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Abstract

In this thesis we have investigated the relationship between stock return

and trading volume at the Oslo Stock exchange. Our research question was

”What is the empirical relationship between trading volume and stock returns

on Oslo Stock Exchange".

Our sample consist of daily stock return and turnover data from 1980 to

2017 for 505 stocks on Oslo Stock Exchange. Using cross-correlation anal-

ysis, multivariate regressions, GARCH and EGARCH models, and a Granger

causality test we found evidence of both contemporaneous and causal re-

lationships. Our findings lend support to the sequential information arrival

hypothesis.

Keywords: Volume, turnover, return, volatility, Oslo Stock Exchange
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1 Introduction

Stock trading and returns has been studied for over a century and has been a central part of

financial research since the late 50s. The relationship between stock return, return volatility,

and trading volume specifically has been studied extensively. However, to our knowledge, there

has not been conducted any recent studies regarding this on Oslo Stock Exchange (OSE). Thus,

our aim is to add to the current literature on the volume-return relationship by studying the

Norwegian stock exchange.

There are several reasons why the return-volume relationship is interesting. First, it is im-

portant for the understanding of the microstructure of financial markets. Volume has long been

linked to the flow of information – information’s role in setting security prices is one of the most

fundamental research topics in finance (e.g., Brailsford, 1996, p. 90). Second, knowledge about

the volume-return relation might improve short term forecasting of returns, volume, or volatil-

ity. Third, because it is often applied in technical analysis as a measure of the strength of stock

price movements (e.g., Gallo & Pacini, 2000, p. 167; Abbondante, 2010, p. 287). Technical

analysis is, at least to some extent, used by most fund managers – especially on shorter time

horizons (e.g., Taylor & Allen, 1992; Menkhoff, 2010). And last, it has implications for theo-

retical and empirical asset pricing, established through its effect on liquidity (see e.g., Amihud

& Mendelson, 1986; Chordia, Subrahmanyam, & Anshuman, 2001). An efficient price discov-

ery process, associated with lower volatility, makes market prices more informative and enhance

the role of the market in aggregating and conveying information through price signals (Amihud,

Mendelson, & Murgia, 1990, p. 439).

With the entry of algorithmic trading, and especially high frequency trading (HFT), trading

volumes has increased substantially, and the low latency makes researchers question how much

information each trade carry. This makes studying the return-volume relationship especially

interesting, which motivates the following research question:

“What is the empirical relationship between trading volume and stock returns on Oslo Stock

Exchange?”

As will be detailed in section 4, there is much evidence that trading volume is related to

stock returns, while standard theory – outlined in section 3 – does not necessarily predict such

relations. Our goal is to understand the role of trading activity in the price formation process

and understand how efficient the Norwegian stock market is.

In this thesis, we examine the empirical relationship between stock return, return volatility,

and trading volume. Using cross-correlation analysis, multivariate regressions, GARCH and

1
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EGARCH models, and Granger causality tests, we found evidence of both a contemporaneous

and causal relationship, suggesting informational inefficiencies at the exchange. Our results lend

support to the sequential information arrival hypothesis, and favor newer market hypotheses

such as the adaptive market hypothesis and the heterogeneous agent model over the efficient

market hypothesis.

The rest of this thesis is organized in the following way. Section 2 is a short introduction of

Oslo Stock Exchange. Section 3 explains the most relevant theories encountered in this thesis.

Section 4 surveys the current literature, and will not be specific to the Norwegian stock market as

most academic literature study international and in particular U.S. markets. Section 5 explains

what data we have used and our data sources, with an explaination of our data preparation.

Section 6 details the methodology used and presents and discusses our findings. Section 7

concludes, while the last section offers a critical view of our thesis and suggest further research.

2 Oslo Stock Exchange

In this section, we aim to provide the reader with some context. We do a short walkthrough

of Oslo Stock Exchange’s history, before painting a picture of today’s market. As most of our

literature review in Section 4 focus on the U.S. market, we will provide some findings about the

Norwegian market here.

2.1 History

Kristiania Børs – the precursor to what is today Oslo Stock Exchange – was approved by King

Carl Johan in 1818. This was Norway’s second exchange when it opened in April 1819 (Hodne

& Grytten, 1992; Mjølhus, 2010). At that time, Norway was mainly a country of farmers and

fishermen, and the capital had less than 10,000 inhabitants (Kristiania børs, 1919, p. 1). Ac-

cording to Oslo Stock Exchange’s webpage, the exchange originally functioned as an auction

house for goods, ships and ship parts, and as an exchange for foreign currencies. Back then, the

currency prices were updated twice a week.

Oslo Stock Exchange introduced stocks and bonds in 1881. Although trade was modest

at first, the number of securities exploded between 1891 and 1900 from 40 to 165 (Hodne &

Grytten, 2000, p. 170). A few daily stock quotes were introduced in 1916, and for the entire

market in 1922.

2
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Figure 1 shows some major happenings in the history of Oslo Stock Exchange.

2.2 Current market situation

Today, Oslo Stock Exchange is the only regulated marketplace for securities trading in Norway.

The exchange is moderately sized by international standards (Næs & Ødegaard, 2009, p. 4),

and list the shares of 189 companies1 with a combined market capitalization of almost 324

billion USD2. Further, one can trade equity certificates, Exchange Traded Products (ETPs), fixed

income products and derivative products at Oslo Stock Exchange. OSE offers five marketplaces:

Oslo Børs, a full stock exchange listing that complies with all EU requirements; Oslo Axess,

an authorised and fully regulated marketplace; and three other markets regulated to a lesser

extent. OSE is a private limited company, which it has been since 2001. The exchange use the

same Millenium trading system as London Stock Exchange, Borsa Italiana, and Johannesburg

Stock Exchange and is organized as a continuous electronic limit order market (Ødegaard, 2017,

p. 15).

Oslo Stock Exchange is dominated by a few very large companies (Jørgensen, Skjeltorp, &

Ødegaard, 2017, p. 4). As can be seen in Table 1, the four largest companies make up over 50%

of the total market value of the exchange.

Company % of market value
Statoil 23.92%
Telenor 10.85%
DNB 10.18%
Norsk Hydro 5.30%
Yara International 4.23%
Orkla 3.64%
Gjensidige Forsikring 3.18%
Aker BP 2.99%
Marine Harvest 2.80%
Schibsted 2.21%
by market value 31/12-17 | | https://oslobors.no

Table 1: The ten largest domestic companies at the OSE

1As of the 25th of March, OSE lists 192 equity instruments – including Equity Certificates
and Preferred Stocks – from 189 companies. Source: https://oslobors.no

2As of the 23rd of March, combined market capitalization is
2,510.12 billion NOK and the exchange rate is NOK 7.7527/USD.
Source: https://oslobors.no; https://https://www.norges-bank.no

3
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1818 King Carl Johan signed the first Stock Exchange Act

1819 Christiania Exchange opened its first office as an auction house and currency exchange
with rates updated twice a week

1829 The exchange moved to its current location

1856 OSE started receiving exchange rates and commodity prices from Hamburg twice a week

1881 First listing of shares and bonds with monthly quotes

1907 Daily quotes for exchange rates introduced

1916 Daily quotes introduced for shipping and whaling shares

1922 Daily quotes for all shares

1988 Oslo Børs Informasjon (OBI) established

1988 Launched first electronic trading system – allowing for continuous trading of all securities
throughout the day

1999 ASTS fully automated trading system implemented

2000 The last of the local Norwegian exchanges – Bergen Stock Exchange – is fully merged
with OSE

2000 Regularly updated prices on the Internet with a 15 minutes delay

2001 OSE became a limited company, fully owned by Oslo Børs Holding ASA

2002 OSE changed to the SAXESS trading system

2003 Launched SMS service for stock exchange information

2007 Oslo Børs Holding ASA merged with VPS Holding ASA

2009 Entered a strategic partnership with the London Stock Exchange Group

2010 TradeElect trading system adapted during the period 2009-2010

2012 OSE introduced the Millennium trading platform

Oslo Stock Exchange’s history

Figure 1: Timeline of Oslo Stock Exchange’s history (dates from https://oslobors.no)

4
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2.3 Earlier findings

Not much has been written about the return-volume relationship on Oslo Stock Exchange, how-

ever there are some related studies. Næs, Skjeltorp, and Ødegaard (2008) examined the rela-

tionship between the long-term development in liquidity at the exchange and the Norwegian

Economy between 1980 and 2007. They state that all liquidity measures that include trading

volume show improved liquidity during the sample period, and that the price level and the re-

turn volatility are determinants of liquidity (Næs et al., 2008, pp. 24). Further, they find that

the development of the stock market is informative of the state of the economy as a whole (Næs

et al., 2008, pp. 33). Jørgensen et al. (2017) studied an order-to-trade ratio fee introduced at

the OSE in 2012, and found no impact on liquidity or trading volume, which is different from

for example the Italian Stock Exchange (Friederich & Payne, 2015). Mikalsen (2014) shows

several examples of volume analysis in technical trading on Oslo Stock Exchange, which at least

indicates that volume is an important metric for Norwegian traders as well. Karolyi, Lee, and

Van Dijk examined the commonality3 between trading activity and return in several countries

and found that for Norway, commonality was 25.4% in returns, 23.3% in liquidity, and 23.8%

in turnover (2009).

Næs, Skjeltorp, and Ødegaard (2011, p. 145) found that liquidity of the Norwegian market

improved over the sample period from 1980 to 2008, but also varied across sub-periods. Fur-

ther, they discovered that changes in liquidity on OSE coincide with changes in the portfolio

composition of investors. Specifically, before economic recessions they found a flight to quality,

where some investors leave the stock market altogether and others shift their stock portfolios

into larger and more liquid stocks. Mutual funds have a stronger tendency to realize the value

of their portfolios in small stocks during downturns than the general financial investor (Næs et

al., 2011, p. 141).

This section will be useful to have in mind going forward with the theory, literature review

and methodology.

3 Theory

In this section, we aim to develop a fundamental understanding of the most prominent economic

theories and hypotheses which we will later encounter. First, we will elaborate on different

market hypotheses for how financial markets work and what dynamics guide the generation of

stock returns. Then, we will explain different reasons investors might have for trading, as the

3Commonality is the co-movement between securities.

5
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investor’s trading generate trading volume, and thus their reasons govern how the volume series

behave.

3.1 Market hypotheses

One of the earliest models of financial markets came from the world of gambling, which – like

financial investing – also involve calculations of risk and reward (Lo, 2017, p. 17). This model

is known as the martingale, and is based on the idea that investing in the stock market is a

fair game – and thus, winnings and losses cannot be forecasted by looking at past performance.

More technically

{zt} is a martingale if E(zt | zt−1, . . . , z1) = zt−1 for t ≥ 2

In 1900, the French doctoral student Louis Bachelier discovered something unusual about

stock prices: they must move as if they were completely random (Fan & Yao, 2017, p. 19; Lo,

2017, p. 18). As any stock trade has a buyer and a seller who must agree on a price in order

to make a trade, it has to be a fair trade. No one wants to be a fool, and there would be

no agreement if one side were always biased against the other. Today, we call this theory the

random walk model of stock prices (Lo, 2017, p. 19). Bachelier had come up with a general

market theory by arguing that an investor could never profit from past price movements. A

random walk is defined as

{zt} is a random walk if zt =
t∑

j=1

εj , where {εt} is independent white noise

Since ε is independent white noise, we have that E(εt | εt−1, . . . , ε1) = E(εt) = 0. This

implies that, for a random walk

E(zt | zt−1, . . . , z1) = E(zt | εt−1, . . . , ε1)

= E(ε1 + · · ·+ εt−1 + εt | εt−1, . . . , ε1)

= ε1 + · · ·+ εt−1

= zt−1

Thus, the random walk is a martingale (but a martingale is not necessarily a random walk).

6
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Since the price movements of the stock market are martingales, the expected return is

E(Rt | Pt−1, . . . , P1) =
E(Pt | Pt−1, . . . , P1)− Pt−1

Pt−1

=
Pt−1 − Pt−1

Pt−1

= 0

By the properties of martingales and random walks, our best prediction for tomorrow’s

stock price is today’s price. Thus, our best predictions for the return is 0. This imply that

there is no information about future returns in past prices. Louis Bachelier concluded that the

expected profit of speculators were zero – and consistently outperforming the market would be

impossible (Lo, 2017, p. 19).

This idea did not take much hold in financial literature until the 1960s, when Samuelson (1965)

– using mathematical induction – showed that all the information of an asset’s past price changes

are bundled in the asset’s present price (Lo, 2004, p. 2; Lo, 2017, p. 21). The reasoning is as

follows. If investors could incorporate the possible impact of future events on asset prices today,

they would have done so. Thus, future price changes could not be predicted based on any of

today’s information. If they could, investors would have used that information in the first place,

and it would have been incorporated into today’s prices. If a market is informationally efficient

– that is, prices fully incorporate the expectations of all market investors – then future prices

will be impossible to forecast. As a result, prices must move unpredictably (Lo, 2017, p. 21).

The same year as Samuelson’s article was published, Fama – a supporter of the random

walk hypothesis – coined the term efficient market as “a market where there are large numbers

of rational, profit maximizers actively competing, with each trying to predict future market values

of individual securities, and where important current information is almost freely available to all

participants” (Fama, 1965, p.56). Fama – together with some of his colleges – soon picked up on

Samuelson’s ideas (see Fama & Blume, 1966; Fama, Fisher, Jensen, & Roll, 1969). In 1970 Fama

formalized the Efficient Market Hypothesis (EMH). The EMH has long been the most dominant

market theory. It defines financial markets as efficient, where prices fully reflect all available

information and new information is incorporated quickly and correctly into security prices (Lim

& Brooks, 2011, p. 69). Agents are rational economic beings, acting in their own self-interest

and making decisions in an optimal fashion (Lo, 2005, p. 1).

The EMH can be classified into strong-form, semi-strong-form, and weak-form efficiency. In

the strong-form efficiency, all information is incorporated into security prices, including private

information. Consistently higher returns can only be obtained through taking higher risk. This

means that investors cannot earn excess return by trading on information, even asymmetric –

7

09432930942691GRA 19502



like inside information, as it is already reflected in the prices. If investors do earn excess return,

it is due to luck. If the market is semi-strong efficient, all public information is incorporated

into the market, and one could earn excess return based on private information. In a weak-form

efficient market, prices reflect all information from historical market prices (Fama, 1970, p. 69).

If markets are perfectly efficient, there is no profit to gathering information, in which case

there would be little reason to trade and markets would eventually collapse (Grossman, 1976,

p. 574; Lo, 2004, p. 6). This has led to several no trade theorems – a class of results showing

that, under certain conditions, trade in asset markets between rational agents cannot be ex-

plained on the basis of differences in information alone. In short, these theorems reason that if

the initial asset allocation is commonly known to be efficient, then any proposed trade – even

after the arrival of new information – cannot lead to a Pareto improvement over the initial al-

location as long as the traders interpret the information in a similar fashion (Serrano-Padial,

2010, p. 1). Even if the market is only weak-form efficient, stock prices should follow a random-

walk. Thus, one should not find patterns in stock returns, and for example technical analysis –

based on past prices – would not be profitable4. In a semi-strong efficient market, fundamental

analysis – using public information like a company’s earnings, sales, and book-to-market ratios

to pick stocks – would also be pointless (Lo, 2017, p. 23). The strong-form of the EMH is an

extreme form which few have ever treated as anything other than a logical completion of the

set of possible hypotheses (Jensen, 1978, p. 4).

The concept of arbitrage is one of the main fundaments of the EMH; rational agents will

observe mispricing and take actions upon it. Noise traders – investors not picking stocks in a

rational manner – do not have a significant effect on prices, and it is impossible to consistently

beat the market and earn riskless returns. If arbitrage opportunities do exist, rational agents

would pick up on these and trade upon them (ter Ellen & Verschoor, 2017, p. 4). According to

EMH-supporters, market forces will always act to bring prices back to rational levels, implying

that the impact of irrational behavior on financial markets is generally negligible and, therefore,

irrelevant (Lo, 2004, p. 7).

Although classical economic models assume agent rationality, there are several anomalies

which are puzzling from the perspective of such models. These include – but are not limited

to – the forward premium puzzle, the equity premium puzzle, the excess trade volume, the

momentum effect, post earnings announcement drift, long term reversal and the size effect (ter

Ellen & Verschoor, 2017, p. 5).

Muth’s (1961) Rational Expectations Hypothesis (REH) has attracted much attention and

4Or, as Fama (1965, p. 57) state, chartist theories would be “akin to astrology and of no real
value to the investor.”
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states that market participants have equal access to information and form their expectations

about future events in a uniform, rational manner based on the ‘true’ probability of the state

of the economy (Muth, 1961; ter Ellen & Verschoor, 2017). The assumption of rational agents

implies that agents incorporate all available information in their decision-making process and

that they are able to do this in an efficient way because they have full knowledge about the eco-

nomic models underlying financial markets (Muth, 1961, p. 316; ter Ellen & Verschoor, 2017,

p. 4). One reason that the rational expectations paradigm is, and has been, the dominant one

for so long is that there is only one way to be rational, while there are infinite ways to devi-

ate from rationality (ter Ellen & Verschoor, 2017, p. 27). Economists considered rationality a

necessary assumption in sophisticated economic models. Lately, an interesting new literature

in the direction of bounded rationality has emerged (ter Ellen & Verschoor, 2017, p. 2). The

emergence of behavioral economics and behavioral finance has challenged the efficient mar-

ket hypothesis, arguing that markets are not perfectly rational (Lo, 2004). The most enduring

critiques of the EMH revolve around the preferences and behavior of market participants; in-

dividuals tend to be risk averse in the face of gains and risk seeking in the face of losses (Lo,

2004, pp. 4–5). Economists argued behavioral theories were impractical, as it was impossible to

model the complex behavior of human beings (ter Ellen & Verschoor, 2017, p. 6). After several

decades of research, no consensus is reached regarding whether financial markets are – in fact

– efficient (Lo, 2004, 2005).

The Adaptive Market Hypothesis (AMH) was developed by Lo (2004; 2005) in the early

2000s. The AMH reconciles the EMH and behavioral finance so the two theories can co-exist

in an intellectually consistent manner (Lo, 2005, p. 2; Lim & Brooks, 2011, p. 72)5. Under

the AMH, the EMH can be seen as the “frictionless” ideal that would exist if there were no

capital market imperfections such as transactions costs, taxes, institutional rigidities, and limits

to the cognitive and reasoning abilities of market participants. Or as the steady-state limit of a

population with constant environmental conditions – that is, if market participants were given

enough time to adapt to a market which does not change (Lo, 2005, pp. 2, 21). Behavioral

biases are viewed as heuristics taken out of context, and are not necessarily counterexamples to

rationality. Given enough time and competitive forces, such heuristics will be reshaped to better

fit the environment (Lo, 2005, p. 2). This is similar to Taleb’s (2018, pp. 26, 211–233) argument

that rationality is linked to survival6. As behavioral biases and heuristics have survived, they

cannot be irrational.

5Briefly, the precepts that guide the AMH – as outlined in Lo (2005, p. 18) – are (1) indi-
viduals act in their own self-interest; (2) individuals make mistakes; (3) individuals learn and
adapt; (4) competition drives adaptation and innovation; (5) natural selection shapes market
ecology; and (6) evolution determines market dynamics.

6“What is rational is what allows the collective — entities meant to live for a long time — to
survive” (Taleb, 2018, p. 26).
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The AMH states that prices reflect as much information as dictated by the combination of

environmental conditions, and the number and nature of the participants in the economy; such

as pensions funds, retail investors, and hedge-funds. Individuals make choices based on past

experience and their best guess as to what might be optimal, and they learn by receiving positive

or negative reinforcement from the outcomes. If they receive no such reinforcement, they do

not learn. If the environment changes, the heuristics of the old environment are not necessarily

suited to the new (Lo, 2004, p. 17). If a small number of participants are competing for rather

abundant resources in a given market, that market will be less efficient. As competition increases

unsuccessful traders are eliminated from the population, and the market will become more

efficient. Market efficiency cannot be evaluated in a vacuum, but is highly context-dependent

and dynamic (Lo, 2004, pp. 18–20).

According to the AMH, arbitrage and profit opportunities do exist from time to time. Al-

though they disappear after being exploited by investors, new opportunities are continually

being created as groups of market participants, institutions and business conditions change.

Mistakes occur frequently, but individuals are capable of learning from mistakes and adapting

their behavior accordingly (Lo, 2005, p. 19). An equilibrium state, without arbitrage or even

profit opportunities, might exists at times – but according to the AMH this is neither guaranteed

nor likely to occur at any point in time (Lo, 2005, p. 20). This is consistent with the conjecture

of Grossman and Stiglitz (1980) that sufficient profit opportunities must exist to compensate

investors for the cost of trading and information gathering. In fact, Daniel and Titman (1999)

have earlier highlighted the possible co-existence of EMH and behavioral finance by introducing

the term adaptive efficiency. If a market is “adaptive efficient”, there might be pricing anoma-

lties observed in the historical data, but as investors learn from them, they will not persist for

too long (Daniel & Titman, 1999, p. 34).

When we move away from the notion that agents are unboundedly rational, we see that

all investors need not have equal expectations. Heterogeneous Agents Models (HAM), first

developed by Zeeman (1974), takes advantage of this and divides the market participants into

several types. These models perform well in describing and explaining asset market dynamics

and has the ability to produce important stylized facts observed in financial time series – such

as volatility clustering, fat tails, bull and bear markets (ter Ellen & Verschoor, 2017, p. 1). HAM

assumes that agents are at least bounded rational, and use rules of thumb to form expectations

about future asset prices (ter Ellen & Verschoor, 2017, p. 2). Such models usually include

at least two types of agents: chartists, who uses past information to predict future returns;

and fundamentalists, who bases his expectations on the deviation of the asset price from its

fundamental value (ter Ellen & Verschoor, 2017). Fundamentalist expect market prices to revert

to the fundamental value of the respective assets while chartists extrapolate price trends (ter
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Ellen & Verschoor, 2017)7. In other words, while chartists and fundamentalists demand has a

direct effect on returns, fundamentalists may only start selling when a stock is overvalued by

a certain amount, thereby causing bull (chartists driving the price up) and bear (both chartists

and fundamentalists selling stocks) markets (ter Ellen & Verschoor, 2017, p. 9). Thus, technical

analysis – used by the chartists – can serve as a self-fulfilling mechanism (ter Ellen & Verschoor,

2017, p. 10). Several studies show that investors use more speculative strategies for shorter

horizons and more fundamental strategies for longer horizons (e.g., Frankel & Froot, 1990; ter

Ellen, Verschoor, & Zwinkels, 2013).

In reality, it is very likely that agents do not only differ in the way they form beliefs, but also

in the preferences they have, the shocks that they are hit by, and the information set they have

access to (ter Ellen & Verschoor, 2017, p. 27).

To conclude, classical theories suggest that there should be no relationship between stock

return and measures of trading volume. This predicts that we should at least not be able to

find any causal or predictive relations in our empirical investigations. Newer theories, however,

allow such relations to exists.

3.2 Reasons for trading

According to Gagnon and Karolyi (2009, p. 954), the motive behind trading, and thus the cause

of trading volume, can be attributed to asymmetries in information across groups, unanticipated

liquidity and portfolio-balancing needs of investors, or hedging.

Most no trade theorems focus on three different equilibrium notions: common knowledge,

incentive compatible trade, and rational expectations equilibria. The most frequent approaches

taken by the literature to elicit trade in models of asset markets under asymmetric information

is to either weaken the common knowledge assumption or exogenously introduce liquidity – for

example through demand shocks or noise traders. Other approaches allow agents to ‘agree to

disagree’ by introducing bounded rationality, or to introduce uncertainty to the market (Serrano-

Padial, 2010, pp. 2–3).

If we find a relation between return and volume in our empirical investigation, this will

mean that the reasons investors have for trading is important for the formation of prices.

7Chartists chases trends, therefore buying when prices go up and selling when prices go
down. Fundamentalists, are “aware” of the true fundamental value, and buys (sells) when the
stock is currently undervalued (overvalued) (ter Ellen & Verschoor, 2017, p. 8).
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3.2.1 The role of information

In early models of volume, volume was interesting for its correlation with other variables, but

not important in itself (Blume, Easley, & O’hara, 1994, p. 154). Today, trading volume is viewed

by many as the critical piece of information that signals where prices will go (Gagnon & Karolyi,

2009, p. 953). Stock markets are merciless in how they react to news. Investors buy or sell

shares depending on whether news is good or bad, and the market will incorporate the news

into the prices of publicly traded corporations. Good news is rewarded, bad news is punished,

and rumors often have just as much impact as hard information (Lo, 2017, pp. 13–14). Since

information is costly, prices cannot perfectly reflect the information which is available. If it did,

those who spent resources to obtain it would receive no compensation (Grossman & Stiglitz,

1980, p. 405). Most models trying to explain the return-volume relationship are related to

the flow of new information, and the process that incorporates this information into market

prices (e.g., Andersen, 1996, p. 170; Brailsford, 1996, p. 95).

The two main hypothesis underlying these models are the sequential information arrival

hypothesis (SIAH) and the mixture of distributions hypothesis (MDH). SIAH was first developed

by Copeland (1976, 1977) and later expanded by Jennings, Starks, and Fellingham (1981). The

hypothesis assumes that investors receive information sequentially at different times, which shift

the optimists’ demand curve up, and the pessimists’ demand curve down. Trading occur as a

reaction to this new information. Buy trades are viewed as noisy signals of good news, sell trades

as noisy signals of bad news (O’Hara, 2015, p. 263). MDH assumes that daily price changes are

sampled from a set of distributions with different variances. In the MDH-model specified by

Epps and Epps (1976), investors revise their reservation price when new information enter the

market. Volume is viewed as the disagreement between the investors (B.-S. Lee & Rui, 2002,

p. 54).

In both models, the arrival of new information causes investors to revise their price reser-

vations. Research has established that since investors are heterogeneous in their interpretation

of news, prices may not change even though new information enters the market. This might

happen if some investors interpret the news as good and others as bad (e.g., Mestel, Gurgul, &

Majdosz, 2003, p. 3; de Medeiros & Van Doornik, 2006, p. 2). Volume is always non-negative

and as long as at least one investor makes an adjustment in their price revision, expected trading

volume is positive (Brailsford, 1996, pp. 93–94). Therefore, volume can be seen as an indica-

tor of consensus, or the lack thereof (Gallo & Pacini, 2000, p. 167). Average investor-reaction

to information is reflected in price movements (e.g., Mestel et al., 2003, p. 3; de Medeiros &

Van Doornik, 2006, p. 2).

Blume et al. (1994, p. 177) propose an equilibrium model that emphasizes the informa-
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tional role of volume. They show that volume provides information about the quality of traders’

information that cannot be conveyed by prices, and thus observing the price and the volume

statistics together can be more informative than observing the price statistic alone. Learning is

an important feature in many microstructure models. Most such models rely on the notion that

some traders have private information which they trade on. Other traders see market data and

they learn from it. Market prices adjust to efficient levels that reflect all the information (O’Hara,

2015, p. 263). A trader watching only prices cannot learn as much as a trader watching both

prices and volume and so faces an unnecessary penalty if he ignores the volume statistic (Blume

et al., 1994, p. 171). Dealers who are too slow to detect and incorporate new information into

quoted prices face the risk that he buys at too high prices or sells at too low prices to informed

traders in subsequent trades. Thus, dealers who adjust stock quotes to full information levels

more quickly lose less to informed traders (Boulatov, Hatch, Johnson, & Lei, 2009, pp. 1531–

1532).

The intrinsic value of securities can change across time as a result of new information. The

new information may involve any actual or anticipated change in a factor which is likely to

affect the company’s prospects (Fama, 1965, p. 56). In an efficient market, at any point in time,

the actual price of a security will be a good estimate of its intrinsic value (Fama, 1965, p. 56).

However, due to uncertainty, the intrinsic value of a security can never be determined exactly.

Thus, there is room for disagreement among market participants concerning just what the in-

trinsic value of an individual security is, and such disagreement will give rise to discrepancies

between actual prices and intrinsic values.

If investors privately observe different information, they will typically hold distinct opinions.

Thus, arrival of asymmetric information should induce agents to trade (Serrano-Padial, 2010,

p. 1). The high levels of daily trading activity observed in many financial markets is often at-

tributed to speculation: agents hold different views about how much assets are worth (Serrano-

Padial, 2010, p. 1).

If there is no noise trading, there will be very little trading in individual assets. A person

with information or insight about individual firms will want to trade, but will realize that only

another person with information or insight will take the other side of the trade. A trader with

a special piece of information will know that other traders have their own special piece of

information, and will therefore not automatically rush out to trade (Black, 1986, pp. 530–531).

Thus there must be noise in the price system so that traders can earn a return on information

gathering (Grossman, 1976, p. 574). With noise traders in the market, it pays for those with

information to trade (Black, 1986, p. 531). People not only trade on information, but also on

noise, which is essential to the existence of liquid markets (Black, 1986, p. 529). Information

traders can never be sure if they are trading on information or noise. If information is already
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reflected in stock prices, it will be just like trading on noise (Black, 1986, p. 529).

The price of a stock reflects both information and noise that traders trade on (Black, 1986,

p. 532). Thus noise causes markets to be somewhat inefficient, but often prevents us from

taking advantage of inefficiencies (Black, 1986, p. 529).

If information flows sequentially into the market rather than simultaneous, we would see

this in our analysis as a Granger causality between return volatility and trading volume for

a significant part of the market. However, due to noise traders, this effect might be hard to

establish.

3.2.2 The role of liquidity

Liquidity traders, unlike other traders, do not trade on information. They trade for reasons

that are not directly related to the future returns of securities. A liquidity trader is often a

financial institutions or large trader where buying and selling is linked to a liquidity need or

to rebalncing a portfolio (Admati & Pfleiderer, 1988, p. 5), which according to Cremers and

Mei (2007, pp. 1772, 1778) is an essential reason for trading.

3.2.3 The role of hedging

Llorente, Michaely, Saar, and Wang (2002) developed a model with speculative traders and

hedge traders to see how they affected the return-volume relationship. According to their model,

if a speculative trader and a hedge trader both sell their stocks, the outcome will not be the same.

If a speculative trader sells, pricees will decrease and the trade will reflect negative information

about the future return of the stock. When a hedge trader trades, the price will still decrease,

but there is just a temporary low return, as the expected future payoff is still the same. Thus one

expect a higher return for the next period. Consequently, hedge traders generated a negative

autocorrelation for return, and they found the opposite for speculative traders (Llorente et al.,

2002).

4 Literature review

In this section, we survey the current literature on the volume-return relationship, liquidity-

return relationship, and the new market environment.
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4.1 The volume-return relationship

There is an old Wall Street adage stating that “It takes volume to make prices move.” Accord-

ing to Chandrapala (2011), studies of the price-volume relation dates back to the late 1950s

when Osborne (1959) laid the theoretical foundation. One of the earliest empirical studies was

performed by Granger and Morgenstern (1963), who found the connection between volume

and stock prices on the New York Stock Exchange to be negligible. Ying (1966) was the first

to document a positive correlation between volume and price change (V, ∆p), and a positive

correlation between the volume and absolute price change (V, |∆p|). In his extensive literature

review, Karpoff (1987) states that numerous empirical findings in the 60s, 70s and 80s sup-

port the positive volume-absolute price change correlation. Further, Karpoff describes several

similar findings for the relationship between volume and price change variance, price change

magnitude, price variability, absolute price change, squared abnormal return and squared price

change. However, most of these effects are of little economic impact (Karpoff, 1987).

Karpoff (1987) summarize the research conducted before 1987 with the following conclu-

sions:

1. No volume-price correlation exists

2. A correlation exists between volume and absolute price change (V, |∆p|)
3. A correlation exists between volume and price change (V, ∆p)

4. Volume is higher when prices increase than when prices decrease

He further suggests that it is likely that the relationship between volume and price changes

stems from their common ties to the flow of information or their common ties to a directing

process which can be interpreted as the flow of information (Karpoff, 1987).

In Table 2 we have summarized the data used, methodology, and results of several other

papers on the volume-return relationship.

15

09432930942691GRA 19502



Author Year Data Model Conclusion

Heteroscedasticity in stock Return Data: Volume versus GARCH effects

Lamoureux

& Lastrapes

1990 U.S. ARCH &

GARCH

ARCH and GARCH parameters are

dramatically reduced when volume is

included in the model. The results

suggest that lagged squared residuals

have little information about the

variance of return after accounting for

the rate of information flow, measured

as Vt

Stock Prices and Volume.

Gallant et

al.

1992 NYSE: D VAR,

ARCH

Contemporaneous volume-volatility

correlation. Large price movements

associated with higher subsequent

volume. Volume-leverage interaction.

Positive conditional risk-return relation

after conditioning on lagged volume.

The effects of trading activity on market volatility

Gallo &

Pacini

2000 U.S. GARCH,

EGARCH

Structure of GARCH-type models of

conditional heteroskedasticity does not

manage to capture the quick absorption

of large shocks to returns and implies in

practice a too high level of persistence

of shocks.

Does Trading Volume Contain Information to Predict Stock Returns? China’s Stock Markets

C. F. Lee &

Rui

2000 SSE, SZSE:

D

GARCH,

VAR

Positive contemporaneous correlation

between volume and returns. Trading

volume do not Granger-cause stock

return in any markets. Return

Granger-cause volume. Volume helps

predict return volatility and vice versa.

Trading volume helps predict the

volatility of returns but not the level of

returns.
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Author Year Data Model Conclusion

The Dynamic Relation between Stock Returns, Trading Volume, and Volatility

Chen et al. 2001 U.S., Asia,

Europe: D

EGARCH,

VAR

Granger causality results show that

returns cause volume and, although to

a lesser extent, that volume causes

returns. GARCH effects remains

significant when volume is included in

the model.

The Dynamic Relationship between stock returns and Trading Volume

B. -S. Lee &

Rui

2002 NY, Tokyo,

London: D

GMM,

GARCH,

VAR

Positive contemporaneous relationship

between volume and return. Trading

volume do not Granger-cause returns

on any of the markets. Returns

Granger-cause volume in the U.S. and

Japanese markets, but not int he U.K.

market. There is a positive feedback

relationship between trading volume

and return volatility in all three

markets.

The empirical relationship between stock returns, return volatility and trading volume: Austrian market

Mestel et al. 2003 WBAG GARCH,

VAR

The relationship between stock return

and trading volume is mostly negligible.

Evidence of a relationship between

return volatility and trading volume.

Trading Volume and Returns Relationship in Greek Stock Index Futures Market

Floros &

Vougas

2007 ASE, ADEX GARCH,

GMM

Findings indicate that market

participants use volume as an

indication of prices.

