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Abstract 
Within the past decades, several Monte Carlo simulation-based approaches have 

been proposed to address the problem of pricing American-style derivatives. In 

more recent years, least squares regression-based Monte-Carlo methods have been 

proposed specifically for the computation of American option prices. The purpose 

of our thesis is to replicate and confirm Tompaidis and Yang’s (2014) evaluation 

of Longstaff and Schwartz’s (2001) Least Squares Monte Carlo (LSM) algorithm 

by comparing its performance of Ordinary Least Squares against other numerical 

methods. This preliminary report will lay the foundation for our thesis and includes 

an introduction to the topic, a literature review, theory related to American 

simulation based option pricing, a thesis progression plan, and concluding remarks. 

Since the LSM method of Longstaff and Schwartz (2001) is the fundamental 

building block in the work of Tompaidis and Yang (2014), we focus on theory 

related to LSM. We also include a MATLAB-function of the LSM algorithm that 

will work as a framework for our replication of the methods presented by Tompaidis 

and Yang (2014).  
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1. Introduction 
One of the most important problems in option pricing theory is the valuation and 

optimal exercise of American-style options. These early-exercise derivatives can be 

exercised not only at their point of maturity, but at any moment preceding. Their 

valuation typically involves solving an optimal stopping problem. For simple 

vanilla options where only one factor affects the value of the option, the optimal 

stopping problem can be solved efficiently using conventional numerical 

procedures. However, when more than one factor affects the value of the option, 

pricing procedures become exceptionally complicated. 

1.1 Problem Description 
The Black and Scholes formula is commonly known as a closed-form solution for 

valuing European options. In contrast, no closed-form solution exists for valuing 

American options. When only one factor affects the value of an American option, 

it is conventionally valued by lattice methods such as binomial- and trinomial trees 

as well as finite difference methods. However, these methods become difficult to 

evaluate accurately when multiple stochastic factors affect the value of the option. 

When problems with multi-dimensional features are considered, Monte Carlo 

methods often give better results since the convergence rate in Monte Carlo 

simulations is independent of the number of stochastic state variables. 

 

The major drawback of Monte Carlo simulation is its difficulty of dealing with the 

early exercise feature embedded in American options. The problem of using 

simulation based methods to price American options results from the difficulty in 

applying a forward based procedure to a problem that requires a backward 

procedure to be solved. Because of the early exercise feature embedded in 

American options, we need to know the value of the option at intermediate times 

between the start of the simulation and when the option expires. With Monte Carlo, 

this information is hard to obtain. Therefore, even though Monte Carlo is capable 

of handling multi-factor problems, once we need to solve a problem backwards, it 

becomes difficult to implement. Several researchers have provided ways of valuing 

American options when Monte Carlo simulation is used. In 2001, Longstaff and 

Schwartz proposed the Least Squares Monte Carlo (LSM) method. Their approach 

involves using a least-squares regression analysis to determine the best-fit 
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relationship between the continuing value and the values of relevant variables at 

each time an early exercise decision must be made. The method has achieved much 

popularity because of its intuitive regression-based approach to pricing American 

option. In recent years, Tompaidis and Yang (2014) have evaluated the performance 

of LSM against quantile regression, Tikhonov Regularization, Matching Project 

Pursuit (MPP), and Classification and Regression Trees (CART). They find that 

LSM is inclined to over fit in several instances such as when the frequency of 

exercise increases or when a low number of simulation paths is used. Additionally, 

their analysis find that several of the other methods outperform LSM when 

European option prices is included in the polynomial basis functions. 

1.2 Research Question 
The objective of this thesis is to replicate (in some parts) and confirm the analysis 

of Tompaidis and Yang (2014) by comparing its performance to other numerical 

methods, and to extend and improve the methodology along different directions by 

finding other basis functions that can improve the pricing accuracy. The research 

question for our thesis is: What are strengths and weaknesses of methods proposed 

by Tompaidis and Yang (2014), how do they differ in terms of efficiency, 

robustness and precision, and what are improvements to be done. 

