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Article

Introduction

Is it possible to simulate and predict real survey responses 
before they happen? And what would that tell us? The pres-
ent article describes and tests a method to create artificial 
responses according to the semantic properties of the survey 
items based on the semantic theory of survey responses 
(STSR; Arnulf, Larsen, Martinsen, & Bong, 2014). According 
to STSR, the semantic relationships will shape the baseline 
of correlations among items. Such relationships are now 
accessible a priori through the use of digital semantic 
algorithms.

Theoretically, survey responses should be predictable to 
the extent that their semantic relationships are fixed. The 
present study seeks to develop such a method and apply it to 
a well-known leadership questionnaire, the Multifactor 
Leadership Questionnaire (MLQ; Avolio, Bass, & Jung, 
1995). Thereafter, we briefly show how it performs using a 
different measurement scale.

The contributions of this are threefold—primarily devel-
oping the rationale of STSR, secondarily testing a tool for 
establishing a baseline of response patterns from which more 
psychological inferences can be made, and also possibly 
offering an alternative approach to imputing missing data.

The STSR has argued and empirically documented that 
up to 86% of the variation in correlations among items in 
organizational behavior (OB) can be explained through their 
semantic properties (Arnulf & Larsen, 2015; Arnulf et al., 
2014). Such strong predictors of response patterns imply that 
it is possible to reverse the equations and use semantics to 
create realistic survey responses. This offers an empirical 
tool to explore why semantics can explain as much as 65% to 
86% in some surveys such as the MLQ, but as low as 5% in 
responses to the personality inventory. There is a need for 
more detailed exploration of the phenomena involved to bet-
ter understand how and why STSR applies.

Artificial responses calculated from the semantics of the 
items could also enhance the scientific value of surveys. 
Ever since Likert devised his measurement scales (Likert, 
1932), recurring criticism has raised doubts about the predic-
tive validity of the statistical models building on such scales 
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(Firmin, 2010; LaPiere, 1934), as they are vulnerable to 
inflated values through common method variance (Podsakoff, 
MacKenzie, & Podsakoff, 2012).

The prevalent use of covariance and correlation matri-
ces in factor analysis and structural equations (Abdi, 
2003; Jöreskog, 1993) is problematic if we cannot dis-
criminate semantic variance components more clearly 
from attitude strength. Establishing a semantic “baseline” 
of the factor structure in surveys would allow us to study 
how and why people chose to depart from what is seman-
tically given.

Finally, a technology for simulating survey responses may 
have its own value. Present-day techniques of replacing miss-
ing values are basically mere extrapolations of what is already 
in the matrix, and only work if the missing values make up 
minute fractions of data (Rubin, 1987). In the current study, 
we present a technique to calculate the likely responses when 
up to 95% of responses are missing. This kind of simulated 
data help improve the theoretical foundations of psychomet-
rics that hitherto has left semantics out of its standard inven-
tory of procedures (Borsboom, 2008, 2009).

Finally, data simulation based on item semantics could be 
a valuable accessory to otherwise complicated methods for 
testing methodological artifacts (Bagozzi, 2011; Ortiz de 
Guinea, Titah, & Léger, 2013).

We first present how semantics can be stepwise turned 
into artificial responses. These responses are then compared 
with a sample of real responses and artificial responses with 
no semantic information. The procedure is then applied to a 
second scale and dataset to test its applicability across instru-
ments. Finally, we discuss how the relevant findings may 
help develop STSR from an abstract theory to practical 
applications.

Theory

Semantics and Correlations

Rensis Likert assumed that his scales delivered measures of 
attitude strength (Likert, 1932). Statistic modeling of such 
data in classic psychometrics viewed survey responses as 
basically composed of a true score and an error component. 
The error component of the score would reflect random 
influences on the response, and these could be minimized by 
averaging scores of semantically related questions for each 
variable (Nunnally & Bernstein, 2010). The error variance is 
assumed to converge around 0, making average scale scores 
a better expression of the true attitude strength of the respon-
dents. The relationships among other surveyed variables 
should however not be determined by the semantics of the 
items, but instead only covary to the extent that they are 
empirically related. A frequent way of demonstrating this 
relative independence has been done by applying factor ana-
lytical techniques (Abdi, 2003; Hu & Bentler, 1999). In 
short, the prevalent psychometric practices have until now 

been treating the systematic variation among items as expres-
sion of attitude strength toward topics in the survey.

The STSR proposes a contrasting view. Here, the relation-
ships among items and among survey variables are first and 
foremost semantic (Arnulf et al., 2014), a view corroborated 
by independent researchers (Nimon, Shuck, & Zigarmi, 
2016). Every respondent may begin the survey by expressing 
attitude strength toward the surveyed topic in the form of a 
score on the Likert-type scale. However, in the succeeding 
responses, the scores on the coming items may be predomi-
nantly determined by the degree to which these items are 
semantically similar. This was earlier argued and documented 
by Feldman and Lynch (1988). A slightly different version of 
this hypothesis was also formulated by Schwarz (1999). 
However, both these precursors to STSR were speculating 
that calculation of responses may be exceptional to situations 
where people hold no real attitudes, or become unduly influ-
enced in their response patterns by recent responses to other 
items. The formulation of STSR was the first claim that 
semantic calculation may actually be the fundamental mecha-
nism explaining systematic variance among items.

Another antecedent to STSR is “unfolding theory” as 
described by Coombs (Coombs, 1964; Coombs & Kao, 1960) 
and later by Michell (1994). We will deal with unfolding the-
ory in some detail as it has direct consequences for creating 
algorithms to mimic the real responses. A practical example 
may be a job satisfaction item, such as “I like working here.” 
When respondents choose to answer this on a scale from 1 to 
5, it may be hard to explain what the number means. To quan-
tify an attitude, one could split the statement in discreet 
answering categories such as the extremely positive attitude: 
“I would prefer working here to any other job or even leisure 
activity.” A neutral attitude could be a statement such as “I do 
not care if I work here or not,” or the negative statement “I 
would take any other job to get away from this one.” The 
central point in unfolding theory is that any respondent’s pre-
ferred response would be the point at which item response 
scale “folds.” Folding implies that the response alternatives 
need to be sorted in their mutual distance from the preferred 
option. If someone picks the option 4 on a scale from 1 to 5, 
it would mean that the options 3 and 5 are about equally dis-
tant from 4, but that 2 and certainly 1 would be further away 
from the preferred statement. In this way, the scale is said to 
be “folding” around the preferred value 4, which determines 
the distance of all other responses from the folding point.

Michell (1994) showed mathematically and experimen-
tally that the quantitative properties of surveys stem from 
these semantic distinctions. Just as Coombs claimed, all 
respondents need to understand the common semantic prop-
erties—the meaning—of any survey item to attach numerical 
values to the questions in the survey. For two respondents to 
rate an item such as “I like to work here” with 1 or 5, they 
need to agree on the meaning of this response—the one 
respondent likes his job, the other does not, but both need to 
understand the meaning of the other response alternatives for 
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one’s own response to be quantitatively comparable. Michell 
showed how any survey scale needs to fold along a “domi-
nant path” —the mutual meaning of items and response 
options used in a scale. This “dominant path” will affect the 
responses to other items if they are semantically related.

