
Date of submission: 01.09.2016 

 

BI Norwegian Business School – Thesis 

 

Portfolio Optimization: On Risk Measures 

and Estimation Techniques 

 

Written by  Johannes Andreas Barstad,  

MSc in Business and Economics (Major in Finance)  

  Olve Heitmann  

MSc in Business and Economics (Major in Finance)  

 

Supervised by Johann Reindl 

 

This thesis is a part of the MSc programme at BI Norwegian Business School. The school 

takes no responsibility for the methods used, results found and conclusions drawn. 

 

 

 

 

 

 

 



I 

 

Abstract 

This thesis focuses on the risk measure in the Markowitz algorithm. We discuss 

why assuming normality is unrealistic, and why the unconditional sample 

covariance matrix is an inappropriate input for the algorithm. We compare the 

minimum variance portfolio of Markowitz to the minimum CVaR portfolio, and 

discuss how the use of GARCH and Copula models can improve upon the 

precision of the risk estimate. We compare these techniques in two real data 

applications. Our results suggest that GARCH, and Copula and GARCH in 

combination outperform the sample estimates if sample correlation is low, and 

that minimizing variance or CVaR gives very similar results. 

Keywords: GARCH, Copula, Portfolio Optimization, Modern Portfolio Theory, 

Risk Measures, Coherent Risk Measures, Conditional Value-at-Risk, Risk 

Management. 
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Introduction 

 

In 1952 Howard Markowitz pioneered the application of normative decision 

theory for constructing optimal portfolios with his Modern Portfolio Theory 

(MPT). The theory put the tradeoff between the expected return of the portfolio 

and the portfolios risk in the spotlight. In particular, MPT’s message was that for 

any given level of expected portfolio return, the optimal portfolio were the one 

with the lowest variance, or equivalently, for any level of portfolio variance the 

optimal portfolio were the one with the highest expected return. Plotting these 

various combinations of portfolio variance (or standard deviation) and expected 

return, one can create what has become known as the “efficient frontier”. 

MPT’s problems and research questions 

While MPT’s idea of an efficient frontier seem both sound and desirable, 

estimating the inputs for the algorithm (namely the expected return vector and the 

covariance matrix) is hard, and small deviations have big effects on the suggested 

portfolio weights. In practice, MPT is therefore often implemented along with a 

number of different “fixes”, including shrinkage of the estimates, imposing a 

factor structure on the covariance matrix, estimating the expected return vector 

from an asset pricing model (e.g. the CAPM, Ross’ APT, various index models) 

and constraining the portfolio weights. In this thesis we focus on the second input 

of the algorithm, i.e. the covariance matrix, or to put it in more general: the risk 

measure. We discuss the limits of standard deviation as a risk metric for a 

financial portfolio, what alternatives exist, and how one should go about 

estimating them. In particular, we discuss how assuming normality and i.i.d. 

doesn’t hold up to the stylized facts of the empirical distribution of financial 

returns.  

The research are centered around if it makes a difference if we optimize the 

portfolio for CVaR or portfolio variance, and if we are able better take into 

account these stylized facts using more advanced estimation procedures than the 

sample estimates. We compare minimizing portfolio variance to minimizing 

portfolio CVaR of an all US equity portfolio and a full commodity portfolio. We 

compare univariate models that take into account the leverage effect to those that 
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don’t, constant correlation to dynamic, and optimizing based on the assumption of 

normality versus assuming that returns follow the student t distribution. Since the 

focus is on risk measures, the natural evaluation criteria are those that focus on 

dispersion, accordingly we have chosen to look at the out of sample values of 

common risk metrics as sample variance, semi-variance, VaR and CVaR. 

Thesis structure and writing style 

While we aim to keep the style of writing on a level that should be understandable 

to readers who have taken basic statistics, some of the material that is covered is 

more advanced in nature, making this hard. To alleviate this, we have included a 

short list of some statistical and econometrical concepts and definitions in the start 

of Appendix A. This section does not aim at being exhaustive, and is not a must 

read per se, but might be used as a mini-encyclopedia while reading the thesis. In 

addition several excellent text books on the subject are listed in our bibliography 

at the end of the paper.  

The rest of the paper is laid out as following in two main parts: Section 1-6 

containing general theory on and related to risk measures for portfolio 

optimization, and Section 7-9 where said theory is applied and interpreted on real 

data. In particular; in section 1 we review the original Markowitz paper from 

1952, and expand further on the problems of implementing it. Desirable properties 

of a risk measure are discussed in section 2, and the empirical distribution of 

financial asset returns are discussed in section 3. Section 4 reviews the risk 

measures Value-at-Risk (VaR) and the closely related Conditional-Value-at-Risk 

(CVaR), portfolio optimization with CVaR as a risk measure, and why it’s likely a 

good idea. In section 5 we review the GARCH framework for modeling volatility 

over time. Section 6 deals with copulas and measures of dependence between 

assets. In section 7 we describe the methodology used to conduct the research, 

while section 8 deals with the data used, and the results we get. Section 9 

summarizes the results from section 8, discuss limitations and make suggestions 

for future work. 
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Section 1: Modern Portfolio Theory 

 

This section reviews Howard Markowitz’ pioneering paper on portfolio selection 

from 1952. We lay out his framework for constructing an optimal portfolio, the 

assumptions he relied on, and summarize the biggest critique of the paper. 

The main references for this section are: Markowitz (1952, 1959) 

1.1 Markowitz 1952 
 

The foundation for modern portfolio theory as a mathematical and statistical 

problem was laid out by 1989 Nobel Prize laureate Howard Markowitz in 1952.  

Markowitz argues that simply maximizing discounted, expected returns as an 

investment rule is rejected both as a hypothesis to explain historic investor 

behavior, and as a maxim to guide optimal investment. Instead he considers a rule 

that expected return is a desirable thing while variability of return is undesirable. 

The general principle here, risk aversion, had been known long before Markowitz. 

Daniel Bernoulli initiated this hypothesis in 1738 (Bodie et al [2014], 199), while 

Morgenstern and von Neumann 1944 showed that maximizing expected utility 

was rational behavior, consistent with Markowitz proposed rule. What however 

was new was the concept of efficient frontiers, i.e. the idea that for every level of 

expected portfolio return there is a portfolio that is the most efficient in terms of 

the lowest level of variability of return. If one then plots many efficient portfolios, 

the efficient frontier develops, and we get a graphical representation of the risk-

reward tradeoff. 

In his framework, Markowitz argues that the return of a security can be modelled 

as a random variable. Then, the return of a portfolio is a weighted average of the 

returns of the individual assets included in the portfolio, i.e. also a random 

variable.  

 
𝑅𝑃 = ∑𝑊𝑖𝑅𝑖

𝑛

𝑖=1

 (1) 

where  
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 𝑅𝑖 is the return of security i 

 𝑊𝑖 is the relative weight allocated to security i in the portfolio, P.  

 𝑅𝑃 is the return of the portfolio 

Further Markowitz measures the variability of the return with the statistical 

concept variance. This implies a demand for diversification, not solely by 

reducing variance through increasing numbers of different securities held, but also 

choosing assets with low covariance. 

1.1.1 The Efficient Frontier 

 

 

Figure 1 - The Efficient Frontier 

The efficient frontier represents the set of portfolios that generate the highest 

expected portfolio return for a given level of risk, in Markowitz (1952) measured 

by the portfolios standard deviation. The concept of the efficient frontier was new 

in Markowitz (1952), and was a welcomed addition as it allows for a visual 

representation of the tradeoff between risk and return. . The mathematical 

mapping of the frontier is discussed in Appendix A3. 
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1.1.1 The Minimum Variance Portfolio 

 

Of particular interest is the red point furthest to the left on the efficient frontier, 

i.e. the minimum variance portfolio. This portfolio is interesting as it is calculated 

without taking into account the expected return vector, i.e.: 

 

 
𝑀𝑖𝑛 𝜎𝑃

2 =∑∑𝑊𝑖𝑊𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 (2) 

 

Subject to  

 
∑ 𝑊𝑖 = 1

𝑛

𝑖=1
 (3) 

 

This makes the minimum variance portfolio a useful benchmark in theses like this 

where the subject we study is measuring risk. Instead of optimizing portfolios for 

some arbitrary utility function where parameters have to be estimated or assumed, 

we can rather focus on minimizing risk and compare portfolios by looking at 

measures of dispersion. 

To see just how important the dependence structure of the assets is to forming this 

portfolio, it can be useful to look at the exact expression for the weight vector W 

that minimizes variance;  

 
𝑾𝑴𝑽 =

𝚺−𝟏𝟏

𝟏′𝚺−𝟏𝟏
 (4) 

 

As we can see, both the denominator and the nominator depend solely on vectors 

of 1 and the covariance matrix. This expression is solved explicitly in Appendix 

A3. 
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1.2 Critique of Markowitz’ assumptions 

 

Markowitz argues that procedures for finding expected returns and correlations 

should involve statistical techniques and the judgment of practical knowledge. As 

portfolio optimization is a task with the future in mind, one needs to look at the 

forecasted expected return, as well as the forecasted covariance matrix. To 

estimate these, sample statistics are suggested, but also remarks that better 

methods can be found. In particular, Markowitz argues that investors need only 

use the first two moments of the probability distribution of returns to optimize 

their portfolio, implying that asset returns is assumed to follow the normal 

distribution. As we will see in the Section 3, this is an unrealistic assumption. In 

the real world, the distribution of financial returns tends to be left (negatively) 

skewed, leptokurtic and time-varying. Due to this, sample variance and 

covariance as measures of risk does not adequately capture the real distribution of 

returns, leading us to underestimating the potential losses, and the weights of the 

portfolio not offering the optimal risk-return tradeoff.  

If we accept Markowitz’ proposition of mean-dispersion per se being undesirable, 

as well as accepting the assumption of normality of financial returns and “stable 

probability beliefs”(Markowitz 1952, 4) to be reasonable, then there is simply not 

much room for improvement of the original algorithm. Both the sample mean and 

the sample covariance matrix should be reasonable inputs, and these are fairly 

simple to estimate. As we have already pointed out, the assumptions made on the 

distribution of financial returns are unrealistic. However, the notion that mean-

dispersion is undesirable is also questionable. Variance as a risk measure equally 

punishes positive and negative deviations from the mean, while for risk averse 

investors the emphasis should be placed on the risk of large losses. Measures such 

as value at risk (VaR) and expected shortfall/conditional value at risk (CVaR) 

better takes this into account. In his book from 1959, Markowitz proposes semi-

variance as an alternative to variance, where semi variance is defined as: 

 Σ𝑝
2 = 𝐸 ([𝑅𝑝 − 𝜇𝑝]

−2
) = 𝐸([𝑀𝑖𝑛(𝑅𝑝 − 𝜇𝑝, 0)]

2
) (5) 

Here only negative deviations are considered, making it an improvement over 

regular variance.  
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Section 2: On the properties of Risk Measures 
 

This section reviews what the literature deems desirable properties of a risk 

measure. The main references for this section are: Alexander (2008c), Artzner et 

al (1999) and Krause (2002).  

2.1 What is risk? 

Most people have an intuition about what risk is. However, to define more 

precisely what risk is, it can be useful trying to understand the absence of risk. A 

risk-free asset is an asset which has a certain future value. If such an asset truly 

exists is debatable (often government bonds are used as a proxy for it). A risky 

asset must then be an asset whose future value is uncertain, and thus risk is clearly 

related to uncertainty. However, risk is normally not thought of simply as 

uncertainty in and of itself, but rather the probability and magnitude of outcomes 

that leaves us in a worse than expected or “average” state.  

While there are many types of risk, we focus on market risk, i.e. the risk of 

unexpected changes in prices. Modeling this risk is important because investors 

require a premium to take on risk (i.e. they are risk averse). This thesis covers the 

statistical approach to modeling risk in the context of portfolio optimization. 

2.2 Coherent risk measures 

To manage the risk of a portfolio, we need appropriate risk measures. Artzner et 

al. (1999) presents the concept of coherent risk measures, arguing that any risk 

measure to be used to effectively regulate or manage risk should follow a set of 

axioms, making them coherent.  

Let X and Y be two risky assets and 𝜌(·) the risk measure we are studying. We 

also assume that we have access to a riskless asset providing a fixed outcome of 

RF > 1 for each unit invested. The amount invested in the risk free asset is 

denoted by k. 

We can then compare two investment strategies;  

1. Invest in one of the risky assets and the risk free asset 

2. Invest only in the risky asset (same asset as in strategy 1). 
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The riskless asset provides a certain profit, and thus reduces the potential losses 

arising from the risky asset by exactly the amount invested into it (i.e. k). This 

should be reflected in a risk measure and leaves us with the first axiom: 

Translation invariance (Axiom T): 

𝜌(𝑋 + 𝑘𝑅𝐹) =  𝜌(𝑋) − 𝑘  

When adding quantity k to the risk free asset, the risk is reduced by the same 

amount. 

Secondly, we know that risk can be reduced by diversification, and a risk measure 

should reflect that; 

Sub-additivity (Axiom S): 

𝜌(𝑋 + 𝑌) ≤ 𝜌(𝑋) + 𝜌(𝑌)  

The risk of the combined portfolio is less than or equal to the sum of the risk of the 

individual assets.  

Thirdly, the risk measure speaks only of uncertainty regarding the object at study, 

not of the risk attitude of the investor. Thus a risk metric should reflect that our 

risk is proportional to our bet; 

Positive homogeneity (Axiom PH): 

𝜌(𝑘𝑋) = 𝑘𝜌(𝑋)  

By increasing the amount invested in the asset by factor k, the measured risk is 

increased by the same factor. 

Lastly, risk is typically thought of as bad deviations from our expectations, and 

not positive. If one investment stochastically dominates another, it’s not intuitive 

for the dominating investment to have a higher measured risk (This is discussed in 

detail in Yamai and Yoshiba [2002]). ; 

Monotonicity (Axiom M) 

For all X and Y with 𝑋 ≥ 𝑌, 𝜌(𝑋) ≤ 𝜌(𝑌) 

That is, if X (weakly) stochastically dominates Y, then X should be judges as less 

or equally risky as Y.  
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2.2.1 Potential consequences of using an incoherent risk 

measure 

Portfolios should be managed relating to their risk measure, i.e. the measure 

should have an impact on decisions, it shouldn’t simply be something we monitor 

and then “leave it at that”. If the risk metric we manage our portfolio under for 

instance breaks the sub-additivity axiom, we will heavily undervalue the benefits 

of diversification, one of the biggest advantages to having portfolios rather than 

single assets in the first place. In fact, if the risk measure both exhibits sub-

additivity and positive homogeneity, then the risk measure must also exhibit 

convexity. This is desirable as it ensures that if there exists a local minimum, it 

must also be the global minimum, making mathematical optimization a much 

more powerful tool (This is discussed in further detail in Rockafellar and Uryasev 

[2000]). On the contrary, if our risk measure doesn’t exhibit both sub-additivity 

and positive homogeneity, we run into the risk of possibly believing we have 

optimized our portfolio, while in reality we have only found one of many local 

minimums. Similarly, if our risk measure doesn’t comply with monotonicity, for 

instance if we manage our portfolio by standard deviation, we could lose out on 

“free lunches” of stochastically dominant assets (how realistic free lunches are is 

another debate, but the point remains true). 

2.2.2 On the coherency of volatility 
 

The standard deviation (or volatility) of investment outcomes has been a common 

risk measure since Markowitz 1952. From the section above we see that standard 

deviation is not a coherent risk measure, as it fails both axiom T and axiom M. 

Only measures expressed in absolute terms can fulfill axiom T, while volatility is 

typically expressed in relative terms. More problematic is perhaps axiom M 

failing. Consider two normally distributed independent investments. Investment 1 

has an expected return of 10%, and a standard deviation of 5%. Investment 2 has 

an expected return of 1%, and a standard deviation of 4%. Ranking the riskiness 

of the investments based on standard deviation alone implies that investment 2 is 

less risky than 1 – clearly this doesn’t make sense. 
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Section 3: The Stylized facts  
 

The stylized empirical facts of financial time series is a collection of empirical 

observations and inferences of statistical properties common across a wide range 

of instruments, markets and time periods. 

The main references for this section are: Black (1976), Christie (1982), Cont 

(2001), Erb (1994), Goetzmann (2005), Ledoit et al (2003), Longin and Solnik 

(1995), McNeil et al (2005) and Mandelbrot (1963).   

The stylized facts are potentially very useful in determining how we should model 

financial risk, as they are able to give us guidelines to which properties our 

models should exhibit. Cont (2001) argues that in order to let the data speak for 

itself as much as possible the facts should be formulated as qualitative 

assumptions, which statistical models then can be fitted to, rather than assume that 

the data belongs to any pre specified parametric family.  

Much has been written on stylized facts, and the exact formulation of each 

stylized fact varies from author to author, and some authors include “facts” that 

others don’t. With that being said, most of the stylized facts are reoccurring in 

most of the literature on the topic. The list we present are based on what seems to 

be the most reoccurring facts, with formulations inspired by McNeil et al (2005) 

and Cont (2001). 

 (1) Linear autocorrelations of asset returns are often insignificant. The 

exception to this is typically for small intraday timescales (~ 20 minutes) for 

which market microstructure effects enter (Cont 2001). This stylized fact is often 

cited as support for weak market efficiency, as significant autocorrelations would 

imply that previous returns could be used to predict future returns (and thus 

“statistical arbitrage” 

(2) Volatility appears to cluster and vary over time, and in a somewhat 

predictable manner. It is observed that series of absolute or squared returns 

show profound serial correlation. A commonly used metric to measure volatility 

clustering is the autocorrelation function of the squared returns; 

 𝐴𝐶2 = 𝑐𝑜𝑟𝑟(|𝑟𝑡+𝜏,∆𝑡|
2
,   |𝑟𝑡,∆𝑡|

2
) (6) 
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 (3) Asymmetric relationship between gains and losses. One can typically 

observe large drawdowns in stock prices but not equally large upward 

movements. As the mean return tends to be positive or close to zero, this implies a 

skewed distribution. 

(4) Slow decay of autocorrelation in absolute returns. The autocorrelation 

function of absolute returns decays slowly, often modelled by a power law with 

exponent 𝛽 ∈ [0.2, 0.4] (Cont 2001). This can be interpreted as a sign of long-

range dependence. 

