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1 Introduction

The history of the petroleum industry in the United States goes back to the early 19th

century. Petroleum became a major industry following the discovery of oil at Oil Creek,

Pennsylvania, in 1859, and for much of the 19th and 20th centuries, the U.S. was the

largest oil-producing country in the world. However, after production peaked in 1970,

the U.S. experienced decades of production decline. Over time, the country became

increasingly dependent on imports of oil, and in 1973, the U.S. government banned firms

from exporting oil.

The empirical oil-macroeconomic literature which was sparked off by the seminal paper

by Hamilton (1983), has typically analyzed the effects of adverse oil price shocks on the

U.S. economy focusing on the period when the U.S. was a net oil importer. In line with

this, scholars have found that the U.S. economy responds negatively to adverse shocks that

increase the oil price, as both consumers and producers have to pay more for the imported

energy products and for the complementary products to energy (see e.g., Bjørnland, 2022).

The shale revolution may have changed this relationship. The massive surge in the

production of shale (i.e., unconventional) oil, which started in the early 2000s, has in a few

years made the United States the world’s largest oil producer. Such a transition, however,

did not happen by itself. As shale oil is trapped in petroleum-bearing formations with

low permeability, this requires the combination of horizontal drilling in conjunction with

hydraulic fracturing to extract the oil. This process is technological challenging, requiring

capital, new technology, labor, skills and “learning by doing” (LBD) over a prolonged

period of time, and with potential spillovers to other industries.1 To the extent that

these spillovers also affect production and employment across U.S. states, the relationship

between oil prices and aggregate U.S. activity could also have changed.

So far, empirical studies addressing the implication of the shale oil boom for the

aggregate U.S. economy are lacking. Some studies have documented local effects of recent

oil and gas booms, including shale, in resource-rich areas. In particular, using cross-

section or panel data analysis, Weber (2012), Fetzer (2014), Gilje et al. (2016), Feyrer

et al. (2017) and Allcott and Keniston (2018), among others, show that oil booms have

indeed had positive spillovers on production and employment in oil rich regions in the

U.S. However, none of these papers analyse effects outside the local areas. Our hypothesis

is that these effects are not only important for the oil rich regions, but may also imply

wider benefits to the U.S. economy, thereby changing the transmission mechanism of the

1The seeds to the shale oil boom were planted already in the 1970s when the U.S. government decided to

fund R&D programs and provide tax credits to enterprises developing unconventional natural gas. Still,

it was not before Mitchell Energy experimented with new techniques for drilling shale oil in the early

2000s that the process escalated, and the natural gas boom spread to oil (Wang and Krupnick, 2013).
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(a) IP Index: U.S. 1974-2009 (b) IP Index: U.K. 1974-2009

(c) IP Index: U.S. 2010-2018 (d) IP Index: U.K. 2010-2018

Figure 1. The effect of an oil-specific shock (normalized to increase oil prices by 10%): Impulse responses

from VAR models with crude global oil production (less U.S. production), global activity (GECON in-

dicator), the real oil price and the country’s industrial production index. Shocks are identified using

recursive restrictions, (see Section 2 for details on data and identification of shocks). Upper row: sample

period 1974:M1-2009:M12; lower row: sample period 2010:M1-2018:M12. Monthly frequency. Point esti-

mate (solid line) and 84% confidence intervals (dashed lines). The confidence intervals were constructed

using wild bootstrap. Calculations are based on 10000 iterations.

oil price shocks.

In this paper we set out to analyze if the effects of oil market shocks on the U.S.

economy have changed with the shale oil boom, using a large data environment of disag-

gregated and aggregated data. In so doing, we take into account spillovers between the

oil industry and non-oil industries across U.S. states, while also allowing the dynamics

to vary over time. Figure 1 motivates our claim. It compares the effect of an oil-specific

shock on industrial production in the U.S. and the U.K. To identify the oil market shocks,

we estimate a small structural VAR model with oil production, global activity, real oil

prices and industrial production, identified in a recursive manner as in Kilian (2009). The

two countries are interesting to compare, as both are large, open and important oil pro-

ducers. However, while the U.S. has seen oil production increase steadily since the early
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2000s, oil production in the U.K. has declined in this period, and by the middle 2000s,

the U.K. switched from being a net oil exporter to a net oil importer. In the figure, we

compare results during two different subsamples: 1974-2009 and 2010-2018.2 The graph

suggests that the effects of an oil-specific shock on U.S. industrial production has changed

over time, from being negative in the 1980-90s, to being positive from the mid 2000s. For

the U.K., the responses are persistently negative, i.e., we find no evidence of time-varying

changes. If anything, responses have become more negative recently.

These results are illustrative. In order to consistently analyze time-varying effects of oil

market shocks across industries and geographical areas, we need a multivariate framework

that incorporates the oil sector, accounts for heterogeneity in several dimensions and

allows effects to change over time. Previous times series studies addressing this issue for

the U.S. have typically been aggregate and focus on only a few macroeconomic variables.

Furthermore, most often they rely on time-invariant regressions. Thus, their maintained

assumption is that the effect of a shock to oil prices has not changed over time, and that

the role of the oil sector is of little importance when analysing the dynamic effects of oil

prices on the U.S. economy (see for instance Baumeister and Kilian (2016), who analyze

the effects of the 2014-16 oil price decrease).3 On the other hand, the recent cross-section

or panel data analysis referred to above can account for dynamic effects at the local level

in resource abundant states, but ignore spillovers outside the resource rich areas.

We combine both the times series and cross section dimensions, while also allowing

these effects to change over time. In so doing, we investigate whether the effects of a shock

to oil prices have changed during the last two decades in the U.S. For this purpose we

specify and estimate a time-varying parameter (TVP) factor-augmented VAR (FAVAR)

model with stochastic volatility, building on the seminal contributions used to analyze

the effects of monetary policy shocks. examples include Bernanke et al. (2005) and Stock

and Watson (2005) regarding FAVAR models, Primiceri (2005) for time-varying VARs,

and Korobilis (2013), Baumeister et al. (2013) and Ellis et al. (2014) for time-varying

FAVAR models. Our model also allows us to estimate and control for other factors that

may have changed the oil-macro relationships, such as increased global demand, changes

in oil production or lower interest rates.

Doing so, we find substantial changes in the way oil prices are transmitted to the

U.S. economy. In contrast to previous studies, our analysis suggests that an increase

2The split date reflects the period when production of tight oil in the U.S. took off. However, results are

robust to splitting the sample a bit earlier or later, and results can be obtained at request.
3Baumeister and Kilian (2016) show that while real oil investments did decline following the oil price

collapse in 2014, private real consumption and non-oil related business investments were positively stim-

ulated, offsetting the negative setback from the oil sector. They therefore conclude that nothing has

really changed: the U.S. still responds like a typical net oil importer.
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in the oil price due to an oil-specific shock has positive spillovers to many parts of the

U.S. economy, effects that were not present before the shale oil boom. In particular, we

find that nonresidential business investment, industrial production and (non-oil) employ-

ment in both oil-producing and some manufacturing-intensive states increase following

oil-specific shocks that increase oil prices. What is more, real personal income also in-

creases temporarily. The reason is simply that the U.S. has increased its reliance of oil,

not as a consumer, but by becoming the world’s largest oil producer. On the other hand,

we find that several sectors respond negatively as before. In particular, energy intensive

industries such as motor vehicles, still respond negatively to an oil-specific shock, as do

average consumption, most likely due to higher costs. Going forward, policymakers need

to take into account that the transmission of oil price shocks in the U.S. has changed with

the shale oil boom, and that there are heterogeneous effects across industries and U.S.

states.

Our paper relates to and combines several approaches already developed in the lit-

erature, but in a separate manner. First, we relate to the above mentioned literature

analysing local effects of oil booms in the U.S. (cf. Weber, 2012; Allcott and Keniston,

2018; Fetzer, 2014; Feyrer et al., 2017; Gilje et al., 2016). However we also relate to

studies documenting heterogeneous responses to oil price shocks across net oil importers

and exporters (cf. Bjørnland, 2000; Jiménez-Rodŕıguez and Sánchez, 2005; Peersman and

Robays, 2012; Aastveit et al., 2015; Herrera et al., 2015; Guerrero-Escobar et al., 2019;

De Michelis et al., 2020). These studies focus on various small and large open economies,

being either classified as oil exporters or importers. However, this paper is the first com-

prehensive examination of how the shift from being an importer to an exporter influences

a country’s reaction to oil price shocks.4

Second, we relate to the large literature that analyses the effect of oil price shocks,

emphasising different sources of shocks and identification methods (cf. Bjørnland, 2000;

Hamilton, 2009; Kilian, 2009; Kilian and Murphy, 2012, 2014; Kilian and Vigfusson, 2011;

Lippi and Nobili, 2012; Peersman and Robays, 2012; Cashin et al., 2014; Aastveit, 2014;

Aastveit et al., 2015; Stock and Watson, 2016; Baumeister and Hamilton, 2019; Känzig,

2021). However, in contrast to these papers, we allow for changing dynamics. Fur-

thermore, while these studies typically focus on aggregate macroeconomic variables, we

explicitly include data for the oil sector, disaggregate production and state-level employ-

ment into the analysis to account for potential spillovers and resource movement due to

4Although the U.S. is not yet a net oil exporter, the massive growth in oil production (and exports) over a

prolonged period supports our claims. In particular, the proceeds from oil have increased rapidly, making

the net present value of the shale boom close to 9 percent of U.S. GDP in 2015 (see Figure 10 in Section

A in the Online Appendix). This makes the shale oil boom comparable in relative size to some of the

larges oil discoveries in the world (see Arezki et al., 2017).
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the shale oil boom. For this purpose, we use a FAVAR model with a large data set and

time-varying parameters.

Third, our TVP framework builds on a growing literature allowing for time-varying

parameters and stochastic volatility when analysing the effect of oil price shocks (i) on the

U.S. macroeconomy (e.g. Baumeister and Peersman, 2013b; Bjørnland et al., 2018), (ii)

on the inflation passthrough (e.g. Clark and Terry, 2010), (iii) on the U.S. stock market

(e.g. Kang et al., 2015; Foroni et al., 2017) and (iv) on the oil market (e.g. Baumeister and

Peersman, 2013a). However, this is the first study to examine the time-varying changes

when a country is transforming from being an importer to an exporter of oil.

Finally, we relate to a branch of the literature that has documented important hetero-

geneous effects in the transmission channels of oil price shocks to disaggregate industries

(e.g. Bresnahan and Ramey, 1993; Davis and Haltiwanger, 2001; Lee and Ni, 2002; Her-

rera and Karaki, 2015; Herrera et al., 2017). However, while these papers have primarily

studied how the negative effects of an oil price shock are transmitted to industries when

the U.S. was an oil importer, our focus is to unravel potential heterogeneous effects at

the industry level and across U.S. states, following the shale oil boom. To the best of

our knowledge, this is the first paper that models the interaction between the oil market

and the U.S. economy in a large data environment, allowing also for time-varying changes

during the fracking revolution.

The remainder of the paper is structured as follows: Section 2 introduces the model

framework and the dataset. In Section 3 we discuss empirical results, focusing on the

effects of an oil-specific shock on various industries, the overall macroeconomy, and the

geographical dispersion of shocks at the state level in terms of employment. Section 4

demonstrates that our findings cannot be attributed to alternative hypotheses, confirm-

ing the robustness of our results to variations in model specification and identification

framework. Section 5 provides concluding remarks.

2 Empirical modeling framework

While most of the reserves of shale oil in the United States have been known for decades,

it was long thought to be too costly and technologically impossible to extract. The

breakthrough in technological innovation in the early-2000s, combining horizontal drilling

with hydraulic fracturing, allowed oil to be extracted from shale formations on a large

scale. From the middle of the 2000s, imports of crude oil to the U.S. plummeted as the

shale oil boom sparked a strong recovery in the domestic production of crude oil. By 2015

the U.S. had surpassed Russia and Saudi Arabia to become the world’s biggest producer

of crude oil and natural gas, and by the end of 2015, the export ban on crude oil was
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lifted.

This extraordinary boom motivates our question: namely, to what extent has the

transmission of oil market shocks in the U.S. changed with the shale oil boom? To ana-

lyze this question, we specify an empirical model that can account for: (i) heterogeneous

responses to oil price shocks across the U.S.; (ii) spillovers between oil and non-oil indus-

tries; and (iii) time-varying responses. Many recent papers, as cited in the introduction,

use SVAR models to study the effects of oil price shocks on the U.S. economy. As we aim

to assess the oil industry’s role in dispersing oil market shocks to economic activity, we

enhance a standard aggregate VAR model by incorporating estimated factors that reflect

dynamics from both oil and non-oil sectors.

To that end, we specify a factor-augmented vector autoregressive (FAVAR) model that

includes both observable and unobservable factors. The observable factors will be driven

by shocks that have the potential to affect all sectors of the U.S. economy. To also take

into account the fact that there may be heterogeneous responses across U.S. industries,

we estimate separate latent factors for the U.S. economy that explain a sufficient amount

of variation in the data. The inclusion of latent factors also enables us to simultaneously

estimate spillovers between different industries and states in the U.S. The simultaneous

spillovers between different sectors at different geographical levels can not be captured by

including only observable variables in a small panel of data and have therefore not been

taken into account in previous studies.

We utilize factors in a time-varying parameter (TVP) Vector Autoregressive model,

which features both time-varying coefficients and a time-varying variance-covariance ma-

trix of innovations. This approach allows us to account for potential non-linearities or

time-dependent variations between oil prices and the U.S. economy. We also address

possible heteroscedasticity of structural shocks and nonlinearities in the simultaneous re-

lations among variables by incorporating multivariate stochastic volatility. Our decision

to adopt a TVP approach stems from our belief that the transition of the U.S. from a net

oil importer to a major oil producer occurs gradually. This gradual transition is better

captured through the TVP model, which allows for smooth changes in the shock trans-

mission mechanism, rather than a model with discrete breaks. Altogether, this framework

enables us to thoroughly investigate whether the transmission of oil market shocks to the

U.S. economy has undergone significant changes over time.

2.1 The time-varying FAVAR model

Our framework builds on the FAVAR model, first proposed by Stock and Watson (2005)

and Bernanke et al. (2005). Technically, the developed and employed model is most

closely related to the setup used in Korobilis (2013). In particular, we use a two-step
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estimator and replace the factors with the first principal components obtained from the

singular value decomposition of the data matrix, and consequently treat them as observ-

ables. These factors are then used in a time-varying VAR model with both time-varying

coefficients and time-varying variance covariance matrix of innovations (see Primiceri,

2005).5

Still, we deviate from Korobilis (2013) in several important ways. First, while Korobilis

(2013) uses a framework based on Bernanke et al. (2005) and Belviso and Milani (2006)

to identify the factors, we follow Boivin and Giannoni (2007) and Boivin et al. (2009).6

Doing so, we impose the constraint that the three observable variables are equivalent

to the three factors in the first-step estimation, guaranteeing that the estimated latent

factors identify dynamics not already captured by the three observable variables. Second,

to keep our model as parsimonious as possible, we do not allow for stochastic volatility in

the factor analysis regression. Finally, we stick to the standard convention in the literature

and model the random walk evolution of the VAR parameters as in Primiceri (2005).

Let Ft be a m × 1 vector of common factors assumed to drive the dynamics of the

economy. In our application, Ft contains both observable factors yt of dimension l×1, and

unobservable latent factors, ft of dimension k × 1, such that Ft =

(
yt

ft

)
and l + k = m.