1.3 Research Method 
The performance of Ordinary Least Squares (OLS) in the Least Squares Monte 

Carlo (LSM) algorithm will be compared to several alternative methods such as 

Tikhonov Regularization, Matching Project Pursuit (MPP), and Classification and 

Regression Trees (CART). A set of five test cases that were introduced by Fu, 

Laprise, Madan, Su, and Wu (2001) will be used as a benchmark. The test cases 

include plain vanilla options with and without continuous dividends, jump-

diffusion option, Parisian option, lookback option, and moving window Asian 

option. It should be studied whether each option’s obtained price converges to its 

true price. 

1.4 Preliminary Report Structure 
The rest of the preliminary report is organized as follows. Chapter 2 contains a 

literature review of studies on the topic of simulation based option pricing. Chapter 

3 outlines theory related to American simulation based option pricing. Chapter 4 
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presents the MATLAB function of the LSM algorithm that will work as a 

framework for our replication of the pricing functions. Chapter 5 outlines a plan for 

our progression of the thesis. Chapter 6 concludes the preliminary report. 

2. Literature Review 
The modern version of the Markov Chain Monte Carlo method was invented in the 

late 1940s by Stanislaw Ulam, and Phelim Boyle was among the first to introduce 

Monte Carlo simulation into finance by it proposing it for the study of European 

option prices in 1977.  

 

In the 1990’s, the first approaches were presented to which Monte Carlo simulation 

can be used to value American-style options. Tilley (1993) was the first who 

attempted to use Monte Carlo simulation to value American options by using a 

bundling technique and a backward induction algorithm to determine the early 

exercise boundary. With improvements on the basic idea of Tiller, Carriere (1996) 

presents a backward induction algorithm and applies it to calculate an early exercise 

premium. He shows that the estimation of the early exercise decision rule should be 

equivalent to the estimation of a series of conditional expectations. In his algorithm, 

the conditional expectations are estimated using nonparametric least squares 

regression of spline functions. Other early work includes Grant, Vora and Weeks 

(1997) and Broadie and Glasserman (1997) who considers more general path-

dependent options such as Asian options. Broadie and Glasserman shows how to 

price Asian options by Monte Carlo, but their method does not focus on an optimal 

exercise strategy. Instead, they compute a confidence interval and generate two 

biased estimators; an upper (biased high) and a lower (biased low) bound that 

converges asymptotically (and unbiasedly) to the true price of an American option. 

 

Carriere’s idea was further developed by Tsitsiklis and Van Roy (1999), Tsitsiklis 

and Van Roy (2001), and Longstaff and Schwartz (2001) who uses least squares 

regression to approximate the continuation value function by its projection on the 

linear span of a set of functions. Tsitsiklis and Van Roy (2001) use all the simulated 

paths to estimate the continuation value. In contrast to Tsitsiklis and Van Roy 

(2001), Longstaff and Schwartz (2001) only use price paths that are in-the-money 

to increase the efficiency of the algorithm. In their method, they apply least squares 
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regression in which the explanatory variables are certain polynomial functions and 

estimate the continuation values of several types of derivatives. 

 

The convergence properties of the LSM algorithm have been studies by Clément, 

Lamberton and Protter (2002). They demonstrate that the estimated conditional 

expectation approaches the true conditional expectation as the number of basis 

functions goes to infinity. Glasserman and Yu (2004) study the convergence rate of 

the algorithm when the number of basis functions and the number of paths increase 

simultaneously. They show that in certain cases, to guarantee that the option price 

converges to its true price, the number of paths must grow exponentially with the 

number of polynomial basis functions when the underlying state variable follows 

Brownian motion. If the underlying variable follows geometric Brownian motion, 

the number of paths must grow faster than exponential to guarantee convergence. 

 

Other studies of the LSM algorithm include the following authors. Moreno and 

Navas (2003) analyze the robustness of the algorithm with respect to basis function 

selection. Gamba (2003) extends it to value real options. Rasmussen (2005) and 

Fouque and Han (2007) attempts to improve the efficiency of LSM by including 

control variates. 