The Price-Volume Relationship in the Chilean Stock Market

Kamath 2008 IPSA: D Granger causality running from returns

to volume.
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Author Year Data Model Conclusion

The empirical relationship between stock return, return volatility and trading volume: Brazil

de

Mendeiros

& Van

Doornik

2006 BOVESPA:

D

GARCH,

VAR

Significant contemporaneous

relationship between return volatility

and trading volume. Stock return

depends on trading volume, not the

other way around. Higher trading

volume and return volatility

relationship is asymmetrical. GARCH

effect and high hysteresis in conditional

volatility. Granger causality between

trading volume and return volatility is

strongly evident in both directions.

The Dynamic Relationship between Price and Trading Volume: Indian Stock Market

Kumar et al. 2009 S&P CNX

Nifty Index

GARCH,

VAR

ARCH effects decline when trading

volume is included in GARCH equation.

Asymmetric Volatility and Trading Volume: The G5 Evidence

Sabbaghi 2011 G5 stock

markets: D

EGARCH The findings in this paper support prior

research that has documented a positive

association between trading volume

and return volatility. Persistence levels

do not decrease with the inclusion of

trading volume in the EGARCH.

Relationship between Trading Volume and Asymmetric Volatility in the Korean Stock Market

Choi et al. 2012 KOSPI EGARCH,

GJR-

GARCH

Trading volume is a useful tool for

predicting the volatility dynamics of the

Korean stock market.

Table 2: Literature overview

Wang, Wu, and Lai (2018) developed a model that allow for the return-volume depen-

dence to switch between positive and negative dependence regimes. They are the first to divide

their observations into four different market conditions: rising return/rising volumes, falling re-

turns/falling volumes, rising returns/falling volumes, and falling returns/rising volumes. They

find that the volatilities of return and volume are larger for the negative dependence regime

than for the positive dependence regimes. They also find support for heterogeneous investors
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with short-sale constraints. The return-volume dependence is asymmetric. Both the intensity

of information and liquidity trading are important in driving the time-varying, return-volume

dependence (Wang et al., 2018).

4.2 The liquidity-return relationship

In addition to the volume-return relationship, much literature has been dedicated to the study

of liquidity. As it is hard to have a liquid market without trading going on, volume and liquidity

are inextricably linked (e.g Benston & Hagerman, 1974; Stoll, 1978; Ødegaard, 2017, p. 30).

A market is said to be liquid if traders can quickly buy or sell a large number of shares at low

transaction costs with little price impact (Næs et al., 2008, p. 2). In other words, liquidity

includes a cost dimension, a quantity dimension, a time dimension, and an elasticity dimension.

In 1990, Lawrence Harris – in the monograph Liquidity, Trading Rules and Electronic Trading

Systems – defined liquidity along the dimensions width, depth, immediacy, and resiliency (as

cited in Ødegaard, 2017, p. 5). Trading volume is used as a measure of the market’s depth and

resiliency (PricewaterhouseCoopers, 2015, p. 19).

The level of liquidity affects expected returns because investors know that in relatively

less liquid stocks, transaction costs will erode more of the realized return (see e.g., Amihud

& Mendelson, 1986; Anthonisz & Putnin, š, 2016). Thus, investors demand a premium for less

liquid stocks and so expected returns should be negatively correlated with the level of liquid-

ity (e.g., Chordia et al., 2001, pp. 29–30). Pástor and Stambaugh (2003) found that stocks

with higher liquidity betas exhibit higher expected returns – strong evidence that market-wide

liquidity represents a priced source of risk.

Similar to the return-volume relationship, liquidity behaves and is priced asymmetrically (e.g.,

Anthonisz & Putnin, š, 2016, p. 3). By assuming symmetry, the importance of liquidity risk in ex-

plaining cross-sectional returns might be underestimated. Anthonisz and Putnin, š finds that

stocks with high downside liquidity risk compensate investors with an substantial expected re-

turn premium (2016, p. 3). This is consistent with investors disliking stocks that are more

susceptible to liquidity spirals or abandonment during flights to liquidity. Chordia, Roll, and

Subrahmanyam (2002) have found that buying activity is more pronounced following market

crashes and selling activity is more pronounced following market rises, while Karolyi et al.

suggests that common variation in individual stocks tend to rise during financial crises (2009,

p. 21). Anthonisz and Putnin, š finds that there is a greater dispersion in downside liquidity

risk during illiquid market states than liquid states (2016, p. 26). Pástor, Stambaugh, and Tay-

lor (2017, p. 2) finds that funds trade more when stocks are perceived as mispriced. As high
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liquidity leads to greater market efficiency, stocks should be more susceptible to mispricing dur-

ing times of low liquidity (Pástor et al., 2017, p. 27). As portfolio rebalancing is an essential

motive for stock trading (Cremers & Mei, 2007, pp. 1772, 1778), this might lead to “herding”

effects. This is consistent with Pástor et al. (2017, p. 31) findings of a high commonality in

turnover among funds, suggesting that periods of low liquidity might increase trading activity.

Several studies suggest that market microstructure directly influences the liquidity or avail-

able supply of a tradable asset which in turn impacts the pricing of the asset (e.g., Abrol, Chesir,

& Mehta, 2016, p. 116). Thus, market microsturcture factors can be important as determinants

of stock returns. Further, their results suggest a strong incentive for the firm to invest in in-

creasing the liquidity of the claims it issues; like going public, standardize contracts, or enlist on

exchanges (Amihud & Mendelson, 1986, p. 246). All traits known to increase trading volume.

4.3 The new market environment

During the last 15 years, trading activity has increased dramatically. Many believe this is due to

electronic, algoritmic, and – especially – high frequency trading. By all accounts, high frequency

trading has become very significant in today’s markets (Friederich & Payne, 2015). According

to Johnson et al. (2012, p. 5), the stock markets have gradually transitioned from a time when

trading occurred between humans, to a mixed phase of humans and machines to an ultrafast

mostly-machine phase where machines dictate price changes. According to Ødegaard (2017,

p. 8) the most important driving force behind the move to electronic trading is cost. Replacing

slow, mistake-prone and relatively expensive human labor with capital is a feature of most

industries and the financial industry is finally catching up. O’Hara states that the rise of HFT has

also radically changed how non-high frequency (HF) traders behave, and the markets where

they trade. The current market structure is highly competitive and very fast (O’Hara, 2015,

p. 258). The estimated amount of high frequency trading differs greatly (see e.g., Hagströmer &

Norden, 2013; Brogaard, Hendershott, & Riordan, 2014; O’Hara, 2015). There is a general, but

not universal, agreement that HFT market making enhances market quality by reducing spreads

and enhancing informational efficiency (O’Hara, 2015, p. 259). The bid-ask spread narrows,

leading to a more efficient price discovery process and increased trading volumes (Hendershott,

Jones, & Menkveld, 2011; Abrol et al., 2016). However, many are concerned that HFT induce

market instability. In a simulation study, Leal, Napoletano, Roventini, and Fagiolo (2016, p. 49)

finds that the presence of HF traders increase market volatility, and several authors points out

that HFT might lead to periodic illiquidity (see e.g., Kirilenko & Lo, 2013, p. 63; O’Hara, 2015,

p. 259; Van Kervel, 2015, p. 1).
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The ability of high frequency traders to enter and cancel orders faster than others makes it

hard to discern where liquidity exists in the markets (O’Hara, 2015, p. 258). Abrol et al. finds

that the high speeds enables sub second injections and withdrawals of liquidity (2016, p. 126),

which is faster than humans can notice and physically react to (Johnson et al., 2012, p. 2).

If the investors adapt their strategies on a slower time scale than the time scale on which the

trading process takes place, this will lead to positive autocorrelation in volatility and volume,

which we might see in our analysis (Brock & LeBaron, 1995). Further, HF orders are sent to

and from the exchange as part of complex dynamic trading strategies, and it is now common

for upward of 98% of all orders to be canceled instead of of being executed as trades (O’Hara,

2015, p. 259). From a computer perspective, HF trading algorithms in the sub-second regime

need to be executable extremely quickly and hence be relatively simple, without calling on much

memory concerning past information (Johnson et al., 2012, p. 6). There is therefore a question

of how much information such trades incorporate. O’Hara argues that with algorithmic trading,

trades are no longer the basic unit of information – the underlying orders are (2015, p. 263).

5 Data

In this section we aim to provide a thorough understanding of the data we have used. First, we

explain where we obtained the data, and how the data was calculated originally. Then, we take

a look at the sample period, and give a few comments about things to watch out for. Next, we

comment on our data preparation process, before we detail our filtering of the data.

5.1 Variables and data sources

When writing this thesis, we got access to Oslo Børs Informasjon AS / BI’s Database. From this

database, we downloaded daily returns and daily trading volume of all equity instruments on

the Oslo Stock Exchange from the start of January 1980 to the end of November 2017.

According to the notes at Oslo Børs Informasjon AS / BI’s Database, the stock returns are

“raw” returns, calculated as

Rt+1 =
Pt+1 − Pt

Pt

adjusted for dividends and corporate events like stock splits. The returns are not annualized.

Oslo Børs Informasjon AS / BI’s Database state that Pt was found using the algorithm in Figure 2.

The two main reasons why we investigate returns rather than prices is that investors are
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Closing price available?

Bid and Ask available? Use that

Use only Ask or only Bid Use average

no yes

no yes

Figure 2: Algorithm for calculating daily returns

mostly interested in returns for their investment decisions and that the properties of returns are

in general easier to handle than the properties of prices.

The volume data gives us number of trades for days were trading occurred. That is, days

with no trades are not recorded at all, and will show up in our dataset as missing values when

the return and volume data are combined.

5.2 Sample period

Our sample period is quite long, spanning 38 years of daily data. This is positive, as it allow us

to include a lot of information in our models. Further, we wanted our analysis to cover several

full business cycles. There are, however, some drawbacks. First, as detailed in the literature

review the market environment seems to have changed, and what happened in the 80s might

not be very relevant for today and the near future. The long sample might have time-varying

properties which makes it hard to draw conclusions valid for the full period. Over long sample

periods, changes in market structure, competition, technology, and activity in financial markets

can potentially generate non-stationarities in financial time series (Næs et al., 2011, p. 147).

As seen in Figure 1 in Section 2.1, there have been several technological changes at the Oslo

Stock Exchange. For example, the launch of an electronic trading system in 1988 and the

fully automatic trading system in 1999. Further, there have been changes in the availability of

information. Today, everyone can find the last stock price down to the minute online for free,

while only 18 years ago there was a 15 minutes delay for this information.

In the 38 years we have data, Norway has been through several full business cycles. We will

here comment on some extreme events for this period.

Before 1980, Norwegian economic politic had been characterized by creating a welfare

22

09432930942691GRA 19502



state and building up the petroleum industry (Steigum, 2010). Price regulations in the real

estate market was abolished in the early 80s, and restrictions on cross-border capital flows

was gradually removed during the 1980s towards a full liberalization in 1990 (Steigum, 2010,

pp. 13–14). In October 1987 the markets crashed. The main index dropped by 20% in one day

and by the end of October the Norwegian stock market had declined by 28% (Næs et al., 2008,

p. 30).

Next up was the banking crisis lasting six years from 1988 to 1993. Banks representing 95%

of all commercial bank assets in Norway became insolvent, and the government was forced to

bail out numerous financial institutions (Ongena, Smith, & Michalsen, 2003, p. 81). The event

that marked the beginning of the crisis, was an earnings report issued by Sunnmørsbanken on

March 18th, 1988, stating that it had lost all of its equity capital. The last distress announcements

occurred in 1991, but the banking sector did not really stabilize until 1993 when the banks

began to record improved results (Næs et al., 2008, p. 31). Although the banks experienced a

large and permanent downward revision in their equity capital during the period, the firms that

maintained relationships with the banks did only experience small and temporary changes in

their stock prices (Ongena et al., 2003, p. 81). Overall, the aggregate impact of bank distress

appears small (Ongena et al., 2003, p. 81), and should not affect our sample too much.

Most recently was the financial crisis of 2007-2008. In July and August 2007, the main index

at the Oslo stock exchange fell by 2.3 and 4.3 percent respectively. The drop in the market was

related to increased uncertainty surrounding the U.S. sub-prime market and potential long run

effects of this crisis (Næs et al., 2008, p. 33). However, the full impact of the crisis would not hit

Norway before 2008. According to Oslo Stock Exchange, the fall of 2008 would be characterized

as one of the worst periods for the exchange, as the value of the stocks at OSE plunged by over

40%, as can be seen in Figure 3.

5.3 Data structure and preparation

There are four main data-files from Oslo Børs Informasjon AS / BI’s Database we will rely on: a

daily returns dataset, a daily volume dataset, a dataset for identifying securities and companies

based on a set of names and ID-numbers, and a dataset with monthly observations of stock

prices and number of outstanding shares – used for filtering our data later.

Unfortunately, none of these files were in a format optimal for data analysis or for matching

the correct volume and return observations when merging the datasets. Therefore, a large

portion of our thesis was to structure these datasets, before we could combine and clean them.

23

09432930942691GRA 19502



2000 2005 2010 2015

20
0

40
0

60
0

80
0

Year

O
S

E
B

X

Figure 3: OSEBX – historical levels

According to de Jonge and van der Loo (2013, p. 7), the data preparation process may

profoundly influence the statistical statements based on the data and should be considered a

statistical operation to be performed in a reproducible manner. We have based our data prepa-

ration process on statistical literature, and provided both explanation and justification for the

steps we have taken. Documentation of this process is necessary for control and reproducibility

of our thesis, but as this part is rather lengthy, and with no direct relevance for the research

question at hand, we have detailed our data preparation process in Appendix A.

All data handling in this process was performed using the open source statistical software

R (R Core Team, 2017). All R packages used are cited in Appendix A, while the complete R-

code for importing, structuring, combining, cleaning, and filtering our data can be found in

Appendix B.

After structuring, combining, and cleaning our data, we have a dataset of almost 1.7 million

rows and 14 columns: date, year, month, ticker, last company name, last security name, ISIN,

OBI security ID, return, volume, last price of the month, number of shares outstanding at the

end of the month, the market capitalization (MCAP) at the end of the month, and a dummy

variable equal to 1 if the volume is positive and 0 if the volume is 0.

5.4 Filtering

Not all stocks traded at the OSE should necessarily be used in empirical investigations, and it

is common to apply certain filters before analyzing the data (Ødegaard, 2018, p. 17). We have
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used the following filters:

1. We only include stocks which are in the sample at the end of each month.

2. Only companies with an average market capitalization above NOK 1 Million each year.

3. A stock needs an average price above NOK 10 each year – so called “penny stocks” are

removed.

4. A stock needs an average price below NOK 8.000 each year.

5. A stock need to have at least 20 trading days a year.

6. Norwegian Savings banks – issuing equity certificates and not stocks – are removed.

7. Other non-stock equities are removed.

8. Securities with less than 500 observations in total was removed.

First, we remove observations where we lack the MCAP. As the MCAP is calculated on a

monthly basis, this means that at least one month worth of observations is removed for the

stocks in question. The missing MCAP is either due to the price lacking – which is the case the

last month of trading for companies that were delisted from the exchange – or due to numbers

of shares outstanding missing. We note that most of the cases were we lack the number of shares

outstanding are foreign companies noted on the OSE, preferred shares, or equity certificates of

small savings banks. In this process, all companies not showing up at the end of a month were

also removed from that month, thus fulfilling filter 1.

Next, we followed Ødegaard’s (2018, p. 17) suggestion to remove companies with an MCAP

below NOK 1 Million. We defined a vector of company names which at some point during our

sample period had an MCAP below NOK 1 Million, and used this vector to check the average

yearly MCAP of these companies. We found that for most of these companies, their MCAP were

low the first few years of their listing at the OSE, before they grew in size. We decided to remove

just the years of observations where the yearly average MCAP was below NOK 1 Million.

Another suggestion by Ødegaard (2018, p. 17) were to remove penny stocks. This is due to

the volatile behavior of such stocks’ returns. For the opposite reason, Chordia, Roll, and Subrah-

manyam (2011, p. 245) recommended to remove stocks with a value above USD 999. Stocks

with a yearly average price below NOK 10 or above NOK 8.000 were consequently removed

from that corresponding year.

According to Ødegaard (2018, p. 17), stocks which are seldom traded are especially prob-

lematic in empirical asset pricing investigations. Following his advise, we define seldom traded

stocks as those with less than 20 trading days a year. We created a dummy variable which were
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1 if a stock were traded at a given day – and 0 otherwise – and removed stocks for the full year

if total trading days within that year were below 20 days.

Next, we decided to remove all Norwegian Savings banks due to their different ownership

structure and issuance of equity certificates rather than stocks. We did this by filtering our

data for company and security names that included the substring “spare”. We made sure not to

remove Sparebank 1 SR-Bank post 2011, as it was transformed from a Savings bank to a com-

mercial bank. Similarly, we made sure to remove Sandsvær banken and Sparabanken Rogaland,

two Savings banks without “spare” in their name.

As suggested by Chordia et al. (2011), we wanted to remove all non-stock equities, as their

trading characteristics might differ from stocks. However, in the prior filtering process, all such

instruments had been removed, which we checked for extensively.

Last, as some statistical measures – such as skewness and kurtosis – and a number of time

series models are sensitive to small samples, we wanted to remove securities with few observa-

tions. Hwang and Valls Pereira (2006) suggest that the sample size should be at least 500 if one

wants to estimate a GARCH(1,1) model. We choose to remove all securities where we do not

have at least 500 observations – about 2 years of daily observations during our 38 year sample

period.

After filtering, we are left with the daily return and volume of 511 stocks. A full list of the

companies included in our sample can be found in Appendix C.

6 Methodology, analysis, and results

In this section we will present and interpret our results. To make sure that our results can be

validated as well as replicated, we also detail the methodology behind our analysis. We will

start with a descriptive and exploratory analysis before analyzing different models, which will

tend to both a potential contemporaneous and causal relationship.

Although our analytical approach was developed along the way dependent on our findings,

the research design was originally inspired by B.-S. Lee and Rui (2002), Mestel et al. (2003),

and de Medeiros and Van Doornik (2006). The implementation in R was occasionally inspired

by Kleiber and Zeileis (2008), Arratia (2014), and Ruppert and Matteson (2015).

As we are analyzing over 500 stocks individually, we will report summary statistics from

models and regressions from all these stocks. When discussing results and parameters, we are
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referencing the mean/median level of these unless otherwise is stated. A significance level of

5% will be used throughout the thesis.

The analysis has been performed using the open source statistical software R (R Core Team,

2017), and the full code is available in Appendix F. R packages used will be cited consecutively

as different packages may have different specifications. Complete results are available upon

request. Most tables have been created directly from R using the package stargazer (Hlavac,

2018), and shows the return and turnover in whole percentages.

6.1 Measures

6.1.1 Volume

The goal of this thesis is to explore the empirical relationship between stock return and trading

volume. One of the first decisions we had to make was to decide upon a measure for volume.

A much applied measure of trading activity is turnover – the number of shares traded over the

number of shares outstanding – sometimes referred to as relative volume (Campbell, Grossman,

& Wang, 1993; Lo & Wang, 2000). This measure was suggested by, among others, Lo and

Wang (2000), and have for example been used by Næs et al. (2008) and Skjeltorp, Ødegaard, et

al. (2009) when studying the Oslo Stock Exchange. Other measures suggested in the literature,

such as number of shares traded (Gallant et al., 1992), were considered but discarded due to

the lack of standardization. Turnover, as a relative measurement, will allow us to compare our

results between securities.

The number of shares outstanding for the stocks used in the analysis was only possible to

obtain at an end-of-month basis, while we could get number of shares traded on a daily basis.

As mentioned in Section 4.3 of the literature review, the stock markets have been through a

major change over the last couple of years with the entry of high frequency traders. Thus, we

believe that daily data would be the most interesting to analyze. As the number of outstanding

shares changes rather seldom, we decided to calculate a daily turnover measure as

turnoveri,d =
number of shares tradedi,d

number of shares outstandingi,m−1

where i denotes the company, d denotes the day and m− 1 denotes the last day of the previous

month.

Turnover will be used in all of our analysis. The terms turnover, relative volume, trading

activity, and volume will be used interchangeably.
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6.1.2 Volatility

Both the Mixed Distribution Hypothesis and the Sequential Information Arrival Hypothesis –

discussed in Section 3.2.1 – link trading volume with return volatility. The MDH model of

Clark (1973) use volume as a measure for flow of information and predict that there is a con-

temporaneous but not a causal relationship between the two variables (Ahmed, Hassan, & Nasir,

2005, p. 148). SIAH with its sequential flow of information to traders show that past trading

volume provides information on current volatility (Lu & Lin, 2010, p. 93).

To explore the return-volume relationship we need a measure for volatility. A popular, of-

ten used measured of volatility is squared return. According to Andersen and Bollerslev (1998),

squared return is an unbiased estimator for volatility. Brailsford (1996), B.-S. Lee and Rui (2002),

and Mestel et al. (2003) all use squared return as a proxy for volatility in their model, and so

will we.

6.2 Exploratory analysis

We start with a descriptive analysis of stock return and turnover for the full sample, summarized

in Table 3.

Statistic Return Turnover

Mean 0.11 0.25
Max 1, 200.00 624.77
Pctl(75) 1.36 0.20
Median 0.00 0.04
Pctl(25) −1.34 0.0004
Min −95.00 0.00

Table 3: Descriptive statistics – whole sample

The mean daily stock return equals 0.11%, with a majority of observations concentrated

around ± 1.35%, and with an extreme maximum of 1,200%. For turnover, the range goes from

0% to almost 625% for a stock a day. The mean of 0.25% is largely affected by the extreme

values, as the median and the 75th percentile expose that most stocks have a much lower

turnover.

The minimum turnover of 0% and the minimum return of -95% confirm that we did not

miss any obvious errors when cleaning the data, detailed in Section A.2.3 of Appendix A.
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6.2.1 Descriptive statistics - Stock return

(a)

Statistic Mean St. Dev. Max Pctl(75)

Mean 0.11 4.34 55.05 1.50
Max 1.30 34.86 1,200.00 3.85
Pctl(75) 0.16 5.05 51.96 1.73
Median 0.09 3.73 31.95 1.43
Pctl(25) 0.04 2.85 21.88 1.18
Min -0.49 0.85 3.24 0.47

(b)

Statistic Median Pctl(25) Min Kurtosis Skewness

Mean -0.01 -1.52 -28.22 54.58 1.98
Max 0.07 0.00 -3.13 3,044.36 47.02
Pctl(75) 0.00 -1.11 -16.43 28.27 1.74
Median 0.00 -1.41 -23.75 11.03 0.79
Pctl(25) 0.00 -1.82 -34.41 6.49 0.27
Min -0.62 -3.99 -95.00 0.84 -7.61

Table 4: Descriptive statistics – Return – Individual securities

Table 4 contains descriptive statistics for daily stock return of individual stocks throughout

the time series. That is, we calculated the statistics mean, standard deviation, maximum, 75th

percentile, median, 25th percentile, minimum, kurtosis, and skewness for all the 511 stocks and

saved this to a 511 × 9 matrix, before we calculated summary statistic of each of the columns

of the matrix. The skewness and kurtosis was calculated using the R package e1071 (Meyer,

Dimitriadou, Hornik, Weingessel, & Leisch, 2017). The skewness was calculated as

m3

s3

and the kurtosis8 as
m4

s4
− 3,

where m3 and m4 is the third and fourth sample moments respectively and s is the standard

deviation.

From Table 4 we see that the different return series have a mean (median) kurtosis of

54.58 (11.03), ranging from 0.84 to 3,044. The high excess kurtosis, way above 0, suggest a

8As is common in finance, we will use excess kurtosis – kurtosis minus three – when referring
to kurtosis.
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leptokurtic distribution for most stocks. The skewness range from -7.61 to 47.02, with a mean

(median) of 1.98 (0.79). A positive skewness indicates that the right tale is fatter and/or longer

than the left one. We found some of these values to be surprisingly high, and checked the

series manually. We found nothing suspicious, except that most series were highly concentrated

around zero.

6.2.2 Descriptive statistics - Turnover

Table 5 contains descriptive statistics for daily turnover of individual stocks throughout the time

series, calculated the same way as Table 4. Turnover has a mean (median) kurtosis of 493 (234)

ranging from 3 to 7,055, indicating a leptokurtic distribution for all stocks. As with returns

we found the very high kurtosis to be surprising and checked the series manually. We find

nothing suspicious about the series, except that a lot of them are highly concentrated around

0% turnover due to 0 trades. The skewness range from 1.5 to 80.6, with a mean (median) of

16.4 (12.9). As turnover is always non-negative, it comes as no surprise that the distribution is

skewed to the right.

(a)

Statistic Mean St. Dev. Max Pctl(75)

Mean 0.28 1.02 27.27 0.25
Max 3.54 20.43 624.77 4.44
Pctl(75) 0.36 1.33 33.69 0.32
Median 0.20 0.67 15.88 0.13
Pctl(25) 0.09 0.36 6.90 0.04
Min 0.00 0.01 0.15 0.00

(b)

Statistic Median Pctl(25) Min Kurtosis Skewness

Mean 0.10 0.04 0.00 492.97 16.40
Max 3.15 2.05 0.58 7,054.72 80.62
Pctl(75) 0.12 0.04 0.00 600.14 22.06
Median 0.03 0.01 0.00 234.17 12.89
Pctl(25) 0.00 0.00 0.00 88.76 7.68
Min 0.00 0.00 0.00 3.06 1.48

Table 5: Descriptive statistics – Turnover – Individual securities

According to Engle (2002, p. 428) there are two conventional approaches to modeling non-

negativity: ignore the non-negativity, or take the logarithms. As we have values of exactly 0 in
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our turnover data, we cannot model the logarithms without modifying the values somewhat9.

Further, most of our data – 75% – is distributed between [0, 0.2]. The already short range

does not favor taking the logarithms. Although the high skewness might argue for taking the

logarithm (Kleiber & Zeileis, 2008, p. 57), we will resort to the first approach of ignoring the

non-negativity. Instead, we will examine the outliers of the data, and discuss what to do with

them.

6.2.3 Outlier handling

There are many technical definitions of outliers, but an intuitive one is “an observation which

deviates so much from other observations as to arouse suspicions that it was generated by a different

mechanism” (Hawkins, 1980, p. 1). Outliers can create problems as they can shift the estimates

and the p-values for both linear regression and maximum likelihood estimates. Apart from

ignoring them, there are several ways to handle outliers. One is to trim the data. That is, to

simply remove observations too far from the median; one trims the tails of the distribution.

Another is to use winsorization. Winsorizing the data is to censor outliers by reducing them,

so they are more in line with the bulk of the data, instead of removing them. Since financial

time series often are heavy tailed, outliers represent valid observations and should be kept in

the sample (Hawkins, 1980, p. 5). As we want to keep the information in the tails, we decide to

use winsorization rather than trimming the series.

We are interested in the relationship between return and trading activity. As pairwise ob-

servations can be outliers together – without any of the single observations being so in their

separate distributions – we need to take correlation outliers into account. Thus, we will use the

bivariate winsorization method suggested by Khan, Van Aelst, and Zamar (Khan et al., 2007,

p. 1291). This method handle correlation outliers much better than the univariate winsorization

method.

To allow for different outlier-levels for the different stocks, we winsorized the series on a

stock-by-stock basis. The implementation in R was done using the package robustHD (Alfons,

2016). The borders of the main part of the data are defined using the median and median

absolute deviation, with a fallback option to use the mean and standard deviation for stocks

where the robust measures where too small to calculate. A normal distribution is assumed,

and the data is shrunken towards a boundary of a tolerance ellipse with coverage probability of

99%10.

9By, for example, adding a small constant (Engle, 2002, p. 429).
10The function used for winsorization introduced negative values of turnover for about 1.2%

of the observations, with a minimum value of approximately -0.0000000000000001%. As neg-
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Summary statistics of the winsorized data can be found in Table 6, 7, and 8. The statistics

are calculated the same way as in Table 3, 4, and 5.

Statistic Return Turnover

Mean −0.004 0.15
Max 29.28 12.16
Pctl(75) 1.12 0.15
Median 0.00 0.03
Pctl(25) −1.19 0.002
Min −27.73 0.00

Table 6: Descriptive statistics – whole sample – winsorized

(a)

Statistic Mean St. Dev. Max Pctl(75)

Mean -0.02 2.67 6.83 1.23
Max 0.79 8.19 29.28 3.57
Pctl(75) 0.04 3.13 8.04 1.52
Median -0.01 2.46 6.38 1.18
Pctl(25) -0.07 2.02 5.24 0.91
Min -0.55 0.75 1.79 0.10

(b)

Statistic Median Pctl(25) Min Kurtosis Skewness

Mean -0.01 -1.33 -6.84 0.71 0.06
Max 0.07 0.00 -1.79 3.85 0.63
Pctl(75) 0.00 -0.96 -5.24 0.98 0.11
Median 0.00 -1.26 -6.38 0.62 0.05
Pctl(25) 0.00 -1.65 -8.04 0.35 0.01
Min -0.62 -3.45 -27.73 -0.63 -0.30

Table 7: Descriptive statistics – Winsorized Return – Individual securities

As expected, we see that the maximum values of both turnover and return has decreased

drastically after winsorizing, and the minimum value of return has increased much as well. The

mean has also changed quite a bit for both measures, while the median – robust to outliers –

barely moved. Another striking feature of the winsorized data is that the of return has a mean

(median) kurtosis of 0.71 (0.62) which is much closer to a mesokurtic distribution than the

mean (median) of 54.58 (11.03) return used to have before winsorizing. This, together with

ative turnover values does not make economic sense and are not present in the original data,
we change these values to exactly 0.
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(a)

Statistic Mean St. Dev. Max Pctl(75)

Mean 0.16 0.17 0.87 0.24
Max 3.44 1.80 12.16 4.40
Pctl(75) 0.20 0.23 1.05 0.31
Median 0.08 0.11 0.39 0.12
Pctl(25) 0.03 0.04 0.13 0.04
Min 0.00 0.00 0.00 0.00

(b)

Statistic Median Pctl(25) Min Kurtosis Skewness

Mean 0.10 0.04 0.00 17.50 2.03
Max 3.15 2.05 0.58 2,007.19 40.69
Pctl(75) 0.12 0.04 0.00 -0.02 0.96
Median 0.03 0.01 0.00 -0.63 0.85
Pctl(25) 0.01 0.00 0.00 -1.19 0.68
Min 0.00 0.00 0.00 -2.00 0.00

Table 8: Descriptive statistics – Winsorized Turnover – Individual securities

the new mean (median) skewness of 0.06 (0.05), looks much closer to a normal distribution

than before winsorizing.

The kurtosis and skewness of turnover is also greatly reduced after winsorizing. As seen by

the maximum kurtosis, some turnover series still have a very leptokurtic distribution. This seems

to be because the series is so highly concentrated around 0% in turnover (due to many days of 0

trades). The 75th percentile, median, and minimum tells us that a lot of the winsorized turnover

series have a platykurtic distribution with very thin tails compared to the normal distribution.

Some of these cases seems to be because as the outliers where compressed down to the bulk of

the data, the distribution became rather uniform.

Hereafter, we will use the winsorized data without specifying that it is winsorized.

6.2.4 Jarque-Bera test for normality

Financial time series tend to display non-normal tendencies, which we will check our data for as

well. The Jarque-Bera (JB) test takes into consideration skewness and kurtosis when checking if

the distribution can be classified as normal. A normal distribution have expected skewness and

expected excess kurtosis of 0.
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The test is defined as

H0 : data is normally distributed

Ha : data is not normally distributed

With test statistic

JB =
n

6

[
(
√
b1)2 +

(b2 − 3)2

4

]

where
√
b1 is the skewness, b2 is the kurtosis, and n is the number of observations (Jarque

& Bera, 1987). Under the null hypothesis, the JB statistic asymptotically has a chi-squared

distribution with two degrees of freedom.

The test was calculated using the R package normtest (Gavrilov & Pusev, 2014). The

package use 2,000 Monte Caro simulations to estimate the P-values.

Although the kurtosis and skewness of the return looked rather normal, we find that the

null hypothesis is rejected for all but 130 stocks at a 1% significance level. Thus, only about

1/4 of our sample have normally distributed returns. For the turnover, the null hypothesis for

normality was rejected for all stocks at a 1% significance level.

We will need to take this limitation into account when choosing models and methodology

going forward.

6.2.5 Ljung-Box test for serial dependence

It is often found in financial research that returns do not exhibit significant serial dependence

while volume measures – such as turnover – do. We apply The Ljung-Box test (Ljung & Box,

1978) to test for autocorrelation in our data. The test is defined as

H0 : data is independently distributed

Ha : data is not independently distributed

With test statistic

Q = n(n+ 2)
m∑
k=1

(r̂k)2

n− k

where k is the lag, m is the maximum of lags tested, n is the number of observations, and r̂
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is the correlation between the series at time t and time t− k. Under H0, the test distribution is

Q ∼ χ2
m

and H0 is rejected if

Q > χ2
1−α,m

where 1− α is the quantile, with a significant level of α.

In our analysis we have used α = 5% and m = 10, and thus rejecting H0 if

Q > χ2
0.95,10 = 18.307

By a Ljung-Box test, we found autocorrelation in the return for 79% of the stocks within

the first 10 lags at a 5% significance level. Next, we found that the stocks which displayed

autocorrelation had an average of 1.4 significant lags, with a median of 1. Thus, most return

series display significant autocorrelation, but mainly of low order.

Further, by a Ljung-Box test, we found a significant turnover autocorrelation for 99% of the

stocks within the first 10 lags at a 5% level. When checking, we found that the turnover series

had many more significant lags than return.

Although both the stock return and the turnover series display persistence, it is much

stronger for turnover than return. This indicates that past trading activity can be used to predict

future trading activity to a greater extent than past values of return can predict future returns.

If the variables can be predicted, they cannot be completely random. This would argue against

the efficient market hypothesis, as described in Section 3.1.

6.2.6 Unit root

As mentioned in Section 5.2, long sample periods can potentially generate non-stationarities in

financial time series (Næs et al., 2011, p. 147). Generally data have to be stationary before

any empirical analysis, and we are later going to use models like the Vector Autoregressive

(VAR) model, which is sensitive to this. Hence we need to test whether our time series are

non-stationary.

To do so, we test for a unit root by using a Phillips-Perron (P-P) test and an augmented

Dickey-Fuller (ADF) test, where a rejection of the null hypothesis indicates that the time series
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are stationary. The P-P test is more robust than the ADF to a wide range of serial correlation

and time-dependent heteroskadesticity (B.-S. Lee & Rui, 2002, pp. 57–58), while there is a good

deal of evidence that the ADF outperforms the P-P test in finite samples (Davidson & MacKinnon,

1999, p. 613).

