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Abstract 

 

This thesis aims to measure and analyze the volatility of the dry bulk freight spot 

market. Empirical research is conducted by using samples of daily observations 

from 1985 to 2016. We find the return series are stationary and heteroscedastic. We 

use AR-GARCH type of models and compare different model specifications. We 

conclude that bigger ships are riskier and their underlying dynamics are more 

complex. Shocks are very persistent in the dry bulk freight market, but decrease 

with the vessel size. We find positive news to have higher impact on the volatility, 

as predicted by the short-term supply-and-demand model. In Capesize market 

higher risk leads to lower return. When the market gets extremely volatile, our 

models systematically underestimate the volatility as the vessel size increases. 
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1 Introduction 

 

Volume of seaborne trade accounts for about 80% of total world merchandise trade. 

Two thirds of the seaborne trade volume is dry cargo, raw materials including 

primarily ore, coal, grains that will be further processed to make all kinds of end 

products. The freight shippers pay to charter bulk carriers, ships built to transport 

dry cargo, has long been closely watched by the shipping industry and the financial 

market as it is perceived as a leading indicator of global economic state. In February 

2016, BDI, an index that measures dry cargo freight, fell to its historical low, a time 

described by some as “the worst market since the Viking age”. Unfortunate 

shipowners, charterers, and shipping banks either suffered big write-off of their 

asset value or went into distress. Currently hit hard by the downturn, the dry bulk 

shipping market is characterized by its high volatility with the example of a 94% 

dive between May and December 2008. As bulk carriers account for about 43% of 

world fleet and carry two thirds of the seaborne cargo, a better understanding of the 

volatility of the freight will not only help the struggling dry bulk industry make 

future investment decisions and improve risk management, but also provide insight 

into global economy. 

 

The goal of this thesis is to understand the nature of risk in the dry bulk freight 

market by properly measuring it and finding its qualitative and quantitative impact. 

We aim to capture possible dynamics of heteroscedasticity, asymmetric effects, and 

risk premium. We are also interested in the model performance when the volatility 

is the highest. In previous studies, low number of observations and data quality 

were major issues We use time-series data of daily dry bulk freight index, provided 

by the Baltic Exchange which covers four major types of dry bulk vessels: Capesize, 

Panamax, Supramax and Handysize. We have more than 20 years of daily 

observations, which shall help us to analyze the underlying processes more 

confidently. 

 

We approach the topic as follows. First, we explore the nature and development of 

dry bulk freight market. Previous empirical studies and theoretical models are 

thoroughly examined as foundations and inspirations for our research. Second, we 

use the most recent data to conduct empirical research of the volatility in the dry 
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bulk freight market, based on the models and results from the previous studies. 

Third, we derive practical implications for market participants and enhance 

academic studies of this topic. 

 

2 Literature Review 

2.1 Overview of the Dry Bulk Market 

The dry bulk carriers have unique characteristics and are governed by unique 

market mechanisms. In the new millennium, two trends stood out in the dry bulk 

sector. First, it has attracted more attention from players outside shipping who 

search for new investment class and leading economic indicators. Second, 

chartering chains have grown longer and more fragile. One single company that 

fails to perform could trigger a series of disastrous events (Gratsos et al., 2012). The 

following sections provide a systematic overview of the most important features of 

this market and their studies. 

 

Bulk carriers are built to transport homogenous dry bulk commodities in large 

quantities by sea. Five major bulk commodities iron ore, coal, grain, 

bauxite/alumina, phosphate rock account for about 60% of total dry bulk trade 

(UNCATD, 2015). Although each vessel has its own specification, for the purpose 

of conducting analysis, they are usually grouped with other similar vessels by their 

capacity (tonnage) for carrying cargoes (Stopford, 2009; Alizadeh and Nomikos, 

2009; UNCATD, 2015). Table 2.a shows a common way to group different bulk 

carriers.  

 

 

Table 2.a: Four vessel groups (UNCATD, 2015, ix)      

Group Tonnage

Capesize 100,000 dwt plus

Panamax 60,000–99,999 dwt

Handymax 40,000–59,999 dwt

Handysize 10,000–39,999 dwt
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Each group of vessels has its unique trading advantage depending on the parcel size 

of the cargo, cargo handling, distance, routes, and ports. When choosing the vessel 

to hire or build, trade-offs are general made between three factors: economies of 

scale, the parcel sizes of the available cargoes, port draught and cargo handling 

facilities (Stopford, 2009; Alizadeh and Nomikos, 2009). 

2.1.1 Risks in the Dry Bulk Market 

Making shipping investment is risky. In Cullinane’s (1995) study on risk and return 

of investment in drybulk shipping, he referred to Gray’s (1987) perspective on 

major commercial risks faced by shipowners: (1) Interest rate risk, (2) Exchange 

rate risk, (3) Bunker price risk, (4) Market risk. Out of four, market risk involves 

factors that could negatively affect the freight rate. It is industry specific and has 

the most direct impact on the revenues of shipowners. He argued that it is the most 

important risk for shipowners because uncertainties have a greater impact on 

revenues than costs. Stopford (2009) observed shipowners’ anxiety about daily 

fluctuations of freight rates and went on to elaborate on “shipping risk” - risk about 

the return on shipping investment that comes from the cyclical nature of the 

shipping business. An increase in trade volume would result in a disproportion 

between supply and demand of shipping capacity and push up freight rate to restore 

the balance. As a result, shipowners may be tempted to increase fleet size hoping 

to capture more profit in a good market. In the end, a good market may eventually 

wind down as the supply of shipping capacity restores the balance. This uncertainty 

about the future of the shipping market motivates some companies to take the 

shipping risk and others to transfer the shipping risk. Our study specifically focuses 

on the shipping risk market participants face in the dry bulk freight market.  

09867940986285GRA 19502



  

8 

2.1.2 The Structure and Dynamics of the Dry Bulk Freight Market 

The freight market is a market place where shipowners provide ships for hire and 

charterers/shippers hire the ships to transport cargoes. When a freight rate is agreed 

along with other terms on the “charter-party” (contract specifying all the terms) the 

ship is “fixed”. There are different charter types such as “Voyage Charter”, 

“Contract of Affreightment”, “Period Charter”, and “Bare boat charter” with 

different contract execution and risk transfer mechanism to suit the needs of 

different counterparties (Stopford, 2009). The most common approach to 

systematically understand the freight market is the supply and demand model that 

is often used in the commodities market. Table 2.b presents a general supply and 

demand model for the shipping market. 

 

 

Table 2.b: Ten variables in the shipping market model (Stopford (2009), 136) 

 

Any imbalance between supply and demand feed into the freight market, which acts 

as a control valve for the money paid from the shipper to the shipowner. This model 

also demonstrates key characteristics of the shipping market, as the demand is 

unpredictable and prone to fluctuate in the short run but the supply is slow to catch 

up. This process of capacity adjustment explains the volatile and cyclical nature of 

the shipping market (Randers and Göluke, 2007). 

2.1.3 Short-Run Supply and Demand Model 

 

Our study focuses on the short-run, where the supply adjustment is constrained by 

short-term measures, such as lay-up, reactivation, speed adjustment or switching 

markets. The short-run balance between supply and demand is illustrated in Graph 

2.a. Supply function has a ‘J’ shape as new vessels cannot be added to the market 

Demand Supply

The world economy World fleet

Seaborne commodity trades Fleet productivity

Average haul Shipbuilding production

Political events Scrapping and losses

Transport costs Freight rates
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immediately to respond to an increased demand, while vessels can slow steam or 

even be laid-up to respond to a decreased demand. Demand function in the short 

run is very inelastic as the cost of shipping is usually a very small portion of the 

cargo’s total value and there is hardly any alternative way to transport the dry bulk 

cargo. When demand curve shifts from D1 to D2, the equilibrium freight rate only 

rises slightly from A to B as laid-up vessels start to resume operation and vessels 

operate in full speed. When demand curve shifts from D2 to D3, despite a smaller 

shift, the freight level rises significantly because more cargoes are fighting for the 

same number of vessels and the prices are determined by the oldest and least 

efficient vessels that require the highest costs to operate. Drobetz et al. (2012) 

argued that this model implies the asymmetric effect of positive shocks having more 

effect on the conditional volatility of the freight market as the model predicts larger 

shocks in a good market and smaller shocks in a bad market due to the convexity 

of the supply curve.  

 

       

Graph 2.a: Short-run equilibrium model (Stopford (2009), 165) 

2.2 Empirical Studies of the Dry Bulk Freight and its Volatility 

Given the importance of shipping risk in the dry bulk freight market, it is of great 

interest for market participants to properly measure it and make reliable forecast. 

From 1970s researchers started to conduct the empirical analyses of freight rate. 

From 1990s attention started to shift to the risks behind shipping investments. In 

addition, advancement of new econometric techniques allowed researchers to 
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capture risks more properly. Volatility has become a common way to measure risks 

in shipping finance and several studies have been performed to explore the volatility 

in the dry bulk freight market.  

2.2.1 Development of the Dry Bulk Market Modelling 

 

Adland and Strandenes (2007) saw primarily two schools of modeling the freight 

market. One attempted to capture the supply and demand fundamentals for 

equilibrium prices (Hawdon, 1978; Beenstock and Vergottis, 1989; Hale and 

Vanags, 1989; Beenstock and Vergottis 1989, 1993). Their work highlighted the 

application of structural models in the dry bulk market. They built their model on 

top of assumptions of rational expectations of freight rates and market efficiency. 

The freight rates predicted by the model were the expectations of all the market 

participants. Market efficiency then ensured that ship prices would be adjusted by 

arbitrageurs to new information known to the market. The other one used univariate 

stochastic model (Kavussanos, 1996; Kavussanos and Nomikos, 1999; Kavussanos, 

and Alizadeh, 2002; Adland and Cullinane, 2005). The first school is limited by the 

difficulty of data collection as the number of variables increases, weak econometric 

relationships, and its deterministic nature. Hence, we do not consider the structural 

models. 

 

The second school relies on the assumption that all the information is embedded in 

the current price. Glen (2006) observed that the reduced form autoregressive model 

had become the popular choice for empirical research while traditional structural 

modeling had gone out of fashion. Stationarity testing and co-integration 

examination have become the launching pad for new research that focused on 

statistical properties of data. In particular, new statistical models that relaxed the 

restriction of constant variance have made modeling the time-varying volatility of 

the dry bulk freight rate increasingly popular. A wide variety of studies have 

emerged to explore seasonality, term structure, stationarity, forecasting ability of 

financial derivatives, and conditional heteroscedasticity in the dry bulk market. 

Consequently, we focus on the reduced form autoregressive models in this study. 
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2.2.2 Attempts to Capture Non-Stationary Dynamics in the Dry Bulk 

Market 

 

Stationarity is an essential requirement for generating reliable statistical inferences. 

Early studies attempted to explore the statistical properties related to stationarity.  

 

Glen and Rogers (1997) examined weekly series of Capesize indices of different 

key trading routes published from 1989 to 1996 that recorded both spot and time-

charter dry bulk freight rates. They found the levels to be all nonstationary under 

both Augmented Dickey-Fuller test and Phillips-Perron test but their first 

differences to be stationary. Cointegration between each route was identified and 

attributed to common external drivers such as industrial production, world trade, 

seaborne cargo movements, and bunker prices. Tvedt (2003) reviewed prior works 

on the stationarity of drybulk freight rates and second-hand vessels (Kavussanos, 

1996; Glen and Rogers, 1997; Glen 1997; Kavussanos, 1997) which all pointed to 

a random walk process. He argued that a transformation of indices and freight rates 

into Japanese yen denomination could yield a different result as Asia accounted for 

a majority of activities in drybulk commodities trading and shipbuilding. After the 

transformation of data from 1980s to 1999, the indices and freight rates did become 

stationary. The BFI index was downward mean reverting potentially implying the 

dynamic where high freight rates induced an increased new building activities and 

vessel utilization while low freight rates encouraged vessel lay-up and scrapping.                                 

 

Motivated by the nonstationarity and deterministic seasonal pattern of 

macroeconomic variables (Osborn, 1990; Canova and Hansen, 1995), Kavussanos 

and Alizadeh (2001) used monthly data to search for systematic seasonal patterns 

in freight rate fluctuations within a year between different group of vessels 

(Capesize, Panamax and Handysize), different contract durations (spot, 1-year and 

3-year time charters), and different market conditions (peaks and troughs). They 

concluded ARIMA and VAR models were most appropriate to model the series and 

found deterministic seasonality showing freight rates rose in March and April and 

dropped in June and July. Freight rates of larger vessels fluctuated more than 

smaller vessels. Longer contracts had smaller seasonal fluctuations than shorter 
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contracts; seasonal fluctuations were sharper when the market picked up than when 

it was going down.  

