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1 Abstract 
 

The concept of using alpha and beta to gauge the validity of an investment has 

been used extensively in both an academic as well as a professional setting. 

Despite its extensive use, the method of obtaining the alphas and betas estimates 

is deceptively simple and makes a number of unrealistic assumptions. This report 

aims to investigate the merits of using a Kalman Filter in equity beta and alpha 

estimation and thereby circumvent some of the issues of the more traditional 

approach. Final results show that the error improvements are non-existent or 

marginal at best. However, while the merits of the Kalman filtering technique is 

lackluster in this report, it makes a strong case further analysis into the area is 

warranted.  
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2 Introduction and Motivation 

2.1 Beta and the Capital Asset Pricing Model 
 

The pioneering work of Dr. Harry Max Markowitz in modern portfolio theory 

started a whole new area of financial innovation. Building on his work, the 

Capital Asset Pricing Model (CAPM) was developed in the mid 60’s by W. F. 

Sharp, and has since become one of the most iconic models in finance.  Relatively 

simple in nature, the theory elegantly separates investment risk into two key 

components: systematic and un-systematic risk. The systematic risk, often labeled 

as “market risk”, measures the stocks’ correlation to the market. Unsystematic risk 

is firm specific and, in contrast to systematic risk, is deemed diversifiable as it can 

be mitigated by combining multiple assets. Since unsystematic risk can be 

diversified away, it is not expected to yield any return. CAPM can be summarized 

with the following formula (Francis, Dongheol, 2013): 

𝑟𝑖 = 𝑟𝑓 + 𝛽𝑖(𝑟𝑚 − 𝑟𝑓) (Equation 1) 

Where:  

- ri = Return of stock i 

- rf = Risk free return 

- rm = Return of the market 

- βi = Beta of stock i 

It is the β in equation 1 that is of particular interest in this report. β represents the 

systematic risk of the stock and is traditionally calculated using the following 

formula. 

𝛽𝑖 =
𝜎i,M

𝜎𝑀
2   (Equation 2) 

Where: 

- σi,m= Covariance between asset i and the market 

- 𝜎𝑀
2  = Variance of the market portfolio return 

Despite its almost archaic status, the concept of market risk, represented by beta, 

is still extensively used in both an industry and academic setting. Equity Betas are 

at the center of financial theory and are embedded in famous models such as the 

Market Model and Modern Portfolio Theory (MPT) ; models that are extensively 

used as investment allocation tools.  

  

Their use does not end with asset allocation strategies however; Betas are also 

used in the calculation of the Weighted Average Cost of Capital (WACC) within 

risk management and corporate finance.  Corporations use WACC as a discount 
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factor for potential investment projects. With these applications and others, the 

importance of Beta in the financial markets cannot be understated (Fama, French 

1997). 

2.2 Shortcomings of Beta and the Capital Asset Pricing Model 
 

The market model, similar in nature to the CAPM, can be summarized with the 

following equation:   

𝑟𝑖 = 𝛼𝑖 + 𝛽𝑖𝑟𝑚 + 𝜀𝑖 (Equation 3) 

Where:  

- αi = alpha of stock i 

- εi = non-systematic risk 

Of particular interests is the α term of the equation, which represents the return of 

stock i not explained by its correlation to the market. For CAPM to hold we 

combine the two equations and see that: 

𝛼𝑖 = 𝛽𝑖(1 − 𝑟𝑓) (Equation 4) 

However, this equation often does not hold in observed data and many papers 

have emerged that argue the traditional market Beta fails to fully explain expected 

stock returns and variance. Many reasons have been given for this, such as (but 

not limited to): not all investors having equal access to information and equal 

costs of capital, the model not taking into account taxes and transaction costs and 

the model not taking the risk of illiquidity into. 

 

Alternative models have been proposed to explain the shortcomings of CAPM, 

with some gaining widespread academic merit. The famous Fama-French 3-factor 

model postulates that two additional factors are necessary to fully explain 

expected stock returns: the outperformance of small versus big companies, and the 

outperformance of high book /market value versus small book/market value 

companies. However, each of these models has their own shortcomings. In the 

case of the Fama-French 3-factor model it is argued that it is empirically inspired 

and lacks strong theoretical foundations (Fama and French 1992). 

 

The strong academic evidence for the existence of alpha (above market returns) 

has spearheaded the concept of value investing, where fund managers would use 

their alleged skills to generate above market returns for their investors. Adherents 

to the efficient market hypothesis cast doubt on the claims of these fund 
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managers, and empirical analysis of these funds’ performance seems to underline 

this point. 

2.2.1 Dynamic Beta 
 

In this paper we make the case for a more fundamental reason behind the 

shortcomings of the traditional capital asset pricing model: a dynamic Beta. 