The P-P test was developed by Phillips and Perron (1988) and is based upon one of the three

following regression models (Banerjee, Dolado, Galbraith, Hendry, et al., 1993, p. 109-110)

yt = pyt−1 + ut

yt = µ+ pyt−1 + ut

yt = µ+ γ(t− T/2) + pyt−1 + ut

where the null hypothesis, H0 : p = 1, is tested against the one-sided alternative hypothesis,

Ha : p < 1.

The R package tseries (Trapletti & Hornik, 2018) was used in testing for unit root by P-P

test. The test has a general regression equation which include the constant and linear trend, µ

and γ, similar to the last equation above.

For both stock return and turnover, the null hypothesis of the P-P test was rejected for

all companies at a 5% level. No individual stock return or turnover series displayed non-

stationarity, according to this test.

The Dickey-Fuller test was developed by Dickey and Fuller (1979) and later modified to

fit larger time series. The difference between the Dickey-Fuller test and augmented Dickey-

Fuller test is that the regression has been augmented with the lagged changes of yt. The aim

of including lagged values is to control for any serial correlation in ∆yt (Wooldridge, 2016,

p. 576). There are three possible models

yt = γyt−1 + γ14yt−1 + · · ·+ γp4yt−p + εt,

yt = µ+ γyt−1 + γ14yt−1 + · · ·+ γp4yt−p + εt,

yt = µ+ βt+ γyt−1 + γ14yt−1 + · · ·+ γp4yt−p + εt,

with lag length p (Greene, 2012, p. 994; Banerjee et al., 1993).

The null hypothesis is that there is a unit root present in the sample, H0 : γ = 1, and is
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tested against the alternative hypothesis of no unit root, Ha : γ < 1.

An alternative specification is to subtract yt−1 from both sides of the equation to obtain

4yt = µ+ βt+ γ∗yt−1 +

p∑
j=1

φj4yt−j + εt,

where

φj = −
p∑

k=j+1

γk and γ∗ =

( p∑
i=1

γi

)
− 1

and the null hypothesis is H0 : γ∗ = 0 against the alternative hypothesis Ha : γ∗ < 0.

One R package for running an ADF test is tseries (Trapletti & Hornik, 2018). In this

package, the general regression equation include a constant and a linear trend, µ and βt, like

the last of the three equations above. We want to run the ADF test without the linear time trend,

βt, similar to the second of the three equations above.

The R package aTSA (Qiu, 2015) has an ADF test with the constant but without linear trend.

However, the output from this test did not have the wanted format. The solution was to create

a custom function in R by modifying the script behind the ADF test function in the tseries

using inspiration from aTSA. The critical values for an ADF test changes based on what model

specification is used. Hence a part of rewriting the function was to change the critical values

according to the ones found in Table 4.2(b) p. 103 in Banerjee et al. (1993). The function can

be found in Appendix D.

The interpretation if we can reject H0 with the intercept-only specification of the ADF is that

yt is stationary around a constant – there is no long term growth in the data.

We found that for stock return the null hypothesis was rejected for all companies at a 5%

level. None of the return series display a unit root, according to the ADF test.

For the turnover series we found that for six companies the null hypothesis of the ADF test

could not be rejected at a 5% level. To figure out why these companies where non-stationary

we created plots of their volume, raw turnover, and winsorised turnover. Exploring every indi-

vidual plot did not reveal any single incident or pattern that could have explained why the null

hypothesis was not rejected. However, all the series had some periods of high trading volume

and similarly high turnover periods. After winsorizing, these periods with many outliers where

reduced so that the stock would display periods of the same high turnover, which might explain

the results from the ADF test. As it was only six out of 511 companies that the null hypothesis
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could not be rejected for, we decided to exclude them from our sample. The loss of information

from removing these six companies seems like a fair tradeoff to stay on the safe side with regard

to statistical inference.

As earlier studies have found trends in volume data, we were a bit puzzled that we did not

find a unit root. We decided to test our raw volume data, but found more or less the same

results. Then, we aggregated our volume data for each stock by date and plotted it against

time. The plot showed a clear trend. As a result we decided to test the accumulated volume

for stationarity using an ADF test with both constant and linear time trend. What we found was

that the null hypothesis of non-stationarity could not be rejected. Thus the market as a whole

has a trend in volume and a unit root, but individual stocks do not.

As our analysis is based on daily individual time series we do not need to detrend turnover.

However, as so many earlier studies have shown a trend in volume, we decided to remove a

linear trend from our volume data using the pracma package in R (Borchers, 2018).

Hereafter, we will use the detrended turnover, without specifying that it is detrended.

6.3 Cross-correlation analysis

Being done with the exploratory analysis, a cross-correlation analysis is the first step in investi-

gating the relationship between stock return and turnover.

We used the formula below to calculate the cross-correlation between two time series

ρ(yt, xt−j) =
Cov(yt, xt−j)

σ(yt)σ(xt−j)

where yt and xt are two time series at time t, and j is the lag/lead between them.

Table 9 display a summary of the cross-correlation between return and turnover for each

stock, while Figure 4 shows the full distribution. There is a low but mostly positive contem-

poraneous correlation between stock return and turnover. Although the correlation is low, the

contemporaneous relationship between stock return and turnover will be further investigated.

According to Kozak (2009), even a weak correlation can be of importance if the expectation was

for there to be none – like predicted by the EMH detailed in Section 3.1.

Compared to the contemporaneous correlation, there is an even weaker but mostly positive

correlation between lagged/lead turnover and stock return. The lagged turnover correlation is

slightly more positive than the lead turnover.
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Statistic j = −4 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 4

Max 0.12 0.10 0.11 0.15 0.29 0.20 0.17 0.14 0.12
Pctl(75) 0.01 0.02 0.02 0.05 0.10 0.07 0.05 0.04 0.03
Median −0.001 0.001 0.01 0.03 0.06 0.03 0.02 0.02 0.01
Pctl(25) −0.02 −0.01 −0.01 0.01 0.02 0.01 0.004 0.001 −0.003
Min −0.11 −0.12 −0.08 −0.17 −0.11 −0.11 −0.07 −0.08 −0.09

Table 9: Cross-Correlation between Return and detrended turnover: Corr(Rt, Vt−j)

Under the null hypothesis, the cross-correlation coefficients are asymptotically normal with

a variance of approximately 1/n, where n is the length of the series. At a 5% significance level,

correlations larger in magnitude than approximately ±1.96/
√
n are deemed significant (Cryer

& Chan, 2008, p. 261). The number and percentage of significant correlations for each lag can

be found in Table 10.

Significant j = −4 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 4

Number 21 25 24 138 291 188 117 90 65
Percentage 4.16 4.95 4.75 27.33 57.62 37.23 23.17 17.82 12.87

Table 10: Securities with cross-correlation different from 0 at 5% significance level

Table 10 shows that the correlation is significantly different from 0 for almost 58% of the

securities in the contemporaneous relationship. Furthermore, the lagged turnover is more sig-

nificant than the leading.

It is often stated that price variation tend to increase if there is high trading activity, thus

there might be a link between trading activity and higher order moments of stock returns.

Table 11 display a summary of the cross-correlation between return volatility and turnover,

where the proxy for return volatility is squared return. The full distribution of the cross-

correlation can be seen in Figure 5. The contemporaneous correlation between return volatility

and turnover has a positive median value. The upper bound is higher compared with the con-

temporaneous correlation between stock return and turnover, seen in Table 9, suggesting that

this relationship is stronger for some companies. The potential relationship will be further in-

vestigated in the next section.

The correlation between lagged turnover and return volatility is for the majority of stocks

positive, with relative low negative values compared to the positive ones. For lead turnover and

return volatility the correlation is mostly negative for all but the first lead.

Thus Table 11 indicate that there might be a contemporaneous and/or causal relationship
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Figure 4: Histogram Log Volume – all stocks
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between return volatility and turnover. The next sections will further investigate these findings.

Statistic j = −4 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 4

Max 0.23 0.23 0.23 0.24 0.35 0.41 0.41 0.24 0.25
Pctl(75) 0.02 0.02 0.02 0.04 0.10 0.10 0.07 0.05 0.05
Median −0.01 −0.01 −0.01 0.003 0.04 0.04 0.02 0.01 0.01
Pctl(25) −0.03 −0.03 −0.03 −0.02 0.01 −0.003 −0.01 −0.02 −0.02
Min −0.13 −0.13 −0.13 −0.13 −0.09 −0.09 −0.10 −0.10 −0.11

Table 11: Cross-Correlation between Squared Return and detrended Turnover: Corr(R2
t , Vt−j)

Significant j = −4 j = −3 j = −2 j = −1 j = 0 j = 1 j = 2 j = 3 j = 4

Number 119 116 137 143 241 242 196 165 156
Percentage 23.56 22.97 27.13 28.32 47.72 47.92 38.81 32.67 30.89

Table 12: Securities with cross-correlation different from 0 at 5% significance level

Jointly, the findings in this section report stronger results for the simultaneous correlation

between the variables than for the subsequent correlation. Although Table 9 and Table 11 report

mostly a low correlation, this does not rule out any relationship.

6.4 Contemporaneous relationship

As the cross-correlation showed some correlation between return, return volatility, and turnover

in the same period, we explore the contemporaneous relationship further.

6.4.1 Multivariate model

First, we test a multivariate model suggested by B.-S. Lee and Rui (2002), which studies the

contemporaneous relationship between two time series variables. The model is applied by,

among others, Mestel et al. (2003) and de Medeiros and Van Doornik (2006), and consist of the

following two equations

Rt = b0 + b1Vt + b2Vt−1 + b3Rt−1 + εt

Vt = a0 + a1Rt + a2Vt−1 + a3Vt−2 + ut
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Figure 5: Cross-correlation volatility and volume
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where Vt and Rt are the volume and the return at time t. Further, ai and bi are model

coefficients for i = 1, 2, 3 and εt and ut are white noise error terms.

According to economic theory and findings from other markets, trading activity is affecting

return and return is affecting trading activity. Thus, we might have a simultaneous bias and

problem with endogeny in the model. To avoid this, we estimate the simultaneous equation

model using the two-stage least squares (2SLS) instrumental variable approach, which is a

structural estimation used to establish whether a model derived from theory has a close fit

to the sample data (Dion, 2008, p. 365). The 2SLS works by first regressing equation 1 and

obtaining the fitted values for Return. Then these fitted values for Return from regression 1 are

used as input to the second regression. A summary of the results can be found in Table 13 and

Table 14, while Figure 6 and 7 shows the distribution of the t-statistics from the regressions.

The t-statistics give an idea of the direction and the significance of the effect. The red bands in

Figure 6 and 7 indicates a 5% significance level.

Statistic b0 b1 b2 b3

Max 0.99 1, 034.47 202.39 0.17
Pctl(75) 0.05 2.37 1.45 −0.03
Median −0.01 1.26 0.21 −0.14
Pctl(25) −0.08 0.40 −0.44 −0.24
Min −0.61 −117.90 −582.72 −0.40

Table 13: Rt = b0 + b1Vt + b2Vt−1 + b3Rt−1 + εt

Statistic a0 a1 a2 a3

Max 0.39 3.90 7.73 0.41
Pctl(75) 0.003 0.37 0.37 0.17
Median 0.0000 0.07 0.27 0.10
Pctl(25) −0.003 0.004 0.16 0.03
Min −0.28 −3.78 −2.87 −0.07

Table 14: Vt = a0 + a1Rt + a2Vt−1 + a3Vt−2 + ut

At a 5% significant level, parameter b1 was significant for 56.8% of the 505 stocks in sample.

The parameter b1 is positive for the majority of stocks, meaning that – all else equal – an increase

in turnover will be accompanied by increased stock returns. The parameter b2 was significant

for 29.7% of the stocks, thus an increase in turnover will be followed by an increase in return

for some companies. Lagged stock return b3 was significant for 76.2%, hence yesterdays stock

return have a significant effect on todays stock return.

Parameter a1, is significant for 90.5% of all stocks. For almost all stocks it is then true
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Figure 6: t-statistics from Lee & Rui’s equation 1
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that an increase in stock return go together with an increase in tturnover. Taking b1 and a1

together, it confirm the cross-correlation analysis that there are evidence that point towards a

contemporaneous relation between stock return and turnover.

For lagged turnover, both a2 and a3 has a significant impact on turnover with 95.6 and

79.2% significant cases respectively. Hence a2 and a3 document strong time dependency for the

turnover time series, consistent with the Ljung-Box results in Section 6.2.2.

Our results here provide evidence of a contemporaneous relationship between turnover and

stock return, supported by earlier findings from the cross-correlation analysis. This is similar to

B.-S. Lee and Ruis (2002) and de Medeiros and Van Doorniks (2006) findings from the US, UK,

Japanese, and Brazilian stock market, but contradicting to what Mestel et al. (2003) found for

the Austrian stock market. It is interesting to see that Return affect Volume and Volume affect

Return on the Norwegian stock exchange.

6.4.2 Multivariate model with dummy

Empirical research often report that when trading acticity is high, price fluctuations tend to

increase, especially in bullish markets. This suggests that there exist a relationship between

higher order moments of stock return and trading activity. We check for this by means of

another multivariate model.

The following model is an extension of the model by Brailsford (1996), among others used

by Mestel et al. (2003, p. 9) and de Medeiros and Van Doornik (2006, p. 4). The model regress

the contemporaneous relationship between turnover and volatility, using squared return as a

proxy for volatility. As Brailsford (1996), we added a dummy variable to account for the degree

of asymmetry. The regression is given by

Vt = α0 + φ1Vt−1 + φ2Vt−2 + α1R
2
t + α2DtR

2
t + et

where Dt denotes a dummy variable that equals 1 if the corresponding return Rt is negative

and 0 otherwise. Vt is the turnover at time t and R2
t is the squared return as a proxy for volatility.

The parameter et is a white noise error term.

The lagged values of Vt up to lag 2 are included to avoid a problem with serially correlated

residuals, as documented by Brailsford (1996).

With this model, we care mostly about catching the degree of asymmetry, and not about any
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potential endogeny.

A summary of the parameter variables can be seen in Table 15, and histograms of the t-

statistics can be seen in Figure 8. Parameter φ1 and φ2 tells a similar story to what we saw in

Section 6.4.1; turnover is highly dependent on past tturnover. At a 5% level, φ1 was significant

for 97.6% and φ2 for 92.9% of the time series.

Statistic α0 φ1 φ2 α1 α2

Max 0.03 0.66 0.41 0.03 0.002
Pctl(75) 0.003 0.37 0.23 0.001 −0.0000
Median 0.001 0.30 0.18 −0.0000 −0.0004
Pctl(25) −0.002 0.23 0.13 −0.0003 −0.002
Min −0.16 −0.004 −0.06 −0.01 −0.03

Table 15: Vt = α0 + φ1Vt−1 + φ2Vt−2 + α1R
2
t + α2DtR

2
t + et

The zero value of parameter α1 tells us that turnover is unaffected by changes in volatility.

This term is symmetric, so the effect is regardless of whether the stock returns are falling or

increasing. The coefficient is significant at a 5% level for 59.2% of the stocks.

Parameter α2 measures the asymmetry in the relationship. The negative parameter is sig-

nificant in 41.2% of the cases, meaning that for around 2/5 of the stocks in our sample there

is an asymmetrical relationship between turnover and stock return. With a negative but small

parameter and the given dummy specifications, turnover increases somewhat more when stock

return increases than when stock return decreases. This is similar to Brailsford’s (1996) findings

that α2 is generally negative but insignificant.

Mestel et al. (2003) and de Medeiros and Van Doornik (2006) have reported similar find-

ings for the contemporaneous relationship between volume and volatility, as they report that

increased prices induce more trading volume than price decrease.

6.4.3 Conditional volatility and trading volume

The alphabet soup of volatility models

continually amazes.

– Robert Engle (2002)

As there are indications of a contemporaneous relationship between turnover and volatility,

turnover might be a factor in the serial correlation of volatility. The contemporaneous relation-
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ship between turnover and volatility is of special interest as both the MDH and the SIAH use

trading activity as a measure for the flow of information.

One of the stylized facts found in most financial time series is the clustering of volatility

– or conditional heteroskedasticity11. The standard warning in the presence of heteroskedas-

ticity is that the regression coefficients for an ordinary least squares (OLS) regression are still

unbiased, but the standard errors and confidence intervals estimated by conventional proce-

dures will be too narrow, giving a false sense of precision. Further, volatility – and the fore-

casting of it – is of great importance to financial economics as it among others is used as

input in the Black-Scholes formula. Therefore, the autoregressive conditional heteroskedas-

ticity (ARCH) model by Engle (1982), and its extension into the generalized ARCH (GARCH)

model by Bollerslev (1986), are often used. Instead of considering the heteroskedasticity as a

problem to be corrected, ARCH and GARCH models treat it as a variance to be modeled. The

GARCH model, like the ARCH model, have a weighted average of past squared residuals, but in-

cludes declining weights that never reaches zero (Engle, 2001). Further expansions, such as the

EGARCH model, were later developed as more evidence indicated that the direction of returns

affect volatility (Engle, 2001, p. 166).

All ARCH-type models have been implemented in the analysis using the R package rugarch (Ghalanos,

2018).

6.4.4 GARCH(1,1)

The ARCH model by Engle (1982) was the first model of conditional heteroskedasticity. Accord-

ing to Engle (2004, p. 406), he was looking for a model that could assess the validity of the

conjecture of Milton Friedman that the unpredictability of inflation was the primary cause of

business cycles.

The ARCH model seeks to forecast the conditional variance by modeling it as an AR(q)

process of earlier squared error terms.

11Volatility clustering: When a series exhibit some periods of low volatility and some periods
of high volatility. If the variance is small in one period, it tend to be small in the next period as
well, and vice versa. This implies that the series displays time-varying heteroskedasticity (Stock
& Watson, 2015, p. 710, 712).
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The full ARCH(q) model is given by

yt = β1 + β2x2,t + β3x3,t + · · ·+ βkxk,t + εt

εt|It−1 ∼ N(0, σ2)

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q

where the first equation is the mean model, the second gives the error distribution, and the last

equation is the conditional variance model.

According to Engle (2002, pp. 425–426), it took years before the idea of ARCH took off,

but when it did, one of the first extentions would also become one of the most influential – the

GARCH model by Bollerslev (1986).

Empirically, the ARCH(q) model often require a very large value of q. Therefore, the GARCH

model allow the conditional variance to be dependent upon its previous own lags. This is the

same as modeling the conditional variance as an ARMA(p,q) process.

The full GARCH(p, q) model is given by

yt = φ1 + φ2x2,t + φ3x3,t + · · ·+ φkxk,t + εt

εt|It−1 ∼ N(0, σ2)

σ2
t = α0 + α1ε

2
t−1 + α2ε

2
t−2 + · · ·+ αqε

2
t−q + β1σ

2
t−1 + β2σ

2
t−2 + · · ·+ βpσ

2
t−p

The parameter restrictions are α0 > 0, αj ≥ 0 for j = 1, . . . , q and βj ≥ 0, for j = 1, . . . , p.

Further, at least one βj has to be strictly positive for the model specification to be a GARCH

model.

A much applied specification of the GARCH model is the GARCH(1,1), which model the

conditional variance as

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1

In the GARCH(1,1) model, α1 measures the reaction of conditional volatility to market

shocks. Volatility is sensitive to market events if α1 is relatively large (above 0.1). Parameter

β1 measures the persistence in conditional volatility irrespective of anything happening in the

market. If β1 is relatively large (above 0.9) it takes a long time for the volatility to die out

following a crisis in the market (Alexandar, 2008).
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The unconditional variance of a GARCH(1,1) model is given by

V ar(εt) =
α0

1− (α1 + β1)
, for (α1 + β1) < 1

Taken together, (α1 +β1) decides the rate of convergence of the conditional volatility to the long

term average level. When (α1 + β1) > 1 we have non-stationarity in variance, so the forecasted

conditional variance will not converge to the unconditional variance as the horizon increase12.

As we found that the return series displayed significant serial correlation of low order in

Section 6.2.5, we model our return generating process as an AR(1) model. We use normally

distributed errors and model the variance process as a GARCH(1,1) model with volume as an

external variable. This is similar to models used by among others Mestel et al. (2003), Ahmed

et al. (2005), and de Medeiros and Van Doornik (2006). Our model is given by

Rt = φ1 + φ2Rt−1 + εt

εt|It−1 ∼ N(0, σ2)

σ2
t = α0 + α1ε

2
t−1 + β1σ

2
t−1 + ζ1Vt

Models with volume as external regressor are sometimes referred to as Volume Augmented (VA)

models, making this an AR(1)–VA–GARCH(1,1) model.

We will test two versions of this model: one version with the restriction ζ1 = 0, making

this an AR(1)–GARCH(1,1) model, and one unrestricted version. The aim is to see whether

persistence in volatility decreases when volume is included. The MDH predict that the GARCH

effect will disappear when turnover is included in the model. If it does, it will be evidence

in favor of the MDG being the correct hypothesis of how information flow into the market.

However, if the persistence in volatility does not decrease noticeably, as predicted by the SIAH,

it will be evidence in favor of this hypothesis.

Summary statistics of the restricted model can be found in Table 16 and summary statistics

of the unrestricted model can be found in Table 17.

In the restricted version of the model, the α0 was significant for 79.4% of the stocks, the α1

was significant for 97.8% of the stocks, and the β1 was significant for 100% of the stocks.

As the mean (median) α1 is 0.10 (0.09), the conditional volatility is sensitive to market

shocks, but the persistence irrespective of anything happening in the market, measured as β1,

12The case where (α1 + β1) = 1 is termed integrated GARCH (IGARCH) and has given rise to
a model of its own.
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Statistic α1 β1 (α1 + β1)

Mean 0.10 0.86 0.96
Max 0.28 1.00 1.00
Pctl(75) 0.13 0.92 0.99
Median 0.09 0.88 0.98
Pctl(25) 0.07 0.83 0.95
Min 0.00 0.38 0.53

Table 16: Restricted model: AR(1)–GARCH(1,1)

is just below the relatively large threshold of 0.90 with its mean (median) value of 0.86 (0.88).

However, although the persistence is not classified as large it is still strong. Together, α1+β1 has

a mean (median) of 0.96 (0.98), just below the relatively strong definition of 0.99 (Alexandar,

2008).

Statistic α1 β1 (α1 + β1)

Mean 0.10 0.85 0.95
Max 0.37 1.00 1.14
Pctl(75) 0.13 0.92 0.99
Median 0.10 0.88 0.98
Pctl(25) 0.07 0.82 0.95
Min 0.00 0.00 0.05

Table 17: Unrestricted model: AR(1)–VA–GARCH(1,1)

In the unrestricted version of the model, the α0 was significant for 70.7% of the stocks, α1

was significant for 94.7% of the stocks, β1 was significant for 98.2% of the stocks, and ζ1 was

significant for 2.2% of the stocks.

Although (α1 + β1) decreased for 45.5% of the stocks when we went from a restricted to an

unrestricted model, adding the volume parameter to the model did not decrease the conditional

volatilities reaction to market shocks. α1 stayed more or less unchanged with a mean (median)

value of 0.10 (0.10). The same goes for β1, which has a mean (median) value of 0.85 (0.88),

very similar to the restricted model. Furthermore, the turnover coefficient was only significant

for 2.2% of the stocks. These findings are very similar to those of Ahmed et al. (2005), and

provide evidence against the MDH.

In the unrestricted model, some of the regressions yielded α1 + β1 > 1. This suggests that

these processes are not covariance stationary. This is considered an undesirable trait, and could

indicate a problem with our model. There could be several explanations for why we got these

results. According to Teräsvirta (2009, p. 24), the standard GARCH model often exaggerates the
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persistence in volatility. Malmsten (2004, p. 13) and Shephard (1996, p 10, 14) report that the

probability for estimating this persistence to be greater than one is substantial in small samples.

This could be a problem for our shortest return series, where we have only 500 observations.

However, it is unlikely to be a problem for the larger series, having daily observations for about

38 years. These series might suffer from another problem, as the assumption that GARCH-

models have constant parameters might not be appropriate for such long samples (Mikosch &

Stărică, 2004a, 2004b).

Further, the models could be misspecified. The variance process could perhaps be better ex-

plained by another GARCH-process, such as the commonly adopted GARCH(1,2) or GARCH(2,1)

(Bollerslev, Chou, & Kroner, 1992, p. 22), or the mean process could be unsuited for being mod-

eled as an AR(1)-process. The assumption of normally distributed errors could also be too

simplistic, and Nelson (1991, p. 352) suggest using the Generalized Error Distribution (GED)

instead. The GED contains the Normal distribution as a special case, but also allow for fatter

tails.

Hamilton and Susmel (1994) argue that GARCH-models overestimate the persistence of

volatility because they cannot describe large economic shocks properly. As described in Sec-

tion 5.2, our sample spans the last 38 years and includes shocks such as the October 1987 crash

and the 2007 financial crisis, which might make the GARCH(1,1)-model overestimate (α1 +β1).

Malmsten (2004, p. 13) found that if a GARCH(1,1) model is fitted to data generated by

an exponential GARCH(1,1) process, there is a large probability of ending up with α1 + β1 ≥ 1.

Thus, we decided to test an exponential GARCH model as well.

6.4.5 EGARCH(1,1)

The exponential GARCH (EGARCH) model was first developed by Nelson (1991) to accom-

modate his three criticisms of the GARCH model: the GARCH model does not allow for an

asymmetric response to shocks, the GARCH model impose parameter restrictions that are often

violated empirically, and interpreting whether shocks to the conditional variance “persist” or not

is too hard in GARCH models.

53

09432930942691GRA 19502



The full EGARCH(p,q) model may be written as

yt = φ1 + φ2x2,t + φ3x3,t + · · ·+ φkxk,t + εt

εt|It−1 ∼ N(0, σ2)

log(σ2
t ) = α0 +

q∑
j=1

gj(zt−j) +

p∑
j=1

βj log(σ2
t−j)

where gj(zt−j) = αjzt−j + γj
(
|zt−j | − E(|zt−j |)

)
and zt = εt

σt
.

As with the GARCH model, the first order EGARCH is most often used in research (Malmsten

& Teräsvirta, 2010, p. 447). The EGARCH(1,1) is specified as

log(σ2
t ) = α0 + α1zt−1 + γ1

(
|zt−1| − E(|zt−1|)

)
+ β1 log(σ2

t−1)

Unlike the linear GARCH(1,1) model, there are no restrictions on the parameters α1 and β1

to ensure non-negativity of the conditional variances (Bollerslev et al., 1992, p 12).

In the EGARCH(1,1) model, γ1 measures the magnitude effect – or the symmetric effect –

of zt−1 on log(σ2
t ). All other equal, the effect is positive (negative) when the magnitude of zt−1

is larger (smaller) than its expected value.

The parameter α1 measures the asymmetry in the relationship. If α1 < 0, then positive

shocks generate less volatility than negative shocks, and so if α1 > 0 positive news are more

destabilizing than negative news. If α1 = 0 then the model is symmetric. β1 measures the

persistence of shocks and corresponds to (α1 + β1) in the GARCH(1,1) model.

We test the following EGARCH(1,1) model

log(σ2
t ) = α0 + α1zt−1 + γ1(|zt−1| − E(|zt−1|)) + β1log(σ2

t−1) + ζ1Vt

where ζ1 is restricted to equal zero in the first regression.

The summary of the restricted model can be found in Table 18.

We found α0 to be significant for 92.5% of the stocks, α1 to be significant for 61% of the

stocks, β1 to be significant for 99.8% of the stocks, and γ1 to be significant for 97.2% of the

stocks.

As mostly all stocks had a significant positive γ1 and a significant negative α1, we conclude
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Statistic α0 α1 β1 γ1

Mean 0.12 −0.04 0.94 0.19
Max 1.54 0.22 1.00 0.57
Pctl(75) 0.13 −0.02 0.98 0.24
Median 0.07 −0.03 0.96 0.18
Pctl(25) 0.03 −0.06 0.92 0.12
Min −0.005 −0.23 0.45 −0.12

Table 18: Restricted exponential model: AR(1)–EGARCH(1,1)

that negative shocks have a higher impact on conditional volatility than positive shocks, all else

equal.

Next, we wish to add volume to our model, to investigate how the parameters will change.

A summary of the unrestricted model can be found in Table 19.

Statistic α0 α1 β1 γ1 ζ1

Mean 0.26 −0.04 0.85 0.25 −4.81
Max 4.43 0.22 1.00 8.21 17.57
Pctl(75) 0.24 −0.01 0.98 0.27 −0.002
Median 0.09 −0.03 0.95 0.19 −0.11
Pctl(25) 0.04 −0.05 0.86 0.13 −0.70
Min −0.01 −1.17 −0.44 −0.06 −100.00

Table 19: Unrestricted exponential model: AR(1)–VA–EGARCH(1,1)

We found α0 to be significant for 91.1% of the stocks, α1 to be significant for 51.9% of the

stocks, β1 to be significant for 97.2% of the stocks, γ1 to be significant for 97.4% of the stocks,

and ζ1 to be significant for 52.7% of the stocks.

As before, mostly all stocks had a significant positive γ1 and a significant negative α1. Again,

we conclude that negative shocks have a higher impact on conditional volatility than positive

shocks, all else equal. As turnover was added, the mean of α1 stayed the same, but γ1 increased.

We note that parameter β1 has a lower value and thus the persistence of shocks have a

weakened effect on the conditional volatility when volume is included in the model. The β1

declined for 71.1% of the stocks when we included volume in the model. Also, the mean of the

constant parameter α0 more than doubled in absolute value, while the median only changed

somewhat.

As the effect of past conditional volatility on present conditional volatility is of great interest,
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we calculated the half-life of β1 using the formula

HL =
log(0.5)

log |β1|

Our findings are summarized in Table 20. We found that the median persistence was re-

duced from 19.30 to 12.56 for half-value when turnover was included. This means that some of

the persistence in volatility attributed to β1 in the restricted model can be explain by the flow of

information, as proxied by turnover.

Statistic Restricted Unrestricted

Max 41, 017, 099.00 65, 085, 961.00
Pctl(75) 37.29 29.14
Median 19.30 12.56
Pctl(25) 8.80 4.51
Min 0.87 0.08

Table 20: Summary statistic half-life

6.5 Causal relationship

If there is a causal or dynamical relationship between two variables, one variable tend to in-

fluence the other. This type of relationship is of special interest as the notion that one can use

todays values of x to predict the future values of y has been heavily debated over the years. In

the cross-correlation analysis earlier in this chapter, we found the first signs that there might

exists a causal relationship between stock return, volatility and turnover.

6.5.1 Granger causality

The Granger causality test – developed by Granger (1969) – is often used to study the dynamic

relationship between two variables and assess in which direction the relationship between them

are going. Granger causality has nothing to do with what we normally mean by causality – it is

a predictive relation, not a causal one. The variable x is said to Granger-cause the variable y if

y can be significantly better predicted using the historical values of both y and x than it can by

using only past values of y.
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More technically, this can be written as

E(yt|It−1) 6= E(yt|Jt−1)

where information set It−1 contains information on y and xwhile Jt−1 contains only information

on past values of y (Wooldridge, 2016, p. 590).

The test is based on the bivariate VAR model

yt = α0 +

p∑
i=1

αiyt−i +

p∑
i=1

βixt−i + εt

xt = γ0 +

p∑
i=1

γixt−i +

p∑
i=1

δiyt−i + ζt

which is split into one restricted and one unrestricted version. In the restricted version βi = 0

for i = 1, . . . , p and δi = 0 for i = 1, . . . , p.

The null hypothesis and alternative hypothesis for the first equation is defined as

H0 : β1 = β2 = · · · = βp = 0

Ha : βi 6= 0 for at least one i = 1, 2, . . . , p

There are several statistical tests one can use to test these hypotheses. Geweke, Meese, and

Dent (1983) found that the Wald variants are the most accurate.

We have used the package lmtest (Zeileis & Hothorn, 2002) in R to perform the Granger

causality test. According to Arratia (2014, p. 79), this function use a Wald test statistic intro-

duced by Toda and Yamamoto (1995) which follows an asymptotically chi-square distribution

under the null hypothesis. This is regardless of whether y is stationary or not (Toda & Yamamoto,

1995, p. 230).

We do our investigation of the causal relationship between stock return, volatility and

turnover by using a Granger causality test applying a bivariate VAR model of order p. Order

p was found by the AIC and BIC for every individual stock.

To select the number of lags or parameters in a model, an information criterion is often ap-

plied. We have used the package vars (Pfaff, 2008) in R, which provide the Akaike information

criterion (AIC) and the Bayesian information criterion (BIC)13.

For an AR(n) regression including a constant term, T observations and k coefficients, the

13Refrenced as Schwarz criterion (SC) in the R package vars (Pfaff, 2008).
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AIC is given as

AIC(n) = log[det(Σ̃u(n))] + k(kn+ 1)
2

T

and the BIC is given by

BIC(n) = log[det(Σ̃u(n))] + k(kn+ 1)
log(T )

T

where Σ̃u is the estimated k× k covariance matrix of the errors from an AR(n) regression, such

that the i, j element of Σ̃u is 1
T

∑T
t=1 ûitûjt, where ûit and ûjt are the OLS residuals from the ith

and jth equation respectively.

The BIC is very similar to the AIC, but penalize additional parameters somewhat more, and

is in that sense stricter.

As the AIC return a very high p for most stocks, we ended up trusting the somewhat stricter

BIC, which suggested a VAR(5) model.

The relationship between stock return and tturnover as well as stock volatility and turnover,

have been run with 5 lags, and reported at a 5% level. A summary can be found in Table 21.

Direction % significant

R
G.c.−−→ V 20.2%

V
G.c.−−→ R 29.3%

R2 G.c.−−→ V 30.1%
V

G.c.−−→ R2 37.6%

Table 21: Granger causality

The data show a weak relationship between return and turnover, where return Granger-

cause turnover in only 20.2% of the cases. Thus, one cannot use stock return to predict volume

for the majority of stocks at OSE.

In the other direction, we find that volume Granger-cause stock return for 29.3% of the

stocks. One can therefore state that volume precedes stock return to a greater extent than stock

return precedes volume. As earlier empirical finding have been inconsistent, see Table 2, our

findings are not surprising and somewhat similar to Chen et al. (2001).

Running the same Granger test for return volatility and turnover, we find that return volatil-

ity Granger cause turnover in 30.1% of the cases. In 37.6% of the cases, turnover Granger cause

return volatility.

Also here, turnover comes before return volatility more than the opposite. However, the fact
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that the Granger effect of turnover on return volatility is significant for just a bit more stocks

than the Granger effect of turnover on stock return surprised us. This is due to the majority of

earlier finding, summarized in Table 2, who found that the Granger effect of volume on volatility

to be more present.

