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Abstract

We estimate the effects of domestic and international sources of macroeconomic
uncertainty in three small open economy (SOE) inflation targeting countries: Aus-
tralia, Canada and New Zealand. To this end, we propose a structural VAR model
with a common stochastic volatility in mean component, and develop an efficient
Markov chain Monte Carlo algorithm to estimate the new model. An important
feature of the model is that it allows us to test various hypotheses in an internally
consistent manner. Our main result is that international uncertainty spillovers
shape the macroeconomic conditions in all SOEs. The general mechanism is that
international uncertainty shocks reduce real GDP, while raising inflation and in-
terest rates. Domestic uncertainty shocks are found to have a similar effect on
inflation and interest rates, however the real GDP responses are idiosyncratic. In
particular, the transmission of domestic uncertainty shocks is found to be negative
in Canada and positive in New Zealand, while the Australian response is initially
negative and becomes positive over time. While the Canadian responses are similar
to established results on the US economy, our findings highlight potentially different
transmission mechanisms in Australia and New Zealand. Finally, in a forecasting
exercise, we show that accounting for macroeconomic uncertainty via our model
specification provides more accurate point and density forecasts compared to com-
monly used benchmarks.

Keywords: Bayesian VARs, International Spillovers, Small Open Economies, Stochas-
tic Volatility in Mean, Uncertainty.

JEL-Classification: C11, C15, C53, E37, F62



1 Introduction

A recent literature has demonstrated the significance of modeling macroeconomic uncer-

tainty in the US economy (see, among others: Bloom (2009); Mumtaz and Zanetti (2013);

Born and Pfeifer (2014); Fernández-Villaverde et al. (2015); Rossi and Sekhposyan (2015);

Jurado et al. (2015); Baker et al. (2016); Basu and Bundick (2017); Aastveit et al. (2017);

Carriero et al. (2017); Mumtaz and Theodoridis (2017a); Bloom et al. (2018); Carriero

et al. (2018); Ismailov and Rossi (2018)). As idiosyncratic shocks are the primary driver

of the US business cycle, researchers tend to model the macroeconomic environment un-

der the assumption of a closed economy. The consequence of this approach is that little is

known about the effects of international uncertainty spillovers. While such information is

not of first-order importance to policymakers in large economies, it is potentially impor-

tant for those in small open economies (SOEs) who are highly susceptible to international

shocks. For instance, Justiniano and Preston (2010) find that around half medium term

Canadian output growth volatility is explained by macroeconomic shocks from the US

economy. Given the known importance of international macroeconomic spillovers, and the

recent interest in domestic uncertainty in the US economy, it is natural for policymakers

to ask: what are the effects of international uncertainty spillovers on SOEs?

We address this policy-relevant question by developing a structural VAR model with a

country-specific stochastic volatility in the mean component. Consistent with recent stud-

ies on the US economy, our measures of domestic macroeconomic uncertainty are defined

as the common component in the second-moment of a particular country’s macroeco-

nomic variables (Jurado et al., 2015; Mumtaz and Theodoridis, 2017a; Carriero et al.,

2017). Moreover, unanticipated changes in the second-moment, i.e. uncertainty shocks,

are allowed to directly impact the mean dynamics of the model. This is particularly

important for our research question, as it enables us to empirically test the importance

of uncertainty shocks in an internally consistent manner.
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Using the US as a large economy, our analysis reveals important insights on the ef-

fects of uncertainty shocks in three commonly studied inflation targeting SOEs: Australia,

Canada and New Zealand1. Our results suggest that both domestic and foreign sources

of macroeconomic uncertainty shape the economic climate in each of the SOEs. In partic-

ular, international uncertainty spillovers are found to have a persistent negative impact

on real GDP, while increasing both inflation and interest rates. Domestic uncertainty

shocks are found to have a similar effect on inflation and interest rates, however the real

GDP responses are idiosyncratic. In particular, the transmission of domestic uncertainty

shocks is negative in Canada and positive in New Zealand, while the Australian response

is initially negative and becomes positive over time. This suggests that these economies

exhibit different transmission mechanisms compared to the US economy. More precisely,

the New Zealand experience is suggestive of growth options or Oi-Hartman-Abel effects,

while the Australian response is consistent with a strong precautionary savings channel,

which are not typically found in studies of the US economy. Given the importance of

these shocks, along with the fact that each of the SOEs has an inflation targeting man-

date, we then investigate whether accounting for uncertainty can generate more accurate

forecasts. Indeed, we find that accounting for macroeconomic uncertainty improves the

forecast performance of a conventional VAR with and without stochastic volatility. Taken

together, our results suggests that macroeconomic uncertainty plays a key role in shap-

ing the economic environments in all SOEs, and accounting for this uncertainty can aid

policymakers in making better informed decisions.

In terms of empirical application, our research extends the wide literature on inter-

national macroeconomic spillovers (Schmitt-Grohé, 1998; Canova, 2005; Canova et al.,

2007; Canova and Ciccarelli, 2012; Justiniano and Preston, 2010; Guerron-Quintana,

1We use the US as a large economy because it has recently been shown to be the main driver of
global macroeconomic uncertainty (Carriero et al., 2018). The SOEs were among the first countries in
the world to adopt an inflation targeting framework. Specifically, Australia adopted inflation targeting
in 1992, Canada in 1991 and New Zealand in 1990.
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2013; Aastveit et al., 2016; Faccini et al., 2016), and is intimately related to the small

literature on international uncertainty spillovers (Caggiano et al., 2017; Cross et al., 2017;

Mumtaz and Theodoridis, 2017b; Carriero et al., 2018). While our research complements

each of these papers, there are key differences between them. For instance, Cross et al.

(2017) employ a theoretically constrained DSGE model to quantify the effects of macroe-

conomic uncertainty shocks. In contrast our model allows for a more flexible empirical

investigation. In this sense our paper is more similar to Mumtaz and Theodoridis (2017b)

and Carriero et al. (2018), which use factor models to measure the empirical effects of

international spillovers among a range of developed economies. In particular, Mumtaz

and Theodoridis (2017b) consider the effects of global shocks in driving macroeconomic

and financial conditions in 11 OECD countries, while Carriero et al. (2018) extend this

analysis to quantify the effects of international uncertainty spillovers on two data sets: a

19-country GDP data set, and a data set with various macroeconomic variables from the

US, Euro Area and the UK. In contrast, our objective in this paper is to focus on the

transmission of uncertainty spillovers from large to SOEs. The present study is therefore

complementary to each of these papers. In particular, the findings that (1) Australia and

New Zealand exhibit different uncertainty transmission mechanisms as compared to the

US economy, and that (2) accounting for uncertainty can enhance forecast accuracy, are

entirely novel results.

In terms of empirical methods, our model can be viewed as a multivariate extension of

the univariate stochastic volatility in mean model (SVM) of Koopman and Hol Uspensky

(2002). Alternatively, it can be viewed as an extension of the common stochastic volatil-

ity model of Carriero et al. (2016), to a framework in which the time-varying second

moments have first-order effects. In this manner, it is similar to the models proposed

by Mumtaz and Theodoridis (2017a) and Carriero et al. (2017, 2018). In the former

paper, Mumtaz and Theodoridis (2017a) develop a single factor SVM model to analyze

the effects of domestic macroeconomic uncertainty shocks in the US economy. A similar
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single factor framework was also used to examine uncertainty spillovers in Carriero et al.

