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Abstract Cryptocurrencies have recently gained a lot of interest from investors,
central banks and governments worldwide. The lack of any form of political regu-
lation and their market far from being “efficient”, require new forms of regulation
in the near future. From an econometric viewpoint, the process underlying the evo-
lution of the cryptocurrencies’ volatility has been found to exhibit at the same time
differences and similarities with other financial time–series, e.g. foreign exchanges
returns. This short note focuses on predicting the conditional volatility of the four
most traded cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. We investi-
gate the effect of accounting for long memory in the volatility process as well as
its asymmetric reaction to past values of the series to predict: one day, one and two
weeks volatility levels.
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1 The volatility of Cryptocurrencies

Many of the stylized facts that characterize usual financial time–series also apply to
cryptocurrencies. For instance, similar to equity prices, cryptocurrencies exhibit: i)
time–varying volatility, ii) extreme observations, and iii) an asymmetric reaction of
the volatility process to the sign of past observations (i.e., leverage effect). However,
standard dynamic volatility models like the Generalized Autoregressive Conditional
Heteroscedasticity (GARCH) model of Bollerslev (1986) do not perform accurately
and Catania and Grassi (2017) show that they are outperformed by more refined
alternatives like the Score Driven model with conditional Generalized Hyperbolic
Skew Student’s t (GHSKT) innovations. The specification of the conditional distri-
bution of the aforementioned Score Driven volatility model, GHSKT, is important
since it characterises the filter for the conditional volatility, see Creal et al. (2013)
and Harvey (2013). For instance, Catania and Grassi (2017) find that the robust
volatility filter implied by the Score Driven–GHSKT model is of primary impor-
tance in describing the stochastic evolution of cryptocurrencies. Indeed, in their
analysis involving 289 cryptocurrencies, GARCH is never preferred according to
likelihood criteria.
The aim of this short note is to extend results of Catania and Grassi (2017) to the
important tasks of predicting future volatility levels of the four most representative
cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. Those cryptocurrencies
are the most important in terms of diffusion and market capitalization. At the time
of writing market capitalization in USD dollars is 185.5 billion for Bitcoin, 44.3
billion dollars for Ethereum, 9.7 billion dollars for Ripple and 5.5 billion dollars for
Litecoin. All together, these cryptocurrencies represent the 73% of the total cryp-
tocurrency market value. See Catania and Grassi (2017) for a detailed description
of those cryptocurrencies.
Since volatility is unobserved and realized volatility measures are not available, in
our forecasting analysis we proxy future volatility levels with the square of the re-
alized log–returns. Squared returns are known to be a poor volatility proxy, and
poor volatility proxies are known to affect forecast comparison, see Andersen and
Bollerslev (1998). To lower the influence of a volatility proxy on our results, model
comparison is performed using the Quasi–Like (QLIKE) loss function which, as
discussed by Patton (2011), is robust to this choice of volatility proxy. Specifically,
let σ̂ j,t+h|t be the h–step ahead volatility prediction made by model j at time t, and
let rt+h the log returns at time t +h, the QLIKE loss is defined as:
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where σ2∗
j,t+h|t = r2

t+h is the volatility proxy. QLIKE values associated to each model
are computed recursively over a forecast horizon of length H. Values are then av-
eraged and models with lower average values are preferred. In order to statistically
assess the differences among alternative models, we employ the Model Confidence
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Set procedure of Hansen et al. (2011) using the R package MCS detailed in Bernardi
and Catania (2016).