What we have found is that turnover Granger causes return and squared return for approx-

imately 30-40% of the stocks. Thus, turnover has a stronger Granger effect on stock return

and volatility than vice versa, which is consistent with earlier findings in the cross-correlation

analysis.

As turnover have a Granger effect on stock return and volatility, this can be interpreted

as a sign that the weak-form market efficiency does not hold. Also, it seems that arrival of

information follows a sequential rather than simultaneous process.

6.6 Robustness check

We have performed the same analysis using the number of trades each day for each stock to

check whether our results would be the same as when using turnover.

The few differences we accounted in the analysis was:

1. Due to the large range of the volume data, we decided to take the logarithms in Sec-

tion 6.2.2.

2. After logging, we did not remove outliers.

3. More companies were found to have a unit root by the ADF test in Section 6.2.6, and was

thus removed. This reduced our sample to 483 companies.

4. After logging and removing companies, we did not remove a linear trend.

More companies were found to have a unit root by the ADF test in Section 6.2.6, and was

thus removed.

The result of our analysis using number of shares traded was very similar to when we used

turnover, and all the sub-conclusion were the same. The results are not included for the sake of

brevity and the lack of standardization between securities. The full results are available upon

request.
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7 Conclusion

In this thesis we examined the empirical relationship between trading volume and stock return

on Oslo Stock Exchange. We have done so by means of a cross-correlation analysis, multivariate

regressions, GARCH and EGARCH models, and a Granger causality test.

We found evidence of a positive contemporaneous relationship between return and volume,

detected by cross-correlation and multivariate regressions. However, our results indicate that

this relationship is rather weak. By a two-stage least squares estimation we found that vol-

ume had a significant contemporaneous effect on returns in 56.8% of the stocks on OSE, when

controlling for lagged values of both volume and return. Further, we found return to have a sig-

nificant contemporaneous effect on volume in 90.5% of the stocks, when controlling for lagged

values of volume. The existence of a contemporaneous relationship between volume and return

is in accordance with what one would expect to find if the mixture of distribution hypothesis is

true.

Further, we found evidence of a contemporaneous relationship between trading volume and

return volatility. The cross-correlation showed a weak but mostly positive contemporaneous

relationship. Our multivariate model shows that trading volume is unaffected when volatility

increase, regardless of whether the stock return is falling or increasing. This zero symmetric

term was found to be significant for 59.2% of the stocks. When accounting for asymmetry in

the relationship, we find that volume increase more when returns are positive than when they

are negative. The asymmetric effect is significant for 41.2% of the stock at OSE, which is in line

with Brailsford’s (1996) findings.

By our GARCH(1,1) model we found weak evidence that the persistence in conditional

volatility decrease when one includes trading volume as a proxy for information arrival. The

coefficients for persistence decreased for 45.6% of the stocks, however the mean value only

decreased from 0.96 to 0.95. We concluded that a GARCH model might not be the optimal

model, as about 1/4 of the stocks displayed non-stationarity of variance with this model, and

decided to test an EGARCH(1,1) also. We found that persistence decreased for 71.1% of the

stocks when including trading volume, and that the median half-life of shocks decreased from

19 to 13 days.

We also found evidence of a dynamic relationship. In the cross-correlation analysis we found

a positive relationship between return and lag/lead values of volume, however this correlation

was weaker than the contemporaneous effect. By a two-stage least squares estimation we found

that lagged volume had a significant effect on returns in 29.7% of the stocks on OSE, when

controlling for a contemporaneous relationship and lagged values of return. When it comes to
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Granger causality we found evidence of a dynamic relationship between return and volume in

both directions. We found that return Granger cause volume in 20.2% of the stocks, while the

relationship is much stronger in the opposite direction as volume Granger cause return 29.3%

of stocks. In the case with volatility and volume we find that volatility Granger cause volatility

in 30.1% of the cases, while – again – the other direction is stronger, as volume Granger cause

volatility in 37.6% of the cases.

As we found both a contemporaneous and a causal relationship, this lend greater support to

the sequential information arrival hypothesis than the mixture of distribution hypothesis. This

means that there is some information inefficiency on Oslo Stock Exchange. As in an efficient

market, prices already reflect everything that have already occurred and events the market

expects to take place in the future, our results lends further credibility to the adaptive market

hypothesis and the heterogeneous agents model rather than the efficient market hypothesis.

8 Review of thesis

8.1 Limitations and further research

We found evidence of a contemporaneous and causal relationship between volume and return

at Oslo Stock Exchange. However, there are some limitations of our thesis. First, we do not look

at cross-sectional differences between the stocks. Maybe the relationship is stronger or more

evident for some type of stocks than for others. Second, we did not look at different subsamples

in time. Several sources state that these types of findings might be sensitive to the time period.

Maybe the relationships were more evident in the 80s than in the 2010s.

Based on this, we have the following suggestion for further research. It would be interesting

to study both the cross-sectional and the time varying relationship between volume and return

at Oslo Stock Exchange. It would also be very interesting to study the relationship for a short

time period but with high frequency data. Further, it would be interesting to follow Wang et

al. (2018) and look at asymmetries in tail dependencies in positive and negative dependence

regimes.
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Appendix A Data Preparation

A.1 Data structure

There are four main data-files from Oslo Børs Informasjon AS / BI’s Database we will rely on: a daily returns

dataset, a daily volume dataset, a dataset for identifying securities and companies based on a set of names

and ID-numbers, and a dataset with monthly observations of stock prices and number of outstanding shares

– used for filtering our data later.

The daily return dataset was available as a white space-delimitered txt-file structured similar to Figure 9,

with the return from k securities stacked on top of each other.

# ISINStock1 Company nameStock1
Date1 return

Date2
...

Daten
...

# ISINStockk Company nameStockk
Date1 return

Date2
...

Daten
...

Figure 9: Original data structure: Return

The volume data was also given as white space-delimitered txt-files, but was separated into 38 different

files – one for each year of our sample period. They were all structured in the way seen in Figure 10, with

the volume from k securities stacked on top of each other.

None of these formats are optimal for data analysis or for matching the correct volume and return

observations when merging the datasets. Therefore we have to prepare our data.
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# OBI IDStock1

Date1 V olume

Date2
...

Daten
...

# OBI IDStockk

Date1 V olume

Date2
...

Daten
...

Figure 10: Original data structure: Volume

A.2 Data preparation

Give me six hours to chop down a tree and I

will spend the first four sharpening the axe.

– (Attributed to) Abraham Lincoln

Most statistical theory focus on data modeling, prediction, and statistical inference – while it is usually

assumed that the data are in the correct state for data analysis already (de Jonge & van der Loo, 2013, p. 7).

However, this is not always the case. According to Wickham (2014, p. 5), real datasets are often messy in

almost every way imaginable14. Our dataset is no exception, and thus it needs to be cleaned15. Data cleaning

is the process of transforming raw data into consistent data, which can be analyzed (de Jonge & van der Loo,

2013, p. 7). In practice, data preparation is often more time-consuming than the statistical analysis itself (de

Jonge & van der Loo, 2013, pp. 3, 7), and according to Dasu and Johnson (2003) it is common to use

upwards of 80% of the data analysis on cleaning and preparing data. Data cleaning is an important problem,

but it is an uncommon subject of study in statistics (Wickham, 2014, p. 20). Done efficiently at the start

of the project – using appropriate tools – the data processing stage can be highly rewarding; working with

14Or, as Jenny Bryan stated, “classroom data are like teddy bears and real data are like a grizzley bear with
salmon blood dripping out its mouth.”

15There are many words for data processing: cleaning, hacking, manipulating, munging, refining, tidy-
ing (Gillespie & Lovelace, 2016, p. 87).
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clean data will be beneficial for every subsequent stage of the project (Gillespie & Lovelace, 2016, p. 87).

Further, the data preparation process may profoundly influence the statistical statements based on the data,

and should therefore be performed in a reproducible manner. Data cleaning methods such as imputation of

missing values will influence statistical results and so must be accounted for in the analysis or interpretation

thereof (de Jonge & van der Loo, 2013, pp. 7–8). In this subsection, we aim to give the reader a thorough

understanding of our data preparation process. For reproducibility, we detail step by step how we combine

our datasets, structure and clean them. Where it is appropriate, we will discuss how our choices might affect

our statistical analysis.

A.2.1 Tidy data

Smart data structures and dumb code works

a lot better than the other way around.

– Eric Raymond

Often, when working with statistics, we like to denote our models and formulas using linear algebra.

The daily returns from k stocks and n days could for example be denoted as such

Rn,k =


x1,1 x1,2 x1,3 . . . x1,k

x2,1 x2,2 x2,3 . . . x2,k
...

...
...

. . .
...

xn,1 xn,2 xn,3 . . . xn,k



Thus, it would make sense to structure our data in a spreadsheet like manner, similar to Figure 11.

Stock 1 Stock 2 Stock k
Date1 return return return

Date2
...

...
...

Daten
...

...
...

Figure 11: Spreadsheet structure

However, while data stored in arrays like this can lead to extremely efficient computation when the

desired operations can be expressed as matrix operations, combining datasets stored in this way typically
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requires painstaking alignment before matrix operations can be used, which can make errors very hard to

detect (Wickham, 2014, pp. 6, 14).

Therefore, we will structure our data in a way Wickham (2014) calls “tidy”. In tidy datasets, (1) each

variable forms a column, (2) each observation forms a row, and (3) each type of observational unit forms a

table (Wickham, 2014, p. 4). A variable contains all values that measure the same underlying attribute – like

date, return, or volume – across units. An observation contains all values measured on the same unit – like a

certain stock at a given day – across attributes (Wickham, 2014, p. 3). Tidy datasets provide a standardized

way to link the structure of a dataset with its semantics; its physical layout with its meaning (Wickham,

2014, p. 2). Fixed variables – variables with values fixed before the data collection, and not measured or

collected – should come first, followed by measured variables (Wickham, 2014, p. 5). For us, this means that

date, company name and ID should come first, as these are fixed variables. After this comes daily return and

volume. An example of a tidy dataset can be seen in Figure 12.

Date OBI ID ISIN Company Name Return V olume
1st Feb. 2018 1 #NO1234567890 Company A 0.02 2134
2nd Feb. 2018 1 #NO1234567890 Company A 0.04 5732
1st Feb. 2018 2 #NO0987654321 Company B 0.03 98543
2nd Feb. 2018 2 #NO0987654321 Company B 0.07 5432

Figure 12: Tidy data example with two fictional stocks at two dates

However, tidy data is only worthwhile if it makes analysis easier (Wickham, 2014, p. 13). For us, an

advantage of tidy data is the ease at which it can be combined with other tidy datasets. When merging – or

joining – two datasets, all we need is a “join operator” that works by matching common variables and adding

new columns (Wickham, 2014, p. 14). We can use date, OBI security ID and ISIN to do this. Further, tidy

datasets are easy to manipulate, model, and visualize. They work with a wide range of tidy tools – tools that

use tidy datasets as input and output a new tidy dataset. This is useful because the output of one tool can

be used as the input to another (Wickham, 2014, p. 13). Additionally, most modelling tools – such as R’s

linear regression – work best with tidy datasets (Wickham, 2014, p. 14). Converting data into a tidy form

is also advantageous from a computational efficiency perspective, as it is usually faster to run analysis and

plotting commands on tidy data (Gillespie & Lovelace, 2016, p. 89). Tidy data is particularly well suited for

vectorized programming languages like R, as the layout ensures that the values of different variables from

the same observation are always paired (Wickham, 2014, p. 5).
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A.2.2 Combining and structuring our data

All data handling done in this section was performed using the open source statistical software R (R Core

Team, 2017). All R packages used – a collection of user-created functions downloaded from the Compre-

hensive R Archive Network (CRAN) – will be cited consecutively, as different packages may have different

specifications. The complete R-code for importing, structuring, combining, cleaning, and filtering our data

can be found in Appendix B.

First, we import the identification dataset. We tell R to read the txt-file line by line, before we split each

entry separated by a tab into different columns. We set the first row as header names, and save the data to a

data.frame, telling R to treat text entries as text, not as factors. This results in a data.frame of almost 7,000

rows – one for each equity instrument which has been on OSE since 1980 – and 4 columns: OBI Security

ID, ticker, ISIN and the last registered security name. This dataset was already tidy, so we did not have to

change the structure at all. However, following the analogy of de Jonge and van der Loo (2013), we had

to make the dataset technically correct. Technically correct data is data which is read into an R data.frame,

with correct names, classes and labels (de Jonge & van der Loo, 2013, p. 7). A dataset is technically correct

when each value can be directly recognized as belonging to a certain variable and is stored in a data class

that represents the value domain of the real-world variable (de Jonge & van der Loo, 2013, p. 12). That

is, a text variable should be stored as text and a numeric variable as a number. The class of an R object is

critical to performance, as if the class is incorrectly specified this might lead to incorrect results (Gillespie &

Lovelace, 2016, p. 94). To make the identification data technically correct we had to coerce the OBI security

ID to the class numeric. Further, we transformed the data.frame to a tibble (Müller & Wickham, 2017)

– a more convenient data frame class for R – before we used the package naniar (Tierney, Cook, McBain,

& Fay, 2018) to replace all empty values with explicit NA-values, which R understands as missing data. The

structure of the dataset can be seen in Figure 13.

OBI security ID ticker ISIN Last security name
...

...
...

...

...
...

...
...

Figure 13: Tidy identification data

Continuing, we look at the volume data. As mentioned in Subsection A.1, the volume data is divided into

38 different files. Thus, our first job is to combine them with each other into one large dataset, which we can

structure in a tidy manner before combining it with the return data. We have stored all the volume-files in a
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folder called daily_volume, and to combine them we first generate a vector of all the file names in that folder

that end with “.txt”. Then, we use the package plyr (Wickham, 2011) to import all the 38 files and combine

them in one long dataset. This results in a data.frame with almost 1.48 million rows, and 2 columns: one

containing the date and the OBI ID stacked on top of each other, and the last containing daily volume. This

is a similar structure to the raw return data, so next step is to write an algorithm to tidy both of them.

We start by tidying the volume data. First, we turn the data.frame into a tibble (Müller & Wick-

ham, 2017) for easier handling, before we name the columns “Date” and “Volume”. Next, we create an

empty character-vector of the same length as the number of rows in our volume dataset, which we call

“OBI.security.ID”, and a vector called “condition” which is equal to TRUE if the Volume variable is empty,

and FALSE otherwise. We use a for-loop to go through each row in our volume dataset were the Volume

observation is empty, and copy the OBI security ID to the vector of the same name. This results in a vec-

tor of approximately 1.48 million entries – where most entries are NAs. Using the package zoo (Zeileis &

Grothendieck, 2005), we replace all the NAs with the last non-NA entry. Thus, we end up with a vector with

no missing values, which we then merge with the volume data. The volume dataset now contains the vari-

ables: Date, Volume, and OBI security ID. Then, we use the package stringr (Wickham, 2017) to remove

the “#” that was at the beginning of all the OBI security IDs before we omit rows that used to hold the OBI

security ID, but do not register anything anymore. To make the volume dataset technically correct, we coerce

OBI security ID and Volume to the class numeric, Date to a date class of type POSIXct16using the package

lubridate (Grolemund & Wickham, 2011). The structure of the result can be seen in Figure 14.

Date V olume OBI security ID
...

...
...

...
...

...

Figure 14: Tidy volume data

Next, we structure the return data. Similar to the identification dataset we tell R to read the txt-file line

by line, before we split each entry separated by a white space consisting of two spaces into different columns.

We set header names, and save the data to a data.frame, telling R to treat text entries as text, not as factors.

This results in a data.frame with over 2.5 million rows, and 3 columns: one with #s and the dates stacked

on top of each other, one with the ISIN and return stacked on top of each other, and one containing one entry

with the last registered company name of each company, but mostly NA-values. We processed this dataset in

16When converting the date, we can choose between three object types: Date, POSIXlt, and POSIXct.
According to de Jonge and van der Loo (2013, pp. 20–21), POSIXct is the most portable way to store such
information.
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a similar fashion to the volume data. First, we created a character vector called ISIN of the same length as

the dataset and a condition vector which is TRUE when the Date column contained nothing but a “#”, and

FALSE else. Then we created a for-loop that went through each row of the dataset where the date-column

contained only a “#”, filling the ISIN-vector with the entry from the ISIN/return-column. The result is a

vector of the same length as the number of rows in the dataset, which contains some ISIN numbers, but

mostly NAs. We use zoo (Zeileis & Grothendieck, 2005) to replace all the NAs with the last non-NA entry. We

add the ISIN-vector as a separate column in the dataset, before we use zoo (Zeileis & Grothendieck, 2005)

again to replace all the NAs with the last non-NA entry in the column with the last registered company name.

Next, we remove all the rows containing only a “#” in the date-column as they are no longer of use. To

make the return data technically correct we coerce Return into class numeric, and the Date into a date class

of type POSIXct. The final dataset has the structure seen in Figure 15.

Date Return Last Company Name ISIN
...

...
...

...

...
...

...
...

Figure 15: Tidy return data

Last, we import the monthly data. We read the csv-file line by line, and split the entries separated by a

semicolon into columns. This resulted in a dataset with about 85,500 rows and 9 columns: OBI security ID,

ISIN, ticker, last security name, date, monthly return, monthly dividend, stock price at the end of the month,

and number of shares outstanding at the end of the month. This dataset was already tidy, so in order to

make it technically correct we only had to coerce the OBI security ID, monthly return, monthly dividend, last

price, and number of shares to class numeric, and the date to class date of type POSIXct. A dummy table can

be seen in Figure 16.

Date ticker ISIN Security Name Return Dividend Price Shares Outstanding
...

...
...

...
...

...
...

...

...
...

...
...

...
...

...
...

Figure 16: Tidy monthly data

The next step is to merge these four datasets. As some ISIN numbers in the identification dataset seemed

to be outdated, we updated some of them manually. Using the package dplyr (Wickham, Francois, Henry, &
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Müller, 2017) and the joining logic of SQL with inner join, semi join and left join17, we combined the dataset

as seen in Figure 17. First, (1) we merged the return and identification dataset using inner join by the ISIN.

Then, (2) we merged the volume dataset with the ISIN numbers from the identification dataset using inner

join by the OBI security ID. Next, (3) we used semi join by OBI security ID on both the merged datasets to

remove entries which are not in both datasets. Then, (4) we merged the shortened dataset with the merged

dataset between volume and identification using left join by OBI security ID. Using lubridate (Grolemund

& Wickham, 2011), we extract the month and year from the date column and add them as two separate

columns. We do this for both the merged dataset and the dataset containing monthly data. The last step (5)

was to merge the monthly data and the merged dataset containing all the other datasets using inner join by

OBI security ID, year, and month.

The final result is a dataset of almost 1.7 million rows and 12 columns: date, year, month, ticker, last

company name, last security name, ISIN, OBI security ID, return, volume, last price of the month, and

number of shares outstanding at the end of the month.

A.2.3 Data cleaning

Consistent data is the stage where technically correct data is ready for statistical inference; missing values,

special values, obvious errors and outliers are either removed, corrected or imputed (de Jonge & van der

Loo, 2013, pp. 8, 31). The process towards consistent data involves the following three steps: (1) detection

of inconsistencies, (2) selection of the field of fields causing the inconsistency, and (3) correction of the fields

that are deemed erroneous18.

It is imposible to perform statistical analysis on data where one or more values are missing. Thus, one can

either omit elements from the dataset or try to impute missing values. Dealing with missing data is something

to be dealt with prior to any analysis (de Jonge & van der Loo, 2013, pp. 31–31). Since default imputation

may yield unexpected or erroneous results for reasons that are hard to trace, the analyst should decide how

empty values are handled (de Jonge & van der Loo, 2013, p. 32). In many datasets, missing values means 0

– such as missing volume in our dataset. If that is the case, it should be explicitly imputed with that value,

because it is not unknown, but was coded as empty (de Jonge & van der Loo, 2013, p. 33). Calculations

involving special values – such as Inf (infinity), NA (missing value), NaN (Not a Number) or NULL (no

17Simply put, when combining table A and table B by the join operator x:
1. “A inner join B by x” combine A and B but only for the x they have in common.
2. “A semi join B by x” does not combine the two tables, but remove all x in A which are not also in B.
3. “A left join B by x” keeps A as is, and join B where A and B have common x.

18The steps are not necessarily separated, but when (1) and (2) is performed separately, step (2) is usually
referred to as error localization (de Jonge & van der Loo, 2013, p. 31).
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Return Identification Volume Monthly data

1

Inner join
by ISIN

2

Inner join
by OBI ID

Semi join
by OBI ID

3

4

Left join
by OBI ID & Date

5

Inner join
by year & month

& OBI ID

Figure 17: Joining of datasets
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value) – often result in special values, and since statistical statements about real-world phenomenons should

never include such values, it is desirable to handle them prior to analysis (de Jonge & van der Loo, 2013,

p. 33). Obvious inconsistencies occurs when a record contains a value or combination of values that cannot

correspond to a real-world situation (de Jonge & van der Loo, 2013, p. 35). For example, trading volume

cannot be negative and return cannot be less than -1. As seen in Figure 1 in Section 2.1, trading was not fully

automatic at Oslo Stock Exchange before 1999. When the data is registered by people rather than machines,

certain typical human-generated errors are likely to occur – such as typing errors, rounding errors, sign errors

or variable swaps (de Jonge & van der Loo, 2013, p. 42). We checked extensively for such inconsistencies,

but found no such cases.

To clean the data, we start by using zoo (Zeileis & Grothendieck, 2005) to replace all missing values of

volume with 0s. The values are only missing as there was no trading on that specific day, and as such 0 is the

correct value. Further, we add some variables we need for the data filtering in the section 5.4. We add the

variable market capitalization (MCAP) as the product of the stock price and number of outstanding shares

at the end of each month. Then we add a dummy variable equal to 1 if the volume is a positive value – this

dummy can later be used to count how many trading days a stock has each year.

Appendix B Script: Data preperation

Script for importing, structuring, combining, cleaning, and filtering the data.

#################################################################################
# T i t l e : Master t h e s i s− c lean ing & f i l t e r i n g
# Author : Jan P e t t e r I ve r sen
# Las t update : May 22 − 2018
#
# Requirements :
# ∗ Datase t s :
# − s e c _ l i s t . t x t
# − d a i l y _ r e t u r n s . t x t
# − daily_volume−f o l d e r with dai ly_volume_xxxx . tx t− f i l e s
# − monthly_s tock_returns_ose . csv
# ∗ Packages
# − See : Setup
#################################################################################

##################################### Setup #####################################

setwd ( "C:/ Users / Lokal / Desktop /Data Master Thes i s " )
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l i b r a r y ( s t r i n g r )
l i b r a r y ( l u b r i d a t e )
l i b r a r y ( t i b b l e )
l i b r a r y ( Amelia )
l i b r a r y ( p l y r )
l i b r a r y ( dplyr )
l i b r a r y ( zoo ) # to use na . l o c f −−> c a r r i e s l a s t non−NA value forward
l i b r a r y ( naniar ) # f o r r ep l a c ing va lues ( e . g . " " ) with NA
l i b r a r y ( p a r a l l e l ) # f o r us ing s e v e r a l p roce s so r s on big data

##################################### I d e n t i f i c a t i o n data #####################################

# Import ing i n d e n t i f i c a t i o n dataset , l i n e by l i n e
df_ident_raw <− readL ines ( ’ s e c _ l i s t . t x t ’ )

# s p l i t the l i n e s by tab
df_ident_raw <− s t r s p l i t ( df_ident_raw , "\ t " )

# c rea t e a func t ion to as s ign the va lues to d i f f e r e n t f i e l d s
a s s i g n F i e l d s _ i d e n t <− func t ion ( x ){

out <− cha rac t e r (4)

out [1] <− x [1]
out [2] <− x [2]
out [3] <− x [3]
out [4] <− x [4]

out
}

# apply the func t ion
s t anda rdF i e ld s_ iden t <− l app ly ( df_ident_raw , a s s i g n F i e l d s _ i d e n t )

# u n l i s t the l i s t to a matr ix
M_ident <− matrix (

u n l i s t ( s t anda rdF i e ld s_ iden t )
, nrow=length ( s t anda rdF i e ld s_ iden t )
, byrow=TRUE)

# s e t columnnames and remove f i r s t row ( conta in ing column names)
colnames ( M_ident ) <− ( M_ident [1 , ] %>% s t r _ t r i m () )
M_ident <− M_ident [−1 ,]

# c rea t e data frame from matr ix
d f _ i d e n t _ l i n e b y l i n e <− as . data . frame ( M_ident , s t r i n g s A s F a c t o r s=FALSE)

## crea te t e c h n i c a l c o r r e c t data

# Coerce numeric
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d f_ iden t_ l i neby l i ne$ ‘ OBI s e c u r i t y ID ‘ <− as . numeric ( d f _ iden t_ l i neby l i ne$ ‘ OBI s e c u r i t y ID ‘ )

# c rea t e t e c h n i c a l c o r r e c t t i b b l e
d f_ iden t_ tech <− as . t i b b l e ( d f _ i d e n t _ l i n e b y l i n e )

# remove a l l f unc t i on s and v a r i a b l e s except the t e c h n i c a l c o r r e c t ident df
rm( a s s i g n F i e l d s _ i d e n t , d f _ i d e n t _ l i n e b y l i n e , df_ident_raw , M_ident , s t anda rdF i e ld s_ iden t )

d f_ iden t_ tech <− r ep lace_wi th_na_a l l ( data = df_ ident_ tech , cond i t ion = ~.x == " " )

d f_ iden t_ tech <− rename( df_ ident_ tech , ’ OBI . s e c u r i t y . ID ’ = ‘ OBI s e c u r i t y ID ‘ )

##################################### Volume data #####################################

# save the name of a l l . t x t− f i l e s from the f o l d e r in a vec to r
paths <− d i r ( " dai ly_volume " , pa t t e rn = " \ \ . t x t$ " , f u l l . names = TRUE)

# add the name of the f i l e to the vector , t h i s w i l l be used f o r ID l a t e r
names( paths ) <− basename ( paths )

# loop through the f i l e s and read them a l l i n to a DF
df_volume_raw <− l dp l y ( paths ,

read . tab le ,
comment . char = " " , # ignore comments
quote = " " ,
c o l C l a s s e s = c ( ’ charac ter ’ ) ,
f i l l = T , # empty c e l l s ge t s "NA"
header = F , # no headers
sk ip = 5 , # sk ip genera l in formai ton at the top of each f i l e
s t r i n g s A s F a c t o r s = FALSE) # don ’ t read s t r i n g s as f a c t o r s

# as t i b b l e , s i n ce i t ’ s e a s i e r
df_volume_raw <− as . t i b b l e ( df_volume_raw )

# remove f i l e ID , f o r s i m i l a r i t y to re turn data
df_volume_nofilename <− df_volume_raw [ ,2 :3]

# name columns
colnames ( df_volume_nofi lename ) <− c ( " Date " , " Volume " )

# Create empty vec to r f o r ID
OBI . s e c u r i t y . ID <− cha rac t e r ( length = nrow( df_volume_nofilename ))

# c rea t e the cond i t ion out s ide the loop
cond i t ion <− df_volume_nofilename$Volume == " "

# loop through the rows and f i l l with OBI ID
fo r ( i in (1 : nrow( df_volume_nofi lename )) [ cond i t ion ] ) {

i f ( cond i t ion [ i ]) {

OBI . s e c u r i t y . ID [ i ] <− df_volume_nofilename$Date [ i ]
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}

}

# rep lace " " with NAs so na . l o c f w i l l work
OBI . s e c u r i t y . ID [OBI . s e c u r i t y . ID == " " ] <− NA

# l o c a t e forward l a s t non−NA value
OBI . s e c u r i t y . ID <− na . l o c f . d e f a u l t (OBI . s e c u r i t y . ID )

# add the vec to r to the DF as column (same name as in ident−DF)
df_volume_nofilename$OBI . s e c u r i t y . ID <− OBI . s e c u r i t y . ID

# new data frame to cont inue work
df_volume_w . ID <− df_volume_nofilename

# remove ’# ’ from OBI−ID
df_volume_w . ID$OBI . s e c u r i t y . ID <− s t r _ sub ( df_volume_w . ID$OBI . s e c u r i t y . ID , s t a r t = 2)

# omit rows with volume == " " −−> t h i s w i l l only remove rows where the date i s an OBI ID
df_volume_w . ID <− df_volume_w . ID [ df_volume_w . ID$Volume != " " , ]

# make df t e c h n i c a l l y c o r r e c t by coerc ing c l a s s
# coerce numeric
df_volume_w . ID$OBI . s e c u r i t y . ID <− as . numeric ( df_volume_w . ID$OBI . s e c u r i t y . ID )
df_volume_w . ID$Volume <− as . numeric ( df_volume_w . ID$Volume ) # coerce numeric
df_volume_w . ID$Date <− ymd( df_volume_w . ID$Date , t z = Sys . timezone ( ) ) # coerce date

# save t e c h n i c a l l y c o r r e c t data
df_volume_tech <− df_volume_w . ID

# remove a l l v a r i a b l e s except the t e c h n i c a l c o r r e c t volume df (makes code go f a s t e r )
rm( condi t ion , df_volume_nofilename , df_volume_raw ,

df_volume_w . ID , OBI . s e c u r i t y . ID , paths , i )

##################################### Return data #####################################

# read d a i l y re turn l i n e by l i n e
df_return_raw <− readL ines ( ’ d a i l y _ r e t u r n s . tx t ’ )

# remove genera l in format ion at the top of the f i l e
df_return_raw <− df_return_raw[−c (1 :6)]

# s p l i t the s t r i n g s by a double space
df_return_raw <− s t r s p l i t ( df_return_raw , " " )

# c rea t e func t ion to as s ign va lues to d i f f e r e n t columns
a s s i g n F i e l d s _ r e t <− func t ion ( x ){

out <− cha rac t e r (3)
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out [1] <− x [1]
out [2] <− x [2]
out [3] <− x [3]

out
}

# use four p roce s so r s and apply the newly crea ted func t ion
c l u s t e r <− makeCluster (4)
s t a n d a r d F i e l d s _ r e t <− parLapply ( c l=c l u s t e r , df_return_raw , a s s i g n F i e l d s _ r e t )
s t o p C l u s t e r ( c l u s t e r ) # stop c l u s t e r i n g proce s so r s

# c rea t e matr ix of va lues
M_ret <− matrix (

u n l i s t ( s t a n d a r d F i e l d s _ r e t )
, nrow=length ( s t a n d a r d F i e l d s _ r e t )
, byrow=TRUE)

# name the coulmns of the matr ix
colnames ( M_ret ) <− c ( " Date " , " Return " , " Las t . Company .Name" )

# save to data frame
d f _ r e t u r n _ l i n e b y l i n e <− as . data . frame ( M_ret , s t r i n g s A s F a c t o r s=FALSE)

# crea t e vec to r f o r ISIN ( w i l l become column )
ISIN <− cha rac t e r ( length = nrow( d f _ r e t u r n _ l i n e b y l i n e ))

# c rea t e cond i t ion
cond i t ion <− d f_ re tu rn_ l i neby l i ne$Da te == "#"

# loop through the rows and f i l l with ISIN ( l e s s than 6 seconds )
f o r ( i in (1 : nrow( d f _ r e t u r n _ l i n e b y l i n e ) ) [ cond i t ion ] ) {

i f ( cond i t ion [ i ]) {

ISIN [ i ] <− d f_ re tu rn_ l ineby l ine$Re tu rn [ i ]

}

}

# rep lace " " with NAs so na . l o c f w i l l work
ISIN [ ISIN == " " ] <− NA

# l o c a t e forward l a s t non−NA value
ISIN <− na . l o c f . d e f a u l t ( ISIN )

# add the vec to r to the DF as column (same name as in ident−DF)
d f _ r e t u r n _ l i n e by l i n e $ I S I N <− ISIN

# l o c a t e forward the l a s t non−NA company name in " Las t . Company .Name"
d f _ r e t u r n _ l i n e b y l i n e $ L a s t . Company .Name <−
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na . l o c f . d e f a u l t ( d f _ r e t u r n _ l i n e b y l i n e $ L a s t . Company .Name)

# rep lace "#" with NAs
d f_ re tu rn_ l i neby l i ne$Da te [ d f_ re tu rn_ l i neby l i ne$Da te == "#"] <− NA

# remove rows with NAs ( w i l l only remove rows which used to be "#" and company names)
d f _ r e t u r n _ l i n e b y l i n e <− ( d f _ r e t u r n _ l i n e b y l i n e %>% na . omit ( ) )

# coerce Return to be numeric
d f_ re tu rn_ l ineby l ine$Re tu rn <− as . numeric ( d f_ re tu rn_ l ineby l ine$Re tu rn )

## f i x Date
# tr im f o r whitespace
d f_ re tu rn_ l i neby l i ne$Da te <− s t r _ t r i m ( d f_ re tu rn_ l i neby l i ne$Da te )

# coerce to date format
d f_ re tu rn_ l i neby l i ne$Da te <− ymd( d f_ re tu rn_ l ineby l ine$Date , t z = Sys . timezone ( ) )

# new data frame − as t i b b l e f o r easy reading
d f_ re tu rn_ tech <− as . t i b b l e ( d f _ r e t u r n _ l i n e b y l i n e )

# remove the v a r i a b l e s and func t i on s we no longer need
rm( a s s i g n F i e l d s _ r e t , c l u s t e r , condi t ion , d f _ r e t u r n _ l i n e b y l i n e ,

M_ret , s t anda rdF i e ld s_ re t , df_return_raw , i , ISIN )

##################################### Monthly p r i c e and share data #####################################

# Import ing i n d e n t i f i c a t i o n dataset , l i n e by l i n e
df_monthly_data_raw <− readL ines ( ’ month ly_s tock_returns_ose . csv ’ )

# s p l i t the l i n e s by tab
df_monthly_data_raw <− s t r s p l i t ( df_monthly_data_raw , " ; " )

# c rea t e a func t ion to as s ign the va lues to d i f f e r e n t f i e l d s
ass ignFie lds_df_monthly_data_raw <− func t ion ( x ){

out <− cha rac t e r (9)

out [1] <− x [1]
out [2] <− x [2]
out [3] <− x [3]
out [4] <− x [4]
out [5] <− x [5]
out [6] <− x [6]
out [7] <− x [7]
out [8] <− x [8]
out [9] <− x [9]

out
}

# apply the func t ion
standardFie lds_df_monthly_data_raw <−
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l app ly ( df_monthly_data_raw , ass ignFie lds_df_monthly_data_raw )

# u n l i s t the l i s t to a matr ix
M_monthly_data <− matrix (

u n l i s t ( s tandardFie lds_df_monthly_data_raw )
, nrow=length ( standardFie lds_df_monthly_data_raw )
, byrow=TRUE)