(2018)2. In contrast, since this paper focuses on the transmission of domestic and interna-

tional uncertainty shocks, we allow the log-volatilities from both large open economy and

SOE to be correlated with each other, while having direct impact on the relevant macroe-

conomic variables of interest. In this sense, our proposed model is most similar to the

two factor SVM model in Carriero et al. (2017), who study the impact of macroeconomic

and financial uncertainty shocks in the US economy. Indeed, from a purely statistical

perspective our model can be viewed as a version of their framework in which we focus

solely on common variation in the macroeconomic variables, as opposed to idiosyncratic

volatility. Since we are interested in the effects of macroeconomic uncertainty, we believe

that nothing is lost in the context to our research question. Instead, one major advantage

of our proposed specification is that it allows for a development of an efficient MCMC

algorithm which facilitates the testing of various economically motivated model compari-

son exercises, along with our forecasting exercise. Thus, a third contribution of our paper

is that we develop an efficient Markov chain Monte Carlo (MCMC) based algorithm to

estimate multivariate common SVM models. The key to understanding our algorithm is

to note that the Hessian of the proposed log-conditional densities for the log-volatilities

are band matrices. We exploit this fact by building upon recent advances in band and

sparse matrix algorithms (Chan and Jeliazkov, 2009; Rue et al., 2009; McCausland et al.,

2011), which have been shown to perform efficiently in the estimation of various state

space models (McCausland, 2012; Chan and Grant, 2016; Chan, 2017).

The rest of this paper is structured as follows. In Section 2 we introduce the model

used in the analysis and develop the efficient posterior simulator. In Sections 3 and 4 we

respectively present the in- and out-of-sample results. Finally, in Section 5 we conclude.

2We highlight that Carriero et al. (2018) specify separate models for their two applications. First, to
examine uncertainty shocks in the 19-country GDP dataset, they specify a single factor, interpreted as
a global uncertainty factor. The second specification used in the 3-economy macroeconomic dataset has
two factors but only one these—the global uncertainty factor—enters the models mean dynamics. Thus,
in both cases the component of the common stochastic volatility in the mean dynamic is scalar valued.
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2 Common Stochastic Volatility in Mean VAR

2.1 The Model

In this section we introduce the Common Stochastic Volatility in Mean VAR (CSVM-

VAR) model. To set the stage, let yt = (y1,t, . . . , y2n,t)
′ = (yL

′
t ,y

S′
t )′ denote a vector of

variables of interest, where the superscripts respectively denote the set of variables in

the large and SOE. In our study, both yLt and ySt are n × 1 vectors, however the model

can also accommodate vectors of distinct size. The structural version of the CSVM-VAR

model is given by

B0yt = c +

p∑
i=1

Biyt−i + A

ehLt
eh

S
t

+ εyt , εyt ∼ N (0,Σt), (1)

where N (·, ·) denotes the Gaussian distribution, c is a 2n× 1 vector, Bi, i = 1, . . . , p are

conditional mean coefficients of size 2n× 2n, B0 is a lower triangular “structural impact

matrix” with ones on the main diagonal. The 2n×2 “uncertainty impact matrix” A and

the 2n× 2n covariance matrix Σt are specified respectively as

A =

a11 a12

a21 a22

 and Σt =

ehLt ΣL 0

0 eh
S
t ΣS

 ,

where each aij with i, j = 1, 2 is a n×1 vector and both ΣL and ΣS are diagonal matrices

of size n × n, i.e., ΣL = diag(σ2
1,L, . . . , σ

2
n,L) and ΣL = diag(σ2

n+1,S, . . . , σ
2
2n,S). We note

that the covariance matrix Σt is changing over time, and that this time-variation is driven

by the common stochastic volatilities from both the large economy eh
L
t , and the small

economy eh
S
t . Since they capture the common component in the volatility of the country-
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specific macroeconomic variables, these terms provide measures of uncertainty, and we

refer to unanticipated changes in these volatilities as uncertainty shocks.

The state equations for the log-volatilities are assumed to follow a stationary VAR(1)

process

hLt
hSt

 = Φ

hLt−1
hSt−1

+ εht , εht ∼ N (0,Σh), (2)

where Φ is a full 2× 2 coefficient matrix and the initial condition is set to be (hL1 , h
S
1 )′ ∼

N (0,Vh). We allow the log-volatilities of the small and large open economies to be

correlated with each other. The main reason for this modeling specification is that the

assumption of the log-volatilities following an independent AR(1) process will likely re-

sult in uncertainty shocks overshooting3. For example, it is well documented that US

uncertainty (eh
L

t ) increased during the 2008 Global Financial Crisis (Jurado et al., 2015;

Carriero et al., 2017; Mumtaz and Theodoridis, 2017a). If we were to adopt an indepen-

dent AR specification, then there would be no channel through which this US originated

uncertainty shock can affect the level of domestic uncertainty in Canada, for example.

In contrast, by specifying a VAR process, our framework allows for transmissions of such

shocks. To identify the structural shocks of the uncertainty, we adopt a simple, yet eco-

nomically plausible, identifying assumption. That is, uncertainty in the large economy

does not respond contemporaneously to uncertainty shocks in the small economy. To

be specific, we assume εht = Cet, where C is a lower triangular matrix and et collects

the structural shocks that follows N (0, I2). We also note that since the uncertainty mea-

sures are estimated within the model, uncertainty shocks are, by construction, orthogonal

to the VAR shocks. In this sense, our identification strategy is very similar to that in

3In a previous version of the paper we specified independent AR(1) processes for the state equations
and showed that this is indeed the case. Since they do not add much economic value these results have
been omitted from the current presentation, but are available upon request.
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Carriero et al. (2017, 2018).

To complete the model specification, we assume independent prior distributions for

each of the model parameters. For the measurement equation we specify Gaussian

priors for the VAR coefficients and the uncertainty impact matrix β ∼ N (β0,Vβ),

γ ∼ N (γ0,Vγ), a = vec(A)′ ∼ N (a0,Va), and inverse-Gamma priors for the variable-

specific variances:

σ2
i,L ∼ IG(ηi,L, ωi,L), i = 1, . . . , n,

σ2
j,S ∼ IG(ηj,S, ωj,S), j = n+ 1, . . . , 2n.

For the state equation, the coefficient and covariance matrices respectively follow trun-

cated normal and inverse-Wishart distributions:

vec(Φ′) = φ ∼ N (φ0,Vφ)1(Φ ∈ A), Σh ∼ IW(Sh, νh),

in which 1(Q) is the indicator function which equals to one if statement Q is true and

zero otherwise, and the set A is the region in which the VAR(1) process is stationary.