2 Forecast Analysis and Model Comparison

The set of models we consider includes the GARCH model of Bollerslev (1986)
(M1), the Score Driven–GHSKT model (M2) along with three extensions with: i)
leverage (M3), ii) time–varying skewness (M4), and iii) fractional integration in the
volatility process (M5), see Catania and Grassi (2017) for a detailed specification of
these models. It is worth noting that, the volatility filter of the Score Driven–GHSKT
model also depends from the shape and skewness parameters of the GHSKT condi-
tional distribution. This way, volatility predictions delivered by model M4 will be
affected by the specification of time–varying skewness coefficients.
The data we consider are percentage log differences of the daily cryptocurrencies
closing values. The Bitcoin and Litecoin series start the 29th of April, 2013, while
Ethereum and Ripple series start the 8th and the 5th August, 2013, respectively. All
series end the 1st of December, 2017.1 Bitcoin and Litecoin have 1’678 observations
while Ethereum and Ripple have 847 and 1’580, respectively.2 The full sample is
equally divided in two parts: i) the in–sample period where models’ parameters
are estimated the first time and, ii) the out–of–sample period where predictions are
made. The length of the out–of–sample period is 839 for Bitcoin and Litecoin, and
424 and 790 for Ethereum and Ripple, respectively. Models’ parameters are updated
each time a new observation becomes available using an expanding window until the
end of the sample. We select three forecast horizons: i) one day (h = 1), ii) one week
(h = 7) and, two weeks (h = 14).

Table 1 reports the average QLIKE values for all cryptocurrencies and forecast
horizons. Results are reported relative to the GARCH model, M1, acting as a bench-
mark. That is, values lower than one indicate outperformance with respect to M1
and viceversa. Gray cells indicate those models that belong to the Superior Set of
Models delivered by the Model Confidence Set procedure with confidence level
10%.

Results indicate that M1 is generally outperformed by the more refined Score
Driven–GHSKT model, M2. Gains increase when the forecast horizon growths.
We find that for Bitcoin, M2 reports better results than its extensions M3, M4 and
M5. This result confirms the findings of Catania and Grassi (2017) in their in–
sample models comparison. Results for Ethereum show that many models belong
to SSM indicating that all models perform similar in predicting future volatility
levels. This result might be influenced by the low number of observations available
for Ethereum. Results for Ripple and Litecoin are very clear: M5 is preferred for
Ripple and M3 for Litecoin. That is, long memory is an important feature for the

1 Note that the cryptocurrency market trades 24 hours a day, all days. Here with closing value we
mean the price at (UTC) midnight.
2 All series are available from https://coinmarketcap.com.
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M1 M2 M3 M4 M5 M1 M2 M3 M4 M5

Bitcoin Ethereum
h = 1 1.00 0.99 0.99 1.00 0.99 1.00 1.00 1.00 1.00 1.00
h = 7 1.00 0.97 0.97 0.99 0.98 1.00 0.97 0.98 0.98 1.00
h = 14 1.00 0.97 0.97 0.99 1.02 1.00 1.00 1.00 1.00 1.04

Ripple Litecoin
h = 1 1.00 0.97 0.97 0.99 0.96 1.00 1.00 1.00 1.02 1.02
h = 7 1.00 0.98 0.98 1.01 0.97 1.00 0.98 0.97 0.99 0.98
h = 14 1.00 0.99 0.99 1.02 0.98 1.00 0.94 0.94 0.97 0.94

Table 1 Average QLIKE values for all cryptocurrencies and forecast horizons h = 1,7,14. Results
are reported for the five models the GARCH model of Bollerslev (1986), M1, the Score Driven–
GHSKT model detailed in Catania and Grassi (2017), M2, and its three extensions including:
i) leverage (M3), ii) time–varying skewness (M4), and iii) fractional integration in the volatility
process (M5), see Catania and Grassi (2017). Results are reported relative to M1. Values lower than
one indicate outperformance with respect to M1 and viceversa. Gray cells indicate those models
that belong to the Superior Set of Models delivered by the Model Confidence Set procedure with
confidence level 10%.

prediction of the Ripple’s volatility, and the inclusion of an asymmetric reaction of
the volatility process is of primary importance for Litecoin.

3 Conclusion

This short paper focuses on predicting the conditional volatility of the four most
traded cryptocurrencies: Bitcoin, Ethereum, Litecoin and Ripple. We investigate the
effect of accounting for long memory in the volatility process as well as its asym-
metric reaction to past values of the series to predict volatility levels. Our findings
indicate that more sophisticated volatility models that include leverage and time-
varying skewness can improve volatility predictions at different forecast horizons
from 1% to 6% compared to more standard alternatives. Applications in portfolio
optimizations, hedging and pricing of derivative securities, where volatility mod-
elling is of primary importance, can benefit from these findings.
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