# s e t columnnames and remove f i r s t row ( conta in ing column names)
colnames ( M_monthly_data ) <− ( M_monthly_data [1 ,] %>% s t r _ t r i m () )
M_monthly_data <− M_monthly_data [−1 ,]

# c rea t e data frame from matr ix
d f_month ly_data_ l ineby l ine <− as . t i b b l e ( M_monthly_data , s t r i n g s A s F a c t o r s=FALSE)

## coerce c l a s s e s

df_monthly_data_l inebyl ine$OBI_SEC_ID <−
as . numeric ( df_monthly_data_l inebyl ine$OBI_SEC_ID )

df_monthly_data_l inebyl ine$MonthlyReturn <−
as . numeric ( df_monthly_data_l inebyl ine$MonthlyReturn )

df_monthly_data_l inebyl ine$MonhlyDividend <−
as . numeric ( df_monthly_data_l inebyl ine$MonhlyDividend )

d f_month ly_da ta_ l ineby l ine$Las tP r i ce <−
as . numeric ( d f_month ly_da ta_ l ineby l ine$Las tP r i c e )

df_monthly_data_l inebyl ine$NoShares <−
as . numeric ( df_monthly_data_l inebyl ine$NoShares )

df_month ly_data_ l ineby l ine$Date <−
ymd( df_monthly_data_ l inebyl ine$Date , t z = Sys . timezone ( ) )

# save to new df we w i l l keep
df_monthly_data_tech <− df_month ly_data_ l ineby l ine

# remove the v a r i a b l e s and func t i on s we no longer need
rm( df_month ly_data_ l ineby l ine ,

df_monthly_data_raw ,
standardFields_df_monthly_data_raw ,
ass ignFie lds_df_monthly_data_raw ,
M_monthly_data )

#####################################Manually f i x some en t r i e s , be fore merging #####################################

# Some ISIN−numbers are outdated , and we have chosen to f i x those
# which we e a s i l y could i d e n t i f y the c o r r e c t ISIN numer f o r

# DNB
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " NO0003002008 " ] <− " NO0010031479 "

# Petroleum Geo−S e r v i c e s
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df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " NO0004225004 " ] <− " NO0010199151 "

# Wilh . Wilhelmsen Holding se r . A
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " NO0003471401 " ] <− " NO0010571698 "

# Wilh . Wilhelmsen Holding se r . B
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " NO0003471419 " ] <− " NO0010576010 "

# Sto l t−Nie l sen
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " LU0081746793 " ] <− "BMG850801025 "

# SAS AB
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " SE0000805574 " ] <− " SE0003366871 "

# Wentworth Resources
d f_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " CA04317T1066 " ] <− " CA9506771042 "

# BW Offshore Limited
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == "BMG1190N1002 " ] <− " BMG1738J1247 "

# FLEX LNG
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " VGG359451074 " ] <− "BMG359471031 "

# Avocet Mining
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " GB0000663038 " ] <− "GB00BZBVR613 "

# Archer
d f_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == "BMG0451H1097 " ] <− "BMG0451H1170"

# Hugo Games
df_ ident_ tech$IS IN [ df_ ident_ tech$IS IN == " DK0060637999 " ] <− " DK0060945467 "

##################################### Merge d a t a s e t s #####################################

## merging data

# 1! Merging re turn and ident , inner by ISIN
merged_return_ident <− i n n e r _ j o i n ( df_re turn_tech , d f_ ident_ tech , by = " ISIN " )

# 2! Merging volume and ident , inner by OBI ID
merged_volume_ident <−

i n n e r _ j o i n ( df_volume_tech , d f_ iden t_ tech [ , c (1 ,3)] ,
by = " OBI . s e c u r i t y . ID " )

# 3! Shortening merged_return_ident (1) with semi_ jo in by ISIN
merged_short_return_ident <−

semi_ jo in ( merged_return_ident , merged_volume_ident ,
by = " OBI . s e c u r i t y . ID " )

# 4! Merging merged_short_return_ ident (3) with merged_volume_ident (2)
merged_data <−

l e f t _ j o i n ( merged_short_return_ident ,
merged_volume_ident [ , c (1 ,2 ,3)] ,
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by = c ( " OBI . s e c u r i t y . ID " , " Date " ) )

# Now we want to add the montly p r i c e and number of shares outs tanding
# Then we need to add the month and year as sepera te columns ,
# so we can use these to merge the d a t a s e t s

merged_data$year <− year ( merged_data$Date )
merged_data$month <− month( merged_data$Date )

df_monthly_data_tech$year <− year ( df_monthly_data_tech$Date )
df_monthly_data_tech$month <− month( df_monthly_data_tech$Date )

# rename so OBI ID has same name in a l l DFs
df_monthly_data_tech <− rename( df_monthly_data_tech , OBI . s e c u r i t y . ID = OBI_SEC_ID )

# merge merged_data and the columns we need from df_monthly_date_tech
merged_data_ful l <− i n n e r _ j o i n ( merged_data , df_monthly_data_tech [ , c (1 ,8 :11)] ,

by = c ( " OBI . s e c u r i t y . ID " , " year " , " month " ) )

rm( merged_return_ident , merged_short_return_ident , merged_volume_ident , merged_data )

##################################### Clean data #####################################

# f i l l NAs in volume with 0s
merged_data_full$Volume <− na . f i l l ( merged_data_full$Volume , f i l l = 0)

## add v a r i a b l e s we need

# add MCAP as the product of p r i c e and outs tanding shares
merged_data_full$MCAP <− ( merged_da ta_ fu l l$Las tPr i ce ∗ merged_data_ful l$NoShares )

# c rea t e dummy: 1 i f the s tock was traded tha t day , 0 i f not .
merged_data_fu l l$ t rade <− as . i n t e g e r ( i f e l s e ( merged_data_full$Volume > 0 , 1 , 0))

# Create a combination of year and month to use as an ID .
merged_data_ful l <− merged_data_ful l %>%

mutate ( ym_id = paste ( as . cha rac t e r ( year ) ,
as . cha rac t e r (month ) ,
sep = "− "))

# Create dummy f o r s t o ck s tha t are going of the exchange
# ( those with l a s t month December 2017 are skipped )
merged_data_ful l$LastMonth <−

i f e l s e ( ( ( merged_data_ful l$ym_id != "2017−12")&( i s . na( merged_data_ fu l l$Las tPr i ce ) ) ) ,
1 , 0)

##################################### F i l t e r Data #####################################

# reshape da ta se t f o r i n t u i t i v e working
merged_data_ful l <− merged_data_ful l %>%
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s e l e c t ( Date ,
year ,
month ,
ym_id ,
OBI . s e c u r i t y . ID ,
ISIN ,
t i c k e r ,
‘ Las t Se cu r i t y Name ‘ ,
Las t . Company .Name,
Return ,
Volume ,
trade ,
La s tP r i c e ,
NoShares ,
MCAP,
LastMonth )

# Remove a l l december 2017 obse rva t i ons
merged_data_ful l <− merged_data_ful l %>% f i l t e r ( ! ym_id == "2017−12")

# remove companies where we cannot c a l c u l a t e MCAP
# ( t h i s i s , among others , removing the l a s t month of each s e c u r i t y )
merged_data_ful l <− merged_data_ful l %>% f i l t e r ( ! i s . na(MCAP))

# def ine smal lcap companies as those which has at
# l e a s t one observa t ion of MCAP below 1M NOK
smal lcap <− merged_data_ful l %>%

f i l t e r (MCAP < 1000000) %>%
s e l e c t ( Las t . Company .Name) %>%
unique () %>%
p u l l ( )

# f i l t e r the data f o r smal lcap companies , f i nd average yea r l y MCAP,
# and f i l t e r those with Mean_MCAP below 1M NOK
smallcap_company_year_pairs <− merged_data_ful l %>%

f i l t e r ( Las t . Company .Name %in% smal lcap ) %>%
group_by ( Las t . Company .Name, year ) %>%

summarise (Mean_MCAP = mean(MCAP)) %>%
f i l t e r (Mean_MCAP < 1000000)

# loop through the smallcap_company_year_pairs−da ta se t
# remove a l l obse rva t i ons f o r tha t s tock f o r tha t year i f i t appears in the da ta se t
# ( That i s , i f the yea r l y average MCAP was below 1 MNOK)
fo r ( i in 1:nrow( smallcap_company_year_pairs )) {

merged_data_ful l <− merged_data_ful l %>%
f i l t e r (

! ( ( Las t . Company .Name == smal lcap_company_year_pairs$Last . Company .Name[ i ])
&
( year == smallcap_company_year_pairs$year [ i ] ) )
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)

}

# remove v a r i a b l e s and df s we do not need anymore
rm( smallcap , i , smal lcap_company_year_pairs )

## high and low p r i c e s s t o ck s

# def ine high and low pr i ced s to ck s as those which have an average p r i c e
# during one year of l e s s than 10 NOK or above 8000 NOK
high_low_pr ice <− merged_data_ful l %>%

group_by ( Las t . Company .Name, year ) %>%
summarise ( Avg_Price = mean( L a s t P r i c e )) %>%
f i l t e r ( ( Avg_Price < 10)|( Avg_Price >= 8000) )

# Loop through a l l e rows in high_low_price , remove rows from merged_data_ful l
# with matching company name and year .
f o r ( i in 1:nrow( high_low_pr ice )) {

merged_data_ful l <− merged_data_ful l %>%
f i l t e r (

! ( ( Las t . Company .Name == high_ low_pr ice$Las t . Company .Name[ i ])
&
( year == high_low_pr ice$year [ i ] ) )

)

p r i n t ( pas te ( i , " o f " , nrow( high_low_pr ice ) , sep = " " ) ) # j u s t to see some progress

}

# remove v a r i a b l e s and df s we no longer need
rm( i , h igh_low_pr ice )

# def ine companies where there are l e s s than 20 days of t rad ing in a year
few_trades <− merged_data_ful l %>%

group_by ( Las t . Company .Name, year ) %>%
summarise ( year l y_ t rad ing_days = sum( trade )) %>%
f i l t e r ( yea r l y_ t rad ing_days < 20)

# loop through and remove the f u l l year of t rades i f there i s l e s s than 20 days of t rad ing
fo r ( i in 1:nrow( few_trades )) {

merged_data_ful l <− merged_data_ful l %>% f i l t e r (
! ( ( Las t . Company .Name == few_trades$Las t . Company .Name[ i ])&( year == few_trades$year [ i ] ) )
)

p r i n t ( i ) # counter to see progres s

}

# remove v a r i a b l e s and df we no longer need
rm( i , few_trades )
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## f i l t e r out Savings banks and non−s tock equ t i e s

# no obse rva t i ons l e f t with s e c u r i t y names inc lud ing the sub−s t r i n g s :
# warrant ,
# bul l , bear ,
# DNM, Nordnet

# save a df of a l l companies with " Spare " in t h e i r name
savings_banks <− merged_data_ful l %>%

s e l e c t ( ‘ Las t S e cu r i t y Name ‘ , Las t . Company .Name) %>%
unique () %>%
f i l t e r (

s t r _ d e t e c t (
Las t . Company .Name, pas te (

c (
" Spare " ,
" spare "
) ,

c o l l a p s e = ’ | ’ ) )
)

# remove " Sparebank 1 SR−Bank " as i t i s not a sav ings bank
savings_banks <− sav ings_banks %>% f i l t e r ( ‘ Las t Se cu r i t y Name ‘ != " SpareBank 1 SR−Bank " )

# save a df of other sav ings banks to add
temp_add_to_savings_banks <− merged_data_ful l %>%

s e l e c t ( ‘ Las t S e cu r i t y Name ‘ , Las t . Company .Name) %>%
unique () %>%
f i l t e r ( ‘ Las t Secu r i t y Name ‘ %in% c ( " Sandsvaerbanken " ,

" Sparabanken Rogaland " ) )

# add the two mis isng banks to the savings_banks df
sav ings_banks <− bind_rows ( savings_banks , temp_add_to_savings_banks )

# remove obse rva t i ons with these s e c u r i t y names
merged_data_ful l <− merged_data_ful l %>%

f i l t e r ( ! ‘ Las t Se cu r i t y Name ‘ %in%
savings_banks$ ‘ Las t Secu r i t y Name ‘ )

# remove v a r i a b l e s and df s we no longer need
rm( savings_banks , temp_add_to_savings_banks )

# def ine smal l sample as l e s s than 500 obse rva t i ons
small_samples_OBI <− merged_data_ful l %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( count = n () ) %>%
f i l t e r ( count < 500) %>%
p u l l (OBI . s e c u r i t y . ID )

# remove s e c u r i t i e s with too smal l samples
merged_data_ful l <− merged_data_ful l %>%

f i l t e r ( ! OBI . s e c u r i t y . ID %in% small_samples_OBI )
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# remove v a r i a b l e s we no longer need
rm( small_samples_OBI )

##################################### Save and export data #####################################

# save companies miss ing and companies inc luded to two v a r i a b l e s
companies_missing <− df_ re tu rn_ tech %>%

f i l t e r ( ! ISIN %in% merged_data_ful l$ISIN ) %>%
s e l e c t ( Las t . Company .Name) %>%
unique ()

companies <− merged_data_ful l %>% s e l e c t ( Las t . Company .Name) %>% unique ()

# c rea t e tx t− f i l e s with the companies miss ing and inc luded
wr i te . t a b l e ( companies_missing , " missing_companies . t x t " , sep = "\ n " , row . names = F)
wr i te . t a b l e ( companies , " companies_included . t x t " , sep = "\ n " , row . names = F)

save ( merged_data_ful l , f i l e = " f u l l y _ f i l t r a t e d _ d a t a . RData " )
unl ink ( " f u l l y _ f i l t r a t e d _ d a t a . RData . RData " )

wr i te . csv ( merged_data_ful l , " f u l l y _ f i l t r a d e d _ d a t a . csv " )
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Appendix C Companies included

The following 511 companies are included in our sample.

No . Company name Secu r i t y Name
1 Nettbuss S ŕ r Aust−Agder T r a f i k k s e l s k a p
2 Adresseav i sen Adresseav i sen
3 Act inor Shipping Ac t inor Shipping
4 Act inor Ac t inor A/S
5 Adels ten Holding A Adels ten A
6 Adels ten Holding B Adels ten B
7 Arendals Fossekompani Arendals Fossekompani
8 Aker RGI A Aker RGI
9 Aker RGI B Aker B−a k s j e r

10 Aker F Aker F r i e a k s j e r
11 Ambra Ambra
12 Arcen Arcen
13 A t l a n t i c a A t l a n t i c a
14 Autronica Autronica
15 Avantor Avantor AS
16 Awilco se r . A Awilco
17 Awilco se r . B Awilco B
18 Bŕndernes Bank Bondernes Bank
19 Bergesen d . y se r . A Bergesen d . y . A−a k s j e r
20 Bergesen d . y se r . B Bergesen d . y . B−a k s j e r
21 Be l sh ip s Be l sh ip s Co .
22 Benor Tankers Benor Tankers
23 Bik Bok A Bik Bok Gruppen
24 Bik Bok B Bik Bok Gruppen B−a k s j e r
25 B j ŕ l v e f o s s e n B jo l ve fo s s en
26 B j ŕ l s e n Va l sem ŕ l l e B jo l sen Valsemol le
27 NRC Group Blom A/S
28 Bol ig− og NÊringsbanken Bol ig− og Naeringsbanken
29 Bergen Nordhordland Rutelag Bergen Nordhordaland Rutelag
30 Bonheur Bonheur
31 Borgestad Borgestad A
32 Borgestad se r . B Borgestad B
33 BorgÂ Borgaa
34 Braathens Braathens SAFE
35 Bona Shipholding Bona Shipholding
36 Bergensbanken Bergensbanken
37 Buskerudbanken Buskerudbanken
38 Chr . Bank og Kred i t ka s se C h r i s t i a n i a Bank og Kred i t ka s se
39 Chr . Bank og Kred i t ka s se C h r i s t i a n i a Bank og Kred i t ka s se
40 Winder Sagatex
41 Color Group Color Line A . S .
42 Andvord Tybring−Gjedde C . Tybring−Gjedde A/S
43 E . C . Dahls Brygger i E . C . Dahls Brygger i
44 David L i v s f o r s i k r i n g s s e l s k a p David L i v s f o r s i k r i n g
45 DNB Den norske Bank
46 Den Norske Creditbank Den norske Creditbank (DnC)
47 SAS Norge B SAS Norge
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48 DNO Det Norske O l j e s e l s k a p (DNO)
49 DNO B Det Norske O l j e s e l s k a p (DNO) B−a k s j e r
50 Det Stavangerske Dampskibss . Det Stavangerske D/S .
51 Dyno Dyno I n d u s t r i e r
52 Eiend . Aker Brygge I Eiendomsselskapet Aker Brygge I
53 Norwegian Car C a r r i e r s E id s i va
54 Eiendomsutv ik l ing Eiendomsutv ik l ing
55 E l k j ŕ p E lk jop Norge
56 E l e k t r i s k Bureau E l e k t r i s k Bureau
57 Elkem Elkem
58 Elkem F Elkem F r i e a k s j e r
59 Fars tad Shipping Fars tad Shipping A/S
60 Forretningsbanken Forretningsbanken
61 Forenede−Gruppen Forenede−Gruppen
62 ABG Sundal C o l l i e r Holding Askia I n v e s t
63 Fokus Bank Fokus Bank
64 Fosen Fosen T r a f i k k l a g
65 F i r s t Olsen Tankers F i r s t Olsen Tankers
66 Fre i a Marabou A Fre i a Marabou A−a k s j e r
67 Fre i a Marabou B Fre i a Marabou B−a k s j e r
68 Te l e ca s t I n d u s t r i i n v e s t o r
69 F r y s j a E l ek t ro F r y s j a E l ek t ro
70 Gambit Gambit A/S
71 G. Block Watne G. Block−Watne
72 Geophys ica l Comp. of Norway Geophys ica l Comp. of Norway A . S (GECO)
73 Grand Hotel Grand Hotel
74 Grand Hotel F Grand Hotel F r i e a k s j e r
75 Gimsŕy K l o s t e r Gimsoy K l o s t e r
76 C h r i s t i a n i a Glasmagasin C h r i s t i a n i a Glasmagasin
77 Goodtech Goodtech
78 GPI GPI
79 Ganger Rol f Ganger Rol f
80 Gyldendal Gyldendal Norsk For lag
81 H?G Haag
82 Hansa Brygger i Hansa Brygger i
83 Havtor Havtor
84 Havtor B Hav B−a k s j e r
85 Helly−Hansen Helly−Hansen
86 Hennes & Mauritz H&M Hennes & Mauritz
87 He l i cop te r S e r v i c e s Gr . He l ikopte r Se rv i ce A/S
88 Hafslund se r . A Hafslund Nycomed A−a k s j e r
89 Hafslund Nycomed F Hafslund Nycomed f r i e A−a k s j e r
90 Hafslund se r . B Hafslund Nycomed B−a k s j e r
91 Tide Hardanger Sunnhordalandske DS
92 Hunsfos Hunsfos Fabr ikker
93 Ican Ican a . s .
94 Idun−GjÊr fabr ikken Idun−Gjaer fabr ikken
95 I n t e r n a t i o n a l Fa rve f ab r i k I n t e r n a t i o n a l Fa rve f ab r i k
96 I .M. Skaugen97 I .M. Skaugen
97 Inve s t a Inve s t a
98 Finansbanken Finansbanken
99 Ivarans Rederi I va rans Rederi

100 Jonas ßglÊnd Jonas Oglaend
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101 Kaldnes Mek . Verksted Kaldnes
102 Kaldnes Kaldnes
103 Kjŕbmandsbanken Kjopmandsbanken
104 Kr i s t i an sand Dyrepark Kr i s t i an sand Dyrepark
105 Kosmos Holding Kosmos Holding
106 Kirk land Kirk land ( l i s t e d e t t e r SUS)
107 Kosmos Kosmos
108 Kverneland Kverneland
109 KvÊrner Kvaerner I n d u s t r i e r
110 KvÊrner B Kvaerner I n d u s t r i e r B−a k s j e r
111 KvÊrner F Kvaerner I n d u s t r i e r F r i e a k s j e r
112 KvÊrner Shipping Kvaerner Shipping A/S
113 Laboremus Laboremus
114 Larv ik−Fred r i k shavn fe r j en Larvik−Fred r i k shavn fe r j en
115 Lehmkuhl E l ek t ron ikk Lehmkuhl E l ek t ron ikk A/S
116 L e i f H?egh & Co L e i f Hoegh & Co A/S
117 Loki Loki
118 Maritime Group Maritime Group AS
119 Atea Merkant i ldata A/S
120 H. C . A . Melbye H. C . A . Melbye A/S
121 Mercurius Mercurius
122 Moss GlasvÊrk A Moss Glasvaerk A
123 Moelven I n d u s t r i e r Moelven
124 Mycron Mycron
125 Den Norske Amer ika l in je Den norske Amer ika l in je
126 NTS Namsos T r a f i k k s e l s k a p
127 Ugland Nordic Shipping Ugland Nordic Shipping
128 Nordlandsbanken Nordlandsbanken
129 Norsk Data A Norsk Data
130 Norsk Data B Norsk Data B−a k s j e r
131 Norsk El . & Brown Bover i NEBB
132 Kongsberg Gruppen Kongsberg Gruppen
133 F o r s i k r i n g s s e l s k a p e t Norge Norge , F o r s i k r i n g s s e l s k a p e t
134 Norges H y p o t e k i n s t i t u t t Norges H y p o t e k i n s t i t u t t
135 Norsk Hydro Norsk Hydro
136 Nidar Nidar
137 Norema A Norema A−a k s j e r
138 Nobŕ Fabr ikker Noboe Fabr ikker
139 Nora Eiendom Nora Eiendom a . s
140 Nora I n d u s t r i e r Nora I n d u s t r i e r
141 Nora I n d u s t r i e r F Nora I n d u s t r i e r F r i e a k s j e r
142 Norgesk red i t t P Norgesk red i t t
143 Norex Offshore Norex Offshore
144 Norcem Norcem
145 Reach Subsea Nomadic Shipping
146 Notodden E lek t ron ikk Notodden E lek t ron ikk A . S
147 Norse Petroleum Norse Petroleum
148 Norwegian Rig Consu l tants Norwegian Rig Consu l tants A/S
149 Norske Skog Norske Skog indus t r i e r
150 Norske Skog B Norske Skog indus t r i e r B
151 Norske Skog indus t r i e r Norske Skog A
152 Norske Skog Norske Skog indus t r i e r
153 Norving Norving
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154 Linstow Nydalens Compagnie
155 Oslobanken Oslobanken A/S
156 Oslo Handelsbank Oslo Handelsbank
157 Oslo Havnelager Oslo Havnelager
158 Olav Thon Eiendomsselskap Olav Thon Eiendomsselskap
159 Simrad Optronics Simrad Optronics
160 Orkla Orkla
161 Orkla B Orkla B
162 Orkla F Orkla F r i e a k s j e r
163 Orkla I n d u s t r i e r Orkla I n d u s t r i e r
164 Oslo Shipholding La ly
165 Petroleum Geo−S e r v i c e s Petroleum Geo−S e r v i c e s
166 Porsgrunds PorselÊn Porsgrunds P o r s e l a e n s f a b r i k
167 Pr o t e c to r F o r s i k r i n g P r o t e c to r F o r s i k r i n g
168 Pronova Pronova
169 Raufoss Raufoss A/S
170 Rogalandsbanken Rogalandsbanken
171 Rea l ia Rea l i a
172 Rena Karton Rena Karton
173 Rieber &amp; S??n Rieber & Son
174 Rieber & Sŕn B Rieber & Son B−a k s j e r
175 Ross Offshore Ross Of fshore
176 Rosshavet Rosshavet
177 Saga Petroleum Saga Petroleum A
178 Saga Petroleum B Saga Petroleum B
179 Saga Petroleum F Saga Petroleum F r i e a k s j e r
180 Sunnmŕrsbanken Sunnmorsbanken
181 Stord Bartz Stord Bartz a . s
182 Sch ibs ted se r . A Sch ibs ted
183 SDS Shipping og Offshore SDS Shipping og Offshore A/S
184 Sea Farm Sea Farm A/S
185 SensoNor SensoNor
186 DSND Subsea Det Sondenf je lds Norske D/S
187 Sigmalm Sigmalm
188 Skiens Aktiem ?? l l e Skiens Akt iemol le
189 ARK ARK
190 Simrad A Simrad A
191 Simrad B Simrad B
192 Smedvig se r . A Smedvig a . s
193 Smedvig Tankships Ltd . Smedvig Tankships Ltd .
194 Solvang Solvang
195 Sŕr landsbanken Sorlandsbanken
196 Scanvest−Ring A Scanvest−Ring A
197 Scanvest−Ring B Scanvest−Ring B
198 Stavanger Af tenblad Stavanger Af tenblad
199 Stentofon Stentofon
200 A l c a t e l STK A l k a t e l STK
201 O d f j e l l s e r . A S t o r l i A
202 O d f j e l l s e r . B S t o r l i B
203 Navia Navia
204 Sydvaranger Sydvaranger
205 SE Labe l s gammel SE Labe l s
206 Avenir Sysdeco Group
207 Tandberg Tandberg A/S
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208 Tandberg Data Tandberg Data A/S
209 Tik i−Data Tik i−Data A . S
210 Transocean Transocean
211 Tof te I n d u s t r i e r Tof te I n d u s t r i e r A/S
212 Tomra Systems Tomra Systems
213 Tou Tou
214 Storebrand P UNI Storebrand Bundne Pre f .
215 Storebrand Storebrand
216 UNI Storebrand F UNI Storebrand F r i e
217 Unitor Uni tor
218 NCL Holding NCL Holding
219 Vard B Vard B−a k s j e r
220 Vest landsbanken Vestlandsbanken
221 V e s t e n f j e l s k e B y k r e d i t t V e s t e n f j e l d s k e B y k re d i t t
222 Ves te raa l ens Dampskibsselskab Ves te raa l ens D/S
223 Veidekke Veidekke
224 Vesta−Gruppen Vesta−gruppen
225 Viking−Askim Vik ing Askim , ord . B
226 V i t a l F o r s i k r i n g V i t a l F o r s i k r i n g
227 V i t a l F o r s i k r i n g F V i t a l F o r s i k r i n g F r i e
228 Vik ing Supply Ships Vik ing Supply Ships A . S
229 Voss Veksel− og Landmandsbank Voss Veksel− og Landmandsbank
230 Western Bulk Shipping Western Bulk Shipping
231 Wi l r i g Wi l r i g AS
232 Wilh . Wilhelmsen Holding se r . A Wilh . Wilhelmsen A
233 Wilh . Wilhelmsen Holding se r . B Wilh . Wilhelmsen B
234 Gresv ig Gresv ik
235 Axis Biochemica ls Axis Biochemica ls
236 Steen & Strŕm Steen & Strom
237 Hitec Hi tec
238 Larv ik Scandi Line Larv ik Scandi Line
239 Kl ippen I n v e s t Jo tu l
240 Stento Stento
241 A t l a n t i c Container Line A t l a n t i c Container Line
242 Avantor Avantor AS
243 J inhu i Shipping and Transpor ta t ion J inhu i Shipping
244 Vik ing Media Vik ing Media
245 Fokus Bank Fokus Bank
246 S t a t o i l S t a t o i l
247 Norsk Vekst Norsk Vekst
248 Nera Nera
249 Kongsberg Automotive Kongsberg Automotive
250 A−pressen A−pressen
251 Ekornes Ekornes
252 TTS Group TTS Technology
253 Oslo Reinsurance Co Oslo Reinsurance Comp.
254 CanArgo Energy Co . Fountain Oi l
255 C r y s t a l Product ion Brovig Of fshore
256 F e s i l F e s i l
257 Legra Legra
258 Nordic Water Supply Nordic Water Supply
259 Iva r Holding I va r Holding
260 Nordic American Tanker Shipping Nordic Am. Tanker Shipping
261 Santech Micro Group Santech Micro Group
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262 Selmer Selmer
263 Agresso Group Agresso Group
264 Mercur Tankers Mercur Tankers
265 Visma Visma
266 Scana I n d u s t r i e r Scana I n d u s t r i e r
267 Marine Harvest Pan F i sh
268 S to l t−Nie l sen B S to l t−Nie l sen B
269 Computer Advances Computer Advances Group
270 SuperOf f i ce SuperOf f i ce
271 Norman Norman Data Def . Sys .
272 S to l t−Nie l sen S t o l t Nie l sen Ordinaere
273 Opticom Opticom
274 A l t i nex Mercur Subsea Products
275 Nordic Semiconductor Nordic VLSI
276 Provida Provida
277 NetCom NetCom
278 Reitan Narvesen Narvesen
279 SPCS−Gruppen PC−Systemer
280 H y d r a l i f t H y d r a l i f t
281 ORIGIO Medi−Cul t
282 Wenaas Wenaas−gruppen
283 Proxima ASK
284 Smedvig Smedvig B
285 Transocean Offshore Transocean Offshore
286 P4 Radio Hele Norge P4 Radio hele Norge
287 Aker Maritime Aker Maritime
288 Ocean Rig Ocean Rig
289 Hexagon Composites Norwegian Appl ied Technology
290 Tandberg T e l e v i s i o n Tandberg T e l e v i s i o n
291 Thrane−Gruppen Thrane−Gruppen
292 I .M. Skaugen I .M. Skaugen
293 ContextV i s ion ContextV i s ion
294 Kredit tBanken Kredi t tBanken
295 Ki t ron gammel K i t ron
296 Choice Hote l s Scandinavia Choice Hote l s Scandinavia
297 Roxar CorrOcean
298 Subsea 7 S t o l t Comex Seaway
299 Roxar Multi−F lu id
300 EDB − E lek t . EDB − E lek t . Databeh .
301 Technor Technor
302 Norsk L o t t e r i d r i f t Norsk L o t t e r i d r i f t
303 Royal Caribbean Cru i se s Royal Caribbean Cru i se s (RCCL)
304 Tordensk jo ld Tordensk jo ld Shipping
305 Byggma Norsk Wallboard
306 AF Gruppen AF Gruppen A
307 Fred . Olsen Energy Fred . Olsen Energy
308 H j e l l e g j e r d e H j e l l e g j e r d e
309 So l s tad Fars tad So l s tad Offshore
310 TGS−NOPEC Geophys ica l Company Nopec I n t e r n a t i o n a l
311 VMetro VMetro
312 I g n i s L o g i s o f t
313 Akt iv K a p i t a l Akt iv Inkasso
314 Data Respons Motegruppen
315 Linde−Group Fredr ik Lindegaard
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316 Evercom Network Evercom Network
317 Team Shipping Team Shipping
318 Ki t ron Sonec
319 Aker BioMarine Natural
320 Voice Voice
321 Luxo Luxo
322 I n d u s t r i f i n a n s NÊringseiendom I n d u s t r i f i n a n s N? űringseiendom
323 H y d r a l i f t B H y d r a l i f t B
324 Profdoc Profdoc
325 Rieber Shipping Rieber Shipping
326 Amersham Amersham
327 Norsk K j ŕ kken inve s t Norsk Kj ?? kken inves t
328 S t o l t Of f shore A S t o l t Of fshore A
329 Synn?? ve Finden Synn?? ve Finden
330 Otrum Otrum
331 E l t ek E l t ek
332 Nortrans Offshore Nortrans Of fshore
333 Software Innovat ion Software Innovat ion
334 Axis−Shie ld Axis−Shie ld
335 E n i t e l E n i t e l
336 EVRY EVRY
337 StepStone StepStone
338 Expert Expert
339 Solon Eiendom Solon Eiendom
340 Photocure Photocure
341 InFocus Corporat ion InFocus Corporat ion
342 TeleComputing TeleComputing
343 Z e n i t e l Z e n i t e l
344 DOF DOF
345 Komplett Komplett
346 O f f i c e Line O f f i c e Line
347 Telenor Telenor
348 S inve s t S inve s t
349 StrongPoint StrongPoint
350 Fas t Search &amp; Trans fe r Fas t Search & Trans fe r
351 SAS AB SAS AB
352 Golar LNG Golar LNG
353 Hiddn So lu t i ons Hiddn So lu t i ons
354 PA Resources PA Resources
355 Q−Free Q−Free
356 Ler ??y Seafood Group Ler ?Éň?y Seafood Group
357 Techstep Techstep
358 Subsea 7 Subsea 7
359 Troms Fy lkes Dampskibsselskap Troms Fy lkes Dampskibsselskap
360 Norwegian Ai r Shu t t l e Norwegian Ai r Shu t t l e
361 NextGenTel Holding NextGenTel Holding
362 Opera Software Opera Software
363 Yara I n t e r n a t i o n a l Yara I n t e r n a t i o n a l
364 Akastor Akastor
365 Mamut Mamut
366 Medistim Medistim
367 STX Europe STX Europe
368 Jason Shipping Jason Shipping
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369 Norman Norman
370 Aker Aker
371 Sevan Marine Sevan Marine
372 Golden Ocean Group Golden Ocean Group
373 Bj ?? rge Bj ?Éň? rge
374 Gaming Innovat ion Group Gaming Innovat ion Group
375 Pe t ro j a ck Pe t ro j a ck
376 GC Rieber Shipping GC Rieber Shipping
377 Wilson Wilson
378 APL APL
379 Imarex Imarex
380 COSL D r i l l i n g Europe AS Awilco Offshore
381 V i z r t V i z r t
382 Havf i sk Havf i sk
383 Havi la Shipping Havi la Shipping
384 Questerre Energy Corporat ion Questerre Energy Corporat ion
385 Kongsberg Automotive Kongsberg Automotive
386 E idesv ik Offshore E idesv ik Of fshore
387 Win te r sha l l Norge ASA Win te r sha l l Norge ASA
388 Wentworth Resources Wentworth Resources
389 American Shipping Company American Shipping Company
390 Siem Offshore Siem Offshore
391 S e a d r i l l S e a d r i l l
392 Unison F o r s i k r i n g Unison F o r s i k r i n g
393 Powel Powel
394 B io tec Pharmacon B io tec Pharmacon
395 Nors ta t Nors ta t
396 Cermaq Cermaq
397 BW Gas Bergesen d . y . A−a k s j e r
398 Grenland Group Grenland Group
399 F a i r s t a r Heavy Transport F a i r s t a r Heavy Transport
400 Odim Odim
401 DOF Subsea DOF Subsea
402 Conf i rmi t Conf i rmi t
403 DeepOcean DeepOcean
404 Funcom Funcom
405 Rese rvo i r Exp lo ra t ion Rese rvo i r Exp lo ra t ion Technology
406 Petrobank Energy and Resources Petrobank Energy and Resources
407 T r e f o i l T r e f o i l
408 Aker D r i l l i n g Aker D r i l l i n g
409 Scorpion Offshore Scorpion Offshore
410 Songa Offshore Songa Offshore
411 SeaBird Exp lo ra t ion SeaBird Exp lora t ion
412 BWG Homes BWG Homes
413 Navamedic Navamedic
414 Hurt igruten Hurt igruten
415 REC S i l i c o n REC S i l i c o n
416 BW Offshore Limited BW Offshore Limited
417 Weifa Weifa
418 O d f j e l l I n v e s t O d f j e l l I n v e s t
419 NextGenTel Holding NextGenTel Holding
420 I n t e r O i l Exp lo ra t ion and Product ion I n t e r O i l Exp lo ra t ion and Product ion
421 AGR Group AGR Group
422 Aker F loa t i ng Product ion Aker F loa t i ng Product ion
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423 Teekay P e t r o j a r l Teekay P e t r o j a r l
424 Aus t evo l l Seafood Aus t evo l l Seafood
425 Marine Farms Marine Farms
426 Codfarmers Codfarmers
427 Norwegian Proper ty Norwegian Proper ty
428 AKVA Group AKVA Group
429 Det norske o l j e s e l s k a p Det norske o l j e s e l s k a p
430 Ei t zen Chemical E i t zen Chemical
431 Deep Sea Supply Deep Sea Supply
432 Copeinca Copeinca
433 Comrod Communication Comrod Communication
434 NEAS NEAS
435 Algeta Algeta
436 Elec t romagnet i c Geoserv i ces E lec t romagnet i c Geoserv i ces
437 Rem Offshore Rem Offshore
438 Pr o t e c to r F o r s i k r i n g P r o t e c to r F o r s i k r i n g
439 Bouvet Bouvet
440 MARITIME INDUSTRIAL SERVICES MARITIME INDUSTRIAL SERVICES
441 SalMar SalMar
442 Hunter Group Badger Exp lorer
443 Grieg Seafood Grieg Seafood
444 Tribona Tribona
445 Aker BP Aker BP
446 London Mining London Mining
447 Dockwise Dockwise
448 Pronova BioPharma Pronova BioPharma
449 Northern Offshore Northern Offshore
450 Norwegian Energy Company Norwegian Energy Company
451 Aqua Bio Technology Aqua Bio Technology
452 NattoPharma NattoPharma
453 I n f r a t e k I n f r a t e k
454 P h i l l y Shipyard P h i l l y Shipyard
455 Camposol Holding Camposol Holding
456 Norway Pe l ag i c Norway P e l ag i c
457 Prosa fe Product ion Pub l i c Prosa fe Product ion Pub l i c
458 PCI Biotech Holding PCI Biotech Holding
459 Spectrum Spectrum
460 Havi la A r i e l Havi la A r i e l
461 Borgestad I n d u s t r i e s Borgestad I n d u s t r i e s
462 P o l a r i s Media P o l a r i s Media
463 FLEX LNG FLEX LNG
464 Bakkaf ros t Bakka f ros t
465 S?? l v t r a n s S?Éň? l v t r a n s
466 Bridge Energy Bridge Energy
467 Avocet Mining Avocet Mining
468 Morpol Morpol
469 Wallenius Wilhelmsen L o g i s t i c s Wilh . Wilhelmsen
470 Storm Real E s t a t e Storm Real E s t a t e
471 Archer Archer
472 Gjens id ige F o r s i k r i n g G jens id ige F o r s i k r i n g
473 Prospec tor Of fshore D r i l l i n g Prospec tor Of fshore D r i l l i n g
474 Norway Royal Salmon Norway Royal Salmon
475 Awilco D r i l l i n g Awilco D r i l l i n g
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476 H??egh LNG Holdings H?Éň?egh LNG Holdings
477 Kv? űrner Kv? Éňűrner
478 Awilco LNG Awilco LNG
479 SpareBank 1 SR−Bank SpareBank 1 SR−Bank
480 Selvaag Bo l ig Selvaag Bo l ig
481 Borregaard Borregaard
482 Asetek Asetek
483 EAM Solar EAM Solar
484 Ocean Y ie ld Ocean Y ie ld
485 O d f j e l l D r i l l i n g O d f j e l l D r i l l i n g
486 BW LPG BW LPG
487 Napatech Napatech
488 Link Mob i l i t y Group Link Mob i l i t y Group
489 A t l a n t i c Petroleum A t l a n t i c Petroleum
490 Tanker Investments Tanker Investments
491 Avance Gas Holding Avance Gas Holding
492 Magseis Magseis
493 Z a l a r i s Z a l a r i s
494 NEXT Biomet r i c s Group NEXT Biomet r i c s Group
495 Cxense Cxense
496 Havyard Group Havyard Group
497 Aurora LPG Holding Aurora LPG Holding
498 Aker So lu t i ons Aker So lu t i ons
499 Scatec So lar Scatec So lar
500 XXL XXL
501 Entra Entra
502 RenoNorden RenoNorden
503 Team Tankers I n t e r n a t i o n a l Team Tankers I n t e r n a t i o n a l
504 Nordic Nanovector Nordic Nanovector
505 Mul t i consu l t Mu l t i consu l t
506 Sch ibs ted se r . B Sch ibs ted se r . B
507 V i s t i n Pharma V i s t i n Pharma
508 Europr i s Europr i s
509 Pioneer Proper ty Group Pioneer Proper ty Group
510 Sbanken Skandiabanken
511 Kid Kid
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Appendix D Script: Modified augmented Dickey-Fuller test