The latent factors are extracted from a larger dataset Xt of dimension n×1, and assumed

to summarize additional information not captured by the observable factors. We assume

that Xt can be described by an approximate dynamic factor model given by

Xt = ΛFt + et, (1)

where Λ is n × m matrix of factor loadings and et ∼ N (0, R), is n × 1 vector of errors

assumed to be uncorrelated with the factors Ft and mutually uncorrelated.

The joint dynamics of the factors Ft are given by the following transition equation:

Ft = ct + b1tFt−1 + ...+ bptFt−p + ut, (2)

where ct is an m×1 vector of time-varying intercepts; bjt are m×m matrices for j = 1, .., p

of time-varying coefficients; ut is an unconditionally heteroskedastic disturbance term that

is normally distributed with zero mean and time-varying covariance matrix Ωt. According

to the literature on efficiently parametrizing large covariance matrices, Primiceri (2005),

we decompose Ωt in the following way:

Ωt = A−1
t ΣtΣ

′

t(A
−1
t )

′
, (3)

5However, when estimating the model we modify the algorithm of Primiceri (2005) to reflect the correction

detailed in Del Negro and Primiceri (2015) (see Section B in the Online Appendix for details).
6Bernanke et al. (2005) and Belviso and Milani (2006) perform a transformation of the principal com-

ponents, exploiting the distinct behaviors of “slow-moving” and “fast-moving variables”, this approach,

while effective for monthly data, is not suitable for quarterly data.
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where Σt is a diagonal matrix that contains the stochastic volatilities and At is a unit

lower triangular matrix with ones on the main diagonal that models the contemporaneous

interactions among the variables in (2):

At =


1 0 · · · 0

a21,t 1
. . .

...
...

. . . . . . 0

am1,t · · · am(m−1),t 1

 ,Σt =


σ1,t 0 · · · 0

0 σ2,t
. . . 0

...
. . . . . . 0

0 · · · 0 σm,t

 . (4)

It follows that

Ft = ct + b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt, (5)

where εt ∼ N (0, Im); Im is an m-dimensional identity matrix.

Our model setup captures time variation by allowing the coefficients and the error

covariance matrix in the transition equation to evolve over time, with factor loadings

in the factor equation remaining constant. This approach aligns with our objective to

explore broad, systemic changes in the economic structure from aggregate shocks in the

oil market, rather than the detailed interactions between specific variables and factors.

An alternative method would involve time variation in both factor loadings and transi-

tion equation coefficients (see Koop and Korobilis, 2014). However, we opt to focus on

the spillover effects and their impact on the U.S. economy through changes in the tran-

sition equations, which simplifies the model and reduces computational complexity and

identification challenges.

We follow the standard convention and assume that model’s time-varying parameters

and stochastic volatilities follow random walk processes. LetBt = (vec(ct)
′
, vec(b1t)

′
, ..., vec(bpt)

′
)
′

be the vector of all R.H.S. coefficients in (5), αt = (a
′
j1,t, ..., a

′

j(j−1),t)
′

for j = 1, ...,m be

the vector of nonzero and nonunity elements of the matrix At, and σt = (σ
′
1,t, ..., σ

′
m,t)

′
be

the vector containing the diagonal elements of Σt .The dynamics of the three processes

are specified as follows:

Bt = Bt−1 + ηBt (6)

αt = αt−1 + ηαt (7)

logσt = logσt−1 + ησt (8)

While the elements of the vector Bt and the free elements of the matrix At are modeled as

random walks, the standard deviations (σt) are assumed to evolve as a geometric random

walks. As discussed by Primiceri (2005) and Bianchi et al. (2017), the random walk

assumption, despite its potential drawbacks, offers the benefit of emphasizing permanent

shifts and minimizing the number of parameters to be estimated.
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We assume that innovations in the model are jointly normally distributed with the

following assumptions on the variance covariance matrices:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(9)

Following Primiceri (2005), we postulate a block-diagonal structure for S, with blocks

corresponding to parameters belonging to separate equations. Thus, the shocks to the

coefficients of the contemporaneous relations among variables in (5) are assumed to be

correlated within equations, but uncorrelated across equations. While less restrictive as-

sumptions concerning Equation 9 might be justifiable (see Primiceri, 2005) for a more

comprehensive discussion, they would also increase computational complexity and bur-

den of already heavily parameterized model. In our setting we therefore utilize the SVAR

framework, where we assume that the structural shock εt are independent of other dis-

turbances in the model.

2.2 Data and transformations

To accommodate the effects of oil price shocks on the U.S. economy we use a large panel

of domestic and international quarterly data series. A full description of the data can

be found in Section A in the Online Appendix. In short, for our benchmark model,

we include a broad range of domestic macroeconomic indicators as observable variables.

Among others, we include consumer and producer prices, real investment series, stock

prices, real personal income, real consumption, the short term interest rate and various

disaggregate industrial production (IP) series. In addition we include relevant variables

for the oil sector, including mining, mining investment and production of conventional

and unconventional oil. For unconventional oil we have data for tight oil, which refers to

all unconventional resources, reserves, and production associated with low-permeability

formations that produce oil, including shale formations (see the U.S. Energy Information

Administration (EIA)). In total we use 42 domestic series in our benchmark model (i.e.,

n = 42). These are used to extract unobservable latent factor.

In addition to the domestic series, we include three observable “foreign” factors (l = 3)

in the benchmark model; world crude oil production, excluding U.S. crude oil production,

global activity and the real oil price. World crude production net U.S. production is

used as a measure of foreign supply that are not U.S.-specific. We include the global

economic conditions indicator (GECON) as a measure of global activity as proposed by
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Baumeister et al. (2020). For the real oil price, we follow Lee and Ni (2002) and Herrera

(2018), among many others, and use the U.S. refineries acquisition cost deflated by the

U.S. CPI. However, we also analyze extensive robustness to our choice of variables in

Section 4, by among other things replacing the chosen global activity variable with an

estimate of industrial production for the OECD plus other major countries published by

OECD Main Economic Indicators, and extended from November 2011 by Baumeister and

Hamilton (2019). In addition, we also replace the chosen oil price with Western Texas

Intermediate (WTI). In sum, this gives a panel of 47 international and domestic data

series, covering a sample period from 1974Q1 to 2018Q4. With quarterly data, we use

four lags in the estimation, consistent with Hamilton and Herrera (2004).7 Correcting for

the number of lags (p = 4) and the sample used to estimate the priors8, leaves us with

111 observations that we use for estimation, covering the sample 1991:Q1–2018:Q4.9

Finally, to account for local effects at the state level, we re-estimate our model using

an extended dataset. More specifically, instead of using the aggregate employment for

the U.S., we include employment series for all U.S. states. Due to availability of disag-

gregated employment series, the sample period starts in 1990Q1. With the additional

disaggregate series, we re-estimate the domestic factors. For oil-producing states, we

subtract employment in the mining sector from total non-farm employment, and include

these series separately. There are 16 significant oil-producing states in our sample. The

most important shale producing states are (in alphabetical order) California, Colorado,

Kansas, Louisiana, New Mexico, North Dakota, Ohio, Oklahoma, and Texas (cf. Feyrer

et al., 2017). In addition, we include five states that have significant production of con-

ventional oil, defined to be on average more than 10 million barrels during 2010-2018. The

five states are (in alphabetical order) Alaska, Mississippi, Montana, Utah and Wyoming.

Finally, we also include two states where oil production increased significantly during the

last part of our sample. These states are Pennsylvania and West Virginia. The remaining

states have trivial production relative to these states (see Figure 11 in Section A in the

Online Appendix).

In total, this extended model gives us a domestic data block with 109 series (n = 109),

from which we extract the latent factors. In sum, we have a panel of 113 international

and domestic data series, covering a sample period from 1990Q1 to 2018Q4.10

7Hamilton and Herrera (2004) show that a too restrictive lag length can produce misleading results, while

increasing the lag length above one year has negligible effects. In Section C in the Online Appendix we

conduct a quasi-real-time forecasting experiment varying the number of lags. The findings indicate that

our benchmark model using four lags outperforms some alternative lags specifications.
8We use the first 16 years as a training period to estimate priors (see Section D in the Online Appendix).
9In Section 4 we make several extensions and analyse robustness to our modelling choices.

10We use the same number of lags as in the baseline model (p = 4) and the first 10 years of the sample are

used as a training period to estimate priors. The model is estimated over the sample 2000:Q3–2018:Q4.
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Finally, all the series were initially transformed to log difference, except for GECON,

that is already transformed and given in levels, and the interest rate series, where we take

first differences. The data is then demeaned using the full sample. The domestic block of

series used to extract factors is also standardized as is common practice in these type of

analyses.

2.3 Identification

We estimate a model with both observable and unobservable factors, and with associated

shocks that have the potential to affect all sectors of the U.S. economy. As described

above, to be able to capture the oil price movements associated with unanticipated supply

disruptions that are not U.S. specific, we include global oil production as the first foreign

factor. We use global activity to capture global demand as the second foreign factor,

and the real price of oil is the third foreign factor. These three factors are treated as

observables. Further, we allow for two latent factors that capture different parts of the

domestic activity in the U.S. and that are inferred from data.

Following the seminal paper of Kilian (2009), we identify three oil market shocks

in a recursive manner; flow supply shocks, flow demand shocks and oil-specific shocks.

First, as oil production is ordered first, it implies that crude oil supply can not respond

to innovations to the global demand or other oil-specific price movements within the

same quarter. Second, innovations to the global activity that are not captured by flow

supply shock will be explained by the flow demand shock. Here we follow the usual

assumption from the models of oil markets, and restrict global activity from responding

to the oil-specific shocks at impact (see e.g., Hamilton, 2009). In turn, any unexpected

news regarding oil production or global demand can affect oil prices contemporaneously.

While our identifying restrictions are consistent with those used in Kilian (2009) and

many subsequent studies (i.e., Aastveit et al., 2015), our restrictions can also be ques-

tioned. In particular, as we are using quarterly data, the assumption that production of

oil can only respond to oil-specific shocks with a lag, (i.e., the supply schedule is inelastic

in the short run) is questionable. Such dogmatic (in this case exclusion) restrictions have

also recently been criticized by Baumeister and Hamilton (2019) on the grounds that

there is some uncertainty about the identifying restrictions themselves. In this case, the

worry would be that if oil producers react to price signals within a quarter, we would

underestimate the importance of oil supply shocks. So far, however, there is little evi-

dence to suggest that conventional oil production is elastic in the short run (cf. Anderson

et al., 2018). For shale oil producers, however, the situation is different. As pointed out

by Bjørnland et al. (2021), Bornstein et al. (2022) and Aastveit et al. (2022), shale oil

production responds more rapidly to oil price signals than conventional oil production,
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as shale wells have a more flexible production technology. Our model is consistent with

these findings. In particular, while global oil production (primarily conventional oil), is

restricted from responding to oil price signals within the quarter, U.S. oil production is

permitted to respond on impact, as the series is included in the domestic data block (see

below). Given that the U.S. series is dominated by shale oil, this makes sense. Still, in

Section 4 we analyze robustness to the identification, by among other using monthly data.

Turning to the domestic economy, we assume shocks to the U.S. factors can not affect

the three foreign factors on impact. Hence, the oil price is predetermined with respect to

the U.S. variables, in line with findings of Kilian and Vega (2011). Finally, note that all

observable variables in the vector Xt may respond to all shocks on impact inasmuch as

they are contemporaneously related to the factors through the loading matrix, Λ.

2.4 Estimation

Following Stock and Watson (2005) and Korobilis (2013), we estimate our model using a

conceptually and computationally simple two-step estimation method. In the first step,

we estimate the space spanned by the factors using the approach advocated by Boivin and

Giannoni (2007), to ensure that the estimated latent factors, ft, will recover dimensions

of the common dynamics not already captured by the observable variables, yt. Once

we have estimated the factors, we treat them as observables.11 We then advance to

the second step, where the model parameters are determined conditional on these factor

estimates, employing Bayesian techniques for the estimation. To address the complexity of

drawing from the joint posterior of our desired parameters, we employ Gibbs simulations.

These simulations are a specific type of Markov chain Monte Carlo (MCMC) method,

designed to sample a high-dimensional joint posterior by sequentially drawing from its

lower-dimensional conditional posteriors. Given the data and the priors, Gibbs sampling

is carried out in four blocks. In the first block, the parameters in the factor equation

are sampled using standard arguments for linear regression models (see Koop, 2003). In

blocks two to four, we draw the VAR model’s unobserved state variables as well as the

hyperparameters. A detailed description of the estimation procedure is given in Section

B in the Online Appendix. In Section 4.2 we also provide a range of sensitivity analyses

concerning prior specifications and model selection.

To generate the posterior draws, the simulations in this paper are all based on 90,000

iterations of the Gibbs sampler. The first 40,000 are discarded and only every tenth of

the remaining are used for inference. In Section E in the Online Appendix we provide

evidence of convergence of the Markov chain Monte Carlo Algorithm.

11As it is shown by Bai and Ng (2002a), when the number of series are large relative to the number of

observations, the effect of estimated regressors can be completely ignored.
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The system is estimated using three observable factors, with the number of unobserv-

able factors set to two (k = 2). According to the criteria for static factors set forth by Bai

and Ng (2002b), the suggested range for factors is between 1 and 8. The optimal factor

counts, as determined by the ICP criteria tailored for factor estimation via principal com-

ponents, are ICP1 = 3, ICP2 = 2, and ICP3 = 7. In our benchmark configuration, five

factors account for nearly half of the variance in Xt. The addition of an extra unobserv-

able factor incrementally increases the explained variance by approximately 5 percent.

However, employing more than two factors does not significantly alter our primary re-

sults and heightens computational requirements. Thus, we set the number of extracted

unobservable factors in line with the most conservative recommendation provided by the

ICP criteria.12

As discussed above, the five factors are included to capture different aspects of rel-

evance to the U.S. economy. While the three observable factors are easily interpretable

insofar as they capture oil supply (unrelated to the U.S.), global activity and the oil price,

the two latent factors are unobservable, and not identified. Tables 3 and 4 in Section A in

the Online Appendix report the correlation (above 0.4) with various variables and either

the first or the second domestic factor, respectively. From Table 3, we observe that the

first factor turns out to be a good proxy for real non-oil activity in the U.S. It shows

a large correlation with non-oil variables and a weak negative correlation with U.S. oil

production and exports. However, there is also a noticeable positive correlation with cer-

tain oil-related series, such as mining activity. In contrast, Table 4 shows that the second

domestic factor closely mirrors changes in oil-related variables, suggesting its role as an

oil activity indicator.