2.2 Model Comparison

It is easy to see that our proposed CSVM-VAR model nests both the traditional SVAR

in Sims (1980) and the common stochastic volatility VAR (CSV-VAR) model in Carriero

et al. (2016). In particular, the CSV-VAR model can be viewed as a restricted version of

our CSVM-VAR with A = 0 and only one common stochastic volatility component, i.e.

hLt = hSt for all dates t = 1, . . . , T . Moreover, by making the additional restriction that

hLt = hSt = 0 for all dates, we get the traditional SVAR. By testing whether these restric-

tions are supported by the data, we can readily investigate the importance of uncertainty
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shocks in the proposed economies. Given that the uncertainty measures are important,

we can further address our research question by imposing economically motivated re-

strictions on the uncertainty impact matrix A. Exact details for these restrictions are

deferred to the next section.

To test these hypothesis, we utilize a formal Bayesian model comparison method, via

the Bayes factor—a special case of the posterior odds ratio. To illustrate this procedure,

let M1 and M2 denote two arbitrary models. The posterior odds ratio for M1 against M2,

is defined as

PO1,2 =
P (M1|yo)

P (M2|yo)
,

where P (Mi|yo) denotes the conditional probability of Mi, i = 1, 2, given the observed

data yo = (yo1, . . . ,y
o
T ). By the law of conditional probability, the posterior odds ratio

can be written as

PO1,2 =
p (yo|M1)

p (yo|M2)
× P (M1)

P (M2)
,

where p (y|Mi) and P (Mi) respectively denote the marginal likelihood and prior model

probability for Mi, i = 1, 2, where the marginal likelihood is defined as

p(yo|Mi) =

∫
Θi

p(yo|θi,Mi)p(θi|Mi)dθi,

where θi is a vector of the parameters in model Mi, and Θi is the associated parameter

space. The ratio of two such likelihoods is known as the Bayes factor. It can easily be

seen that the posterior odds ratio reduces to the Bayes factor of M1 against M2, denoted

BF1,2, under the assumption of equal prior model probabilities (i.e. P (M1) = P (M2)).

Moreover, since it is a special case of the posterior odds ratio, the Bayes factor takes on

a probabilistic interpretation. For instance, if BF1,2 = 2 then M1 is twice as likely as M2.
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One difficulty in using Bayes factor to compare models is that the analytical solution

of the marginal likelihood for many non-linear models do not exist in general. Fortunately,

the marginal likelihood for any model can be represented as a product of one-step-ahead

predictive likelihoods evaluated at the observed data (Geweke and Amisano, 2011). That

is

p(yo|Mi) = p(yo1|Mi)
T∏
t=2

p(yot |yo1, . . . ,yot−1,Mi).

Since it requires estimating the model at each date, the computation of this one-step-

ahead predictive likelihood is computationally intensive for non-linear models. To over-

come this hurdle, we develop an efficient posterior sampler which we detail in the next

sub-section.

2.3 Bayesian Estimation

In this section we introduce an efficient Metropolis-within-Gibbs, Markov chain Monte

Carlo (MCMC) algorithm for simulating posterior draws from the CSVM-VAR model

defined in equations (1) and (2). Readers who are only interested in the empirical appli-

cation may skip this section and go straight to the results.

For notational convenience, let y = (y1, . . . ,yT )′, hL = (hL1 , . . . , h
L
T )′ and hS =

(hS1 , . . . , h
S
T )′. Posterior draws can be obtained by sequentially sampling from:

1. p(hL|hS,A,β,γ,ΣL,ΣS,Φ,Σh,y) = p(hL|hS,A,β,γ,ΣL,ΣS,Φ,Σh,y);

2. p(hS|hL,A,β,γ,ΣL,ΣS,Φ,Σh,y) = p(hL|hS,A,β,γ,ΣL,ΣS,Φ,Σh,y);

3. p(A,β,γ|hL,hS,ΣL,ΣS,Φ,Σh,y) = p(A,β,γ|hL,hS,ΣL,ΣS,y);

4. p(ΣL|hL,hS,A,β,γ,ΣS,Φ,Σh,y) = p(ΣL|hL,A,β,γ,y);

5. p(ΣS|hL,hS,A,β,γ,ΣL,Φ,Σh,y) = p(ΣS|hS,A,β,γ,y);
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6. p(Σh|hL,hS,ΣL,ΣS,A,β,γ,Φ,y) = p(Σh|hL,hS,Φ);

7. p(Φ|hL,hS,ΣL,ΣS,A,β,γ,Σh,y) = p(Φ|hL,hS,Σh);

The main difficulty arises in sampling from the non-standard conditional distributions

of the log-volatilities in Steps 1 and 2. Since the common stochastic volatilities, eh
S
t and

eh
S
t , appear in both the conditional mean and the conditional variance of the model,

the efficient auxiliary mixture sampler in Kim et al. (1998) cannot be applied. In recent

studies examining the impact of uncertainty on the US economy, Mumtaz and Theodoridis

(2017a) sample such states using the single-move Metropolis-Hasting algorithm developed

in Jacquier et al. (2002), while Carriero et al. (2017, 2018) employ a particle Gibbs

sampler developed in Andrieu et al. (2010). As discussed in the introduction, the major

issue with these methods is that they are computationally intensive, resulting in the

key model comparison and forecasting exercises becoming infeasible. To overcome this

computational hurdle, we develop an efficient single-block sampler for drawing the log-

volatilities in Steps 1 and 2 of the MCMC procedure. The key to understanding the

algorithm is to note that the Hessian of the log-conditional densities of the proposed

distribution for the log-volatilities in these steps are band matrices. Having identified

this fact, we build upon recent advances in band and sparse matrix algorithms (Rue

et al., 2009; Chan and Jeliazkov, 2009; McCausland et al., 2011), which have been shown

to perform efficiently in the estimation of various state space models (Chan and Grant,

2016; McCausland, 2012; Chan, 2017). In what follows, we discuss how to sample from

the conditional distributions in Steps 1-2 of the MCMC procedure. Since Steps 3-7 utilizes

standard techniques, we defer these estimation details to Appendix A.

To sample from the conditional distribution in Step 1, first note that equation (1) can
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be expressed as

yt = X̃tβ + Wtγ + A

ehLt
eh

S
t

+ εyt , εyt ∼ N (0,Σt). (3)

where β = vec([c,B1, , . . . ,Bp]
′), X̃t = I2n⊗ (1,y′t−1, . . . ,y

′
t−p), γ is a vector stacking the

non-zero elements in each row B0 and

Wt =



0 0 0 · · · · · · · · · 0

−y1,t 0 0 · · · · · · · · · 0

0 −y1,t −y2,t · · · · · · · · · 0

...
...

. . .
... · · · · · · 0

0 · · · · · · −y1,t −y2,t · · · −y2n−1,t


.

It can be seen that the equation (3) above can be written as

yt = X̃tβ + Wtγ + eh
L
t

a11

a21

+ eh
S
t

a12

a22

+ εyt , εyt ∼ N (0,Σt).

After rearranging the equation above, we obtain

ỹt = eh
L
t

a11

a21

+ εyt ,

where

ỹt = yt − X̃tβ −Wtγ − eh
S
t

a12

a22

 . (4)
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Thus, by a change of variable, it follows that

p(hL|hS,A0,β,ΣL,ΣS, ρL, σ
2
L,y) ∝ p(y|hL,hS,A0,β,ΣL,ΣS)p(hL|ρL, σ2

L),

∝ p(ỹ|hL,hS,A0,β,ΣL,ΣS)p(hL|ρL, σ2
L).