The following code is the custom function we created by modifying the augmented Dickey-Fuller test from
tseries (Trapletti & Hornik, 2018) drawing inspiration from the augmented Dickey-Fuller test in aTSA (Qiu,
2015). The critical values are from Table 4.2(b) p. 103 in Banerjee et al. (1993).

# The fo l lowing func t ion i s a modif ied ve r s ion of t s e r i e s : : adf . t e s t c rea ted with
# i n s p i r a t i o n from aTSA : : adf . t e s t .

func t ion (x , a l t e r n a t i v e = c ( " s t a t i o n a r y " , " exp lo s i ve " ) , k = trunc (( length ( x ) −
1)^(1/3)))

{
i f ( (NCOL( x ) > 1) || i s . data . frame ( x ))

s top ( " x i s not a vec to r or u n i v a r i a t e time s e r i e s " )
i f ( any ( i s . na( x ) ) )

s top ( " NAs in x " )
i f (k < 0)

stop ( " k negat ive " )
a l t e r n a t i v e <− match . arg ( a l t e r n a t i v e )
DNAME <− deparse ( s u b s t i t u t e ( x ))
k <− k + 1
x <− as . vec to r (x , mode = " double " )
y <− d i f f ( x )
n <− l ength ( y )
z <− embed(y , k )
y t <− z [ , 1]
xt1 <− x[k : n]
i f (k > 1) {

yt1 <− z [ , 2: k]
re s <− lm( yt ~ xt1 + 1 + yt1 )

}
e l s e re s <− lm( yt ~ xt1 + 1)
re s . sum <− summary( re s )
STAT <− r e s . sum$coe f f i c i en t s [2 , 1]/ re s . sum$coe f f i c i en t s [2 ,2]

# From Table 4.2 (b ) , p . 103 of Baner jee e t a l . (1993)
# A . Banerjee , J . J . Dolado , J . W. Galbra i th , and D. F . Hendry (1993):
# Cointegra t ion , Er ror Correct ion , and the Econometric Ana l y s i s of
# Non−S ta t i ona ry Data , Oxford U n i v e r s i t y Press , Oxford .

t a b l e <− rbind ( c (−3.75 , −3.33 , −3.00 , −2.63 , −0.37 , 0.00 , 0.34 , 0 .72) ,
c (−3.58 , −3.22 , −2.93 , −2.60 , −0.40 , −0.03 , 0.29 , 0 .66) ,
c (−3.51 , −3.17 , −2.89 , −2.58 , −0.42 , −0.05 , 0.26 , 0 .63) ,
c (−3.46 , −3.14 , −2.88 , −2.57 , −0.42 , −0.06 , 0.24 , 0 .62) ,
c (−3.44 , −3.13 , −2.87 , −2.57 , −0.43 , −0.07 , 0.24 , 0 .61) ,
c (−3.43 , −3.12 , −2.86 , −2.57 , −0.44 , −0.07 , 0.23 , 0 .60))

tab len <− dim( t a b l e )[2]
tab leT <− c (25 , 50 , 100 , 250 , 500 , 1e+05)
tab lep <− c (0 .01 , 0.025 , 0.05 , 0 .1 , 0 .9 , 0.95 , 0.975 , 0.99)
t a b l e i p l <− numeric ( tab len )
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f o r ( i in (1 : tab len )) t a b l e i p l [ i ] <− approx ( tableT , t a b l e [ , i ] , n , ru l e = 2)$y

i n t e r p o l <− approx ( t a b l e i p l , tablep , STAT , ru l e = 2)$y
i f ( i s . na( approx ( t a b l e i p l , tablep , STAT , ru l e = 1)$y ))

i f ( i n t e r p o l == min( tab lep ))
warning ( " p−value smal le r than pr in ted p−value " )

e l s e warning ( " p−value g rea t e r than pr in ted p−value " )
i f ( a l t e r n a t i v e == " s t a t i o n a r y " )

PVAL <− i n t e r p o l
e l s e i f ( a l t e r n a t i v e == " exp lo s i ve " )

PVAL <− 1 − i n t e r p o l
e l s e s top ( " i r r e g u l a r a l t e r n a t i v e " )
PARAMETER <− k − 1
METHOD <− " Augmented Dickey−F u l l e r Test "
names(STAT) <− " Dickey−F u l l e r "
names(PARAMETER) <− " Lag order "
s t r u c t u r e ( l i s t ( s t a t i s t i c = STAT , parameter = PARAMETER, a l t e r n a t i v e = a l t e r n a t i v e ,

p . value = PVAL , method = METHOD, data . name = DNAME) ,
c l a s s = " h t e s t " )

}
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Appendix E Script: Creating turnover variable

The following script was used to create the measure turnover.

# lage turnover

load ( f i l e = " f u l l y _ f i l t r a t e d _ d a t a . RData " )

# save to new var i ab l e , so we don ’ t mess up the o r i g i n a l one : )
data <− merged_data_ful l

# c rea t e column , and s e t f i r s t value
data$NoShares_lastmonth <− numeric ( length = length ( data$NoShares ))
data$NoShares_lastmonth [1] <− NA

# i n i t i a l i z e temporary va r i ab l e s , and s e t equal to f i r s t row in data
temp_noshares_lastmonth <− data$NoShares_lastmonth [1]
temp_ymid <− data$ym_id [1]
temp_OBI <− data$OBI . s e c u r i t y . ID [1]

imax <− l ength ( data$NoShares_lastmonth )

# code takes about 1h 20 minutes
f o r ( i in 2: imax ){

i f ( data$OBI . s e c u r i t y . ID [ i ] != temp_OBI ) {
temp_noshares_lastmonth <− NA
temp_ymid <− data$ym_id [ i ]
temp_OBI <− data$OBI . s e c u r i t y . ID [ i ]

} e l s e i f ( data$ym_id [ i ] != temp_ymid ) {
temp_noshares_lastmonth <− data$NoShares [ i−1]
temp_ymid <− data$ym_id [ i ]

}

data$NoShares_lastmonth [ i ] <− temp_noshares_lastmonth

se tTx tP rogre s sBar ( t x tP rog re s sBa r (min = 0 , max = imax , s t y l e = 3) , i )

}

rm( i , imax , temp_noshares_lastmonth , temp_OBI , temp_ymid )

# crea t e turnover
turnover_data <− data %>% mutate ( Turnover = Volume / NoShares_lastmonth )
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save ( turnover_data , f i l e = " merged_data_w_turnover . RData " )

wr i te . csv ( turnover_data , " merged_data_w_turnover . csv " )
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Appendix F Script: Data analysis

The following code was used for the analysis in the thesis.

##################################################################
# T i t l e : Master t h e s i s − Ana ly s i s
# Author : Jan P e t t e r I ve r sen & A s t r i S k j e s o l
# Las t update : August 10 − 2018
# Approx . time to run f u l l s c r i p t : > 20 minutes
#
# Requirements :
# ∗ Datase t s :
# − f u l l y _ f i l t r a t e d _ d a t a . RData
#
# ∗ Packages
# − See : Setup
##################################################################

######################## Setup ########################

setwd ( "C:/ Users / Lokal / Desktop /Data Master Thes i s " )

s e t . seed (19503) # fo r r e p r o d u c a b i l i t y

l i b r a r y ( t i b b l e )
l i b r a r y (e1071)
l i b r a r y ( s t a r g a z e r ) # f o r l a t e x code
l i b r a r y ( normtest )
l i b r a r y ( t s e r i e s ) # f o r adf . t e s t
l i b r a r y (gmm)
l i b r a r y (plm)
l i b r a r y ( s y s t e m f i t )
l i b r a r y ( rugarch )
l i b r a r y ( lmtes t )
l i b r a r y ( p l y r )
l i b r a r y ( dplyr )
l i b r a r y ( robustHD ) # f o r w inso r i za t i on
l i b r a r y ( pracma ) # f o r removing l i n e a r trend

######################## Import , c reate , & transform data ########################

load ( f i l e = " merged_data_w_turnover . RData " )

# save to new var i ab l e , so we don ’ t mess up the o r i g i n a l one : )
data <− turnover_data

# crea t e l i s t of uniqe OBI IDs
O B I _ l i s t <− unique ( data$OBI . s e c u r i t y . ID )
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# Mul t ip ly re turn and turnover by 100 to get i t as a percentage .
# Wi l l improve r e a d a b i l i t y in t a b l e s .
data$Return <− data$Return ∗ 100
data$Turnover <− data$Turnover ∗ 100

# as turnover introduced NAs ( about 1% of the sample ) , we remove them
data <− na . omit ( data )

######################## D e s c r i p t i v e − whole sample ########################

# p r i n t la tex−code fo r d e s c r i p t i v e s t a t i s t i c s f o r the whole sample
s t a r g a z e r ( as . data . frame ( data [ , c ( " Return " , " Turnover " ) ] ) ,

summary = T ,
summary . s t a t = c ( " mean " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 , # i f 2 d i g i t s round to 0 , we can inc r ea se to max 4 d i g i t s
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# p r i n t boxplot of re turn and utrnover
#pdf ( f i l e = " re t_ turnover_boxp lo t_not r im . pdf " , width = 8 , he ight = 4)
#boxplot ( data [ , c ( " Return " , " Turnover " ) ] , co l = "#316ba0 " , border = "#123456")
#dev . o f f ( )

######################## D e s c r i p t i v e − s i n g l e s e c u r i t i e s ########################

# crea te df with summary s t a t i s t i c s of r e tu rn s of each s e c u r i t y
re turn_df <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( Count = n () ,

Mean = mean( Return ) ,
St . Dev . = sd ( Return ) ,
Max = max( Return ) ,
Pc t l_75 = quan t i l e ( Return , probs = 0.75) ,
Median = median ( Return ) ,
Pc t l_25 = quan t i l e ( Return , probs = 0.25) ,
Min = min( Return ) ,
K u r t o s i s = k u r t o s i s ( Return ) ,
Skewness = skewness ( Return ))

# p r i n t la tex−code fo r d e s c r i p t i v e s t a t i s t i c s f o r i n d i v i d u a l s e c u r i t i e s
s t a r g a z e r ( as . data . frame ( re turn_d f [ , c (3 :11)] ) ,

summary = T ,

105

09432930942691GRA 19502



summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 , # max 2+2 = 4 d i g i t s
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# c rea t e df with summary s t a t i s t i c s of Turnover of each s e c u r i t y
turnover_df <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( Count = n () ,

Mean = mean( Turnover ) ,
St . Dev . = sd ( Turnover ) ,
Max = max( Turnover ) ,
Pc t l_75 = quan t i l e ( Turnover , probs = 0.75) ,
Median = median ( Turnover ) ,
Pc t l_25 = quan t i l e ( Turnover , probs = 0.25) ,
Min = min( Turnover ) ,
K u r t o s i s = k u r t o s i s ( Turnover ) ,
Skewness = skewness ( Turnover ))

# p r i n t la tex−code fo r d e s c r i p t i v e s t a t i s t i c s f o r i n d i v i d u a l s e c u r i t i e s
# subtab le 1
s t a r g a z e r ( as . data . frame ( turnover_df [ , c ( 3 : 6 ) ] ) ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# subtab le 2
s t a r g a z e r ( as . data . frame ( turnover_df [ , c (7 :11)] ) ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = T ,
colnames = T ,
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column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# remove v a r i a b l e s we no longer need
rm( turnover_df , r e turn_d f )

######################## Winsor iza t ion & d e s c r i p t i v e ########################

data$Win_return <− numeric ( length = length ( data$Return ))
data$Win_turnover <− numeric ( length = length ( data$Turnover ))

f o r ( s tock in O B I _ l i s t ) {

winsor ized <− data %>%
f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
s e l e c t ( Return , Turnover ) %>%
as . matr ix () %>%
winsor ize ( f a l l b a c k = TRUE, prob = 0.99)

data$Win_return [ data$OBI . s e c u r i t y . ID == stock ] <− winsor ized [ ,1]
data$Win_turnover [ data$OBI . s e c u r i t y . ID == stock ] <− winsor ized [ ,2]

}

rm( stock , winsor ized )

# remove nega t r i ve turnover−va lues in t roduces by winso r i za t i on
data$Win_turnover [ data$Win_turnover < 0] <− 0

# p r i n t summary s t a t i s t i c s of the whole sample − winsor ized
s t a r g a z e r ( as . data . frame ( data [ , c ( " Win_return " , " Win_turnover " ) ] ) ,

summary = T ,
summary . s t a t = c ( " mean " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 , # i f 2 d i g i t s round to 0 , we can inc r ea se to max 4 d i g i t s
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# c rea t e df with summary s t a t i s t i c s of winsor ized re tu rns of each s e c u r i t y
win_return_df <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( Count = n () ,
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Mean = mean( Win_return ) ,
St . Dev . = sd ( Win_return ) ,
Max = max( Win_return ) ,
Pc t l_75 = quan t i l e ( Win_return , probs = 0.75) ,
Median = median ( Win_return ) ,
Pc t l_25 = quan t i l e ( Win_return , probs = 0.25) ,
Min = min( Win_return ) ,
K u r t o s i s = k u r t o s i s ( Win_return ) ,
Skewness = skewness ( Win_return ))

# p r i n t la tex−code fo r d e s c r i p t i v e s t a t i s t i c s f o r i n d i v i d u a l s e c u r i t i e s
s t a r g a z e r ( as . data . frame ( win_return_df [ , c (3 :11)] ) ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 , # max 2+2 = 4 d i g i t s
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# c rea t e df with summary s t a t i s t i c s of Turnover of each s e c u r i t y
win_turnover_df <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( Count = n () ,

Mean = mean( Win_turnover ) ,
St . Dev . = sd ( Win_turnover ) ,
Max = max( Win_turnover ) ,
Pc t l_75 = quan t i l e ( Win_turnover , probs = 0.75) ,
Median = median ( Win_turnover ) ,
Pc t l_25 = quan t i l e ( Win_turnover , probs = 0.25) ,
Min = min( Win_turnover ) ,
K u r t o s i s = k u r t o s i s ( Win_turnover ) ,
Skewness = skewness ( Win_turnover ))

# p r i n t la tex−code fo r d e s c r i p t i v e s t a t i s t i c s f o r i n d i v i d u a l s e c u r i t i e s
# subtab le 1
s t a r g a z e r ( as . data . frame ( win_turnover_df [ , c ( 3 : 6 ) ] ) ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = T ,
colnames = T ,
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column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# subtab le 2
s t a r g a z e r ( as . data . frame ( win_turnover_df [ , c (7 :11)] ) ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " , # space between columns in t a b l e
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " ) # use " s ideways tab le " f o r f l i p p i n g the t a b l e

# remove v a r i a b l e s we no longer need
rm( win_turnover_df , win_return_df )

######################## Jarque−Bera ########################

## Returns
# do a Jarque−Bera−t e s t f o r each s e c u r i t y , and save the p−value to a df
j a rq u e _b e r a _ t e s t <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( JB = jb . norm . t e s t ( Win_return )$p . value )

# s t i l l , we check whether any s e c u r i t e s have s i g n i f i c a n t
# JB−s t a t i s t i c s on 5% and 10% l e v e l . None do .
i f e l s e ( j a rque_bera_ te s t$JB > 0.05 , 1 ,0) %>% sum()

# remove v a r i a b l e s we do not need anymore
rm( j a rq u e _ be r a _ t e s t )

## Volume
# do a Jarque−Bera−t e s t f o r each s e c u r i t y , and save the p−value to a df
j a rque_be ra_ te s t2 <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise ( JB = jb . norm . t e s t ( Win_turnover )$p . value )

# we check whether any s e c u r i t e s have s i g n i f i c a n t
# JB−s t a t i s t i c s on 5% l e v e l . Some do :
i f e l s e ( ja rque_bera_ tes t2$JB > 0.01 , 1 ,0) %>% sum()
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# remove v a r i a b l e s we do not need anymore
rm( ja rque_be ra_ te s t2 )

######################## Ljung−Box & Autoco r r e l a t i on ########################

# do a Ljung−Box−t e s t f o r each s e c u r i t y , and save the p−value to a df
l j ung_box_ t e s t <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (LB = Box . t e s t ( Win_return , lag = 10 , type = " Ljung−Box " ) $p . value )

# g ive s percentage of companies with no auto c o r r e l a t i o n
# in the 10 f i r s t l ag s f o r 1% and 5% s i g n i f i c a n t l e v e l s
i f e l s e ( l jung_box_tes t$LB > 0.01 , 1 ,0) %>% sum()∗100/511
i f e l s e ( l jung_box_tes t$LB > 0.05 , 1 ,0) %>% sum()∗100/511

# removes d f s we no longer need
rm( l j ung_box_ t e s t )

# do a Ljung−Box−t e s t f o r each s e c u r i t y , and save the p−value to a df
l jung_box_ te s t2 <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (LB = Box . t e s t ( Win_turnover , lag = 10 , type = " Ljung−Box " ) $p . value )

# g ive s percentage of companies with no auto c o r r e l a t i o n
# in the 10 f i r s t l ag s f o r 1% and 5% s i g n i f i c a n t l e v e l s
i f e l s e ( l jung_box_tes t2$LB > 0.01 , 1 ,0) %>% sum()∗100/511
i f e l s e ( l jung_box_tes t2$LB > 0.05 , 1 ,0) %>% sum()∗100/511

# removes d f s we no longer need
rm( l jung_box_ te s t2 )

## check the order of a u t o c o r r e l a t i o n f o r s t o ck s

# c rea t e an empty df f o r the OBI IDs and number of s i g n i f i c a n t l ag s
d f _ s i g _ l a g <− data . frame (OBI . s e c u r i t y . ID = numeric ( ) , s i gn_ l ag = numeric ( ) )

# use loop to c a l c u l a t e s i g n i f i c a n t l ag s and f i l l the df
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# def ine sample s i z e f o r each s tock
large_T <− data %>% f i l t e r (OBI . s e c u r i t y . ID == stock ) %>% nrow ()

# crea t e a (16 ,1) matr ix with the a u t o c o r r e l a t i o n from lag 0 to 15
M <− data %>%

f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
p u l l ( Win_return ) %>%
ac f ( p l o t = F , lag . max = 15) %>%
‘ $ ‘ ( ac f )

f o r ( i in 2:16) { # loop through the 15 l ag s
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i f ( abs (M[ i ]) < (1.96/ s q r t ( large_T − ( i−1) ) ) ) {
# i f the abso lu te value of the a u t o c o r r e l a t i o n i s
# under the s i g n i f i c a n t t resho ld ,
# then save the lag before to the
# df ( as t h i s was necece r r e l y over the t r e sho ld )
d f _ s i g _ l a g <− rbind ( d f_ s i g_ l ag ,

data . frame (OBI . s e c u r i t y . ID = stock , s i gn_ l ag = ( i −2)))
break () # e x i t inner loop

} e l s e i f ( i == 16) { # i f some have more than 15 s i g n i f i c a n t lags , wr i te NA to df

d f _ s i g _ l a g <− rbind ( d f_ s i g_ l ag ,
data . frame (OBI . s e c u r i t y . ID = stock , s i gn_ l ag = NA))

}
}

}

# remove v a r i a b l e s we no longer need
rm( i , large_T , M, s tock )

# look f o r number of s i g n i f i c a n t l ag s f o r s t o ck s who has s i g n i f i c a n t l ag s at a l l
d f _ s i g _ l a g %>% f i l t e r ( ! s i gn_ l ag == 0) %>% p u l l ( s i gn_ l ag ) %>% mean # mean of 1.4
d f _ s i g _ l a g %>% f i l t e r ( ! s i gn_ l ag == 0) %>% p u l l ( s i gn_ l ag ) %>% median # median of 1

# crea t e an empty df f o r the OBI IDs and number of s i g n i f i c a n t l ag s
d f _ s i g_ l ag2 <− data . frame (OBI . s e c u r i t y . ID = numeric ( ) , s i gn_ l ag = numeric ( ) )

# use loop to c a l c u l a t e s i g n i f i c a n t l ag s and f i l l the df
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# def ine sample s i z e f o r each s tock
large_T <− data %>% f i l t e r (OBI . s e c u r i t y . ID == stock ) %>% nrow ()

# crea t e a (16 ,1) matr ix with the a u t o c o r r e l a t i o n from lag 0 to 15
M <− data %>%

f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
p u l l ( Win_turnover ) %>%
ac f ( p l o t = F , lag . max = 100) %>%
‘ $ ‘ ( ac f )

f o r ( i in 2:101) { # loop through the 30 l ag s

i f ( abs (M[ i ]) < (1.96/ s q r t ( large_T − ( i−1) ) ) ) {
# i f the abso lu te value of the a u t o c o r r e l a t i o n
# i s under the s i g n i f i c a n t t resho ld ,
# then save the lag before to the df
# ( as t h i s was necece r r e l y over the t r e sho ld )
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d f_ s i g_ l ag2 <− rbind ( d f_s ig_ lag2 ,
data . frame (OBI . s e c u r i t y . ID = stock , s i gn_ l ag = ( i −2)))

break () # e x i t inner loop

} e l s e i f ( i == 101) { # i f some have more than 15 s i g n i f i c a n t lags , wr i te NA to df

d f _ s i g_ l ag2 <− rbind ( d f_s ig_ lag2 ,
data . frame (OBI . s e c u r i t y . ID = stock , s i gn_ l ag = NA))

}
}

}

# remove v a r i a b l e s we no longer need
rm( i , large_T , M, s tock )

# look f o r number of s i g n i f i c a n t l ag s f o r s t o ck s who has s i g n i f i c a n t l ag s at a l l
d f _ s i g_ l ag2 %>% f i l t e r ( ! s i gn_ l ag == 0) %>% p u l l ( s i gn_ l ag ) %>% mean # mean of 11.8
d f_ s i g_ l ag2 %>% f i l t e r ( ! s i gn_ l ag == 0) %>% p u l l ( s i gn_ l ag ) %>% median # median of 10

rm( d f_ s i g_ l ag , d f _ s i g_ l ag2 )

######################## Phi l l i p sâ Ă ŞPe r ron t e s t ########################

# do a PP−t e s t f o r each s e c u r i t y , and save the p−value to a df
pp_ te s t <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (PP = pp . t e s t ( Win_return )$p . value )

# We check f o r p−va lues above 0 .01 . None are found
pp_ tes t %>% f i l t e r (PP > 0.01)

# do a PP−t e s t f o r each s e c u r i t y , and save the p−value to a df
pp_tes t2 <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (PP = pp . t e s t ( Win_turnover )$p . value )

# We check f o r p−va lues above 0 .01 . None are found
pp_tes t2 %>% f i l t e r (PP > 0.01)

rm( pp_tes t , pp_tes t2 )

######################## Augmented Dickey−F u l l e r ########################

# load the modif ied ADF−t e s t
load ( " jp_ad f . t e s t . Rdata " )

# do a ADF−t e s t f o r each s e c u r i t y , and save the p−value to a df
augmented_d ickey_ fu l l e r_ te s t <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (ADF = jp_adf . t e s t ( Win_return )$p . value )
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# as most has a p . value below 0.01 , we only check those above
augmented_d ickey_ fu l l e r_ te s t %>% f i l t e r (ADF > 0.01)

# remove v a r i a b l e s we do not need anymore
rm( augmented_d i ckey_ fu l l e r_ te s t )

# then , we check f o r volume
augmented_d ickey_ fu l l e r_ tes t2 <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (ADF = jp_adf . t e s t ( Win_turnover )$p . value )

# 20 s tock s have p−value above 0.05 , we save them to a df
maybe_non_stationary <− augmented_d ickey_ fu l l e r_ tes t2 %>% f i l t e r (ADF > 0.05)

# a loop f o r checking the companies
f o r ( i in 1: length ( maybe_non_stationary$OBI . s e c u r i t y . ID )) {

t e m p _ t i t l e <− data %>%
f i l t e r (OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ]) %>%
s e l e c t ( Las t . Company .Name) %>% unique () %>% p u l l ( )

data %>%
f i l t e r (OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ]) %>%
s e l e c t ( Las t . Company .Name) %>%
unique () %>%
p u l l ( ) %>%
p r i n t ()

data %>%
f i l t e r (OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ]) %>%
s e l e c t ( ‘ Las t S e cu r i t y Name ‘ ) %>%
unique () %>%
p u l l ( ) %>%
p r i n t ()

p l o t ( data$Date [ data$OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
data$Volume [ data$OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
type = " l " ,
main = paste ( temp_t i t l e , " volume " ) )

p l o t ( data$Date [ data$OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
data$Turnover [ data$OBI . s e c u r i t y . ID ==

maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
type = " l " ,
main = paste ( temp_t i t l e , " turnover " ) )

p l o t ( data$Date [ data$OBI . s e c u r i t y . ID == maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
data$Win_turnover [ data$OBI . s e c u r i t y . ID ==

maybe_non_stationary$OBI . s e c u r i t y . ID [ i ] ] ,
type = " l " ,
main = paste ( temp_t i t l e , " winsor i sed turnover " ) )
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}

# remove v a r i a b l e s we no longer need
rm( temp_t i t l e , i )

# we decided to remove those companies which were non−s t a t i o n a r y
data <− data %>% f i l t e r ( ! ( OBI . s e c u r i t y . ID %in% maybe_non_stationary$OBI . s e c u r i t y . ID ))

# update l i s t of uniqe OBI IDs
O B I _ l i s t <− unique ( data$OBI . s e c u r i t y . ID )

# check i f t h i s removed the problem
augmented_d ickey_ fu l l e r_ tes t2 <− data %>%

group_by (OBI . s e c u r i t y . ID ) %>%
summarise (ADF = jp_adf . t e s t ( Win_turnover )$p . value )

augmented_d ickey_ fu l l e r_ tes t2 %>% f i l t e r (ADF > 0.05)

# This removed the problem , and we no longer have any non−s t a t i o n a r y turnover s e r i e s .

# remove v a r i a b l e s we do not need anymore
rm( augmented_dickey_fu l le r_ tes t2 , maybe_non_stationary , jp_ad f . t e s t )

######################## Detrending ########################

# i n i t i a l i z e column
data$Win_dtrnd_turnover <− numeric ( length = length ( data$Win_turnover ))

# remove l i n e a r trend
fo r ( s tock in O B I _ l i s t ) {

detrended <− data %>%
f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
p u l l ( Win_turnover ) %>%
detrend ( t t = " l i n e a r " )

data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock ] <− detrended

}

# remove v a r i a b l e s we no longer need
rm( stock , detrended )

######################## Cross c o r r e l a t i o n ########################

## Turnover & Return

M_crosscorr <− matrix (nrow = 0 , ncol = 9)
M_s ign i f i cance <− matrix (nrow = 0 , ncol = 9)

# use loop to c a l c u l a t e s i g n i f i c a n t l ag s and f i l l the df
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

114

09432930942691GRA 19502



temp_acf_ob jec t <− c c f ( data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock ] ,
data$Win_return [ data$OBI . s e c u r i t y . ID == stock ] ,
lag . max = 4 ,
p lo t = F)

temp_crosscorr <− temp_ac f_ob jec t$ac f %>% as . matr ix () %>% t ()

# f ind s i g n i f i c a n c e (qnorm of 1 + 0.95 f o r 5% s i g n i f i c a n c e l e v e l )
t emp_s ign i f i cance <− qnorm ((1 .95)/2)/ s q r t ( temp_acf_object$n . used ) %>%

rep (9) %>%
as . matr ix () %>%
t ()

M_crosscorr <− rbind ( M_crosscorr , temp_crosscorr )

M_s ign i f i cance <− rbind ( M_s ign i f i cance , t emp_s ign i f i cance )

}

crosscorr_names <− pas te ( " j =" , c (−4:4) , sep = " " )

d f _ c r o s s c o r r <− as . data . frame ( M_crosscorr )
d f _ s i g n i f i c a n c e <− as . data . frame ( M_s ign i f i cance )

names( d f _ c r o s s c o r r ) <− crosscorr_names
names( d f _ s i g n i f i c a n c e ) <− crosscorr_names

s t a r g a z e r ( d f_ c ro s s co r r ,
summary = T ,
summary . s t a t = c ( "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t his tograms of c ro s s c o r r e l a t i o n
pdf ( f i l e = " c r o s s c o r r _ h i s t . pdf " , width = 8 , he ight = 8)
# s e t 3x3 window of graphs
par (mfrow = c (3 ,3))
f o r ( i in 1:9){

h i s t ( d f _ c r o s s c o r r [ , i ] ,
breaks = 20 ,
main = NULL ,
x lab = names( d f _ c r o s s c o r r )[ i ] ,
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ylab = NULL ,
xl im = c (−0.20 ,0.30) ,
yl im = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# number/ percent of s i g n i f i a n t c ro s s c o r r e l a t i o n s per lag
Number <− apply (( abs ( d f _ c r o s s c o r r ) > d f _ s i g n i f i c a n c e ) ,2 , sum)
Percentage <− ( apply (( abs ( d f _ c r o s s c o r r ) > d f _ s i g n i f i c a n c e ) ,2 , sum)

∗100/ length ( O B I _ l i s t ) ) %>%
round (2)

s t a r g a z e r ( as . data . frame ( rbind (Number , Percentage ) ) ,
summary = F ,
f l i p = F ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = F ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

## turnover & Squared Return

M_crosscorr2 <− matrix (nrow = 0 , ncol = 9)
M_s ign i f i cance2 <− matrix (nrow = 0 , ncol = 9)