3 Empirical results

The aim of this paper is to analyze if the transmission of oil price shocks on the U.S.

economy has changed with the shale oil boom. As we are analysing time-varying changes,

we will report several types of impulse responses. First, as the impulse response may

be different across time, we show median impulse responses at different selected dates:

1995:Q1, 2001:Q1, 2007:Q1, 2011:Q1, 2013:Q1, 2015:Q1, and 2017:Q1. The first two dates

represent a period prior to the shale boom, 2007 is a year just before shale oil increased

substantially, while the remaining years represent the shale boom period itself with two-

year intervals. Beyond that, the dates are chosen arbitrarily and are not crucial for our

12For the extended model, all three ICP criteria concur that the optimal number of factors is two. Therefore,

we specify that the extended model maintains the same factor count as the benchmark, explaining more

than 50 percent of the variance in Xt.
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conclusion. Second, we also report the impulse responses after two and four quarters

across time with probability bands. In so doing we emphasize the maximum effect of

an oil price shock, which typically occurs after about two to four quarters according to

Hamilton (2008), Clark and Terry (2010), and Herrera (2018), among others. However,

our conclusions are robust to alternative horizons. Third, we also display the difference in

impulse responses over time, measured at the two- or four-quarter horizon, with 16-th and

84-th percentiles. For each draw in the posterior distribution, we compute the statistical

difference between the current impulse responses and impulse responses in 1995:Q1.13,14

To ensure that we compare an equal sized shock over time, we normalize the dynamic

effects of an oil-specific shock to a 10 percent increase in the oil price on impact (for all

the calculated responses).15 All the estimated responses are accumulated and shown in

levels. Note that since the domestic data series are standardized, these represent changes

relative to the base level, not the absolute original levels of the data. Consequently, the

magnitude of the impulse responses should only be compared across variables.

Importantly, there are three type of shocks that can alter the oil price on impact; flow

supply, flow demand and oil-specific shocks. Here we will focus on effects of the oil-specific

shocks, as this is where we expect the time varying behavior (cf. Figure 1). However, in

Section 4, we discuss results for the two other shocks. Importantly, both shocks increase

oil prices, as expected. However, the effects on the U.S. variables are either negligible

(flow supply shocks) or positive, but stable over time (flow demand shocks).

3.1 Real oil price and global activity

Before displaying results for the U.S., we examine how real oil prices and global activity

respond to oil-specific shocks. Importantly, we want to learn if there are time varying

changes also in other countries. This could be due to say, less energy dependence in

production or consumption, or some other common global explanatory factors, such as

the lower interest rates (zero lower bound) that may have damped the negative effect of

the higher oil price (cf. Datta et al., 2021). If this is the case, we should expect the oil-

specific shock to affect global economic more positively, and thereby also explain potential

13The base year 1995 has been chosen as the impulse responses in 1995 are close to the average in the

pre-shale period. However, results are robust to other choices for base year.
14For each Gibbs draw and time point, we calculate the difference between the impulse response at each

time and 1995 (base year). To detect significant divergences, we assess whether the zero mark lies outside

the 68% confidence interval of these deviations. This is visualized as a plot of the median difference over

time, with shaded areas indicating uncertainty. Non-overlapping shading signifies deviations from 1995.
15A common way to report impulse responses is to examine a one standard deviation shock. However, in the

models where volatility changes over time, a one standard deviation shock corresponds to a different-sized

shock at each point in time. Therefore, we normalize the impact effects of the shock over time.
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(a) Oil Price (median) (b) GECON (median)

Figure 2. The effect of an oil-specific shock: Impulse responses for oil price and global activity (GECON).

The initial shock is normalized to increase oil prices by 10% . All responses are reported in levels. Posterior

median of impulse responses at seven different periods in time.

time varying behavior in U.S. aggregates.

Figure 2 suggests that this is not the case. The figure shows the median impact of the

oil-specific shock on oil prices and global activity at different time intervals in the left and

right frame respectively. The figure confirms that an oil-specific shock that increases oil

prices, has a persistent negative impact on global activity, in line with what Kilian (2009)

and others have found. Furthermore, although the negative effect on global activity may

have been slightly muted in recent years, we show in Section 4 that these changes are not

statistically significant.

3.2 The U.S. oil sector

Having seen that global activity falls with a higher oil price, we now turn to examine

detailed responses in the U.S., starting with the the oil sector. To that end, Figure 3

displays the impact of the oil-specific shock on mining investment and mining activity,

focusing on median responses at different time intervals (left column) and time-varying

responses after four quarters (right column) (c.f. the explanation above).

To the extent that higher oil prices also generate a resource boom16 in the U.S. econ-

omy, we should expect to see investment and production in the oil sector to increase.

And we do (cf. Figure 3). The responses of mining investment and production to an oil-

specific shock are not only positive, but have also increased gradually, and in particular

since 2008/09. The maximum effect seems to be in 2015, most likely as the industry was

catching up after the oil decline the year before. The effects have come down slightly since

16A resource boom takes the form of either a new oil discovery, more productive oil fields or higher real oil

prices (see Corden, 1984).
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(a) Mining Investment (median) (b) Mining Investment (after four quarters)

(c) Mining (median) (d) Mining (after four quarters)

Figure 3. The effect of an oil-specific shock: Impulse responses for mining investment (top row) and

production (bottom row). The initial shock is normalized to increase oil prices by 10%. All responses are

reported in levels (of the standardized data). We display posterior median of impulse responses at seven

different periods in time in the left column. In the right column we report responses across the sample

four quarters after the shock. The dashed lines represent 68% posterior probability bands. The solid line

is the median estimate.

then, but are still significant positive (see the right panels). These results are in line with

our expectations: a higher oil price makes it more profitable for firms operating in the oil

sector to produce oil, and therefore stimulates investment and subsequently production.

Hence, for an equally sized increase in oil prices, investment and mining increase slightly

more now than before the shale oil boom. We will delve deeper into the oil sector by

separating effects for tight and conventional oil in Section 3.5 when we are analysing the

responses at the state level. We conclude for now that the time-varying pattern observed

in the mining sector seems closely related to the shale boom.

3.3 The aggregate U.S. economy

Having seen that oil investment and production respond more positively to an oil-specific

shock, we turn to the non-oil sector to analyze indirect effects and spillovers. We start

17



(a) Investment (median) (b) Investment (diff two quarters) (c) Investment (diff four quarters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) Consumption (median) (h) Consumption (diff two quarters) (i) Consumption (diff four quarters)

Figure 4. The effect of an oil-specific shock: Impulse responses for non-residential, non-oil, investment,

personal income and private consumption expenditure. The initial shock is normalized to increase oil

prices by 10%. All responses are reported in levels. Left column: Posterior median of impulse responses

at seven different periods in time. Middle and right columns: The difference between the responses in

period 1991:Q1-2018:Q4 and the responses in 1995:Q1 after two and four quarters respectively. The solid

line is the difference between the median estimates. The shaded area represents 68% posterior probability

bands for the difference in impulse responses.

by examining real activity. Figure 4 presents results for (non-oil) real investment, income

and consumption. We present the median response (left column) and the difference be-

tween impulse response after two and four quarters in the period 1991:Q1-2018:Q4 and

1995:Q1, with 16-th and 84-th percentiles (middle and right columns). The last two fig-

ures are included to analyze if the changes are statistical significant. The figure shows

important time-variation in the median response around the period of the shale oil boom.

In particular, in the first row, we find that non-residential (non-oil related) investment

has responded systematically more positive to an oil-specific shock throughout the 2000s,

and the effect is significant and positive from 2012/2013 (cf. Figure 4 (b) and (c)). Hence,
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(a) CPI (median) (b) CPI (after two quarters)

Figure 5. The effect of an oil-specific shock: Impulse responses for CPI (All Items). The initial shock is

normalized to increase oil prices by 10%. The responses are reported in levels (of the standardized data).

We display posterior median of impulse responses at seven different periods in time in the left column.

In the right column we report responses across the sample two quarters after the shock. The dashed lines

represent 68% posterior probability bands. The solid line is the median estimate.

we conclude that while non-oil investment in the U.S. economy previously fell when oil

prices rose, it is now picking up. This is a new finding in the literature.

Second, for an oil importing country, a higher oil price is typically manifested in

lower real income and purchasing power, as costs and prices increase. This was the case

throughout the first part of the sample (see the impulse responses for real income in the

middle row of Figure 4). However, from 2012 and onwards, real personal income drifts

upwards following an oil-specific shock. This suggests that the increased investment may

have had spillover effects on the U.S. economy, outside oil, by creating jobs, boosting

industries, and finally contributing to higher real income levels. However, turning to

consumption in the lower row, we see that the impulse responses are still consistently

negative, although somewhat more muted over time. This is not surprising. Despite

higher income, increased energy costs will lead to a decrease in consumer spending, as

one has have to allocate more income to cover essential expenses like fuel and heating.

Figure 5 confirms such a scenario. It shows that an oil-specific shock is still strongly

associated with an increase in CPI, and it is in line with our expectations and previous

findings in the literature (cf. Hamilton and Herrera, 2004): higher oil prices lead to higher

costs for firms, hence prices rise. We note that there is no evidence of time variation in

the way oil-specific shocks are transmitted to CPI, although there seem to have been a

gradual decline in the magnitude of the effects, most likely as oil dependence in the U.S.

has fallen in general (cf. Clark and Terry, 2010).

Taken together, these results are consistent with the U.S. becoming a major oil pro-

ducer, where non-oil investment and income in the U.S. now increase following oil-specific
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shocks that push up oil prices. These effects suggest that there are spillovers from the oil

boom to the aggregate economy. These are new results for the aggregate U.S. economy.

Importantly, this suggests that higher oil prices may no longer be unambiguously negative

for the U.S. economy. In particular, while consumers as still responding to higher oil (and

gasoline) prices by lowering consumption, many parts of the U.S. economy are benefiting

from the increased activity and income. Below we try to shed more light on these issues

by first looking at disaggregate industry responses, before we look into the behaviour of

employment across the different states.

3.4 Disaggregate industry effects

We analyze disaggregate responses at the industry level to understand better the mecha-

nisms behind the time-varying changes. There are at least three hypotheses for changing

coefficients; (i) through direct purchases of manufactured inputs; (ii) through indirect

productivity and LBD spillovers from new knowledge and technology transfers created

during the shale revolution; (iii) by creating energy independence and costs savings for

U.S. companies that operate in energy-intensive sectors. We do not expect all industries

to benefit equally from the shale oil boom. Some may also respond negatively as before,

in particular if they are energy intensive in production. Figure 6 illustrates this. In line

with Figure 1, it shows that industrial production (IP) has responded systematically more

positively to an oil price shock throughout the 2000s, and the effect is significant from

2013/2014. Looking further at sub-groups of IP, we find strong upward drift for business

equipment, while the effect for manufacturing production is still negative.

Table 1 analyzes this further by summarizing the response of 21 industry group (see

Section A in the Online Appendix for details). Results are based on the impulse responses

two quarters after the initial shock. The upper part of the table shows industries where

there have been no time-varying changes (i.e., the responses have been either consistently

negative (left column), insignificant (middle column) or positive (right column) through-

out the sample). The lower part shows industries where the responses have changed

significantly from negative to insignificant (left column) or to positive (right column).

Overall, we find evidence of heterogeneous responses among different industries. First,

for energy-intensive industries (i.e., food, beverage and tobacco products, motor vehicles,

and consumer goods) responses are negative, as expected. Higher oil prices increase the

cost of production and lead to a decline in demand, all else equal. Furthermore, there

is no variation over time. Second, some industries respond significantly positively to an

oil-specific shock over the whole period. These are industries that have had strong ties

with the oil sector throughout the sample, such as primary metals, mining and defense

and state equipment. Third, from the lower part of the table, we see that there are some
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(a) IP Index (median) (b) IP Index (diff 2 quarters) (c) IP Index (diff 4 quarters)

(d) Business Equipment (median)

(e) Business Equipment (diff two

quarters)

(f) Business Equipment (diff four

quarters)

(g) Manufacturing (median) (h) Manufacturing (diff two quarters) (i) Manufacturing (diff four quarters)

Figure 6. The effect of an oil-specific shock: Impulse responses for industrial production series divided

according to market groups. The initial shock is normalized to increase oil prices by 10%. All responses

are reported in levels (of the standardized data). Left column: posterior median of impulse responses at

seven different periods in time. Middle and right columns: the difference between the responses in period

1991:Q1-2018:Q4 and the responses in 1995:Q1 after two and four quarters respectively. The solid line

is the difference between the median estimates. The shaded area represents 68% posterior probability

bands for the difference in impulse responses.

industries that have observed changing coefficients. In particular, we find a systematically

and significant more positive response for industries such as petroleum and coal products

and fabricated metal products, that benefit directly from shale. In addition, technological

advanced industries, such as aerospace, machinery, and to some extent electronic equip-

ment and appliances and chemicals, are now also responding positively.17

17In Figure 12 in Section F in the Online Appendix, we show responses to subgroups of investment.

Consistent with the responses reported above, we find investment in manufacturing, industrial and other

equipment responds positively to the oil-specific shock after 2012/13, while investment in transportation

equipment responds negatively all through the period.
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Negative effects Insignificant effects Positive effects

Food, beverage, and tobacco Computer electronic products Primary metal

Furniture Electronic and gas utilities Mining

Motor vehicles Miscellaneous Defense and space equipment

Plastic and rubber products Nonmetallic mineral products

Printing related Paper

Wood products Apparel and leather goods

From negative to insignificant effects From negative to positive ef-

fects

Chemicals Petroleum and coal products

Electronical equipment appliances Aerospace

Fabricated metal products

Machinery

Table 1. The effect of an oil-specific shock on industrial production (after two quarters). The first three

columns in the top row show industries with stable responses: either negative, insignificant, or positive

throughout the sample. The two columns in the lower row show industries where the responses have

changed, either from negative to insignificant or to positive.

Thus, we suggest that a gradual shift has taken place for several industries. In line with

Baumeister and Kilian (2016) we find that most of the energy intensive industries respond

negatively as before, supporting the view that the cost channel (i.e., hypothesis (iii)) is

of less importance. However, the industries that have direct and indirect relationship to

the oil sector have benefited from higher activity and are now responding by increasing

investment and activity when oil prices increase, (i.e., hypotheses (i) and (ii)).

3.5 Geographical dispersion at the state level

So far we have focused on aggregate and disaggregate responses for the U.S. as a whole.

We now turn to investigate responses at the state level, focusing on employment, as an

important part of an oil boom is the resource movement of labor (see e.g., Corden, 1984;

Bjørnland et al., 2019). Doing so, we can also examine if proximity to the oil producing

regions matter. To this end, we re-estimate the model including disaggregate employment

series for all U.S. states. In addition, we also replace the aggregate U.S. oil production

series with separate series for conventional and unconventional oil. The sample period for

the extended model starts in 1990 due to the availability of disaggregated employment se-

ries.18 As described in Section 2.2, we subtract employment in the mining sector from total

non-farm employment for the oil producing states, and include these series separately. We

consider 16 states to be significant oil producing states: nine unconventional oil produc-

ing states: California, Colorado, Kansas, Louisiana, New Mexico, North Dakota, Ohio,

18In Section F in the Online Appendix we show that the main results presented above are robust for the

shorter sample, both in terms of the sign of the responses, and timing of the changes.
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(a) Tight Oil (after 2 quarters) (b) Conventional Oil (after 2 quarters)

Figure 7. The effect of an oil-specific shock: Impulse responses for tight oil and conventional oil

production. The initial shock is normalized to increase oil prices by 10%. All responses are reported in

levels (of the standardized data), showing responses across the sample two quarters after the shock. The

dashed lines represent 68% posterior probability bands. The solid line is the median estimate.

Oklahoma, and Texas,19 and seven conventional oil producing states: Alaska, Mississippi,

Montana, Pennsylvania, Utah, West Virginia and Wyoming.20

We start by examining responses in tight and conventional oil production to the oil-

specific shocks in Figure 7. The results are striking. While conventional oil does not

respond significantly to the oil-specific shock even after two quarters, unconventional

(tight) oil responds strongly, and in particular from 2010. These results suggests that shale

(unconventional) oil producers are more price responsive than conventional oil producers,

in line with what other studies have found (cf. Bjørnland et al., 2021; Bornstein et al.,

2022; Aastveit et al., 2022). Hence, we conclude that there is strong evidence that the

time-varying pattern we observe is closely related to the shale oil boom.