 

Conclusively, the level of dry bulk freight is non-stationary and might exhibit 

seasonality. Hence, in our research we expect the data to have similar properties, 

and we may need to transform it to conduct our analyses. 

 

2.2.3 Spot-Forward Relationship and Risk-Premium in the Dry Bulk 

Freight Market 

 

As in many financial markets, there are spot and forward markets for dry bulk 

freight. Our study focuses on the spot market. However, in order to get the full 

picture of the dry bulk market, we examine several important studies which 

explored the relationship between spot and forward prices. 

  

The theoretical foundation of the relationship between spot and forward prices in 

the dry bulk freight market was provided by Adland and Cullinane (2005). It has 

two unique features that make it difficult to establish relationships between spot and 

forward contract with traditional approach. First, the non-storability character 

makes the usual cash-and-carry strategy inapplicable. Second, the non-tradability 

character makes constructing replicating portfolios very difficult. Risk of spot 

market volatility and liquidity risk could contribute to both a positive and negative 

risk premium as both shipowners and charterers are risk-averse against future spot 

freight movements. Without further restrictions of their risk preference and 

bargaining power, it is difficult to tell the influence. Unemployment risk usually 

motivates shipowners to offer a lower forward freight rate compared with expected 

future spot rate to make sure the vessels are chartered. Default risk had the opposite 

effect as it motivated shipowners to demand a higher forward freight rate to account 

for the possibility that charterers may walk away from a long-term contract. The 

risk of transport shortage encourages charterers to pay a higher forward freight rate 

to ensure their ability to transport future cargoes. Technological/legislative risk 

prompts charterers to pay a lower forward freight rate to compensate increased costs 
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of trading older vessels. They concluded that the net risk premium should in most 

cases be negative and time-varying depending on the market conditions.  

 

Kavussanos and Alizadeh’s (2002) study on term structure of the dry bulk market 

began from elaborating on the duration of freight contract. Freight rate of shorter-

duration or spot contracts was thought to depend on current supply and demand 

(Stopford ,2009) while freight rate of longer-duration period contracts was believed 

to depend on expectations of future short-duration freight rates from rational market 

participants. This was in line with the expectations hypothesis covered by classic 

financial economics literature (Campbell and Shiller, 1987, 1991). In reviewing the 

studies done by Hale and Vanags (1989) and Veenstra (1999) on this topic, they 

considered the studies inconclusive due to insufficient sample size and 

inappropriate model formulation. Using the tests proposed by Campbell and Shiller 

(1987, 1991), monthly data from 1980 to 1997 of contracts matured in one year and 

three years in different vessel group (Handysize, Panamax, and Capesize), they 

found negative time-varying risk-premia through EGARCH-M specifications. 

Defying traditional belief of expectation hypothesis, they provided four arguments 

for explanation: higher fluctuations in the spot market, unemployment risk, vessel 

relocation costs, uncertainty over voyage costs.  

 

2.2.4 Conditional Heteroscedasticity Models of Volatility for the Dry Bulk 

Freight Market 

 

The spot market has continued to be the center of empirical research in the dry bulk 

freight market. A number of studies have shown that returns were stationary, but 

exhibit volatility clustering. With the development of GARCH-type models in the 

90s, it became possible to model heteroscedastic behavior of volatility. Economic 

intuitions behind risk properties became clear and quantifiable. Our research 

follows their methodology with improved data and covers more vessel types. 

 

Pioneer of GARCH-modelling for the dry bulk freight market, Kavussanos (1996), 

attepmted to capture the time-varying dynamics of volatilities with monthly data of 

spot freight index of different vessel groups (Handysize, Panamax, Capesize) from 
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1973 to 1992. He found the GARCH process to be stationary and volatilities in the 

spot and time-charter freight market to behave differently. Handysize vessels were 

found to have lower volatilities than Panamax and Capesize vessels and Panamax 

vessels were found to have lower volatilities than Capesize vessels. He attributed it 

to the capability of smaller vessels to serve more markets and cargoes that made the 

demand for them less volatile. A major issue of this study was low data frequency, 

which was not suitable for GARCH specification. 

 

In the new millennium, with data of higher frequency, Marlow et. al. (2008) used 

daily dry bulk freight rate index BCI, BPI, and JEHSI published by Baltic Exchange 

and JE Hyde Shipping Index respectively from 1 March 1999 to 23 December 2005 

to study the characteristics of the volatility of Capesize, Panamax, and Handysize 

type of vessels. GARCH (1,1) models were fitted to the daily return of each index 

and showed that shock from the previous period had more effect on the current 

volatility of the smallest vessel Handysize as larger capsize and Panamax. On the 

other hand, past shocks for Handysize were less persistent. They argued it had to 

do with the higher flexibility of Handysize that could be diverted more easily to 

more profitable routes, so the memory of volatility was not as long which was very 

similar to Kavussanos’s (1996) speculation. The GARCH processes of all three 

series were found non-stationary meaning shocks tended to strengthen.  

 

They suspected that the more complex market conditions of greater changes after 

2003 made a simple GARCH (1,1) process unable to capture all the market 

characteristics. The sample was then divided into two parts from 1 January 2003 

and EGARCH (1,1) models were fitted. Volatility of Panamax vessels in both the 

first and second sample periods were found to be asymmetric and higher on 

negative shocks. Volatility of Capesize vessels in the first sample period and 

volatility of Handysize vessels in the second sample period were found to be 

asymmetric and higher on positive shocks. The magnitude of the shocks had an 

asymmetric impact on all the series. Larger shocks had higher impact on the 

conditional volatility, comparatively to smaller shocks. The explanations revolved 

around vessel availability, changing aggregate demand of commodities, and 

operators’ expectations.  
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In the following years, researchers started to expand standard GARCH models, 

based on theoretical foundations of dry bulk. Usually, they added exogenous 

variables into conditional mean and/or conditional variance equations. 

 

In an attempt to have a more profound understanding of the volatility in the dry 

bulk freight market, Alizadeh and Nomikos (2011) investigated the relationship 

between volatility and the term structure. Their theoretical basis came from 

commodities market as a backwardation (spot price is higher than forward prices) 

market indicates a temporal urge for the buyer to get hold of the commodity hence 

paying a higher price when the supply is inelastic. If the dry bulk market had 

followed the same logic, they expected to find higher volatility in a backwardation 

market. Using weekly observations from 1992 to 2007, they found higher volatility 

in the spot contract than 1-year and 3-year time charters contract, and by using an 

EGARCH-X specification, they found shocks to be persistent and have sign effects, 

as market participants strengthened the possibility of a downturn by their reaction 

to bad news. Most importantly, they found much higher volatility in backwardation 

market and the rate increased as the degree of backwardation increased. This 

confirmed the theory that the freight rate was highly sensitive when the supply is 

tight, but when there was excess supply in the market to absorb shocks, the volatility 

would not change a lot.       

 

Xu et al. (2011) used a two-step model to analyze the relationship between fleet 

size and volatility of spot and time-charter freight rate of Capesize and Panamax 

with monthly data from 1973 to 2010. They first generated one-step ahead 

conditional volatilities by using a GARCH model and had it regressed against the 

changes of fleet size, freight rates, industrial production, and bunker price. They 

found nonstationarity in variance under the GARCH process and confirmed 

previous results in the literature that volatility of both spot and time-charter drybulk 

freight rates is time-varying and clustering (Kavussanos, 1996; Kavussanos, 2003; 

Adland and Cullinane, 2005). In addition, fleet size is found to positively affect the 

volatility in particular the volatility of spot Capesize freight rate, which echoed 

Kavussanos’s (1996) finding.  
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Drobetz et al. (2012) studied the effect of macroeconomic variables and asymmetric 

effects on the volatility of Capesize and Panamax freight market. Referring to the 

supply and demand model proposed by Stopford (2009), they expected to observe 

a positive asymmetric effect of freight rate changes, meaning that positive shocks 

have a larger impact on the conditional volatility than negative shocks of the same 

magnitude. Common indices on the market as proxy for world stock market, oil 

prices, wheat prices, metal prices, commodity prices, TED spread, and term spread 

were selected based on the same supply and demand model. Daily returns of indices 

BCI and BPI from March 1999 to October 2011 were fitted to an EGARCH (1,1) 

model. They did not find asymmetric effect on the sign, but found it on the size of 

shocks, which was different from the result of Marlow et. al. (2008). Then 

EGARCH-X models were fitted and slope of the yield curve, world stock market 

and wheat prices were found to be significant in the conditional variance equation.    

 

2.3 Primary Takeaways from the Literature Review 

 

Through GARCH specifications a lot of risk properties in the dry bulk freight 

market have been discovered and explained. On the other hand, some results are 

contradictory, which might be due to the inconsistent quality of data. Although 

efforts have been made to expand the standard GARCH models to better capture 

the dynamics in the dry bulk market, it is still inconclusive what the best-fitting 

specification is. Consequently, we decide to put the emphasis of our study on using 

high quality data, univariate specifications and conducting a comprehensive 

coverage of all major types of vessels. 
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3 Research Questions 

 

Previous studies have shed light on ways to model volatility in the dry bulk freight 

market. Each of them answers specific questions about the nature of risks in the dry 

bulk freight market. With new data, we aim to conduct a more comprehensive study 

and answer following questions to generate insights for risk management practice. 

 

1. What is the nature of volatility in the dry bulk freight spot market and how 

can it be modelled?  

2. How accurate are our model forecasts? 

3. What are the economic implications for market participants? 

 

By answering the above questions, we hope to achieve the objectives presented in 

Graph 3.a. 

 

 

 

Graph 3.a: Thesis Objectives 

  

Suitable 
Economteric 
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Nature of 
Uncertainty for 
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4 Methodology 

 

When modeling long-run relationship between variables, it is important to test for 

non-stationarity. For non-stationary series, shocks do not diminish over time and 

the standard assumptions for asymptotic analysis do not hold (Brooks, 2014). Fuller 

(1976) and Dickey and Fuller (1979, 1981) proposed the following Dickey-Fuller 

(DF) test with the null hypothesis: H0: φ =  1 and the alternative hypothesis 

Ha: φ < 1 to test the presence of a unit root in the following model: 

 

 △ yt = α +  (φ − 1) yt−1 +  εt 

 

The problem is that, under the null hypothesis yt−1 is non-stationary so φ does not 

have a t distribution under a large sample size. They solved the problem by coming 

up with the distribution of Dickey-Fuller critical values. If the t statistic of φ̂ is less 

than the Dickey-Fuller critical values, the null hypothesis that there is a unit root is 

rejected. To apply the same test for higher order processes, more lags could be 

included to perform an augmented Dickey-Fuller (ADF) to correct for serial 

correlations in the error term of the auxiliary regression model. The null hypothesis: 

H0: φ =  1 and alternative hypothesis Ha: φ < 1 stay the same. The model that 

includes a drift (α0) and a trend (T) is specified as follow: 

   

△ yt = α0 +  α1T + (φ − 1)yt−1 + ∑ βiΔyt−i
h
i=1 +  εt       

 

Phillips and Perron (1988) proposed an alternative test (Phillips-Perron test) to the 

ADF test. The biggest difference is that lags selection is no longer needed as the 

auxiliary regression model is simply the same as the one in the (DF) test. They 

address the serial correlations by transforming the t statistic nonparametrically and 

the resulted statistic is compared with the Dickey-Fuller critical values.      

 

To capture the dynamics in the data generating process of a random variable, 

structural models require identification of variables based on underlying theories. 

By contrast, univariate time series models rely on its past values and past errors that 

are empirical relevant to the observed samples. In modeling time series data, there 

are two major lines of models. The first line is Autoregressive (AR) models that let 
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the current observation of a random variable depend on the past observations. The 

second line is Moving Average (MA) models that have not only shocks in current 

period but also shocks in the previous period to affect the current observation. 

AMRA type of models combine the two and make the form compact to keep the 

number of parameters small. An ARMA (p,q) with p orders of autoregressive terms 

and q orders of moving average terms could be specified as follows: 

 

yt =  μ + ∑ 𝜙𝑖𝑦𝑡−𝑖
𝑝
𝑖=1 + ∑ 𝜃𝑖𝜖𝑡−𝑖

𝑞
𝑖=1 + 𝜖𝑡    

 

Box and Jenkins (1976) proposed a three-step method to correctly fit an ARMA 

model to time series data in a systematic way. The first step is identification with 

the goal to first have the series stationary by possibly differencing the series and 

second find the correct order of AR and MA terms by assessing the autocorrelation 

and partial autocorrelation plots. The partial autocorrelation function, or PACF 

measures the correlation between an observation T periods ago and the current 

observation, after controlling for observations at intermediate lags. The second step 

is the estimation of parameters. Common estimation techniques include least 

squares, non-linear least squares, and maximum likelihood. The third step is model 

checking. In additional to the specified model, a larger model could be fitted and 

check the significance of the new coefficients. If they are found to be insignificant, 

the larger model should not be chosen. If the model is correctly specified, the 

residuals of the model should look like a random drawing from a white noise 

process. This could be checked by residual plots and statistical tests such as Ljung–

Box test and Durbin–Watson test to see if any linear dependence between the 

residuals is present.    