# use loop to c a l c u l a t e s i g n i f i c a n t l ag s and f i l l the df
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

temp_acf_object2 <− c c f ( data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock ] ,
( data$Return [ data$OBI . s e c u r i t y . ID == stock ])^2,
lag . max = 4 ,
p lo t = F)

temp_crosscorr2 <− temp_acf_ob jec t2$acf %>% as . matr ix () %>% t ()

temp_s ign i f i cance2 <− qnorm ((1 .95)/2)/ s q r t ( temp_acf_object2$n . used ) %>%
rep (9) %>%
as . matr ix () %>%
t ()

M_crosscorr2 <− rbind ( M_crosscorr2 , temp_crosscorr2 )
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M_sign i f i cance2 <− rbind ( M_s igni f i cance2 , temp_s ign i f i cance2 )

}

d f_ c ro s s co r r2 <− as . data . frame ( M_crosscorr2 )
d f _ s i g n i f i c a n c e 2 <− as . data . frame ( M_s ign i f i cance2 )
names( d f _ c ro s s co r r2 ) <− crosscorr_names
names( d f _ s i g n i f i c a n c e 2 ) <− crosscorr_names

s t a r g a z e r ( d f_c ros s cor r2 ,
summary = T ,
summary . s t a t = c ( "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t his tograms of c ro s s c o r r e l a t i o n
pdf ( f i l e = " c r o s s c o r r _ h i s t 2 . pdf " , width = 8 , he ight = 8)
# s e t 3x3 window of graphs
par (mfrow = c (3 ,3))
f o r ( i in 1:9){

h i s t ( d f _ c ro s s co r r 2 [ , i ] ,
breaks = 20 ,
main = NULL ,
x lab = names( d f _ c ro s s co r r2 )[ i ] ,
y lab = NULL ,
xl im = c (−0.15 ,0.45) ,
yl im = c (0 ,130) ,
co l = "#316ba0 " ,
border = "#123456")

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# number/ percent of s i g n i f i a n t c ro s s c o r r e l a t i o n s per lag
Number <− apply (( abs ( d f _ c ro s s c o r r2 ) > d f _ s i g n i f i c a n c e 2 ) ,2 , sum)
Percentage <− ( apply (( abs ( d f _ c ro s s co r r2 ) > d f _ s i g n i f i c a n c e 2 ) ,2 , sum)

∗100/ length ( O B I _ l i s t ) ) %>%
round (2)
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s t a r g a z e r ( as . data . frame ( rbind (Number , Percentage ) ) ,
summary = F ,
f l i p = F ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 0 ,
a l i g n = F ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

rm( M_crosscorr , M_crosscorr2 , crosscorr_names ,
temp_crosscorr , temp_crosscorr2 , d f _ c ro s s co r r , d f_c ros scor r2 , s tock , i ,
M_s ign i f i cance , M_s igni f i cance2 , temp_acf_object , temp_acf_object2 ,
temp_s ign i f i cance , temp_s ign i f i cance2 , d f _ s i g n i f i c a n c e , d f _ s i g n i f i c a n c e 2 ,
Number , Percentage )

######################## Lee & Rui model ########################

# crea te empty matr i ces f o r s t o r i n g es t imate s l a t e r
s t ep1_es t imate s <− matrix (nrow = 0 , ncol = 4)
s tep2_es t imate s <− matrix (nrow = 0 , ncol = 4)
s tep1_pva lues <− matrix (nrow = 0 , ncol = 4)
s tep2_pva lues <− matrix (nrow = 0 , ncol = 4)
s t ep1_ tva lue s <− matrix (nrow = 0 , ncol = 4)
s t ep2_ tva lue s <− matrix (nrow = 0 , ncol = 4)

# use loop to do a two−s tep l e a s t squared r e g r e s s i o n
fo r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# subse t and mutate data we w i l l use in each i t e r a t i o n
temp_lee_rui_data <− data %>%

f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
s e l e c t ( Date , Win_return , Win_dtrnd_turnover ) %>%
mutate ( Return_L1 = dplyr : : lag ( Win_return , 1 ) ,

Volume_L1 = dplyr : : lag ( Win_dtrnd_turnover , 1 ) ,
Volume_L2 = dplyr : : lag ( Win_dtrnd_turnover , 2 ) ) %>%

na . omit ()

# f i r s t regres s ion , eq . 1 of Lee & Rui
step1 <− lm( Win_return ~ Win_dtrnd_turnover + Volume_L1 + Return_L1 ,

data = temp_lee_rui_data )

# e x t r a c t r e s u l t s we need
temp_step1_est imates <− s tep1 %>%

summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
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‘ [ ‘ ( , 1 ) %>%
as . matr ix () %>%
t () # es t imate s

temp_step1_pvalues <− s tep1 %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 4 ) %>%
as . matr ix () %>%
t () # p va lues

temp_step1_tva lues <− s tep1 %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 3 ) %>%
as . matr ix () %>%
t () # t−va lues

# add r e s u l t s to the c o r r e c t matr ix
s t ep1_es t imate s <− rbind ( s tep1_es t imates , temp_step1_est imates )
s tep1_pva lues <− rbind ( step1_pvalues , temp_step1_pvalues )
s t ep1_ tva lue s <− rbind ( s tep1_ tva lues , temp_step1_tvalues )

# c rea t e Return_Hatt as the f i t t e d va lues from r e g r e s s i o n 1
temp_lee_rui_data$Return_Hatt <− p r e d i c t ( s tep1 )

# second regres se ion , eq . 2 of Lee & Rui
step2 <− lm( Win_dtrnd_turnover ~ Return_Hatt + Volume_L1 + Volume_L2 ,

data = temp_lee_rui_data )

# e x t r a c t r e s u l t s we need
temp_step2_est imates <− s tep2 %>%

summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 1 ) %>%
as . matr ix () %>%
t () # es t imate s

temp_step2_pvalues <− s tep2 %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 4 ) %>%
as . matr ix () %>%
t () # p va lues

temp_step2_tva lues <− s tep2 %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 3 ) %>%
as . matr ix () %>%
t () # t−va lues
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# add r e s u l t s to the c o r r e c t matr ix
s t ep2_es t imate s <− rbind ( s tep2_es t imates , temp_step2_est imates )
s tep2_pva lues <− rbind ( step2_pvalues , temp_step2_pvalues )
s t ep2_ tva lue s <− rbind ( s tep2_ tva lues , temp_step2_tvalues )

}

# name the v a r i a b l e s from the two r e g r e s s i o n s
step1_names <− c ( " I n t e r c e p t " , " Turnover " , " Turnover_L1 " , " Return_L1 " )
step2_names <− c ( " I n t e r c e p t " , " Return_Hatt " , " Turnover_L1 " , " Turnover_L2 " )

# save matr i ces as data frames
d f_ s tep1_es t imate s <− as . data . frame ( s tep1_es t imate s )
d f_ s t ep2_es t imate s <− as . data . frame ( s tep2_es t imate s )
d f_s tep1_pva lues <− as . data . frame ( s tep1_pva lues )
d f_s tep2_pva lues <− as . data . frame ( s tep2_pva lues )

# give the d f s the c o r r e c t names
names( d f_ s t ep1_es t imate s ) <− step1_names
names( df_s tep1_pva lues ) <− step1_names
names( d f_ s t ep2_es t imate s ) <− step2_names
names( df_s tep2_pva lues ) <− step2_names

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n 1
s t a r g a z e r ( d f_s tep1_es t imates ,

summary = T ,
summary . s t a t = c ( "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n 2
s t a r g a z e r ( d f_s tep2_es t imates ,

summary = T ,
summary . s t a t = c ( "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )
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# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f_s tep1_pva lues < 0.05) , 2 , func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) , 1)})
apply (( d f_s tep2_pva lues < 0.05) , 2 , func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) , 1)})

# p r i n t his tograms of t−s t a t s from step1
pdf ( f i l e = " l e e _ r u i _ s t e p 1 _ c o e f f i c i e n t s _ h i s t . pdf " , width = 8 , he ight = 8)
# s e t 2x2 window of graphs
par (mfrow = c (2 ,2))
f o r ( i in 1:4){

h i s t ( s t ep1_ tva lue s [ , i ] ,
breaks = 30 ,
main = NULL ,
x lab = c ( " b0 − I n t e r c e p t " , " b1 − Volume " , " b2 − Volume t −1" , " b3 − Return t −1")[ i ] ,
y lab = NULL ,
#xlim = c (−35 ,15) ,
#ylim = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

ab l ine ( v = qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)
ab l ine ( v = −qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# p r i n t his tograms of t−s t a t s from step2
pdf ( f i l e = " l e e _ r u i _ s t e p 2 _ c o e f f i c i e n t s _ h i s t . pdf " , width = 8 , he ight = 8)
# s e t 2x2 window of graphs
par (mfrow = c (2 ,2))
f o r ( i in 1:4){

temp_his t_data <− s t ep2_ tva lue s [ , i ]
temp_his t_data <− temp_his t_data [( temp_hist_data >−100 & temp_hist_data <100)]
h i s t ( temp_hist_data ,

breaks = 50 ,
main = NULL ,
x lab = c ( " a0 − I n t e r c e p t " , " a1 − Return " , " a2 − Volume t −1" , " a3 − Volume t −2")[ i ] ,
y lab = NULL ,
#xlim = c (−10 ,40) ,
#ylim = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

ab l ine ( v = qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)
ab l ine ( v = −qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))
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# remove v a r i a b l e s we no longer need
rm( df_s tep1_es t imates , df_s tep1_pvalues , d f_s tep2_es t imates , df_s tep2_pvalues ,

step1 , step2 , step1_names , step2_names , temp_lee_rui_data , temp_step1_est imates ,
temp_step2_est imates , temp_step1_pvalues , temp_step2_pvalues , s tep1_es t imates ,
s tep1_pvalues , s tep2_es t imates , s tep2_pvalues , s tock , s tep1_tva lues , s tep2_tva lues ,
temp_step1_tvalues , temp_step2_tvalues , i , temp_his t_data )

######################## B r a i l f o r d−extens ion ########################

# crea te empty matr i ces f o r s t o r i n g es t imate s l a t e r
b r a i l s f o r d _ e s t i m a t e s <− matrix (nrow = 0 , ncol = 5)
b r a i l s f o r d _ p v a l u e s <− matrix (nrow = 0 , ncol = 5)
b r a i l s f o r d _ t v a l u e s <− matrix (nrow = 0 , ncol = 5)

# use loop to do r e g r e s s i o n f o r a l l s t o ck s
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# subse t and mutate data we w i l l use in each i t e r a t i o n
temp_bra i l s fo rd_da ta <− data %>%

f i l t e r (OBI . s e c u r i t y . ID == stock ) %>%
s e l e c t ( Date , Win_return , Win_dtrnd_turnover ) %>%
mutate ( Volume_L1 = dplyr : : lag ( Win_dtrnd_turnover , 1 ) ,

Volume_L2 = dplyr : : lag ( Win_dtrnd_turnover , 2 ) ,
Dummy = i f e l s e ( Win_return < 0 , 1 , 0)) %>%

na . omit ()

# r e g r e s s i o n
b r a i l s f o r d <− lm( Win_dtrnd_turnover ~ Volume_L1 + Volume_L2 + I ( Win_return^2) +

I (Dummy ∗ ( Win_return^2)),
data = temp_bra i l s fo rd_data )

# e x t r a c t r e s u l t s we need
temp_bra i l s f o rd_e s t ima te s <− b r a i l s f o r d %>%

summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 1 ) %>%
as . matr ix () %>%
t () # es t imate s

temp_bra i l s fo rd_pva lues <− b r a i l s f o r d %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 4 ) %>%
as . matr ix () %>%
t () # p va lues

t emp_bra i l s f o rd_ t va lue s <− b r a i l s f o r d %>%
summary () %>%
‘ $ ‘ ( c o e f f i c i e n t s ) %>%
‘ [ ‘ ( , 3 ) %>%
as . matr ix () %>%
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t ( ) # t−va lues

# add r e s u l t s to the c o r r e c t matr ix
b r a i l s f o r d _ e s t i m a t e s <− rbind ( b r a i l s f o r d _ e s t i m a t e s ,

t emp_bra i l s f o rd_e s t ima te s ) # es t imate s

b r a i l s f o r d _ p v a l u e s <− rbind ( b r a i l s f o r d _ p v a l u e s ,
t emp_bra i l s fo rd_pva lues ) # p va lues

b r a i l s f o r d _ t v a l u e s <− rbind ( b r a i l s f o r d _ t v a l u e s ,
t emp_bra i l s f o rd_ t va lue s ) # t−va lues

}

# name the v a r i a b l e s from the two r e g r e s s i o n s
bra i l s ford_names <− c ( " I n t e r c e p t " ,

" Turnover_1 " ,
" Turnover_L2 " ,
" Return^2",
"Dummy ∗ Return^2")

# save matr i ces as data frames
d f _ b r a i l s f o r d _ e s t i m a t e s <− as . data . frame ( b r a i l s f o r d _ e s t i m a t e s )
d f _ b r a i l s f o r d _ p v a l u e s <− as . data . frame ( b r a i l s f o r d _ p v a l u e s )

# give the d f s the c o r r e c t names
names( d f _ b r a i l s f o r d _ e s t i m a t e s ) <− bra i l s ford_names
names( d f _ b r a i l s f o r d _ p v a l u e s ) <− bra i l s ford_names

# p r i n t LaTeX−code fo r e s t imate s
s t a r g a z e r ( d f _ b r a i l s f o r d _ e s t i m a t e s ,

summary = T ,
summary . s t a t = c ( "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f _ b r a i l s f o r d _ p v a l u e s < 0.05) , 2 , func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) , 1)})

# p r i n t his tograms of t−s t a t s from step2
pdf ( f i l e = " b r a i l s f o r d _ c o e f f i c i e n t s _ h i s t . pdf " , width = 8 , he ight = 8)
# s e t window of graphs
#layout ( matr ix ( c (1 ,1 ,2 ,2 ,3 ,3 ,4 ,4 ,4 ,5 ,5 ,5) , 2 , 6 , byrow = TRUE))
layout ( matr ix ( c (5 ,5 ,5 ,5 ,1 ,3 ,2 ,4) , 2 , 4 , byrow = FALSE ))
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f o r ( i in 1:5){
h i s t ( b r a i l s f o r d _ t v a l u e s [ , i ] ,

breaks = 50 ,
main = NULL ,
x lab = c ( " alpha 0 − I n t e r c e p t " ,

" phi 1 − Volume t −1" ,
" phi 2 − Volume t −2" ,
" alpha 1 − Return^2",
" alpha 2 − dummy x Return^2")[ i ] ,

y lab = NULL ,
#xlim = c (−10 ,40) ,
#ylim = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

ab l ine ( v = qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)
ab l ine ( v = −qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# remove v a r i a b l e s we no longer need
rm( b r a i l s f o r d , b r a i l s f o r d _ e s t i m a t e s , b r a i l s f o r d _ p v a l u e s , bra i l s ford_names ,

d f _ b r a i l s f o r d _ e s t i m a t e s , d f _ b r a i l s f o r d _ p v a l u e s , temp_bra i l s ford_data ,
t emp_bra i l s fo rd_es t imate s , temp_bra i l s fo rd_pva lues , s tock , i ,
t emp_bra i l s fo rd_ tva lues , b r a i l s f o r d _ t v a l u e s )

######################## R e s t r i c t e d GARCH ########################

# RESTRICTED MODEL (NO VOLUME)

# crea t e empty matr i ces f o r s t o r i n g es t imate s l a t e r
g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− matrix (nrow = 0 , ncol = 5)
g a r c h _ r e s t r i c t e d _ p v a l u e s <− matrix (nrow = 0 , ncol = 5)
g a r c h _ r e s t r i c t e d _ t v a l u e s <− matrix (nrow = 0 , ncol = 5)

# s e t s p e c i f i c a t i o n s f o r GARCH model . This i s an AR(1)−GARCH(1 ,1)
# ( or , a r e s t r i c t e d AR(1)−VA−GARCH(1 ,1))
spec <− ugarchspec ( var iance . model = l i s t (model = "sGARCH" ,

garchOrder = c (1 , 1) ,
ex t e rna l . r e g r e s s o r s = NULL) ,

mean . model = l i s t ( armaOrder = c (1 , 0)) ,
d i s t r i b u t i o n . model = " norm " ,
s t a r t . pars = l i s t ( ) ,
f i x e d . pars = l i s t ( ) )

# use loop to f i t model f o r a l l s t o ck s
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f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# f i t model
g a r c h _ r e s t r i c t e d <− u g a r c h f i t ( spec=spec ,

data = as . matr ix ( data$Win_return [ data$OBI . s e c u r i t y . ID
== stock ] ) ,

s o l v e r = " hybr id " )

# e x t r a c t r e s u l t s we need
temp_garch_ re s t r i c t ed_es t ima te s <− garch_ re s t r i c t ed@f i t$matcoe f [ ,1] %>%

as . matr ix () %>%
t () # es t imate s

temp_garch_res t r i c t ed_pva lues <− garch_ re s t r i c t ed@f i t$matcoe f [ ,4] %>%
as . matr ix () %>%
t () # p va lues

t emp_ga r ch_ re s t r i c t ed_ tva lue s <− garch_ re s t r i c t ed@f i t$matcoe f [ ,3] %>%
as . matr ix () %>%
t () # t−s t a t i s t i c

# add r e s u l t s to the c o r r e c t matr ix
g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− rbind ( g a r c h _ r e s t r i c t e d _ e s t i m a t e s ,

t emp_garch_ re s t r i c t ed_es t ima te s ) # es t imate s

g a r c h _ r e s t r i c t e d _ p v a l u e s <− rbind ( ga r ch_ re s t r i c t ed_pva lue s ,
t emp_garch_res t r i c t ed_pva lues ) # p va lues

g a r c h _ r e s t r i c t e d _ t v a l u e s <− rbind ( g a r c h _ r e s t r i c t e d _ t v a l u e s ,
t emp_ga r ch_ re s t r i c t ed_ tva lue s ) # t−s t a t i s t i c s

}

# name the v a r i a b l e s
garch_res t r i c ted_names <− c ( "MU" , " AR1 " , " Alpha0 " , " Alpha1 " , " Beta1 " ) # Alpha0 / Omega

# save matr i ces as data frames
d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− as . data . frame ( g a r c h _ r e s t r i c t e d _ e s t i m a t e s )
d f _ g a r c h _ r e s t r i c t e d _ p v a l u e s <− as . data . frame ( g a r c h _ r e s t r i c t e d _ p v a l u e s )
d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s <− as . data . frame ( g a r c h _ r e s t r i c t e d _ t v a l u e s )

# give the d f s the c o r r e c t names
names( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s ) <− garch_res t r i c ted_names
names( d f _ g a r c h _ r e s t r i c t e d _ p v a l u e s ) <− garch_res t r i c ted_names
names( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s ) <− garch_res t r i c ted_names

# add v a r i a b l e f o r p e r s i t e n c e ( Alpha1 + Beta1 )
d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s %>%

mutate ( alpha1_plus_beta1 = ( Alpha1 + Beta1 ))

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n 1
s t a r g a z e r ( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s [ , c ( " Alpha1 " , " Beta1 " , " a lpha1_plus_beta1 " ) ] ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
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f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f _ g a r c h _ r e s t r i c t e d _ p v a l u e s < 0.05) ,

2 ,
func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) ,1)})

# p r i n t his tograms of t−s t a t s from r e s t r i c t e d GARCH(1 ,1)
pdf ( f i l e = " h i s t _ r e s t r i c t e d _ g a r c h . pdf " , width = 8 , he ight = 4)
# s e t 1x2 window of graphs
par (mfrow = c (1 ,2))
f o r ( i in 1:2){

h i s t ( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s [ , ( i + 3)] %>%
subse t ( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s [ , ( i + 3)] < 100) ,

breaks = 50 ,
main = NULL ,
x lab = c ( " alpha 1" ,

" beta 1 " ) [ i ] ,
y lab = NULL ,
xl im = c (0 ,100) ,
#ylim = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

ab l ine ( v = qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)
ab l ine ( v = −qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# remove v a r i a b l e s we no longer need
rm( d f_ga r ch_ re s t r i c t ed_pva lue s , g a r c h _ r e s t r i c t e d , g a r c h _ r e s t r i c t e d _ e s t i m a t e s ,

ga r ch_ re s t r i c t ed_pva lue s , garch_res t r i c ted_names , spec , s tock ,
t emp_garch_res t r i c t ed_es t imate s , temp_garch_res t r i c ted_pva lues ,
g a r c h _ r e s t r i c t e d _ t v a l u e s , i , t emp_gar ch_ re s t r i c t ed_ tva lue s )

######################## U n r e s t r i c t e d GARCH ########################
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# UNRESTRICTED MODEL (INCLUDING VOLUME)

# crea t e empty matr i ces f o r s t o r i n g es t imate s l a t e r
g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 <− matrix (nrow = 0 , ncol = 6)
ga r ch _ r e s t r i c t ed _pv a lu e s 2 <− matrix (nrow = 0 , ncol = 6)
g a r c h _ r e s t r i c t e d _ t v a l u e s 2 <− matrix (nrow = 0 , ncol = 6)

# use loop to f i t model f o r a l l s t o ck s
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# s e t s p e c i f i c a t i o n s f o r GARCH model . This i s an AR(1)−VA−GARCH(1 ,1)
spec2 <− ugarchspec ( var iance . model = l i s t (model = "sGARCH" ,

garchOrder = c (1 , 1) ,
ex t e rna l . r e g r e s s o r s = as . matr ix (

data$Win_dtrnd_turnover
[ data$OBI . s e c u r i t y . ID == stock ] ) ) ,

mean . model = l i s t ( armaOrder = c (1 , 0)) ,
d i s t r i b u t i o n . model = " norm " ,
s t a r t . pars = l i s t ( ) ,
f i x e d . pars = l i s t ( ) )

# f i t model
g a r c h _ r e s t r i c t e d 2 <− u g a r c h f i t ( spec=spec2 ,

data = as . matr ix ( data$Win_return [ data$OBI . s e c u r i t y . ID
== stock ] ) ,

s o l v e r = " hybr id " )

# e x t r a c t r e s u l t s we need
temp_garch_re s t r i c t ed_es t imate s2 <− garch_res t r i c t ed2@f i t$matcoe f [ ,1] %>%

as . matr ix () %>%
t () # es t imate s

temp_garch_res t r i c ted_pva lues2 <− garch_res t r i c t ed2@f i t$matcoe f [ ,4] %>%
as . matr ix () %>%
t () # p va lues

t emp_garch_ re s t r i c t ed_ tva lue s2 <− garch_res t r i c t ed2@f i t$matcoe f [ ,3] %>%
as . matr ix () %>%
t () # t−s t a t s

# add r e s u l t s to the c o r r e c t matr ix
g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 <− rbind ( ga r ch_ re s t r i c t ed _e s t ima te s2 ,

t emp_garch_re s t r i c t ed_es t imate s2 ) # es t imate s

ga r ch _ re s t r i c t ed _pv a lu e s2 <− rbind ( ga r ch_ re s t r i c t ed_pva lue s2 ,
temp_garch_res t r i c ted_pva lues2 ) # p va lues

g a r c h _ r e s t r i c t e d _ t v a l u e s 2 <− rbind ( g a r c h _ r e s t r i c t e d _ t v a l u e s 2 ,
t emp_garch_ re s t r i c t ed_ tva lue s2 ) # t−s t a t s

}

# name the v a r i a b l e s
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garch_res t r i c ted_names2 <− c ( "MU" , " AR1 " , " Alpha0 " , " Alpha1 " , " Beta1 " , " Turnover " )

# save matr i ces as data frames
d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 <− as . data . frame ( g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 )
d f _ ga r ch _ re s t r i c t ed_pv a lue s2 <− as . data . frame ( g a r ch _ re s t r i c t ed_ pva lu e s2 )
d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s 2 <− as . data . frame ( g a r c h _ r e s t r i c t e d _ t v a l u e s 2 )

# give the d f s the c o r r e c t names
names( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 ) <− garch_res t r i c ted_names2
names( d f _ga r ch_ r e s t r i c t ed _pva l ue s2 ) <− garch_res t r i c ted_names2
names( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s 2 ) <− garch_res t r i c ted_names2

# add v a r i a b l e f o r p e r s i t e n c e ( Alpha1 + Beta1 )
d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 <− d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 %>%

mutate ( alpha1_plus_beta1 = ( Alpha1 + Beta1 ))

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n 1
s t a r g a z e r ( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 [ , c ( " Alpha1 " , " Beta1 " , " a lpha1_plus_beta1 " ) ] ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f _ ga r ch _ re s t r i c t ed_ pv a lue s 2 < 0.05) ,

2 ,
func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) ,1)})

d i f f e r ence_a lpha_be ta <−
( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s [ ,6] − d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s 2 [ ,7] )

d i f f e r ence_a lpha_be ta [ d i f f e r ence_a lpha_be ta > 0] %>% length /505∗100

# p r i n t his tograms of t−s t a t s from u n r e s t r i c t e d GARCH(1 ,1)
pdf ( f i l e = " h i s t _ u n r e s t r i c t e d _ g a r c h . pdf " , width = 8 , he ight = 4)
# s e t 1x2 window of graphs
par (mfrow = c (1 ,2))
f o r ( i in 1:2){

h i s t ( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s 2 [ , ( i + 3)] %>%
subse t ( d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s 2 [ , ( i + 3)] < 100) ,

breaks = 50 ,
main = NULL ,
x lab = c ( " alpha 1" ,
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" beta 1 " ) [ i ] ,
y lab = NULL ,
xl im = c (0 ,100) ,
#ylim = c (0 ,120) ,
co l = "#316ba0 " ,
border = "#123456")

ab l ine ( v = qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)
ab l ine ( v = −qnorm (1.95/2) , co l = " red " , lwd = 4 , l t y = 2)

}
dev . o f f ( )

#r e s e t graph window
par (mfrow = c (1 ,1))

# remove v a r i a b l e s we no longer need
rm( d f _ g a r c h _ r e s t r i c t e d _ e s t i m a t e s , d f _ga r ch _ re s t r i c t e d_e s t ima te s2 ,

d f_ga r ch_ re s t r i c t ed_pva lue s2 , ga r ch_ re s t r i c t ed2 , ga r ch_ re s t r i c t ed_ e s t im a te s 2 ,
ga r ch_ re s t r i c t ed_pva lue s2 , garch_res t r ic ted_names2 , spec2 , s tock ,
temp_garch_res t r i c ted_es t imates2 , temp_garch_res t r i c ted_pva lues2 ,
g a r c h _ r e s t r i c t e d _ t v a l u e s 2 , d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s ,
d f _ g a r c h _ r e s t r i c t e d _ t v a l u e s 2 , d i f f e rence_a lpha_be ta ,
t emp_garch_res t r i c t ed_ tva lues2 , i )

######################## R e s t i c t e d eGARCH ########################

## R e s t r i c t e d EGARCH −− no volume

# crea t e empty matr i ces f o r s t o r i n g es t imate s l a t e r
e g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− matrix (nrow = 0 , ncol = 6)
e g a r c h _ r e s t r i c t e d _ p v a l u e s <− matrix (nrow = 0 , ncol = 6)
e g a r c h _ r e s t r i c t e d _ t v a l u e s <− matrix (nrow = 0 , ncol = 6)

# s e t s p e c i f i c a t i o n s f o r GARCH model . This i s an AR(1)−EGARCH(1 ,1)
# ( or , a r e s t r i c t e d AR(1)−VA−EGARCH(1 ,1))
spec <− ugarchspec ( var iance . model = l i s t (model = "eGARCH" ,

garchOrder = c (1 , 1) ,
ex t e rna l . r e g r e s s o r s = NULL) ,

mean . model = l i s t ( armaOrder = c (1 , 0)) ,
d i s t r i b u t i o n . model = " norm " ,
s t a r t . pars = l i s t ( ) ,
f i x e d . pars = l i s t ( ) )

# use loop to f i t model f o r a l l s t o ck s
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# f i t model
e g a r c h _ r e s t r i c t e d <− u g a r c h f i t ( spec=spec ,

data = as . matr ix ( data$Win_return [ data$OBI . s e c u r i t y . ID
== stock ] ) ,
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s o l v e r = " hybr id " )

# e x t r a c t r e s u l t s we need
temp_egarch_ re s t r i c t ed_es t ima te s <− egarch_re s t r i c t ed@f i t$matcoe f [ ,1] %>%

as . matr ix () %>%
t () # es t imate s

temp_egarch_res t r i c t ed_pva lues <− egarch_re s t r i c t ed@f i t$matcoe f [ ,4] %>%
as . matr ix () %>%
t () # p va lues

#temp_ega r ch_ re s t r i c t ed_ tva lue s <− egarch_re s t r i c t ed@f i t$matcoe f [ ,3] %>%
# as . matr ix () %>%
# t () # t−s t a t s

# add r e s u l t s to the c o r r e c t matr ix
e g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− rbind ( e g a r c h _ r e s t r i c t e d _ e s t i m a t e s ,

t emp_egarch_ re s t r i c t ed_es t ima te s ) # es t imate s

e g a r c h _ r e s t r i c t e d _ p v a l u e s <− rbind ( ega r ch_ re s t r i c t ed_pva lue s ,
t emp_egarch_res t r i c t ed_pva lues ) # p va lues

#e g a r c h _ r e s t r i c t e d _ t v a l u e s <− rbind ( e g a r c h _ r e s t r i c t e d _ t v a l u e s ,
# temp_ega r ch_ re s t r i c t ed_ tva lue s ) # t−s t a t s

}

# name the v a r i a b l e s
egarch_res t r i c ted_names <− c ( "MU" , " AR1 " , " Alpha0 " , " Alpha1 " , " Beta1 " , "Gamma1" )

# save matr i ces as data frames
d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s <− as . data . frame ( e g a r c h _ r e s t r i c t e d _ e s t i m a t e s )
d f _ e g a r c h _ r e s t r i c t e d _ p v a l u e s <− as . data . frame ( e g a r c h _ r e s t r i c t e d _ p v a l u e s )
#d f _ e g a r c h _ r e s t r i c t e d _ v t a l u e s <− as . data . frame ( e g a r c h _ r e s t r i c t e d _ t v a l u e s )

# give the d f s the c o r r e c t names
names( d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s ) <− egarch_res t r i c ted_names
names( d f _ e g a r c h _ r e s t r i c t e d _ p v a l u e s ) <− egarch_res t r i c ted_names
#names( d f _ e g a r c h _ r e s t r i c t e d _ t v a l u e s ) <− egarch_res t r i c ted_names

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n 1
s t a r g a z e r ( d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s [ , c ( " Alpha0 " , " Alpha1 " , " Beta1 " , "Gamma1" ) ] ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
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header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f _ e g a r c h _ r e s t r i c t e d _ p v a l u e s < 0.05) ,

2 ,
func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) ,1)})

# remove v a r i a b l e s we no longer need
rm( d f_ega r ch_ re s t r i c t ed_pva lue s , e g a r c h _ r e s t r i c t e d , e g a r c h _ r e s t r i c t e d _ e s t i m a t e s ,

ega r ch_ re s t r i c t ed_pva lue s , egarch_res t r i c ted_names , spec , s tock ,
t emp_egarch_res t r i c t ed_es t imates , t emp_egarch_res t r i c t ed_pva lues )

######################## Unres t i c t ed eGARCH ########################

## U n r e s t r i c t e d EGARCH −− i n c lud ing volume

# crea t e empty matr i ces f o r s t o r i n g es t imate s l a t e r
ega r ch_unre s t r i c t ed_e s t ima te s2 <− matrix (nrow = 0 , ncol = 7)
egarch_unres t r i c t ed_pva lues2 <− matrix (nrow = 0 , ncol = 7)

# use loop to f i t model f o r a l l s t o ck s
f o r ( s tock in O B I _ l i s t ) { #loop through a l l s t o ck s

# s e t s p e c i f i c a t i o n s f o r GARCH model . This i s an AR(1)−VA−GARCH(1 ,1)
spec2 <− ugarchspec ( var iance . model = l i s t (model = "eGARCH" ,

garchOrder = c (1 , 1) ,
ex t e rna l . r e g r e s s o r s = as . matr ix (

data$Win_dtrnd_turnover
[ data$OBI . s e c u r i t y . ID == stock ] ) ) ,

mean . model = l i s t ( armaOrder = c (1 , 0)) ,
d i s t r i b u t i o n . model = " norm " ,
s t a r t . pars = l i s t ( ) ,
f i x e d . pars = l i s t ( ) )

# f i t model
ega r ch_unre s t r i c t ed2 <− u g a r c h f i t ( spec=spec2 ,

data = as . matr ix ( data$Win_return
[ data$OBI . s e c u r i t y . ID == stock ] ) ,

s o l v e r = " hybr id " )

# e x t r a c t r e s u l t s we need
temp_egarch_unres t r i c ted_es t imates2 <− egarch_unres t r i c ted2@f i t$matcoe f [ ,1] %>%

as . matr ix () %>%
t () # es t imate s

temp_egarch_unres t r i c ted_pva lues2 <− egarch_unres t r i c ted2@f i t$matcoe f [ ,4] %>%
as . matr ix () %>%
t () # p va lues
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# add r e s u l t s to the c o r r e c t matr ix
# es t imate s
ega r ch_unre s t r i c t ed_e s t ima te s2 <− rbind ( egarch_unre s t r i c t ed_es t imate s2 ,

temp_egarch_unres t r i c ted_es t imates2 )

# p va lues
egarch_unres t r i c t ed_pva lues2 <− rbind ( egarch_unres t r i c ted_pva lues2 ,

temp_egarch_unres t r i c ted_pva lues2 )

}

d f_ega r ch_unre s t r i c t ed_e s t ima te s2 <− as . data . frame ( ega r ch_unre s t r i c t ed_e s t ima te s2 )
d f_egarch_unre s t r i c t ed_pva lues2 <− as . data . frame ( egarch_unres t r i c t ed_pva lues2 )

egarch_unrestr ic ted_names2 <− c ( "MU" ,
"AR1 " ,
" Alpha0 " ,
" Alpha1 " ,
" Beta1 " ,
"Gamma1" ,
" Turnover " )

names( d f_ega r ch_unre s t r i c t ed_e s t ima te s2 ) <− egarch_unrestr ic ted_names2
names( d f_egarch_unres t r i c t ed_pva lues2 ) <− egarch_unrestr ic ted_names2

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n
s t a r g a z e r ( d f_ega r ch_unre s t r i c t ed_e s t ima te s2 [ , c ( " Alpha0 " ,

" Alpha1 " ,
" Beta1 " ,
"Gamma1" ,
" Turnover " ) ] ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

# p r i n t percentage of s i g n i f i c a n t v a r i a b l e s (5% s i g n i f i c a n c e l e v e l )
apply (( d f_egarch_unre s t r i c t ed_pva lues2 < 0.05) ,

2 , func t ion ( x ){ round ((sum( x)∗100)/ length ( x ) ,1)})