(5) Return series are leptokurtic, i.e. heavy-tailed. The unconditional 

distribution of returns has excess kurtosis relative to that off the normal 

distribution (> 3). This effect is often still present even after correcting returns 

(e.g. via GARCH-type models), but reduced compared to that of the unconditional 

distribution. 

 (6) Leverage effects. Most measures of volatility of an asset are negatively 

correlated with the returns of that asset, e.g. 𝐿𝜏 = 𝑐𝑜𝑟𝑟(|𝑟𝑡+𝜏,∆𝑡|
2
, 𝑟𝑡,∆𝑡)  

start from a negative value and decays to zero, suggesting that negative returns 

leads to increased volatility.  

Black (1976) suggested that this could be attributed to the fact that bad news 

drives down the stock price, increasing the debt to equity ratio (i.e. the leverage) 

and thus causing the stock to be more volatile(risky). 

In addition to these stylized facts (that reach across different asset classes and 

financial instruments) a lot of research has also been done on the individual asset 

classes. Of particular relevance to this thesis is the research stream surrounding 

the dynamic nature of equity correlations. Goetzmann et al. found that 

correlations between equity returns vary substantially over time, and peak during 

periods of highly integrated financial markets (as one would expect). Longin and 

Solnik found evidence for rejection of the hypothesis of constant correlations 

among international stock markets, while Ledoit et al. and Erb et al. show time-

varying (dynamic) correlations tend to be higher during periods of recession. The 

latter observation is particularly interesting (or worrisome) as it would imply that 

if we model financial risk in “normal” or “boom” periods, our correlations would 
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be understated and should a recession come, our risk measures would be 

understated in the time we needed them the most. 

Even if stylized facts can be a useful tool, the gain in generality across financial 

instruments, markets and time do come at the cost of precision of the statements 

that can be made about asset returns (this of course holds true in general to 

statistical models). Nevertheless, these stylized facts present properties that are 

regarded very constraining for a model to exhibit, even as an ad hoc stochastic 

process (Cont 2001). A question which should be noted in this regard is whether a 

stylized fact is relevant for the economic task at hand. If deemed not, it should not 

be a constraint to the model we are seeking either. 

3.1 The normal distribution, i.i.d. assumption and 

the stylized facts 

 

 

Figure 2 - The S&P 500 vs the normal distribution 

 

The inappropriateness of modeling the marginal distribution of asset returns with 

the normal distribution was pointed out as early as 1963 by B. Mandelbrot. The 

properties of the normal distribution simply doesn’t reconcile with the stylized 

facts.  

We can characterize the needs for a parametric model to be able to successfully 

reproduce the observed empirical features with it having at least four parameters; 

a location parameter (e.g. mean), a scale parameter (e.g. standard deviation), a 

parameter describing the tail decay and eventually an asymmetry parameter 

allowing different behavior in each of the tails. The normal distribution only 

meets two of these requirements. 
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3.2 The random walk hypothesis 
 

The insignificance of autocorrelations in return gave support for the random walk 

hypothesis of prices, where returns are considered independent random variables. 

However, the lack of linear dependence doesn’t imply independence: one also 

have to consider nonlinear functions of return. As we know from stylized fact 2, 

there is nonlinear dependence (which is exactly what is drawn from in order to 

create GARCH models for one). Log prices are therefore not properly modelled 

by random walks. Traditional tools of signal processing such as ARMA modeling 

and autocovariance analysis, can’t distinguish between asset returns and white 

noise. This points out the need for nonlinear dependence measures (e.g. GARCH 

modeling) to properly measure the dependence of asset returns (Cont 2001). 

3.3 Assuming elliptical distributions in general 
 

Much has been written on the validity of assuming that financial asset returns 

follow a normal distribution. A highly related and interesting discussion is that of 

the validity of assuming financial returns follow elliptical distributions in general. 

For instance Owen and Rabinovitch (1983) take the position that non-normal 

elliptical distributions such as the student t can be useful as it allows for 

describing tail decay through the degrees of freedom parameter, despite that the 

asymmetry parameter is still lacking (While this paper was written before high 

impact statistical methods such as ARCH rose to popularity in finance, we are of 

the opinion that the arguments are still valid). Chicheportiche and Bouchaud 

(2012) argue that elliptical distributions might be a fair assumption when assets 

are highly correlated, but also argue that it is very unrealistic when correlations 

are low. From our point of view, the only real consensus seems to be that these 

assumptions need to be assessed case-by-case. We’d also like to note that while 

some form of asymmetry parameter probably is desirable for most financial asset 

classes, it is absolutely necessary when modeling a joint distribution including 

non-linear assets such as options, almost regardless of the underlying asset. These 

assets are not considered in the real data application of this thesis. 
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Section 4: Tail-based Risk Measures 

 

Tail-based risk measures focus on the returns that fall within a certain quantile of 

the return distribution. In this section we review quantile risk measures at the 

portfolio level, without mapping out the portfolios individual risk factors. 

The main references for this section are: Alexander (2008c), McNeil et al (2005), 

Rockafellar and Uryasev (2000, 2002) and Yamai and Yoshiba (2002). 

4.1 Value at Risk (VaR) 

 

The 𝛼-Value at Risk is defined as the maximum expected level of loss 𝑙 given a 

confidence level of 𝛼, over a specified risk horizon ℎ. Defining the significance 

level as 1 − 𝛼, we can also say that the significance level states the probability of 

losses at or exceeding the Value at Risk for the specified risk horizon. The term 

became widely used in finance in the mid 1990’s with JPMorgan’s publishing of 

RiskMetrics. As we don’t know the future, we can only get a number for the 

Value at Risk if we make some assumptions about the underlying probability 

distribution. Thus Value at Risk is sometimes defined in a less assertive manner, 

i.e. the potential loss under “normal conditions” (implying that the assumptions 

made holds under the normal conditions). 

To progress further we need a way to define a loss. In some works on Value at 

Risk and related measures (e.g. Alexander [2008c], McNeil et al [2005, 38]), the 

loss is defined as the amount one fall short of some benchmark, or “mean-VaR”. 

For instance, if the benchmark is the S&P 500, and the S&P 500 has a return of 

10% while our portfolio only has a return of 5%, the loss relative to the 

benchmark would be 10% − 5% = 5%. In this thesis we take the more 

conventional approach of viewing the loss function of a portfolio as the negative 

of the return of the portfolio: 

 𝐿(𝑤, 𝑟) =  −(𝑤1𝑟1 +⋯+𝑤𝑛𝑟𝑛) = −𝑤
𝑇𝑟 (7) 

 

Where 𝑟 is the returns of the assets, and 𝑤 is the portfolio weights. The 

probability of the loss 𝐿(𝑤, 𝑟) not exceeding 𝑙 is defined as:  
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𝐹(𝑤, 𝑙) =  ∫ 𝑝(𝑟)𝑑𝑟

 

𝐿(𝑤,𝑟) ≤ 𝑙

 
(8) 

Where 𝑝(𝑟) is the joint density function of returns and 𝐹(𝑤, 𝑙) is the cumulative 

distribution function for losses. The Value at Risk is then given by: 

 𝑉𝑎𝑅𝛼(𝐿) = 𝑙𝛼(𝑤) = min(𝑙: 𝐹(𝑤, 𝑙) ≥ 𝛼) (9) 

 

Here 𝑙𝛼(𝑤) is the VaR and the left endpoint of the interval so that 𝐹(𝑤, 𝑙) = 𝛼. 

This follows as 𝐹(𝑤, 𝑙) is continuous per assumption and non-decreasing with 

respect to 𝑙. 

The risk horizon ℎ should ideally reflect the period over which we are committed 

to holding the period. The length of this period is affected by contractual and legal 

constraints, and liquidity considerations. The latter imply that it will likely vary 

across markets, and the investment policy of the institution holding the portfolio. 

 

4.1.1 Estimating Value at Risk 

 

While the concept of Value at Risk is intuitive, obtaining a good estimate of 

Value at Risk isn’t easy. The approaches for estimating Value at Risk is typically 

divided into three categories: 

1. Analytical computation by making assumptions about the return 

distributions.  

2. Estimates based on the histogram of past returns. 

3. Estimates based on simulation techniques. 

All of these approaches can have merit depending on which assets are modeled 

and what the use is. It is however important to keep in mind the stylized facts 

while making estimates. For instance, usually past returns are used to some extent 

in the estimating process, and these past returns are likely to exhibit ARCH 

effects. If one then makes the naïve assumption of equally weighting each day of 

the historic sample without taking into account these ARCH effects (e.g. with a 

GARCH model), then the estimate is more likely to be higher (if volatility is 

trending down towards the end of the historic sample) or lower (if volatility is 
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trending upwards towards the end of the historic sample) than the actual risk 

taken. Hence, all three of these approaches could potentially benefit from 

econometric techniques. We elaborate further on the three approaches in 

Appendix A4.     

4.1.2 Pros and Cons of Value at Risk 

 

Unfortunately, Value at Risk has some large drawbacks.  

 

Firstly, it does not measure losses exceeding the VaR, giving us no real 

information about the possible consequences when things really don’t go our way.  

 

Secondly, VaR is often given a very literal interpretation, which can be 

misleading and dangerous. The estimate of the loss distribution is subject to 

estimation error and model risk (misspecified models or unrealistic assumptions). 

Additionally, the literal interpretation of VaR neglects any issues related to 

liquidity. If trades have a large impact on prices, or we are simply not able to trade 

due to no counterparty being willing to take the other side of the transaction, the 

literate interpretation of VaR becomes inaccurate. This latter problem was brought 

to the attention finance academics by Lawrence and Robinson (1995), and is 

discussed in detail there. 

 

Thirdly, as proved by Artzner et al (1999), the measure is incoherent as it does not 

fulfill the non-subadditivity axiom, meaning that it is not by itself support 

diversification. Good, practical examples demonstrating this can be found in e.g. 

McNeil et al (2005) [example 6.7 page 241, 6.12 page 246]. Further, this implies 

that the convexity of Value at Risk is not guaranteed, making it potentially 

difficult to optimize as it allows for multiple local extrema. 

Even if Value-at-Risk isn’t perfect, it has been (and is) widely used in practice 

due to some desirable features. Value-at-Risk focuses on potential losses and not 

simply variability in returns, and is thus true to the intuitive perception of risk. 

Secondly, when explained it is easily interpretable for people without a 

background in finance or statistics, and thus can be useful when dealing with 

clients. 
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Luckily, there exists a measure that maintains the positives of Value at Risk, 

while avoiding some of the negatives: Conditional Value at Risk. This measure is 

discussed in more detail in the following subsection. 

4.2 Conditional Value at Risk (CVaR) 

 

While Value at Risk concerns itself with what the maximum loss over risk 

horizon ℎ given a confidence level of 𝛼 is, Conditional Value at Risk measures 

the expected loss the worst (1 − 𝛼)100% of times. That is; 

 𝛼-𝐶𝑉𝑎𝑅 = 𝐸[𝐿(𝑤, 𝑟)|𝐿(𝑤, 𝑟) > 𝛼-𝑉𝑎𝑅] (10) 

 

Figure 3 - Graphical representation of CVaR and VaR 

 

Figure 4- Graphical representation of CVaR and VaR, tail zoom 

Acerbi and Tasche (2002a, 2002b) prove that CVaR is a coherent risk measure, 

while Yamai and Yoshiba (2002) show that CVaR is consistent with maximizing 

expected utility under way more general conditions (utility functions) than the 

standard deviation (requiring a quadratic utility function) or even the 

unconditional Value at Risk. Additionally, CVaR as a risk measure shares the 

desirable properties of VaR in focusing on potential losses and being interpretable 

to the average investor.  
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However, as the definition of CVaR ensure that CVaR for any given level of 

confidence and risk horizon is higher than the corresponding VaR, minimizing 

CVaR ensures a low VaR as well. 

 

4.2.1 Mean-CVaR optimization 

 

In 2000 Rockafellar and Uryasev presented the approach of minimizing 

Conditional Value-at-Risk (CVaR) rather than minimizing the potentially non-

convex and non-coherent Value-at-Risk. The new approach can be combined with 

analytical or simulation-based methods to optimize portfolios.   

Following the notation from the Value at Risk section, Rockafeller and Uryasev 

give the following expressions for 𝛼-VaR and 𝛼-CVaR; 

 𝛼-VaR(𝑤) =  𝑙𝛼(𝑤) = min{𝑙 ∈ ℝ: 𝐹(𝑤, 𝑟) ≥ 𝛼} (11) 

 

 
𝛼-CVaR(𝑤) = 𝜙𝛼(𝑤) = (1 − 𝛼)

−1 ∫ 𝐿(𝑤, 𝑟)𝑝(𝑟)𝑑𝑟
𝐿(𝑤,𝑟)≥𝑙𝛼(𝑤)

 
(12) 

Where 𝑃[𝐿(𝑤, 𝑟) ≥ 𝑙𝛼(𝑤)] = 1 − 𝛼 by the definition of VaR. 

Rockafellar and Uraysev then define the following function 𝐹𝛼 on 𝑊 ×ℝ 

 
𝐹𝛼(𝑤, 𝑙) = 𝑙 + (1 − 𝛼)

−1∫ (−𝑤𝑇𝑟 − 𝑙)+𝑝(𝑟)𝑑𝑟
𝑟𝜖𝑅𝑛

 (13) 

 
= 𝑙 + (1 − 𝛼)−1∫ [𝐿(𝑤, 𝑟) − 𝑙]+𝑝(𝑟)𝑑𝑟

𝑟𝜖𝑅𝑛
 (14) 

Rockafellar and Uryasev (2002) prove that 𝐹𝛼 is convex and continuously 

differentiable, and that the 𝛼-CVaR then can be computed by  

 𝜙𝛼(𝑤) = min
𝛼∈𝑅

𝐹𝛼(𝑤, 𝑙) (15) 

The main contribution of Rockafellar and Uryasev (2000) is exactly this, 

continuously differentiable convex function are easy to minimize numerically. 

Additionally, 𝛼-CVaR can be calculated without first calculating 𝛼-VaR, which we 

know is troublesome from section 4.1.2. 

As the joint distribution (and thus analytical expression for 𝑝[𝑟]) is not known, we 

instead have to use either historical values of returns or simulated returns. 
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Rockafellar and Uryasev (2000) proposes to approximate this integral by 

sampling the probability distribution of 𝑟 according to density 𝑝(𝑟). If we take the 

approach of simulated returns (scenarios), then the corresponding approximation 

to 𝐹𝛼(𝑤, 𝑙) is 

 
�̂�𝛼(𝑤, 𝑙) = 𝑙 + (𝑆 − 𝑆𝛼)

−1∑ [𝐿(𝑤, 𝑟𝑠) − 𝑙]
+

𝑆

𝑠=1
  (16) 

 

Minimization of �̂�𝛼(𝑤, 𝑙) can then be reduced to convex programming by 

replacing [𝐿(𝑤, 𝑟𝑠) − 𝑙]
+ with the dummy variables 𝑍𝑠 for = 1,… , 𝑟 : 

And then minimizing the linear expression  

 
𝑙 + (𝑆 − 𝑆𝛼)−1∑ 𝑍𝑠

𝑆

𝑠=1
 (17) 

 

Subject to 

1. 𝑤𝑖 ≥ 0 for 𝑖 = 1,… , 𝑛 with ∑ 𝑤𝑖 = 1
𝑛
𝑖=1  

2. 𝑤𝑇𝐸(𝑟) ≥ 𝑅 if we want to guarantee a certain return, else this constraint is 

dropped 

3. 𝑍𝑠 ≥ 0, for 𝑠 = 1,… , 𝑟 

4. 𝑤𝑇𝑟 + 𝑙 + 𝑍𝑠 ≥ 0 for 𝑠 = 1,… , 𝑟 

Where 

 𝑠 = 1,… , 𝑆 denotes simulated scenarios  

 𝑟𝑠 denotes the simulated returns vector for scenario 𝑠. 

This expression is also convex and is piecewise linear with respect to 𝑙. It is not 

differentiable with respect to l, but more importantly it can be minimized through 

linear programming. 
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4.2.1.1 Mean-CVaR optimization vs. Mean-Variance optimization 

 

Rockafeller and Uryasev (2000) show that Mean-Variance optimization and 

Mean-CVaR optimization generates equivalent efficient frontiers if the loss 

function follows the normal distribution. More interestingly, they show that 

differences arise when the loss distribution is non-normal, i.e. when it exhibits fat 

tails and asymmetry. Krokhmal et al (2002) shows that Mean-CVaR optimization 

yields a higher standard deviation than Mean-Variance optimization for a given 

level of return, with differences increasing with the confidence level 1 − 𝛼. Both 

these observations are in thread with what one would expect based on the stylized 

facts, i.e. negative skew and fat tails.  
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Section 5: Autoregressive Conditional 

Heteroscedasticity  

The ARCH model is the foundation for the popular GARCH models. We briefly 

review the original ARCH model from 1982 in Appendix A5. 

The rest of this section will discuss using the GARCH-framework to model the 

empirical distribution of financial returns in order to get good estimates of risk. 

The main references for this section are: Bollerslev (1986, 1990), Brooks (2008), 

Engle (1982, 2002), Francq and Zakoïan (2014), Nelson (1991), Silvennoinen and 

Teräsvirta (2009) and Zivot (2009). 

5.1 Generalized Autoregressive Conditional 

Heteroscedasticity (GARCH) 

 

We will start off by looking at the univariate GARCH model. The GARCH model 

originated as an extension of Engle’s (1982) ARCH model, and was first 

introduced by Bollerslev in 1986 to “allow for both a longer memory and more 

flexible lag structure” (Bollerslev 1986, page 2). Brooks (2008, p. 393) argues that 

this makes the model more parsimonious than the ARCH model, as well as 

helping to avoid overfitting. While in the regular ARCH model, the decay rate of 

the unconditional autocorrelation of 𝜖𝑡 is too rapid for what is typically observed 

in finance unless you include many lags, the GARCH model allows for a slower, 

albeit still exponential decay. This in turn makes the model less likely to breach 

non-negativity constraints, compared to that of the ARCH model. 