The resulting log-likelihood can then be written as log p(ỹ|hL) =
∑T

t=1 log p(ỹt|hLt ), where

we have suppressed the conditional parameters except hL for notational convenience.

Taking a second-order Taylor expansion around h̃L yields the approximation

log p(ỹ|hL) ≈ log p(y|h̃L) + (hL − h̃L)′f − 1

2
(hL − h̃L)′G(hL − h̃L),

= −1

2

(
hL
′
GhL − 2hL(f + Gh̃L)

)
+ c1,

where c1 is a constant independent of hL, f = (f1, . . . , fT )′ and G = diag(G1, . . . , GT ),

with

ft =
∂

∂hLt
log p(ỹt|hLt )

∣∣∣∣
hL=h̃L

, Gt = − ∂2

∂hLt
2 log p(ỹt|hLt )

∣∣∣∣
hL=h̃L

.

Thus, the log-conditional density ỹt is given by

log p(ỹt|hLt ) = −nh
L
t

2
− 1

2
e−h

L
t

(
ỹ1,t − eh

L
t a11

)′
Σ−1L

(
ỹ1,t − eh

L
t a11

)
, (5)

− 1

2
e−h

S
t

(
ỹ2,t − eh

L
t a21

)′
Σ−1S

(
ỹ2,t − eh

L
t a21

)
. (6)
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It is easy to check that

∂

∂hLt
log p(ỹt|hLt ) = −1

2

(
n− e−hLt ỹ′1,tΣ

−1
L ỹ1,t + eh

L
t a′11Σ

−1
L a11

)
+ eh

L
t −hSt ỹ′2,tΣ

−1
S a21 − e2h

L
t −hSt a′21Σ

−1
S a21, (7)

∂2

∂hLt
2 log p(ỹt|hLt ) = −1

2

(
e−h

L
t ỹ′1,tΣ

−1
L ỹ1,t + eh

L
t a′11Σ

−1
L a11

)
+ eh

L
t −hSt ỹ′2,tΣ

−1
S a21 − 2e2h

L
t −hSt a′21Σ

−1
S a21. (8)

Next, the log conditional prior density for hL is given by

log p(hL|hS) = log c2 + log p(hL1 |hS1 ) +
T∑
t=2

log p(hLt , h
L
t−1|hSt , hSt−1),

where c2 is the normalization constant that is independent of hL. To derive the first and

second order conditions respective to hL, we first rewrite the equation (2) as

−φ1,1 1

−φ2,1 0


hLt−1
hLt

 =

φ1,2 0

φ2,2 1


hSt−1
hSt

+ εht , εht ∼ N (0,Σh).

which implies that

hLt−1
hLt

 = µL
t + ε̃ht , ε̃ht ∼ N (0,Ω−1L ),

where

µL
t =

−φ1,1 1

−φ2,1 0


−1φ1,2 0

φ2,2 1


hSt−1
hSt

 , ΩL =

−φ1,1 1

−φ2,1 0


′

Σ−1h

−φ1,1 1

−φ2,1 0

 ,
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then it can be shown that

log p(hLt , h
L
t−1|hSt , hSt−1) = log c3 −

1

2


hLt−1
hLt

− µL
t


′

ΩL


hLt−1
hLt

− µL
t

 ,
where again c3 is a normalization constant. It can be seen that

 ∂
∂ht

log p(hLt , h
L
t−1|hSt , hSt−1)

∂
∂ht−1

log p(hLt , h
L
t−1|hSt , hSt−1)

 = ΩL

µL
t −

hLt−1
hLt


 ,

 ∂2

∂h2
t

log p(hLt , h
L
t−1|hSt , hSt−1) ∂2

∂ht∂ht−1
log p(hLt , h

L
t−1|hSt , hSt−1)

∂2

∂ht∂ht−1
log p(hLt , h

L
t−1|hSt , hSt−1) ∂2

∂h2
t−1

log p(hLt , h
L
t−1|hSt , hSt−1)

 = −ΩL.

Given the first and second order conditions above, using again the second-order Taylor

expansion around h̃L to approximate the log conditional prior density gives

log p(hL|hS) ≈ (hL − h̃L)′f̃ − 1

2
(hL − h̃L)′G̃(hL − h̃L), (9)

= −1

2

(
hL
′
G̃hL − 2hL(f̃ + G̃h̃L)

)
+ c4, (10)

where

f̃ =



f̃1

f̃2
...

...

f̃T


, G̃ =



G̃1,1 G̃1,2 0 · · · 0

G̃1,2 G̃2,2 G̃2,3 · · · 0

...
. . . . . . . . .

...

0 · · · G̃T−2,T−1 G̃T−1,T−1 G̃T,T−1

0 · · · 0 G̃T,T−1 G̃T,T
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with

f̃1 =
∂

∂h1
log p(hL2 , h

L
1 |hS2 , hS1 )

∣∣∣∣
hL=h̃L

− |Vh|−1
(
Vh(2, 2)h̃L1 −Vh(1, 2)h̃S1

)
,

G̃1,1 = − ∂2

∂h2t
log p(hLt , h

L
t−1|hSt , hSt−1)

∣∣∣∣
hL=h̃L

+ V−1h (1, 1).

The U(i, j) denotes the (i, j)th entry in matrix U. For t = 2, . . . , T ,

f̃t =

(
∂

∂ht
log p(hLt , h

L
t−1|hSt , hSt−1) +

∂

∂ht
log p(hLt+1, h

L
t |hSt+1, h

S
t )

) ∣∣∣∣
hL=h̃L

,

G̃t,t = −
(
∂2

∂h2t
log p(hLt , h

L
t−1|hSt , hSt−1) +

∂2

∂h2t
log p(hLt+1, h

L
t |hSt+1, h

S
t )

) ∣∣∣∣
hL=h̃L

G̃t,t+1 = ΩL(2, 1).

Combining the log-likelihood in equation (6) with the log-prior density in equation (9)

gives an approximation of the log-posterior distribution

log p(hL|hS,y) = log p(ỹ|hL,hS) + log p(hL|hS),

=− 1

2

(
hL
′
KhhL − 2hL

′
kh

)
+ c5,

where c5 is a constant that is independent of hL, Kh = G + G̃ and kh = f + f̃ + Khh̃.

It can be seen that the above equation is the log-kernel of the Gaussian distribution.

To implement Step 1, we first set h̃L to be the mode of the distribution p(hL|hS,A,β,γ,ΣL,ΣS,Φ,Σh,y),

which can be obtained by applying the Newton-Raphson method. The resulting Gaus-

sian distribution N (h̃L, K̃−1h ) is then used as our proposal in the acceptance-rejection

Metropolis-Hastings step, where K̃h is the Kh evaluated at h̃L4.