Indeed, the traditional formula for Beta (represented by equation 2) assumes 

stationarity. However, there is no indication that Beta should not vary over time, 

and intuition would tell us otherwise. Many factors affecting a stock’s correlation 

to the market change over time, such as leverage levels, changing market 

conditions and changes to the operations of a company.   

 

Numerous studies have emerged claiming that a time-invariant beta is insufficient 

to explain the returns and volatility of stocks. As an example, Brook, Faff and Lee 

(1992), found that there is strong evidence of a dynamic Beta in the Australian 

equity market and found that a random-coefficient model best describes the 

variability of Beta. 
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3 Literature Review 
 

Despite its sophistication and popularity in the engineering world, the difficulty of 

describing econometric concepts as a state-space representation means that the 

Kalman filter is relatively uncommon in financial academic literature. However, 

the latest advances in financial theory have allowed for the Kalman filter to be 

explored further. As an example, Duan and Simonato (1999) build on the model of 

Vasicek (1977) and Dothan (1978) and modeled the interest rate term structure as 

a diffusion process. This allows for the term structure to be represented as a state-

space model and for the Kalman filter to be applied with some moderate success.  

 

Kliestik and Spuchlakova (2016) provide the theoretical framework for using a 

Kalman filter in estimating Beta coefficients and conclude that the filter is optimal 

for a linear model subject.  This theory is explored further in Renzi-Ricci (2016) 

where a dataset is artificially generated and consists of 1000 noisy data points, 

with a sudden jump in Beta value from 3 to 6 halfway through the data. An OLS 

regression on the entire data series, a rolling window OLS regression and a 

Kalman filter model are all used to explore their ability to accurately predict the 

sudden jump and its corresponding Beta value. The report demonstrates that the 

Kalman filter is superior to all other models in accurately finding the correct Beta 

and is surprisingly accurate despite the noisy data.   

 

The Kalman filter has also demonstrated its merits in empirical data. Choudhry 

and Wu (2009) compare the Kalman filter to three different Generalised 

Autoregressive Conditional Heteroscedasticity (GARCH) models for Beta 

estimation of UK firms. Measures of forecast errors overwhelmingly support the 

Kalman Fitler approach. A similar experiment is proposed in Lie, Brooks and Faff 

(2000) where the GARCH and Kalman filter model are compared for Australian 

financial companies. The conclusions drawn are similar to the UK company case, 

with the Kalman filter providing the most accurate forecast of equity Betas.  

 

Das and Ghoshal (2010) applies the filter to empirical data from the Indian 

security market and uses the adaptive Kalman filter in order to estimate the 

measurement noise covariances which are now assumed to be dynamic instead of 

static and known beforehand. A RMSE analysis of the results strongly supports 

the merits of the adaptive Kalman filter in accurately predicting equity Betas. The 
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results had the strongest statistical significance at a window size of 300 time steps 

for measurement noise covariance estimations.  

4 Theory 

4.1 The Kalman Filter Model 
 

In 1960 R.E. Kalman published a paper describing a recursive solution of the 

discrete-data linear filtering problem, later name the Kalman filter. The theory will 

be briefly explained in this section.  

 

We assume the random process to be estimated can be modeled in the following 

form (Brown, Hwang 1997): 

𝑥𝑘+1 = 𝜙𝑘𝑥𝑘 +  𝑤𝑘 (Equation 5) 

Where:  

- xk = (n x 1) process state vector at time k 

- Φk = (n x n) state transition matrix 

- wk = (n x 1) error term (assumed to be white noise with mean 0 and non-

zero  standard deviation) 

The measurements of the process are assumed to occur at discrete points in time 

in accordance with the following formula: 

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (Equation 6) 

Where:  

- zk = (m x 1) measurement vector at time k 

- Hk = (m x n) matrix giving the ideal (noiseless) relation between the 

measurement and the state vector at time k  

- vk = ( m x 1) error term (assumed to be white noise with mean 0 and non-

zero standard deviation) 

Both error terms (wk and vk) are assumed to have no autocorrelation and zero 

cross-correlation. As such: 
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𝐸[𝑤𝑘𝑤𝑖
𝑇] =  {

𝑄𝑘, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘 

   (Equation 7) 

 

𝐸[𝑣𝑘𝑣𝑖
𝑇] =  {

𝑅𝑘, 𝑖 = 𝑘
0, 𝑖 ≠ 𝑘 

   (Equation 8) 

𝐸[𝑤𝑘𝑣𝑖
𝑇] = 0, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 𝑎𝑛𝑑 𝑖   (Equation 9) 

 