 

Traditional statistic models such as classical linear regression model require the 

data series to have constant variance or the estimated parameters would be 

inefficient. However, it is uncertain if the variance of financial time series is 

constant. The presence of volatility clustering in some financial time series, 

meaning large (small) changes tend to be followed by large (small) changes 

(Mandelbrot, 1963), indicates that the market is more volatile in some periods of 

time than others (Brooks, 2014). Engle (1982) developed the class of 

Autoregressive Conditional Heteroscedasticity (ARCH) model which models risks 

by allowing the conditional variance (ℎ𝑡) of the time series to depend on the 
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previous values of squared error (𝜖𝑡−1, 𝜖𝑡−2, … , 𝜖𝑡−𝑝). The conditional mean of 𝑦𝑡 is 

determined by 𝑥𝑡 𝛽, a linear combination of lagged variables (𝑥𝑡 ) that could take 

almost any forms and is included in the information set 𝜑𝑡−1 with a vector of 

parameters 𝛽. An ARCH (p) model can be written as:     

 

𝑦𝑡 |𝜑𝑡−1~𝑁(𝑥𝑡 𝛽, ℎ𝑡) 

ℎ𝑡 = 𝛼0 +  𝛼1𝜖𝑡−1
2 +  … + 𝛼𝑝𝜖𝑡−𝑝

2    

𝜖𝑡 = 𝑦𝑡 −  𝑥𝑡 𝛽 

 

The model has the desirable econometric application where the previous forecast 

errors are used to predict the next forecast variance. Most importantly, if the 

observed time-varying volatility or volatility clustering could be explained by an 

ARCH process, the researcher could continue to operate on the assumption of 

unconditional stationarity. 

To detect the presence of ARCH effects in the data, Engle (1982) developed an LM 

test for ARCH effects. The null hypothesis assumes that the series of residuals has 

no conditional heteroscedasticity against the alternative hypothesis of series being 

subject to ARCH process. The ARCH model has the following specification: 

 

𝑢𝑡
2 = 𝛼0 +  𝛼1𝑢2𝑡−1 +  … + 𝛼𝑝𝑢2𝑡−𝑝 + 𝜖𝑡  

 

Where at least one of 𝛼𝑖 ≠ 0. The test statistic is a Lagrange multiplier statistic TR2, 

where T is the sample size, R2 is the coefficient of determination for the fitting 

ARCH(p) model with p lags. Under the null hypothesis, the asymptotic distribution 

of the test statistic is chi-square with p degrees of freedom. 

 

One question to consider when applying ARCH models is the number of lagged 

errors. To capture the dependence in the conditional variance, the number of lagged 

errors can be very large which requires more coefficients to be estimated. As the 

squared errors are always positive, when the coefficient is negative the whole term 

is rendered negative. Problems quickly arise when there is one large shock 

accompanied by one negative coefficients which could make the conditional 

variance negative. By definition, conditional variance ℎ𝑡 should always be positive. 

A negative conditional variance is meaningless. Aware of this limitation and 

relatively arbitrary selection of lag structure in ARCH models, Bollerslev (1986) 
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extended ARCH model in a way similar to extending AR process to ARMA process 

of time series data. The result is a generalized ARCH (GARCH) model. A GARCH 

(p,q) model can be written as: 

 

𝑦𝑡 |𝜑𝑡−1~𝑁(𝑥𝑡 𝛽, ℎ𝑡) 

ℎ𝑡 = 𝛼0 + ∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑞

𝑖=1

+ ∑ 𝛽𝑖ℎ𝑡−𝑖

𝑝

𝑖=1

    

𝜖𝑡 = 𝑦𝑡 −  𝑥𝑡 𝛽 

 

Letting past conditional variance enter the adaptive learning mechanism, GARCH 

models essentially have the one-period-ahead conditional variance determined by a 

weighted average of its long-term average value (𝛼0), past errors (∑ 𝛼𝑖𝜖𝑡−𝑖
2𝑞

𝑖=1 ), and 

past conditional variances (∑ 𝛽𝑖ℎ𝑡−𝑖)
𝑝
𝑖=1 . As a GARCH (1,1) model can be proven 

to be a restricted infinite order ARCH model, it is parsimonious and more unlikely 

to violate the non-negativity constraints for the conditional variance. The 

conditional variance equation of a GARCH (1,1) model can be written as: 

 

ℎ𝑡 = 𝛼0 + 𝛼1𝜖𝑡−1
2 + 𝛽ℎ𝑡−1    

Simple economic interpretation can be drawn by comparing the coefficients in this 

specification. If the past error coefficient 𝛼1 is large compared with past conditional 

variance coefficient 𝛽, the volatility reacts very quickly to recent shocks and is 

spikier. If the past conditional variance coefficient 𝛽 is large compared with the 

past error coefficient 𝛼1, past shocks have a persistent effect on volatility and dies 

our slowly. As long as α1 + β < 1, the unconditional variance of 𝜖𝑡  can be derived 

and shown as: 

 

Var(ϵt ) =  
α0

1 − (α1 + β)
 

 

If α1 + β ≥ 1, the unconditional variance is undefined and the conditional variance 

would not converge to its long-term (Brooks, 2014) 

 

Following its discovery, GARCH models have been widely used in financial 

science and various extensions have been developed in order to fit GARCH model 
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for different markets and conditions. One of them, GARCH in Mean (GARCH-M) 

has a particular interest for financial markets in general and for dry bulk market in 

particular. It was first developed, based on the ARCH-M model by Engle, Lilien 

and Robins (1987), which was specified in the following way: 

 

 

𝑦𝑡= 𝛽 +  𝛿ℎ𝑡 + 𝜖𝑡 

ℎ𝑡 = 𝛾 +  𝑎 ∑ 𝑤𝑡𝜖𝑡−𝑡
2   

𝜖𝑡~𝑁(0, ℎ 𝑡
2) 

 

Adding the conditional standard deviation term to the mean equation make the 

parameters in both mean and variance equation must be estimated jointly to be 

asymptotically efficient. This model has an intuitive economic logic: it allows to 

model for risk-return trade-off and gives a possibility to analyze the nature of risk 

premium for better market understanding. GARCH-M is identical to a usual 

GARCH model, presented before, with an addition of any conditional variance term 

(variance, standard deviation, log of variance etc) into the conditional mean 

equation. For example, in Brooks (2014) it is specified as: 

 

𝛾𝑡 = 𝜇 + 𝛿𝜎𝑡−1 + 𝑢𝑡, 𝑢𝑡,~(0, 𝜎𝑡
2) 

𝜎𝑡
2 = 𝛼0 + 𝛼1𝑢𝑡−1

2 + 𝛽𝜎𝑡−1
2  

When 𝛿 is positive (negative), it implies that conditional return increases 

(decreases), when risk, represented by conditional variance, increases.  

 

By squaring the error terms, the specification of GARCH model assumes that both 

positive and negative shocks have a symmetric effect on the volatility. This is a 

limiting factor for the practical application of GARCH as it is observed that in 

financial series bad news causes volatility to rise more than good news does. Plenty 

of research done in the past has confirmed the phenomenon in both the equity and 

bond market (Black, 1976; Nelson, 1991; Engle and Ng, 1993; Koutmos and Booth, 

1995; Bekaert and Wu, 2000; De Goeij and Marquering, 2006). In the equity 

market, it is commonly theorized that the “Leverage Effect” causes the volatility to 

increase more on bad news because of the increased leverage when equity value 

drops that makes investors consider their investment riskier. Nelson (1991) found 

09867940986285GRA 19502



  

23 

the exponential GARCH model (EGARCH) that solves the issue the above issue 

and non-negativity constraints imposed in the GARCH model. One specification of 

the conditional variance equation of EGARCH (1,1) model assuming conditionally 

normal errors is as follow: 

 

ln(h)  = ω + β ln(ht−1) +  𝛾
𝜖𝑡−1

√ht−1
+  𝛼 [

|𝜖𝑡−1|

√ht−1
−  √

2

𝜋
]    

  

This model is no longer subject to violations of non-negativity from negative 

parameters because h remains positive when the logarithm of h is negative. If 𝛾 is 

significant and not equal to zero, the asymmetric effect is present. When 𝛾 is 

negative, negative shocks have a stronger effect on the volatility. When 𝛾 is 

positive, positive shocks have a stronger effect on the volatility.  

 

A GARCH process has a requirement of conditional normality to have consistent 

parameters via log-likelihood maximization. However, this assumption is often 

violated when analyzing financial data. Hence, the estimated coefficient would be 

inconsistent. To deal with this problem Bollershev and Wooldridge (1992) 

developed Quasi-Maximum Likelihood Estimation method for GARCH processes. 

It includes robust inference procedures which enable estimation of asymptotic 

standard errors, which are valid and consistent under nonnormality. Therefore, we 

use QMLE in case the assumption of normality is violated. 

 

Goodness of fit for the mean equation is crucially important for the GARCH 

estimation process, since its shocks directly impact the conditional volatility 

estimation through the ARCH term. R2 is traditionally used a scaled goodness of fit 

statistic. The goodness of fit statistic is given by the ratio of the explained sum of 

squares to the total sum of squares (Brooks 2014): 

 

𝑅2 = 
𝐸𝑆𝑆

𝑇𝑆𝑆
 

 

R2 is a measure of what part of the dependent variable is explained by the specified 

model and lays between 0 and 100%. However, its measure has a significant 

drawback: it never falls with the addition of new explanatory variables, as any 
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added information would not decrease the explained sum of squares. Therefore, we 

use Adjusted R2, which is defined as: 

 

R̃2 = 1 − [ 
𝑇−1

𝑇−𝑘
 (1 −  𝑅2)] 

Where T is the total number of observations and k is the total number of variables. 

Adjusted R2 would only increase when the value of added information by a new 

variable is higher than offsetting amount of lost degrees of freedom. Hence, by 

using Adjusted R2 it is possible to determine parsimonious mean equation. 

  

Pagan and Schwert (1990) used news impact curve to present how new information 

is incorporated into conditional volatility estimates. X-axis takes the one-period 

lagged shock and Y-axis takes the estimated conditional variance of the next period. 

The standard GARCH model always produces a symmetric news impact curve that 

centered around 𝜖𝑡−1 = 0 because positive shocks and negative shocks of the same 

magnitude have the same effect on volatility. Larger shocks produce more volatility 

at a rate proportional to the squared size of the shock. As a result, standard GARCH 

models run the risk of underpredicting the volatility after bad news and 

overpredicting the volatility after good news. In addition, it also underpredicts 

volatility when larger shocks cause volatility to rise more than its quadratic 

functions allows. Engle and Ng (1993) proposed a diagnostic test on the sign bias 

and size bias to address the above issues. The normalized squared residuals are 

regressed against dummy variables of sign bias and size bias and the lagged. If those 

residuals are found significant, the original variance model is deemed misspecified. 

The regression model of the test takes the following form: 

 

�̂�𝑡
2 = 𝜙0 + 𝜙1𝑆𝑡−1

− + 𝜙2𝑆𝑡−1
− 𝜐𝑡−1 + 𝜙2𝑆𝑡−1

+ 𝜐𝑡−1 + 𝑒𝑡             

 

𝑆𝑡−1
−  takes 1 if the shock is negative otherwise it takes 0. 𝑆𝑡−1

+  takes 1 if the shock 

is positive otherwise it takes 0. Significance of 𝜙1would imply sign bias. 

Significance of 𝜙2 or 𝜙3 would imply size bias. Joint test statistic TR2 

asymptotically follows chi-square distribution where R2 is the squared multiple 

correlation of the regression model and T is the number of observations. 
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When selecting the correct model to fit the data, three information criteria AIC, 

SBIC, and HQIC proposed by Akaike’s (1974), Schwarz’s (1978), and Hannan and 

Quinn (1979) respectively are often used to compare the fit between models. All 

three information criteria encompass residual sum of squares (RSS), and penalty 

terms for the loss of degrees of freedom from adding more parameters.  

 

AIC = ln(σ̂
2) +

2k

T
  

SBIC = ln(σ̂
2) +

k

T
 ln(T) 

HQIC = ln(σ̂
2) +

2k

T
ln (ln (T)) 

 

T is the total number of observations. σ̂
2
 is the residual sum of squares divided by 

T. k is the total number of parameters estimated in the model. The lower the 

information criteria are, the lower the variance is unexplained by the model, 

indicating a model of better quality.  