 

In recent years, Tompaidis and Yang (2014) critically evaluate the performance of 

LSM against quantile regression, Tikhonov regularization, Matching Projection 

Pursuit (MPP), a modified version of MPP, and Classification and Regression Trees 

(CART. They find that LSM is inclined to over fit in several instances such as when 

the frequency of exercise increases or when a low number of simulation paths is 

used. Additionally, their analysis find that several of the other methods outperform 

LSM when European option prices is included in the polynomial basis functions. 

3. American Simulation Based Option Pricing Theory 
The first part of chapter 3 outlines the theory behind the LSM algorithm by 

Longstaff and Schwartz (2001). The second part describes a variance reduction 

technique that can be implemented to reduce computational time in the pricing 

functions. 
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3.1 Least Squared Monte Carlo (LSM) Algorithm 
Tompaidis and Yang (2014) suggest using the following notation and approach for 

the LSM algorithm: 𝑆"
($) is the value of the state variables at time t along path i; h 

is the option payoff; V is the option value; 𝑡$ $'(
)  are the possible exercise times. 

3.1.1 Price Path Simulation 

The LSM algorithm starts by simulating M possible price paths a stock may follow 

during a specified time span t. The price is logarithmic and follows a geometric 

Brownian motion stochastic process. It can be computed by the following equation. 

 

𝑆 𝑡*+, = 𝑆 𝑡* 	𝑒𝑥𝑝 𝜇 −
𝜎5

2
𝛥𝑡 + 𝜎𝜀 𝛥𝑡	  

 
In the equation, 𝑆 𝑡*  is stock price at time j; 𝜇 is the expected return in a risk-

neutral world; 𝜎 is the volatility; 𝜀 is a random number drawn from the standard 

normal distribution; 𝛥𝑡 is the length of time interval. Below is an illustration of a 

simulation. 

 

 
Figure 1: Simulation of Price Paths (S=100, K=90, r=0.05, sigma=0.2, D=0, 

T=1, NSteps=250, NSims=1000) 
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3.1.2 Payoff Computation 

For all M paths and all exercise time points t, the options cash flow matrix V is 

computed. At the terminal value 𝑡), set the option value V equal to the payoff. 

 

𝑉 𝑆";
(<), 𝑡) = ℎ 𝑆";

(<), 𝑡) ,𝑚 = 1,… ,𝑀 

3.1.2 Conditional Expectation Value Computation  

The algorithm then proceeds backwards by projecting the expectation of the 

subsequent discounted cash flows onto the basis functions for the paths where the 

option is in the money at time 𝑡*C,. 

 

For the set of paths 𝑖E E',
F , for which the option is in-the-money; i.e., 

ℎ 𝑆";GH
$I , 𝑡)C, > 0, find coefficients 𝑎*∗(𝑡)C,) to minimize the norm 

	

𝑎(𝑡NC,)
)O

*',

𝜑* 𝑆";GH
($H)

𝜑* 𝑆";GH
($Q)

⋮
𝜑* 𝑆";GH

($S)

− 𝑒CT(";C";GH)

𝑉 𝑆";
($H), 𝑡)

𝑉 𝑆";
($Q), 𝑡)
⋮

𝑉 𝑆";
($S), 𝑡)

 

 

Here, ·  is the vector norm, and 𝜑*"VWH
()O)  is the basis function. The fitted values 

are chosen as the expected continuation values. Longstaff and Schwartz (2001) 

estimate the conditional expectation value directly by least squares regression, 

while Tompaidis and Yang (2014) use alternative methods. 

3.1.4 Optimal Exercise Decision 

To make the optimal exercise decision, we compare the vector norm ·  with the 

value for immediate exercise 𝑉 𝑆"VGH
$  at each path. 

 

𝑉 𝑆";GH
(<) , 𝑡)C, =

			ℎ 𝑆";GH
(<) , 𝑡)C, 																							𝑖𝑓	ℎ 𝑆";GH

(<) , 𝑡)C, ≥ 𝑎*∗(𝑡)C,)

)O

*',

𝜑* 𝑆";GH
(<)

			𝑒CT(";C"ZGH)𝑉 𝑆";
(<), 𝑡) 			𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																																																												
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3.1.5 Backwards Recursion 

We recursively use this algorithm for possible exercise times 𝑡)C5, 𝑡)C_, …, until 

time 𝑡(. That is the option price. 