To illustrate for our application; let  𝑟𝑡 be a stochastic process of daily log returns, 

then a univariate symmetric normal GARCH(p,q)  process is formally defined as 

 𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡 (18) 

 𝜖𝑡 = ℎ𝑡
1/2𝑧𝑡   (19) 

 
ℎ𝑡 = 𝛼0 +∑ 𝛼𝑖𝜖𝑡−𝑖

2
𝑝

𝑖=1
+∑ 𝛽𝑗ℎ𝑡−𝑗

𝑞

𝑗=1
 (20) 
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Where  

 𝑟𝑡 is the log return of a security at time t 

 𝜇𝑡 is the expected value of the conditional  log return of a security at time t 

 𝜖𝑡 is the mean corrected return of a security at time t 

 ℎ𝑡 is the square of the conditional volatility, i.e. the conditional variance at 

time t 

 ℎ𝑡 is the conditional volatility at time t 

 𝑧𝑡 is a sequence of standardized i.i.d. random variables 

 𝛼𝑖 ∀  i are parameters of the model 

 𝛽𝑗  ∀  i are parameters of the model  

As with the ARCH model, the parameters of the model can be constrained to be 

positive to ensure positive and finite conditional variance. Some have argued that 

one should avoid imposing constraints such as these on the parameter estimation 

routine, as if such constraints indeed are necessary it is indicative of the 

specification being improper (Alexander 2008b, 136).  

It is important to note that the GARCH(p,q) process is weakly stationary if and 

only if 

 
∑ 𝛼𝑖

𝑝

𝑖=1
+∑ 𝛽𝑗 < 1

𝑞

𝑗=1
 (21) 

  

5.1.1 Conditional Mean specification 

 

The expected value of the conditional log return (𝜇𝑡) (i.e. the conditional mean) is 

sometimes modelled as an ARMA-process, but also commonly modelled simply 

as a constant. The ARMA-process modeling gets used in order to capture 

autocorrelation caused by market microstructure effects such as the bid-ask 

bounce(the phenomenon that transaction prices may take place either close to the 

ask or close to the bid price and then tend to bounce between these two prices), or 

non-trading effects (Zivot 2009). If extreme market events happened during the 

sample period, one can also opt to remove these effects with dummy variables, 

but caution and a thorough understanding of why the events were extreme 
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(unusual, unlikely to happen again and thus “noise”) are needed. When no ARMA 

effects are found we often default to the constant. Putting all this into an equation, 

the typical conditional mean specification takes the form of: 

 
𝐸𝑡−1[𝑦𝑡] = 𝑐 +∑ 𝑎𝑖𝑦𝑡−𝑖

𝑝

𝑖=1
+∑ 𝑏𝑗𝜖𝑡−𝑗

𝑞

𝑗=1
+∑ 𝛽𝑙

′𝑋𝑡−𝑙
𝐿

𝑙=0

+ 𝜖𝑡 

(22) 

 

Where 𝑋𝑡 is a 𝑘 × 1 vector of exogenous explanatory variables, and the rest of the 

variables are an intercept and conventional ARMA parameters reviewed in the 

appendix. 

5.1.2 The unconditional volatility of GARCH models 

 

If there were no market shocks, the GARCH variance ℎ𝑡 would eventually settle 

down to a steady state value, ℎ̅ so that ℎ𝑡 = ℎ̅ for all t. This is called the 

unconditional variance of the GARCH model, and is not to be confused for the 

unconditional variance in a moving average volatility (which is based on the i.i.d. 

returns assumption). This steady state value varies based on the GARCH-

specification we choose.  

E.g. for a “vanilla GARCH (1,1)” (symmetric normal) we can calculate the value 

by substituting ℎ𝑡 = ℎ𝑡−1 = ℎ̅, and then use the fact that 𝔼[𝜖𝑡−1
2] = ℎ𝑡−1 = ℎ̅ to 

finally obtain ℎ̅ =  
𝛼0

1−(𝛼1+𝛽1)
 

For the general GARCH(p,q) model, we get 

 
ℎ̅ =  

𝛼0

1 − (∑ 𝛼𝑖
𝑝
𝑖=1 + ∑ 𝛽𝑗

𝑞
𝑗=1 )

 
(23) 

 

Consensus on the GARCH model is that it should be useful for forecasting short-

term (and perhaps medium-term) volatility, but the long term volatility is more 

questionable (Alexander 2008b, 144) . This can be somewhat alleviated by 

constraining the value of the constant in the GARCH estimation (∝0) to some 
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level we deem realistic for long term variance, and only let the remaining 

parameters be estimated by the data. 
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5.1.3 The Exponential GARCH 
 

A critique of the GARCH (1,1) model is that it assumes the response of the 

conditional variance to negative shocks to be exactly the same as the response of a 

positive shock of the same magnitude. Since we know that leverage effects are 

present in most financial data, this assumption is not very good. The asymmetric 

volatility response can be captured by assuming a skewed error distribution, or 

altering the volatility equation. Nelson (1991) proposed the following E-GARCH 

model as a solution of the latter type; 

 
ln(𝜎𝑡

2) = ℎ𝑡 = 𝛼0 +∑ 𝛼𝑖
𝑝

𝑖=1

|𝜖𝑡−𝑖| + 𝛾𝑖𝜖𝑡−𝑖
𝜎𝑡−𝑖

 +∑ 𝛽𝑗ℎ𝑡−𝑗
𝑞

𝑗=1
 (24) 

We demonstrate how this specification can capture asymmetric responses in the 

appendix, and discuss some other properties of the specification. 

 

5.1.4 Non-Gaussian Error Distributions 
 

The original presentations of the ARCH and GARCH models assumed a normal 

error distribution. However, based on the stylized facts of financial time series, 

it’s intuitive to use an error distribution that can capture fat tails better than the 

normal distribution. Many fat-tailed error distributions have been proposed, with 

Bollerslev (1987)’s proposal of the Student’s t distribution being among the most 

popular. The Student’s t density has a symmetric bell shape similar to that of the 

normal distribution. The density function of the general t distribution is given by 

 

𝑓𝑣(𝑧) =
Γ (
𝑣 + 1
2 )

Γ (
𝑣
2 ) √𝜋𝑠𝑣

(1 +
𝑧2

𝑠𝑣
)

−(
𝑣+1
2
)

 (25) 

Where Γ(·) is the gamma function, 𝑣 the degree of freedoms controlling the 

thickness of the tails and 𝑠 the scale parameter (Alexander 2008a, 97-98). 

The first two moments of the general t distribution are given by 

 𝐸(𝑍) = 0, 𝑣 > 0 (26) 
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 𝑉𝑎𝑟(𝑍) =
𝑠𝑣

𝑣 − 2
,    𝑣 > 2 (27) 

 

As 𝑧𝑡 in the GARCH model is standardized (variance = 1), the scale parameter 

must have the value 
𝑣−2

𝑣
 to ensure unit variance. 

 

5.1.5 Estimation of the parameters 

 

Estimation of the parameters in the GARCH model is usually done using 

Maximum Likelihood Estimation (MLE), meaning that we choose values for the 

parameters that maximize the likelihood for getting the data we have. The data 

chosen are typically daily data, as this is the “nicest” data for GARCH models. If 

one uses less frequent data, the volatility clustering effects are likely to disappear 

(Alexander 2008b, 137), while if intraday data is used one have to account for 

“seasonality”-effect, i.e. that more trading happens during the start and end of a 

day than during. 

MLE for GARCH can be done in two ways: Quasi-MLE and Full MLE. Quasi-

MLE are used when the focus of the study are the actual GARCH-parameters. We 

assume that the correct specification is chosen (e.g. a GARCH [1,1]), but that the 

errors are Gaussian. Essentially, the Gaussian likelihood is treated as the objective 

function to be maximized rather than a proper likelihood. This method is proven 

to give good estimates of 𝛼 and 𝛽 under appropriate assumptions on the true 

innovation function (McNeil et al 152). 

Full-MLE uses the density of the true distribution in the likelihood function. This 

method gives more information, but we need to know the true distribution of the 

data. 

For a more technical piece on estimating GARCH models by Quasi-MLE, see 

Francq and Zakoïan 2010, 141-179. 
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5.2 Multivariate GARCH 

 

In portfolio optimization, dependence between the assets is arguably even more 

important than the variance of the individual stocks themselves. Therefore, an 

extension to a multivariate framework is appropriate. 

Multivariate ARCH models appeared almost at the same time as the univariate 

models, and the extension to GARCH followed shortly after by Bollerslev et al. 

(1988). The first models had too many parameters to be useful for modeling much 

more than two assets at a time, and this “dimensionality curse” is still prevalent 

today with more parsimonious models and much faster computers.  

Today, the most popular multivariate GARCH specifications seem to be the 

Constant Conditional Correlations (CCC) models by Bollerslev (1990) Jeantheau 

(1998), the BEKK model by Baba et al. (1995), and the Dynamic Conditional 

Correlations (DCC) models proposed by Tse and Tsui (2002) and Engle (2002) 

(Francq and Zakoïan [2014]).  

 

A multivariate GARCH process is defined as 

 𝑟𝑡 = 𝜇𝑡 + 𝜖𝑡 (28) 

 
𝜖𝑡 = 𝐻𝑡

1
2𝑧𝑡 (29) 

  

Where  

 𝑟𝑡 is a 𝑛 × 1 vector of the log returns of n securities at time t 

 𝜇𝑡 is a  𝑛 × 1vector of the expected value of the conditional  log return of 

n securities at time t 

 𝜖𝑡 is a  𝑛 × 1vector of the mean corrected return of n securities at time t 

 𝐻𝑡 is a  𝑛 × 𝑛 matrix of the conditional covariance’s of 𝜖𝑡 at time t 

 𝐻𝑡
1/2

 is a 𝑛 × 𝑛 matrix so that 𝐻𝑡
1/2
(𝐻𝑡

1/2
)′ = 𝐻𝑡 is the conditional 

covariance matrix of 𝜖𝑡. 𝐻𝑡
1/2

 can be obtained by Cholesky decomposition 

of 𝐻𝑡. 

  𝑧𝑡 is a 𝑛 × 1 vector of standardized i.i.d. random variables 
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Note that 𝐻𝑡
1/2

 is not the square root of the conditional covariance matrix 𝐻𝑡 

(negative covariances would then be impossible). 

Remaining is the specification of the matrix process 𝐻𝑡. Similarly to ensuring that 

the conditional variance is positive in the univariate case, we here have to ensure 

that the specification imposes positive definiteness (as the covariance matrix per 

definition is positive definite). Models for specifying 𝐻𝑡 are often divided into 

four categories; 

1. Models where 𝐻𝑡 is modelled directly, such as the VEC and BEKK 

models. 

2. Factor models motivated by parsimony, where 𝑟𝑡 is assumed to be 

generated by a number of unobserved heteroskedastic factors. 

3. Decomposition models where 𝐻𝑡 is modeled through first modeling the 

conditional variances and conditional correlations and then combining 

them to construct 𝐻𝑡 

4. Semi- and nonparametric approaches. 

In this thesis we focus on and apply models from the third category, namely CCC 

and DCC type models. The conditional correlations in these models are modeled 

sequentially using the standardized residuals 𝑢𝑡 = 𝐷𝑡
−1𝜖𝑡. A second requirement 

also arises from decomposing 𝐻𝑡, namely that the values of the conditional 

correlation matrix has to be larger than or equal to minus one and less than or 

equal to plus one, i.e. −1 ≤ 𝜌𝑖𝑗 ≤ 1 for 𝑖 = 1,… , 𝑛 and 𝑗 = 1,… , 𝑛.  
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5.2.1 Constant Conditional Correlation (CCC) Models 

 

The perhaps simplest multivariate conditional correlation model is the CCC model 

of Bollerslev (1990). As the name suggests, the correlation structure 𝑃 is time-

invariant in this model, leaving 𝐻𝑡 to be expressed as follows: 

 𝐻𝑡 = 𝐷𝑡𝑃𝐷𝑡 (30) 

 

Where  

𝐷𝑡 is 𝑑𝑖𝑎𝑔 = (ℎ1𝑡
1/2 
, … , ℎ𝑛𝑡

1/2 
). That is, 𝐷𝑡 is the diagonal matrix containing the 

conditional standard deviations ℎ𝑖𝑡
1/2

; 

𝐷𝑡 = 

(

 
 
 
 
 

ℎ1𝑡
1/2 

0 … 0

0 ℎ2𝑡
1/2 

… 0

⋮ ⋮ ⋱ ⋮

0 0 … ℎ𝑛𝑡
1/2 
)

 
 
 
 
 

 

𝑃 is the positive definite correlation matrix, 𝑃 = [𝜌𝑖,𝑗] so that 𝜌𝑖,𝑖 = 1 for 𝑖 =

1, … , 𝑛; 

𝑃 =

(

 
 
 
 

1 𝜌1,2 … 𝜌1,𝑛

𝜌2,1 1 … 𝜌2,𝑛

⋮ ⋮ ⋱ ⋮

𝜌𝑛,1 𝜌𝑛,2 … 1 )

 
 
 
 

 

The off-diagonal elements of 𝐻𝑡 will then be defined as  

[𝐻𝑡]𝑖𝑗 = ℎ𝑖𝑡
1/2
ℎ𝑗𝑡
1/2
𝜌𝑖𝑗 ,   𝑖 ≠ 𝑗 so that 
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𝐻𝑡 =

(

 
 
 
 
 

ℎ1𝑡 ℎ1𝑡
1/2
ℎ2𝑡
1/2
𝜌1,2 … ℎ1𝑡

1/2
ℎ𝑛𝑡
1/2
𝜌1,𝑛

ℎ2𝑡
1/2
ℎ1𝑡
1/2
𝜌2,1 ℎ2𝑡 … ℎ2𝑡

1/2
ℎ𝑛𝑡
1/2
𝜌2,𝑛

⋮ ⋮ ⋱ ⋮

ℎ𝑛𝑡
1/2
ℎ1𝑡
1/2
𝜌𝑛,1 ℎ𝑛𝑡

1/2
ℎ2𝑡
1/2
𝜌𝑛,2 … ℎ𝑛𝑡 )

 
 
 
 
 

 

 

If the conditional variances are modelled with a standard univariate GARCH 

model (we could also use another specification, e.g. the E-GARCH), the 

conditional variances can be written in vector form; 

 
ℎ𝑡 =  𝜔 +∑ 𝐴𝑗𝑟𝑡−𝑗

2
𝑞

𝑗=1
+∑ 𝐵𝑗ℎ𝑡−𝑗

𝑝

𝑗=1
 (31) 

 

Where  

 𝜔 has the form of a 𝑛 ×  1 vector  

 𝐴𝑗 and 𝐵𝑗 are diagonal 𝑛 ×  𝑛 matrices 

 𝑟𝑡
2 = 𝑟𝑡⊙ 𝑟𝑡 i.e. the element-wise (Hadamard) product (defined in 

Appendix A1).  

Positive definiteness of 𝐻𝑡 is then guaranteed if 𝑃 is positive definite and the 

elements of 𝜔 and the diagonal elements of 𝐴𝑗 and 𝐵𝑗 are positive. The positivity 

𝐴𝑗 and 𝐵𝑗’s diagonal elements are not necessary unless 𝑝 = 𝑞 = 1 (Silvennoinen 

and Teräsvirta (2009)), but this case is extremely common in finance. 
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5.2.2 Dynamic Conditional Correlation models 

 

Although the CCC model is attractive in terms of parameterization, the stylized 

facts of financial returns suggest that correlations should be modeled as dynamic. 

To alleviate this restriction, the dynamic correlation models also allows the 

correlation matrix 𝑃 to be time-varying, i.e. 𝑃𝑡 isn’t necessarily equal  𝑃𝑡+𝑧 for 

any 𝑧 but 𝑧 = 0. Hence, 

𝑃𝑡 =

(

 
 
 
 

1 𝜌1,2𝑡 … 𝜌1,𝑛𝑡

𝜌2,1𝑡 1 … 𝜌2,𝑛𝑡

⋮ ⋮ ⋱ ⋮

𝜌𝑛,1𝑡 𝜌𝑛,2𝑡 … 1 )

 
 
 
 

 

 

𝐻𝑡 = 𝐷𝑡𝑃𝑡𝐷𝑡 =

(

 
 
 
 
 

ℎ1𝑡 ℎ1𝑡
1/2
ℎ2𝑡
1/2
𝜌1,2𝑡 … ℎ1𝑡

1/2
ℎ𝑛𝑡
1/2
𝜌1,𝑛𝑡

ℎ2𝑡
1/2
ℎ1𝑡
1/2
𝜌2,1𝑡 ℎ2𝑡 … ℎ2𝑡

1/2
ℎ𝑛𝑡
1/2
𝜌2,𝑛𝑡

⋮ ⋮ ⋱ ⋮

ℎ𝑛𝑡
1/2
ℎ1𝑡
1/2
𝜌𝑛,1𝑡 ℎ𝑛𝑡

1/2
ℎ2𝑡
1/2
𝜌𝑛,2𝑡 … ℎ𝑛𝑡 )

 
 
 
 
 

 

 

This makes the dynamic correlation models harder to estimate, as the correlation 

matrix has to be inverted for each time step 𝑡. There exists a vast number of 

methods for specifying 𝑃𝑡 in the literature, we will focus on Engle (2002)’s 

Dynamic Conditional Correlation model. As this is a thesis on portfolio 

optimization and not econometrics, we will focus on the intuition and not dive too 

deep into the technicalities of the model. For a more rigorous discussion, see e.g. 

Engle and Sheppard (2001) and Francq and Zakoïan (2010, 2014).  

 

Following notation of Silvennoinen and Teräsvirta (2009), we consider a dynamic 

matrix process  

 𝑄𝑡 = 𝑆(1 − 𝛼 − 𝛽) + 𝛼𝑢𝑡−1𝑢𝑡−1
′ + 𝛽𝑄𝑡−1 (32) 
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Where  

 𝑢𝑡 = 𝐷𝑡
−1𝜖𝑡, i.e. the standardized errors. 

 S is the unconditional correlation matrix of the standardized errors 𝑢𝑡. 

 𝛼 is a positive scalar parameter. 

 𝛽 is a non-negative scalar parameter. 

 𝛼 + 𝛽 < 1  

 𝑄0 is positive definite 

This ensures positive definiteness, but not necessarily valid correlation matrices. 

To get that 𝑄𝑡 has to be rescaled; 

 𝑃𝑡 = 𝑑𝑖𝑎𝑔{𝑄𝑡}
−1/2 𝑄𝑡 𝑑𝑖𝑎𝑔{𝑄𝑡}

−1/2 = (𝐼 ⊙ 𝑄𝑡)
−1/2𝑄𝑡(𝐼 ⊙ 𝑄𝑡)

−1/2 

 
(33) 
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Section 6: Copulas 

 

The main references for this subsection are: Alexander (2008b), McNeil et al 

(2005), Nelsen (1999), Schmidt (2006) 

Copulas are a statistical tool for capturing the dependence structure of a joint 

distribution, independent of the properties of the marginal distributions (see e.g. 