Turning to employment, Figure 8 first shows results for oil employment and non-oil

employment in three different oil producing states: California, North Dakota and Texas,

before Figure 9 summarizes results for non-oil employment in all states by focusing on

geographical dispersion.21 For all three oil producing states, we find, as expected, that

there is a significant positive effect from an oil-specific shock on mining employment (cf.

the upper row in Figure 8). Not only does mining employment increase with higher

oil prices, the effect has also increased over time, and North Dakota shows the largest

response. This suggests that the resource boom relates to the the time varying parameters.

Turning to the lower row in Figure 8, that graphs the effect of an oil-specific shock on non-

oil employment in the same three oil producing states. We note that for North Dakota and

19Note that some states, like Texas, are important producers of both conventional and unconventional oil.
20The results are robust to inclusion of disaggregate series for all oil producing states, that is, also those

where the average production is below 10 million barrels during the period 2010-2018.
21Detailed impulse responses for all states can be obtained on request.

23



(a) California Mining Employment

(b) North Dakota Mining Employ-

ment (c) Texas Mining Employment

(d) California Non-oil Employment (e) North Dakota Non-oil Eployment (f) Texas Non-oil Employment

Figure 8. The effect of an oil-specific shock: Impulse responses for mining and non-mining employment

in three oil producing states. The initial shock is normalized to increase oil prices by 10%. All responses

are reported in levels (of the standardized data), showing responses across the sample two quarters after

the shock. The dashed lines represent 68% posterior probability bands. The solid line is the median

estimate.

Texas, non-oil employment increases significantly following an oil-specific shock. However,

whereas for North Dakota, the effect is significant positive over the whole sample (although

even more so after 2010), for Texas non-mining employment is only affected positively from

2010/2011, whereas previously the effect was insignificant or negative. For California,

however, where oil production is small relative to the aggregate activity, we do not find

any positive responses or time-varying pattern for non-oil employment.

Figure 9 summarizes responses in non-oil employment to an oil-specific shock in all

U.S. states, focusing on geographical dispersion. To this end, we let dark grey indicates

states where employment responds significantly positive either all through the sample

or in the final part. Light grey indicates states where employment responses change

significantly from being negative to positive/insignificant in the final part of the sample,

while white indicates states where there are no time varying changes, and responses are

either negative or insignificant throughout the whole sample.

We first note that positive effects on non-oil employment are found in the majority of

oil producing states; Alaska, Kansas, Louisiana, New Mexico, North Dakota, Oklahoma,

Pensylvania, Texas and Wyoming. These results are consistent with the literature using

cross-section data that find positive spillovers from oil activity on local employment, c.f.
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Figure 9. Geographical dispersion of oil-specific shocks to non-oil employment across U.S states. Dark

grey indicates oil-rich states where employment responds significantly positive; light grey indicates states

where employment responses change significantly from being negative to positive/insignificant in the final

part of the sample,; white indicates states where there are no time varying changes, and responses are

either negative or insignificant. See the main text for additional explanations.

Feyrer et al. (2017) and Allcott and Keniston (2018). Here we show that the effect is

positive also at the state level during the shale oil boom. Second, structural changes on

non-oil employment are also observed in the oil producing state, Colorado, and in states

located close to the oil producing states, South Dakota, Minnesota, Nebraska, Illinois,

Iowa and Wisconsin, in addition to some states located in the Northeast: Ohio, New

York, Connecticut, Vermont and Massachusetts, as well as North Carolina more in in the

South. These are states that have industries that include some of machinery, fabricated

metal products, aerospace equipment, computer and electronic products, and primary

metals as one the three most important industries (cf. NAM, 2015). As discussed in

Section 3.4 these industries are typically closely connected to the energy boom.

In the remaining states, including the four oil producing states California, Mississippi,

Montana and Utah, the effects are either negative or insignificant. For the oil states, this

is most likely due to oil being a relative small share of value added in the state. For the

other states, the negative response could be due to the fact that some states are energy

rich in production, such as states with large car manufacturers, i.e, Michigan, Indiana,

Kentucky, and Tennessee, or are not benefiting (have no spillovers) from the oil boom.
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We conclude that there are heterogeneous effects of an oil-specific shock across em-

ployment in U.S. states, as employment in many states is now behaving more in sync

with the oil boom. This includes most oil producing states, many states with a large

manufacturing sector, and some states that are closely located to the oil producing states

and that benefit from various spillovers.

4 Alternative hypothesis and robustness

We have documented significant changes in the way an oil-specific shock is affecting the

U.S. economy, and attribute this to the giant shale oil boom. Still, there could be other

structural changes in the economy, unrelated to oil, that may explain the time-varying

changes. We address this below by analyzing some alternative hypothesis in Section 4.1,

before turning to the robustness tests in Section 4.2.

4.1 Alternative hypothesis

We investigate five alternative hypothesis. Below we comment briefly, while details can

be found in Section G in the Online Appendix. First, one could expect that the other

oil market shocks that increase oil prices, like the flow supply shock, could also explain

the observed time varying changes. Section G.1 confirms that the flow supply shock has

slight positive effects on employment, industrial production and manufacturing in the last

part of the sample, but the time varying changes are not statistical significant, motivating

our focus on the oil-specific shock. Second, we examine to what extent the time varying

changes could relate to growth in the global economy rather than the shale boom, as global

demand has pushed up oil prices in the 2000s (cf. Aastveit et al., 2015). To evaluate this,

we examine the model implied effects of the identified (global) flow demand shock. The

impulse responses displayed in Section G.2 confirm that the flow demand shock increases

oil prices and activity in the U.S., as expected, but except for oil prices, there is no evidence

of significant time-varying changes. For oil prices, however, the positive response escalates

significantly throughout the 2000s, in line with the surge in demand for energy from Asia

(cf. Aastveit et al., 2015). Third, could the observed time varying changes following an

oil-specific shock be a common feature in many countries, not just related to the U.S.?

In particular, less energy dependence in production or consumption, or changes in the

transmission mechanism, could have dampened potential negative effects. In Section G.3

we show that this is not the case. Fourth, we analyse if the period of low interest rates has

changed the relationship between oil prices and macroeconomic variables. As pointed out

by Datta et al. (2021), the central bank can not respond to inflationary pressures induced

by oil price changes at the zero lower bound. To account for this, we add a shadow rate
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defined by Wu and Xia (2016) to our dataset, in addition to inflation expectations and the

real interest rate, and re-estimate the model. Doing so, we show in Section G.4 that the

interest rates and inflation expectations respond as expected, but there are no evidence

of time-varying changes. For the other variables, the time-varying results related to the

oil-specific shock prevail. Fifth, we examine if results could be due to the fact that there

are other commodity prices, say corn and coal prices, correlated with oil prices, that also

show evidence of time varying behavior. Hence, we may have found significant effects on

employment in states with high coal and corn production. Adding relevant variables, we

show in Section G.5 that responses in coal or corn prices are significant, but stable over

time. Hence, we conclude that while there are other hypothesis for structural changes

that have been affecting the U.S. economy the last decades, these are not able to explain

the changing relationship between the oil price and the U.S. economy documented here.

4.2 Robustness

We now analyze sensitivity to our choice of modelling framework. We comment briefly

here, while details can be found in Section H in the Online Appendix. In particular,

we analyze robustness in three dimensions. First we analyse our modelling choices with

respect to time variation and choice of priors. In particular, we follow Bianchi et al.

(2017) and illustrate how different time-varying components influence our main results.

We show in section H.1 that time-varying coefficients and time-variation in simultaneous

relationships are crucial for determining structural changes in the economy, while stochas-

tic volatility is essential to differentiate between temporary and permanent shifts. This

supports our model choices. Regarding choice of prior specification, various sensitivity

analyses displayed in Section H.2 underscores the importance of balanced priors for time-

varying parameters and demonstrate the robustness of our main results across alternative

model specifications. Second, we analyze robustness to the use of recursive restrictions

by re-estimating our model using monthly data, thereby restricting the delayed response

to only be a month instead of a quarter. We confirm that various monthly series such as

industrial production and business equipment show evidence of time variation following

an oil-specific shock (see Section H.3). Third we show in Section H.4 that results are ro-

bust with respect to replacing the global activity (GECON) variable with an estimate of

industrial production (see Baumeister and Hamilton, 2019; Hamilton, 2019). We further

show in Section H.5 that results are robust to replacing U.S. refineries’ acquisition cost

with the WTI oil price.
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5 Conclusion

It is widely acknowledged that the remarkable growth of U.S. shale oil has significantly

bolstered oil investments since the year 2010. In this paper, we demonstrate that the

shale oil boom has not only impacted oil investment, but has also changed the way oil

specific shocks are transmitted to non-oil investment, income, employment and many

manufacturing intensive industries across the U.S. To capture these effects, we use a

time-varying parameter factor-augmented vector autoregressive (VAR) model with state-

level, industry and aggregate macroeconomic data. Our framework allows us to study

the effects of oil-specific shocks on a large number of U.S. macroeconomic variables and

analyze the time variation in these effects. To the best of our knowledge this is the first

paper that jointly models the interaction between the oil market and the U.S. economy

in a large data environment, allowing also for time-varying changes during the fracking

revolution.

In contrast to previous studies, we find substantial changes in the way oil prices are

transmitted to the U.S. economy. In particular, we find that both oil and the non-

oil nonresidential business investments, as well as production and employment in oil-

producing and manufacturing-intensive states to pick up following an adverse oil-specific

shock. What’s more, there are positive spillovers to real personal income. Through

extensive robustness we also show that while there are other structural changes in the

economy, unrelated to oil, that have been affecting the U.S. economy the last decades,

these are not able to explain the changing relationship between the oil price and the

U.S. economy documented here. Furthermore, we show that the evidence of time varying

changes is unique to the U.S. Going forward, economic policy needs to take into account

that the transmission of an oil-specific shock has changed with the shale oil boom, and

that there are heterogeneous effects across the U.S.

28



References

Aastveit, K. A. (2014). Oil Price Shocks in a Data-Rich Environment. Energy Eco-

nomics 45, 268–279.

Aastveit, K. A., H. C. Bjørnland, and T. S. Gundersen (2022). The price responsiveness

of shale producers: Evidence from micro data. Cama working papers 2022-70, CAMA.

Aastveit, K. A., H. C. Bjørnland, and L. A. Thorsrud (2015). What Drives Oil Prices?

Emerging Versus Developed Economies. Journal of Applied Econometrics 30 (7), 1013–

1028.

Allcott, H. and D. Keniston (2018). Dutch Disease or Agglomeration? The Local Eco-

nomic Effects of Natural Resource Booms in Modern America. Review of Economic

Studies 85 (2), 596–731.

Anderson, S. T., R. Kellogg, and S. W. Salant (2018). Hotelling under pressure. Journal

of Political Economy 126 (3), 984–1026.

Arezki, R., V. A. Ramey, and L. Sheng (2017). News Shocks in Open Economies: Evidence

from Giant Oil Discoveries. The Quarterly Journal of Economics 132 (1), 103–155.

Bai, J. and S. Ng (2002a). Determining the number of factors in approximate factor

models. Econometrica 70 (1), 191–221.

Bai, J. and S. Ng (2002b). Determining the Number of Factors in Approximate Factor

Models. Econometrica 70 (1), 191–221.

Baumeister, C. and J. D. Hamilton (2019). Structural Interpretation of Vector Autore-

gressions with Incomplete Identification: Revisiting the Role of Oil Supply and Demand

Shocks. American Economic Review 109 (5), 1873–1910.

Baumeister, C. and L. Kilian (2016). Lower Oil Prices and the U.S. Economy: Is This

Time Different? Brookings Papers on Economic Activity , 287–357.

Baumeister, C., D. Korobilis, and T. K. Lee (2020). Energy markets and global economic

conditions. Review of Economics and Statistics , 1–45.

Baumeister, C., P. Liu, and H. Mumtaz (2013). Changes in the effects of monetary policy

on disaggregate price dynamics. Journal of Economic Dynamics and Control 37 (3),

543–560.

29



Baumeister, C. and G. Peersman (2013a). The Role of Time-Varying Price Elasticities

in Accounting for Volatility Changes in the Crude Oil Market. Journal of Applied

Econometrics 28 (7), 1087–1109.

Baumeister, C. and G. Peersman (2013b). Time-Varying Effects of Oil Supply Shocks on

the US Economy. American Economic Journal: Macroeconomics 5 (4), 1–28.

Belviso, F. and F. Milani (2006). Structural Factor-Augmented VARs (SFAVARs) and

the Effects of Monetary Policy. The B.E. Journal of Macroeconomics 6 (3).

Bernanke, B. S., J. Boivin, and P. Eliasz (2005). Measuring the Effects of Monetary

Policy: A Factor-Augmented Vector Autoregressive (FAVAR) Approach. The Quarterly

Journal of Economics 120 (1), 387–422.

Bianchi, D., M. Guidolin, and F. Ravazzolo (2017). Macroeconomic factors strike back:

A bayesian change-point model of time-varying risk exposures and premia in the us

cross-section. Journal of Business & Economic Statistics 35 (1), 110–129.

Bjørnland, H. C. (2000). The dynamic effects of aggregate demand, supply and oil price

shocks—a comparative study. The Manchester School 68 (5), 578–607.

Bjørnland, H. C. (2022). The effect of rising energy prices amid geopolitical developments

and supply disruptions. ECB Sintra Forum proceedings .

Bjørnland, H. C., V. H. Larsen, and J. Maih (2018). Oil and Macroeconomic (In)stability.

American Economic Journal: Macroeconomics 10 (4), 128–51.

Bjørnland, H. C., F. M. Nordvik, and M. Rohrer (2021). Supply Flexibility in the Shale

Patch: Evidence from North Dakota. Journal of Applied Econometrics 36, 273–292.

Bjørnland, H. C. and L. A. Thorsrud (2016). Boom or Gloom? Examining the Dutch

Disease in Two-speed Economies. Economic Journal 126 (598), 2219–2256.

Bjørnland, H. C., L. A. Thorsrud, and R. Torvik (2019). Dutch Disease Dynamics Re-

considered. European Economic Review 119, 411–433.

Boivin, J. and M. P. Giannoni (2007). Global Forces and Monetary Policy Effectiveness.

International Dimensions of Monetary Policy , 429–478.

Boivin, J., M. P. Giannoni, and I. Mihov (2009, 03). Sticky Prices and Monetary Policy:

Evidence from Disaggregated US Data. American Economic Review 99 (1), 350–384.

Bornstein, G., P. Krusell, and S. Rebelo (2022). A World Equilibrium Model of the Oil

Market (forthcoming). Review of Economic Studies .

30



Bresnahan, T. F. and V. A. Ramey (1993). Segment Shifts and Capacity Utilization in

the US Automobile Industry. The American Economic Review 83 (2), 213–218.

Cashin, P., K. Mohaddes, M. Raissi, and M. Raissi (2014). The Differential Effects of Oil

Demand and Supply Shocks on the Global Economy. Energy Economics 44, 113–134.

Clark, T. E. and S. J. Terry (2010). Time Variation in the Inflation Passthrough of

Energy Prices. Journal of Money, Credit and Banking 42 (7), 1419–1433.

Cogley, T. and T. J. Sargent (2001). Evolving Post-World War II U.S. Inflation Dynamics.

NBER Macroeconomics Annual 16, 331–373.