We then assume we have an initial estimate about the process at some time k, 

which is based on all our knowledge about the process prior to k. This “a priori” 

estimate is denoted as �̂�𝑘
−. We then define the estimation error to be: 

𝑒𝑘
− = 𝑥𝑘 − �̂�𝑘

− 

With the associated covariance matrix being: 

𝑃𝑘
− = 𝐸(𝑒𝑘

−𝑒𝑘
− 𝑇)     (Equation 10) 

Having a prior estimate of our state vector, we now use the noisy measurement to 

improve the a priori estimate, generating an “a posteriori” estimate. In order to 

find this new estimate we use a linear combination of the data and the a priori 

estimate: 

�̂�𝑘 =  �̂�𝑘
− +  𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘

−)    (Equation 11) 

Where:  

- Kk is = The Kalman gain at T=k  

The Kalman gain is optimized such that the resulting distribution has a minimized 

mean-square error. As such, we first form an expression for the error covariance 

matrix associated with the updated (a posteriori) estimate. 

𝑃𝑘 = 𝐸[𝑒𝑘𝑒𝑘
𝑇] = 𝐸[(𝑥𝑘 − �̂�𝑘)(𝑥𝑘 − �̂�𝑘)𝑇] (Equation 12) 

We then substitute equations 6 and 11 into equation 12, rearrange, and write the 

equation out in matrix form, yielding: 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−(𝐼 − 𝐾𝑘𝐻𝑘)𝑇 + 𝐾𝑘𝑅𝑘𝐾𝑘

𝑇 (Equation 13) 

We then find Kk that minimizes the above expression by differentiating equation 

13 and setting the result to 0, yielding: 

𝐾𝑘 = 𝑃𝑘
−𝐻𝑘

𝑇(𝐻𝑘𝑃𝑘
−𝐻𝑘

𝑇 + 𝑅𝑘)−1  (Equation 14) 

 

Inserting equation 14 equation 13 and rearranging yields: 

𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘
−    (Equation 15) 
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Figure 1 Kalman Filter Loop  

 

The theory described above demonstrates how the Kalman filter can solve some 

of the issues raised in section 2.2. The feedback loop of the Kalman filter (figure 

1) demonstrates the dynamic nature of the model. After updating the a priori 

distribution to the a posteriori distribution upon receiving a measurement, the a 

posteriori distribution becomes the new a priori distribution. We can then 

continue updating the distribution when new measurements become available. 

The decision to opt for a Kalman filter as opposed to other filtering techniques 

such as the Wiener filter (which also allows for a dynamic Beta and minimizes the 

mean-square error of the distribution) is due to the fact that the Kalman filter is 

recursive. This saves much computational power and allows us to potentially use a 

much larger dataset. 
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5 Methodology 

5.1 The Data 
 

This report will focus on calculating the dynamic beta values of the 20 largest 

companies on the S&P500. The S&P500 was chosen over other major 

benchmarks such as the FTSE250 and EUROSTOXX 50 due to the homogeneity 

of the US market. Other major benchmarks feature companies headquartered in 

different parts of the world and therefore introduce unnecessary exogenous factors 

to the model. The relevant companies are listed in Table 1.  

 

 

 

Table 1 List of companies used in the dynamic beta analysis 

 

 

The share price data itself will be extracted using Bloomberg and exported as a 

CSV. Just like the S&P500, dividends are assumed to be reinvested 

instantaneously. All the data will be taken from 03-Jan-2000 onwards. Returns 

will then be calculated predominantly on a monthly basis and a time series of each 

asset will be constructed. A smaller subsection of this report will use daily and 

weekly return data.   

 

The Alphas and Betas of each stock will then be calculated at each point along the 

time series using both the traditional Market Model, as well as the newly 

introduced Kalman Filter model. The predictive capacity of each alpha and Beta 

of then be measured using Root Mean Square Errors (RMSE), Mean Absolute 

Errors (MAE) and Mean Errors (ME) . 

 

 

 

Rank Company Weight Rank Company Weight

1 Apple Inc. 3.81 11 Bank of America Corporation 1.26

2 Microsoft Corporation 2.87 12 Wells Fargo & Company 1.18

3 Amazon.com Inc. 2.16 13 Chevron Corporation 1.06

4 Facebook Inc. Class A 1.89 14 Procter & Gamble Company 0.97

5 Berkshire Hathaway Inc. Class B 1.68 15 Home Depot Inc. 0.96

6 Johnson & Johnson 1.65 16 AT&T Inc. 0.95

7 JPMorgan Chase & Co. 1.63 17 UnitedHealth Group Incorporated 0.92

8 Exxon Mobil Corporation 1.56 18 Pfizer Inc. 0.92

9 Alphabet Inc. Class C 1.41 19 Visa Inc. Class A 0.92

10 Alphabet Inc. Class A 1.40 20 Verizon Communications Inc. 0.90
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5.2 Calculating the Alphas, Betas and Errors 