Nelsen, R. 1999). The term copula was first used by Sklar (1959), and is derived 

from copulare, which is latin for “to connect”, or “join”. The purpose of copulas 

is exactly that: to connect the marginal distributions of random variables into a 

joint distribution. This makes copulas an interesting alternative (or supplement) to 

multivariate GARCH models for combining univariate volatility models into 

multivariate models of asset returns. As with multivariate GARCH specifications, 

copulas can be made to be either constant or time-varying (dynamic). 

6.1 Pitfalls of covariance and correlation 

 

It can be proved mathematically that correlation is only a good measure for 

elliptical joint distributions. An obvious example would be that 𝐶𝑜𝑟𝑟(𝑋, 𝑋2) = 0 

even though 𝑋 and 𝑋2 clearly have perfectly quadratic dependence. A famous 

paper by Embrechts et al. (as reviewed by Alexander (2008b)) from 2002 

identifies and illustrates several major problems associated with Pearson’s 

correlation, such as 

 Correlation is not invariant under transformation of variables, e.g. 

𝐶𝑜𝑟𝑟(𝑋, 𝑌) ≠ 𝐶𝑜𝑟𝑟(ln[X] , ln[Y]) 

 Feasible values for correlation depends strongly on the marginal 

distributions, e.g. if 𝑋 and Y are lognormal then certain correlations (inside 

of the normal range of values, i.e. [−1, 1]) is impossible! This confuses 

conventional interpretation of the correlation coefficient drastically, as 1 is 

no longer necessarily perfect positive dependence, and similar for -1. 

To put it briefly, these problems arise because correlation is really only a proper 

dependence measure when the joint distribution is elliptical. We formalize the 
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desired properties of a dependence measure in the part on Concordant Metrics and 

Tail dependence in the appendix. 

6.2 Definition of a copula and Sklar’s theorem 
 

An 𝑛-dimensional copula is a distribution function on [0,1]𝑛 with uniformly 

distributed margins on [0,1]. 

According to Sklar 1959 (as reviewed by Alexander [2008b] and McNeil et al 

[2005]), there exists a function C, a copula, mapping [0,1]𝑛 into [0,1] so that  

 𝑭(𝑦1, … , 𝑦𝑛) = 𝐶[𝐹1(𝑦1),… , 𝐹𝑛(𝑦𝑛)]     (34) 

 

Where  

 𝑭(𝑦1, … , 𝑦𝑛) is an n-variate cumulative distribution function 

 𝐹𝑖(𝑦𝑖), 𝑖 = 1,… , 𝑛 is a set of univariate margins 

If 𝐹𝑖(𝑦𝑖) are continuous for all i, then 𝐶 is unique. Otherwise, C is uniquely 

determined on Ran 𝐹1 × Ran 𝐹2 × …× Ran 𝐹𝑛, where Ran 𝐹𝑖 denotes the range of 

𝐹𝑖. Conversely, if C is a copula and 𝐹1, … , 𝐹𝑛 are univariate distribution functions, 

then 𝑭 must be a joint distribution function with margins 𝐹1, … , 𝐹𝑛. For a full 

proof of this theorem, see Nelsen (1999, 18). 

Denoting 𝑦𝑖 = 𝐹𝑖
−1(𝑢𝑖) for 𝑖 = 1,… , 𝑛 where 𝐹𝑖

−1(𝑢𝑖) is the inverse marginal 

distribution and 𝑢𝑖 are uniformly distributed [0,1], it follows that 𝑢𝑖 = 𝐹𝑖(𝑦𝑖). In 

turn inserting this into Sklar’s equation, we get the following; 

𝑭[𝐹1
−1(𝑢1),… , 𝐹𝑛

−1(𝑢𝑛)] = 𝐶[𝐹1(𝐹1
−1[𝑢1]),… , 𝐹𝑛(𝐹𝑛

−1[𝑢𝑛])] 

 = 𝐶(𝑢1, … , 𝑢𝑛) (35) 

The importance of this theorem is that it shows that all multivariate distribution 

functions contain copulas, and that these copulas may be used in conjunction with 

univariate distribution functions to construct the joint distributions. It also shows 

that we can think of 𝐶 as the joint distribution of the uniformly distributed 

variables 𝑢𝑖  ,    𝑖 = 1,… , 𝑛. Thus, the copula represents the dependence structure 

separated from the marginal distributions. 
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The joint density function is then obtained by differentiating once using the chain 

rule, 

 𝑓(𝑦1, . . , 𝑦𝑛) = 𝑐[𝐹1(𝑦1),… , 𝐹𝑛(𝑦𝑛)]𝑓1(𝑦1) × 𝑓2(𝑦2) × …

× 𝑓𝑛(𝑦𝑛) 
(36) 

 

6.3 Bivariate Copulas 
 

To develop intuition on how copulas work, it is useful to consider the bivariate 

case (i.e. two random variables); 

Two random variables, 𝑋1 and 𝑋2 are fully described by their respective 

cumulative distribution functions (cdf) (i.e. the marginals),  

for 𝑋1:   𝐹1(𝑥1) = 𝑃(𝑋1 ≤ 𝑥1) 

and similarly for 𝑋2:  𝐹2(𝑥2) = 𝑃(𝑋2 ≤ 𝑥2) 

The marginal do however give us no information about the joint behavior of 𝑋1 

and 𝑋2. From basic probability rules, we know that 𝑃(𝐴 𝑎𝑛𝑑 𝐵) = 𝑃(𝐴) × 𝑃(𝐵) 

if A and B are independent events. Applying it to our random variables (and 

assuming independence) we get 𝑃(𝑋1 ≤ 𝑥1, 𝑋2 ≤ 𝑥2) = 𝐹(𝑥1) × 𝐹(𝑥2). Here we 

have expressed the joint distribution through three ingredients; each of the 

marginals and a description of the type of relation between the variables (here 

independence i.e. independent copula). The beauty of copulas is that it allows us 

to do this when the variables are dependent of each other, and we can do so with 

different types of marginals. 

6.4 Tail Dependence 
 

A formal definition of tail dependence is given in Appendix A6; here we focus on 

the intuition. Tail dependence looks at the dependence (association) in the tails of 

the joint distribution. The reason for looking at tail dependence is that it provides 

a measure of the strength of dependence between extreme tail events. Of 

particular interest for risk management is what is called the lower tail dependence, 

which can be interpreted as the probability that asset 1 gets a very low return 

given that asset 2 has a very low return. Modeling this is important in finance, as 
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we know that downfalls in one market often unleash a “domino-effect” over other 

markets. 

6.5 Elliptical Copulas 
 

The Elliptical copulas are part of the implicit copula category (Implicit copula are 

explained in Appendix A6. The important thing to know is that implicit copulas 

use the copula density rather than the distribution function). We will study the two 

most popular elliptical copulas, namely the Gaussian (i.e. normal) copula and the 

Student t copula. 

6.5.1 Gaussian Copulas 
 

The Gaussian copula is derived from the 𝑛-dimensional multivariate and 

univariate standard normal distribution functions, i.e. it’s defined by 

 𝑪(𝑢1, … , 𝑢𝑛; 𝑃) = Φ𝑚[Φ
−1(𝑢1),… ,Φ

−1(𝑢𝑛)] (37) 

Where 

 Φ𝑚 is the n-dimensional multivariate standard normal distribution 

function. 

 Φ is the univariate standard normal distribution function. 

 𝑃 is the correlation matrix. 

6.5.1.1 Tail dependence of the Gaussian copula 

 

It can be shown that the Gaussian tail dependence approaches zero when one goes 

far enough into the tail (see e.g. McNeil et al 2005, 210-211). This is sometimes 

referred to as “asymptotic independence”, and means that regardless of how high 

the correlation between two assets are, if we just go far enough into the tails, 

extreme events appear to  occur independently. This is very problematic when 

seen in relation to the stylized facts, as we know that when we are the furthest into 

the left tail for one asset, is exactly when we expect “bad things” to happen the 

most often for other assets. To put it differently, the Gaussian copula’s tail 

dependence imply the exact opposite. 
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6.5.2 Student t Copulas 
 

Another example of an elliptical copula is the multivariate Student t copula, 

defined by  

 𝑪(𝑢1, … , 𝑢𝑛; 𝑃) = 𝑚𝑡𝑣[𝑡𝑣
−1(𝑢1), … , 𝑡𝑣

−1(𝑢𝑛)] (38) 

Where  

 𝑚𝑡𝑣 is the n-dimensional multivariate Student t distribution function with 

𝑣 degrees of freedom. 

 𝑡𝑣 is the univariate Student t distribution function with 𝑣 degrees of 

freedom. 

 𝑃 is the correlation matrix. 

6.5.2.2 Tail dependence of the Student t copula 

 

Contrary to the Gaussian copula, it can be shown that the Student t copula is 

asymptotically dependent in both the upper and lower tail (see McNeil et al 2005, 

211). Even for zero or negative correlations there is still some tail dependence. 

This gives the Student t copula an edge over the Gaussian copula when it comes 

to modelling most financial assets. As with all elliptical copulas, the tail 

dependence is however symmetric. This is not necessarily what we want when 

modeling in finance. An obvious example would be if the marginals are belonging 

to different stocks. While an extreme downfall in one stock is often associated 

with a high probability of other stocks also taking a huge fall (i.e. the market 

“collapses”), the opposite is not necessarily true. A large upswing in one stock’s 

price tends to be associated with positive news, often firm-specific. In the context 

of pure risk management, the lower tail is what typically is considered, but this is 

likely to matter more when optimizing for both a high return and a low risk.  

6.6 Copulas for Portfolio Optimization 
 

Multivariate copulas can be used in portfolio optimization to specify the 

dependence between assets. If we use the normal or student t copula, we make the 

assumption that the return distribution is elliptical, and the optimization will be 
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based on a correlation matrix. However, we are now free to specify the asset 

marginals to have their individual empirical distribution, or a parametric 

distribution we believe can describe the asset well.  

One way to apply copulas for portfolio optimization is to combine the marginals 

in a simulation approach for estimating Conditional Value at Risk. The copulas 

then offer a great advantage in terms of flexibility. We apply this on real data 

through CVaR optimization in section 8. 

6.6.1 Simulation using the Gaussian Copula 

 
1. Simulate 𝑥~𝒩𝑑(0, 𝑃) 

Simulating 𝑛 rows from the multivariate normal distribution gives us an 

𝑛 × 𝑑 matrix 𝑥 of standard normal realizations with correlation given by 

P.  

2. Set 𝑢 = Φ(𝑥) 

We transform each column vector using probability transformation. That 

is, each realization is put through the standard normal marginal density 

function to get uniform (0,1) variables.  

3. We are now free to transform each vector d in our (n x d) matrix of 

uniform variables with the appropriate inverse marginal density function. 

Thus, we can get 𝑑 column vectors of different marginal distributions with 

length 𝑛 of, which still possess the correlation structure given by 𝑃.  

6.6.2 Simulation using the Student t copula 
 

For the Student t Copula the steps are equivalent, except that we use the 

multivariate t distribution in step 1, and student t marginals in step 2. All with 𝑣 

degrees of freedom.  

1. Simulate 𝑥~𝑡𝑑(0, 𝑃, 𝑣) 

Simulating 𝑛 rows from the multivariate t distribution. 

2. Set 𝑢 = 𝑡𝑣(𝑥) 

Transform each column vector using probability transformation. 

3. Transform columns 𝑑 to suitable marginal distributions using inverse 

density functions.  



37 

 

Section 7: Methodology 

 

As the emphasis of this thesis is purely on the risk measure input of the 

Markowitz algorithm and not the expected return vector (that is to the extent that 

they are separable), we have chosen to conduct the comparison by minimizing 

portfolio risk, rather than search for an optimal risk-reward tradeoff. This in turn 

means that we don’t have to specify an expected return vector, and we believe this 

will reduce any unnecessary noise from the comparison. To put it differently, we 

simply choose the minimum risk portfolio on efficient frontier. 

All the empirical work done in this thesis is limited by the common mathematical 

assumptions of finance listed in Appendix A2. 

7.1 Strategies 

 

To compare the risk measures and estimation techniques we create a separate 

strategy for each combination of estimation technique and risk measure 

considered. The strategies are rebalanced weekly, i.e. every fifth trading day. This 

reduces the impact of assuming no transaction costs compared to that of daily 

rebalancing. For a more thorough discussion on rebalancing, see “Suggestions for 

future work” in section 9. 

For all portfolios, the weight per asset is constrained to a maximum of 40%, to 

ensure that the portfolios exhibit some diversification across assets.  

7.1.1 The naïve strategy 

 

The naïve strategy is included for benchmarking purposes, and is simply to invest 

an equal share in each available asset, i.e. 

𝑊𝑖 =
1

𝑛
, for all 𝑖, where 𝑛 is the number of available assets. As both datasets 

contain 10 assets, 𝑊𝑖 =
1

10
 for all 𝑖. 
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7.1.2 Regular specification strategies 

 

The regular specification strategies are calculated using the simplest estimation 

techniques. 

7.1.2.1 Regular Markowitz MV, expanding window. 

 

The simplest MV-strategy we consider is the Markowitz minimum variance 

portfolio, assuming that returns are i.i.d. This strategy serves as a benchmark and 

is calculated by estimating the expanding window sample covariance matrix, i.e. 

for every trading day that goes by the input for the sample covariance matrix is 

expanded by one observation. 

7.1.2.2 Regular Min CVaR, expanding window. 

 

The simplest Min CVaR-strategy we consider is minimizing the CVaR based on 

the historical return distribution. This strategy serves as a benchmark and is 

calculated by minimizing CVaR for the expanding window i.e. for every trading 

day that goes by the input is expanded by one observation. 

7.1.3 MV-GARCH specification strategies 

 

The MV-GARCH specification strategies are minimum variance strategies using 

the GARCH framework to model variance. We only consider order (1,1) 

univariate models. For the portfolio optimization procedure, we have calculated a 

rolling estimation of forecasted covariance matrices from the DCC and CCC 

models. I.e. are doing a 5-day forecast of the covariance matrix each 5th day, with 

estimation of the model done with data up to that day. We use each of these 

matrices as input in the Markowitz minimum variance optimization algorithm, 

and thus we rebalance each 5th day with a new estimate of future volatility and 

covariance given by the multivariate GARCH models. 
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7.1.3.1 CCC S-GARCH 

 

The CCC S-GARCH strategy models the univariate volatility with a standard 

GARCH (1,1) model, using a normal error distribution. The dependence structure 

is modeled with the CCC specification. 

7.1.3.2 DCC S-GARCH 

 

The DCC S-GARCH strategy models the univariate volatility with a standard 

GARCH (1,1)  model, using a normal error distribution. The dependence structure 

is modeled with the DCC specification. 

7.1.3.3 DCC E-GARCH 

 

The DCC E-GARCH strategy models the univariate volatility with the E-GARCH 

(1,1) model, using a Student t error distribution. The dependence structure is 

modeled with the DCC specification. 

7.1.4 Copula-GARCH CVaR specifications 

 

The Copula-GARCH CVaR specifications minimize 95% − 𝐶𝑉𝑎𝑅1𝑑𝑎𝑦 on a 

simulated sample given by the algorithm in section 7.1.5.  

7.1.4.1 Normal Copula, DCC S-GARCH 

This strategy uses the GARCH (1,1) model with normal error distribution as the 

univariate specification. Returns are simulated based on the normal copula and the 

simulation algorithm described in 7.1.5. The correlation structure implied by the 

fitted DCC model.  

7.1.4.2 Normal Copula, DCC E-GARCH 

This strategy uses the E-GARCH (1,1) model with student t error distribution as 

the univariate specification. Returns are simulated based on the normal copula and 

the simulation algorithm described in 7.1.5. The correlation structure implied by 

the fitted DCC model.  
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7.1.4.3 Student t Copula, DCC S-GARCH 

This strategy uses the GARCH (1,1) model with normal error distribution as the 

univariate specification. Returns are simulated based on the student t copula and 

the simulation algorithm described in 7.1.5. The correlation structure implied by 

the fitted DCC model.  

7.1.4.4 Student t Copula, DCC E-GARCH 

This strategy uses the E-GARCH (1,1) model with student t error distribution as 

the univariate specification. Returns are simulated based on the student t copula 

and the simulation algorithm described in 7.1.5. The correlation structure implied 

by the fitted DCC model.  

7.1.5 Simulation algorithm 

 

For the simulation process we use the copula- and GARCH-framework in 

combination. The elliptical copulas, normal copula and t-copula, both use the 

correlation matrix as the measure for the dependence structure between assets. 

The DCC framework forecast a correlation matrix based on past information. In 

the out of sample testing period, we do a rolling estimation and forecasting of 

correlation matrices. That is, we start at the beginning of the out of sample testing 

period, i.e. at time 0 of that sample, and fit the model to the training data. Thus we 

get parameters for the model, and can forecast the matrix. For every 5th time step, 

we forecast 5 days ahead, and rebalance and refit every 5 days. Thus, after 5 days, 

we have 5 more data point in our sample. We use the estimated parameters on the 

new data set (the old plus the 5 new observations) and forecast a correlation 

matrix for the next 5 days. This is done successively every 5 days in the out of 

sample testing period, and we thus get a number of matrices equal to the number 

of data points in our out of sample data divided by 5, i.e. 100 in this case.  

Now that the matrices are available, we impose on the copulas that the 

dependence structure is given by the correlation outputs from the DCC model. We 

use student t marginals for all assets. We use the diagonal of the covariance 

matrix outputs from the DCC-GARCH model as our estimates of variances for 

each of the marginals. The mean is estimated from the training data, and the 

degrees of freedom parameter for the student t-marginals is estimated by MLE for 
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all assets. From section 6.6, when given a correlation matrix of dimension 𝑑, we 

can simulate 𝑛 × 𝑑 uniform random variables in the [0,1] space which possess the 

dependence structure from the copula. We can then fit the suitable distributions, in 

this case the marginal student t distributions, to each of the 𝑑 simulated uniform 

vectors of length 𝑛, using the appropriate quantile function for each margin.  