Corden, W. M. (1984). Booming Sector and Dutch Disease Economics: Survey and

Consolidation. Oxford Economic Papers 36 (3), 359–380.

Datta, D. D., B. K. Johannsen, H. Kwon, and R. J. Vigfusson (2021). Oil, equities, and

the zero lower bound. American Economic Journal: Macroeconomics 13 (2), 214–53.

Davis, S. J. and J. Haltiwanger (2001). Sectoral Job Creation and Destruction Responses

to Oil Price Changes. Journal of Monetary Economics 48 (3), 465–512.

De Michelis, A., T. Ferreira, and M. Iacoviello (2020). Oil Prices and Consumption across

Countries and US States. International Journal of Central Banking 16 (2), 3–43.

Del Negro, M. and G. E. Primiceri (2015). Time Varying Structural Vector Autoregres-

sions and Monetary Policy: A Corrigendum. The Review of Economic Studies 82 (4),

1342–1345.

Ellis, C., H. Mumtaz, and P. Zabczyk (2014). What lies beneath? a time-varying FAVAR

model for the UK transmission mechanism. The Economic Journal 124 (576), 668–699.

Fetzer, T. R. (2014). Fracking Growth. CEP Discussion Paper .

Feyrer, J., E. T. Mansur, and B. Sacerdote (2017). Geographic Dispersion of Economic

Shocks: Evidence from the Fracking Revolution. American Economic Review 107 (4),

1313–1334.

Foroni, C., P. Guerin, and M. Marcellino (2017). Explaining the Time-Varying Effects of

Oil Market Shocks on U.S. Stock Returns. Economics Letters 155, 84–88.

Geweke, J. (1992). Evaluating the Accuracy of Sampling-Based Approaches to the Cal-

culation of Posterior Moments. Bayesian Statistics 4, 169–193.

31



Gilje, E., R. Ready, and N. Roussanov (2016). Fracking, Drilling, and Asset Pricing:

Estimating the Economic Benefits of the Shale Revolution. NBER working paper no.

22914, National Bureau of Economic Research.

Guerrero-Escobar, S., G. Hernandez-del Valle, and M. Hernandez-Vega (2019). Do het-

erogeneous countries respond differently to oil price shocks? Journal of Commodity

Markets 16, 100084.

Hamilton, J. D. (1983). Oil and the Macroeconomy since World War II. Journal of

Political Economy 91 (2), 228–248.

Hamilton, J. D. (2008). Oil and the Macroeconomy. The New Palgrave Dictionary of

Economics, Second Edition, 2008 .

Hamilton, J. D. (2009). Causes and Consequences of the Oil Shock of 2007-08. Brookings

Papers on Economic Activity 40 (1), 215–283.

Hamilton, J. D. (2019). Measuring global economic activity. Journal of Applied Econo-

metrics .

Hamilton, J. D. and A. M. Herrera (2004). Comment: Oil Shocks and Aggregate Macroe-

conomic Behavior: The Role of Monetary Policy. Journal of Money, Credit and Bank-

ing , 265–286.

Herrera, A. M. (2018). Oil Price Shocks, Inventories, and Macroeconomic Dynamics.

Macroeconomic Dynamics 22 (3), 620–639.

Herrera, A. M. and M. B. Karaki (2015). The effects of oil price shocks on job reallocation.

Journal of Economic Dynamics and control 61, 95–113.

Herrera, A. M., M. B. Karaki, and S. K. Rangaraju (2017). Where do jobs go when oil

prices drop? Energy Economics 64, 469–482.

Herrera, A. M., L. G. Lagalo, and T. Wada (2015). Asymmetries in the response of

economic activity to oil price increases and decreases? Journal of International Money

and Finance 50, 108–133.
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—Online Appendix—
Not for publication

A Data Description

To investigate the effects of oil specific shocks on the U.S. economy, we employ a compre-

hensive panel consisting of both domestic and international series. A detailed breakdown

of these series can be found in Table 2.

We do several transformations of the data. Non-U.S. crude oil production is deter-

mined by subtracting the U.S. crude oil production (47) from the global crude oil produc-

tion (3). We construct non-oil investment series by subtracting mining exploration non-

residential fixed investment (13) from total nonresidential fixed investment (12). Further,

we construct non mining employment series by subtracting mining nonfarm employment

(15) from total nonfarm employment (16). To distinguish between conventional and tight

U.S. oil production, we estimate conventional oil production by subtracting series (48),

which represents tight oil production, from the total U.S. crude oil production denoted by

series (47). The tight oil production series is obtained from the EIA data for U.S. tight oil

production estimates by play, available from 2000. 22 We calculate the total U.S. tight oil

production taking the sum of production in Eagle Ford (TX), Spraberry (TX Permian),

Bakken (ND & MT), Wolfcamp (TX & NM Permian), Bonespring (TX & NM Permian),

Niobrara-Codell (CO & WY), Mississippian (OK), Austin Chalk (LA & TX), Woodford

(OK) and the ”Rest of U.S. tight oil”. Since the play production data is available only

from 2000 and the production of most of the playes in the early 2000s are around zero or

constant, we carry these levels back in time so that the transformed data equals 0 (mean-

ing no change). Finally, we also remove mining and logging employment from the total

employment in 16 U.S. states. These are Alaska, California, Colorado, Kansas, Louisiana,

Montana, Mississippi, New Mexico, North Dakota, Ohio, Oklahoma, Pennsylvania, Texas,

Utah, West Virginia, and Wyoming. The following series are deflated by the U.S. CPI:

the oil price (2), personal income (5), S&P equity index (8), total residential fixed invest-

ments (9), total nonresidential fixed investment (12), mining exploration nonresidential

fixed investment (13), as well as other dissagregate investment series (116)-(123). We also

construct the real interest rate series, by deflating federal funds effective rate (10). We

extend shadow federal funds rate (126) with federal funds effective rate back in time, as

the former series is available only from 1990.

For properly estimation of TVP FAVAR model is it crucial to ensure stationarity,

22That is estimated monthly production derived from state administrative data.
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comparability, and interpretability of the data. As described in the main paper Section

2.2, to ensure stationarity we transform the data into growth rates. To do so we take the

log difference that allows us for a multiplicative interpretation of the changes. The data

is transformed to quarter-on-quarter growth. Exceptions include the Global Economic

Conditions indicator (GECON), which is stationary by construction, and interest rates

series which are in differences. Since all of the data are seasonally adjusted, QoQ changes

provides a clearer picture of trends and is useful for understanding immediate responses to

changes in the economy. The local mean is removed from the transformed data, and the

data used to extract factors are standardized. Removing the local mean and standardizing

the data, ensure that all series are on a comparable scale, that is essential in FAVAR.

Impulse response functions are also more interpretable, as it ensures comparability across

variables.

Global Variables

Nr Series Start

year

Source

1 Indicator of Global Economic Conditions 1974 Baumeister et al. (2020)

2 United States, National, Commodities & Energy Prices, Refiner Acquisition,

Crude Oil, Domestic, Average Price, USD

1974 Macrobond

3 World, EIA, Oil & Gas, Total Oil Supply, Crude Oil & Petroleum Products,

Petroleum & Other Liquids, Production, Crude Oil Including Lease Conden-

sate, Barrels per Day

1974 Macrobond

Macro aggregates

Nr Series Start

year

Source

4 United States, Consumer Price Index, All Urban Consumers, U.S. City Av-

erage, All Items, SA, Index

1974 Macrobond

5 United States, Income Approach, Personal Income, Total, SA, AR, USD 1974 Macrobond

6 United States, Policy Rates, Effective Rates, Federal Funds Effective Rate 1974 Macrobond

7 United States, Industrial Production, Total, Constant Prices, SA, Index 1974 Macrobond

8 United States, Equity Indices, S&P, 500, Index, Price Return, Close, USD 1974 Macrobond

9 United States, Expenditure Approach, Gross Private Domestic Investment,

Fixed Investment, Residential, Total, SA, AR, USD

1974 Macrobond

10 United States, FX Indices, Federal Reserve, Nominal Advanced Foreign

Economies Index

1974 Macrobond

11 United States, Expenditure Approach, Personal Consumption Expenditures,

Total, Constant Prices, SA, Index

1974 Macrobond

12 United States, Expenditure Approach, Gross Private Domestic Investment,

Fixed Investment, Nonresidential, Total, SA, AR, USD

1974 Macrobond

13 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Mining Exploration, Shafts & Wells, SA, AR, USD

1974 Macrobond

14 United States, Industrial Production, Total, Constant Prices, SA, Index 1974 Macrobond

15 United States, Employment, Payroll, Mining & Logging, Nonfarm, Mining,

Payroll, SA

1974 Macrobond

16 United States, Employment, Payroll, Nonfarm, Payroll, Total, SA 1974 Macrobond

17 United States, Foreign Trade, Crude Oil & Petroleum Products, Import,

Crude Oil

1974 Macrobond
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18 United States, Foreign Trade, Crude Oil & Petroleum Products, Export, Total

Petroleum

1974 Macrobond

Disaggregate Industrial Production

Nr Series Start

year

Source

19 United States, Industrial Production, Industry Group, Manufacturing, Total

(SIC), Constant Prices, SA, Index

1974 Macrobond

20 United States, Industrial Production, Industry Group, Manufacturing, Wood

Products, Constant Prices, SA, Index

1974 Macrobond

21 United States, Industrial Production, Industry Group, Manufacturing, Non-

metallic Mineral Products, Constant Prices, SA, Index

1974 Macrobond

22 United States, Industrial Production, Industry Group, Manufacturing, Pri-

mary Metal, Constant Prices, SA, Index

1974 Macrobond

23 United States, Industrial Production, Industry Group, Manufacturing, Fab-

ricated Metal Products, Constant Prices, SA, Index

1974 Macrobond

24 United States, Industrial Production, Industry Group, Manufacturing, Ma-

chinery, Constant Prices, SA, Index

1974 Macrobond

25 United States, Industrial Production, Industry Group, Manufacturing, Com-

puter & Electronic Products, Constant Prices, SA, Index

1974 Macrobond

26 United States, Industrial Production, Industry Group, Manufacturing, Elec-

trical Equipment, Appliances & Components, Constant Prices, SA, Index

1974 Macrobond

27 United States, Industrial Production, Industry Group, Manufacturing, Motor

Vehicles & Parts, Constant Prices, SA, Index

1974 Macrobond

28 United States, Industrial Production, Industry Group, Manufacturing,

Aerospace & Miscellaneous Transportation Equipment, Constant Prices, SA,

Index

1974 Macrobond

29 United States, Industrial Production, Industry Group, Manufacturing, Fur-

niture & Related Products, Constant Prices, SA, Index

1974 Macrobond

30 United States, Industrial Production, Industry Group, Manufacturing, Mis-

cellaneous, Constant Prices, SA, Index

1974 Macrobond

31 United States, Industrial Production, Industry Group, Manufacturing, Food,

Beverage & Tobacco, Constant Prices, SA, Index

1974 Macrobond

32 United States, Industrial Production, Industry Group, Manufacturing, Tex-

tiles & Products, Constant Prices, SA, Index

1974 Macrobond

33 United States, Industrial Production, Industry Group, Manufacturing, Ap-

parel & Leather Goods, Constant Prices, SA, Index

1974 Macrobond

34 United States, Industrial Production, Industry Group, Manufacturing, Paper,

Constant Prices, SA, Index

1974 Macrobond

35 United States, Industrial Production, Industry Group, Manufacturing, Print-

ing & Related Support Activities, Constant Prices, SA, Index

1974 Macrobond

36 United States, Industrial Production, Industry Group, Manufacturing,

Petroleum & Coal Products, Constant Prices, SA, Index

1974 Macrobond

37 United States, Industrial Production, Industry Group, Manufacturing, Chem-

icals, Constant Prices, SA, Index

1974 Macrobond

38 United States, Industrial Production, Industry Group, Manufacturing, Plas-

tics & Rubber Products, Constant Prices, SA, Index

1974 Macrobond

39 United States, Industrial Production, Industry Group, Mining, Constant

Prices, SA, Index

1974 Macrobond

40 United States, Industrial Production, Industry Group, Electric & Gas Utili-

ties, Constant Prices, SA, Index

1974 Macrobond

41 United States, Industrial Production, Market Group Summary, Products &

Non-Industrial Supplies, Final, Consumer Goods, Total, Constant Prices, SA,

Index

1974 Macrobond
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42 United States, Industrial Production, Market Group Summary, Products &

Non-Industrial Supplies, Final, Equipment, Business, Total, Constant Prices,

SA, Index

1974 Macrobond

43 United States, Industrial Production, Market Group Summary, Products &

Non-Industrial Supplies, Final, Equipment, Defense & Space Equipment,

Constant Prices, SA, Index

1974 Macrobond

44 United States, Industrial Production, Market Group Summary, Products

& Non-Industrial Supplies, Nonindustrial Supplies, Construction, Constant

Prices, SA, Index

1974 Macrobond

45 United States, Industrial Production, Market Group Summary, Materials,

Total, Constant Prices, SA, Index

1974 Macrobond

46 United States, Industrial Production, Market Group Summary, Products &

Non-Industrial Supplies, Nonindustrial Supplies, Other Business, Total, Con-

stant Prices, SA, Index

1974 Macrobond

U.S. Oil Production Variables

Nr Series Start

year

Source

47 United States, EIA, Oil & Gas, Total Oil Supply, Crude Oil & Petroleum

Products, Petroleum & Other Liquids, Production, Crude Oil Including Lease

Condensate, Barrels per Day

1974 Macrobond

48 Tight oil production estimates by play, Million Barrels per Day 2000 EIA

Nonfarm Employment - States

Nr Series Start

year

Source

49 United States, Employment, By State, Total Nonfarm, Alabama, SA 1990 Macrobond

50 United States, Employment, By State, Total Nonfarm, Alaska, SA 1990 Macrobond

51 United States, Employment, By State, Total Nonfarm, Arizona, SA 1990 Macrobond

52 United States, Employment, By State, Total Nonfarm, Arkansas, SA 1990 Macrobond

53 United States, Employment, By State, Total Nonfarm, California, SA 1990 Macrobond

54 United States, Employment, By State, Total Nonfarm, Colorado, SA 1990 Macrobond

55 United States, Employment, By State, Total Nonfarm, Connecticut, SA 1990 Macrobond

56 United States, Employment, By State, Total Nonfarm, Delaware, SA 1990 Macrobond

57 United States, Employment, By State, Total Nonfarm, District of Columbia,

SA

1990 Macrobond

58 United States, Employment, By State, Total Nonfarm, Florida, SA 1990 Macrobond

59 United States, Employment, By State, Total Nonfarm, Georgia, SA 1990 Macrobond

60 United States, Employment, By State, Total Nonfarm, Hawaii, SA 1990 Macrobond

61 United States, Employment, By State, Total Nonfarm, Idaho, SA 1990 Macrobond

62 United States, Employment, By State, Total Nonfarm, Illinois, SA 1990 Macrobond

63 United States, Employment, By State, Total Nonfarm, Indiana, SA 1990 Macrobond

64 United States, Employment, By State, Total Nonfarm, Iowa, SA 1990 Macrobond

65 United States, Employment, By State, Total Nonfarm, Kansas, SA 1990 Macrobond

66 United States, Employment, By State, Total Nonfarm, Kentucky, SA 1990 Macrobond

67 United States, Employment, By State, Total Nonfarm, Louisiana, SA 1990 Macrobond

68 United States, Employment, By State, Total Nonfarm, Maine, SA 1990 Macrobond

69 United States, Employment, By State, Total Nonfarm, Maryland, SA 1990 Macrobond

70 United States, Employment, By State, Total Nonfarm, Massachusetts, SA 1990 Macrobond

71 United States, Employment, By State, Total Nonfarm, Michigan, SA 1990 Macrobond

72 United States, Employment, By State, Total Nonfarm, Minnesota, SA 1990 Macrobond

73 United States, Employment, By State, Total Nonfarm, Mississippi, SA 1990 Macrobond

74 United States, Employment, By State, Total Nonfarm, Missouri, SA 1990 Macrobond
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75 United States, Employment, By State, Total Nonfarm, Montana, SA 1990 Macrobond