5.2.1 The Market Model 
 

The default model to which our proposed Kalman Filtering model will be 

compared is the traditional Market Model. Given a time series of returns of size n, 

the beta of stock i is calculated using the following formula: 

𝛽𝑖 =
𝐶𝑂𝑉𝐴𝑅(𝑅𝑖,𝑅𝑚)

𝑉𝐴𝑅(𝑅𝑚)
=  

∑ (𝑟𝑖,𝑡−𝐸(𝑅𝑖))∗(𝑟𝑚,𝑡−𝐸(𝑅𝑚))𝑛
𝑡=0

∑ (𝑟𝑚,𝑡−𝐸(𝑅𝑚))
2

𝑛
𝑡=0

  (Equation 16) 

Where:  

- E(Ri) = Expected return of asset i 

We can then use beta to calculate alpha for a given time series of size n: 

𝛼𝑖 =
∑ 𝑟𝑖,𝑡−∑ 𝛽𝑖∗𝑟𝑚,𝑡

𝑛
𝑡=0

𝑛
𝑡=0

𝑛
   (Equation 17) 

5.2.2 The Kalman Filtering Model 

5.2.2.1 The measurement and state transition equations 
 

As explained in the theory section, the basis for a Kalman Filter model is a state 

transition equation and a measurement equation. The measurement equation:  

𝑧𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘  

 

Can be represented using the Market Model:  

𝑟𝑖,𝑡 = 𝛼𝑖,𝑡 + 𝛽𝑖,𝑡 ∗ 𝑟𝑚,𝑡 + 𝜀𝑖 (Equation 18) 

Where:  

- 𝑧𝑘 = 𝑟𝑖,𝑡 

- 𝐻𝑘 = (1 𝑟𝑚,𝑡) 

- 𝑥𝑘 =  (
𝛼𝑖,𝑡

𝛽𝑖,𝑡
) 

- 𝑣𝑘 = 𝜀𝑖~ 𝑁(0, 𝜎𝜀
2) 

 

Both the alpha estimate and the beta estimate are assumed to follow a simple 

random walk model, where the best estimate of alpha and beta at time T+1 is the 

estimates we calculated at time T. The state transition equation: 

 

𝑥𝑘+1 = 𝜙𝑘𝑥𝑘 +  𝑤𝑘 
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Can be rewritten as two random walk models;  

𝛼𝑖,𝑇+1 = 𝛼𝑖,𝑇 + 𝑢𝑇 (Equation 19) 

𝛽𝑖,𝑇+1 = 𝛽𝑖,𝑇 + 𝑧𝑇 (Equation 20) 

Where:   

- 𝑢𝑇~𝑁(0, 𝜎𝑢
2)   

- 𝑍𝑇~𝑁(0, 𝜎𝑧
2)   

- 𝜙𝑘 =  (
1 0
0 1

)  

- 𝑤𝑘 =  (
𝜎𝑢

2 0

0 𝜎𝑧
2)   

5.2.2.2 The Initial Conditions 

5.2.2.2.1 Estimating Qk and Rk 
 

The Kalman filter model requires prior estimates of both error terms, Qk and Rk; 

equations 7, 8 and 9 relate the error terms to the other equations. This report relies 

on the traditional Market Model to calculate the error terms. 

Using equation 6 and 7 we find Rk: 

𝑅𝑘 =  (𝜎𝜀
2)  

We calculate 𝜎𝜀
2 by using the equation for variance: 

𝑉𝑎𝑟(𝜀𝑖) =  𝜎𝜀
2 =

∑ (𝜀𝑖,𝑇 − 𝐸(𝜀𝑖))
2𝑁

𝑇=1

𝑁 − 1
 

Rearranging equation 18 yields: 

𝑟𝑖,𝑡 − 𝛼𝑖,𝑡 − 𝛽𝑖,𝑡 ∗ 𝑟𝑚,𝑡 = 𝜀𝑖~𝑁(0, 𝜎𝜀
2) 

And setting 𝐸(𝜀𝑖) = 0: 

𝜎𝜀
2 =

∑ (𝑟𝑖,𝑡−𝛼𝑖,𝑡−𝛽𝑖,𝑡 ∗ 𝑟𝑚,𝑡)
2𝑁

𝑇=1

𝑁−1
 (Equation 21) 

Where:  

- N represents the amount of data points taken for the Kalman Setup 

Lookback Period 

-  

We can therefore calculate 𝜎𝜀
2 by calculating the Market Model alphas and betas 

for N historical time periods and inserting them into equation 21. 