For each time step, we simulate a new dataset with the parameters estimated as 

explained above. Thus, for each correlation matrix, we get a simulated dataset 

with dependence structure given by the DCC-GARCH and the respective copulas. 

This is useful when we want to estimate a portfolio using CVaR risk criterion, as 

we get to implement the time varying dependence structure along with the time 

varying second moment of the marginals, and in addition we can simulate 

thousands of data points, making 𝛼-CVaR optimization more robust (keep in 

mind, only (1 − 𝛼)100% of the points are actually used). The drawbacks of this 

procedure are the reliance on the assumptions we make on the marginal 

distributions and that the DCC-GARCH framework is able to adequately reflect 

the true dependence structure in conjunction with the copula.  

To summarize the procedure: 

1. Calculate a rolling forecast of DCC-GARCH models, to obtain the 

forecasted correlation and covariance matrices with data as if we were in 

real time.  

2. Choose either a normal or student t copula to model the dependence, and 

impose the correlations from step 1 to be able to simulate data with that 

dependence.  

3. Simulate data at each time step t using the estimated correlation matrix 𝑃𝑡, 

and transform the uniform output from the copula with the quantile 

functions of the suitable marginals. Each marginal is using second moment 

input from the DCC-covariance matrix at the same time step t. 
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7.2 Ranking the strategies 

 

To rank the measures (strategies) we will take a similar approach to that of 

Yilmaz (2010), i.e. compare the realized risk of the strategies with sample 

statistics. In addition to sample volatility, we will look at sample Value at Risk, 

sample Conditional Value at Risk and Downside deviation (i.e. the square root of 

semi-variance).  

To assert the significance of the differences in variance we apply the Brown-

Forsythe test (Brown and Forsythe 1974). The Brown-Forsythe test (also referred 

to as modified Levene’s test or simply Levene’s test) is a modified, more robust 

version of the more well-known Levene’s test for homogeneity of variances. 

Rather than using the mean, the B-F test uses the median, a more robust measure 

of central tendency when the distribution is skewed. 

As far as the authors know, there is no “good way” to do the same with Value at 

Risk and Conditional Value at Risk. An intuitive way of getting an indication of 

the significance of differences in VaR (or CVaR) is the approach taken in 

Hendricks (1996). The issue with this approach is that it requires a relatively high 

amount of samples to give any accuracy, so it wasn’t really feasible for this paper 

(some of the estimations take a couple of hours to complete in R). Thus, we 

merely note the differences in VaR and CVaR, as the statistical power of these 

measures (as presented) are low. 
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Section 8: Empirical application 

 

In this section we will apply and compare the risk measures and estimation 

techniques discussed in the previous sections.  

8.1 Data 

 

In the empirical application of the thesis we apply two data sets: One all equity 

dataset, and one dataset of commodity indices. Both of the samples are split into a 

“training sample” and a “testing” sample (also referred to as the “out of sample” 

period). The testing sample is chosen to be the last 500 observations (trading 

days) for both samples. 

8.1.1 Equity dataset 

 

The first dataset is a 10-dimensional dataset from the US large cap equity market. 

The dataset contains a total of 2531 observations (trading days), spanning from 

the 31st of July 2006 until the 17th of August 2016. The US large cap equity 

market is highly efficient and liquid, making it a great candidate for quantitative 

approaches. However, equities are generally highly correlated, making 

diversification benefits potentially harder to detect. Initially we wanted to make 

use of the entire S&P500 for comparing the risk measures, but we quickly realized 

that this simply wasn’t feasible – while both computational power and statistical 

techniques have made leaps forward in the recent years, the dreaded 

“dimensionality curse” is still very much alive. Accordingly, we had to find a way 

to limit the amounts of assets chosen and we thought the best way was to use 

indices of stocks rather than the individual stocks themselves.  

S&P Dow Jones present a total of 11 “Select Sector Indices” on their web site, 

with the constituents all being members of the S&P 500, and each constituent 

being assigned to at least one index. Unfortunately, two of the indices, Real Estate 

and Financial Services, only have data from 2015 and beyond, and our models 

require quite a bit of data for both estimation and out of sample testing. As a 



44 

 

substitute for the Real Estate index we added the “Select Industry” index Home 

builders. The Home builders’ index isn’t constructed purely by securities from the 

S&P 500, but there is a requirement for both market capitalization and trading 

liquidity. As for the Financial Services index we assume that it is highly 

correlated with at least the Financials index, and that we don’t lose much of the 

“total equity picture” by omitting it. Thus we end up with the following 10 

indices;  

 S&P 500 Consumer Discretionary Select Sector Index 

 S&P 500 Consumer Staples Select Sector Index 

 S&P 500 Energy Select Sector Index 

 S&P 500 Financials Select Sector Index 

 S&P 500 Health Care Select Sector Index 

 S&P Home builders Select Industry Index 

 S&P 500 Industrials Select Sector Index 

 S&P 500 Materials Services Select Sector Index 

 S&P 500 Technology Select Sector Index 

 S&P 500 Utilities Select Sector Index 

A detailed description of how the indices are constructed is available on the S&P 

Dow Jones web site (see the Bibliography, S&P Dow Jones Indices. 2016a).  

 

Figure 5 - Graphical representation of the Equity dataset through the naive portfolio  
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8.1.2 Commodity dataset 

 

The second dataset is also 10-dimensional, containing data from the commodity 

market. For this dataset we handpicked commodities we believed to be lowly 

correlated, and used the S&P GSCI indices as a measure of their performance 

over time. The S&P GSCI indices are designed to benchmarks for investing in the 

commodity markets, and is also designed to be tradable (e.g. there exists ETFs 

aiming to track the indices). This dataset contains a total of 2537 observations 

(trading days), spanning from the 31st of July 2006 until the 22nd of August 2016. 

The indices we chose were: 

 S&P GCSI Brent Crude 

 S&P GCSI Cocoa 

 S&P GCSI Coffee 

 S&P GCSI Corn 

 S&P GCSI Cotton 

 S&P GCSI Feeder Cattle 

 S&P GCSI Gold 

 S&P GCSI Sugar 

 S&P GCSI Zinc 

A detailed description of how the indices are constructed is available on the S&P 

Dow Jones web site (see the Bibliography, S&P Dow Jones Indices. 2016d).

 

Figure 6 - Graphical representation of the Commodity dataset through the naive portfolio 
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8.2 Empirical results 

 

8.2.1 Equity dataset 

8.2.1.1 Initial examination 

First we examine the marginal distributions to check for pronounced deviations 

from normality. The QQ plots examine the quantiles of two probability 

distributions (here the theoretical normal distribution on the X axis and the sample 

distribution on the y axis). If the two distributions compared are similar, the plot 

will approximate the line 𝑦 = 𝑥. If the quantiles are linearly related, the plot will 

approximate a line, but not necessarily 𝑦 = 𝑥. 

 

Figure 7 - Normal QQ plot, Equity 
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As expected, we see clear evidence of deviations in the tails for all assets. In 

particular, we see that the sample quantiles have more extreme values than the 

normal distribution in the tails. Thus, we can conclude the assets have heavier 

tails than the normal distribution (Note: We also perform a formal test in the form 

of the Jarque-Bera statistic, which can be found in Appendix B1. As expected, the 

hypothesis that the assets are normally distributed are rejected at all conventional 

confidence levels.) 

 

Figure 8 - Student t QQ plots, Equity 

We see a clear improvement in approximation of the sample distributions by the 

straightness of the plots in the tails, indicating that a t-distribution is better at 

capturing the extreme tail events.  

We also examined the ACFs of the distributions. As one would expect, the linear 

ACF was non-significant while the squared ACF was significant. These plots can 

be found in Appendix B1.  
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8.2.1.2 Fitting the univariate GARCH models 

 

We proceed by fitting the univariate GARCH models. We fit one standard 

GARCH model with assumed normally distributed errors, and we fit an 

exponential GARCH with assumed t-distributed errors.  

The ARMA parameters in the conditional mean equations at times turn up mostly 

significant. As for the S-GARCH parameters, all the alphas and betas are 

significant, while the omegas are typically insignificant. For the E-GARCH all 

parameters are significant, with the exception of the gamma parameter of 

Homebuilders. 

Table 1 - Univariate S-GARCH(1,1) fit, Equity 

 

Table 2 - Univariate E-GARCH(1,1) fit, Equity 

 

We see from the parameters that all series are stationary as 𝑎𝑙𝑝ℎ𝑎1 + 𝑏𝑒𝑡𝑎1 < 1 

for the standard GARCH, and 𝑏𝑒𝑡𝑎1 < 1 for the E-GARCH. From the large beta 

values we see that prior volatility has a high impact on forecasted volatility. This 

is true for both models.  

As for the other E-GARCH parameters we get some indications that the model 

might be inappropriate. The alpha parameters are negative, which doesn’t make 

sense, a shock should increase volatility increase, not decrease it. As for the 

gamma-parameters, they as expected have the opposite sign of the alphas, 

indicating the presence of leverage effects in the equity markets.  
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We also inspect the ACF’s of the squared standardized residuals. If the GARCH 

specifications work as intended, we should now see little to no significant 

autocorrelation.  

 

Figure 9 - ACF for the squared GARCH(1,1) standardized residuals, Consumer.Discretionary 

We note that the autocorrelations are largely reduced, and this is similar for the 

other indices (Appendix B1). 

 

8.2.1.3 Fitting the multivariate GARCH models 

To fit the CCC models we use the unconditional sample correlation, in 

combination with the stand GARCH (1,1) models. 

 

Figure 10 - DCC parameters, Equity 

Here a1 and b1 is the 𝛼 and 𝛽  in equation (32) from section 5.2.2. The high b1 

indicates that recent correlation has a large effect on the future correlation, while 

the low a1 indicates that shocks in correlation have less of an effect. 
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8.2.1.4 Simulation diagnostics 

 

We proceed to simulate data for the Copula-GARCH CVaR optimization. This is 

done according to the algorithm provided in section 7.1.5. To see if the simulation 

algorithm is working as intended we test it on the training data. We do some 

informal tests in the form of visual diagnostics, to see if the characteristics of the 

simulated data are similar to the characteristics of the training data. For this we 

use the sample correlation and covariance matrix as inputs. We want the 

simulated data to have similar frequency of tail events as the training data set. We 

also want the t-copula to have tail dependence similar to that of the training data. 

At last, we want the copula to simulate data with a similar correlation structure to 

the training data.  

 

Figure 11 - Pairs plot training data, Equity 
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The Pairs plots are divided in two parts. On the lower triangular, there are 

pairwise scatterplots of the data. These illustrate the linear dependence between 

the assets. On the upper triangular we have the correlation coefficients. On the 

diagonal we have the asset names. We observe mainly lower tail dependence from 

the fact that the plots narrows as we go further into the tails, and that the extreme 

events seem to pair up in the lower left corner.  

 

Figure 12 - Pairs plot G-SIM, Equity 

The above picture is the Pairs plots from the simulations from the Gaussian 

copula. We see that the correlation structure is intact, but that the tail dependence 

as expected is not modelled. We see this from the absence of the data points in the 

lower left corner. Rather, when one asset reaches extreme values, they clump 

close to one axis, and stay in “the middle” of the other, indicating the extremely 

low probability of two tail events at the same time.   



52 

 

 

Figure 13 - Pairs plot t-SIM, Equity 

Here we see the Pairs plot from the t-copula simulated data. We see that the tail 

dependence is present, but symmetric as extreme points are located in both the 

lower left and upper right corner. This is expected for a t-copula simulation, but is 

not a perfect approximation of the real world. Also the correlation structure is 

modelled well compared to the training data, i.e. the values in the upper right 

triangle are similar to that of the training data in Figure 11.  
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Figure 14 - Simulated vs training data QQ plot, Equity 

Lastly, we look at QQ-plots comparing the simulated data against the training 

data. We see that the lines are fairly straight for all the assets, and conclude that 

the simulation algorithm is working as intended. This plot is from the t-copula, the 

Gaussian looks very similar, as we use the same marginal specification for both 

copulas. Therefore only one QQ-plot is needed for visualization.  

We simulate data from both copulas, for both univariate GARCH specifications, 

and are therefore left with four sets of simulation data to do CVaR optimization 

on.  
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8.2.1.5 Comparing the strategies 

Regular specification portfolios 

Table 3 - Regular specification moments, Equity 

 

As expected we see that both risk minimized portfolios have lower standard 

deviation. There are however no difference between the two methods of 

optimization for this metric. 

Table 4 - Regular specification downside measures, Equity 

 

The downside risk measures are unsurprisingly all in favor of the risk minimized 

portfolios. We see however again very little difference between the two 

optimization procedures.  

 

Figure 15 - Regular specification cum. log return, Equity 
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The cumulative returns graph displays the benefit of the risk optimal portfolios 

compared to the equal weight and S&P 500 benchmark. We see that the drops in 

cumulative returns for the optimized portfolios are much smaller overall, leading 

also to a higher overall return in the span of the testing sample.  

 

Figure 16 - Regular specification weighting, Equity 

These plots display the weight development in the portfolio as time passes. The 

assets are given a color representation, and the weights are stacked at each time 

step, so that the sum of the weights is 1 on the y-axis. We see that for the optimal 

portfolios of both CVaR and Markowitz minimum variance, only three assets are 

represented through the entire testing sample. We note that the maximum 

allocation restriction is restricting Consumer Staples through the entire sample, 

and it is also restricting Health Care for much of the sample. However, the weight 

allocation is very similar for both procedures.  

MV-GARCH portfolios 

Table 5 - MV GARCH moments, Equity 

 

We see that MV-GARCH portfolio moments are similar to the moments for the 

regular optimization in Table 3. The standard deviation for the DCC portfolios are 

slightly lower than the CCC portfolio.  
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Table 6 - MV GARCH downside measures, Equity 

 

The tail risk measures of these portfolios are similar to those of the portfolios 

optimized using the regular specifications, i.e. table 4. We see that the DCC 

portfolios are slightly less risky than the CCC portfolios for this sample, but by a 

very small margin.  

 

Figure 17 - MV-GARCH cum. log return, Equity 

The plot for the cumulative returns looks similar to the corresponding plot for the 

regular specification, i.e. Figure 15. We see that the large drops from the S&P and 

the equal weight portfolio are avoided to some extent, but no large improvement 

from the regular optimization is spotted.  
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Figure 18 - MV-GARCH weighting, Equity 

The weight plots for the MV-GARCH strategies suggest a more diversified 

portfolio than the regular specification, in the sense that more assets are 

represented. But this also requires more rebalancing to obtain compared to the 

regular portfolios, which has fairly stable weights. We see a large emphasis on 

Consumer Staples also in these optimizations.   

Copula-GARCH portfolios 

Table 7 - Copula-GARCH moments, Equity 

 

Again, we see similar results to the regular optimization in terms of standard 

deviation. Little difference between the t and Gaussian (Normal) copula are 

present in the moments.  
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Table 8 - Copula-GARCH downside measures, Equity 

 

The tail risk metrics of these portfolios are again similar to that of the regular 

portfolio optimization procedure. As for the t-copula vs Gaussian copula, we 

cannot based on these findings suggest that one has an advantage over the other. 

They both perform in line with the regular portfolio optimizations done at the start 

of this section.  

Table 9 - Copula-GARCH cum. log returns, equity 

 

We see from the cumulative returns plot, that also these portfolios have an 

advantage over the naïve portfolio, and are similar in development to the regular 

portfolios.  
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Figure 19 - Copula-GARCH weighting, Equity 

As for the weight development they look similar to the MV-GARCH strategies. 

These portfolios have a higher degree of diversification, but unlike the regular 

portfolios they require much rebalancing in order to achieve the suggested 

weights.  

Table 10 - Levene's (B-F) p values, Equity 
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This table displays the p-values for the Brown–Forsythe test. The test compares 

the variance of two different distributions, where the null hypothesis is that the 

variances are equal. A low p-value would indicate that the variances are 

significantly different.  The table compares each of the dynamic GARCH type 

strategies with both of the regular strategies. We see that for all the GARCH type 

strategies, the p-value is high. This indicates an insignificant difference in the 

standard deviation of the portfolio returns.  

Using this sample, we have little evidence to suggest that the copula and GARCH 

frameworks improve upon portfolio optimization compared to the regular 

framework. We have located a plausible reason why these proposed 

improvements has little practical benefit. Our sample is in nature highly correlated 

as all the assets are part of the large cap index in the U.S. Additional 

unconditional correlation is present in the training sample due to the presence of 

the financial crisis.  When all the correlations are this high, the diversification 

benefit from the portfolio optimizations is small, and the weights will be 

extremely tilted towards the assets with low volatility. This is mathematically 

sound, because when the correlation is this large, holding the asset with the lowest 

standard deviation is almost equivalent of holding the entire portfolio in terms of 

risk minimization. When the correlations between all assets are 1, the efficient 

frontier will be a straight line, and no diversification benefits are available. As 

correlations decrease, the efficient frontier will be shaped as a parabola, increasing 

in peakedness as correlation decrease. 

When the optimizers allocate this high weights to a few assets, comparing the 

portfolios might not give much insight, as they are all very similar.  
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8.2.2 Commodity dataset 

8.2.2.1 Initial examination 

 

 

Figure 20 - Normal QQ plots, Commodities  

These plots show similar characteristics as the equities, i.e. there is heavier tails in 

the data than what would be expected from a normally distributed variable.  
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Figure 21 - Student t QQ plots, Commodities 

The tail events are better captured by the t-distribution in general, as the dotted 

line follows the straight line more closely in the tails.  

We again examined the ACFs of the distributions. As one would expect, the linear 

ACF was non-significant while the squared ACF was significant. These plots can 

be found in Appendix B2.   

 

  



63 

 

8.2.2.2 Fitting univariate GARCH the models 

Two univariate GARCH specifications are fitted to this data set as well.  

The ARMA parameters in the conditional mean equations turn up at times 

insignificant. However, as using ARMA to model the residuals are likely to make 

the residuals closer to being i.i.d. by removing any traces of linear autocorrelation, 

they are kept in the model. As for the S-GARCH parameters, all the alphas and 

betas are significant, while the omegas are typically insignificant. For the E-

GARCH all parameters are significant, with the exception of the gamma 

parameter of Homebuilders. 