# remove v a r i a b l e s we no longer need
rm( df_egarch_unres t r i c t ed_pva lues2 , egarch_unres t r i c ted2 ,

ega rch_unre s t r i c t ed_es t imate s2 , egarch_unres t r i c ted_pva lues2 ,

132

09432930942691GRA 19502



egarch_unrestr ic ted_names2 , spec2 , s tock , temp_egarch_unres t r i c ted_es t imates2 ,
temp_egarch_unres t r i c ted_pva lues2 )

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

d i f f e r e n c e _ b e t a <−
( d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s [ ,5] − d f_ega r ch_unre s t r i c t ed_e s t ima te s2 [ ,5] )

d i f f e r e n c e _ b e t a [ d i f f e r e n c e _ b e t a > 0] %>% length /505∗100

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

## Create h a l f l i f e t a b l e

temp_col1 <− ( d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s %>%
transmute ( R e s t r i c t e d = ( log (0 .5)/ log ( abs ( Beta1 ) ) ) ) )

temp_col2 <− ( d f _ega r ch_unre s t r i c t ed_e s t ima te s2 %>%
transmute ( Unes t r i c t ed = ( log (0 .5)/ log ( abs ( Beta1 ) ) ) ) )

d f _ h a l f _ l i f e <− cbind ( temp_col1 , temp_col2 )
d f _ h a l f _ l i f e <− as . data . frame ( d f _ h a l f _ l i f e )

# p r i n t LaTeX−code fo r e s t imate s from r e g r e s s i o n
s t a r g a z e r ( d f _ h a l f _ l i f e ,

summary = T ,
summary . s t a t = c ( " mean " , " sd " , "max " , " p75 " , " median " , " p25 " , " min " ) ,
f l i p = T ,
d i g i t s = 2 ,
d i g i t s . ex t ra = 2 ,
a l i g n = T ,
colnames = T ,
column . sep . width = "0 pt " ,
i n i t i a l . zero = T ,
header = F ,
f l o a t = T ,
f l o a t . env = " t a b l e " )

rm( temp_col1 , temp_col2 , d f _ h a l f _ l i f e ,
d f _ e g a r c h _ r e s t r i c t e d _ e s t i m a t e s , d f _ega r ch_unre s t r i c t ed_e s t ima te s2 )

######################## Granger C a usa l i t y ########################

## S e l e c t order
BIC_order_return <− numeric ()
BIC_order_vola <− numeric ()
BIC_order_volume <− numeric ()

f o r ( s tock in O B I _ l i s t ) {
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temp_BIC_return <− vars : : VARselect ( y = ( data$Win_return
[ data$OBI . s e c u r i t y . ID == stock ] ) ,

lag . max = 40 ,
type = " const " ) %>%

‘ $ ‘ ( s e l e c t i o n ) %>%
‘ [ ‘ ( 3 )

temp_BIC_vola <− vars : : VARselect ( y = ( data$Win_return
[ data$OBI . s e c u r i t y . ID == stock ])^2,

lag . max = 40 ,
type = " const " ) %>%

‘ $ ‘ ( s e l e c t i o n ) %>%
‘ [ ‘ ( 3 )

temp_BIC_volume <− vars : : VARselect ( y = ( data$Win_dtrnd_turnover
[ data$OBI . s e c u r i t y . ID == stock ] ) ,

lag . max = 40 ,
type = " const " ) %>%

‘ $ ‘ ( s e l e c t i o n ) %>%
‘ [ ‘ ( 3 )

BIC_order_return <− append ( BIC_order_return , temp_BIC_return )
BIC_order_vola <− append ( BIC_order_vola , temp_BIC_vola )
BIC_order_volume <− append ( BIC_order_volume , temp_BIC_volume )

}

BIC_order_return %>% quan t i l e ( c (0 .1 , 0.25 , 0 .5 , 0.75 , 0 .9) ) # median : BIC 1 ( AIC 4)
BIC_order_vola %>% quan t i l e ( c (0 .1 , 0.25 , 0 .5 , 0.75 , 0 .9) ) # median : BIC 5 ( AIC 19)
BIC_order_volume %>% quan t i l e ( c (0 .1 , 0.25 , 0 .5 , 0.75 , 0 .9) ) # median : BIC 5 ( AIC 13)

rm( BIC_order_return , BIC_order_vola , BIC_order_volume , stock ,
temp_BIC_return , temp_BIC_vola , temp_BIC_volume )

#~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

# does re turn granger cause turnover ?
re t _gc_vo l _pva l <− numeric ()
f o r ( s tock in O B I _ l i s t ) {

temp_pval <− g range r t e s t (
data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock]~

data$Win_return [ data$OBI . s e c u r i t y . ID == stock ] ,
order = 5) %>%
‘ $ ‘ ( " Pr(>F ) " ) %>%
‘ [ ‘ ( 2 )

r e t _gc_vo l _pva l <− append ( re t_gc_vo l_pva l , temp_pval )

}
p r i n t ( " Return granger causes volume " )
r e t _gc_vo l _pva l [ r e t _gc_vo l _pva l < 0.05] %>% length ()/505∗100
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# does volume granger cause re turn ?
vo l _gc_ re t _pva l <− numeric ()
f o r ( s tock in O B I _ l i s t ) {

temp_pval <− g range r t e s t (
data$Win_return [ data$OBI . s e c u r i t y . ID == stock]~

data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock ] ,
order = 5) %>%
‘ $ ‘ ( " Pr(>F ) " ) %>%
‘ [ ‘ ( 2 )

vo l _gc_ re t _pva l <− append ( vo l_gc_re t_pva l , temp_pval )

}
p r i n t ( " Volume granger causes re turn " )
vo l _gc_ re t _pva l [ vo l _gc_ re t _pva l < 0.05] %>% length ()/505∗100

# does v o l a t i l i t y granger cause volume?
vo la_gc_vo l_pva l <− numeric ()
f o r ( s tock in O B I _ l i s t ) {

temp_pval <− g range r t e s t (
data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock]~I (

( data$Win_return [ data$OBI . s e c u r i t y . ID == stock ])^2) ,
order = 5) %>%
‘ $ ‘ ( " Pr(>F ) " ) %>%
‘ [ ‘ ( 2 )

vo la_gc_vo l_pva l <− append ( vo la_gc_vo l_pva l , temp_pval )

}
p r i n t ( " V o l a t i l i t y granger causes volume " )
vo la_gc_vo l_pva l [ vo la_gc_vo l_pva l < 0.05] %>% length ()/505∗100

# does volume granger cause v o l a t i l i t y ?
vo l_gc_vo la_pva l <− numeric ()
f o r ( s tock in O B I _ l i s t ) {

temp_pval <− g range r t e s t (
I (

( data$Win_return [ data$OBI . s e c u r i t y . ID == stock])^2)~
data$Win_dtrnd_turnover [ data$OBI . s e c u r i t y . ID == stock ] ,

order = 5) %>%
‘ $ ‘ ( " Pr(>F ) " ) %>%
‘ [ ‘ ( 2 )
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vo l_gc_vo la_pva l <− append ( vo l_gc_vo la_pva l , temp_pval )

}
p r i n t ( " Volume granger causes v o l a t i l i t y " )
vo l_gc_vo la_pva l [ vo l_gc_vo la_pva l < 0.05] %>% length ()/505∗100

rm( re t_gc_vo l_pva l , temp_pval , vo l_gc_re t_pva l ,
vo l_gc_vo la_pva l , vo la_gc_vo l_pva l , s tock )
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1 Introduction

The relationship between return, volatility and trading volume has been a central part of financial research

since the late 50s for numerous reasons. First, it is important for the understanding of the microstructure

of financial markets, which O’Hara states has become even more important over the last few years (2015).

Volume has long been linked to the flow of information, and the role of information in setting security

prices is one of the most fundamental research issues in finance (see e.g. Brailsford, 1996, p. 90). Second,

because knowledge about this relation might improve short term forecasting of returns, volume or volatility,

and might have implications for futures markets. Third, because it might help improve or create liquidity-

adjusted risk- or expected shortfall metrics (e.g. Anthonisz & Putniņš, 2016, p. 31). Fourth, because it is

often applied in technical analysis as a measure of the strength of stock price movements (e.g. Gallo & Pacini,

2000, p. 167; Abbondante, 2010, p. 287). And last, it has implications for theoretical and empirical asset

pricing, established through its effect on liquidity (see Amihud & Mendelson, 1986; Chordia, Subrahmanyam,

& Anshuman, 2001). High liquidity reduces the required return by investors and thus reduces the cost of

capital for the issuers of securities. An efficient price discovery processes, associated with lower volatility,

make market prices more informative and enhance the role of the market in aggregating and conveying

information through price signals (Amihud, Mendelson, & Murgia, 1990, p. 439). It also has a socio-economic

benefit, as it leads to a more efficient capital allocation.

The relationship between return, volatility and volume has been studied extensively. However, to our

knowledge, there has not been conducted any recent studies of this on Oslo Stock Exchange. Additionally,

a lot of the literature might be somewhat outdated, given the recent developments in market conditions.

Algorithmic trading, and especially high frequency trading (HFT), has changed markets in fundamental

ways, and the high speeds gives market microstructure a starring role (O’Hara, 2015, p. 257). The stock

markets have gradually transitioned from a time when trading occurred between humans, to a mixed phase of

humans and machines to an ultrafast mostly-machine phase where machines dictate price changes (Johnson

et al., 2012, p. 5). O’Hara believes that HFT has altered some basic constructs underlying microstruc-

ture research (2015, p. 263). She states that research must change to reflect the new realities, and that

understanding how markets and trading have changed is important for informing future research (2015,

pp. 257–258).

O’Hara argues that with the radically different markets and way of trading there is no lack of things that

are not yet understood; both particular, general and conceptual questions demand immediate attention (2015,

pp. 263–268). Our aim is to add to the current literature on the volume-return relationship by studying

the Norwegian stock exchange. This motivates the following research question: “What is the empirical

relationship between volume and stock returns on Oslo Stock Exchange?”
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This preliminary thesis is organized in the following way. First we will do a short introduction of Oslo

Stock Exchange. Thereafter we will explain the most relevant theories encountered in this thesis. The next

section surveys the current literature. Then we will explain what sort of methodology we will use to analyse

our data, and what data we want to collect. The last section includes our progression plan.

2 Oslo Stock Exchange

Kristiania Børs – the precursor to what is today Oslo Stock Exchange – was approved by King Carl Johan in

1818. This was Norway’s second exchange (Hodne & Grytten, 1992, pp. 53–54) when it opened its doors for

the first time in April 1819 – soon two centuries ago (e.g. Mjølhus, 2010, p. 28). At that time, Norway was

mainly a country of farmers and fishermen, and the capital had less than 10,000 inhabitants (e.g. Kristiania

børs, 1919, p. 1). According to Oslo Stock Exchange’s webpage, the exchange originally functioned as an

auction house for goods, ships and ship parts, and as an exchange for foreign currencies. Back then, the

currency prices were updated twice a week.

The Oslo Stock Exchange introduced stocks in 1881. Although the trade was modest at first, the number

of securities exploded between 1891 and 1900, from 40 to 165 (Hodne & Grytten, 2000, p. 170). Daily quotes

were introduced in 1916 for some stocks – but not until 1922 for all stocks.

Today, Oslo Stock Exchange list the shares of 187 companies, with a combined market capitalization

of almost 329 billion USD. The exchange is a private limited company, which it has been since 2001. Not

much has been written about the return-volume relationship on Oslo Stock Exchange. Næs, Skjeltorp, and

Ødegaard (2008) examined the relationship between the long-term development in liquidity at the exchange

and the Norwegian Economy, and Jørgensen, Skjeltorp, and Ødegaard (2017) wrote about the order-to-

trade ratio. Mikalsen (2014) shows several examples of volume analysis in technical trading on Oslo Stock

Exchange – at least indicating that volume is an important metric for Norwegian traders as well. Karolyi,

Lee, and Van Dijk examined co-movement between trading activity and return in several countries and found

that for Norway, commonality was 25.36% in returns, 23.31% in liquidity, and 23.82% in turnover (2009).

The sparse literature about the exchange is part of the motivation as to why we want to write about Oslo

Stock Exchange and not any other exchange.
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3 Theory

The efficient market hypothesis (EMH) emphasize the role of information in setting prices, and defines an

efficient market as one in which new information is incorporated quickly and correctly into its current security

prices (Lim & Brooks, 2011, p. 69). Therefore, most models trying to explain the return-volume relationship

are clearly related to the flow of new information, and the process that incorporates this information into

market prices (e.g. Andersen, 1996, p. 170; Brailsford, 1996, p. 95).

The two main hypothesis underlying these models are the sequential information arrival hypothesis

(SIAH) and the mixture of distributions hypothesis (MDH). SIAH was first developed by Copeland (1976,

1977) and later expanded by Jennings, Starks, and Fellingham (1981). The hypothesis assumes that investors

receive information sequentially at different times, which shift the optimists’ demand curve up, and the

pessimists’ demand curve down. Trading occur as a reaction to this new information. Buy trades are viewed

as noisy signals of good news, sell trades as noisy signals of bad news (O’Hara, 2015, p. 263). MDH assumes

that daily price changes are sampled from a set of distributions with different variances. In the MDH-model

specified by Epps and Epps (1976), investors revise their reservation price when new information enter the

market. Volume is viewed as the disagreement between the investors (see e.g. B.-S. Lee & Rui, 2002, p. 54).

Andersen note that there is evidence both in support of and against the MDH (1996, p. 170).

The arrival of new information causes investors to revise their price reservations. As investors are

heterogeneous in their interpretation of news, prices may not change even though new information enters

the market. This might happen if some investors interpret the news as good and others as bad (e.g. Mestel,

Gurgul, & Majdosz, 2003, p. 3; de Medeiros & Van Doornik, 2006, p. 2). Volume is always non-negative

and as long as at least one investor makes an adjustment in their price revision, expected trading volume is

positive (Brailsford, 1996, pp. 93–94). Therefore, volume can be seen as an indicator of consensus, or the

lack thereof (Gallo & Pacini, 2000, p. 167). Average investor-reaction to information is reflected in price

movements (e.g. Mestel et al., 2003, p. 3; de Medeiros & Van Doornik, 2006, p. 2). However, information

arrival is not constant, and displays seasonalities and distinct intraday patterns (e.g. Berry & Howe, 1994).

Learning is an important feature in many microstructure models. Most such models rely on the notion

that some traders have private information which they trade on. Other traders see market data and they

learn from it. Market prices adjust to efficient levels that reflect all the information (O’Hara, 2015, p. 263).
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4 Literature Review

There is an old Wall Street adage stating that “It takes volume to make prices move.” Studies of the price-

volume relation dates back to the late 1950s (see e.g. Chandrapala, 2011) when Osborne laid the theoretical

foundation (1959). One of the earliest empirical studies was performed by Granger and Morgenstern (1963),

who found the connection between volume and stock prices on the New York Stock Exchange to be negligible.

Ying (1966) was the first to document a positive correlation between volume and price change (V, ∆p),

and a positive correlation between the volume and absolute price change (V, | ∆p |). In his extensive

literature review, Karpoff (1987) state that numerous empirical findings in the 60s, 70s and 80s support the

positive volume-absolute price change correlation. Further, Karpoff describes several similar findings for the

relationship between volume and price change variance, price change magnitude, price variability, absolute

price change, squared abnormal return and squared price change. However, most of these effects have little

economic impact (Karpoff, 1987).

Karpoff (1987) summarize the research conducted before 1987 with the following conclusions:

1. No volume-price correlation exists

2. A correlation exists between volume and absolute price change (V, | ∆p |)
3. A correlation exists between volume and price change (V, ∆p)

4. Volume is higher when prices increase than when prices decrease

He further suggests that it is likely that the relationship between volume and price changes stems from

their common ties to information flows or their common ties to a directing process that can be interpreted

as the flow of information (Karpoff, 1987).

In Table 1 we have summarized the data used, methodology and results of several other papers on the

volume-return relationship.

Author Year Data Model Conclusion

Transaction data test of the mixture of distribution hypothesis

Harris (1987) NYSE: D Trading might be self generating.

Heteroscedasticity in stock Return Data: Volume versus GARCH effects

Lamoureux &

Lastrapes

(1990) U.S. GARCH GARCH effects vanish (due to volume).

Stock Prices and Volume.
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Author Year Data Model Conclusion

Gallant et al. (1992) NYSE: D VAR, ARCH Contemporaneous volume-volatility

correlation. Large price movements

associated with higher subsequent

volume. Volume-leverage interaction.

Positive conditional risk-return relation

after conditioning on lagged volume.

Return Volatility and Trading Volume: An information Flow Interpretation of Stochastic Volatility

Andersen (1996) IBM share GMM,

GARCH

Consistent with the MDH.

The effects of trading activity on market volatility

Gallo & Pacini (2000) U.S. GARCH,

EGARCH

Structure of GARCH-type models of

conditional heteroskedasticity does not

manage to capture the quick absorption

of large shocks to returns and implies in

practice a too high level of persistence

of shocks.

Does Trading Volume Contain Information to Predict Stock Returns? China’s Stock Markets

C. F. Lee & Rui (2000) SSE, SZSE: D GARCH,

VAR

Trading volume does not ganger cause

stock return on individual markets. US

and Hong Kong financial market

information contained in returns,

volatility and volume has very weak

predictive power for Chinese financial

market variables.

The Dynamic Relation between Stock Returns, Trading Volume, and Volatility

Chen et al. (2001) U.S., Asia,

Europe: D

EGARCH,

VAR

GARCH effects remains significant

when contemporaneous and lagged

volume is included in the model.

The Dynamic Relationship between stock returns and Trading Volume
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Author Year Data Model Conclusion

B. -S. Lee &

Rui

(2002) NY, Tokyo,

London: D

GMM,

GARCH,

VAR

Trading volume does not Granger-cause

stock market returns on each of the

markets. However, there exists a

positive feedback relationship between

trading volume and return volatility in

all three markets.

The empirical relationship between stock returns, return volatility and trading volume: Austrian market

Mestel et al. (2003) WBAG GARCH,

VAR

The relationship between stock return

and trading volume is mostly negligible.

Evidence of a relationship

(contemporaneous & causal) between

return volatility and trading volume.

Trading Volume and Returns Relationship in Greek Stock Index Futures Market

Floros &

Vougas

(2007) ASE, ADEX GARCH,

GMM

Findings indicate that market

participants use volume as an

indication of prices.

The Price-Volume Relationship in the Chilean Stock Market

Kamath (2008) IPSA: D Granger causality running from returns

to volume.

The empirical relationship between stock return, return volatility and trading volume: Brazil

de Mendeiros &

Van Doornik

(2006) BOVESPA: D GARCH,

VAR

Significant contemporaneous

relationship between return volatility

and trading volume. Stock return

depends on trading volume, not the

other way around. Higher trading

volume and return volatility

relationship is asymmetrical. GARCH

effect and high hysteresis in conditional

volatility. Granger causality between

trading volume and return volatility is

strongly evident in both directions.

The Dynamic Relationship between Price and Trading Volume: Indian Stock Market
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Author Year Data Model Conclusion

Kumar et al. (2009) S&P CNX

Nifty Index

GARCH,

VAR

ARCH effects decline when trading

volume is included in GARCH equation.

Asymmetric Volatility and Trading Volume: The G5 Evidence

Sabbaghi (2011) G5 stock

markets: D

EGARCH The findings in this paper support prior

research that has documented a positive

association between trading volume and

return volatility. Persistence levels do

not decrease with the inclusion of

trading volume in the EGARCH.

Relationship between Trading Volume and Asymmetric Volatility in the Korean Stock Market

Choi et al. (2012) KOSPI EGARCH,

GJR-

GARCH

Trading volume is a useful tool for

predicting the volatility dynamics of the

Korean stock market.

Table 1: Literature overview

In addition to the volume-return relationship, much literature is dedicated to the study of liquidity.

Volume and liquidity is inextricably linked (e.g Benston & Hagerman, 1974; Stoll, 1978). A market is said to

be liquid if traders can quickly buy or sell a large number of shares at low transaction costs with little price

impact (Næs et al., 2008, p. 2). In other words, liquidity includes a cost dimension, a quantity dimension, a

time dimension and an elasticity dimension. A natural measure of the cost dimension is the bid-ask spread,

which indeed has been found to be negatively correlated with other liquidity characteristics such as volume,

number of shareholders, number of market makers trading the stock and stock price continuity (Amihud &

Mendelson, 1986, pp. 223–224).

The level of liquidity affects expected returns because investors know that in relatively less liquid stocks,

transaction costs will erode more of the realized return (see e.g. Amihud & Mendelson, 1986; Anthonisz &

Putniņš, 2016). Thus, investors demand a premium for less liquid stocks, and so expected returns should

be negatively correlated with the level of liquidity (e.g. Chordia et al., 2001, pp. 29–30). Amihud and

Mendelson shows that excess returns are increasing in both β and the spread (1986, p. 238), indicating that

part of the effect traditionally attributed to the CAPM β may in fact be due to the spread.

Similar to the return-volume relationship, liquidity behaves and is priced asymmetrically (e.g. Anthon-

isz & Putniņš, 2016, p. 3). By assuming symmetry, as is implicit in much of the existing theoretical and
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empirical literature, the importance of liquidity risk in explaining cross-sectional returns might be underes-

timated. Anthonisz and Putniņš finds that stocks with high downside liquidity risk compensate investors

with an substantial expected return premium (2016, p. 3). This is consistent with investors disliking stocks

that are more susceptible to liquidity spirals or abandonment during flights to liquidity. Chordia, Roll, and

Subrahmanyam (2002) have found that buying activity is more pronounced following market crashes and

selling activity is more pronounced following market rises, while Karolyi et al. suggests that common varia-

tion in individual stocks tend to rise during financial crises (2009, p. 21). Anthonisz and Putniņš finds that

there is a greater dispersion in downside liquidity risk during illiquid market states than liquid states (2016,

p. 26). Wang, Wu, and Lai developed a model which allow for the return-volume dependence to switch

between positive and negative dependence regimes (2018). They are the first to divide their observations

into four different market conditions: rising return/rising volumes, falling returns/falling volumes, rising re-

turns/falling volumes, and falling returns/rising volumes. They find that the volatilities of return and volume

are larger for the negative dependence regime than for the positive dependence regimes. They find support

for heterogeneous investors with short-sale constraints. The return-volume dependence is asymmetric. Both

the intensity of information and liquidity trading are important in driving the time-varying, return-volume

dependence (Wang et al., 2018).

If the investors adapt their strategies on a slower time scale than the time scale on which the trading

process takes place, this will lead to positive autocorrelation in volatility and volume (Brock & LeBaron,

1995). Chordia et al. finds that liquidity is highly predictable not only by its own past values but also by

past market returns (2002). The number of trades and the market return can predict future changes in

liquidity. However, controlling for the market return, the predictive power of volatility is only marginal.

Several studies suggest that market microstructure directly influences the liquidity or available supply of

a tradable asset which in turn impacts the pricing, valuation and risk measurement of the asset (e.g. Abrol,

Chesir, & Mehta, 2016, p. 116). Amihud and Mendelson suggest that liquidity increasing financial policies

can reduce the firm’s opportunity cost of capital and provide measures for the value of improvements in the

trading and exchange process (1986, p. 224). Thus, market-microsturcture factors can be important as deter-

minants of stock returns. Further, their results suggest a strong incentive for the firm to invest in increasing

the liquidity of the claims it issues; like going public, standardize contracts or enlist on exchanges (Amihud

& Mendelson, 1986, p. 246). Anthonisz and Putniņš finds that firms can also reduce their cost of capital by

minimizing their stocks’ downside liquidity risk (Anthonisz & Putniņš, 2016, p. 31).

Karolyi et al. find that commonality in returns, liquidity, and turnover is greater in countries that are

less economically and financially developed, have weaker investor protection, and are characterized by a less

transparent information environment, a smaller equity mutual fund base, and a greater fraction of closely held

shares (2009, p. 18). This is consistent with Bhattacharya and Galpin (2011) and Wu (2017). Bhattacharya
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and Galpin finds that value-weighted portfolios are more popular in developed markets than emerging mar-

kets. They speculate that this is because stock picking is less popular when the public information disclosure

environment is good. Stock pickers can only make money when they have better information than everyone

else, which they will not have when public information disclosure is good (2011, pp. 739–740). There seems

to be a general, but not universal, consensus that increased transparency result in better liquidity and re-

duced transaction costs (e.g. Næs et al., 2008, p. 7). One conflicting opinion is Madhavan who shows that

transparency can also reduce liquidity, as transparrent markets might lose out on informed traders who do

not want to reveal their trading interests (1995, pp. 593–594).

One of our motivations for this thesis is the changed trading environment. By all accounts, high frequency

trading has become very significant in today’s markets (Friederich & Payne, 2015). According to O’Hara,

the rise of HFT has also radically changed how non high frequency (HF) traders behave, and the markets

where this trading occurs. The current market structure is highly competitive, highly fragmented, and very

fast (O’Hara, 2015, p. 258). The estimated amount of high frequency trading differs. Brogaard, Hendershott,

and Riordan (2014) found that HTF makes up over 42% of traded volume on Nasdaq, while Hagströmer

and Norden (2013) estimate that 26-30% of firms trading on Nasdaq-OMX to be pure HF firms, and a

total amount of HF trading could be as high as 50%. O’Hara also state that by some estimates, high

frequency traders make up half or more of all trading volume (2015, p. 258). There is a general, but not

universal, agreement that HFT market making enhances market quality by reducing spreads and enhancing

informational efficiency (O’Hara, 2015, p. 259). The bid-ask spread narrows, leading to a more efficient price

discovery process, and increased trading volumes has increased market liquidity (see e.g. Hendershott, Jones,

& Menkveld, 2011; Abrol et al., 2016). However, many are concerned that HFT induce market instability.

When looking at multiple exchanges between 2006 and 2011, Johnson et al. finds on average more than one

flash-crash each trading day (2012) and O’Hara points out that HFT might lead to periodic illiquidity (2015,

p. 259). Additionally, some HFT strategies are considered predatory. According to Friederich and Payne

there is no estimate of how much HF flow might be abusive in nature, because such behaviour is very difficult

to detect (2015, p. 4). They further state that there is a suspicion that regulators are overwhelmed by the

amount of data that today’s markets generate, and that they are lagging behind brokers and exchanges in

respect of the skills needed to analyse this data.

The ability of high frequency traders to enter and cancel orders faster than others, makes it hard to

discern where liquidity exists in the markets (O’Hara, 2015, p. 258). Abrol et al. finds that the high speeds

enables sub second injections and withdrawals of liquidity (2016, p. 126), which is faster than humans can

notice and physically react to (Johnson et al., 2012, p. 2). Orders are sent to and from the exchange as part

of complex dynamic trading strategies, and it is now common for upward of 98% of all orders to be canceled

instead of of being executed as trades (O’Hara, 2015, p. 259). From a computer perspective, HF trading

algorithms in the sub-second regime need to be executable extremely quickly and hence be relatively simple,
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without calling on much memory concerning past information (Johnson et al., 2012, p. 6). There is therefore

a question of how much information such trades incorporate. O’Hara argues that with algorithmic trading,

trades are no longer the basic unit of information – the underlying orders are (2015, p. 263).

An implication of HFT for regulators is that extreme behaviors on long and very short time scales –

such as crashes and flash-crashes – cannot be separated a priori. Rules targeted solely at controlling one

or the other can induce dangerous feedback effects at the opposite timescale (Johnson et al., 2012, p. 4).

Additionally, some regulations targeted at HFT might damage liquidity due to the fact that HF traders may

be acting as de facto market makers (see Friederich & Payne, 2015, p. 5).

5 Methodology

Before we start on our analysis, we must decide for a measure of trading activity. A main challenge in

empirical research on liquidity has been to construct measures that can capture all dimensions of liquidity

in a satisfactory way (Næs et al., 2008, p. 2). There is no theoretically or universally accepted measure

to determine a market’s liquidity, and thus a number of measures must be considered (e.g. Lybek & Sarr,

2002). Also, a range of market-specific factors and peculiarities must be taken into consideration. A much

applied measure of trading activity is turnover – the number of shares traded over the number of shares

outstanding – sometimes referred to as relative volume (Campbell, Grossman, & Wang, 1993; Lo & Wang,

2000).

turnover =
number of sharestraded

number of shares outstanding

When we have decided on such a measure and collected the data we need, we are ready to start with the

main part of our thesis. We plan to start with data cleaning and preparation. When our dataset is ready,

we start our exploratory data analysis. We plan to test the time series for stationarity using an augmented

Dickey-Fuller (ADF) test. If we are working with stock prices, they will most likely display strong traits

of non-stationary, and will need to be transformed. There are several ways to achieve stationarity. Some

series require detrending, and are called trend-stationary. Others will need to be differenced and are called

difference-stationary. Stock prices tend to be difference-stationary, and thus we can log-transform them and

first difference them. The daily log-difference series will be a very close proxy of daily returns, and will

hopefully be stationary. Several articles state that volume display traits of trend and seasonality. Thus we

deem it likely that we need to detrend our volume-data, maybe even using non-linear filters.

Next, we want to move to descriptive statistics. Financial time series tend to display non-normal tenden-

cies, which we would like to test using a Jarque-Bera test for normality. This is important to know about,

10

Appendix G: Preliminary thesis

09432930942691GRA 19502



in case some of our tests or models require normality.

Next step in exploring the relationship between stock return and volume would be to do a cross-

correlation analysis to look at the contemporaneous as well as a dynamic (causal) relationship, using a

Vector Autoregressive (VAR) model. As VAR models can be sensitive to non-stationarity, this is somewhat

dependent on the results we find earlier in our analysis. The dynamic relationship between stock return and

trading volume can help in better understanding the microstructure of Oslo Stock Exchange.

Continuing, we plan to develop a multivariate model. It is widely documented that daily financial

return series display strong conditional heteroskedasticity. The standard warning is that in the presence of

heteroskedasticity, the regression coefficients for an ordinary least squares (OLS) regression are still unbiased,

but the standard errors and confidence intervals estimated by conventional procedures will be too narrow,

giving a false sense of precision. Therefore, the ARCH model, and its extension into GARCH, is often used

– with good results (e.g. Andersen, 1996). Instead of considering this as a problem to be corrected, ARCH

and GARCH models treat heteroskedasticity as a variance to be modeled. The GARCH model, like the

ARCH model, have a weighted average of past squared residuals, but includes declining weights that never

reaches zero (Engle, 2001). The EGARCH and TARCH models where later developed as more evidence

indicated that the direction of returns affect volatility (Engle, 2001, p. 166). It is adjacent to expect that

these models will be a good fit for us, however there are other possibilities too. Several studies suggest that

the return-volume relationship is asymmetric. Other extensions of the ARCH, such as the EGARCH or

the QGARCH, takes this asymmetry into consideration. Other models we have seen used is GJR-GARCH,

SARV, and GMM models. We would need to study these models closer before deciding on one. Whichever

model we use, we plan to use an information criterion such as the AIC or the BIC to decide the order of the

model.

Further, we probably need to use control variables in our model. Some earlier studies suggest including

day-of-the-week dummies to control for weekly asymmetries. Others suggest including quadratic terms or

interaction terms to control for non-linear relationship between the variables. Several studies control for

external influences, such as macroeconomic variables, or well-known pricing factors such as the factors in

the Fama French model or momentum.

When our model is developed, we plan to look for dynamic relationships. We will test our sample for

Granger causality, both from volume to returns and returns to volume.

If the time and scope of our thesis allow for it, it would be interesting to perform the same tests with

different frequency data, and look for differences in results. It would also be interesting to follow Wang et

al. and look at asymmetry in positive and negative dependence regimes (2018).
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When analyzing our data, we will use the open source statistical software R (R Core Team, 2017). As it

is not always natural to cite the extensions we have used in our analysis in the running text, we will reference

them all here. In this version of the thesis, we have used the following package:

• plan (Kelley, 2013)

6 Data

We need data on stock prices, volume and preferably adjusted returns. All of these data are downloadable

from Yahoo Finance going back to the year 2000. We can also find market returns from OSE on Bernt Arne

Ødegards homepage, going all the way back to the 1980s. His webpage also includes the risk free rate and

the Fama French factors: SMB, HML and UMB, the Charhart Momentum factor and a Liquidity factor

for the Norwegian market, which we might need as control variables. We might also need macroeconomic

variables as control variables, which we can download from Thomson Reuters Datastream, Statistics Norway

or from the webpages of the Central Bank of Norway.

When it comes to frequency, the choice seems somewhat arbitrary. Our initial thought were to look for

high frequency data, such as five minute intervals, so that we could pick up on HFT. However, in a high

frequency setting, five minutes is a “lifetime”, and is not a meaningful time frame to evaluate trading (O’Hara,

2015, p. 267). Higher than daily frequency poses problems of inter-asset synchronicity which could make

it difficult to detect market-wide relations (Chordia et al., 2002) and could result in noisy estimates (e.g.

Corwin & Coughenour, 2008, p. 3038). Further, high frequency data would result in a very large data set,

and would lead to a lot of work in data cleaning and preparation. Also, since O’Hara believes that issues

when analyzing HFT data cannot be solved by better data sets (2015, p. 268), this does not seem like the

way to go.

Chordia et al. states that the relationship between liquidity and returns is most likely to manifest itself

over short horizons, that is daily as opposed to weekly or monthly, and picked a daily frequency because

of this (2002). Wu (2017) chose a weekly horizon as a compromise between maximizing sample size and

minimizing day to day volume and return fluctuations that have less direct economic relevance.

Our plan is to first collect daily data, and – if time and scope allow it – also collect and analyse weekly

or monthly data. It could be interesting to see if the different frequencies yield different results.
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7 Progression Plan

Going forward, we plan to continue our literature review. Especially, we want to include more behavioral

theories, and read more about the Adaptive Market Hypothesis (AMH). After we have collected our data, we

want to do a deep dive into the financial statistics and economietrics literature, to really get to the bottom

of the pros and cons of the different methods, models and tests. In Figure 1 we outline our expected progress

going forward.

Figure 1: Progression plan
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Hagströmer, B., & Norden, L. (2013). The diversity of high-frequency traders. Journal of
Financial Markets , 16 (4), 741–770.

Harris, L. (1987). Transaction data tests of the mixture of distributions hypothesis. Journal
of Financial and Quantitative Analysis , 22 (2), 127–141.

Hendershott, T., Jones, C. M., & Menkveld, A. J. (2011). Does algorithmic trading improve
liquidity? The Journal of Finance, 66 (1), 1–33.

Hodne, F., & Grytten, O. H. (1992). Norsk økonomi 1900-1990. Tano.
Hodne, F., & Grytten, O. H. (2000). Norsk økonomi i det 19. århundre. Oslo: Fagbokforlaget .
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