 

Using equation 5 and 8 we find Qk: 

𝑄𝑘 = (
𝜎𝑢

2 0

0 𝜎𝑧
2) 
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We calculate 𝜎𝑢
2 by using the equation for variance: 

𝑉𝑎𝑟(𝜀𝑖) =  𝜎𝜀
2 =

∑ (𝑢𝑖,𝑇 − 𝐸(𝑢𝑖))
2𝑁

𝑇=1

𝑁 − 1
 

Rearranging equation 22 yields: 

𝛼𝑖,𝑇+1 − 𝛼𝑖,𝑇 = 𝑢𝑇~𝑁(0, 𝜎𝑢
2) 

And setting 𝐸(𝑢𝑖) = 0: 

𝜎𝑢
2 =

∑ (𝛼𝑖,𝑇+1 − 𝛼𝑖,𝑇)
2𝑁

𝑇=1

𝑁 − 1
 

Similarly for 𝜎𝑧
2: 

𝜎𝑧
2 =

∑ (𝛽𝑖,𝑇+1 − 𝛽𝑖,𝑇)
2𝑁

𝑇=1

𝑁 − 1
 

Once calculated, these error terms are assumed constant throughout the course of 

the model. 

5.2.2.2.2 Prior Estimate and its error Covariance 
 

Similar to Qk and Rk, we use the Market Model to calculate our initial (T=0) 

estimates for �̂�0
− and 𝑃0

−. �̂�0
− is estimated by simply taking the Market Model 

alpha and Beta at time T=0, as the state transition equation assumes a random 

walk. 

 

𝑃0
− is estimated by taking the variance and covariance of the alphas and betas over 

the Kalman intitial conditions time period: 

𝑃0
− =  (

𝜎𝛼
2 𝜎𝛼,𝛽

𝜎𝛼,𝛽 𝜎𝛽
2 ) 

 

Where:   

- 𝜎𝛼
2 =

∑ (𝛼𝑖,𝑇−𝐸(𝛼𝑖))
2

𝑁
𝑇=1

𝑁−1
 

- 𝜎𝛼
2 =

∑ (𝛽𝑖,𝑇−𝐸(𝛽𝑖))2𝑁
𝑇=1

𝑁−1
  

- 𝜎𝛼,𝛽 =
∑ (𝛼𝑖,𝑇−𝐸(𝛼𝑖))∗ (𝛽𝑖,𝑇−𝐸(𝛽𝑖))𝑁

𝑇=1

𝑁−1
  

 

These initial conditions are then inserted into the Kalman Filter Loop 

demonstrated in figure 1. As described in the theory section, once these initial 
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conditions have been established, the recursive nature of the Kalman filter allows 

for the loop to cycle indefinitely without any further additional external inputs.  

5.2.3 Error Calculation 
 

Both models will each generate a time series of alphas and betas. These will then 

be tested by using the observed market return to predict the anticipated security 

return. The difference between the predicted security return and observed security 

return will be used as the benchmark for the success of either model. 

𝐸𝑟𝑟𝑇,𝑀 = 𝑟𝑖,𝑇,𝑃𝑟𝑒𝑑,𝑀 − 𝑟𝑖,𝑇,𝑂𝑏𝑠  

Where:  

- 𝐸𝑟𝑟𝑇,𝑀= Error of model M at time T 

- 𝑟𝑖,𝑇,𝑃𝑟𝑒𝑑,𝑀 = Predicted security i return of model M at time T 

- 𝑟𝑖,𝑇,𝑂𝑏𝑠 = Observed security i return at time T 

𝑟𝑖,𝑇,𝑃𝑟𝑒𝑑 is calculated using the alpha and beta of each model at time T-1: 

𝑟𝑖,𝑇,𝑃𝑟𝑒𝑑,𝑀 =  𝛼𝑖,𝑇−1,𝑀 + 𝑟𝑚,𝑇 ∗ 𝛽𝑖,𝑇−1,𝑀 

Where :  

- 𝛼𝑖,𝑇,𝑀 = Alpha estimate for model M at time T-1 

- 𝛽𝑖,𝑇,𝑀 = Beta estimate for model M at time T-1    

The performance of each model will be determined by observing and comparing 

the Root Mean Squared Errors (RMSE), Mean Absolute Error (MAE) and Mean 

Error (ME).  

𝑅𝑀𝑆𝐸 =  √
∑ 𝐸𝑟𝑟𝑇

2𝑁
𝑇=1

𝑁
 

𝑀𝐴𝐸 =  
∑ 𝑎𝑏𝑠(𝐸𝑟𝑟𝑇)𝑁

𝑇=1

𝑁
 

𝑀𝐸 =  
∑ 𝐸𝑟𝑟𝑇

𝑁
𝑇=1

𝑁
 

 

For obvious reasons this report will focus mostly on RMSE and MAE, but ME 

will also be generated and considered in the analysis. 
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5.2.4 The Source Code 
 

All relevant calculations in this report have been generated using C++ code. 