Table 11 - Univariate GARCH(1,1) fit, Commodities 

 

Table 12 - Univariate E-GARCH(1,1) fit, Commodities 

 

We see from the parameters that all series are stationary as 𝑎𝑙𝑝ℎ𝑎1 + 𝑏𝑒𝑡𝑎1 < 1 

for the standard GARCH, and 𝑏𝑒𝑡𝑎1 < 1 for the E-GARCH. From the large beta 

values we see that prior volatility has a high impact on forecasted volatility. This 

is true for both models.  

As for the other E-GARCH parameters we again get some indications that the 

model might be inappropriate. Some of the alpha parameters are negative, which 

doesn’t make sense, a shock should increase volatility increase, not decrease it. As 

for the gamma-parameters, they often have the same sign of the alphas. While the 

leverage effects per se can’t exist in commodity returns (they can’t take on debt), 

we still would expect the gammas to have the opposite sign of the alphas based on 

the stylized facts.  
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 The volatility is less jumpy than that of equities. This can be seen from the lower 

alpha, and higher beta parameters.  

We also here inspect the ACF’s of the squared standardized residuals. If the 

GARCH specifications work as intended, we should now see little to no 

significant autocorrelation. 

 

Figure 22 - ACF of squared standardized residuals for cotton. 

The squared ACF’s are largely improved upon by standardizing after GARCH, 

here illustrated by Cotton using the GARCH(1,1) specification.  

8.2.2.3 Fitting the multivariate GARCH models 

To fit the CCC models we use the unconditional sample correlation, in 

combination with the stand GARCH (1,1) models. 

 

Figure 23 - DCC fit, Commodities 

Here a1 and b1 is the 𝛼 and 𝛽 from section 5.2.2. The high b1 indicates that recent 

correlation has a large effect on the future correlation, while the low a1 indicates 

that shocks in correlation have less of an effect. Compared to the equity dataset 

we observe that commodities seem less “jumpy” or responsive to shocks in that 

the a1is even lower here. 
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8.2.2.4 Simulation diagnostics 

 

Figure 24 - Pairs plot training data, Commodities 

From the pairs plot we see that this data set has much lower correlation than that 

of the equity data. We also see less tail dependence in this data set, from the more 

circular shape of the Pairs plots above, with a lower peak in the tails.  
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Figure 25 - Pairs plot G-SIM, Commodities 

The above pairs plot shows the simulated data from the Gaussian copula fitted to 

the training sample for comparison purposes. We see that the fit is better than for 

the equities, but as expected, no tail dependence is present. This can be seen from 

the extreme data points tend to be positioned parallel to the axes instead of in the 

corners.  
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Figure 26 - Pairs plots t-SIM, Commodities 

To get tail dependence, we simulate using the t-copula. The shapes of the plots are 

circular, indicating the lower levels of correlation. We see that the shape of the 

pairs look similar, but more concentrated than the data. The tail dependence is less 

pronounced than for the equity sample, but we do see a tendency of extreme 

events to be located in the bottom left and top right corners of the plot.  

 



68 

 

 

Figure 27 - Simulation QQ plot, Commodities 

To check the marginal distribution fit, we look at QQ-plots of the simulated data 

compared to the training data. There seems to be a slight tendency for the 

simulations to have more extreme returns than the training sample, but only slight. 

We conclude that the simulation is reasonably effective at capturing the desired 

characteristics of the data.  

8.2.2.5 Comparing the strategies 

Regular specification portfolios 

Table 13 - Regular specifications moments, Commodities 
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The standard deviation from the regular portfolio optimizations indicates a lower 

risk than that of the equally weighted portfolio, as would be expected.  

Table 14 - Regular specifications downside measures, Commodities 

 

The same is present in the downside risk of the regular portfolios vs the equally 

weighted.  

 

Figure 28 - Regular specifications cum. log return, Commodities 

We see from the cumulative returns plot that both risk optimized portfolios has 

lower losses than the equally weighted. It is also evident that the two optimization 

procedures are very similar for this dataset as well, as they follow each other 

closely.  
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Figure 29 - Regular specifications weighting, Commodities 

From the weight development plots, we see that both portfolios are dominated by 

the same assets. We see more diversification in these plots in comparison with the 

equities for the same optimization procedures. This is expected, as the correlation 

between these assets are a lot lower, and thus provide more diversification benefit. 

 

MV-GARCH portfolios 

 

Figure 30- MV-GARCH moments, Commodities 

We see that the standard deviation from the different MV-GARCH portfolio 

optimization strategies seems to be improved compared to the regular portfolios in 

table 13. This is a promising result, and is further investigated by the Brown–

Forsythe test later.  

 

Figure 31 - MV-GARCH downside measures, Commodities 

The downside risk metrics for the DCC portfolio looks low compared to both the 

CCC-portfolio and the regular portfolios. All metrics favor the DCC portfolios, 
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but no conclusive results are present for the different univariate GARCH 

specifications. S-GARCH and E-GARCH perform equally well in combination 

with the DCC framework.   

 

Figure 32 - MV-GARCH cum. log return, Commodities 

The cumulative returns plot for all the strategies looks well in terms of loss-

avoidance compared to the equally weighted portfolio. As for the different 

strategies, they look similar in performance and move closely together. 
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Figure 33 - MV-GARCH weighting, Commodities 

The weight development for the different strategies look similar. The same assets 

are in prioritized, as would be expected, and the weighs are fairly evenly 

distributed among the active assets. This is good for diversification. As for 

rebalancing purposes, the weights are fairly stable. This is beneficial for potential 

rebalancing costs.  

 

Copula-GARCH portfolios 

 

Table 15 - Copula-GARCH moments, commodities 
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CVaR optimization in combination with copula simulated data show similar 

standard deviations to the MV-GARCH procedures presented above. They too, 

are low compared to the regular portfolio optimizations. As for difference 

between the copulas, it is miniscule and does not give any clear indications of one 

outperforming the other.  

Table 16 - Copula-GARCH downside measures, Commodities 

 

The tail risk measures are also similar to that of the MV-GARCH portfolios 

presented previously. Neither here is there any indication of benefit of using the t-

copula over the normal copula. The Normal copula is actually performing better 

than the t-copula on both standard deviation and downside risk. However, this 

difference is very small, and cannot be viewed as a clear indication of 

outperformance. As for the GARCH specifications, S-GARCH and E-GARCH 

have close to equal performance on all metrics.   

 

Figure 34 - Copula-GARCH cum. log return, Commodities 

  



74 

 

The cumulative plot looks similar to that of the MV-GARCH optimization, with 

no clear advantage to either strategy; although we see that both the S-GARCH-

specifications are above the others for most of the period. The difference is very 

small from the between the MV-GARCH strategies, and they follow each other 

closely.  

 

Figure 35 - Copula-GARCH weighting, Commodities 

As for the weight development, the plots looks very similar to each other, and to 

the MV-GARCH portfolios presented previously. We see the same assets 

dominating the portfolios, and we also see a larger degree of diversification here, 

compared to the regular portfolios. Comparing it to the equity-portfolios, we see a 

larger degree of diversification here, and the restriction on asset weights are less 

constraining, as the natural diversification benefit is larger for this dataset.   

We want to examine the standard deviation of the portfolios more closely using 

the Brown–Forsythe test. The p-values are presented in the following table.  
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Table 17 - Levene's (B-F) p values, Commodities 

 

The test compares two sample variances. A low p-value indicates that the 

difference between the variances is large. In the table, we have compared the 

regular portfolios to each of the Copula-GARCH and MV-GARCH portfolios to 

see if there is some additional benefit in terms of reduced variance. We see that 

the differences for the commodities sample are a lot more significant than that of 

equities. Comparing to the regular CVaR optimization, we see that the only 

portfolio that is not significantly different at 95% confidence is the S-GARCH-

CCC. As for the regular Markowitz optimization, two of the portfolio strategies 

do not have significantly different variance at the 90% confidence level, and three 

strategies have significantly different variance at the 95% confidence level. These 

values are indicative of improved risk minimization for the more advanced 

models, compared to the regular portfolio optimization.   
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Section 9: Concluding Remarks 

 

In this thesis we have reviewed and discussed what constitutes a proper risk 

measure for portfolio optimization. We have reviewed the stylized facts of the 

empirical distribution of financial returns, and discussed the failure of the normal 

distribution and i.i.d. assumption in modelling this distribution.  

We examine the use of GARCH, and Copula-GARCH models for providing 

estimates for the Markowitz and Min-CVaR algorithm, respectively. We find 

empirical indications suggesting that when in an investment universe with low 

correlation (such as a commodity portfolio); they are able to significantly 

outperform the sample counterparts. Additionally, it seems like the DCC-GARCH 

outperforms the CCC-GARCH in terms of low risk for this sample. We find no 

evidence suggesting that using the Student t copula outperforms the Gaussian for 

CVaR simulation, nor that the E-GARCH with t-distributed errors outperforms 

the standard GARCH with normally distributed errors in forecasting accuracy.  

The equity sample does not significantly favor any of the GARCH or Copula-

GARCH model estimates over the sample counterparts. A plausible reason for this 

is that the sample consists of highly correlated assets, which gives little freedom 

to the optimizers in portfolio selection. Thus, the portfolios are generally severely 

dominated by the low-risk alternatives, providing little chance for diversification.  

We find that it doesn’t make an economically meaningful difference whether we 

optimize with respect to Conditional Value-at-Risk or Variance. This is surprising 

for various reasons;  

According to theory this should make a difference when returns are non-normal, 

and as we have demonstrated, both our samples are far from normal.  

Additionally, results presented in related papers (e.g. Krokhmal et al 2002) find 

that minimizing CVaR results in a portfolio with lower CVaR and higher variance 

than when minimizing Variance, as one would expect.  

We have tried to come up with some possible explanations as for why: 

1. The difference may come down to sample specifics. If some assets in the 

dataset dominate the others in terms of low risk-levels, they will be 
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heavily favored in the asset allocation regardless of risk measure used for 

optimization. This may delude the interpretable results, as the differences 

between the models become less significant. We see some evidence that 

this is improved upon in the commodity sample over the equity sample. 

2. The CVaR approaches considered in this thesis uses elliptical copulas, so 

simulated tail dependence is symmetrical. Differences between CVaR and 

Variance optimization should occur when tails are fat or when the 

distribution is skewed, our simulation only consider fat tails.  

3. Krokhmal et al (2002) minimizes CVaR and Variance when the expected 

return is constrained to a certain goal. It is not obvious that this should 

make a difference, but it is a difference in methodology compared to our 

thesis. 

4. Model specifications, such as choice of alpha-level for the CVaR, and 

copula parameters for the simulation algorithm may have impact on the 

result.  

 

9.1 Suggestions for future work 

There are many possible directions for future work. For the DCC-type models one 

might consider an ADCC (Asymmetric Dynamic Conditional Correlation) 

specification, allowing the model to take into consideration the empirical 

observation that equity correlations increase in times of recession (see section 2).  

For applications to larger datasets (e.g. 100 assets rather than 10) the cDCC 

specification might be considered, as there is evidence suggesting that the cDCC 

specification outperforms the regular DCC specification when 𝑛 get high (Aielli 

2013). Alternatively (or additionally!) the CVaR and VaR measurements might 

involve risk mapping. While this thesis takes the approach of estimating CVaR 

and VaR by looking at the multivariate joint distribution, risk mapping allows for 

each risk factor (asset) to be studied alone, and then combined. This is generally 

necessary when the number of assets get very high. For an excellent introduction, 

see Alexander (2008c). 

As for the copula specifications, one might consider vine copulas, and copulas 

from the Archimedean family. Vine copulas are considered more flexible than the 
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copula specifications used in this thesis, while copulas from the Archimedean 

family might be better suited for capturing asymmetry. 

In addition more sophisticated univariate models might give better results. A word 

of caution is however needed here, theoretically superior models often fail to beat 

the simple GARCH (1,1) in out of sample forecasts, as demonstrated by Hansen 

and Lunde (2005) and illustrated by the disappointing results of the E-GARCH in 

this thesis. Specifications considering volatility spillover effects might be 

considered if one deal with a multi-market dataset, e.g. the US equity market and 

Norwegian equity market. One can also consider other error distributions than the 

normal and the Student’s t distribution. For instance, a skewed Student’s t 

distribution should in theory allow for both modeling fat tails and asymmetry, 

without needing to specify any measures of asymmetry in the conditional 

volatility equation. 

A final suggestion is altering the methodology for (perhaps) more practically 

relevant results. For instance the thesis ignores transaction costs, and assumes that 

rebalancing weekly is reasonable. Krokhmal et al (2002) discuss how one can 

incorporate transaction costs as an additional constraint in the optimization 

problem, while Mendes and Marques discuss rebalancing strategies more 

generally. An idea could be to only rebalance assets if the new weights differ 

significantly from before. If this results in more infrequent balancing, correct 

multistep predictions for the dynamic conditional covariance matrix become 

increasingly more important (Hlouskova et al [2009]). One should also probably 

consider two-component GARCH-type models, as these are more likely to handle 

the persistence better for volatility predictions long into the future (see section 7 

and 8 of Zivot [2009]). 
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A1: Basic statistics and econometrics 

 

This section briefly reviews some basic statistical and econometrical concepts and 

definitions that the thesis draws upon, but isn’t discussed in depth.  

The main references for this section are: Alexander (2008a), Francq and Zakoian 

(2010) and McNeil, Frey and Embrechts (2005). 

 

Financial returns as a random variable 

It is common to model financial returns as a continuous random variable. If the 

returns of financial assets were not random, i.e. predictable, it would be possible 

to systematically earn positive returns while avoiding market downfalls. This 

would contradict the market efficiency hypothesis. As for the continuous part of 

the assumption, financial asset prices typically move in “ticks” (increments), so 

this is only an approximation. However it is an approximation that makes the 

modeling and mathematical part of finance a lot more convenient than the discrete 

alternative, at a very low cost. 

In addition, what is considered is usually what is referred to as the log returns, i.e. 

𝑟𝑡,∆𝑡 = 𝑋𝑡+∆𝑡 − 𝑋𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑋𝑡 = ln 𝑆𝑡 , 𝑎𝑛𝑑  

𝑆𝑡 𝑑𝑒𝑛𝑜𝑡𝑒𝑠 𝑡ℎ𝑒 𝑝𝑟𝑖𝑐𝑒 𝑜𝑓 𝑎 𝑓𝑖𝑛𝑎𝑛𝑐𝑖𝑎𝑙 𝑎𝑠𝑠𝑒𝑡 

Log returns have the advantage over regular returns that accumulation can be 

done by addition. 

When referring to returns throughout the thesis log returns is implied, unless 

otherwise explicitly stated. 

Expected Value and the expectations operator 

The first moment of a probability distribution is called the expected value. 

Throughout the thesis we will denote the expectation of a random variable, say 𝑋 

as 𝐸(𝑋) 

 

Standardized random variable 
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When we refer to a standardized random variable, it simply means a random 

variable that is scaled so that it exhibit a zero mean and unit variance 

 

Independent and identically distributed random variables 

A common assumption for a stationary process is that the random variables are 

independent and identically distributed (i.i.d.). This implies that there is no 

autocorrelation, and that the statistical moments is the same for all of the random 

variables. In particular the variance is assumed the same for all time periods, i.e. 

the process is homoscedastic, in contrast to a process where variance is varying, 

that is a heteroscedastic process. 

The i.i.d. assumption is generally used to ease the task of statistical inference, but 

as shown in section, is often not suitable for finance. 

 

Definition – Variance 

Variance represents the dispersion about the mean of the density, 

𝜎2 = 𝑉(𝑋) = 𝐸([𝑋 − 𝐸(𝑋)]2) 

 

Standard deviation  

The square root of variance is called the standard deviation, or sometimes in 

econometrics, volatility. 

 

Definition – Covariance 

Covariance is the first central moment of the joint density function of X and Y, 

𝐶𝑜𝑣(𝑋, 𝑌) = 𝐸[(𝑋 − 𝜇𝑥)(𝑌 − 𝜇𝑦)],    𝜇𝑥 = 𝐸(𝑋),     𝜇𝑦 = 𝐸(𝑌)  

 

Definition – Correlation  
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Covariance is determined not only by the degree of dependence between X and Y, 

but also their size and the size of their deviations. For this reason it’s preferable to 

work with a “more scaled” parameter, correlation. Throughout the thesis we will 

focus Pearson’s correlation unless otherwise stated; 

𝐶𝑜𝑟𝑟 =
𝐶𝑜𝑣(𝑋, 𝑌)

√𝑉(𝑋)𝑉(𝑌)
 

 

Auto correlation (serial correlation): Correlation with previous observations 

(lags) of itself over a given time interval. 

 

Stationary Processes 

Stationarity is important in financial time series analysis, as it sort of replaces the 

i.i.d. assumption in standard statistics (Francq, C. and J-M. Zakoïan 2010, 1) and 

allows us to make statistical inference.  

If we consider a sequence of real random variables (𝑋𝑡), 𝑡 ∈ ℤ defined on the 

same probability space (i.e. a stochastic time series), then strict stationarity is 

defined as: 

 

Definition – Strict Stationarity 

𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑋𝑡 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑠𝑡𝑟𝑖𝑐𝑡𝑙𝑦 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑖𝑓 𝑡ℎ𝑒 𝑣𝑒𝑐𝑡𝑜𝑟𝑠 (𝑋1, … , 𝑋𝑘)
′ 

𝑎𝑛𝑑 (𝑋1+ℎ, … , 𝑋𝑘+ℎ)
′ ℎ𝑎𝑣𝑒 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑗𝑜𝑖𝑛𝑡 𝑑𝑖𝑠𝑡𝑟𝑖𝑏𝑢𝑡𝑖𝑜𝑛 𝑓𝑜𝑟 𝑎𝑛𝑦 𝑘 ∈ ℕ 𝑎𝑛𝑑 

𝑎𝑛𝑦 ℎ ∈ ℤ 

We can also have weak stationarity, which as the name implies, is often less 

demanding in that it only constrains the first two statistical moments (I.e. the 

mean and variance/autocovariance. The moments do however have to exist.) 