Since Step 2 is symmetric to Step 1, sampling can be accomplished through straight

4As seen in equation (8), there is no guarantee that K̃h is a positive definite matrix. To overcome

this problem we adopt the following strategy: First, we initialize K̃h as an identity matrix. Next, in
each MCMC iteration, we check whether the proposed Hessian K̃h is positive definite. If it is, then we
use it in the proposal distribution, otherwise we use the K̃h from the previous MCMC iteration.
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forward relabeling of terms in the above equations. We close by making a few remarks on

the computation. First, in contrast to the multi-move samplers used in existing studies,

our common stochastic volatilities are drawn in a single-block sampler. In general, single-

block samplers have been proven to be more numerically efficient than single-move sam-

pler when the posterior samples are highly correlated. Second, due to the availability of

the first and second order derivatives of the log-conditional density, the Newton-Raphson

method can be used to obtain the mode of the log-density efficiently. This idea is similar

to the single-block version of Shephard and Pitt (1997) and Chan (2017) in that the

proposal distribution in the Acceptance-Rejection MH algorithm is based on the second-

order Taylor expansion of the likelihood function in terms of stochastic volatilities. Of

course, they are different in that we consider a multivariate model and exploit techniques

from band and sparse matrix algorithms. Specifically, since the precision matrix K̃h is

a band matrix, we can efficiently draw from the proposal distribution by applying the

precision sampler in Chan and Jeliazkov (2009)5.

3 Empirical Results

In this section we present our main empirical results on the effects of macroeconomic

uncertainty in three commonly studied SOEs: Australia, Canada and New Zealand. The

data for each country consists of quarterly data on real GDP, CPI inflation and a short-

term interest rate—taken to be the country’s bank-rate—from 1978Q3-2016Q4. All series

were sourced from the International Monetary Fund’s (IMF’s) International Financial

Statistics (IFS) database, and we convert both real GDP and CPI indexes to annualized

growth measures. To maintain consistency with the broader uncertainty literature, we

5The attentive reader will note that we have referred to two distinct notions of efficiency here. The
first refers to reduced autocorrelation in the posterior draws. The second refers to sampling speed. For
this particular model, our proposed algorithm is superior to existing samplers it that it is efficient in
both respects.
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select a lag length p = 2 for the VAR coefficients (Caggiano et al., 2017; Carriero et al.,

2017; Mumtaz and Theodoridis, 2017b; Carriero et al., 2018). All estimates are based

on 50000 posterior draws after a burnin period of 5000. The priors are discussed in

Appendix A.

3.1 Hypothesis Testing via Model Selection

In this section, we conduct a model comparison exercise using the marginal likelihood as

a selection criterion. The main objective is to provide some statistical evidence that helps

determine whether uncertainty plays a role in shaping the macroeconomic environments

of the countries in question. To this end, we focus on the two major issues concerned in

this paper. First, we question whether allowing the macroeconomic variables in a specific

country to share a common volatility is consistent with the data. Second, we investigate

the relevance of domestic and international sources of uncertainty within each of the

SOEs. To that end, we impose four economically motivated restrictions on the impact

matrix A. To ease exposition, recall that

A =

a11 a12

a21 a22

 .

The restrictions are: (1) a12 = 0; (2) a21 = 0; (3) a12 = a21 = 0; (4) a12 = a22 = 0.

Restriction (1) hypothesizes that uncertainty spillovers in the SOE do not transmit to

the large economy; restriction (2) that uncertainty spillovers in the large economy do not

transmit to the small economy; restriction (3) that uncertainty is purely idiosyncratic (i.e.

no spillovers); restriction (4) that the only source of global uncertainty is from the large

economy. We summarize each of the model specifications in Table 1 and the estimated

marginal likelihood of each model are reported in Table 2.
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Table 1: A list of models.

VAR constant VAR
CSV-VAR with common SV
CSVM-VAR with common SVM
CSVM-VAR-R1 with common SVM with a12 = 0
CSVM-VAR-R2 with common SVM with a21 = 0
CSVM-VAR-R3 with common SVM with a12 = a21 = 0
CSVM-VAR-R4 with common SVM with a12 = a22 = 0

The general conclusion is that the log marginal likelihoods provide overwhelming

support in favor of the unrestricted CSVM-VAR model against the VAR, CSV-VAR

and restricted CSVM-VAR models across all countries. In the first instance we thus

conclude that there is a statistically relevant country-specific common component in the

macroeconomic variables of interest. For instance, in the case of Australia, the data

suggest that the CSV-VAR is approximately 57 times more likely than the traditional

VAR model given the data6. Finally, the fact that the unrestricted CSVM-VAR model

is preferred to the CSV-VAR and each of the restricted CSVM-VARs suggests that both

domestic and international sources of macroeconomic uncertainty are a key feature of the

economic environment in each of the SOEs.

6To see this note that the log Bayes factor is approximately 57 (i.e. −932.83− (−990.02)).
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Table 2: Estimated log marginal likelihoods for various
models in Table 1.

Australia Canada New Zealand

VAR −990.02 −923.65 −1187.20

CSV-VAR −932.83 −889.78 −1077.74

CSVM-VAR −920.24 −874.55 −1045.58

CSVM-VAR-R1 −931.26 −878.28 −1052.43

CSVM-VAR-R2 −922.12 −874.66 −1063.20

CSVM-VAR-R3 −934.46 −875.83 −1059.59

CSVM-VAR-R4 −925.28 −879.11 −1055.71

Note: The best model for each country is in bold.

3.2 Uncertainty Measures

Having identified the significance of both domestic and international sources of uncer-

tainty across each of the SOEs, we now discuss the qualitative behavior of the uncertainty

measures. Figures 1 and 2 respectively present the estimated macroeconomic uncertainty

index for the US and the SOEs. In each plot, the blue line represents the posterior means,

and the red lines represent the associated 90% credible intervals.

If the model is well-specified, then all three versions of estimated US uncertainty

measures should be similar to each other. The plots in Figure 1 show that the qualitative

behavior of the resulting measures are almost identical across the three panels. We are

therefore confident that the model is well-specified7. Moreover, the general pattern of the

US uncertainty measures is consistent with those in Carriero et al. (2017). In particular,

7Since the actual index value has no economic interpretation, we are not concerned about the quan-
titative differences in these figures across estimates.
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they show significant increases around some of the political and economic events that

were first highlighted in Bloom (2009). For instance, uncertainty is high in the 1980s and

then declines, with some spikes around the time of the Gulf War around 1990s and the

“Dot-Com bubble” in the early 2000s. The index also captures the uncertainty upturn

surrounding the 2008 Global Financial Crisis.

As for the SOEs, the first plot in Figure 2 shows that uncertainty in Australia increases

following the 1979 energy crisis, before declining after the movement to a flexible exchange

rate regime in 1983. Interestingly, the adoption of inflation targeting around 1992/93

seems to coincide with the stabilization of uncertainty over the next two decades. The

notable spike in the early 2000s likely relates to the “Dot-Com bubble”. Finally, there

is no spike around the 2008 Global Financial Crisis. While this would be worrying for

Canada or the US, the Australian economy was not significantly hit by the crisis and did

not enter a recession. It is therefore plausible that the cause of uncertainty around that

time were not domestic macroeconomic conditions, but instead spillovers from the US.