Take the following simple example measuring job satis-
faction and turnover intention, two commonly measured 
variables in OB research: One item measuring job satisfac-
tion is the item “I like working here,” and one item measur-
ing turnover intention is “I will probably look for a new job 
in the next weeks.” A person who answers 5 to “I like work-
ing here” is by semantic implication less likely to look for a 
new job in the next week than someone who scores 1, and 
vice versa. Less obvious is the effect of what Michell called 
the “dominant path”: If someone has a slightly positive atti-
tude toward the job without giving it full score, this person 
will be slightly inclined, but maybe not determined, to turn 
down offers for a new job. The dominant path of such items 
will make the respondents rank the mutual answering alter-
natives in an “unfolding way.” Not only are the extreme 
points of the Likert-type scales semantically linked but peo-
ple also appear to rank the response option of all items in 
mutual order. A third item measuring organizational citizen-
ship behavior (OCB), for example, is “I frequently attend to 
problems that really are not part of my job.” The semantic 
specification of responses to this scale may be negative items 
such as “I only do as little as possible so I don’t get fired” or 
positive items such as “I feel capable and responsible for cor-
recting any problem that may arise.”

According to unfolding theory, people will respond such 
that their response pattern is semantically coherent, that is, 
consistent with an unfolding of the semantic properties of 
items. The dominant path will prevent most people from 
choosing answer alternatives that are not semantically 
coherent.

Any survey will need a semantically invariant structure to 
attain reliably different but consistent responses from differ-
ent people. Coombs and Kao showed experimentally that 
there is a necessary structure in all surveys emanating from 
how respondents commonly understand the survey (Coombs 
& Kao, 1960; Habing, Finch, & Roberts, 2005; Roysamb & 
Strype, 2002).

In STSR, correlations among survey items are primarily 
explained by the likelihood that they evoke similar mean-
ings. As we will show below, the semantic relationships 
among survey items contain information isomorphic to the 
correlations among the same items in a survey. This implies 
that individual responses are shaped—and thereby princi-
pally computable—because the semantics of items are given 
and possible to estimate a priori to administering the survey.

To the extent that this is possible, current-day analytical 
techniques risk treating attitude strength as error variance. 
This is contrary to what is commonly believed, as the tradi-
tion of “construct validation” in survey research rests on the 
assumption that attitude strength across samples 

of respondents is the source of measures informing the 
empirical research (Bagozzi, 2011; Lamiell, 2013; 
MacKenzie, Podsakoff, & Podsakoff, 2011; Michell, 2013; 
Slaney, 2017; Slaney & Racine, 2013a, 2013b).

Other researchers have reported that the survey structure 
itself may create distinct factors for items that were origi-
nally devised as “reversed” or negatively phrased items 
(Roysamb & Strype, 2002; van Schuur & Kiers, 1994). One 
reason for this is the uncertain relationship between the 
actual measurements obtained from the survey and the 
assumed quantifiable nature of the latent construct in ques-
tion. Kathleen Slaney’s (2017) recent review of construct 
validation procedures shows how “measurement” of atti-
tudes may come about by imposing numbers on an unknown 
structure. As shown by Andrew Maul (2017), acceptable 
psychometric properties of scales are obtainable even if key-
words in the items are replaced by nonsensical words. The 
psychometric properties were largely retained even if the 
item texts were replaced by totally meaningless sentences or 
even by entirely empty items carrying nothing but response 
alternatives. The survey structure seems to be a powerful 
source of methods effects, imposing structure on response 
statistics.

The purpose here is to reconstruct survey responses using 
semantic information and other a priori known information 
about the survey structure. Semantic information about the 
semantic content of items is precisely void of knowledge 
about attitude strength. If this type of information can be 
used to create artificial responses with meaningful character-
istics akin to the original ones, it will substantiate the claims 
of STSR. In particular, it will deliver empirical evidence that 
common psychometric practices may risk treating attitude 
strength as error variance, leaving mostly semantic relation-
ships in the statistics. This attempt is exploratory in nature, 
and we will therefore not derive hypotheses but instead seek 
to explore the research question from various angles. The 
following exploration is undertaken as two independent 
studies: Study 1 is an in-depth study of the MLQ, containing 
the main procedures to investigate and explore. Study 2 is a 
brief application of the same procedure to a different, shorter 
scale, and another sample of respondents.

Study 1

Sample

Real survey responses were used to train the algorithms and 
serve as validation criteria. These consisted of 153 randomly 
selected responses from an original sample of more than 
1,200 respondents in a Norwegian financial institution. The 
responses were collected anonymously through an online 
survey instrument. Participation was voluntary with informed 
consent, complying with the ethical regulations of the 
Norwegian Centre for Research Data (http://www.nsd.uib.
no/nsd/english/index.html).

http://www.nsd.uib.no/nsd/english/index.html
http://www.nsd.uib.no/nsd/english/index.html
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Estimating Item Semantics

A number of algorithms exist that allow computing the simi-
larity of the survey items. Here, we have chosen one termed 
“MI” (Mihalcea, Corley, & Strapparava, 2006; Mohler & 
Mihalcea, 2009). MI is chosen because it has been previ-
ously published, is well understood, and allows easy replica-
tion. The Arnulf et al. study in 2014 also showed that MI 
values are probably closer to everyday language than some 
LSA-generated values that may carry specialized domain 
knowledge.

The MI algorithm derives its knowledge about words 
from a lexical database called WordNet, containing informa-
tion about 147,278 unique words that were encoded by a 
team of linguists between 1990 and 2007 (Leacock, Miller, 
& Chodorow, 1998; Miller, 1995; Poli, Healy, & Kameas, 
2010). Building on knowledge about each single word in 
WordNet as its point of departure, MI computes a similarity 
measure for two candidate sentences: S1 and S2. It identifies 
part of speech (POS), beginning with tokenization, and POS 
tagging of all the words in the survey item with their respec-
tive word classes (noun, verb, adverb, adjective, and cardi-
nal, which play a very important role in text understanding). 
It then calculates word similarity by measuring each word in 
the sentence against all the words from the other sentence. 
This identifies the highest semantic similarity (maxSim) 
from six word-similarity metrics originally created to mea-
sure concept likeness (instead of word likeness). The metrics 
are adapted here to compute word similarity by computing 
the shortest distance of given words’ synsets in the WordNet 
hierarchy. The word–word similarity measure is directional. 
It begins with each word in S1 being computed against each 
word in S2, and then vice versa. The algorithm finally con-
siders sentence similarity by normalizing the highest seman-
tic similarity (maxSim) for each word in the sentences by 
applying “inverse document frequency” (IDF) to the British 
National Corpus to weight rare and common terms. The nor-
malized scores are then summed up for a sentence similarity 
score, SimMI, as follows:
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where maxSim(w, S2) is the score of the most similar word 
in S2 to w, and IDF (w) is the IDF of word w.