3.2 Variance Reduction Techniques 
If the stochastic processes for the variables underlying a derivative are simulated as 

by Monte Carlo, a very large number of trials is usually necessary to estimate the 

value of the derivative with reasonable accuracy. This is very expensive in terms of 

computation time (Hull, 2015). This chapter presents different variance reduction 

techniques that can lead to savings in computational time in the pricing functions. 

3.2.1 Antithetic Variable Technique 

In a Monte Carlo simulation, the set of possible outcomes are determined by a 

random draw from the normal distribution. Because of this random draw, it often 

becomes the case that after many replications, the set of outcomes does not 

necessarily contain a complete range of all the possible outcomes (Brooks, 2014). 

The antithetic variable technique is used as an instrument in simulation to reduce 

the variance. A simulation trial involves calculating two values; the first is 

calculated as usual and the second is calculated by adding a negative sign in front 

of all the numbers drawn from the normal distribution. By doing this, we get 

complementary values for all the original values. Thus, the total range of possible 

outcomes is better represented. 

4. MATLAB function 
In this chapter, we include a MATLAB-function that will work as a framework for 

our replication of the methods presented by Tompaidis and Yang (2014). We will 

continue to develop our own MATLAB-code based on the function presented, 

relevant theory, and existing statistical packages made for MATLAB. 

4.1 LSM for an American Call Option with Continuous Dividends 
This function prices an American vanilla call option with continuous dividends 

using LSM. The function is originally coded by Mark Hoyle (2016), although we 

have changed its syntax and modified it to price an American call option with 

continuous dividends. We have also implemented the Antithetic Variable 

Technique. 
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function LSMAmCallContDiv(S0,K,D,r,sigma,T,NSteps,NSims) 
%% LSM FOR AN AMERICAN CALL OPTION WITH CONTINOUS DIVIDENDS 
% This function prices an American vanilla call option with 
% continous dividends using LSM. The function works 
% recursively by using simulated price paths to determine 
% the conditional expected continuation value. The optimal 
% stopping strategy is defined as when the intrinsic value  
% of the options is greater than the conditional expected  
% value of continuation. 
  
% SYNTAX 
% S0: Initial asset price 
% K: Strike price 
% D: Continuous dividend yield 
% r: Risk-free rate 
% sigma: Volatility 
% T: Time to maturity (years) 
% NSteps: Number of time steps 
% NSims: Number of simulations 
  
% OUTPUT 
% Price 
% Standard error 
   
%% Generating asset paths 
diff = randn(NSims,NSteps); 
SPaths = zeros(NSims, 1+NSteps); 
SPaths(:,1) = S0; % Stock price 
dt = T/NSteps; % Length of time interval 
nudt = (r-D-0.5*sigma^2)*dt;  
sidt = sigma*sqrt(dt);  
  
for i=1:NSims 
    for j=1:NSteps 
    SPaths(i,j+1)=SPaths(i,j)*exp(nudt + sidt*diff(i,j)); 
    end 
end 
  
%% Generating cash flow matrix 
CF=zeros(NSims,NSteps+1); 
CF(:,end)=max((SPaths(:,end)-K),0); % Terminal values 
  
% Computing cash flow matrix  
for j=NSteps:-1:1 % Since exercise at t=0 possible 
         
        SpITM=find(SPaths(:,j)>K); % Locating paths that are 
in the money 
        X=SPaths(SpITM,j); X1=X/S0; 
        Y=CF(SpITM,j+1)*exp(-r*dt); % Discounting cash flow 
        LP=[ ones(size(X1)) (1-X1) 1/2*(2-4*X1-X1.^2)]; % 
Weighted Laguerre polynomials  
        Reg=pinv(LP)*Y; % Linear regression  
        ExpContV=LP*Reg; % Conditional expected continuation 
value 
        ImExV=X-K; % Immediate exercise Value 
        IdEx=find(ImExV > ExpContV); % Identify immediate 
exercise 
        Cont=setdiff(SpITM,SpITM(IdEx)); 
        CF(SpITM(IdEx),j)=max(X(IdEx)-K,0);  
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        CF(SpITM(IdEx),j+1:end)=0; % Generates zeros 
        CF(Cont,j)=exp(-r*dt)*CF(Cont,j+1); 
end 
  