 

Another important diagnostic is the presence of serial correlation in the residuals of 

the estimated models. In case it is strong and significant, the estimated coefficients 

would be inefficient. Durbin and Watson (1951) developed a test statistic for serial 

correlation of first order in the residuals: 

 

𝐷𝑊 =
∑ (𝑢�̂� − 𝑢𝑡−1̂)2𝑇

𝑡=2

∑ 𝑢�̂�
2𝑇

𝑡=2

 

DW statistic є [0;4]. When DW equals 2, there is no evidence of serial correlation 

in the residuals, when it is less (more) than 2, it indicates positive (negative) 

autocorrelation. 

 

5 Introduction of the Indices 

 

Our research depends on the indices published daily by the Baltic Exchange Ltd 

(Baltic Exchange) as the proxy for the dry bulk spot freight level. It is therefore 

essential to have a better understanding of their origin, rationale, and computation.  
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Headquartered in London, Baltic Exchange is a membership organization with 

around 600 members in the global shipping market subscribing for access to their 

freight market information. Its roots date back to 18th century being a collection of 

“coffeehouses” where merchants exchanged information about cargoes and ships. 

In the following decades a reliable marketplace for ship and cargoes started to take 

shape and a centralized exchange was formed. As shipping contracts are private 

transactions between only the involved partiers without reporting requirements, it 

is very difficult to gauge the market level from outside. Sitting in the middle of the 

marketplace and next to a network of shipbrokers, Baltic Exchange introduced the 

first index Baltic Freight Index in 1985 (replaced by Baltic Dry Index (BDI) in 

1999) in an effort to provide the freight market a transparent benchmark of 

prevailing freight rate that cuts negotiation hassles and lubricate transactions.  

 

To ensure the accuracy and accountability of the published indices, the governing 

body Baltic Exchange Council oversees the process of indices determination by 

following the Principles for Financial Benchmarks of International Organization of 

Securities Commissions. The representatives, including a chairman, are nominated 

by the members, vetted by the incumbent Baltic Exchange Council, and approved 

by the board of Baltic Exchange. Each representative represents a segment of the 

shipping market with at least one dry bulk, wet bulk, and a shipping derivatives 

broker. In most cases, staff of the Baltic Exchange are forbidden to make direct 

shipping investment to avoid any conflict of interest.  

 

The indices are calculated by aggregating prevailing market spot freight rate of 

major shipping routes on different weighting to account for geographic balance. 

Different types of ships carry different cargoes and trade on different routes. The 

freight rate is reported in either voyage charter basis (reported as $/mt from one port 

to another) or time charter basis (reported as $/day) depending on the route. When 

selecting routes, a steady and significant volume of trade, more transparent and 

competitive fixtures, and more standard terms are the main criteria. A group of 

panelists are appointed by Baltic Exchange to submit daily appraisal of prevailing 

market freight rate. Each panelist is a professional shipbroker which is a member 

of Baltic Exchange, actively engages in the freight market, does not trade as a 

principal, and has no sole dependence on any principals for its business.              
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The five indices used in our study are Baltic Dry Index (BDI), Baltic Capesize Index 

(BCI), Baltic Panamax Index (BPI), Baltic Supramax Index (BSI) and Baltic 

Handysize Index (BHSI). Each of them except BDI captures the spot freight level 

of one individual type of dry bulk carriers. Detailed conditions are set for each type 

of vessel as the basis of what a standard fixture should be. In reality, day-to-day 

fixtures in the dry bulk market have so many variables in terms of vessels, routes, 

and contract terms that a deviation from those set conditions is almost always 

expected. Therefore, the panelists are asked to exercise their professional judgment 

when interpreting market information and make appropriate premium/discount 

adjustment to arrive at the final reported freight rate. One thing to note is that the 

spot freight rate of each route is multiplied by a multiplier before going into the 

index. The multiplier serves two purposes. First, the weighting of the route is taken 

into account. Second, when a new route is added it smoothens the index to avoid a 

dramatic change of the level of the index.   By extracting information from Guide 

to Market Benchmarks Version 3.1 published in November 2016 by Baltic 

Exchange, we examine the route composition and its weight in the following section 

from the largest type of vessel: Capesize to the smallest: Handysize. We also 

conducted a phone interview with staff at Baltic Exchange for more detailed 

questions and interpretations. BDI is introduced after the other four indices as it 

includes elements in all four indices.           

5.1 Baltic Capesize Index 

 

Vessel Description (the *routes): 

 

• 180,000mt dwt on 18.2m SSW draft 

• Max age 10 yrs  

• LOA 290m, beam 45m, TPC 121  

• 198,000cbm grain  

• 14 knots laden/15 knots ballast on 62mt fuel oil (380cst), no diesel at sea  
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C2 (5%) 

Tubarao to Rotterdam. 160,000lt iron ore, 10% more or less in owner’s option, 

free in and out. Laydays/cancelling 20/35 days from index date. 6 days, Sundays 

+ holidays included all purposes. 6 hrs turn time at loading port, 6 hrs turn time 

at discharge port, 0.5% in lieu of weighing. Freight based on long tons. Age max 

18 yrs. 3.75% total commission.  

C3 (15%) 

Tubarao to Qingdao. 160,000mt or 170,000mt iron ore, 10% more or less in 

owner’s option, free in and out. Laydays/cancelling 20/35 days from index date. 

Scale load/30,000mt Sundays + holidays included discharge. 6 hrs turn time at 

loading port, 24 hrs turn time at discharge port. Age max 18 yrs. 3.75% total 

commission. 

C4 (5%) 

Richards Bay to Rotterdam. 150,000mt coal, 10% more or less in owner’s option, 

free in and out, trimmed. Laydays/cancelling 25/40 days from index date. Scale 

load/25,000mt Sundays + holidays included discharge. 18 hrs turn time at loading 

port, 12 hrs turn time at discharge port. Age max 15 yrs. 3.75% total commission. 

C5 (15%) 

West Australia to Qingdao. 160,000mt or 170,000mt iron ore, 10% more or less 

in owner’s option, free in and out. Laydays/cancelling 10/20 days from index 

date. Scale load/30,000mt Sundays + holidays included discharge. 6 hrs turn time 

at loading port, 24 hrs turn time at discharge port. Age max 18 yrs. 3.75% total 

commission.  

C7 (5%) 

Bolivar to Rotterdam. 150,000mt coal, 10% more or less in owner’s option, free 

in and out, trimmed. Laydays/cancelling 20/35 days from index date. 50,000mt 

Sundays + holidays included load, 25,000mt Sundays + holidays included 

discharge. 12 hrs turn time at loading port, 12 hrs turn time at discharge port. Age 

max 15 yrs. 3.75% total commission.  

C8_14* (5%) 

Delivery Gibraltar-Hamburg range, laydays/cancelling 3/10 days from index 

date, transatlantic round voyage, redelivery Gibraltar-Hamburg range, duration 

30-45 days. 5% total commission.  
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C9_14* (7.5%) 

Delivery Amsterdam-Rotterdam-Antwerp range or passing Passero, 

laydays/cancelling 3/10 days from index date, redelivery China-Japan range, 

duration about 65 days. 5% total commission. 

C10_14* (15%) 

Delivery China-Japan range, laydays/cancelling 3/10 days from index date, 

redelivery China-Japan range, duration 30-40 days. 5% total commission.  

C14_14* (15%) 

Delivery Qingdao spot or retroactive up to a maximum 15 days after sailing from 

Qingdao, round voyage via Brazil, redelivery China-Japan range, duration 80-90 

days. 5% total commission. 

C15 (5%) 

Richards Bay to Fangcheng. 160,000mt coal, 10% more or less in owner’s option, 

free in and out, trimmed, scale load / 30,000mt Sundays + holidays included 

discharge. 18 hrs turn time at loading port, 24 hrs turn time at discharge port. 

Laydays/cancelling 25/35 days from index date. Age max 15 yrs. 5% total 

commission.  

C16* (7.5%) 

Delivery North China-South Japan range, 3-10 days from index date for a trip via 

Australia or Indonesia or US west coast or South Africa or Brazil, redelivery UK-

Cont-Med within Skaw-Passero range, duration to be adjusted to 65 days. 5% 

total commission.  

Table 5.a: Route Composition of Baltic Capesize Index 

5.2 Baltic Panamax Index 

 

Vessel Description: 

 

• 74,000mt dwt on 13.95m SSW draft  

• Max age 12 yrs  

• LOA 225m, beam 32.2m  

• 89,000 cbm grain  

• 14 knots on 32mt fuel oil (380cst) laden/28mt fuel oil (380cst) ballast, no diesel 

at sea.  
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P1A_03 (25%) 

Delivery Skaw-Gibraltar range, loading 15-20 days from index date, transatlantic 

round voyage, including east coast South America, redelivery Skaw-Gibraltar 

range, duration 45-60 days. Cargo basis grain, ore, coal or similar bulk harmless 

cargo. 3.75% total commission.  

P2A _03 (25%) 

Delivery Skaw-Gibraltar range, loading 15-20 days from index date, for a trip via 

east coast South America, US Gulf or US east coast to Asia, redelivery Taiwan-

Japan range, duration 60-65 days. Cargo basis grain, ore, coal or similar bulk 

harmless cargo. 3.75% total commission.  

P3A _03 (25%) 

Delivery Japan-South Korea range, loading 15-20 days from index date, 

transpacific round voyage, either via Australia or Pacific (not including short 

rounds such as Vostochny to Japan), redelivery Japan-South Korea range, 

duration 35-50 days. Cargo basis grain, ore, coal or similar bulk harmless cargo. 

3.75% total commission.  

P4 _03 (25%) 

Delivery Japan-South Korea range, loading 15-20 days from index date, for a trip 

via US west coast- British Columbia range or Australia, redelivery Skaw-Passero 

range, duration 50-60 days. Cargo basis grain, petroleum coke, coal or similar 

bulk harmless cargo. 3.75% total commission. 

Table 5.b: Route Composition of Baltic Panamax Index 

5.3 Baltic Supramax Index 

 

Vessel Description: 

 

• 52,454mt dwt on 12.02m SSW draft  

• Max age 15 yrs  

• LOA 189.99m, beam 32.26m  

• 67,756cbm grain, 65,600cbm bale  

• 5 holds, 5 hatches  

• 4 x 30mt cranes with 12cbm grabs  

• 14 knots laden/14.5 knots ballast on 30mt fuel oil (380cst), no diesel at sea 
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S1A (12.5%) 

Delivery Antwerp-Skaw range, laydays/cancelling 5/10 days from index date, 

redelivery Singapore-Japan range (including China), duration 60-65 days. 5% 

total commission.  

S1B (12.5%) 

Delivery passing Canakkale, laydays/cancelling 5/10 days from index date, 

redelivery Singapore-Japan range (including China), duration 50-55 days. 5% 

total commission.  

S2 (25%) 

Delivery South Korea-Japan range, laydays/cancelling 5/10 days from index 

date, for an Australian or transpacific round voyage, redelivery South Korea-

Japan range, duration 35-40 days. 5% total commission.  

S3 (25%) 

Delivery South Korea-Japan range, laydays/cancelling 5/10 days from index 

date, redelivery Gibraltar-Skaw range, duration 60-65 days. 5% total 

commission.  

S4A (12.5%) 

Delivery US Gulf, laydays/cancelling 5/10 days from index date, redelivery 

Skaw-Passero range, duration about 30 days. 5% total commission.  

S4B (12.5%) 

Delivery Skaw-Passero range, laydays/cancelling 5/10 days from index date, 

redelivery US Gulf, duration about 30 days. 5% total commission.  

Table 5.c: Route Composition of Baltic Supramax Index 

 

5.4 Baltic Handysize Index 

Vessel Description: 

 

• 28,000mt dwt on 9.78m SSW draft  

• Max age 15 yrs  

• LOA 169m, beam 27m  

• 37,523cbm grain, 35,762cbm bale  

• 5 holds, 5 hatches  

• 4 x 30mt cranes  

• 14 knots average laden/ballast on 22mt fuel oil (380cst), no diesel at sea  
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HS1 (12.5%) 

Delivery Skaw-Passero range, laydays/cancelling 5/10 days from index date, 

redelivery Recalada-Rio de Janeiro range, duration 35-45 days. 5% total 

commission.  

HS2 (12.5%) 

Delivery Skaw-Passero range, laydays/cancelling 5/10 days from index date, 

redelivery Boston-Galveston range. Duration 35-45 days. 5% total commission.  

HS3 (12.5%) 

Delivery Recalada-Rio de Janeiro range, laydays/cancelling 5/10 days from 

index date, redelivery Skaw-Passero range, duration 35-45 days. 5% total 

commission.  