The final output of MI is a numeric value between 0 and 
1, where 0 indicates no semantic overlap, and numbers 
approaching 1 indicate identical meaning of the two sen-
tences. These numbers serve as the input to our simulating 
algorithm for constructing artificial responses. Note that the 
information in the MI values is entirely lexical and syntactic. 

It contains no knowledge about surveys, leadership, or 
respondent behavior. The MLQ has 45 items. This yields (45 
× (45 − 1)) / 2 or 990 unique item pairs, for which we obtain 
MI values.

One special problem concerns the direction of signs. In 
the MLQ, 264 of 990 pairs of items are negatively correlated. 
Theory suggests that two scales, Laissez-faire and Passive 
Management by Exception, are likely to relate negatively to 
effective leadership. The problem has been treated exten-
sively elsewhere (Arnulf et al., 2014), so we will only offer a 
brief explanation here. MI does not take negative values, and 
does not differentiate well between positive and negative 
statements about the same content. For two items describing 
how (a) a manager is unapproachable when called for and (b) 
that the same person uses appropriate methods of leadership, 
the surveyed responses correlate at –.42 in the present sam-
ple, while the MI value is .38. The chosen solution is to allow 
MI values to be negative for all pairs of items from Laissez-
faire and Passive Management by Exception (correctly iden-
tifying 255 of the 264 negative correlations, p < .001).

Semantics and Survey Correlations

STSR argues that there is an isomorphic relationship between 
the preadministration semantic properties (the IM values) 
and the postadministration survey correlations. This means 
that the two sets of numbers contain the same information, 
representing the same facts albeit in different ways: 
Correlations represent different degrees of systematic covari-
ation, whereas semantics represent different degrees of over-
lap in meanings.

Correlations express the likelihood that the variation in 
Item B depends on the variation in Item A. A high correlation 
between the two implies that if someone scores high on Item 
A, this person is more likely to score high on Item B also. A 
correlation approaching 0 means that we cannot know from 
the response to Item A how the respondent will score Item B. 
In other words, the uncertainty in predicting the value of B 
increases with decreasing correlations until 0, after which 
certainty increases again for predictions in the opposite 
direction.

The semantic values can be read in a similar way: If the 
MI score of Items A and B is high, they are likely to overlap 
in meaning. A person who agrees with Item A is likely to 
agree with Item B as well. However, as the MI values are 
reduced, we cannot any longer make precise guesses about 
how the respondent will perceive Item B.

In both cases, low values translate into increasing uncer-
tainty. In Likert-type scale data, the response values are 
restricted to integers in a fixed range, for example, between 
1 and 5. Low correlations and low MI values indicate that the 
response to Item B can be any of the five values in the scale. 
Higher correlations and MI values reduce uncertainty, and 
restrict the likely variation of responses to B. As these values 
increase, the expected uncertainty is reduced to a point where 
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the score on Item B is likely to be identical to the score on 
Item A.

If this is true, then both the MI scores and the real response 
correlations should be negatively related to two aspects of 
the surveyed data: The average distance between Item A and 
Item B, and the variance in this distance. A low correlation or 
a low MI value should indicate that the range of expected 
values of Item B increases. We explore this in Table 1, sup-
porting this proposition. MI values and empirically surveyed 
correlations are strongly, negatively, and about equally 
related to the standard deviations of score differences. In 
other words, correlations and MI values express the same 
information about uncertainty of scores between two survey 
items. The signs are opposite, because higher MI scores indi-
cate lower differences between scores of two items.

This provides a key to how MI values can allow us to 
estimate the value of a response to B if we know the response 
to A. MI scores can be translated into score distances because 
they are systematically related to the differences. By regress-
ing the MI values on the score differences, the resulting stan-
dardized beta can be used to estimate the distance from A to 
B, given that we know A. Table 2 shows this regression. It 
displays a hierarchical model that enters the preadministra-
tion MI values in the first step. By also entering the postad-
ministration in the second step, we supply additional support 
for the claim that these two sets of scores indeed contain the 
same information.

After entering the original surveyed correlations in Step 
2, the beta for the MI values is substantially reduced, indicat-
ing that the information contained in the MI values is indeed 
isomorphic to the information in the survey correlations. The 
same table also shows how the information in MI values is 

slightly inferior to that of the correlations. This is to be 
expected, as the correlations and the standard deviations 
stem from the same source, while the MI algorithm is only 
one, imperfect algorithm out of several available choices. It 
has been shown elsewhere that it will usually take the output 
of several present-day algorithms to approximate the seman-
tic parsing of natural human speakers (Arnulf et al., 2014), 
but improved algorithms may alleviate the problems in the 
future. Most importantly, we can use the beta of the first step 
to estimate a specific item response from knowledge about 
the MI value. In other words, we are training our respondent 
simulation algorithm using the regression equation above, 
capturing the beta as key to further computations.

Simulating Responses

Based on the consideration above, it is possible to hypothe-
size that a given respondent’s responses are not free to vary. 
Once the respondent has chosen a response to the initial 
items, the subsequent responses should be determined by the 
semantic relationships of the items (Arnulf et al., 2014; 
Nimon et al., 2016) and the structure of the survey, most 
notably the response categories (Maul, 2017; Slaney, 2017) 
and the unfolding patterns following from expected negative 
correlations (Michell, 1994; Roysamb & Strype, 2002; van 
Schuur & Kiers, 1994).

Ideally, it should be possible to predict any given response 
based on the knowledge of the semantic matrix and a mini-
mum of initial responses. In our simulations, we can see that 
any response in the MLQ is predictable by using other known 
responses and knowledge about the distances between items. 
The R2s of these predictions are in the range of .86 to .94. 

Table 1. Correlations Between Average Score Differences, Standard Deviations of Score Differences, Magnitude of Surveyed 
Correlations, and MI Scores.

Survey correlations magnitude
Average score difference, 

Item A − Item B SD of score differences

Average score difference Item A − Item B −.94**  
SD of score differences −.08* .10**  
MI scores .88** −.79** −.07*

Note. N for the surveyed sample was 153, N for the sample of differences and correlations was 990.
*Correlation is significant at the .05 level (two-tailed).
**Correlation is significant at the .01 level (two-tailed).

Table 2. Hierarchical Regression Where MI Values (Step 1), Survey Correlations (Step 2) Were Regressed on the Average Score 
Differences (N = 990).

Step 1 Step 2

MI values −.79** −.14**
Survey correlations — −1.07**
R2 .63 .89
F 1,683.58 3,981.42

**p < .01.
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As the semantic MI values correlate at –.79 and predict the 
distances significantly (R2 = .63), it should theoretically be 
possible to substitute the distances with the semantic values, 
and thus predict later responses with a minimum of initial 
responses.

The perfect formula is yet to be found, but we have cre-
ated a preliminary algorithm that can possibly mimic real 
responses to the MLQ. The present approach is explicitly 
aiming at reproducing existing responses as this gives us the 
best opportunity to compare simulated with real responses.