76 United States, Employment, By State, Total Nonfarm, Nebraska, SA 1990 Macrobond

77 United States, Employment, By State, Total Nonfarm, Nevada, SA 1990 Macrobond

78 United States, Employment, By State, Total Nonfarm, New Hampshire, SA 1990 Macrobond

79 United States, Employment, By State, Total Nonfarm, New Jersey, SA 1990 Macrobond

80 United States, Employment, By State, Total Nonfarm, New Mexico, SA 1990 Macrobond

81 United States, Employment, By State, Total Nonfarm, New York, SA 1990 Macrobond

82 United States, Employment, By State, Total Nonfarm, North Carolina, SA 1990 Macrobond

83 United States, Employment, By State, Total Nonfarm, North Dakota, SA 1990 Macrobond

84 United States, Employment, By State, Total Nonfarm, Ohio, SA 1990 Macrobond

85 United States, Employment, By State, Total Nonfarm, Oklahoma, SA 1990 Macrobond

86 United States, Employment, By State, Total Nonfarm, Oregon, SA 1990 Macrobond

87 United States, Employment, By State, Total Nonfarm, Pennsylvania, SA 1990 Macrobond

88 United States, Employment, By State, Total Nonfarm, Rhode Island, SA 1990 Macrobond

89 United States, Employment, By State, Total Nonfarm, South Carolina, SA 1990 Macrobond

90 United States, Employment, By State, Total Nonfarm, South Dakota, SA 1990 Macrobond

91 United States, Employment, By State, Total Nonfarm, Tennessee, SA 1990 Macrobond

92 United States, Employment, By State, Total Nonfarm, Texas, SA 1990 Macrobond

93 United States, Employment, By State, Total Nonfarm, Utah, SA 1990 Macrobond

94 United States, Employment, By State, Total Nonfarm, Vermont, SA 1990 Macrobond

95 United States, Employment, By State, Total Nonfarm, Virginia, SA 1990 Macrobond

96 United States, Employment, By State, Total Nonfarm, Washington, SA 1990 Macrobond

97 United States, Employment, By State, Total Nonfarm, West Virginia, SA 1990 Macrobond

98 United States, Employment, By State, Total Nonfarm, Wisconsin, SA 1990 Macrobond

99 United States, Employment, By State, Total Nonfarm, Wyoming, SA 1990 Macrobond

100 United States, Alaska, BLS, CES State & Metro Area, All Employees, Mining

& Logging, Total, SA

1990 Macrobond

101 United States, California, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

102 United States, Colorado, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

103 United States, Kansas, BLS, CES State & Metro Area, All Employees, Mining

& Logging, Total, SA

1990 Macrobond

104 United States, Louisiana, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

105 United States, Mississippi, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

106 United States, Montana, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

107 United States, New Mexico, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

108 United States, North Dakota, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

109 United States, Ohio, BLS, CES State & Metro Area, All Employees, Mining

& Logging, Total, SA

1990 Macrobond

110 United States, Oklahoma, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

111 United States, Pennsylvania, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

112 United States, Texas, BLS, CES State & Metro Area, All Employees, Mining

& Logging, Total, SA

1990 Macrobond

113 United States, Utah, BLS, CES State & Metro Area, All Employees, Mining

& Logging, Total, SA

1990 Macrobond

114 United States, West Virginia, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond

115 United States, Wyoming, BLS, CES State & Metro Area, All Employees,

Mining & Logging, Total, SA

1990 Macrobond
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Additional Variables

Nr Series Start

year

Source

Series used in Section F.1

116 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Manufacturing, SA, AR, USD

1974 Macrobond

117 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Commercial & Health Care, SA, AR, USD

1974 Macrobond

118 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Power & Communication, SA, AR, USD

1974 Macrobond

119 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Mining Exploration, Shafts & Wells, SA, AR, USD

1974 Macrobond

120 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Structures, Other Structures, SA, AR, USD

1974 Macrobond

121 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Equipment, Industrial Equipment, Total, SA, AR, USD

1974 Macrobond

122 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Equipment, Transportation Equipment, Total, SA, AR, USD

1974 Macrobond

123 United States, Saving & Investment, Private Fixed Investment, Non-

Residential, Equipment, Other Equipment, Total, SA, AR, USD

1974 Macrobond

Series used to test alternative hypothesis (see Section 4.1 )

124 World, World Bank, Maize, Average Price, End of Period, USD 1974 Macrobond

125 United States, Producer Price Index, Commodity, Fuels & Related Products

& Power, Coal

1974 Macrobond

126 United States, Policy Rates, Target Rates, Shadow Federal Funds Rate (Wu-

Xia)

1990 Macrobond

127 United States, Federal Reserve Bank of Philadelphia, Survey of Professional

Forecasters, Median, GDP Inflation Rate, Short-Term, 1 Year, Estimate, AR

1974 Macrobond

Series used for robustness (see Section 4.2)

128 World, Crude Oil, WTI, Global Spot, Close, USD 1974 Macrobond

129 World Industrial Production Index 1974 Baumeister and Hamilton

(2019)

Series used for VAR (see Section 1)

130 United Kingdom, Industrial Production, Total, Constant Prices, SA, Index 1974 Macrobond

Table 2. Data description
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(a) Present Value of Discoveries and Produc-

tion+Development for Unconventional Crude Oil,

(% of U.S. GDP)

(b) Present Value of OPEX and Free Cash Flow for pro-

duction of Unconventional Crude Oil, Millions USD

Figure 10. Present value of discovery of oil
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(a) Annual Crude Oil Production in States Exceeding 100,000 MBBL annually on average from 2010 to 2018

(b) Annual crude oil production in the medium sized oil-producing states with averages exceeding 10,000 MBBL

(10 million barrels) from 2010 to 2018, compared to two major producers (from plot a): Oklahoma and New

Mexico

(c) Average crude oil production (MBBL) across states during 2010-2018.

Figure 11. Crude oil production by state. Note 1 MBBL is equal to 1000 barrels
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Series Factor 1 Factor 2

Manufacturing 0.98 0.04

IP index 0.95 0.21

Business supplies 0.91 -0.09

Construction supplies 0.90 -0.08

Materiels 0.89 0.30

Fabricated metal products 0.86 0.09

Electronical equipment appliances 0.83 0.01

Furniture 0.81 -0.16

Consumer goods 0.80 -0.17

Plastic and rubber products 0.79 -0.17

Employment total 0.78 0.10

Nonmetallic mineral products 0.78 -0.09

Business equipment 0.76 0.46

Chemical 0.74 0.11

Textile 0.71 -0.32

Miscellaneous 0.69 -0.16

Residential investment 0.68 -0.16

Paper 0.67 -0.19

Wood products 0.67 -0.31

Machinery 0.66 0.27

Motor vehicles 0.64 -0.13

Primery metal 0.63 -0.06

Printing related 0.62 -0.22

Computer electronic products 0.61 0.04

Apparel and leather goods 0.56 -0.17

Nonresidential non-oil investment 0.56 0.35

Consumption 0.49 -0.09

Personal income 0.41 0.32

FED 0.40 0.02

Table 3. Data series with correlation above 0.4 with first factor. The first column shows correlation

between current time series and the first factor, while the second column shows correlation between

current time series and the second factor.

Series Factor 1 Factor 2

Mining 0,25 0,80

Aerospace 0,16 0,69

Employment mining 0,09 0,59

Investment Oil 0,07 0,54

Business equipment 0,76 0,46

Conventional oil -0,01 0,42

Petroleum export -0,03 0,42

Tight oil -0,06 0,40

Table 4. Data series with correlation above 0.4 with second factor. The first column shows correlation

between current time series and the first factor, while the second column shows correlation between

current time series and the second factor.
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B Estimation of a FAVAR model - Two step estima-

tor approach

In Section 2 of the main paper we described the benchmark model. Here we provide a

more detailed overview of how the model is estimated. We start by repeating the main

system equations. Recall the two main two equations in our model are the factor Equation

(10) and the VAR Equation (11):

Xt = ΛFt + et, (10)

Ft = ct + b1tFt−1 + ...+ bptFt−p + A−1
t Σtεt. (11)

where the common factors Ft contain both the unobservables latent factors,ft and the

observables factors yt: Ft =

(
yt

ft

)
.

The time-varying parameters and covariances of the model follow random walk pro-

cesses:

Bt = Bt−1 + ηBt (12)

αt = αt−1 + ηαt (13)

logσt = logσt−1 + ησt (14)

where Bt is the vector of all R.H.S. coefficients in (11), αt is the vector of non-zero and

no-none elements of the matrix At, and σt is the vector containing the diagonal elements

of Σt .

The innovations in the model are assumed to be normally distributed with the following

assumptions on the variance covariance matrix:

V ar





et

εt

ηBt

ηαt

ησt




=



R 0 0 0 0

0 Im 0 0 0

0 0 Q 0 0

0 0 0 S 0

0 0 0 0 W


(15)

We also define V as

V =


Im 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

 (16)
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The system is then estimated in two steps. In the first step we estimate the unob-

servable factors ft, while in the second step we estimate model parameters, conditional

on the factors. Below we describe each step in greater detail.

B.1 Step1: Latent factor estimation

We start by extracting k principal components from Xt and obtain estimates of the latent

factors, ft. In doing so, we do not impose a constraint whereby the observable factors

yt are the common component. So if the variables in yt are common components, they

should be captured by the principal components. To remove yt from the space covered

by the principal components, we follow the approach advocated by Boivin and Giannoni

(2007), and impose the constraint that observable variables are two of the factors in the

first-step estimation. We denote the initial estimate of ft by f 0
t , and iterate through the

following steps:

1. RegressXt on f 0
t and the observed factors yt and obtain λ̂0

y

2. Compute X̂0
t = Xt − λ̂0

yyt

3. Estimate f 1
t as the k principal components of X̂0

t

4. Repeat the procedure multiple times

This procedure guarantees that the estimated latent factors will recover dimensions

of the common dynamics not already captured by the observable variables, yt. Given the

factors, Ft, we can estimate parameters in (10) and (11) independently of each other.

B.2 Step 2: The Gibbs sampling approach - Estimation of model

parameters

Once the factors have been extracted we simulate the distribution of the parameters of

interest, given the data and the priors specified in D. Gibbs sampling is carried out in four

steps. In the first block we draw the parameters from the factor equation, while in the

remaining three blocks we follow Primiceri (2005) and draw parameters from the VAR

part of model.

Block 1: Draw factor loading states Λ|XT , F T , R and hyperparameters R|Λ, XT , F T

Since the covariance matrix of the error terms in (10) is diagonal, we can estimate all the

parameters equation-by-equation. The parameters are sampled using standard arguments

for linear regression models (see Koop (2003)).
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λi = (V ar(λi))
−1((V ar(λi))

−1λi +R−1
i,i F

′
Xi)

V ar(λi) =
(
(V ar(λi))

−1 +R−1
i,i X

′

iXi

)−1

for i = 1, ..., n.

Once Λ has been drawn, we can compute the residuals sum of squares from Equation

10, SSEΛ
i and draw the conditional posterior for R from inverse Gamma distribution:

Ri,i| · · · ∼ IG

(
ν1

2
,
δ

(i)
1

2

)
for i = 1, . . . , n. (17)

where ν1 = ν0 + T and δ
(i)
1 = δ0 + SSEΛ

i

Block 2: Drawing coefficient states BT |yT , AT ,ΣT , V and hyperparameters Q|BT

As shown in Primiceri (2005), conditional on AT , ΣT and V , the observation Equation 11

is linear and has Gaussian innovations with known variance.

Stacking in a vector Bt all R.H.S. coefficients from 11, and defining

Gt =


gt,1 0 . . . 0

0 gt,2 . . . 0
...

. . . . . .
...

0 . . . 0 gt,m

 (18)

where gt,i = [1, F ′t−1, . . . , F
′
t−p], for i = 1, . . .m

Equation 11 can be written as

Ft = GtBt + et ∼ N (0,Ψ) (19)

where Ψ is a block diagonal matrix given by:

Ψ =


Ω1 0 . . . 0

0 Ω2 . . . 0
...

. . . . . .
...

0 . . . 0 Ωm


Given the state space form 19 and 12, we can use Carter and Kohn’s Gibbs sampling

approach, see Section B.3, to sample B′s from:

BT |F T , AT ,ΣT , V ∼ N (BT |T , P
B
T |T )

Bt|Bt+1, F
t, AT ,ΣT , V ∼ N (Bt|t+1, P

B
t|t+1), for t = T − 1, T − 2, . . . , 1

46



Once BT has been drawn, the innovations in Equation 12 are observables. We can

then compute the residuals sum of squares, SSEB and Q can be easy drawn from inverse

Wishart posterior distribution:

Q| · · · ∼ IW (ΓQ, V ar(Q))

where ΓQ = SSEB + ΓQ

Block 3: Drawing covariance states AT |yT , BT ,ΣT , V and hyperparameters S|AT

We use BT to compute F̂t = Ft −G′tBt

Equation 19 can then be written as:

AtF̂t = Σtεt (20)

where, taking BT as given, F̂t is observable. Since At is a lower triangular matrix with

ones on the main diagonal, the above equation can be rewritten as:

F̂t = Φtαt + Σtεt (21)

where αt is defined Equation 13 and Φt is the following m×m(m− 1)/2 matrix:

Φt =


0 . . . 0

−F̂1,t . . . 0
...

. . .
...

0 . . . −F̂[1,...,m−1],t


where, abusing notation, F̂[1,...,i],t denotes the row vector F̂1t, F̂2t, . . . , F̂it.