Figure 2 demonstrated the system hierarchy for the source code.  

 

Figure 2 System hierarchy for the source code 

 

A very brief overview of each file will be provided, for further information please 

consult the attached source code files
1
: 

- Model_generator.cpp: The main function of the model generator 

- Data_handling.cpp: Responsible for reading the 

Historical_Data_csv.csv file, extracting the required data and 

calculating the required returns, list of dates, list of security names… 

- Data_store_model.cpp: Responsible for generating the result time 

series, calls Capm_model.cpp and Kalman_filter.cpp to generate 

Kalman and Market Model alpha’s and beta’s. Once the result time 

series have been generated, the results are exported to a csv file 

(further information in the next section). 

                                                 
1
 Or email me on Kai.E.Strandmoe@student.bi.no 
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- Capm_model.cpp: Responsible for generating alpha and beta estimates 

using the Market Model. 

- Kalman_filter.cpp: Responsible for generating alpha and beta estimates 

using the Kalman Filtering model.  

5.2.5 Program Structure 
 

 

Figure 3 File Layout of Program 
 

The file layout of the program is demonstrated in figure 3. The program is run by 

simply navigating to the directory where the program was unzipped and launching 

the .exe file (by typing in “main.exe” if in a Windows OS or by typing 

“./main.exe” if in a Linux OS).  

The settings folders contains a single file labelled “settings.txt”. This file sets the 

required inputs for the model generator and currently features four input 

parameters: 

- CAPM Model Length: Which sets the amount of datapoints to be used 

when calculating Market Model Alphas and Betas. Note that the units 

are the same as the units set in the “Data Frequency” parameter. 

- Kalman Model Estimates Length: Sets the amount of data points to be 

used when calculating the prior estimates for the Kalman Model 

- Alpha Factor: Sets the Alpha factor for the state transition matrix of the 

Kalman Model. Further information is provided in the results and 

analysis section 

- Data Frequency: Determines whether daily, weekly or monthly data is 

to be used. 1 stand for daily, 2 stands for weekly and 3 stands for 

monthly. Default is set to 3. 

The Database folder is meant to hold the Bloomberg exported CSV file labelled 

“historical_Data_csv.csv” which holds the raw end of day price data for all the 

relevant stocks to be analyzed. 
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The Results folder is where the results of the modelling program are exported to. 

It will feature a file labelled “main_results.csv” which holds the relevant summary 

statistics. Additionally it will export an “ASSETNAME results.csv” file for each of 

the securities to be analyzed featuring summary statistics of that particular 

security and a table containing a timeseries of market return, asset return, Market 

Model alphas and betas, Kalman Filter alphas and betas and their respective 

errors, absolute errors and squared errors. 

 

Please note that due to time constraints the program is very user unfriendly and 

any alterations to the database file or settings file need to exactly follow the 

template provided in order to function correctly
2
.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                 
2
 Contact me on Kai.E.Strandmoe@student.bi.no if any problems occur 
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6 Results and Analysis 

6.1 The basic three year historical lookback period  
 

In order to investigate the merits of each model, the residual errors of each model 

will be compared using RMSE, and occasionally MAE. Instead of comparing 

each asset individually, the merits of each model as a whole will be tested using 

the average errors of each of the assets using the following formula: 

𝑅𝑀𝑆𝐸𝑎𝑣𝑒 =
∑ 𝑅𝑀𝑆𝐸𝑖

𝑁
𝑖=1

𝑁
 

Where: 

- 𝑅𝑀𝑆𝐸𝑖 = RMSE of asset i 

- Number of assets in the model.  

We start of the analysis by calculating the Market Model alphas and betas using 

36 data points of monthly returns. This is the standard approach to the Market 

Model and CAPM and corresponds to three years historical data. Similarly, we 

will start with 36 data points when calculating the prior estimates for the Kalman 

Model. 