The rationale for the algorithm combines semantics and 
unfolding theory as follows:

1. Responses are restricted to the values 1 to 5 of the 
same Likert-type scale. The difference between any 
two items, A and B, within this Likert-type scale is 
here referred to as the “distance” between A and B; 
for example, if A is 5 and B is 4, the distance between 
them is 1 (5 − 4).

2. In the case of high MI values, Item B is likely to be 
very close to its preceding item, A. Lower MI values 
indicate higher and less determinate distances.

3. The most probable absolute distance between Item A 
and Item B is calculated as the MI value for A and B 
multiplied by the standardized beta in the regression 
equation of Table 2 (–0.79). To predict a given dis-
tance from this type of regression equation, the for-
mula should be as follows: Value (Item B) = Constant 
+ (MI for Item A and Item B) x – 0.79. However, the 
distances were computed as absolute measures; that 
is, the absolute distance from 3 to 5 = 2, but so is 5 to 
3. In practice, though, the algorithm may need to pre-
dict a high number from a low number or vice versa. 
The constant will therefore not “anchor” the distance 
at the right point in the scale.

4. We therefore need to tie the estimated point to the 
value of Item A. We have tested several approaches 
to this, and the formula that seems to work best for 
calculating any response B is to simply replace the 
constant with the value for Item A, thus Value(Item 
B) = Value(Item A) + (MI for Item A and Item B) x 
− 0.79.

5. This formula does impose the structure of semantic 
values on the subsequent numbers. It also seems 
counterintuitive because if MI increases (indicating 
higher similarity), the term will grow in absolute 
numbers. However, the beta is negative, and the 
resulting number will be smaller. The impact on the 
ensuing calculations now comes from the unfolding 
operations, depending on whether Response B is 
higher or lower than A. To comply with predictions 
from unfolding theory, the formula above keeps its 
positive form if the respondent’s first three responses 
indicate a positive evaluation (biasing the item dis-
tances in a positive direction) but should be negative 

if the unfolding pattern appears to be negative. This 
information is picked up by comparing the responses 
of Items 1, 2, and 3. While Items 1 and 2 are descrip-
tions of positive leadership, Item 3 contains a nega-
tive appreciation.

6. In the case that the Items A and B are assumed to be 
negatively related (this was discussed in the explana-
tion of MI values above), the same relationship 
between MI and distances hold. However, the esti-
mated value should logically be at the other end of 
the Likert-type scale (in a perfect negative correlation, 
a score of 5 on A indicates that the score for B is 1). So 
in the case of expected negative correlations, the 
direction of the algorithm formula is reversed within 
the 5-point Likert-type scale, such that

Value Item B  =  - Value Item A  

+ MI for Item A and Item

( ) ( )6

  B  x -( ) 0.79.

7. In this way, it is possible to start with Item 1, and use 
the MI values to calculate the relationship of Item 1 
to Items 2, 3, and so on until Item 45. This process is 
repeated for Item 2 to all Items 3 to 45 and so on, 
until all values have been calculated for all 990 
unique pairs of items.

8. To simulate missing responses, we can now delete 
the original responses and replace them with those 
computed in Step 7 above.

9. One final requirement is theoretically and practically 
important. As mentioned, the MI values and correla-
tions are not really distance measures, but a measure 
of uncertainty, which in cases of low MI values 
should be indeterminate. The formula used here 
instead applies the beta from the regression equation 
as a measure of distance. However, uncertain values 
are in turn restricted by having closer relationships to 
other items. The whole matrix of 990 unique pairs of 
items is comparable with a huge Sudoku puzzle 
where each item score is defined by its relationship to 
44 other items. We can use this to smooth out the 
simulated values for each item by averaging all the 
44 estimated values resulting from each of its 44 
relationships.

In this way, our algorithm is based on the complete pattern of 
semantic distances for every item with all other items, as 
well as a hypothesis on the direction of scale unfolding based 
on the initial three responses. It is admittedly explorative and 
based on an incomplete understanding of the issues involved, 
and our intention is to invite criticism and improvements 
from others. One questionable feature of this algorithm is the 
tendency for positive evaluations to escalate positively and 
vice versa, probably due to a deficiency of the formula in 
Step 4. In the course of all 990 iterations however, 
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these tendencies seem to balance each other out, and fix the 
averaged responses as dictated by the mutual pattern of 
semantic distances. We have also checked that this formula 
performs better than simply using averages of the known val-
ues instead of semantics, thus substantiating the use of 
semantics in the formula. A further contrasting procedure 
will be described below.

The MLQ has 45 items. Of these, 36 measure different 
types of leadership behaviors, and the nine last items mea-
sure how well the rated person’s work group does, com-
monly treated as “outcome” variables. The Arnulf et al. 
(2014) study found the “outcome” variables to be deter-
mined by the responses to the preceding items. We will 
therefore start by trying to predict the individual cases of 
these by deleting them from real response sets. By deleting 
progressive numbers of items, we will then explore how 
well the semantics will perform to predict the missing 
responses.

Therefore, our first simulated step will be concerned with 
predicting outcomes training the algorithm on the first 36 
items. In the next steps, we simply subtract remaining half of 
the survey until all real responses are deleted, offering the 
algorithm diminishing amounts of training information. In 
this way, we can evaluate the degree to which the computed 
values still bear resemblance to the original values.

Contrast validation procedure. Algorithms like this may cre-
ate artificial structures that are not due to the semantic MI 
values but simply artifacts created by the algorithm proce-
dures themselves. To control for this, we have created simi-
lar sets of responses with the same numbers of missing 
values, where the MI values in the algorithm are replaced by 
randomly generated values in the same range as the MI val-
ues (from −1 to +1). If similarities between artificial and 
real responses are created by biases in the algorithmic pro-
cedure and not by semantics, the output of randomly gener-
ated numbers should also be able to reproduce numbers 
resembling the original scores. The difference between the 
output of random and semantically created numbers 
expresses the value of (present-day) semantics in predicting 
real responses.

Simulation Criteria

There are no previously tested criteria for assessing the qual-
ity of simulated survey responses compared with real ones. 
Survey data are generally used either as summated scores to 
indicate the respondents’ attitude toward the survey topic 
(score level or attitude strength) or as input to statistical mod-
eling techniques such as structural equation modeling (SEM). 
In addition, survey data are often scrutinized by statistical 
methods to check their properties prior to such modeling 
(Nunnally & Bernstein, 2010). Therefore, we propose the fol-
lowing common parameters to evaluate the resemblance of 
the artificial responses to the real ones:

1. Scale reliability: The simulated scores should have 
acceptable reliability scores (Cronbach’s alpha), 
preferably similar to the real scores.

2. Accumulated scores: A simulated survey response 
should yield summated scale values similar to the 
ones of the surveyed population. Ideally, the average 
scores on simulated leadership scales should be non-
significantly different from the average summated 
scores of real survey scores. The average, summated 
simulated scores should also be significantly differ-
ent from the other scales (differential reliability).

3. Pattern similarity: The simulated survey scores 
should not only show similar magnitude, but the pat-
tern of simulated scores should also correlate signifi-
cantly with the real individual score profiles. In 
particular, there should be few or no negative correla-
tions between real and simulated score profiles in a 
sample of simulated protocols.

