vectors of time indices. To perform 10,000 

bootstrap simulations, we need 10,000 vectors of random integers. The simulation 
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process requires a lot of memory and we were unable to perform all the 10,000 

bootstrap simulations at once. A solution to this problem is to run 2,000 

simulation runs five times rather than 10,000 at once. To control the random 

number generation, we alter ‘rng’ from 0 to 4. We concatenate the five simulation 

runs along the third dimension using the ‘cat’ command. 

 

Furthermore, we construct new time series of simulated factor returns and fund 

returns with α set to zero. We create a new matrix of original coefficients, leaving 

out the intercept (α). The vectors of time indices pick corresponding numbers of 

original factor returns and residuals, so that the order of the time series is changed 

for each simulation run. Simulated fund returns are then calculated by multiplying 

the simulated factor returns with the new coefficient matrix and adding residuals. 

Thus, we have now created a matrix of simulated fund returns and a matrix of 

simulated factor returns. 

 

We estimate regressions on the simulated time series in the same manner as for 

the actual returns. The t(α) estimates are sorted for each simulation run and 

converted into selected percentiles. Then we calculate the average of the t(α) 

estimates over all the simulation runs. Thus, we can compare the simulated t(α) 

estimates to the actual t(α) estimates. The results are shown in a table, where we 

display actual and simulated t(α) estimates at different percentiles. In addition, the 

table shows the percentage of simulation runs that produce lower values of t(α) at 

a given percentile than those from the actual fund returns. We also display the 

results in cumulative distribution functions (CDF), Kernel density functions and 

histograms. 

 

Furthermore, we perform the exact same process with the only modification being 

that alpha is injected into the gross fund returns. The series of alpha is scaled for 

each fund using the original standard error of residuals to adjust for different 

levels of diversification. Similar to Fama and French (2010), we apply nine 

different values of annual standard deviation of alpha, ranging from 0.0% to 2.0% 

in steps of 0.25%. We display actual and simulated t(α) estimates at different 

percentiles in a table, as well as the percentage of simulation runs that produce 

lower values of t(α) at a given percentile than those from the actual fund returns. 
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