HS4 (12.5%) 

Delivery US Gulf, laydays/cancelling 5/10 days from index date, for a trip via 

US Gulf or north coast South America, redelivery Skaw-Passero range, duration 

35-45 days. 5% total commission.  

HS5 (25%) 

Delivery South East Asia, laydays/cancelling 5/10 days from index date, trip via 

Australia, redelivery Singapore–Japan range including China, duration 25-30 

days. 5% total commission.  

HS6 (25%) 

Delivery South Korea-Japan range, laydays/cancelling 5/10 days from index 

date, trip via North Pacific, redelivery Singapore-Japan range including China, 

duration 40-45 days. 5% total commission.  

Table 5.d: Route Composition of Baltic Handysize Index 

 

5.5 Baltic Dry Index 

Until 30 June 2009 BDI used to be calculated by the equal weighted average of the 

BCI, BPI, BHSI and the BSI index (multiplied by a multiplier). The multiplier is a 

number constructed by the Exchange to ensure that the index level stays consistent 

through time. Suggested by the members, Baltic Exchange modified its 

methodology for BDI through the following formula: 
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BDI = ((Capesize Time Charter Average Rate + Panamax Time Charter Average 

Rate + Supramax Time Charter Average Rate + Handysize Time Charter Average 

Rate)/ 4) * 0.110345333 

 

0.110345333 is the multiplier which was last updated on 6 May 2014. The time 

charter average rate is different from the index level. The time charter average rate 

is reported in $/day and serves as an intuitive indicator for market participants who 

need to calculate revenues/costs of their fixture and investment decisions. It only 

includes routes reported in time charter basis. The reported freight rate is multiplied 

by its route weighting before going into the time charter average rate. For Capesize, 

the voyage charter router C2, C3, C4, C5, C7, C15 do not contribute to the Capesize 

Time Charter Average Rate. Only C8_14, C9_14, C10_14, C14_14, and C16_14 

are used with weightings of 25%, 12.5%, 25%, 25%, and 12.5% respectively. For 

the other three types of vessels, all the routes are included since they are all time 

charter routes.  

 

6 Data 

 

Analyzing daily volatility requires a high number of observations to derive robust 

volatility estimates. We used the data from the Baltic Exchange to analyze five 

indices separately and compare the results.  

6.1 Raw Data Analysis 

 

The scope of our research includes four major vessel types: Capesize, Panamax, 

Supramax, Handysize. Daily observations of Baltic Capesize Index (BCI), Baltic 

Panamax Index (BPI), Baltic Supramax Index (BSI), Baltic Handysize Index 

(BHSI), and Baltic Dry Index (BDI) are analyzed in the following sections. 

Table 6.a shows the sample period of each index.  

 

 

Table 6.a: Sample Period  

Index BCI BPI BSI BHSI BDI

From   1999.03.01 1998.12.31 2005.07.01 2007.01.02 1985.01.04

To 2016.11.03 2016.11.03 2016.11.03 2016.11.03 2016.11.03

Observations 4614 4457 2836 2462 7994
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Graphs 6.a presents the daily index level in all segments of dry bulk market.  

 

 

Graph 6.a. Daily index level in the dry bulk market 

 

The rates peaked before the start of financial crisis in 2008 and then plummeted, 

exampled by the 95% drop of BDI. Since then the price has moderately recovered 

but has not returned to the its previous level. 

 

 

Table 6.b: Descriptive statistics of the index level   

    

The descriptive statistics of the indices’ prices pinpoints two extremely important 

patterns – positive skewness, which indicates that the dry bulk prices lay right to 

the mean more often, then left or, in other words, high prices are met more often 

than low, as compared to the average. This probably indicates a bubble in the 

shpping prices, which took place before the financial crisis in 2008. Next, we see 

Segment BCI BPI BSI BHSI BDI

Mean 3462.95 2398 1837 925 1936

Median 2314 1607 1380 658 1394

Standard Deviation 3125 2105 1454 742 1717

Kurtosis 4.83 3.74 2.13 1.68 9.22

Skewness 2.08 1.91 1.64 1.63 2.85

Minimum 161 282 243 183 290

Maximum 19687 11713 6956 3407 11793

Observations 4614 4457 2836 2462 7994
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differences in Kurtosis: BDI, Panamax and Capesize are leptokurtic, while 

Handysize and Supramax are platykurtic.  

 

Overall, we can clearly see a long-term trending in the price level of the indices, 

therefore the trends need to be eliminated from the data to analyze volatility 

structure. Besides, for practical purposes the change of levels is more important for 

the industry. 

 

6.2 Preliminary Analysis of the Daily Log Returns 

 

Below we present the summary statistics of daily log returns1 for BDI, BCI, BPI, 

BSI, and BHSI.  

 

 

Table 6.c: Descriptive statistics of log returns for the index  

                                                 

1 Log returns have been calculated as Ln(Pn+1/Pn), where Pn is the index value for the day N 

Segment R_BCI R_BPI R_BSI R_BHSI R_BDI

Mean 9.41E-05 4.28E-05 -3.76E-04 -5.14E-04 -2.05E-05

Median 0 0 0 0 0

Standard Deviation 0.0340 0.0233 0.0157 0.0130 0.0151

Sample Variance 0.0012 0.0005 0.0002 0.0002 0.0002

Kurtosis 11.82 7.18 18.31 14.01 9.47

Skewness 0.99 -0.08 0.38 -1.14 0.08

Range 0.5566 0.3551 0.3194 0.2358 0.2573

Minimum -0.1921 -0.2162 -0.1166 -0.1377 -0.1207

Maximum 0.3644 0.1389 0.2028 0.0981 0.1366

J-B Statistic 27533.11 9560.62 39529.90 20576.34 29811.19

Observations 4614 4457 2836 2462 7994
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Graph 6.b. Daily log returns of BCI    

 

 

Graph 6.c. Daily log returns of BPI    
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Graph 6.d. Daily log returns of BSI  

 

 

Graph 6.e. Daily log returns of BHSI   
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Graph 6.f. Daily log returns of BDI    

 

From graph 6.b to graph 6.f we observe that daily log returns of all the indices move 

around 0 and have time-varying volatility. Abnormally high volatilities are 

observed around the 2008 financial crisis and recently around 2015. We also 

observe that sometimes bigger changes follow bigger changes, indicating the 

presence of volatility clustering. Therefore, homoscedastic volatility models are 

unlikely to explain the dynamics in the dry bulk segment. We observe similar 

patterns in the graphs of other dry bulk indices. 

 

Next, we analyze the descriptive properties of the daily price changes in all dry bulk 

segments and the compound BDI index presented in table X. First of all, we notice 

that both their means and medians are very close to 0. We note that the classical 

measure of standard deviation increases with the size of the vessels from 1.3% for 

smallest Handysize ships to 3.4% for Capesize ships. This can likely be due to the 

limited nature of cargoes and ports for bigger ships. Despite being more volatile, 

Capesize and Panamax ships earn small positive returns on average, as compared 

to small negative returns for Handysize and Supramax.. We also observe a 

difference in maximum and minimum market reactions, especially well-depicted in 

the statistic of Capesize index with +36.4% daily max gain and -19.2% daily max 

loss, which signals a potential property of the market: asymmetric reactions to 
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positive and negative news. Yet again, the bigger the vessel class – the greater the 

difference between the maximum and the minimum price change, hence we yet 

again have an intention to test for likely asymmetries in the volatility structure.  

 

According to Jarque-Bera statistics, we can reject the hypothesis of normality at 1% 

significance level for all five indices. Negative skewness for Handysize and 

Panamax indices daily returns indicates that extremely high losses are more likely 

than extremely high returns negative losses, while BDI, Capesize and Supramax are 

positively-skewed, hence for them the opposite is true. In addition, the composite 

BDI has a skewness closer to 0, showing a potential effect of diversification. All 

five indices daily log returns are leptokurtic, which indicates they are likelier to 

have extreme outcomes, as compared to normal distributions. This is quite typical 

for high-frequency financial data.  

 

We use both Augmented Dickey-Fuller Test and Phillips-Perron Test to examine 

whether the series are stationary. If both tests yield the same conclusion we could 

be more certain about the result. The results presented in table 6.d show that for all 

series the null hypothesis of presence of a unit root is rejected at 5% significance 

level. We conclude that all series are stationary.     

 

 

Table 6.d: Stationarity test 

 

We use Ljung-Box Q-statistic to test for autocorrelation in the series for order 1, 7 

and 30. The results presented in table 6.e reject the null hypothesis that 

autocorrelations up to lag 1, 7, and 30 equal zero at 1% significance level. We 

conclude that all series are subject to strong autocorrelation, which is common for 

high-frequency financial series.  

 

 

Table 6.e: Ljung–Box Q test 

R_BCI R_BPI R_BSI R_BHSI R_BDI

ADF t-statistic -24.15 -19.08 -12.74 -10.66 -27.63

Phillips-Perron t-statistic -29.82 -12.99 -13.13 -11.64 -30.51

Critical Value (5%) -2.86 -2.86 -2.86 -2.86 -2.86

R_BCI R_BPI R_BSI R_BHSI R_BDI

Q(1) (p-value) 2036 (0.000) 3300 (0.000) 2249 (0.000) 1941 (0.000) 4861 (0.000)

Q(7) (p-value) 3118 (0.000) 6440 (0.000) 8264 (0.000) 8142 (0.000) 10253 (0.000)

Q(30) (p-value) 3525 (0.000) 6511 (0.000) 9505 (0.000) 10373 (0.000) 11763 (0.000)
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7 Empirical Results 

 

In this section, we attempt to find the most suitable model for each series. We apply 

a number of models based on theories, previous studies, and statistical tests. Then 

we analyze the result, compare the differences, and derive economic insights in 

each segment.  

 

The data of each segment has its own characteristics driven by different economic 

natures. Therefore, each segment shall be analyzed separately. In the previous 

studies of dry bulk freight volatilities, several heteroscedastic models, presented in 

table 7.a, were fitted for different dry bulk segments. In our own estimation process 

we consider all those models and focus on univariate specifications. 

 

Table 7.a Model specifications in previous dry bulk market studies 

 

 

7.1 Baltic Capesize Index 

According to correlogram and Ljung-Box Q statistics, we assume the presence of 

autoregressive stationary process of 2nd order – ARMA(2:0) model. 

 

Study Model Vessel Type

Kavussanos(1996) GARCH(1,1)

Kavussanos and Alizadeh (2002) EGARCH(1,1)-M

Marlow et al. (2008)
GARCH(1,1)

EGARCH(1,1)

Alizadeh and Nomikos (2011) EGARCH(1,1)-X

Xu (2011) GARCH(1,1)

Drobetz (2012)
EGARCH(1,1)

EGARCH(1,1)-X

GARCH(3,3)-M

EGARCH(1,3)-M
Capesize

Geomelos and E. Xideas (2014)
GARCH(3,3)-M

EGARCH(1,6)-M
Panamax

GARCH(1,3)

EGARCH(1,6)-M
Handysize

Capesize

Panamax

Handysize

Capesize

Panamax
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Graph 7.a: Correlogram for BCI 

 

The Automatic ARIMA Forecasting function provided by EViews suggests an 

ARMA (2,3) specification. The two estimated models are presented in table 7.b. 

 

Table 7.b: ARMA models specification for BCI 

 

 

Variable AR (2) ARMA (2,3)

Constant 0.000115

(0.97)

0.000123

(0.92) 

R_BCI t-1 0.75

(0)

1.098

(0)

R_BCI t-2 -0.13

(0)

-0.2

(0.0003)

MA t-1 -0.35

(0)

MA t-2 -0.197

(0) 

MA t-3
-0.1249

(0)

R
2 0.4505 0.4539

AIC -4.522 -4.526

BIC -4.516 -4.516

Durbin-Watson 1.992 1.998
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Comparing AR(2) model to ARMA(2;3) model we can see that the latter has a 

higher R2 of 45.39%, as compared to 45.05%; both AIC and BIC are slightly lower 

for ARMA(2;3) as compared to AR(2) . We conclude that despite including slightly 

more information, ARMA(2;3) loses degrees of freedom, while including 3 extra 

variables, which complicate the modelling and the interpretation.. Therefore, we 

opt to go on with a parsimonious AR(2) model. The Durbin-Watson statistic is at 

1.992, which indicates a small positive autocorrelation. 

 

To investigate the presence of ARCH-effects we use an ARCH -LM of order 5, 

according to which we reject the null hypothesis of no heteroscedasticity at 5% 

level of significance, therefore – we assume the presence of ARCH effects. We see 

presence of ARCH-effects in first, second and fifth orders of squared residuals’ 

lagged variables.  