As it is noted in Primiceri (2005), the model given by 21 and 13 has a Gaussian but

nonlinear state space representation. However, due to assumption of block diagonality

of S, this problem can be solved by applying Kalman filter and the backward recursion

equation by equation. We draw each block of αt, where i-th block corresponds to the i-th

equation in 21. As in block 3, we can use Carter and Kohn’s Gibbs sampling approach,

see Section B.3, to sample αi,t recursively:

αiT |F T , BT ,ΣT , V ∼ N (αi,T |T , P
αi

T |T )

αit|αi,t+1, F
t, BT ,ΣT , V ∼ N (αi,t|t+1, P

αi

t|t+1), for t = T − 1, T − 2, . . . , 1

Once AT has been drawn, the innovations in Equation 13 are observables. We can

then compute the residuals sum of squares, SSEA and Si can be easy drawn from inverse

Wishart posterior distribution:
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Si| · · · ∼ IW (ΓSi , V ar(Si))

where ΓSi = SSEαi + ΓSi , for i = 2, . . . ,m

Block 4: Drawing covariance states ΣT |yT , BT , AT , V and hyperparameters Q|ΣT

Define F ∗t = AtF̂t, such that we can rewrite 20 as following:

F ∗ = Σtεt (22)

Taking BT and AT as given, F ∗t is observable. Together with the transition Equation

14, the observations in 22 constitutes a nonlinear state space system. This nonlinearity

can be converted into linear system, by squaring and taking logarithms of every element

of 22, yielding:

F ∗∗t = 2ht + ωt (23)

ht = ht − 1 + νt (24)

where F ∗∗it = log[(F ∗it2) + c]; c represents the offset constant (assigned a value of

0.0001) to prevent taking the log of zero; ωit = log(ε2
it); and hit = logσit. While the

system in 23 and 24 is now linear, it adopts a non-Gaussian state space form due to the

innovations in the observation equation being distributed as log χ2(1). To convert the

system into a Gaussian form, we employ a mixture of normals approximation for the log

χ2(1) distribution. As suggested by Kim et al. (1998), we opt for a mixture of seven

normal densities with component probabilities qj, means mj − 1.2704, and variance v2
j ,

where j = 1, . . . , 7. The constants qj,mj, v
2
j are determined to align with several moments

of the log χ2(1) distribution. It’s worth noting that the variance-covariance matrix of the

ω’s is diagonal since the variance-covariance matrix of the ε’s is the identity matrix. Thus,

we can represent each sit in the selection matrix sT = [s1, . . . , ST ]′ as:

Pr(sit = j|F ∗∗it , hit) ∝ qjfN(F ∗∗it |2hit +mj − 1.2704, v2
j ), j = 1, . . . , 7, i = 1, . . . ,m

This is then used to select which member of the mixture of the normal approximation

should be applied to each element of ω, subsequently adjusting the mean of F ∗∗it at every

point in time. Conditional on BT , AT , V, and sT , the system in 23 and 24 can be approx-

imated as having a linear and Gaussian state space form. Consistent with earlier steps in

the sampler, this method enables the recursive derivation of ht for t = 1, . . . , T through

the Carter and Kohn algorithm.

48



hT |F T , AT , V, sT ∼ N (hT |T , P
h
T |T )

ht|ht+1, F
t, AT , V, sT ∼ N (ht|t+1, P

h
t|t+1), for t = T − 1, T − 2, . . . , 1

Similarly, conditional on hT , we can compute the residuals sum of squares, SSEh,

from Equation 14 and draw the posterior of W from the Inverse-Wishart distribution:

W | · · · ∼ IW (ΓW , V ar(W ))

where ΓW = SSEh + ΓW , for i = 2, . . . ,m

B.3 The Carter and Kohn algorithm

Consider a measurement equation:

yt = Htβt + εt ∼ N (0, Rt) (25)

and a transition equation

βt = Fβt−1 + ut ∼ N (0, Q) (26)

The errors from the measurement equation and from the transition equation are as-

sumed to be uncorrelated across time and with each other.

Given that the state space model given in 25 and 26 is linear and Gaussian, the

distribution of βt given ỹT and that of βt given βt+1 and ỹt for t = T − 1, . . . , 1 are also

Gaussian:

βT |ỹT ∼ N (βT |T , PT |T ), for t = T (27)

βt|ỹt, βt+1 ∼ N (βt|t,βt+1 , Pt|t,βt+1), for t = T − 1, T − 2, . . . , 1 (28)

where

βT |T = E(βT |ỹT )

PT |T = Cov(βT |ỹT )

βt|t,βt+1 = E(βt|ỹt, βt|t+1)

Pt|t,βt+1 = Cov(βt|ỹt, βt|t+1)

Given β0|0 and P0|0, the Gaussian Kalman filter delivers:
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βt|t−1 = Fβt−1|t−1 (29)

Pt|t−1 = FPt−1|t−1F
′ +Q (30)

Kt = Pt|t−1H
′
t(HtPt|t−1H

′
t +Rt)

−1 (31)

βt|t = βt|t−1 +Kt(yt −Htβt|t−1) (32)

Pt|t = Pt|t−1 +KtHtPt|t−1 (33)

The last elements of the recursion, that are βT |T and PT |T , which are the mean and

the variance of the normal distribution (see Equation 27) can be used to make a draw for

βT . The draw βT and the output from the kalman filter are now used for the first step of

the backward recursion, which provides βT |T−1 and PT |T−1, used to draw βT−1 according

to 28, where βt|t,βt+1 and Pt|t,βt+1 are generated from the following updating equations:

βt|t,βt+1 = βt|t + Pt|tF
′P−1
t+1|t(βt+1 − Fβt|t) (34)

Pt|t,βt+1 = Pt|t + Pt|tF
′P−1
t+1|tFPt|t (35)

The backward recursion continues until time zero.

C Number of lags

As we have described in Section 2.2, the VAR part of our benchmark model incorporates

four lags (p = 4). Although a lag length shorter than one year is often deemed too restric-

tive to capture the dynamics in the oil–macro relationship (see e.g. Hamilton and Herrera

(2004)), we explore two alternative models specification with two (p = 2) and six (p = 6)

number of lags. We conduct a quasi-real-time forecasting experiment, similar to that of

Bjørnland and Thorsrud (2016). For the period 1991:Q1 –2018:Q4, we estimate the model

with varying lags. We then assess out-of-sample forecasting from 1992:Q2–2018:Q4 using

root mean forecasting errors (RMSE). As our goal is to compare nested structural models,

we maintain consistent model estimations across different forecast datasets. For a detailed

discussion on this forecasting experiment for model selection, we refer to Bjørnland and

Thorsrud (2016). The results of the forecasting experiment are presented in Table 5.
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The table reveals that the benchmark model surpasses the alternative models, boasting

a lower RMSE for approximately 2/3 of the variables across all forecasting horizons for the

alternative with six lags, and outperforming the model with two lags for almost all of the

variables. Moreover, augmenting the number of lags increases computational complexity

and, as highlighted in Hamilton and Herrera (2004), employing an excessively restrictive

lag structure in modeling the oil market can yield misleading outcomes. Accordingly, we

report the results for p = 4.

Horizon Model

IP index Business

equipment

Mining Non-oil in-

vestment

All variables

1 Benchmark

(p = 4)

0,38 0,60 0,95 0,70 32

Alternative

(p = 2)

0,49 0,67 0,98 0,70 2

Alternative

(p = 6)

0,41 0,62 0,97 0,70 13

3 Benchmark

(p = 4)

0,57 0,72 1,01 0,72 30

Alternative

(p = 2)

0,67 0,79 1,02 0,74 1

Alternative

(p = 6)

0,61 0,74 1,02 0,70 16

Table 5. Quasi-out-of-sample forecasting results. The benchmark is the main model used in the article,

where the number of lags is set to four. The alternative models are the models estimated with two and

six lags respectively. For each model, variable, and horizon the reported number are the RMSE values.

The last column reports how many times current model is ranked as the best model according to RMSE

values when the performance is evaluated across all variables.

D Prior specification

Following the methodology of Primiceri (2005) and Bianchi et al. (2017), we aim to di-

minish the impact of prior beliefs on posterior estimates. For this purpose, we utilize the

initial 16 years of our dataset (1974:Q1-1990:Q4) as a training sample to derive an infor-

mative prior. The mean and variance of B and α, see Equations 12 and 13 respectively,

are set to the OLS point estimates and four times the variance of these estimates from the

initial subsample. For log σ, see Equation 14, the mean is determined by the logarithm

of the OLS point estimates of the standard errors from the corresponding time-invariant

VAR, while its variance-covariance matrix is assumed to be an identity matrix. In a

similar vein, the mean and variance of the factor loadings from (10), Λ, see Equation 10,

are set to the OLS point estimates and four times the variance of these estimates derived

from the training sample.
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B ∼ N (B̂OLS, 4V ar(B̂OLS))

α ∼ N (α̂OLS, 4V ar(α̂OLS))

logσ ∼ N (logσ̂OLS, In)

Λ ∼ N (Λ̂OLS, 4V ar(Λ̂OLS))

We use prior from Inverted Gamma distribution for variance-covariance matrix R .

R ∼ IG(
ν1

2
,
δ1

2
)

where ν1 = ν0 + T and δ1 = δ0 + (X − Λ̂postF ). The priors for the remaining hyper-

parameters are all from the Inverse-Wishart distribution:

Q ∼ IW (ΓQ, V ar(Q))

W ∼ IW (ΓW , V ar(W ))

Si ∼ IW (ΓSi , V ar(Si))

where

ΓQ = k2
Q(1 + dimB)V ar(B̂OLS)

ΓW = k2
W (1 + dimW )Ip

ΓSi = k2
S(1 + dimSi

)V ar(Âi,OLS)

while V ar(Q) = 1 + dimB, V ar(W ) = 1 + dimW , and V ar(Si) = 1 + dimSi
.

Following Korobilis (2013) the degrees of freedom are set to dimB = m × m × p,

dimW = m and dimSi
= 1, ..,m−1, and are larger than the dimension of the corresponding

matrices, required to achieve a proper Inverse-Wishart distribution.

The benchmark results in this paper are obtained using the following values: kQ = 0.1,

kS = 0.1, kW = 0.1 and ν0 = 10 , δ0 = 10.

In Section H.2 in the Online Appendix we justify this choice and demonstrate the

robustness of our conclusions to alternative prior specifications. We focus on alternative

specifications of kQ, kS, and kW , since the choice for other priors seems to be of minor

importance (see e.g. Primiceri (2005)).
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E Convergence of the Markov Chain Monte Carlo

algorithm

We perform 90,000 iterations of the Gibbs sampler. The first 40,000 draws are discarded

and only every tenth of the remaining iterations is used for inference. The produced

results are not sensitive to the number of discarded draws or the number of passes used

for inferences. Following Primiceri (2005) and Baumeister and Peersman (2013b), we

ascertain that our Markov chain has converged based on the inefficiency factors (IFs) for

the posterior estimates of the parameters, that is the inverse of the relative numerical

efficiency (RNE) measure proposed by Geweke (1992). Here the estimates are performed

by employing a four percent tapered window used in computation of the RNE. As was

noticed by Primiceri (2005), values of the IFs below or around 20 are regarded as satis-

factory. As can be seen from the summary of the distribution of the inefficiency factors

for different set of parameters, reported in Table 6, the sample seems to have converged.

That is, all mean IF values are below 5 and 90 percent of the IFs are below at most 21,

indicating modest autocorrelation for all elements.

Median Mean Min Max 10-th Percentile 90-th Percentile

Bt 1,92 1,80 0,56 8,39 1,21 2,75

Λ 0,96 0,94 0,49 1,93 0,68 1,30

Σt 5,49 4,04 1,05 21,09 2,27 10,34

At 9,92 3,46 0,97 92,83 1,37 21,14

V 3,99 3,83 1,30 40,57 2,64 5,48

R 0,98 0,93 0,53 2,00 0,71 1,37

Table 6. Summery of the distribution of the IFs for the benchmark model. Table includes different set

of parameters, where V is the set of hyperparameters {Q,S,W}
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F Additional results

F.1 Impulse responses for investment series

(a) Manufacturing (b) Commercial and Health Care (c) Power and Communication

(d) Industrial Equipment (e) Transportation Equipment (f) Other Equipment

Figure 12. The effect of an oil-specific shock: Impulse responses for investment in structures (upper

row): Manufacturing, commercial and health care, and power and communication; and in equipment

(lower row): Industrial, transportation and other equipment. The initial shock is normalized to increase

oil prices by 10%. All responses are reported in levels (of the standardized data). We report impulse

responses across the sample two quarters after the shock. The dashed lines represent 68% posterior

probability bands. The solid line is the median estimate.
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F.2 Results with states employment, 1990-2018

(a) Non-oil Investment (median)

(b) Non-oil Investment (diff two quar-

ters) (c) Investment(diff four quarters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) IP Index (median) (h) IP Index (diff two quarters) (i) IP Index (diff four quarters)

(j) Business Equipment (median)

(k) Business Equipment (diff two

quarters)

(l) Business Equipment (diff four

quarters)

Figure 13. The effect of an oil-specific shock in a model with state employment: Impulse responses for

non-residential investment, income, industrial production and business equipment. The initial shock is

normalized to increase oil prices by 10%. All responses are reported in levels (of the standardized data).

Left column: posterior median of impulse responses at six different periods in time. Middle and right

columns: the difference between the responses in period 2000:Q3-2018:Q4 and the responses in 2002:Q1

after two and four quarters respectively. The solid line is the difference between the median estimates.

The shaded area represents 68% posterior probability bands for the difference in impulse responses.
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G Alternative hypothesis

G.1 Impulse responses, level and difference: Flow supply shock

(a) Oil Price (b) Income (c) Non-oil Investment

(d) Oil Price (e) Income (f) Non-oil Investment

(g) Total Employment (h) IP Index (i) Manufacturing

(j) Total Employment (k) IP Index (l) Manufacturing

Figure 14. The effect of a flow supply shock: Impulse responses for the real price of oil and selected

indicators of the U.S. economy. The initial shock is normalized to decrease non-U.S. oil production by 1%.

First and third rows: Impulse responses across the sample two quarters after the shock. The solid line

is the median estimate. The dashed lines represent 68% posterior probability bands. Second and fourth

rows: The difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1 after

two quarters respectively. The solid line is the difference between the median estimates. The shaded area

represents 68% posterior probability bands for the difference in impulse responses.
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G.2 Impulse responses, level and difference: Flow demand shock

(a) Oil Price (b) Income (c) Non-oil Investment

(d) Oil Price (e) Income (f) Non-oil Investment

(g) Total Employment (h) IP Index (i) Manufacturing

(j) Total Employment (k) IP Index (l) Manufacturing

Figure 15. The effect of flow demand shock: Impulse responses for the real price of oil and selected

indicators of the U.S. economy. The initial shock is normalized to increase global activity by 1%. First

and third rows: Impulse responses across the sample two quarters after the shock. The solid line is the

median estimate. The dashed lines represent 68% posterior probability bands. Second and fourth rows:

The difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1 after two

quarters respectively. The solid line is the difference between the median estimates. The shaded area

represents 68% posterior probability bands for the difference in impulse responses.
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G.3 Impulse responses to an oil-specific shock for GECON and

real oil prices

(a) GECON (median) (b) GECON (after two quarter) (c) GECON (after four quarter)

(d) Oil Price (median) (e) Oil Price (after two quarter) (f) Oil Price (after four quarter)

Figure 16. The effect of an oil specific shock: Impulse responses for GECON and oil price. The initial

shock is normalized to increase oil prices by 10%. All responses are reported in levels (of the standardized

data). Left column: posterior median of impulse responses at seven different periods in time. Middle

and right columns: the difference between the responses in period 1991:Q1-2018:Q4 and the responses

in 1995:Q1 after two and four quarters respectively. The solid line is the difference between the median

estimates. The shaded area represents 68% posterior probability bands for the difference in impulse

responses.
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G.4 Including shadow rate, expectations and real interest rate

We analyse if the period of low interest rates has changed the relationship between oil

prices and macroeconomic variables. In particular, as pointed out by Datta et al. (2021),

as the central bank can not respond to inflationary pressures by changing interest rates at

the zero lower bound (ZLB), changes in inflation can affect the real rate of interest differ-

ently. Thus, the impact of an oil specific shock on variables such as output, consumption

and equity prices, may also be different at the ZLB. To account for this, we add a shadow

rate defined by Wu and Xia (2016) to our dataset, in addition to inflation expectations

and the real interest rate, and re-estimate the model. We show that the responses for the

interest rates and inflation expectations are as expected and show no evidence of time-

varying changes (c.f., Figure 17), and that results are robust to the inclusion of these

variables (c.f., Figure 18).