%% Generate dicount rate matrix 
DisM=zeros(NSims,NSteps+1); 
for i=1:NSims 
    for j=2:NSteps+1 
        DisM(i,j)=exp(-r*(j-1)*dt); 
    end 
end 
  
%% Computing price per path  
PVCF=CF.*DisM; % Present value of all cash flows 
P=max(PVCF,[],2); % Prices of each run 
  
%% Antithetic Variable Technique 
diffa=-1*(diff); 
SPaths2=zeros(NSims,NSteps+1); % Initialize matrix 
SPaths2(:,1)=S0; % Each trial starts at S0 
for i=1:NSims 
    for j=1:NSteps 
SPaths2(i,j+1)=SPaths2(i,j)*exp(nudt+sigma*sqrt(dt)*(diffa(i
,j))); %Creates a set of anthetic price paths  
    end 
end 
  
CFa=zeros(NSims,NSteps+1); % Creating antithetic cash flow 
matrix 
CFa(:,end)=max((SPaths2(:,end)-K),0); % Computing end values 
  
% Generating antithetic cash flow matrix  
for j=NSteps:.1:1 
        SpITMa=find(SPaths2(:,j)>K); 
        Xa=SPaths2(SpITMa,j); X2=Xa/S0; 
        Ya=CFa(SpITMa,j+1)*exp(-r*dt); 
        LPa=[ ones(size(X2)) (1-X2) 1/2*(2-4*X2-X2.^2)]; 
        Rega=pinv(LPa)*Ya; 
        ExpContVa=CMa*Rega; 
        IntVa=Xa-K; 
        IdExa=find(IntVa > ExpContVa); 
        Conta=setdiff(SpITMa,SpITMa(IdExa)); 
        CFa(SpITMa(IdExa),j)=max(Xa(IdExa)-K,0); 
        CFa(SpITMa(IdExa),j+1:end)=0; 
        CFa(Conta,j)=zeros(length(Conta),1); 
end 
  
PVCFa=CFa.*DisM; 
Pa=max(PVCFa,[],2); %Prices of each run 
  
%% Computing option price and standard error 
AllP=cat(1,P,Pa); % Creates one vector of prices and 
anthetic prices  
Price=(sum(AllP)/(NSims*2)); % Weighted average of vector 
containing all prices 
StdErr=std(AllP)/sqrt(NSims*2);  
display (Price); % Display price 
display (StdErr); % Display standard error 
end 
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5. Thesis Progression Plan 

January 

 

February 

 

 

 

 

March 

 

 

 

 

April-June 

 

July 

 

 

July-August 

 

September 

- Improve function presented in the preliminary report. 

 

- Program other LSM functions to price options in test 

cases. 

- Research, program, and test other potential pricing 

models to be included in the thesis. 

 

- Compare performance of OLS to Tikhonov 

Regularization, MPP and CART. 

- Write, edit and review thesis drafts. 

- Review MATLAB functions. 

 

- Write, edit, and review first draft of the thesis. 

 

- Deliver draft to thesis supervisor for comments and 

suggestions. 

 

- Implement suggestions from supervisor. 

 

- Hand in thesis. 

6. Conclusion 
Through this report we have briefly described the research objectives for our thesis. 

Particularly, we will attempt to replicate and confirm Tompaidis and Yang’s (2014) 

evaluation of Longstaff and Schwartz’s (2001) LSM algorithm by comparing its 

performance of OLS regression to several other numerical methods. We expect that 

we will reach conclusions that will allow us to evaluate the strengths and 

weaknesses of the methods, and to assess their efficiency, robustness, and precision. 

We will also attempt to improve the current methodology of Tompaidis and Yang 

(2014) by introducing other numerical procedures. 
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