 

Table 7.c: ARCH-LM test for BCI 

 

 

We start from GARCH(1,1) specification and we find that the standardized 

residuals appear to be non-normally distributed. The Jarque-Bera statistics strongly 

rejects the hypothesis of normality (Appendix B). Therefore, robust standard errors 

are used by selecting Bollershev-Wooldridge Heteroscedasticity consistent 

covariance matrix, therefore using Quasi Maximum Likelihood.  

 

Sign and size bias test, developed by Engle and Ng (1993) joint test statistic, 

formulated by calculating TR2, suggests strongly rejecting the null hypothesis of no 

asymmetric effects. Moreover, both size effects and sign effect appear to be 

significant at 1% level (Appendix C). Hence, we specify an EGARCH(1,1) model 

for BCI. EGARCH(1;1) with GED model’s asymmetry term was found 

insignificant, however, the sign and size bias test strongly suggests the presence of 

asymmetric leverage effects. One of the possible explanation for this phenomenon 

Variable t-Statistic p-value

22.28 0

2.48 0.0132

1.56 0.1182

0.69 0.4909

9.08 0

F-statistic 165.87 0
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is higher order of asymmetry in the Capesize returns. our data is a daily data of 

higher frequency, as opposed to the most of previous studies, we would like to first 

test for the increased order of ARCH effects, rather than GARCH effects. The 

reasoning is simple: the shocks are likely to be more important in the short term and 

the asymmetry is brought by the innovations, hence this is where we seek for the 

model improvement.  

 

Compliant with the logic of Adland and Cullinane(2005) and with empirical results 

from N.D. Geomelos and E. Xideas (2014), we simultaneously test for the risk 

premium in the Capesize spot returns. Hence, we estimate an EGARCH(2;1)-M 

model. Table 7.d presents the considered models for BCI, their information criteria 

and diagnostics, followed by the comparison of model forecast and realized 

volatility (approximated by squared daily log returns) and the QQ-plots of the 

standardized residuals. 
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Table 7.d: Results of Estimated GARCH type models for BCI 
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7.2 Baltic Panamax Index 

 

According to correlogram and Ljung-Box Q statistics, we assume the presence of 

autoregressive stationary process of 2nd order – ARMA(2:0) model. 

 

 

Graph 7.b: Correlogram for BPI 

 

The Automatic ARIMA Forecasting function provided by EViews suggests an 

ARMA (4,4) specification. The two estimated models are presented in table 7.e. 
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Table 7.e: ARMA models specification for BPI 

 

 

Comparing AR(2) model to ARMA(5;5) model we can see that the latter has a 

higher R2 of 77.83%, as compared to 77.37% , both AIC and BIC are slightly lower 

for ARMA(5;5) as compared to AR(2) . We conclude that despite including slightly 

more information about log-returns, ARMA(5;5) loses degrees of freedom and does 

not add much forecasting power, as compared to a simpler AR(2). Therefore, we 

opt to go on with a parsimonious AR(2) model. The Durbin-Watson Statistic equals 

2, indicating no presence of serial autocorrelation. 

 

To investigate the presence of ARCH-effects we use an ARCH -LM of order 5, 

according to which we reject the null hypothesis of no heteroscedasticity at 5% 

level of significance, therefore – we assume the presence of ARCH effects. We see 

presence of ARCH-effects in first 5 orders of squared residuals’ lagged variables. 

  

 

 

 

Variable AR (2) ARMA (5,5)

Constant -0.000057

(0.95)

-0.000000537

(0.95) 

R_BPI t-1 1.17

(0)

1.73

(0)

R_BPI t-2 -0.36

(0)

-1.71

(0)

R_BPI t-3 1.81

(0)

R_BPI t-4 -1.53

(0)

R_BPI t-5 0.54

(0)

MA t-1
-0.57

(0)

MA t-2
0.69

(0) 

MA t-3 -0.75

(0)

MA t-4 0.36

(0)

MA t-5 0.148

(0)

R
2 0.7737 0.7783

AIC -6.17 -6.18

BIC -6.16 -6.17

Durbin-Watson 2 1.997
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Table 7.f: ARCH-LM test for BPI 

 

 

We start from GARCH(1,1) specification and find that the standardized residuals 

appear to be non-normally distributed. The Jarque-Bera statistics strongly rejects 

the hypothesis of normality (Appendix B). Therefore, robust standard errors are 

used by selecting Bollershev-Wooldridge Heteroscedasticity consistent covariance 

matrix, therefore using Quasi Maximum Likelihood.  

 

Sign and size bias test, developed by Engle and Ng (1993) joint test statistic, 

formulated by calculating TR2, suggests strongly rejecting the null hypothesis of no 

asymmetric effects. Sign effect appears to be insignificant, indicating absence of 

asymmetry, while both positive and negative size effects are significant at 1% level 

(Appendix C). EGARCH(1;1) asymmetry term was found insignificant compliant 

with the results of the asymmetry test.  

 

Kavussanos and Alizadeh (2002) found a time varying risk premium in the 

Panamax returns. Hence, we estimate GARCH(1;1)-M model and confirm the 

presence of positive risk premium. Table 7.g presents the considered models for 

BPI, their information criteria and diagnostics, followed by the comparison of 

model forecast and realized volatility (approximated by squared daily log returns) 

and the QQ-plots of the standardized residuals. 

  

Variable t-Statistic p-value

16.18 0

10.52 0

-2.5 0.0123

5.6 0

10.52 0

F-statistic 183.87 0
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Table 7.g: Results of Estimated GARCH type models for BPI  
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7.3 Baltic Supramax Index 

 

According to the correlogram and Ljung-Box Q statistics, we assume the presence 

of autoregressive stationary process of 1st order – ARMA(1:0) model.  

 

 

Graph 7.c: Correlogram for BSI 

 

The Automatic ARIMA Forecasting function provided by EViews suggests an 

ARMA (4,4) specification. The two estimated models are presented in table 7.h. 
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Table 7.h: ARMA models specification for BSI 

 

 

Comparing AR(1) model to ARMA(4,4) model we can see that the latter has a 

higher R2 of 79.47%, as compared to 79.19% and a slightly lower AIC criterion of 

-7.043 as compared to -7.0351 in AR(1). However, its BIC is higher, being at -

7.022 versus -7.0288 in the AR(1). Hence, we conclude that despite including 

slightly more information, ARMA(4,4) loses degree of freedom and does not add 

much more forecasting power compared to an AR(1). Durbin-Watson statistic is 

around 1.96, close to 2, indicating the absence of strong autocorrelation in the 

residuals. Therefore, we opt to go on with a parsimonious AR(1) model. 

 

To investigate the presence of ARCH-effects we use an ARCH -LM of order 5, 

according to which we reject the null hypothesis of no heteroscedasticity at 5% 

level of significance, therefore – we assume the presence of ARCH effects. 

 

 

 

Variable AR (1) ARMA (4,4)

Constant -0.000374

(0.77)

-0.000364

(0.76)

R_BSI t-1 0.89

(0)

0.18

(0.12)

R_BSI t-2 0.91

(0.00)

R_BSI t-3 0.31

(0.00)

R_BSI t-4 -0.52

(0.00)

MA t-1
0.735

(0.00)

MA t-2 -0.29

(0.10)

MA t-3
-0.52

(0.10)

MA t-4 0.07

(0.00)

R
2 0.7919 0.7947

AIC -7.0351 -7.043

BIC -7.0288 -7.022

Durbin-Watson 1.96 1.99
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Table 7.i: ARCH-LM test for BSI 

 

 

 

Particularly, we see presence of ARCH-effects in first 3 orders of squared 

residuals’ lagged variables. 

 

We start from GARCH(1,1) specification and find that the standardized residuals 

appear to be non-normally distributed. The Jarque-Bera statistics strongly rejects 

the hypothesis of normality (Appendix B). Therefore, robust standard errors are 

used by selecting Bollershev-Wooldridge Heteroscedasticity consistent covariance 

matrix, therefore using Quasi Maximum Likelihood.  

 

Sign and size bias test, developed by Engle and Ng (1993) joint test statistic, 

formulated by calculating TR2, suggests strongly rejecting the null hypothesis of no 

asymmetric effects. Sign effect is insignificant, but both positive and negative size 

effects are significant at 1% level (Appendix C). EGARCH(1;1) asymmetry term 

was found insignificant, confirming the results of sign and size bias test.  

 

Compliant with the logic of Adland and Cullinane(2005), we test for the risk 

premium in the Supramax spot returns. Hence, we estimate a GARCH(1;1)-M 

model and confirm the presence of positive risk premium. Table 7.j presents the 

considered models for BSI, their information criteria and diagnostics, followed by 

the comparison of model forecast and realized volatility (approximated by squared 

daily log returns) and the QQ-plots of the standardized residuals. 

Variable t-Statistic p-value

3.74 0.0002

2.29 0.0219

2 0.0458

0.32 0.7497

0.15 0.8805

F-statistic 5.35 0.0001
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Table 7.j: Results of Estimated GARCH type models for BSI   
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7.4 Baltic Handysize Index 

 

According to correlogram and Ljung-Box Q statistics, we assume the presence of 

autoregressive stationary process of 2nd order – ARMA(2:0) model.  

 

 

Graph 7.d: Correlogram for BHSI 
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The Automatic ARIMA Forecasting function provided by EViews suggests an 

ARMA (6,5) specification. The two estimated models are presented in table 7.k. 

 

Table 7.k: AR models specifications for BHSI 

 

 

Comparing AR(2) model to ARMA(6;5) model we can see that the latter has a 

higher R2 of 79.25%, as compared to 78.9% ; same level of  AIC criterion of -7.4, 

but higher level of BIC at -7.38 as compared to -7.39 in AR(2) . Hence, we conclude 

that despite including more information, ARMA(6;5) loses degree of freedom and 

does not add much forecasting power, as compared to a simpler AR(2). Therefore, 

we opt to go on with a parsimonious AR(2) model. Durbin-Watson statistic equals 

2, indicating the absence of strong autocorrelation in the residuals. Therefore, we 

opt to go on with a parsimonious AR(2) model. 

 

Variable AR (2) ARMA (6,5)

Constant -0.000512 -0.000515

(0.68) (0.67)

R_BHSI t-1 0.8 0.64

0 (0.48)

R_BHSI t-2 0.098 0.37

0 (0.05)

R_BHSI t-3 -0.18

(0.68)

R_BHSI t-4 -0.47

0

R_BHSI t-5   0.79

(0.1)

R_BHSI t-6   -0.3

(0.57)

MA t-1 0.15

(0.87)

MA t-2 -0.19

(0.73)

MA t-3 0.11

(0.19)

MA t-4 0.6

(0.0002)

MA t-5   -0.35

(0.597)

R
2

0.789 0.7925

AIC -7.4 -7.4

BIC -7.39 -7.38

Durbin-Watson 2 1.99
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To investigate the presence of ARCH-effects we use an ARCH -LM of order 5, 

according to which we reject the null hypothesis of no heteroscedasticity at 5% 

level of significance, therefore – we assume the presence of ARCH effects. 

 

Table 7.L: ARCH-LM test for BHSI 

 

 

Particularly, we see presence of ARCH-effects in first 5 orders of squared residuals’ 

lagged variables being significant at 1% level. 

 

We start from GARCH(1,1) specification and find that the standardized residuals 

appear to be non-normally distributed. The Jarque-Bera statistics strongly rejects 

the hypothesis of normality (Appendix B). Therefore, robust standard errors are 

used by selecting Bollershev-Wooldridge Heteroscedasticity consistent covariance 

matrix, therefore using Quasi Maximum Likelihood.  

 

Sign and size bias test, developed by Engle and Ng (1993) joint test statistic, 

formulated by calculating TR2, suggests strongly rejecting the null hypothesis of no 

asymmetric effects. Sign effect is significant at 10% level, while both positive and 

negative size effects are significant at 1% level (Appendix C).  

 

EGARCH(1;1) asymmetry term was found insignificant under the assumption of 

normal error distribution, however, Lu et al. (2007) suggested using GED 

distribution for EGARCH class models in dry bulk freight market. Under GED 

asymmetric effects are insignificant at 5% level, hence we proceed using symmetric 

models.  

 

Compliant with the logic of Adland and Cullinane(2005) ,we test for the risk 

premium in the Supramax spot returns. Hence, we estimate GARCH(1;1)-M model 

and confirm the presence of positive risk premium. Table 7.m presents the 

Variable t-Statistic p-value

9.66 0

11.42 0

-3.35 0.0008

3.78 0.0002

4.54 0

F-statistic 79.11 0
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considered models for BHSI, their information criteria and diagnostics, followed 

by the comparison of model forecast and realized volatility (approximated by 

squared daily log returns) and the QQ-plots of the standardized residuals. 
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Table 7.m: Results of Estimated GARCH type models for BHSI 
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7.5 Baltic Dry Index 

According to correlogram and Ljung-Box Q statistics, we assume the presence of 

autoregressive stationary process of 2nd order – ARMA(2:0) model.  