(a) Shadow Rate (after two quarter)

(b) Professionals Forecasters Expec-

tation - GDP Inflation (after two quar-

ter)

(c) Real Interest Rate (after two quar-

ter)

Figure 17. The effect of an oil specific shock in a model with monetary variables: Impulse responses

for shadow interest rate, inflation expectations and real interest rate. The initial shock is normalized to

increase oil prices by 10%. All responses are reported in levels (of the standardized data). We report

impulse responses across the sample two quarters after the shock. The dashed lines represent 68%

posterior probability bands. The solid line is the median estimate.
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(a) Non-oil Investment (median)

(b) Non-oil Investment (diff two quar-

ters)

(c) Non-oil Investment (diff four quar-

ters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) IP Index (median) (h) IP Index (diff two quarters) (i) IP Index (diff four quarters)

(j) Business Equipment (median)

(k) Business Equipment (diff two

quarters)

(l) Business Equipment(diff four quar-

ters)

Figure 18. The effect of an oil specific shock in a model with monetary variables: Impulse responses

for non-residential investment, income, industrial production and business equipment. The initial shock

is normalized to increase oil prices by 10%. All responses are reported in levels (of the normalized data).

Left column: posterior median of impulse responses at seven different periods in time. Middle and right

columns: the difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1

after two and four quarters respectively. The solid line is the difference between the median estimates.

The shaded area represents 68% posterior probability bands for the difference in impulse responses.
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G.5 Other commodity prices

We examine if our results could be due to the fact that there are other commodity prices,

say corn and coal prices, correlated with oil prices, that also show evidence of time varying

behavior. Hence, we may have found significant effects on employment in states with high

coal and corn production. In order to address this issue, we include prices of coal and

corn in our dataset and reestimate our model. As can be seen from Figure 19, the effects

of an oil price shock on either coal or corn prices are stable over time. Furthermore, the

results for the other variables remain robust, see Figure 20.

(a) Corn Prices (after two quarter) (b) Coal Prices (after two quarter)

Figure 19. The effect of an oil specific shock in a model with other commodity prices: Impulse responses

for corn and coal prices. The initial shock is normalized to increase oil prices by 10%. All responses are

reported in levels (of the standardized data). We report impulse responses across the sample two quarters

after the shock. The dashed lines represent 68% posterior probability bands. The solid line is the median

estimate.
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(a) Non-oil Investment (median)

(b) Non-oil Investment (diff two quar-

ters)

(c) Non-oil Investment (diff four quar-

ters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) IP Index (median) (h) IP Index (diff two quarters) (i) IP Index (diff four quarters)

(j) Business Equipment (median)

(k) Business Equipment (diff two

quarters)

(l) Business Equipment (diff four

quarters)

Figure 20. The effect of an oil specific shock in a model with several commodity prices: Impulse responses

for non-residential investment, income, industrial production and business equipment. The initial shock

is normalized to increase oil prices by 10%. All responses are reported in levels (of the normalized data).

Left column: posterior median of impulse responses at seven different periods in time. Middle and right

columns: the difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1

after 2 and 4 quarters respectively. The solid line is the difference between the median estimates. The

shaded area represents 68% posterior probability bands for the difference in impulse responses.
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H Robustness

H.1 Model Selection

Our findings, presented in Section 3, show a clear evidence of time-varying effects. How-

ever, pinpointing the primary source of this variation—whether from coefficients or the

variance-covariance matrix of innovations — is challenging. For instance, it could be

argued that our main findings are influenced more by heteroskedaxtic shocks than by

genuine structural changes in the economy.

To address these issues and illustrate how different time-varying components influ-

ence our main results, we have followed Bianchi et al. (2017) and examined three model

variations. In each model we allow only one time-varying component at a time.

1. TVB Model: Only the coefficients, Bt, are time-varying, with a constant variance-

covariance matrix. I.e. time variation is coming only from Equation 6.

2. TVA Model: Only elements of At vary, indicating time-dependent effects of innova-

tions on model variables. I.e. time variation is coming only from Equation 7.

3. SV Model: Only standard deviations are time-varying, with fixed coefficients Bt

and elements of At, i.e time variation is coming only from Equation 8

Figure 21 compares the benchmark model coefficients bbenchmarki with TVB coefficients

bTV Bi , taken from Equation 5 where the left hand side factor is the real oil price.23

Interestingly, when the variance-covariance matrix remains static, coefficients show

more fluctuation, especially around the 2007/2009 financial crisis. This suggests that the

crisis-induced volatility might overshadow genuine structural changes in the oil market,

when we do not account for heteroskedastity in standard deviations.

Comparing the impulse responses of the benchmark and TVB models (Figure 22 first

and second rows), we observe more noise and fluctuation in the latter, although the core

findings remain consistent.24

23To save the space we only show coefficients from the oil equation in the VAR part of the model. However,

the behavior of coefficient in other equations are very similar, and would not change the discussion

following below.
24As discussed in Primiceri (2005) and Bianchi et al. (2017), the random walk assumption for the evolution

of the coefficients has some undesirable implications. For this reason we have also re-estimated the model

assuming that parameters follow an AR(1) process instead of random walk, where we followed Primiceri

(2005) and set autoregrassive coefficients to 0.95. Although, this has contributed to a more disciplined

behavior of the Bt, still the model captures many temporary parameter shifts. The results from this

model are available upon request.
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The SV model, focusing solely on time-varying standard deviations, shows minimal

time variation in responses (see Figure 22 third row). When we assessed the forecasting

performance of these models, the benchmark consistently outperformed the SV model.

Based on these results we conclude that our main findings are not driven by heteroskedas-

tic shocks.

The bottom row in Figure 22 shows impulse responses from the TVA model, which

allows only for time-varying simultaneous relationships. As it is noted in Primiceri (2005),

allowing the matrix At to vary over time is crucial for a time varying structural VAR. A

constant At would imply that an innovation to for instance oil price has a time invariant

effect on the estimated factors. This is clearly undesirable as simultaneous interactions

among variables are fundamental in our quarterly model. From the figure, similar to the

case of the TVB model, the absence of stochastic volatility yields noisier impulse responses.

Concurrently, we note indications of more positive responses throughout the estimated

sample period, advocating for the presence of time-varying simultaneous relationships.

Our analysis underscores the presence of time variation in our model. Structural

changes, rather than just temporary shifts, play a significant role in our findings. While

both time-varying coefficients and simultaneous relationships are crucial, it’s also essential

to consider changes in volatilities to differentiate between temporary and permanent shifts.

Ignoring these nuances can lead to a noisier model and less definitive results.
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Figure 21. Posterior mean of time-varying coefficients, Bt, from Equation 5. Solid line: Benchmark

model; dashed line: TVB model. To save space, the 21 coefficients, i.e., number of lags (p = 4) times

number of variables in the VAR part of the model (m = 5) plus the constant, are taken from the oil

equation (the equation where oil price is the left-hand side variable). Coefficients from other equations

can be obtained upon request. 65



(a) IP Index (Benchmark) (b) Business Equipment (Benchmark) (c) Mining (Benchmark)

(d) IP Index (TVB) (e) Business Equipment (TVB) (f) Mining (TVB)

(g) IP Index (SV) (h) Business Equipment (SV) (i) Mining (SV)

(j) IP Index (TVA) (k) Business Equipment (TVA) (l) Mining (TVA)

Figure 22. The effect of an oil-specific shock: Impulse responses from the benchmark model (a-c);

time-varying coefficients model (d-f); stochastic volatility model (g-i); time-varying ”innovation” model

(j-l); for selected indicators of the U.S. economy. The initial shock is normalized to increase oil prices by

10%. All responses are reported in levels (of the standardized data). We report impulse responses across

the sample two quarters after the shock. The dashed lines represent 68% posterior probability bands.

The solid line is the median estimate.
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H.2 Priors Selection

As highlighted by Primiceri (2005), the parameters kQ, kS, and kW do not directly pa-

rameterize time variation. Instead, they shape our prior beliefs regarding the extent of

time variation in parameters. Specifically, kQ informs our beliefs about time variation

in the coefficients of Equation 5. Meanwhile, kW and kS define our beliefs about time

variation in the equation’s stochastic volatility. It’s crucial to recognize the trade-off: a

high kQ combined with low kW and kS values will primarily capture model fit through

the time-varying coefficients, Bt. Conversely, elevating kS and kW while diminishing kQ

will nearly eliminate variation in Bt. As these extreme cases are explored in previous

section, where we evaluate models with constant coefficients and stochastic volatility, in

this section we focus on cases where kQ, kS, and kW are set to lower values, as commonly

seen in literature.25

To rigorously evaluate our model against alternative specifications, we adopt a quasi-

real-time forecasting experiment, similar to that in Section C. In particular, for the period

1991:Q1 –2018:Q4, we estimate the model with varying priors. We then assess out-of-

sample forecasting from 1992:Q2–2018:Q4 using root mean forecasting errors (RMSE). As

our goal is to compare nested structural models, we maintain consistent model estimations

across different forecast datasets. For a detailed discussion on this forecasting experiment

for model selection, we refer to Bjørnland and Thorsrud (2016).

Horizon Model

IP Index Business

equipment

Mining Non-oil in-

vestment

All variables

1 Benchmark 0,38 0,60 0,95 0,70 20

kQ 0,56 0,70 1,04 0,71 0

kS 0,39 0,60 0,96 0,70 1

kW 0,43 0,65 0,94 0,71 26

3 Benchmark 0,57 0,72 1,01 0,72 18

kQ 0,75 0,87 1,07 0,78 0

kS 0,59 0,73 1,01 0,72 1

kW 0,56 0,70 1,00 0,69 28

Table 7. Quasi-out-of-sample forecasting results. The benchmark is the main model used in the article.

kQ, kS , and kW denotes which of the parameters have been changed in current version of the model

(see text the main text for additional explanations.) For each model, variable, and horizon the reported

number are the RMSE values. The last column reports how many times current model is ranked as the

best model according to RMSE values when the performance is evaluated across all variables.

Table 7 presents the forecasting experiment results, and Figure 23 illustrates the im-

pulse responses across different models. From Figure 23, we see that models with reduced

25For instance, Korobilis (2013), Primiceri (2005), Cogley and Sargent (2001), and Stock and Watson (1996)

set the kQ prior to 0.01; Primiceri (2005) also sets kW to 0.01.
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time variation in coefficients (B′s) yield smoother impulse responses. Yet, we can discern

variations in how industrial and aerospace production react to oil price increases. As Ta-

ble 7 indicates, the benchmark model surpasses this specification for nearly all variables.

A model with a lower kS value outperforms the benchmark in certain cases. However, the

impulse responses between them are nearly indistinguishable, suggesting results are less

sensitive to this parameter choice. The table also shows enhanced forecasting performance

with a decreased value of kW . Yet, the impulse responses become more erratic, especially

noticeable during financial crises. These observations align with findings in Section H.1 for

models with constant volatilities and time-varying coefficients. Such models seem to in-

adequately capture the dynamics during crises, whereas time-varying coefficients adeptly

account for the heightened volatilities, leading to more accurate predictions based on

RMSE values. Given the significant shifts in the volatility of oil prices and other inter-

national business cycle shocks over the past decade, as documented by Baumeister and

Peersman (2013a) and Baumeister and Peersman (2013b), we posit that setting kW to 0.1

represents an economically sound choice.

In conclusion, our analysis emphasizes the need for a balanced approach in setting

priors for time-varying parameters. At the same time as we show that the time variation

identified in this paper persists across most of alternative model specifications.
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(a) IP Index (Benchmark) (b) Business Equipment (Benchmark) (c) Mining (Benchmark)

(d) IP Index (kQ = 0.01) (e) Business Equipment (kQ = 0.01) (f) Mining (kQ = 0.01)

(g) IP Index (kS = 0.01) (h) Business Equipment (kS = 0.01) (i) Mining (kS = 0.01)

(j) IP Index (kW = 0.01) (k) Business Equipment (kW = 0.01) (l) Mining (kW = 0.01)

Figure 23. The effect of an oil-specific shock: Impulse responses from the benchmark model and

alternative model specifications, where kQ, kS , and kW denotes which of the parameters have been changed

in current version of the model, for selected indicators of the U.S. economy. The initial shock is normalized

to increase oil prices by 10%. All responses are reported in levels (of the standardized data). We report

impulse responses across the sample two quarters after the shock. The dashed lines represent 68%

posterior probability bands. The solid line is the median estimate.
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H.3 Monthly TVP-FAVAR

We re-estimate the baseline model using monthly data. This required us to reduce our

dataset since variables like investment and personal income aren’t available at a monthly

frequency. We further limited our dataset to only encompass industrial production divided

by market groups, excluding NAICS industry groups. This results in a panel of 24 series.

To align with the baseline model, we retained the same sample period as the training

sample and incorporated 12 lags in the VAR segment. Further, we set the number of

factors extracted from the domestic datablock to two, consistent with the baseline model.

Similar to the quarterly model, we ensured stationarity by transforming data into growth

rates, taking log differences, and adjusting for local mean. The data used for factor

extraction was standardized. The estimation procedure follows that of the quarterly

model, as detailed in Section 2.4.

(a) IP Index (b) Business Equipment (c) Mining

Figure 24. The effect of an oil-specific shock using monthly data: Impulse responses for IP index,

business equipment, and mining production. The initial shock is normalized to increase oil prices by

10%. All responses are reported in levels (of the normalized data). We report impulse responses across

the sample two quarters after the shock. The dashed lines represent 68% posterior probability bands.

The solid line is the median estimate.
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H.4 Robustness to the choice of global activity variable

(a) Non-oil Investment (median)

(b) Non-oil Investment (diff two

quarters)

(c) Non-oil Investment (diff four

quarters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) IP Index (median) (h) IP Index (diff two quarters) (i) IP Index (diff four quarters)

(j) Business Equipment (median)

(k) Business Equipment (diff two

quarters)

(l) Business Equipment (diff four

quarters)

Figure 25. The effect of an oil-specific shock using an estimate of industrial production for the OECD

plus other major countries as global activity, see Baumeister and Hamilton (2019): Impulse responses

for non-residential investment, income, industrial production and business equipment. The initial shock

is normalized to increase oil prices by 10%. All responses are reported in levels (of the normalized data).

Left column: posterior median of impulse responses at seven different periods in time. Middle and right

columns: the difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1

after two and four quarters respectively. The solid line is the difference between the median estimates.

The shaded area represents 68% posterior probability bands for the difference in impulse responses.
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H.5 Robustness to the choice of oil price variable

(a) Non-oil Investment (median)

(b) Non-oil Investment (diff two quar-

ters)

(c) Non-oil Investment (diff four quar-

ters)

(d) Income (median) (e) Income (diff two quarters) (f) Income (diff four quarters)

(g) IP Index (median) (h) IP Index (diff two quarters) (i) IP Index (diff four quarters)

(j) Business Equipment (median)

(k) Business Equipment (diff two

quarters)

(l) Business Equipment(diff four quar-

ters)

Figure 26. The effect of an oil-specific shock using WTI as the oil price variable: Impulse responses for

non-residential investment, income, industrial production and business equipment. The initial shock is

normalized to increase oil prices by 10%. All responses are reported in levels (of the normalized data).

Left column: posterior median of impulse responses at seven different periods in time. Middle and right

columns: the difference between the responses in period 1991:Q1-2018:Q4 and the responses in 1995:Q1

after two and four quarters respectively. The solid line is the difference between the median estimates.

The shaded area represents 68% posterior probability bands for the difference in impulse responses.
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