Similar to Australia, uncertainty in Canada increases following the 1979 energy crisis

before returning to baseline by the mid-1980s. The index then peaks again around the

1990 recession before steadily declining after the adoption of inflation targeting in 1991.

As in the Australian case, the notable spike in the early 2000s likely relates to the “Dot-

Com bubble”. In contrast to the Australian case, there is a spike in uncertainty during

the GFC, however it is clear that most of the uncertainty during that period stemmed

from the US economy.

Finally, the New Zealand experience is distinct from the similar fluctuations in both

Australia and Canada. In particular, aside from the peak in uncertainty around 1985 the

index seems to exhibit a constant mean, with a relatively minor increase around the 2008

crisis. The large spike in the mid-1980s is associated with the nine month long recession

in 1982-83 and the year long recession of 1987-88 recessions. Finally, as in the case of
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Australia and Canada, a possible explanation of the post-1980s reduction in uncertainty

is the adoption of inflation targeting in the early 1990s.

3.3 Transmission of Uncertainty Shocks

How do macroeconomic uncertainty shocks effect the SOEs? To answer this question, we

first discuss the estimated uncertainty impact matrix for each country. This is useful as it

highlights the sign and size of the initial movement elicited by the uncertainty shocks. In

this sense, we can measure the direct effects of both domestic and international sources of

uncertainty shocks. Next, we analyze generalized impulse response functions (GIRFs) to a

one standard deviation uncertainty shock8. GIRFs are useful as they provide information

about how the uncertainty shock propagates throughout the economy. In this sense, we

can also measure the transmission of the uncertainty shocks.

The posterior means and the corresponding 90% credible intervals of the impact ma-

trix for each country are presented in Table 3. The columns of the table respectively

represent the impact of US and SOE uncertainty shocks, while the rows represent the

various macroeconomic variables in the SOEs: real GDP growth, CPI inflation and in-

terest rate.

Table 3: Estimated A matrix for the CSVM-VAR.

Country Variable Posterior mean 90% Credible Interval Posterior mean 90% Credible Interval
GDP: −0.87 (−2.88, 0.77) 1.28 (−0.05, 3.65)

Australia Inflation: 0.11 (−0.05, 0.39) −0.12 (−0.48, 0.08)
Interest rate: −0.16 (−1.10, 0.51) 0.12 (−0.94, 1.12)

GDP: 0.52 (−2.74, 3.86) 1.32 (−2.44, 5.17)
Canada Inflation: 0.05 (−0.06, 0.22) −0.06 (−0.25, 0.06)

Interest rate: 0.28 (−1.90, 2.72) 4.53 (1.06, 8.45)
GDP: −0.33 (−1.54,−0.02) 0.83 (0.09, 3.92)

New Zealand Inflation: 0.76 (−0.10, 2.47) −1.22 (−3.74, 0.00)
Interest rate: −0.15 (−0.68,−0.01) 0.06 (−0.09, 0.40)

8Since the measures of uncertainty are time varying, we follow Koop et al. (1996) and compute
GIRFs. The difference between GIRFs and traditional IRFs, is that future shocks are not “zeroed-out”
by assumption, but instead “integrated-out” through a Monte Carlo integration procedure, details which
are provided in Koop et al. (1996).
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A few general observations can be made. First, in line with the broad literature

on the US economy, we find that US originated uncertainty shocks tend to decrease

output while increasing inflation and interest rates (Born and Pfeifer, 2014; Mumtaz and

Theodoridis, 2015; Carriero et al., 2017; Mumtaz and Theodoridis, 2017a). In particular,

international uncertainty spillovers decrease output in both Australia and New Zealand,

while increasing inflation in all countries. In contrast, such shocks lead to monetary

expansions in Australia and New Zealand. While these results are novel for to our study,

the Australian and New Zealand experience are consistent with the UK responses to US

uncertainty shocks in Mumtaz and Theodoridis (2015). Importantly, the same result

does not hold for Canada. In that case, international uncertainty spillovers increase both

output and interest rates. Finally, domestic uncertainty shocks in the SOEs are found to

elicit different impacts compared to international uncertainty shocks. Specifically, such

shocks are found to increase real GDP and interest rates in each country, while decreasing

inflation.

While the result that uncertainty induces a positive output response may seem per-

plexing, Bloom (2014) proposes three potential mechanisms that could be at play. The

first possible explanation is that these economies each exhibits a strong precautionary

savings channel. The precautionary savings hypothesis asserts that higher uncertainty

elicits a short run reduction in consumption expenditure which results in an economic

contraction. In time however, greater savings allows for higher investment which could

then benefit long run growth (Bansal and Yaron, 2004; Basu and Bundick, 2017). Next,

the growth options channel asserts that uncertainty can encourage investment if it in-

creases potential returns. For instance, in the literature on oil drilling incentives, higher

uncertainty has been shown to increase the value of call options, thus increasing the com-

panies’ value and their willingness to invest (Paddock et al., 1988). Finally, a related

channel is Oi-Hartman-Abel effects (Abel, 1983; Hartman, 1972; Oi, 1961). This effect

suggests that if firms can insure against bad outcomes then they may be risk-loving,
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which result in higher investment and short run growth.

To further investigate the existence of such channels we now examine the transmission

of such shocks. To that end, we plot the GIRFs in Figures 3 and 4. In each figure, the

solid line represents the average mean point estimates to a (time-varying) one-standard

deviation shock to the log uncertainty measures. The shaded regions are 16th and 84th

percentiles of the responses. The horizontal axis represents an impulse horizon of 20

quarters (5 years), while the vertical axis displays percentage point changes.

The responses in Figure 3 show that the transmission of international uncertainty

spillovers from the US are qualitatively similar across each of the SOEs. That is, the

rise in US uncertainty induces persistent declines in GDP, while increasing inflation and

interest rates in each country. This is interesting because our earlier examination of

the uncertainty impact matrix suggested that the initial Canadian real GDP response

was positive. Thus, after accounting for the full transmission mechanism we conclude

that Canada does not exhibit any of the aforementioned channels that generate positive

growth; at least in response to international uncertainty spillovers. Before discussing the

effects of domestic uncertainty shocks, we highlight that the magnitude of the responses

to international uncertainty shocks differs across the economies. In particular, the out-

put response in Australia and New Zealand are about half the size of that in Canada.

Conversely, the medium run inflation response in these countries is about twice as large

as that in Canada. Given that these countries engages in inflation targeting, the positive

inflation responses suggest that policymakers should take such shocks into consideration

when making interest rate decisions.

Interestingly, Figure 4 shows that domestic uncertainty shocks elicit different responses

relative to their international counterparts. In particular, while such shocks generate a

positive inflation and interest rate response in each of the SOEs, the real GDP responses

are idiosyncratic. For instance, the response in Canada is initially positive but then be-
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comes persistently negative over time. In contrast, the New Zealand response is positive

with no subsequent overshooting, and the Australian response is initially negative but

then becomes positive over time. This suggests that each country has a different trans-

mission mechanism for domestic uncertainty shocks, at least with respect to output. In

particular, the responses in New Zealand are potentially consistent with growth options

and Oi-Hartman-Abel effects, while the Australian response is consistent with a precau-

tionary savings channel. Of course, the empirical model used in this paper is not able to

address the issue of the underlying behavioral foundations of these policy changes since

a Lucas (1976) critique issue arises in this type of counterfactual analysis. It is therefore

not pursued in this paper, but highlights an important area of future research.