 

 

Graph 7.e: Correlogram for BDI 

 

Table 7.o: AR models specifications for BDI 

 

 

Variable AR (2) MA (2)

Constant -0.0000134

(0.9743)

-0.00000171

(0.95) 

R_BDI t-1 0.9857

(0)

R_BDI t-2 -0.15

(0)

MA t-1 0.85

(0)

MA t-2 0.427

(0) 

R
2 0.6165 0.574

AIC -6.5 -6.4

BIC -6.5 -6.4

Durbin-Watson 1.988 1.77
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Comparing AR(2) model to MA(2) model we can see that the latter has a lower R2 

of 57.4%, as compared to 61.65% ,both AIC and BIC are slightly higher for MA(2) 

as compared to AR(2) . We conclude that AR(2) is superior to MA(2), hence we 

proceed with manually-selected model. Durbin-Watson statistic is at 1.988, 

indicating a presence of small positive autocorrelation. 

 

To investigate the presence of ARCH-effects we use an ARCH -LM of order 5, 

according to which we reject the null hypothesis of no heteroscedasticity at 5% 

level of significance, therefore – we assume the presence of ARCH effects. 

 

Table 7.p: ARCH-LM test for BDI 

 

 

 

We see presence of ARCH-effects in first 5 orders of squared residuals’ lagged 

variables. 

 

We start from GARCH(1,1) specification and we find that the standardized 

residuals appear to be non-normally distributed. The Jarque-Bera statistics strongly 

rejects the hypothesis of normality (Appendix B). Therefore, robust standard errors 

are used by selecting Bollershev-Wooldridge Heteroscedasticity consistent 

covariance matrix, therefore using Quasi Maximum Likelihood.  

 

Sign and size bias test, developed by Engle and Ng (1993) joint test statistic, 

formulated by calculating TR2, suggests strongly rejecting the null hypothesis of no 

asymmetric effects. Moreover, both size effects and sign effect appear to be 

significant at 1% level (Appendix C). Hence, we specify an EGARCH(1,1) model 

for BDI. EGARCH(1;1) model’s asymmetry term was found significant at 10%, 

indicating presence of leverage effects. 

 

Variable t-Statistic p-value

22.71 0

2.29 0.02

6.61 0

2.75 0.006

2.91 0.0036

F-statistic 183.3 0
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We do not find a significant risk premium in EGARCH(1,1)-M. However, as BDI 

is a composite index, its risk structure might be more complicated and account for 

higher order information effects. Geomelos and E. Xideas (2014) used 

EGARCH(1;3)-M for Capesize segment, so we try increasing the order of GARCH 

term to capture more complicated risk-premium structure. Risk premium is positive 

and significant at 10 % for EGARCH(1,2)-M. Table 7.r presents the considered 

models for BDI, their information criteria and diagnostics, followed by the 

comparison of model forecast and realized volatility (approximated by squared 

daily log returns) and the QQ-plots of the standardized residuals. 
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Table 7.r: Results of Estimated GARCH type models for BDI 
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8 Discussion 

 

After estimating all the models, we start the discussion with a thorough examination 

of the models’ coefficients and various statistical measures to arrive at statistical 

interpretation. Based on a few criteria, for each index, the most suitable model is 

chosen, which allows us to analyze and compare the conditional volatility across 

the segments. Lastly, we compare our results with previous studies and derive 

economic implications. 

 

8.1 Statistical Interpretation 

8.1.1 Autoregressive Models for Dry Bulk Freight Returns 

 

With presence of autocorrelation effects in the return series, we have found that 

AR(1) and AR(2) are the most suitable models to capture the dynamics of the 

returns. The first autoregressive term is always positive and higher than the second 

term, indicating the ability of operators to incorporate market information 

efficiently. The Adjusted R2 for Capesize is 43%, which is much lower than for 

Panamax (77%), Supramax (79%) and Handysize (79%). We suspect that the 

underlying data-generating process for the return of Capesize is more complex than 

other vessels, because the prices of its carried cargoes, mainly coal and iron ore, are 

driven by the complicated interplay of global economy. Therefore, a simple 

autoregressive model is insufficient to adequately model the process.  

 

8.1.2 GARCH Models for Dry Bulk Freight Returns 

 

With appropriate models for the mean, the volatility can be modelled properly. We 

start with comparing the coefficients of GARCH(1,1) among all indices. The 

ARCH term for R_BCI, R_BPI, R_BSI, R_BHSI are 0.19; 0.17; 0.25 and 0.16 

respectively. Supramax and Capesize have higher response to new market shocks, 

than Panamax and Handysize. The GARCH terms are 0.85 for R_BCI, 0.84 for 

R_BPI, 0.81 for BSI and 0.79 for BHSI. The degree of shock persistence decreases 

with the vessel size. For BDI, the ARCH term equals 0.15 and GARCH term equals 

0.87. This shows that shocks have long-lasting memory, rather than being spiky for 
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the dry bulk market. The sum of ARCH and GARCH terms is greater than 1 for all 

the indices, including the composite BDI, except the Handysize. This means that 

for BDI, Capesize, Panamax and Supramax the volatility shocks tend to strengthen, 

while for Handysize they will gradually weaken over time. Hence, GARCH(1,1) 

process is non-stationary for BDI, Capesize, Panamax and Supramax, while 

Handysize has unconditional variance of 0.034‰. ARCH-LM test for the GARCH 

residuals of Capesize and Panamax suggests rejecting the null hypothesis of no 

ARCH effects up to the order 5, indicating a potential model misspecification. D-

W statistics of Capesize (2.25) indicates presence of small negative serial 

autocorrelation in GARCH residuals. 

 

8.1.3 Risk Premium in the Dry Bulk Freight Market 

 

Coniditonal volatility term, added to mean equations, appears to be significant and 

helps to explain the return of the dry bulk indices, except Panamax (p-value 0.11). 

The positive risk premium exists in Supramax (0.17) and Handysize (0.10), while 

the negative risk premium exists for Capesize (-0.07). Overall, a positive risk 

premium (0.05) for dry bulk market, can be identified from the result of BDI 

EGARCH-M specification.  

 

8.1.4 Asymmetric Effects in the Dry Bulk Freight Market 

 

In our EGARCH specifications we did not confirm presence of significant 

asymmetric effects for Panamax, Supramax and Handysize. In our EGARCH(2,1)- 

M specification for Capesize shocks from 2 previous periods have a strong, but 

opposite impact, as the 1st order of ARCH effects has a positive impact of 0.6 on 

the level of variance, while the 2nd order of ARCH effects has a negative impact of 

-0.41. The first order asymmetry term (0.1) indicates that positive shocks have 

higher impact than negative ones on the conditional volatility, while the second 

order asymmetry term (-0.1) indicates that negative shocks have higher impact than 

positive ones. The GARCH term (0.996) indicates high volatility persistence. 

EGARCH(1,2)-M, specified for R_BDI, has positive asymmetric term (0.04), 

meaning that positive innovations have higher impact that negative ones. The sum 

of GARCH terms (0.986) indicates high volatility persistence. ARCH-LM test 
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rejects the null hypothesis of no ARCH effects up to order 5 in the residuals of both 

models, indicating a potential model misspecification. The D-W statistic (2.23) of 

EGARCH(2,1)-M model indicates the presence of small negative serial 

autocorrelation.  

 

For the EGARCH models to be reliable, the conditions of stationarity should be 

examined. EGARCH processes for Capesize and BDI satisfy the necessary stability 

condition with sum of GARCH terms equal less than 1. However, Wintenberger 

and Cai (2011) showed that EGARCH models require continuous invertibility, 

similarly to an AR process, in order to estimate consistent parameters. Otherwise, 

the specification of EGARCH process cannot be used to reliably forecast volatility 

models. Winterberger (2012) developed a Stable QML for EGARCH (1,1) process, 

which solves the problem of stationarity and continuous invertibility. Previous 

studies of volatility in the Dry Bulk market had been done before the recognition of 

this EGARCH repercussion or simply have ignored this problem. We recognize a 

possible misspecification of EGARCH models due to failed sufficient conditions of 

stationarity, namely: possible non-existence of unconditional volatility or failed 

conditions of continuous invertibility. Therefore, if used for further research or 

practical applications, our specifications shall be tested for necessary and sufficient 

conditions first. 

 

8.2 Measuring the Conditional Volatility in the Dry Bulk Freight Market 

 

Different specifications provide different estimations of conditional volatility. We 

attempt to choose the most suitable model that can reflect the properties of the actual 

volatility best.  

8.2.1 Model Selection 

 

Following our multiple estimated specifications, we choose the most suitable 

models, based on these technical reasons:  

- Lower information criteria indicate better trade-off between model’s 

goodness of fit and its simplicity; 

- Considering the model’s ability to take into account the asymmetric shock 

effects; 
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- Residuals diagnostic test results for autocorrelation and ARCH-effects; 

- Model’s ability to track the changes in squared daily log returns, as the 

proxy for realized conditional volatility;  

Table 8.a presents the most suitable model for each index. 

 

Table 8.a: Selected Models for the Baltic Dry Indices 

 

 

8.2.2 Comparison of Conditional Volatilities in the Dry Bulk Freight 

Market 

 

Graph 8.a displays the conditional volatility of each segment.  

 

 

Graph 8.a: Conditional Volatility in the Dry Bulk Market 

 

Index Conditional Mean Conditional Variance

GARCH (1;1)-M

BCI AR(2) EGARCH (2;1)-M

BPI AR(2) GARCH(1;1)

BSI AR(1)

BHSI AR(2) GARCH (1;1)-M

BDI AR(2) EGARCH (1;2)-M
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Before 2007, volatility is low across the segments. From mid-2007, volatility starts 

to rise and becomes unpredictable. The first huge spike occurred in the end of 2007 

and was followed by smaller but more frequent spikes in the next 9 years. In the 

last three years the volatility of Capesize has been extremely wild with the highest 

jump in April 2016. To look into the difference between segments, we focus on the 

period between 2007 and 2016 with graph 8.b.   

 

 

Graph 8.b: Conditional Volatility during 2007-2016 in the Dry Bulk Market  

 

Capesize has the highest volatility in every period. During the 2008 financial crisis 

volatility of all the segments radically increased. Before 2015, when the volatility 

of Capesize deviates from other segments’, it usually converges rapidly in the 

following days. However, after 2015, this pattern does not seem to be present and 

the difference continues to grow. This is likely to be explained by the shift in 

operators’ behavior due to realized differences in market segments: risk-averse 

investors try to use smaller vessels to decrease their idiosyncratic risk, while risk-

loving investors use Capesize more to get higher potential gains. Likewise, 

according to Marlow et al. (2008), the degree of concentration of Capesize owners 

has been rising in recent years which may also explain the increasing volatility. 

Overall volatility is higher for larger vessels and is lower for smaller vessels, which 

confirms the conclusions of Kavussanos (1996) and Marlow et al. (2008). Smaller 

vessels are more versatile and therefore less affected by short-term shocks in 

demand. Larger vessels are constrained by their technical profile that makes it 

difficult for them to accommodate different cargoes, routes and ports.       
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8.3 Estimated versus Realized Volatility in the Dry Bulk Freight Market 

 

One of the missing points in the previous studies is the forecast quality of the 

estimated models. We decide to analyze how the estimated volatility reflects the 

realized volatility in the dry bulk freight market, which is approximated through the 

squared daily log returns. Although one should expect GARCH type models to 

underestimate market shocks, it is useful to learn the degree of underestimation and 

the differences between vessel segments. Table 8.b represents the quantitative 

summary of differences between estimated and realized volatilities. 

 

 

Table 8.b: Differences between Estimated and Realized Volatility 

 

In 58% of the days in the sample period, our model overestimates the realized 

volatility for Capesize index, but for all other segments our models generally 

underestimate the realized volatility. Moreover, we notice that the degree of 

underestimation is substantially higher for all the indices, including BDI. In 

addition, from tables 7.d, 7.g, 7.j, 7.m and 7.r, we observe the constant 

underestimation of realized volatility in cases when it is very high. The models seem 

to be unable to provide reliable forecasts when realized volatility suddenly 

increases. As extreme cases often cause extreme losses, it is of great interest to 

know how our models perform when the volatility is highest. Therefore, we perform 

a more detailed analysis in the cases of 5% and 1% of highest realized volatility. 