4. Sample correlation matrix: The simulated scores 
should yield a correlation matrix similar to the one 
obtained from real survey scores.

5. Factor structure: The factor structure of simulated 
responses should bear resemblance to the factor 
structure emerging from the real sample.

6. Unfolding structure: Seen from the perspective of 
unfolding theory, extreme score responses are easier 
to understand than midlevel responses. In an extreme 
score, a positive respondent will have a general ten-
dency to reject negative statements and endorse high 
positive scores, and a negative respondent will rank 
items in the opposite direction. Midlevel items across 
a complex scale would require more complex evalu-
ations of how to “fold” each single item so as to stay 
with the dominant unfolding path (Michell, 1994). 
This is a tougher task for both respondents and the 
simulating algorithm. We therefore want to check if 
our algorithm is more appropriate for high and low 
than for medium scores.

Results

Table 3 shows the alpha values for all MLQ scales. Values 
for the real responses are in the first column. Computations 
are made for increasing numbers of missing values to the 
right. It can be seen that the alphas for simulated responses 
are generally better than those for the real responses (the 
alphas for simulated responses are lower for the simulated 
values in only six of 40 cases). The alphas generated from 
random semantic responses are inadequate and keep deterio-
rating as items are replaced by simulated responses.

Table 4 shows the mean summated scores for each of the 
MLQ subscales in the sample. When the nine outcome mea-
sures are missing (replaced by simulated scores), their simu-
lated scale is nonsignificantly different from the original. 
When 21 item scores are missing (46% missing), there are 
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only two instances of significant scale differences. When 33 
or 39 items are missing, the number of significant differences 
increases, but the average differences from the real scores are 
very small: 0.08 Likert-type scale points even for the 35 
missing items, and 0.18 points in difference where 39 items 
(86% of the responses) are missing and replaced by simu-
lated scores. Most of the scales are also still significantly dif-
ferent from each other, such that no scale measuring 
transformational leadership overlaps with Laissez-Faire, 
Passive Management by Exception, or outcome variable 
scores. There is a tendency for some of the differences 
between the scales within the transformational leadership 
construct to overlap with increasing number of simulated 
items.

When all these scores are summed up in their purported 
higher level constructs—transformational, transactional, 
laissez-faire leadership and outcomes, this pattern of average 
scores is maintained. Scores computed with random 

semantics depart quicker and more dramatically from their 
real counterparts, see Table 5.

Every individual’s simulated responses were correlated 
with their real counterparts to compare the pattern of real 
versus simulated responses. Table 6 shows how these corre-
lations were distributed in the various simulated groups. As 
could be expected, there is a decline in the resemblance 
between the simulated scores and their real duals as the num-
ber of simulated scores increases. However, this decline hap-
pens much faster for the scores generated by random patterns, 
and when 43 items are replaced with simulated scores, there 
are still only eight cases (5%) that correlate negatively with 
the real respondents, see Figure 1.

We explored how the relationships among the subscales 
of the MLQ changed with increasing numbers of missing 
items. An interesting difference appeared between the values 
replaced by the semantically informed algorithm and the 
algorithm with random semantic values: With increasing 

Table 3. Cronbach’s Alpha for All MLQ Scales, Real and Simulated Responses.

Real

Outcome 
items 

missing

21 (46%) 
items 

missing

33 (73%) 
items 

missing

33 items 
random 

semantics

39 (86%) 
items 

missing

39 items 
random 

semantics

42 (95%) 
items 

missing

42 items 
random 

semantics
100% 

synthetic

Idealized influence attr .74 .77 .82 .88 −.10 .99 .13 1.00 −.15 .99
Idealized influence beh .72 .72 .72 .90 −.07 .92 −.04 .99 −.06 .99
Inspiring motivation .80 .80 .82 .91 .09 .99 −.12 1.00 −.05 .99
Intellectual stimulation .83 .82 .84 .85 .45 .91 −.20 .93 −.11 .76
Indvidualized consider. .78 .78 .82 .99 −.22 1.00 .16 1.00 −.06 .99
Conditional reward .73 .73 .79 .90 .42 .99 .10 1.00 −.20 .99
Mgmnt by exception act. .51 .52 .43 .72 .00 .77 .13 .97 −.27 .95
Mgmnt by exception pas. .47 .47 .47 .76 .38 .82 −.09 .83 −.06 .83
Laissez-faire .77 .77 .75 .78 .33 .84 −.03 .99 −.07 .97
Outcome measures .92 1.00 1.00 1.00 .18 1.00 −.02 1.00 .07 1.00

Note. MLQ = Multifactor Leadership Questionnaire.

Table 4. Means for Subscales by Simulated Populations.

Main constructs Real

Outcome 
items 

missing

21 (46%) 
items 

missing

33 (73%) 
items 

missing

33 items 
random 

semantics

39 (86%) 
items 

missing

39 items 
random 

semantics

42 (95%) 
items 

missing

42 items 
random 

semantics

IdealizedAttrib 3.43 3.42 3.39 3.58 3.03 3.79 3.02 3.87 3.00
IdealizedBehv 3.94 3.95 3.84 3.78 3.23 3.86 3.22 3.83 2.98
InspMotive 3.83 3.84 3.78 3.77 3.23 3.78 3.00 3.86 2.99
IntellStim 3.28 3.28 3.44 3.55 3.14 3.63 3.06 3.69 3.06
IndConsid 3.59 3.59 3.59 3.73 3.01 3.84 3.00 3.90 3.02
CondReward 3.79 3.79 3.71 3.80 3.44 3.84 3.27 3.90 3.23
MBEact 3.06 3.08 3.11 3.63 3.06 3.70 3.06 3.78 2.97
MBEpass 2.63 2.62 2.62 2.38 2.73 2.39 2.98 2.33 2.98
LaissFaire 2.37 2.37 2.43 2.32 2.71 2.28 2.85 2.22 3.01
Outcome 3.53 3.59 3.69 3.85 3.00 3.91 3.00 3.94 2.99
Average difference from 

real
.01 .07 .20 .38 .25 .47 .30 .52

Note. Bold types: Not significantly different from their real human counterparts, p <. 05.
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numbers of simulated values, the correlations among the 
subscales tended to increase for the semantically informed 
simulations. Where the semantic predictions were replaced 
by random numbers (leaving only the pattern of the algo-
rithm itself, void of semantics), the correlations among the 
subscales decreased, approaching 0 where 39 of 45 responses 
were simulated, see Figure 2.