4 Forecasting

The results in the previous section suggest that uncertainty plays a key role in shaping the

macroeconomic environments in all SOEs. Given the importance of these shocks, along

with the fact that each of the SOEs has an inflation targeting mandate, an important

question is: can accounting for uncertainty improve the forecast accuracy of traditional

econometric models? To address this question, we compare the point and density forecast

accuracy of the CSVM-VAR compared to the VAR and CSV-VAR specifications. In this

exercise, we evaluate the iterated h-step-ahead forecast of each model with h = 1, 2, 4, 8,

and the forecast evaluation period is from 1990Q1 - 2016Q4. We note that this sample is

roughly equal to the period in which each country adopted inflation targeting. Thus, our

exercise resembles that of the forecasting departments in the respective countries’ central

banks.

To assess the point forecast accuracy we report both the root mean squared forecast
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error (RMSFE) and the mean absolute forecast error (MAFE):

RMSFE =

√∑T−h
t=t0

(
yot+h − E(yt+h|y1:t)

)2
T − h− t0 + 1

,

MAFE =

∑T−h
t=t0

∣∣yot+h − ŷMt+h
∣∣

T − h− t0 + 1
,

where E(yt+h|y1:t) is the posterior mean of the predictive density and ŷMt+h is the posterior

median of the predictive density.

To assess the density forecast accuracy, we report the average log-predictive likelihoods

(ALPL) and the average continuous rank probability score (ACRPS):

ALPL =

∑T−k
t=t0

log pt+h(yt+k = yot+h|yo1, . . . ,yot−1)
T − h− t0 + 1

,

ACRPS =
1

T − h− t0 + 1

T−h∑
t=t0

CRPSt,

where CRPSt =
∫∞
−∞

(
Ft+h(z)− 1(yot+h < z)

)2
dz = Ept+h|yt+h − yot+h| − 0.5Ept+h|yt+h −

y′t+h| and Ft+h is the cumulative distribution of the predictive density at time t+h given

all information up to time t. A small value of the ACRPS indicates a better forecasting

performance.

The point and density forecast results for each country are reported across Tables 4-

6. To facilitate comparison, we report relative scores to a VAR benchmark. Set in this

manner, a relative RMSFE, MAFE and ACRPS of less than one indicates that the given
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model provides a better forecast than the VAR benchmark. Conversely, a positive value

for the relative ALPL indicates a better forecasting performance than the benchmark.

The general trend is that the CSVM-VAR forecasts better than the alternatives. Two

notable exceptions are the point forecasts of Canadian interest rates and New Zealand

real GDP. In the former case, the CSV-VAR provides the best point forecasts at all

forecast horizons, however the CSVM-VAR provides better density forecasts at short-

term horizons under the ALPS metric. In the latter case, the CSVM-VAR provides the

best one-step-ahead point forecasts, but then the conventional VAR forecasts quite well

at longer horizons. This is unsurprising given the results in the previous section. In

particular, the impulse response functions in Figure 3 and Figure 4 suggested that the

New Zealand real GDP response to uncertainty shocks is short-lived. The finding that the

CSVM-VAR is superior only at a one-step-ahead horizon is therefore consistent with this

result. Aside from these exceptions, the CSVM-VAR provides better point and density

forecasts at all other horizons and strictly dominates the other models when forecasting

inflation. Since each of these countries has an explicit inflation targeting mandate, the

results are of practical significance to central bankers. In particular, by providing more

accurate forecasts, accounting for uncertainty can aid policymakers in making better

informed decisions.

Table 4: Forecasting results for Australia.

RMSFE MAE ALPS ACRPS
Variable Model h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Real GDP CSV-VAR 0.97 0.95 0.96 0.99 0.95 0.92 0.94 0.98 0.06 0.10 0.13 0.11 0.96 0.93 0.93 0.95

CSVM-VAR 0.97 0.93 0.95 0.99 0.96 0.90 0.93 0.98 0.11 0.15 0.16 0.16 0.97 0.93 0.94 0.95
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Inflation CSV-VAR 0.99 0.97 0.97 0.97 0.96 0.96 0.96 0.97 0.01 0.01 0.00 0.00 0.97 0.96 0.97 0.98
CSVM-VAR 0.97 0.95 0.95 0.98 0.94 0.93 0.90 0.95 0.12 0.14 0.13 0.16 0.97 0.96 0.96 0.96
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Interest CSV-VAR 0.90 0.95 0.97 0.97 0.86 0.90 0.98 1.00 0.28 0.20 0.14 0.14 0.84 0.90 0.96 0.99
CSVM-VAR 0.89 0.93 0.94 1.02 0.85 0.88 0.92 0.93 0.34 0.24 0.19 0.24 0.88 0.95 1.00 0.97
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Table 5: Forecasting results for Canada.

RMSFE MAE ALPS ACRPS
Variable Model h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Real GDP CSV-VAR 0.94 0.92 0.96 1.01 0.94 0.91 0.95 1.01 0.09 0.13 0.10 0.06 0.94 0.92 0.96 1.01

CSVM-VAR 0.92 0.90 0.94 1.03 0.94 0.91 0.90 1.03 0.09 0.11 0.05 −0.01 0.95 0.93 0.99 1.09
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Inflation CSV-VAR 0.96 0.92 0.96 0.91 0.95 0.91 0.95 0.91 0.07 0.11 0.05 0.10 0.96 0.92 0.96 0.89
CSVM-VAR 0.90 0.87 0.94 0.95 0.88 0.86 0.89 0.91 0.12 0.14 0.00 0.03 0.92 0.89 0.96 0.96
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Interest CSV-VAR 0.97 0.87 0.79 0.76 0.95 0.89 0.76 0.72 0.10 0.14 0.19 0.27 0.96 0.89 0.82 0.77
CSVM-VAR 1.00 0.97 0.96 0.96 0.97 0.96 0.90 0.86 0.19 0.19 0.19 0.22 1.00 0.99 0.97 0.95

Table 6: Forecasting results for New Zealand.