 

Definition – Weak Stationarity (Second-order stationarity) 

𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑋𝑡 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑤𝑒𝑎𝑘𝑙𝑦 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑖𝑓: 
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1) 𝔼 𝑋𝑡
2 < ∞, ∀ 𝑡 ∈  ℤ 

2) 𝔼 𝑋𝑡 = 𝑚, ∀ 𝑡 ∈ ℤ 

3) 𝐶𝑜𝑣(𝑋𝑡, 𝑋𝑡+ℎ) = 𝛾𝑥(ℎ), ∀ 𝑡 , ℎ ∈  ℤ  

𝑊ℎ𝑒𝑟𝑒 𝛾𝑥(·) (𝜌𝑋(·):=
𝛾𝑥(·)

𝛾𝑥(0)
) 

 𝑖𝑠 𝑡ℎ𝑒 𝑎𝑢𝑡𝑜𝑐𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 (𝑎𝑢𝑡𝑜𝑐𝑜𝑟𝑟𝑒𝑙𝑎𝑡𝑖𝑜𝑛)𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑋𝑡 

An important example of a weakly stationary process is a white noise process; 

 

Definition – Weak white noise 

𝑇ℎ𝑒 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑋𝑡 𝑖𝑠 𝑠𝑎𝑖𝑑 𝑡𝑜 𝑏𝑒 𝑤𝑒𝑎𝑘 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑖𝑓: 

1) 𝔼 𝜀𝑡
2 = 𝜎2, ∀ 𝑡 ∈ ℤ 

2) 𝔼 𝜀𝑡 = 0, ∀ 𝑡 ∈ ℤ 

3) 𝐶𝑜𝑣(𝜀𝑡,  𝜀𝑡+ℎ) = 0, ∀ 𝑡, ℎ ∈ ℤ , ℎ ≠ 0 

Strong white noise differs from weak in that instead of assuming no 

autocorrelation, we assume independence. I.e. hypothesis (3) gets replaced by the 

more constraining  

3′)  𝜀𝑡 𝑎𝑛𝑑  𝜀𝑡+ℎ 𝑎𝑟𝑒 𝑖. 𝑖. 𝑑. 

 

ARMA Models 

ARMA (autoregressive moving average) models are the most widely used model 

type for the prediction of weakly stationary processes (Francq, C. and J-M. 

Zakoïan 2010, 4). ARMA models are often preferred to MA for parsimony 

reasons, as they in general require fewer parameters to be estimated. 

Definition – AutoRegressive Moving Average (ARMA(p, q)) process 

𝐴 𝑤𝑒𝑎𝑘𝑙𝑦 𝑠𝑡𝑎𝑡𝑖𝑜𝑛𝑎𝑟𝑦 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑋𝑡 𝑖𝑠 𝑐𝑎𝑙𝑙𝑒𝑑 𝐴𝑅𝑀𝐴(𝑝, 𝑞) 𝑤ℎ𝑒𝑟𝑒 𝑝 𝑎𝑛𝑑 𝑞  

𝑎𝑟𝑒 𝑖𝑛𝑡𝑒𝑔𝑒𝑟𝑠, 𝑖𝑓 𝑡ℎ𝑒𝑟𝑒 𝑒𝑥𝑖𝑠𝑡 𝑟𝑒𝑎𝑙 𝑐𝑜𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡𝑠  

𝑐, 𝑎1, … , 𝑎𝑝, 𝑏1, … , 𝑏𝑞 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 

∀ 𝑡 ∈ ℤ, 𝑋𝑡 +∑ 𝑎𝑖𝑋𝑡−𝑖
𝑝

𝑖=1
= 𝑐 +  𝜀𝑡 +∑ 𝑏𝑗  𝜀𝑡−𝑗

𝑞

𝑗=1
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𝑤ℎ𝑒𝑟𝑒 𝜀𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑙𝑖𝑛𝑒𝑎𝑟 𝑖𝑛𝑛𝑜𝑣𝑎𝑡𝑖𝑜𝑛 𝑝𝑟𝑜𝑐𝑒𝑠𝑠 𝑜𝑓 𝑋𝑡 

(A formal mathematical definition of a linear innovation process can be found in 

most advanced books on econometrics, for instance Francq & Zakoian 2010. An 

adequate understanding/interpretation for the rest of the material covered in this 

thesis would be to interpret 𝜀𝑡 as the latest of many shocks to 𝑋𝑡) 

Elliptical distributions 

A family of distributions where the level sets, or contours, of the bivariate 

distribution’s density function forms ellipses. Examples are the multivariate 

normal distribution and the multivariate Student t-distribution. In the bivariate 

form of these distributions there is a single parameter, ϱ, the correlation between 

the two variables X and Y.  

 

Hadamard product 

Throughout the thesis 𝐴⨀𝐵 will denote the Hadamard product between matrix A 

and B, i.e. the operation where every cell in matrix A is multiplied with the 

correspondent cell in matrix B; 

𝐴 = (
𝑎11 𝑎12
𝑎21 𝑎22

),            𝐵 = (
𝑏11 𝑏12
𝑏21 𝑏22

) 

𝐴⨀𝐵 = (
𝑎11𝑏11 𝑎12𝑏12
𝑎21𝑏21 𝑎22𝑏22

) 
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A2: Assumptions of mathematical finance 

 

When trying to model the financial world with mathematics, assumptions are 

often needed. This subsection review general assumptions of mathematical 

finance used in the empirical application (Focardi et al [2013]). 

Not moving the market 

We assume that our actions do not affect the market price. In free markets this is 

not true, increasing demand (buying securities) increases the price, while 

increasing supply (selling securities) lower the price. If we are trading in small 

quantities the effects will be negligible, while they can have an impact if we are 

buying or selling large amounts of small cap stocks. As we deal with the large cap 

US equity market, we don’t see this as a big problem. 

Market liquidity 

Closely related to the first is the assumption of market liquidity. We assume that 

we can buy or sell as much as we want to at the market price at any time. Again, 

we deal with the large cap US equity market, so this is unlikely to be a problem. 

Shorting 

Shorting tends to be restricted for most investors, with hedge funds being one of 

the few exceptions. We assume that shorting isn’t allowed, this tends to negatively 

affect the amount of diversification we can get compared to that of an investor 

who can short. 

Fractional quantities 

Financial models and algorithms (such as those applied in portfolio selection) tend 

to seek out the optimal quantities through mathematical processes, often leaving 

us with recommendations of purchasing fractional quantities of assets. This 

clearly isn’t possible in the markets, but if we assume that our investment is big, 

we are often able to come close to the relative proportions allocated by the model 

regardless. 
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No transaction costs 

Selling and buying securities come at a price, and typically one also has to face 

the extra costs implied by the bid-ask spread. We ignore these costs.  
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A3: Markowitz Calculations 

Minimum Variance derivation 

 

If we denoted the covariance matrix by 𝚺, we can write 𝜎𝑝
2 = 𝑾′𝚺 𝐖 

𝜎𝑝
2 = (𝑊1 𝑊2 … 𝑊𝑛)

(

 
 
 
 

𝜎1
2 𝜎1,2 … 𝜎1,𝑛

𝜎2,1 𝜎2
2 … 𝜎2,𝑛

⋮ ⋮ ⋱ ⋮

𝜎𝑛,1 𝜎𝑛,2 … 𝜎𝑛
2 )

 
 
 
 

(

𝑊1
𝑊2
⋮
𝑊𝑛

) 

The Lagrangian for the minimum variance portfolio in matrix notation is then 

simply 

𝐿(𝑾, 𝜆) = 𝑾′𝚺 𝑾 + 𝜆(𝑾′𝟏 − 1) 

Where 1 is an 𝑛 × 1 vector of 1’s. 

The first order conditions (FOC’s) are then the linear equations 

#1 
𝜕𝐿(𝑾,𝜆)

𝜕𝑾
= 2𝚺𝑾+ 𝜆𝟏 = 0, 

#2 
𝜕𝐿(𝑾,𝜆)

𝜕𝜆
= 𝑾′𝟏 − 1 = 0. 

Solving #1 for 𝑾 we get 

𝑾 = −
1

2
𝜆𝚺−𝟏𝟏 

Multiplying both sides by 𝟏′ we get 

𝟏′𝑾 = −
1

2
𝜆𝟏′𝚺−𝟏𝟏 

As #2 implies that 𝟏′𝑾 = 1, we can solve for  𝜆: 

1 = −
1

2
 𝜆𝟏′𝚺−𝟏𝟏 

𝜆 = −
2

𝟏′𝚺−𝟏𝟏
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Inserting 𝜆 into #1 again we get: 

2𝚺𝑾−
2

𝟏′𝚺−𝟏𝟏
𝟏 = 0 

𝚺𝑾 =
𝟏

𝟏′𝚺−𝟏𝟏
 

Multiplying both sides by 𝚺−𝟏: 

𝑾 =
𝚺−𝟏𝟏

𝟏′𝚺−𝟏𝟏
 

Finally, recalling that the exact solution for 𝑾 that minimizes variance is noted 

𝑾𝑴𝑽, we end up with: 

𝑾𝑴𝑽 =
𝚺−𝟏𝟏

𝟏′𝚺−𝟏𝟏
 

 

Mapping of the Efficient Frontier 

 

Markowitz argues that we can map out the efficient frontier by minimizing 

portfolio return for a given level of portfolio return, i.e. 

𝑀𝑖𝑛 𝜎𝑃
2 =∑∑𝑊𝑖𝑊𝑗𝜎𝑖𝑗

𝑛

𝑗=1

𝑛

𝑖=1

 

Subject to  

1.∑ 𝑊𝑖 𝐸(𝑅𝑖) = 𝐸
∗

𝑛

𝑖=1
 

where 𝐸∗ is the targeted expected portfolio return and  

2.∑ 𝑊𝑖 = 1
𝑛

𝑖=1
 

secures that the weights of the portfolio sum up to 100%. 

Alternatively, giving an equivalent frontier (when plotted for enough target 

portfolio returns or variances); 
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𝑀𝑎𝑥∑ 𝑊𝑖 𝐸(𝑅𝑖)
𝑛

𝑖=1
 

Subject to 

 1.  𝜎𝑃
2 =∑∑𝑊𝑖𝑊𝑗𝜎𝑖𝑗 = 𝜎𝑃

2∗
𝑛

𝑗=1

𝑛

𝑖=1

 

where 𝜎𝑃
2∗ is the targeted portfolio variance and  

2.∑ 𝑊𝑖 = 1
𝑛

𝑖=1
 

This problem can for instance be solved with the Lagrangian method and matrix 

algebra. 

For our first formulation (i.e. minimize variance for a given expected portfolio 

return) we can formulate the following objective function: 

𝑀𝑖𝑛 𝐿 =∑∑𝑊𝑖𝑊𝑗𝜎𝑖𝑗

𝑛

𝑗=1

+ 𝜆1∑ [𝑊𝑖 𝐸(𝑅𝑖) − 𝐸
∗]

𝑛

𝑖=1
+

𝑛

𝑖=1

𝜆2 (∑ 𝑊𝑖
𝑛

𝑖=1
− 1) 

We can then take the partial derivatives of this function with respect to each of the 

variables, 𝑊1,𝑊2, … ,𝑊𝑛, 𝜆1 and 𝜆2 and set the resulting equations equal to zero 

and solve for the portfolio weights. Once we have solved the algorithm for enough 

combinations of return and risk, we are able to map out the frontier, and the 

investor can pick the portfolio most in line with his or her preferences (e.g. via a 

utility function). 
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A4: On VaR estimation 

Estimating VaR through analytical computation 

 

The most common example of a method from the first category would be to 

assume that returns are normal and i.i.d., so that we can use the sample mean 

vector and sample covariance matrix as inputs. Value at Risk of the portfolio is 

then given by 𝑉𝑎𝑅𝛼 = Φ
−1(𝛼)𝜎ℎ − 𝜇ℎ 

where 

 Φ−1 is the inverse of the standard normal cumulative density function 

 𝛼 the confidence level, so that 1 − 𝛼 is the quantile return 

 𝜎ℎ and 𝜇ℎ are the ℎ −day portfolio standard deviation and mean return 

calculated from the sample statistics, in a similar fashion to that described 

in section 1 (Note: The value we choose for ℎ will then also be our chosen 

risk-horizon). 

The main weaknesses of the analytical approach are that the estimate is very 

sensitive to the distribution we assume and inputs we enter into the inverse 

density. As we have already seen in section 2, the assumptions made in the above 

example are unrealistic, and unfortunately there are no really good alternatives, 

especially for the density function. Even if we are able to specify densities that 

match the empirical distribution better, these are often very difficult to work with 

and estimate inputs for. 

Estimating VaR through historical returns 

 

We can also estimate Value at Risk by plotting the histogram of a sample of 

returns we believe to be representative of the joint return distribution. The actual 

math for getting the estimate of the VaR then is very simple, we only have to look 

for the value given by the (1 − 𝛼)-quantile of the distribution. The issue here is 

that we again have to rely heavily on our assumptions of the past being a good 

predictor of the future, when there is good reasons to believe it might not be.  
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When we estimate tail risk from histograms, good estimates of the tails of a 

distribution require many observations, as we in reality only use (1 − 𝛼 )𝑥 100% 

of the sample. Not all assets have a long history to draw data from, and even for 

those that do have this can be problematic. We know from the stylized facts that 

the empirical distribution is hardly stable (e.g. there is heteroscedasticity), so 

using a large sample to plot the histogram might leave us with a lot of irrelevant 

data. On the other hand, if we use a more recent, smaller sample of the joint return 

distribution to create the histogram, the estimate of VaR might be very imprecise 

and have large confidence bands. 

 

Estimating VaR by scenario simulation 

 

Lastly we can estimate Value at Risk by simulation. For example, if we use 𝑥 

simulations, we have then created 𝑥 simulated portfolio returns at the risk horizon 

in ℎ days. The VaR can then simply be obtained by ranking the returns from the 

lowest to the highest, and plotting these in a frequency diagram. The VaR is then 

given by the – (1 − 𝛼) quantile of this distribution. The list of possible simulation 

types are almost endless, as we can make almost any assumptions we want to. In 

the simplest form the simulated Value at Risk uses the assumptions that returns 

are i.i.d. and multivariate normal, but we can also for instance use a copula to 

model the dependence, or draw upon aspects of the historical distribution. 

However, the power of the simulation approach is not without downsides. The 

risk of simulation errors are always there and the approach is computationally 

intensive. There is also evidence of correlation error being even more detrimental 

to simulation approaches than the other Value at Risk approaches, see Skintzi et al 

(2006). 
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A5: Autoregressive Conditional Heteroskedasticity 

Conditional and unconditional variance 

 

Unconditional i.i.d. variance is simply what is most often referred to as just 

variance, defined as: 

𝑉𝑎𝑟(𝑋) = E[(𝑋 − E[𝑋])2] 

The unconditional variance is assumed to be constant over the entire data period 

we consider, and can be thought of as the average variance for the respective 

period. In this manner the measure is static. However, unconditional variance also 

comes in other forms when what we wish to model is not assumed to be i.i.d., e.g. 

in GARCH-modeling. 

Conditional variance is conditional on the previous knowledge (history) we have 

of that variable. We can say that we account for the dynamic properties of what 

we are trying to model (e.g. financial returns) by modeling their distribution as 

time dependent. For instance if we are interested in the conditional variance ℎ𝑡 of 

the error term 𝑢𝑡 in a regression, we can write it as 

ℎ𝑡 = 𝑣𝑎𝑟(𝑢𝑡|ℱ𝑡−1) = E[(𝑢𝑡 − E[𝑢𝑡])
2|ℱ𝑡−1] 

Where ℱ𝑡−1 is the information set of previous values of 𝑢𝑡 (e.g. 𝑢𝑡−1, 𝑢𝑡−2)  

 (theoretically speaking ℱ𝑡−1 is the 𝜎-field generated by 𝑢𝑡−𝑗 , 𝑗 ≥ 1) 

Further, it’s common to assume E[𝑢𝑡] = 0, so 

ℎ𝑡 = 𝑣𝑎𝑟(𝑢𝑡|ℱ𝑡−1) = E[𝑢𝑡
2|ℱ𝑡−1] 

Stating that the conditional variance of a zero mean, normally distributed random 

variable equals the conditional expected value of the squared random variable 

(Brooks 2008, 387-388). The intuition is that the conditional variance is allowed 

to vary over time as a function of previous error terms (residuals), and thus 

changes at every point in time. 
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The ARCH model is the predecessor to the popular GARCH model. The ARCH 

model was the first model of conditional heteroscedasticity, and was presented by 

Engle in 1982. The model is intuitively appealing in that since volatility in 

financial time series acts in clusters, i.e. variance expresses autocorrelation, a 

model conditional on the history of previous levels of variance should have 

prediction power. 

ARCH-model formal definition 

 

The ARCH(p) model is formally defined as: 

ℎ𝑡 = 𝛼0 +∑ 𝛼𝑖𝜖𝑡−𝑖
2

𝑝

𝑖=1
 

Where 𝜖𝑡 may be a directly observable variable, or more widely used, the error 

term of a regression. In the latter case we also need a “mean equation” for a 

complete model, i.e. a regression model of the variable we are interested in. Often 

the variable is tested for indications of following an ARMA process (A more 

thorough discussion of modeling the conditional mean is found in the univariate 

GARCH section below). 

Engle assumed that 𝜖𝑡 could be decomposed as 𝜖𝑡 = 𝑧𝑡ℎ𝑡
1/2 

, where 𝑧𝑡 is an 

sequence of i.i.d. standardized random variables. 

𝛼𝑖 ∀  i are the parameters of the model, and are constrained to be positive in the 

regression in order to ensure positive conditional variance. 

On the properties of the E-GARCH 
 

ln(𝜎𝑡
2) = ℎ𝑡 = 𝛼0 +∑ 𝛼𝑖

𝑝

𝑖=1

|𝜖𝑡−𝑖| + 𝛾𝑖𝜖𝑡−𝑖
𝜎𝑡−𝑖

 +∑ 𝛽𝑗ℎ𝑡−𝑗
𝑞

𝑗=1
 

To see how the model is able to capture asymmetric responses, assume we 

estimate a (1,q) E-GARCH. When 𝜖𝑡−1 is positive (i.e. good news), the total 

effect of 𝜖𝑡−1 on the log variance is 𝛼1(1 + 𝛾1)|𝜖𝑡−1|, while if 𝜖𝑡−1 is negative 

(i.e. bad news), the effect is 𝛼1(1 − 𝛾1)|𝜖𝑡−1|. As bad news are expected to have a 

larger impact on volatility than good news, we anticipate 𝛾𝑖to have the opposite 

sign of 𝛼𝑖 for all i. 
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Additionally, the E-GARCH model has an advantage over the standard GARCH 

model in that the conditional variance 𝜎𝑡
2 is guaranteed to be positive regardless of 

the sign of the estimated coefficients due to the logarithm of 𝜎𝑡
2 being modelled 

over 𝜎𝑡
2. 