 

Table 2 Error Comparison for Market Model and Kalman Filter Model Alphas and Betas 

Table 2 demonstrates that there is virtually no difference in MAE and RMSE 

between the Market Model (labelled CAPM) and the Kalman model. Note that 

two securities have been omitted from the table to there not being enough 

Security CAPM ME Kalman ME CAPM MAE Kalman MAE CAPM RMSE  Kalman RMSE

AAPL US Equity 0.38% 0.63% 6.06% 6.02% 8.40% 8.29%

MSFT US Equity -0.30% -0.21% 4.38% 4.40% 5.81% 5.86%

AMZN US Equity -0.94% -0.67% 7.33% 7.02% 9.84% 9.44%

JPM US Equity 0.20% 0.20% 4.98% 4.91% 7.15% 7.19%

BRK/B US Equity 0.12% 0.13% 3.11% 3.15% 4.51% 4.61%

GOOGL US Equity -0.14% -0.01% 4.33% 4.34% 5.94% 6.03%

XOM US Equity 0.00% 0.19% 3.33% 3.28% 4.24% 4.13%

JNJ US Equity 0.06% 0.11% 2.59% 2.58% 3.31% 3.28%

BAC US Equity 0.79% 0.64% 7.86% 7.76% 12.06% 12.02%

INTC US Equity -0.42% -0.38% 4.64% 4.68% 5.86% 5.89%

UNH US Equity 0.40% 0.64% 4.98% 5.09% 7.01% 7.11%

V US Equity 0.05% 0.38% 2.86% 3.09% 3.89% 4.00%

WFC US Equity 0.68% 0.49% 4.93% 4.89% 7.71% 7.50%

CVX US Equity 0.00% 0.17% 3.79% 3.70% 4.70% 4.68%

HD US Equity -0.07% -0.06% 3.68% 3.67% 5.01% 5.04%

T US Equity -0.13% -0.43% 3.71% 3.72% 4.91% 4.94%

PFE US Equity -0.06% -0.13% 3.53% 3.54% 4.46% 4.43%

CSCO US Equity -0.33% -0.30% 4.49% 4.58% 6.08% 6.12%

Average 0.02% 0.08% 4.48% 4.47% 6.16% 6.14%
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datapoints. These securities are Facebook, Inc Common Stock (FB US Equity) 

and Alphabet Inc. (GOOG US Equity). 

 

One interesting point to note however is that despite the similar error values, the 

actual alphas and betas values of both models are strikingly different at times. 

Figure 4 and 5 demonstrate this effect. Overall both values are highly correlated 

as expected.  

 

 

Figure 4 Market Model and Kalman Model Alpha Values for  Exxon Mobile Corporation (XOM US 

Equity) from 2-Feb-2006 to 1-Jun-2018 
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Figure 5 Market Model and Kalman Model Beta Values for Exxon Mobile Corporation (XOM US 

Equity) from 2-Feb-2006 to 1-Jun-2018 

 

6.2 Lookback period analysis 
 

In this section we will divert from the traditional three year lookback period for 

CAPM calculations and Kalman prior estimations and observe the effect on model 

performance.  

Figure 7 demonstrates that the Kalman lookback period does not matter much 

with regards to the RMSE values. This is as expected however, as the Kalman 

filter is supposed to eventually converge to its equilibrium regardless of the initial 

prior estimates. 

 Figure 6 however demonstrates that the CAPM length does seem to matter 

somewhat. Mainstream literature focuses on 36 data points for CAPM as its 

values simply become too volatile if too few data points are taken. Decreasing the 

CAPM lookback period therefore makes the Market Model alphas and betas more 

volatile which in term enhance the error terms of the Kalman Model. Large error 

terms decreases the impact of the Kalman loop as as a result decreases the 

accuracy of the Kalman model. The trend line equations in figure 6 and 7 
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demonstrate that reducing the CAPM lookback period has an effect that is five 

times more pronounced than changing the Kalman lookback period.  

 

 

 

Figure 6 Average RMSE for selected assets keeping Kalman length constant at 35 data points 

 

 

 

 
Figure 7 Average RMSE for selected assets keeping CAPM length constant at 35 data points 

 

 

 

 

 

 

y = -5E-05x + 0.0631 

6.00%

6.05%

6.10%

6.15%

6.20%

6.25%

6.30%

10 15 20 25 30 35 40 45 50

CAPM Length 

y = -1E-05x + 0.0615 

6.00%

6.05%

6.10%

6.15%

6.20%

6.25%

6.30%

10 15 20 25 30 35 40 45 50

Kalman Length 

0998968GRA 19502



6.3 State transition analysis 
 

Rewrite equation 20 as new equation.  

One very interesting aspect of the Kalman filter not yet explored is that it features 

a state transition matrix. The vast majority of financial theory stipulates that non-

zero alpha should be a temporary phenomenon as the market is expected to 

smoothen out any outperforming stocks. We could therefor try to improve upon 

the existing model by replacing the random walk of the alpha state transition 

matrix (Equation 19) with an AR(1) model of varying factor loading:  

𝛼𝑖,𝑇+1 = 𝐹𝐿𝛼 ∗ 𝛼𝑖,𝑇 + 𝑢𝑇 

Where: 

- 𝐹𝐿𝛼 = Alpha factor loading of the state transition equation. 