We then performed a principal components analysis 
(PCA) on these samples to compare their ensuing patterns. 
The MLQ has been criticized for its messy factor structure 
over the years, as some people find support for it and others 
do not (Avolio et al., 1995; Schriesheim, Wu, & Scandura, 
2009; Tejeda, Scandura, & Pillai, 2001). In our sample here 
(N = 153), there emerged eight or nine factors, but the rotated 
factors were not clearly delineated and did not fully support 
the theorized structure of the survey. However, we are here 
not concerned with the structure of the MLQ itself but with 
the similarity of the real and simulated measures. Table 7 
shows that as an increasing number of items are replaced by 
semantically simulated ones, there is a gradual reduction in 
the number of factors identified. This is completely opposite 
from what happens where scores are computed with random 
input to the algorithm. In these cases, there is a proliferation 
of eigenvalues increasing with the numbers of simulated 
variables. The numbers of factors indicated by scree plots are 
displayed in brackets as these may be just as interesting as 
factors identified by eigenvalues (see Figure 3). The MI val-
ues seem to impose a simplified structure on the data in PCA 

reminiscent of factor structures, and rotational procedures 
did not change the emerging patterns. The two factors emerg-
ing from the purely synthetic condition seem to be an artifact 
of the algorithm because it needs two (randomly chosen) ini-
tial values to get started.

We finally checked whether the score levels could affect the 
similarity between simulated and real responses. As we were 
expecting, higher scores of both transformational leadership 
and laissez-faire (and, by implication, the outcome values) 
were all related to higher correlations between the real response 
and its simulated duplicate. This tendency was increasing for a 
higher number of simulated scores but absent in responses 
computed in the random control condition, see Table 8.

Discussion of Study 1

Summing up our findings, the following descriptions seem 
supported:

Outcome measures: When the outcome measures were 
substituted with simulated measures, these were virtually 
nondistinguishable from the real measures. This implies 
that the purported outcome variables are not independent 
and empirical but determined directly by the semantic 
relationships to the previous survey items. The simulated 
outcome levels were nondistinguishable from the real 
ones even when 39 of 45 items were replaced by simu-
lated items.

Table 5. Means for Main Constructs by Simulated Populations.

Main constructs Real

Outcome 
items 

missing

21 (46%) 
items 

missing

33 (73%) 
items 

missing

33 items 
random 

semantics

39 (86%) 
items 

missing

39 items 
random 

semantics

42 (95%) 
items 

missing

42 items 
random 

semantics

Transformational 3.62 3.62 3.61 3.68 3.13 3.78 3.06 3.83 3.01
Transactional 3.16 3.16 3.15 3.27 3.07 3.31 3.10 3.34 3.06
Laissez-faire 2.37 2.37 2.43 2.32 2.71 2.28 2.85 2.22 3.01
Outcomes 3.53 3.59 3.69 3.85 3.00 3.91 3.00 3.94 2.99
Average difference 

from real
.02 .06 .14 .36 .20 .41 .24 .47

Note. Bold types: Not significantly different from their real human counterparts, p <. 05.

Table 6. Characteristics of the Average Correlations Between Real and Simulated Respondents by Number of Simulated Item 
Responses.

Scale
No of negative 
correlations

Minimum 
correlation

Maximum 
correlation

Mean 
correlation SD

Outcome items (nine) missing 0 .79 1.00 .94 .05
21 items missing 0 .35 1.00 .83 .10
33 items missing 0 .06 .91 .61 .18
33 items random semantics 0 .11 .81 .50 .11
39 items missing 2 −.24 .87 .34 .31
39 items random semantics 2 –.08 .57 .31 .11
42 items missing 8 −.62 .88 .44 .29
42 items random semantics 22 –.26 .42 .14 .13
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Reliability: The reliability levels of scales in the simulated 
responses were comparable with and in most cases better 
than the real responses. With increasing numbers of items 

substituted by simulated items, the alpha values increased. 
Responses computed with random semantic figures pre-
sented deteriorating alphas. This supports our claim that 

Figure 1. The frequency distribution of correlations between real and stimulated responses for the simulated populations, replacing 42 
of 45 item responses with simulated scores.

Figure 2. Absolute interscale correlations by simulated sample.
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the psychometric structures are caused by the semantic 
patterns and are not an artifact of the algorithm.
Summated scale levels: Even with the simple algorithm 
applied here, six real item responses (of 45 scale items) 
are enough to predict the level of transformational leader-
ship and laissez-faire scale scores precisely. Twelve items 
allow a fairly precise calculation of the summated level of 

each of the 10 subscales. The respondents’ levels of 
endorsing or criticizing their managers’ leadership behav-
iors were reliably captured by a small subset of items. 
When the computed composite scores started deviating in 
a statistically significant way from the real score levels, 
the differences were still quite small, and with the excep-
tion of the scale Passive Management By Exception, they 

Table 7. Number of Factors With Eigenvalue >1 Extracted in Principal Components Analysis, Real and Simulated Samples (Factors 
Indicated by Scree Plots in Brackets).

Real

Outcome 
items 

missing
21 items 
missing

33 items 
missing

33 items 
random 

semantics
39 items 
missing

39 items 
random 

semantics
42 items 
missing

42 items 
random 

semantics Synthetic

Computed 
on all 45 
items

9 (4) 8 (4) 6 4 19 3 (5) 18 2 (3) 30 2 (3)

Computed 
without 
outcome 
items

8 (4) 8 (4) 6 4 16 3 (6) 15 2 (3) 16 2 (3)

Figure 3. Principal components scree plots, one real and three simulated samples (39 times missing, 39 items replaced with random 
semantics, one completely synthetic sample).
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were always closer to the real ones than to the randomly 
generated scores.
Pattern similarity: The simulated survey responses were 
correlating highly with their real origins, and there were 
almost no cases where these correlations took negative 
values. That is interesting, given Michell’s (1994) find-
ings that only a few percentage of survey respondents will 
respond in a way that violates the semantic structure of 
the survey and its unfolding pattern. Even the sample 
computing 42 simulated scores from three given responses 
was highly and significantly correlated with their real 
counterparts. It seems warranted to say that the pattern of 
scores created by our simulation algorithm largely repli-
cated the pattern of real responses. The randomly gener-
ated patterns performed clearly inferior to the true 
semantic values.
Correlation matrices: For the sake of brevity, we com-
pared only the correlation matrices of the accumulated 
subscales, substituting real scores for samples with 
increasing numbers of simulated responses. This compar-
ison is probably the one where simulated scores did not 
perform so well. The correlations among the scales were 
increasing with increasing numbers of simulated 
responses. This finding is however mixed in terms of 
STSR relevance: While our algorithm seems to be less 
sensitive to differential information with more simulated 
items, the correlations will tend to increase in magnitude. 
This means that all else being equal, semantic information 
is a powerful source of correlations in survey data. This 
was evident in comparison with the correlation matrices 
generated from random values, which were approaching 0 
as more responses were replaced by simulated ones.
Factor structure: As with the correlation matrices (and 
related to this matter), the factor structures of the data 
samples were increasingly simple with more semantics 
based on simulated scores, ending with a two-factor 
model when all but three items were computed (95% of 
the items replaced). The MLQ may not be a good testing 
ground for factor structures, as it was itself quite messy in 
the small random sample we used here. Still, the sample 
using simulated outcome scores identified the outcomes 

as clearer than the real sample did. Random responses 
developed in the opposite direction and quickly began 
generating extra factors proliferating upward to 15 to 30 
factors.
Unfolding structure: As we expected, the simulator was 
most accurate in recreating response patterns at the 
extreme score level; that is, respondents who were very 
negative or very positive toward their managers. 
Intermediate levels were harder to simulate exactly, and 
the scale “Active management by exception” seems in all 
explorations to offer the least precisely estimated scores 
by our algorithm. This difficulty handling the “lukewarm” 
scores is expected from unfolding theory (Andrich, 1996; 
Coombs, 1964; Coombs & Kao, 1960; Michell, 1994; 
Roberts, 2008) because such intermediate response pat-
terns give rise to more complex folding of scales.