Table 8.c shows the underestimation of realized volatility across the indices: 

 

 

Table 8.c: Underestimation of Realized Volatility in Extreme Cases 

 

BCI BPI BSI BHSI BDI

Overestimation % 58% 37% 41% 37% 50%

Average Overestimation 0.00062 0.0001 0.000049 0.000019 0.000066

Underestimation % 42% 63% 59% 63% 50%

Average Underestimation 0.0018 0.00069 0.00032 0.000224 0.00034

BCI BPI BSI BHSI BDI

Average Underestimation

5% extreme cases 0.011 0.0047 0.0022 0.0017 0.0022

1% extreme cases 0.027 0.0119 0.0048 0.0047 0.0055
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We observe a strong pattern: when realized volatility increases, the degree of 

underestimation of all the models also increases. Furthermore, the degree of 

underestimation systematically increases with the size of the vessel. The degree of 

underestimation is the most severe for Capesize. Graphs 8.c - 8.g display the top 

5% of realized volatility and their corresponding values of estimated volatility for 

all the indices:  

 

 

Graph 8.c: BCI: Estimated versus Realized Volatility 

 

Graph 8.d: BPI: Estimated versus Realized Volatility 
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Graph 8.e: BSI: Estimated versus Realized Volatility 

 

 

Graph 8.f: BHSI: Estimated versus Realized Volatility 
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Graph 8.g BDI: Estimated versus Realized Volatility 

 

From the graphs, it is clear that our models consistently underestimate volatility in 

the 5% of most extreme cases. The degree of underestimation continuously grows, 

as the realized volatility peaks. Although all the models seem to perform 

satisfactorily between 5% and 1% of extreme cases, they cannot reliably forecast 

the volatility in the 1% of the most uncertain outcomes. We conclude that our 

models have a serious limitation: they are not able to capture and reliably predict 

extreme market outcomes. Therefore, for risk-management purposes, our models 

can provide a floor of expected uncertainty, but not its ceiling. For bigger vessels, 

this floor is likely to be further away from the realized volatility. 

 

8.4 Economic Interpretation 

8.4.1 Impact of Vessel Versatility 

 

Our GARCH (1,1) specifications confirm the findings of Marlow et al. (2008), Xu 

et al. (2011), and Geomelos (2014) that for Capesize, Panamax, Supramax, and 

BDI, the GARCH process is non-stationary. But we find that for Handysize the 

GARCH process is stationary. We attribute this less complicated dynamics of the 

smallest vessels to a more stable demand and supply relationship that can be 

modeled and forecast more easily. The ARCH term of Handysize is the smallest 

which contradicts with Kavussanos (1996), Marlow et al. (2008) but confirms with 
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Xu (2011) and Drobetz (2012) where they found smaller vessels (Panamax) have 

lower ARCH term than larger vessels (Capesize). We believe there could two 

explanations: first, the market for Handysize is more competitive because of the 

large number of vessels that compete in the same market and market information is 

incorporated very efficiently. The immediate impact from market shocks for the 

next period is not as big; second, the market may have incorporated new 

information after the 2008 financial crisis. Therefore, models in earlier papers may 

not be adequate for today’s market. Volatility persistence is high across the 

segments which indicates the market has a long memory for risks. This can be 

explained by the economic nature of dry bulk market. In the short-term, the risk 

factors, relevant for the market, cannot be influenced or eliminated by the market 

players, because of the global market structure and its reliance on economic 

conditions. By the same logic, smaller vessels have lower shock persistence, 

because they are more versatile and can adjust their positions sooner to eliminate 

the risk. This is shown in our findings: the smaller the vessel size, the smaller the 

GARCH terms.  

 

8.4.2 Higher Volatility on Positive News and Short-term Optimism 

 

From our EGARCH specifications, we find that Capesize volatility has contrarian 

dynamics, where big increase in volatility is likely to be followed by a lower 

volatility. Opposite signs of two sign asymmetry terms indicate that the market is 

subject to short-term optimism: the first day the news come out the market tends to 

overestimate good news, but underestimate bad ones, but realizes its misevaluation 

next day and corrects for irrational behavior. Overall, positive innovations have 

higher (asymmetric) impact on the volatility of the dry bulk market (represented by 

BDI), as compared to negative innovations. This empirical result does not seem to 

be consistent with the empirical result of Marlow et al. (2008) and Drobetz et al. 

(2012), who studied Capesize, Panamax and Handysize market. However, it 

provides support for the Drobetz’s theoretical assumptions of positive asymmetric 

effects, implied from the short-term supply and demand model of Stopford (2009). 

In the short-run, new vessels cannot be added to the market to react to the increased 

demand in a tight market. This is why volatility is impacted more by positive 

shocks.  
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8.4.3 Higher Risk Leads to Higher Return, except Capesize 

 

Positive risk premium is found in Supramax, Handysize, and the overall market 

(BDI). This could be explained by the adjustment of risk-averse operators that seek 

to exit the spot market by chartering out their ships at a lower rate for a longer 

period of time. Risk-loving operators who remain in the spot market could enjoy 

higher spot prices because of lower supply in the spot market. Negative risk 

premium is found in Capesize. This could be explained by the nature of supply and 

demand in this segment. Capesize carries more specific cargoes and sail to more 

specific ports. The vessels cost more capital to be operated and therefore put more 

pressure on operators to find employment for them. When the spot market gets 

volatile, operators chase limited cargoes by discounting their prices and their 

returns drop.    

 

9 Conclusions 

 

Dry bulk freight market has gone more volatile in recent years. From the largest 

Capesize type of vessels to the smallest Handysize, each segment has its unique 

trading activities and exhibit different market movements. The increasing volatility 

not only threats market participants’ bottom line, but also posts intriguing 

challenges for academic research. 

  

This study analyzes the volatility in the dry bulk freight spot market. Indices 

published by Baltic Exchange from 1985 to 2016 are used as the proxy for the dry 

bulk freight of vessels in different sizes. In previous studies, many questions were 

raised about the stationarity of dry bulk freight. We find levels of dry bulk freight 

to be non-stationary, but their return series to be stationary. Autocorrelation and 

volatility clustering are observed across all dry bulk segments. This motivates us to 

model the volatility with AR-GARCH type specifications. We find first and second 

order autoregressive process very suitable to explain the return dynamics.  

 

We find return series of dry bulk freight market spot prices to exhibit conditional 

heteroscedasticity. Our results confirm that GARCH class models are suitable for 
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explaining the volatility of the dry bulk freight market. Adding risk premium into 

the model helps to capture volatility dynamics. When modelling Capesize volatility, 

higher order models shall be considered due to the increased complexity of its 

economic nature. 

 

GARCH specification shows that for all types of vessels, shocks are highly 

persistent. Degree of persistence decreases with the vessel size, reflecting 

differences of self-memory in each segment. In line with most of recent studies, our 

GARCH (1,1) processes are non-stationary with the exception of Handysize. This 

means shocks strengthen over time which contradicts common economic intuition 

and implies that GARCH (1,1) process is not sufficient to capture the volatility 

dynamics in the dry bulk market.  

 

Motivated by leverage effect in the equity market and short-term supply and 

demand model in the dry bulk market, we use EGARCH specification to capture 

asymmetric effect in volatility. We do not find asymmetric effect in Panamax, 

Supramax, and Handysize, but find contrarian asymmetric dynamics in Capesize, 

indicating constant bias of overoptimism among operators. Positive asymmetric 

effect is found in BDI, indicating higher volatility response in an upward dry bulk 

freight market.     

 

In finance, risk is often found to explain return. We find positive risk premium in 

Supramax, Handysize, and BDI. It shows that in those markets, operators who stay 

in the spot market during the time of high uncertainty are rewarded by higher 

returns. In Capesize we find negative risk premium which might seem unusual. 

However, when talking into account the inflexible nature of Capesize vessels, 

negative risk premium may simply reflect the discounts offered by operators who 

seek to avoid high costs of unemployment. 

 

Capesize has the highest conditional volatility among all segments followed by 

Panamax. Before 2015, volatility of Capesize converges rapidly to the level of other 

indices. After 2015, we observe that this difference increases, indicating that 

Capesize is getting riskier. It may be explained by a shift in the strategy among 

operators who have different risk appetite after the turbulent market during the 2008 

09867940986285GRA 19502



  

74 

financial crisis. Risk-loving operators focus on Capesize while risk-averse 

operators avoid Capesize.   

 

Our study has different implications for participants in the dry bulk freight market. 

When shipowners add vessels to their fleet, size does matter in terms of risk and 

return. Investing in Capesize gets continuously riskier compared to other segments. 

Adding smaller vessels into their portfolio could decrease risks. When the market 

is going up, operators should expect higher uncertainty and position themselves 

accordingly. Cargo owners who need to charter Supramax and Handysize vessels 

should expect to pay a higher freight when the market is riskier while the opposite 

holds for Capesize.         

 

Overall, this study contributes to understanding of the uncertainty in the dry bulk 

freight spot market and provides results of various model specifications of each dry 

bulk segment. There are four main limitations for our study. First, the index could 

be misrepresentative for the real conditions of a local market, therefore using 

indices as proxies may not yield the most accurate forecast with any models. 

Second, for BCI, BPI and BDI we use data that span about 20 years. When their 

levels and returns are observed across the whole period, the movements appeared 

to behave differently after the 2008 financial crisis. It is also important to note that 

changes in technology and regulations over the past twenty years could have shifted 

the trading fundamentals. As a result, if the underlying data generating process has 

changed along the period, the results, our models provide, may not be appropriate 

for future applications. Third, non-stationarity of GARCH models and potential 

continuous non-invertibility of exponential GARCH models may indicate their 

misspecification. Finally, in general, our models underestimate the conditional 

volatility during the periods of extremely high market uncertainty (e.g. average 

0.027 underestimation in 1% highest volatility for Capesize). This problem gets 

more pronounced as the vessel size increases. Therefore, our models may not be an 

effective tool to help market participants forecast risks in an extremely volatile 

market.  

 

Our suggestions of further research include the following. First, the drivers behind 

the extremely high volatility in the dry bulk freight spot market should be 

researched to provide better fundamentals for model specifications. Second, more 
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profound analysis of stationarity properties of GARCH type models shall be 

conducted, so their results can be relied on. Third, the exogenous variables, relevant 

to the dry bulk market, may be considered when modelling both the returns and 

their volatility. Fourth, in practice, the forward market is as important as the spot 

market. Therefore, similar research shall be done to complete understanding of the 

dry bulk freight market.  
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10 Appendices 

10.1 Appendix A. Histograms of Log Return Distributions 
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Graph 10.a: Histogram of Supramax Log Return Distributions 
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Graph 10.b: Histogram of Handysize Log Return Distributions 
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Graph 10.c: Histogram of Panamax Log Return Distributions 

 

Graph 10.d: Histogram of Capesize Log Return Distributions 

 

 

Graph 10.e: Histogram of BDI Log Return Distributions 
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10.2 Appendix B. Standardized Residuals Distribution 

 

 

Graph 10.f:  Standardized residuals of BCI 

 

 

Graph 10.g:  Standardized residuals of BSI 
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Graph 10.h:  Standardized residuals of BHSI 
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Graph 10.i:  Standardized residuals of BPI  

 

 

Graph 10.j:  Standardized residuals of BDI 
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10.3 Appendix C. Sign and Size Bias Test Results 

 

Table 10.a: GARCH(1;1) size and sign bias test for R_BCI 

Variable Coefficient t-statistic p-value 

C -0.000174 -2.54 0.011 

Sign 0.000287 3.06 0.0022 

Negative size bias -0.033 -12.6 0 

Positive size bias 0.066 25.91 0 

LM Test *** 710.65 0 

 

Table 10.b:  GARCH(1;1) size and sign bias test for R_BSI 

Variable Coefficient t-statistic p-value 

C 0.000019 1.08 0.28 

Sign -0.0000128 -0.51 0.61 

Negative size bias -0.0093 -3.4 0.0007 

Positive size bias 0.009 4.07 0 

LM Test *** 28.38 0.00000301 

 

Table 10.c: GARCH(1;1) size and sign bias test for BHSI 

Variable Coefficient t-statistic p-value 

C 0.00000278 0.47 0.63 

Sign -0.0000139 -1.67 0.0957 

Negative size bias -0.0123 -11.96 0 

Positive size bias 0.008226 -11.96 0 

LM Test *** 201.77 0 

 

Table 10.d:  GARCH(1;1) size and sign bias test for BPI 

Variable Coefficient t-statistic p-value 

C -0.00000461 -0.39 0.6975 

Sign 0.00000858 0.5186 0.6041 

Negative size bias -0.01473 -13.5 0 

Positive size bias 0.02 19.62 0 

LM Test *** 510.46 0 
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Table 10.e:  GARCH(1;1) size and sign bias test for BDI 

Variable Coefficient t-statistic p-value 

C 0.0000165 2.39 0.0168 

Sign -0.0000276 -2.87 0.004 

Negative size bias -0.016 -22.22 0 

Positive size bias 0.015 21.51 0 

LM Test *** 865.38 0 
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