Conventional market hypothesis expects this value to between 0 and 1 

 

Figure 8 Average RMSE for selected assets with varying Alpha Factor 

 

Figure 9 Average MAE for selected assets with varying Alpha Factor 
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Observing figure 8 we can observe see a decreasing RMSE trend for a decreasing 

alpha factor loading. The effect seems to plateau at around 0.93. Observing figure 

4, which demonstrates a similar effect using MAE shows a very small local 

minima at an alpha factor loading of 0.93. Figures 8 and 9 demonstrate the 

benefits of investigating the state transition matrix of the Kalman Model.  

6.4 Data Frequency Analysis 
 

The CAPM model traditionally uses monthly return data due to the fact that any 

shorter time period produces values that are too noisy. One of the predominant 

reasons for using the Kalman filter, both in financial as well as in other scientific 

and engineering applications, is that it is meant to filter out noise more effectively. 

The Kalman filter could therefore potentially allow for daily or weekly data to be 

analyzed.  

 

The model will use a CAPM lookback period of 150 data points for the daily 

returns, roughly equating to half a year worth of data. The prior alpha, beta and 

error estimates of the Kalman filter are then calculated using 50 Market model 

data points. 

 

The weekly data CAPM lookback period will in turn use 52 data points, roughly 

equating to a year worth of data. The prior alpha, beta and error estimates of the 

Kalman filter are then calculated using 26 Market model data points, roughly 

equating to half a year worth of data. 

 

Table 3 Average Errors for selected assets for daily, weekly and monthly data frequency 

 

Unfortunately, table 1 demonstrates that there is virtually no difference between 

the error terms of both models for daily and weekly data. We can conclude that the 

daily and weekly data points are simply too noisy to yield any meaningful 

difference for the Kalman model in its current state.  

 

Frequency  CAPM MEA  Kalman MEA  CAPM RMSE  Kalman RMSE

Daily 0.93% 0.92% 1.50% 1.49%

Weekly 2.08% 2.08% 3.10% 3.10%

Monthly 4.48% 4.47% 6.16% 6.14%
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6.5 Final Observations 
 

 

Figure 10 Market Model and Kalman Model Alpha Values for  Microsoft Corporation (MSFT US 

Equity) from 2-Feb-2006 to 1-Jun-2018 

 

 

Figure 11 Market Model and Kalman Model Beta Values for  Microsoft Corporation (MSFT US 

Equity) from 2-Feb-2006 to 1-Jun-2018 
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A point briefly touched in the first part of this section is that despite the relatively 

similar error values, the Market model and Kalman model yield strikingly 

different alphas and betas at certain time periods. This observation holds true for 

all securities analyzed in this report and another example is demonstrated in 

figures 10 and 11. This effect is more pronounced during times of crisis, as all 

figures 4, 5, 10, 11 show the biggest divergence during the flash crash of 2011.  
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7 Conclusion and Potential Improvements 
 

Investigating the merits of using a Kalman Filter in equity Beta and Alpha 

estimation across four areas has on one occasion yielded a noticeable error 

improvement but overall the performance of the model when compared to the 

traditional CAPM model was modest at best. This report has therefore not 

conclusively demonstrated the merits of the Kalman model in alpha and beta 

estimation, however it has demonstrated to be a promising area of further 

research. The potential of varying the state transition matrix is an area that proved 

particularly promising and a more in-depth analysis of alpha and beta auto-

regressive models (asset or sector-specific) has the potential to significantly 

improve the Kalman model. For example, the beta state transition equation could 

be replaced with a different mean-reverting equation: 

𝛽𝑖,𝑇+1 = 𝜇 + 𝐹𝐿𝛼 ∗ 𝛽𝑖,𝑇 + 𝑧𝑇 

Where: 

- 𝜇 = the long term beta equilibrium value of asset i.  

 

Overall, all areas investigated in this report could benefit from further 

investigation, including the optimal lookback periods for the CAPM model. The 

CAPM lookback period changes the performance of the Kalman model because it 

affects prior error estimates (Qk and Rk). Alternative ways of estimating these 

errors could therefore improve the overall model. One particularly interesting area 

in this regard is to allow for the error terms to periodically update. In the current 

Kalman model the error estimates are estimated at the beginning of the model, and 

then assumed to be constant throughout the entire forecast period (usually running 

between 11 and 12 years). These errors are however likely to change over that 

long time horizon and periodically updating the estimates might make the model 

more accurate.   

 

The report has not only demonstrated the case for further academic investigation, 

the different alpha and beta values during times of crisis indicates that the model 

would be an interesting area of research for alternative portfolio strategies.   
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