Study 2

Measures

The scale subjected to simulation of scores here is a compos-
ite of three scales frequently used in OB research: Two scales 
published measuring perceptions of economic and social 
exchange, comprising eight and seven items, respectively 
(Shore, Tetrick, Lynch, & Barksdale, 2006), and one scale 
measuring intrinsic motivation comprising five items 
(Kuvaas, 2006). These scales were chosen because they orig-
inate from different researchers and have not been part of a 
coherent instrument. They are also shorter and offer less 
complexities than the MLQ. These scales displayed semantic 
predictability in the previous study on STSR (Arnulf et al., 
2014).

Sample

A randomly chosen sample of 100 employees from a 
Norwegian governmental research organization was used to 
train and validate the algorithm. About 72% of the respon-
dents were male, and the majority of respondents were hold-
ing university degrees at bachelor level or higher.

Table 8. The Relationship Between Magnitude of Correlation Between Subscale Score Levels, and the Relationships Between Real and 
Simulated Response by Number of Simulated Items.

MLQ subscale

Outcome 
(nine) items 

missing
21 items 
missing

33 items 
missing

33 missing 
random 

semantics
39 items 
missing

39 missing, 
random 

semantics
42 item 
missing

42 missing, 
random 

semantics

Transform. .46** .50** .50** −.05 .27** −.02 .59** .02
Transact. .15 .12 .23** −.13 .14 −.13 .54** .04
Laissez-faire −.36** −.53** −.51** −.23** −.28** −.19* −.60** .02
Outcomes .45** .43** .41** .00 .26** −.06 .57** .12

Note. MLQ = Multifactor Leadership Questionnaire.
*p < .05 level (two-tailed). **p < .01 level (two-tailed).
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Analytical Procedures

We used the MI algorithm to compute semantic similarities 
between all 20 items. This yields a matrix of 20 × 19 / 2 = 
190 unique item pairs. The problem of negatives was solved 
as described in the case of the MLQ, as the scale measuring 
economic exchanged can be shown a priori to be negatively 
correlated with the other two (see Arnulf et al., 2014). Also, 
one item measuring social exchange is originally reversed, 
and kept that way to conform with the theoretical handling of 
negatives.

The semantic indices from the MI algorithm predicted the 
sample correlation matrix significantly with an adjusted R2 
of .52. As in the study above, this relationship was even 
stronger with the interitem distances (the average distance in 
scores between Item A and Item B . . . ), reaching an adjusted 
R2 of .81. To train the predicting algorithms, we kept the con-
stant (1.342) and unstandardized beta (–.907) from the latter 
regression analysis.

Individual response patterns were predicted by applying 
the algorithm developed in Study 1. We replaced the sample 
constant and unstandardized beta with the values from this 
sample, tested this version first:

For predicted positive correlations,

Value Item B   Value Item A  + 

MI for Item A and Item B

( ) ( )
( )

=

  x - ..907

For predicted negative correlations,

Value Item B   6 - Value Item A +

MI for Item A and Item B

( ) ( )=

(( ) x - .907.

The resulting numbers were promising but did not seem 
totally satisfactory, possibly due to unfolding problems. 
Whereas the MLQ is composed of highly heterogeneous 
subscales distributed in a mixed sequence, the Study 2 scales 
are very homogeneous and distributed one by one. It is hard 
to find an a priori rule for the unfolding of the combined 
scale. However, the unstandardized beta is –.907 which is 
almost −1, and so plays a small role when multiplied with 
other values except changing the sign. We first removed the 
sign to check the effect on unfolding, but results were equally 
promising but unsatisfying. We then decided to remove the 
beta and replace it with the constant for the item differences 
instead (1.342) plus the semantic MI value. This provided a 
better approximation of the scores:

For predicted positive correlations,

Value Item B   Value Item A  + 

MI for Item A and Item B

( ) ( )
( )

=

  + 1.342.

For predicted negative correlations,

Value Item B    - Value Item A  + 

MI for Item A and Item

( ) ( )= 6

  B  + .( ) 1.342

We then proceeded to explore if the responses simulated 
from semantic values predict their “real” counterparts bet-
ter than random values in the same range (control 
condition).

Results

The results will be reported summarily along the same lines 
as in Study 2:

Summated scale levels: Figure 4 shows the average accu-
mulated scores for three test samples. The patterns of the 
semantically simulated scores are similar to the real sam-
ple, but the average score on intrinsic motivation is some-
what low (albeit significantly higher than the score for 
social exchange). Adjusting the unfolding pattern in the 
algorithm could possibly alleviate this. Importantly, the 
pattern seemed driven by the semantic values, as the ran-
dom values tend to wipe out the pattern and the average 
scores become similar.
Pattern similarity: The semantically simulated test 
responses correlated on average .56 with the originals. 
The highest correlation was .89 and the lowest was –.37, 
but only two of the 100 simulated responses correlated 
actually negatively with their real counterparts. The simu-
lations using random semantics yielded an average cor-
relation of .10 with 30% negative correlations.
Reliability: The simulated responses yielded an α of 1.00, 
α for the random semantics was .99, and α for the real 
sample was .79.
Factor structure: The 20 items were subjected to PCA 
with varimax rotation. The real responses yielded five 
factors explaining 65.5% of the variation. The responses 
simulated with semantic values yielded two factors 
explaining 98%, and the random semantics also produced 
two factors explaining 99%. A more interesting picture 
emerges when presenting two-dimensional plots of the 
factor structures, as displayed in Figure 5.

The two-dimensional plots reveal that the random seman-
tics cannot distinguish between the three scales. The real 
sample produces three distinct clusters even if it does not 
present a satisfactory solution. The simulated sample pres-
ents a clear three-factor plot of the items. The reversed item 
in the social exchange scale is plotted on the same axis but 
orthogonally to the nonreversed, as theoretically expected. 
Still, social exchange items were erroneously grouped with 
intrinsic motivation.
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Unfolding structure: As in Study 1, there was a clear rela-
tionship between the semantic predictability of the indi-
vidual response patterns and their score levels. The 
simulated response patterns correlated at .67 with the dis-
persion of scores (standard deviation of scores within the 
individual) and .57 with the score level on intrinsic moti-
vation (p < .01). Elevated scores increase the score disper-
sion, allowing the responses to be more predictable.

Discussion of Study 2

As in Study 1, the semantically simulated responses were 
similar but not completely identical to the original responses 
that they were meant to predict.

Simulated scales were similar in the sense that (a) the 
aggregated means of the main variables were of similar mag-
nitude and exhibited similar mutual patterns, (b) the reliabili-
ties were high or higher than the originals, (c) the majority of 
the simulated response patterns correlated highly with the 
original patterns with only 2% in a negative direction, and 
(d) the factor structure in PCA indicated a three-factor solu-
tion but only in a two-dimensional plot.