RMSFE MAE ALPS ACRPS
Variable Model h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8 h=1 h=2 h=4 h=8

VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00
Real GDP CSV-VAR 0.98 1.02 1.02 1.02 0.98 1.02 1.02 1.03 0.22 0.22 0.26 0.22 0.90 0.91 0.89 0.90

CSVM-VAR 0.97 1.01 1.01 1.02 0.97 1.02 1.02 1.03 0.27 0.27 0.32 0.33 0.90 0.91 0.88 0.89
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Inflation CSV-VAR 0.96 0.97 0.90 0.84 0.96 0.93 0.86 0.81 0.24 0.23 0.30 0.33 0.88 0.89 0.85 0.81
CSVM-VAR 0.83 0.79 0.72 0.64 0.84 0.76 0.68 0.65 0.33 0.37 0.46 0.52 0.83 0.80 0.75 0.70
VAR 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 0.00 0.00 0.00 0.00 1.00 1.00 1.00 1.00

Interest CSV-VAR 0.91 0.92 0.90 0.87 0.92 0.94 0.94 0.92 0.25 0.20 0.18 0.19 0.87 0.89 0.89 0.88
CSVM-VAR 0.89 0.89 0.82 0.76 0.96 0.96 0.91 0.82 0.27 0.23 0.25 0.30 0.90 0.92 0.87 0.80

5 Concluding Remarks and Future Research

Our objective in the paper was to estimate the effects of domestic and international

sources of macroeconomic uncertainty in three commonly studied small open economies

(SOEs): Australia, Canada and New Zealand. To this end, we proposed a common

stochastic volatility in mean VAR (CSVM-VAR) model. To estimate the model we de-

veloped an efficient algorithm that built upon recent advances in band and sparse matrix

algorithms. Our primary result was that both domestic and foreign sources of macroe-

conomic uncertainty shape the economic climate in each of the SOEs. In particular,

international macroeconomic uncertainty spillovers were found to elicit a persistent neg-

ative effect on real GDP, while increasing both inflation and interest rates. Domestic

uncertainty shocks were found to have a similar effect on inflation and interest rates,

however the real GDP responses were idiosyncratic. In particular, the transmission of

domestic uncertainty shocks in New Zealand was persistently positive while the Aus-

tralian response is initially negative and becomes positive over time. This suggests that
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these economies exhibit different transmission mechanisms compared to the US econ-

omy. More precisely, the New Zealand experience is suggestive of growth options or

Oi-Hartman-Abel effects, while the Australian response is suggestive of a precautionary

savings channel. This highlights a clear direction of future research: the investigation

of such a channel within an estimated a small open economy DSGE model. Finally, in

a forecasting exercise, the proposed model generally provided more accurate point and

density forecasts compared to current benchmarks. Taken together, our results suggested

that international uncertainty spillovers play a key role in shaping the macroeconomic

environments in all SOEs and accounting for this uncertainty can aid policymakers in

making better informed decisions.
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A Appendix

A.1 Priors

In this Appendix we present the priors used in the empirical analysis in Section 3. To

conduct the analysis, we set a Minnesota type prior for the VAR coefficients. In particular,

the prior mean is set to a zero vector, β0 = 0, and the prior covariance matrix is diagonal

with its corresponding elements set as follows:

Var(c) = 10× I2n,

Var(Bij
l ) =


λ2

1λ2

lλ3

σ2
i

σ2
j

for l = 1, . . . , p and i 6= j,

λ2
1

lλ3
for l = 1, . . . , p and i = j,

where Bi,j
l denotes the (i, j)th element the matrix Bl and σ2

r is set equal to the variance the

residual from AR(p) model for the variable r. The hyperparameters are set to be λ1 = 0.2,

λ2 = 0.5, λ3 = 2. We assume a relatively non-informative prior on the uncertainty impact

matrix. To be specific, we set a0 = 0 and Va = 5 × I2n. For the covariance matrix of

the log volatilities, we set νh = 40 and Sh = 0.12(νh − n − 1) × In. These values imply

that the expected value of Σh is equal to 0.12× In. For the VAR coefficient matrix of the

log-volatilities, we set φ0 = (0.9, 0, 0.9, 0)′ and Vφ = I2. Lastly, for the variable-specific

variance, we set ηi,L = 10, ωi,S = 9 for i = 1, . . . , n, and = ηj,L = 10, ωi,L = 9 for

j = n+ 1, . . . , 2n. This implies that E(σ2
i,L) = E(σ2

j,S) = 1.

A.2 Gibbs Sampler

In this appendix we explain how to obtain draws from the conditional distributions in

Steps 3-7 of the posterior simulator in Section 2.3. To this end, first note that equation (2)
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can be written as

yt = Xtθ + εyt , εyt ∼ N (0,Σt) (11)

where Xt =
(
X̃t,Wt, I2n ⊗ (eh

L
t , eh

S
t )
)

and θ = (β′,γ ′, vec(A′)′)
′
. Stacking the above

equation over t = 1, . . . , T , we get

y = Xθ + εy, εy ∼ N (0,Σ),

where y = (y1, . . . ,yT )′, Σ = I2n ⊗Σt and

X =


X1

...

XT

 .

For Step 3 of the sampler, let Vθ = diag(Vβ,Vγ,Va) and θ0 = (β′0,γ0, a
′
0)
′. Then,

by standard results from linear regression, we have

(
β,γ,A|hL,hS,ΣL,ΣS,y

)
≡
(
θ|hL,hS,ΣL,ΣS,y

)
∼ N

(
θ̂,Dθ

)
, (12)

where D−1θ = X′Σ−1X + V−1θ and θ̂ = Dθ

(
X′Σ−1y + V−1θ θ0

)
.

In Step 4, the full conditional distributions of the variance terms is standard. In

particular, it follows that

σ2
i,L ∼ IG(

T

2
+ ηi,L, ωi,L +

T∑
t=1

dy2i,te
−hLt ), i = 1, . . . , n,

σ2
j,S ∼ IG(

T

2
+ ηj,S, ωj,S +

T∑
t=1

dy2j,te
−hSt ), j = n+ 1, . . . , 2n,

where dyi,t is the jth element of the vector yt −Xtθ. Step 5 is essentially the same as
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Step 4. Step 6 is also standard. In particular given the log volatilities, it follows that

(Σh|hL,hS,Φ) ∼ IW(Ŝh, ν̂h),

with Ŝh =
∑T

t=2 ete
′
t + Sh and ν̂h = νh + T − 1, where

et =

hLt
hSt

−Φ

hLt−1
hSt−1

 .

For Step 7, we again apply standard linear regression results. In particular, we first note

that the state equation can be expressed as

ht = Xh
tφ + εht , εht ∼ N (0,Σh),

where ht = (hLt , h
S
t )′. Stacking all the state equations from t = 2, . . . , T that gives

h = Xhφ + εh, εh ∼ N (0, I2 ⊗Σh).

Thus, the step 7 can be implemented as follows

(Φ|hL,hS,Σh) ≡ (φ|hL,hS,Σh) ∼ N (φ̂,Dφ)1(Φ ∈ A),

where D−1φ = Xh′ (I2 ⊗Σh)
−1 Xh + V−1φ and φ̂ = Dφ

(
Xh′ (I2 ⊗Σh)

−1 h + V−1φ φ0

)
.

Since this full conditional distribution is not standard, we implement a Metropolis-Hasting

step using N(φ̂,Dφ) as a proposal distribution.
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Figure 1: Uncertainty index for the US in each model: Australia (left), Canada (center)
and New Zealand (right).
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Figure 2: Uncertainty Index in small open economies: Australia (left), Canada (center)
and New Zealand (right).
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Figure 3: GIRF: 1 standard deviation uncertainty shock from the US: Australia (top
row), Canada (center row) and New Zealand (bottom row).
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Figure 4: GIRF: 1 standard deviation domestic uncertainty shock from the SOE: Aus-
tralia (top row), Canada (center row) and New Zealand (bottom row).
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