The simulated responses failed to produce a level of 
intrinsic motivation as high as the original (higher than the 
two other scales but significantly lower), and the factor 
structure failed to reproduce three clear-cut factors.

On the contrary, the simulated scores created with random 
semantics failed to replicate the originals on all accounts 

Figure 4. Average scale scores for the three scales for semantically simulated, real respondents and random semantics.
Note. CI = confidence interval.

Figure 5. Factor structures of random, semantic, and real samples.
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except for the alphas. This indicates that key characteristics 
of survey data—score levels, factor structures, and variable 
relationships—were reproducible by means of semantic indi-
ces in these scales.

Also, the three scales did not emerge clearly from the real 
responses. The present dataset may not have been ideal for 
training simulation algorithms. For the sake of brevity, we do 
not report the systematic effect of deleting real responses in 
Study 2.

Final Discussion and Suggestions for 
Future Research

The main purpose of this article was to develop and apply a 
simple algorithm for creating artificial responses, and compare 
these with a sample of real responses, explaining the rationale 
behind STSR and opening a field of exploring survey responses 
through computation. Across two different scales and samples, 
we were able to check the psychometric properties of simu-
lated scores compared with the real human responses. The 
semantic indices always performed much better in predicting 
real scores than random numbers in the same range.

This is a new field with no established quality criteria, and 
so our aim was simply to conduct a test applying what we 
know. We also want to be transparent about what we do, 
omitting overly complicated steps that could have improved 
the performance.

The results could partly be artifacts of the algorithm itself. 
As we have pointed out, research on the effects of unfolding 
and measurements in construct validation has repeatedly 
shown that the survey structure itself is a major source of 
systematic variation, and hence needs to be considered in 
predicting responses (Maul, 2017; Michell, 1994; Slaney, 
2017; van Schuur & Kiers, 1994).

However, we do think that improvements in predicting 
real scores are foreseeable already, addressing the following 
series of issues:

A theoretically more precise formula: It should ideally be 
possible to formulate a mathematically rigorous way to 
translate the semantic matrix into the distance matrix, and 
from the distance matrix to a prediction of Item B if Item 
A is known. This is the main theoretical goal of STSR, 
and we are not yet there.
More precise semantic estimates: This study applied 
semantics from the MI algorithm only. It is shown else-
where that a combination of semantic algorithms will 
have incremental explanatory power (Arnulf & Larsen, 
2015; Arnulf et al., 2014). Also, other computational 
methods have been shown to produce similar results and 
could possibly be combined with what we do here (Gefen 
& Larsen, 2017; Nimon et al., 2016). More advanced 
combinations of semantic values in the model may allow 
more precise replications of real responses.

A more precise weighting measure: In Study 1, we conse-
quently used the beta from a model where the semantic 
values are regressed on the observed score differences. 
This was used as a benchmark to translate from MI values 
into probable score distances because it could be justified 
fairly simply. Study 2 showed that using the constant 
yielded better results. A more systematic mathematical 
rationale could create scores that are less uniform in the 
way they impose structure on the data, and could possibly 
keep the factor structure intact as produced by humans. 
One possibility is to replace the distance approximation 
with a probability function that could add some random 
error to the formula.
A better model for unfolding of the items: The unfolding 
pattern we created in Study 1 was also just a quick rule of 
thumb, and in Study 2, we did not take the unfolding into 
account at all, except for the negative correlations. More 
differentiated unfolding patterns could be modeled. One 
way would be to include more knowledge from the initial 
training data. This could increase the variation in data and 
reduce the tendency toward simplification of structures, 
as well as improving the performance of the algorithm in 
responses with medium-range responses. An important 
question to address is the case of multidimensional scales 
as in our second dataset. In such cases, it may be neces-
sary to fix the response level for each dimension, which 
points to the entry of nonsemantic information about atti-
tude strength in the data.
More advanced smoothing function: The fact that all items 
are locked in a grid of differing relationships to 44 other 
items is intriguing. A mathematical procedure that could 
capture this complex network of values would be a much 
more direct approach to calculations, possibly akin to 
multidimensional scaling (Borg & Groenen, 2005). This 
could let us test the degree to which people create response 
patterns deviating from what is semantically given. Not 
only would it inform STSR and unfolding theory but also 
allow us to differ better between empirical questions (per-
taining to how people actually respond) and logical ques-
tions (setting up conditions for how people ideally should 
respond; Semin, 1989; Smedslund, 1988).

The results seem to support our main theoretical proposi-
tion to some degree. To the extent that survey responses are 
semantically determined, they are predictable a priori.

The semantic values generally produced high alphas, 
high correlations, and orderly patterns in the data, which 
the randomly generated semantic values failed to produce 
even if the other steps of the algorithm were identical in 
both sets of simulated responses. An alarming finding in 
our data is that the semantic structure seems to produce bet-
ter alphas and factor structures, possibly leading research-
ers to lean toward semantics in scale constructions to 
comply with current guidelines for fit indices (Hu & 
Bentler, 1999).
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In STSR, survey responses may be seen more as an 
expression of coherent beliefs than a series of quantitative 
responses. The initial responses signal the endorsement of 
opinions. These could have been semantically explicit speci-
fications of the response alternatives as in, for example, 
Guttman scales (Michell, 1994). “Response strength” may 
be seen as a signal carrier for the semantic anchor of the 
respondent’s interpretation of the items.

In this regard, it is important to distinguish between sur-
vey responses as an individual expression and the survey 
responses as input to aggregated sample statistics. STSR 
cannot predict the initial response level of a given respondent 
a priori, the “theta” in item response theory (Singh, 2004). 
What the theory predicts is that once the individual’s level is 
set, the patterns (or values) of the remaining items are influ-
enced or even determined by their semantic structure. Their 
values are not free to vary because they share overlapping 
meaning, and therefore share the same subjective evaluation. 
Thus, it will be the semantically determined patterns that 
carry over into the sample statistics, not so much the attitude 
strength (Arnulf, Larsen, Martinsen, & Egeland, 2018).

Sample statistics—the bulk of the correlations in the 
MLQ—may therefore be determined by semantic relation-
ships that are void of attitude strength. This allows a precise 
prediction of the “outcome” scales by semantics as demon-
strated above and theoretically predicted by others (Van 
Knippenberg & Sitkin, 2013).

Taken together, our preliminary outline of a simulation pro-
cedure indicates how simulating semantically expected scores 
is possible. Subsequently, this may allow us to explore how to 
depart from what is semantically expected instead of rediscov-
ering semantically predetermined relationships.

STSR does not propose that all survey data come about as 
a result of semantics. Neither does the theory claim that this 
model holds across all constructs. STSR simply proposes 
that whatever the sources of variation in survey data, the 
semantics implied is the first source to evaluate, often more 
powerful and systematic than hitherto assumed. By offering 
a rationale and an outline for experimental research on STSR, 
we hope future developments can address more detailed 
questions of the nature and interaction of survey response.
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