Conditions for the covariance stationarity of the E-GARCH model can be found in 

Nelson (1991). For practical purposes we require ∑ 𝛽𝑗 < 1
𝑞
𝑗=1  
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A6: Copulas and dependence measures 

Implicit and Explicit Copulas 

Implicit copulas are one of the two main categories of copulas, the other being 

explicit copulas. The implicit copulas do not possess a closed form, i.e. they can 

only be expressed as an integral and therefore it is easier and common to work 

with the copulas density function rather than the distribution function itself. The 

name implicit copulas stems from the fact that these copulas are derived from a 

standard multivariate distribution, and the dependence is isolated and implied by 

the chosen distribution. In this thesis we focus solely on implicit copulas 

Concordance Metrics 

As we have discussed in the thesis, interpretation of Pearson’s linear correlation is 

problematic when the underlying distributions aren’t elliptical. To formalize this, 

we consider concordance metrics; 

Two pairs of observations on the continuous random variables 𝑋 and 𝑌, (𝑥1, 𝑦1) 

and (𝑥2, 𝑦2) are said to be concordant if 𝑥1 − 𝑥2 has the same sign as 𝑦1 − 𝑦2, 

and discordant if not. 

A concordance metric 𝑚(𝑋, 𝑌)  is then defined as a numerical metric of 

dependence between 𝑋 and 𝑌 so that: 

 𝑚(𝑋, 𝑌) ∈ [−1,1] and its value within this range depends on the joint 

distribution of 𝑋 and 𝑌 

 𝑚(𝑋, 𝑋) = 1 and 𝑚(𝑋,−𝑋) = −1 

 𝑚(𝑋, 𝑌) = 𝑚(𝑌, 𝑋) and 𝑚(𝑋,−𝑌) = −𝑚(𝑋, 𝑌) 

 If 𝑋 and 𝑌 are independent then 𝑚(𝑋, 𝑌) = 0 

 Given two possible joint distributions 𝐹(𝑋, 𝑌), 𝐺(𝑋, 𝑌), with 𝑚𝐹(𝑋, 𝑌) 

and 𝑚𝐺(𝑋, 𝑌) denoting the respective concordance metrics. Then if 

𝐹(𝑋, 𝑌) ≥ 𝐺(𝑋, 𝑌), 𝑚𝐹(𝑋, 𝑌) ≥ 𝑚𝐺(𝑋, 𝑌) 

The problem with Pearson’s linear correlation is that it is not a concordance 

metric, except for the strict condition that 𝑋 and 𝑌 have elliptical distributions. 

Even when this is the case, correlation of 0 doesn’t imply independence if the 

bivariate distribution is Student t, confusing the interpretation further (Alexander 
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2008b, 273-275). If there is strong evidence suggesting that the distributions 

indeed are not elliptical, one should consider rank correlations (see e.g. McNeil et 

al 2005, 206). 

Tail dependence 
 

There are many definitions of tail-dependence measures in the literature, here we 

use the one presented in McNeil et al (2005).  

For the upper tail dependence, we measure the probability that 𝑋 exceeds its 𝑞-

quantile, given that 𝑌 exceeds its 𝑞-quantile, and the consider the limit value as 

𝑞 → 100%. Additionally, 𝑋 and 𝑌 are interchangeable, i.e. the tail dependence 

between 𝑋 and 𝑌 is the same as the tail dependence between 𝑌 and 𝑋. 

Formally, the coefficient of upper tail dependence is given by 

𝜆𝑢(𝑋, 𝑌) = lim
𝑞→1−

𝑃[𝑌 >𝐹𝑌
−1(𝑞)|𝑋 > 𝐹𝑋

−1(𝑞)] 

Provided a limit of 𝜆𝑢(𝑋, 𝑌) ∈ [0,1] exist. 

Analogously, the coefficient of lower tail dependence is given by 

𝜆𝑙(𝑋, 𝑌) = lim
𝑞→0+

𝑃[𝑌 ≤𝐹𝑌
−1(𝑞)|𝑋 ≤ 𝐹𝑋

−1(𝑞)] 

Again, provided a limit of 𝜆𝑙(𝑋, 𝑌) ∈ [0,1] exist. 

 

Gaussian Copula density 
 

The Gaussian copula is derived from the 𝑛-dimensional multivariate and 

univariate standard normal distribution functions, i.e. it’s defined by 

𝑪(𝑢1, … , 𝑢𝑛; 𝑃) = Φ𝑚[Φ
−1(𝑢1),… ,Φ

−1(𝑢𝑛)] 

Where 

 Φ𝑚 is the n-dimensional multivariate standard normal distribution 

function. 

 Φ is the univariate standard normal distribution function. 
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 𝑃 is the correlation matrix. 

Differentiating the copula function yields the copula’s density (Alexander 2008b, 

267); 

𝑐(𝑢1, … , 𝑢𝑛; 𝑃) = |𝑃|
−1/2𝑒−𝜉

′(𝑃−1−𝐼)𝜉  

Where 

 |𝑃| denotes the determinant of P. 

 𝐼 is the identity matrix. 

 𝜉 is a vector of realized normal variables, 𝜉 = [Φ−1(𝑢1),… ,Φ
−1(𝑢𝑛)], i.e. 

a vector of uniform variables put through the inverse univariate standard 

normal distribution. 

In the special case where 𝑛 = 2, the normal copula distribution is  

𝐶(𝑢1, 𝑢2; 𝜌1,2) = Φ𝑚[Φ
−1(𝑢1),Φ

−1(𝑢2)] 

Where Φ𝑚 is the 2-dimensional multivariate standard normal distribution, i.e. the 

bivariate standard normal distribution function. 

The bivariate normal copula density is then given by 

𝑐(𝑢1, 𝑢2; 𝜌1,2) = (1 − 𝜌1,2
2 )

−
1
2 × 𝑒

−[
𝜉1
2−2𝜌1,2𝜉1𝜉2+𝜉2

2

2(1−𝜌1,2
2 )

]
 

Where 

 𝜉1 = Φ
−1(𝑢1) 

 𝜉2 = Φ
−1(𝑢2) 

Student t Copula density 
 

The multivariate Student t copula is defined by  

𝑪(𝑢1, … , 𝑢𝑛; 𝑃) = 𝑚𝑡𝑣[𝑡𝑣
−1(𝑢1), … , 𝑡𝑣

−1(𝑢𝑛)] 

Where  
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 𝑚𝑡𝑣 is the n-dimensional multivariate Student t distribution function with 

𝑣 degrees of freedom. 

 𝑡𝑣 is the univariate Student t distribution function with 𝑣 degrees of 

freedom. 

 𝑃 is the correlation matrix. 

Using the definition of the multivariate Student t density (Alexander 2008a, 117) 

𝑓(𝑥) = Γ (
𝑣

2
)
−1

Γ (
𝑣 + 𝑛

2
) (𝑣𝜋)−

𝑛
2|𝑃|−

1
2(1 + 𝑣−1𝑥′Σ−1𝑥)−

(𝑣+𝑛)
2   

where 

 Γ denotes the gamma function. 

 |𝑃| denotes the determinant of 𝑃. 

we can express the Student t copula distribution, and differentiate this expression 

to obtain the Student t copula density (for a more detailed derivation see 

Alexander 2008b, 268); 

𝑐𝑣(𝑢1, … , 𝑢𝑛; 𝑃) =  Γ (
𝑣

2
)
𝑛−1

Γ (
𝑣+1

2
)
−𝑛

Γ (
𝑣+𝑛

2
) |Σ|−

1

2(1 +

𝑣−1𝜉′𝑃−1𝜉)−
(𝑣+𝑛)

2 ∏ (1 + 𝑣−1𝜉𝑖
2)
(𝑣+1)

2𝑛
𝑖=1   

where 𝜉 = [𝑡𝑣
−1(𝑢1),… , 𝑡𝑣

−1(𝑢𝑛)] is a vector of realized Student t variables, i.e. a 

vector of uniform variables put through the inverse univariate Student’s t 

distribution. 

If we have two marginals, i.e. 𝑛 = 2, we have a symmetric bivariate t copula 

density of 

𝑐(𝑢1, 𝑢2; 𝜌1,2) =  

 Γ (
𝑣

2
) Γ (

𝑣+1

2
)
−2

Γ (
𝑣+2

2
) (1 − 𝜌1,2

2 )
−
1

2 ×  

  [1 + 𝑣−1(1 − 𝜌1,2
2 )

−1
(𝜉1
2 − 2𝜌1,2𝜉1𝜉2 + 𝜉2

2)]
−
(𝑣+2)

2
× [(1 + 𝑣−1𝜉1

2)(1 +

𝑣−1𝜉2
2)]

(𝑣+1)

2   
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= 
Γ(
𝑣

2
)Γ(

𝑣+2

2
)

√(1−𝜌1,2
2 )×Γ(

𝑣+1

2
)
2 ×

[(1+𝑣−1𝜉1
2)(1+𝑣−1𝜉2

2)]
(𝑣+1)
2

  [1+𝑣−1(1−𝜌1,2
2 )

−1
(𝜉1
2−2𝜌1,2𝜉1𝜉2+𝜉2

2)]

(𝑣+2)
2

  

Where  

 𝜉1 = 𝑡𝑣
−1(𝑢1) 

 𝜉2 = 𝑡𝑣
−1(𝑢2) 
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Appendix B: Additional plots and tables 
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B1: Equity dataset 

 

Figure 36 - Jarque Bera test, Equity indices 

 

Figure 37 - Linear ACFs, Equity indices 

 

Figure 38 - Squared ACFs, Equity indices 
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Figure 39 - Squared ACFs for E-GARCH (1,1) standardized residuals 

 

Figure 40 - Squared ACFs for GARCH (1,1) standardized residuals 
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Table 18 - Univariate S-GARCH(1,1) parameter p values, Equity 

 

Table 19 - Univariate E-GARCH(1,1) parameter p values, Equity 

 

  

Consumer 

Discretion

ary  

Consumer 

Staples  Energy  Financial  

Health 

Care  Industrial Materials 

Technolog

y Utilities 

Homebuil

ders

mu 0.000002 0 0.000365 0.000277 0 0 0 0 0 0.099598

ar1 0 0.000087 0.018846 0 0.006983 0.00004 0 0.000001 0 0.969839

ma1 0 0.000002 0.007178 0 0.001878 0.000003 0 0 0 0.860042

omega 0.072945 0.036985 0.329081 0.113119 0.033079 0.120358 0.18012 0.067759 0.16055 0.145766

alpha1 0 0 0.000016 0 0 0 0 0 0 0

beta1 0 0 0 0 0 0 0 0 0 0

Consumer 

Discretion

ary  

Consumer 

Staples  Energy  Financial  

Health 

Care  Industrial Materials 

Technolog

y Utilities 

Homebuil

ders

mu 0.000001 0 0.000364 0.000176 0.000007 0.000001 0.000937 0.000002 0.000636 0.004464

ar1 0 0 0 0 0 0 0 0.000004 0 0.974119

ma1 0 0 0 0 0 0 0 0 0 0.950125

omega 0 0 0 0 0 0 0 0 0 0.036479

alpha1 0 0 0 0 0 0 0 0 0.000066 0.000002

beta1 0 0 0 0 0 0 0 0 0 0

gamma1 0 0 0 0 0 0 0 0 0 0.076849
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B2: Commodity dataset 

 

Figure 41 - Jarque Bera test, Commodity indices 

 

Figure 42 - Linear ACF's Commodity indices 

 

Figure 43 - Squared ACF's Commodity indices 
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Figure 44 - Squared ACFs for E-GARCH (1,1) standardized residuals 

 

Figure 45 - Squared ACFs for GARCH (1,1) standardized residuals  
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Table 20 - Univariate S-GARCH(1,1) parameter p values, Commodities 

 

Table 21 - Univariate E-GARCH(1,1) parameter p values, Commodities 

 

  

Cotton Gold Corn Sugar

Feeder 

Cattle Coffee Cocoa

Brent 

Crude Zinc

Natural 

Gas

mu 0.69757 0.103132 0.881941 0.186348 0.383079 0.43078 0.26722 0.313102 0.897282 0.009565

ar1 0.782763 0 0.000008 0.000076 0.245496 0.8011 0.7712 0.680346 0.000001 0.008882

ma1 0.664182 0 0.000001 0.00002 0.079001 0.68376 0.77472 0.709505 0.000002 0.023606

omega 0.211583 0.141847 0.000008 0.381504 0.295511 0 0.67724 0.730668 0.78203 0.001365

alpha1 0.000006 0.000003 0 0 0 0 0 0.028201 0 0

beta1 0 0 0 0 0 0 0 0 0 0

Cotton Gold Corn Sugar

Feeder 

Cattle Coffee Cocoa

Brent 

Crude Zinc

Natural 

Gas

mu 0.834622 0.000052 0.946084 0.047791 0.538818 0.859381 0.045442 0.36659 0.870108 0.001071

ar1 0.000001 0 0 0.000014 0 0.325297 0 0.00261 0.000003 0

ma1 0 0 0 0.000001 0 0.727488 0 0.011674 0.00001 0

omega 0.004338 0 0 0 0 0 0.052878 0.019705 0 0

alpha1 0.651712 0.306217 0.057352 0.232194 0.000007 0.000341 0.779778 0.000192 0.007015 0.77748

beta1 0 0 0 0 0 0 0 0 0 0

gamma1 0.017472 0 0 0.000001 0 0 0 0.007398 0 0
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Appendix C: R-code for empirical estimation 

 

The R code was developed using the following packages and resources: Berkelaar 

and others (2015), Delignette-Muller and Dutang (2015), Fox  and Weisberg 

(2011), Genz and Bretz (2009), Genz et al (2016), Ghalanos, A. (2015a, 2015b), 

Harter et al (2016), Hofert et al (2015), Hofert and Maechler (2011), Kojadinovic 

and Yan (2010), Komsta and Novomestky (2015), Luethi and Breymann (2013), 

Peterson and Carl. (2014, 2015), Rmetrics Core Team, Wuertz and Setz (2014), 

Rmetrics Core Team, Wuertz et al (2014a, 2014b), Ryan (2015), Ryan and Ulrich 

(2014), Trapletti and Hornik (2016), Turlach and Weingessel (2013), Wuertz et al 

(2009, 2013), Yan (2007) and Zeileis and Grothendieck (2005). 

 

As the total code for the thesis is long, we have only included the most important 

steps. 
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Excerpt from R script  
 

# Dat = training sample 

# Dat.all = full sample 

k = ncol(Dat) 

########## Univariate garch models specified ########## 

# standard garch, normal spec 

xspec = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = 

list(garchOrder = c(1,1), model = "sGARCH"), distribution.model = "norm") 

# e-garch spec, t dist 

espec = ugarchspec(mean.model = list(armaOrder = c(1,1)), variance.model = 

list(garchOrder = c(1,1), model = "eGARCH"), distribution.model = "std") 

 

# Standard multispec 

mspec = multispec(replicate(n = k, xspec)) 

# exponential garch multispec 

emspec = multispec(replicate(n = k, espec)) 

 

# Fitting the univariate models 

# standard garch with normal 

multf = multifit(mspec, Dat, solver = "hybrid") 

# e-garch with t-dist 

emultf = multifit(emspec, Dat, solver = "hybrid") 

 

########## DCC model specified and fitted ########## 

## Specifying the dcc models for different ugarchspecs.  

# standard garch multispec with normal marginals and multivariate normal 

spec1 = dccspec(uspec= mspec, dccOrder = c(1,1), model = "DCC", distribution = 

"mvnorm") 

# E-garch with t margins and multivariate t dist 

e.dccspec = dccspec(uspec= emspec, dccOrder = c(1,1), model = "DCC", 

distribution = "mvt") 

 

## Fitting the DCC models with the fitted univariate garch models.  

# standard garch multispec with normal marginals and multivariate normal 
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fit1 = dccfit(spec = spec1, data = Dat, fit.control = list(eval.se = T), fit = multf) 

# E-garch with t margins and multivariate t dist 

e.dccfit = dccfit(spec = e.dccspec, data = Dat, fit.control = list(eval.se = T), fit = 

emultf) 

 

########## Rolling forecast of the covariance matrix ########## 

L.ofs = 500 

# 5 Day rolling forecast standard Garch and normal, multi.normal dist. 

roll.forecast = function(data){ 

  multf = multifit(mspec, data, solver = "hybrid") 

  fit1 = dccfit(spec = spec1, data = data, fit.control = list(eval.se = T), fit = multf) 

  dcc.forecast1 = dccforecast(fit1, n.ahead = 5) 

  cor1 = rcor(dcc.forecast1, type="R") 

  cov1 = rcov(dcc.forecast1) 

  return(list(cor=cor1[[1]][,,5], cov=cov1[[1]][,,5])) 

} 

# 5 day rolling forecast, EGarch, std mstd. 

et.roll.forecast = function(data){ 

  emultf = multifit(emspec, data, solver = "hybrid") 

  e.dccfit = dccfit(spec = e.dccspec, data = data, fit.control = list(eval.se = T), fit = 

emultf) 

  e.dcc.forecast = dccforecast(e.dccfit, n.ahead = 5) 

  ecor = rcor(e.dcc.forecast, type="R") 

  ecov = rcov(e.dcc.forecast) 

  return(list(cor=ecor[[1]][,,5], cov=ecov[[1]][,,5])) 

} 

 

# 5 day ugarch rolling forcast 

# sGarch spec 

roll.forcast = lapply(seq(0,L.ofs-5,5), function(x) 

roll.forecast(Dat.all[1:nrow(Dat)+x])) 

# eGarch spec 

e.roll.forcast = lapply(seq(0,L.ofs-5,5), function(x) 

et.roll.forecast(Dat.all[1:nrow(Dat)+x])) 
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# Function for getting a correlation matrix for each out of sample point in an 

array. Same for covariance. 

cor.roller = function(matrices){ 

  roll.matrix = array(dim=c(k,k,500)) 

  loop=1 

  loop1=5 

  for(i in 1:100){ 

    roll.matrix[,,loop:loop1] = matrices[[i]]$cor 

    loop=loop+5 

    loop1=loop1+5 

  } 

  return(roll.matrix) 

} 

cov.roller = function(matrices){ 

  roll.matrix = array(dim=c(k,k,500)) 

  loop=1 

  loop1=5 

  for(i in 1:100){ 

    roll.matrix[,,loop:loop1] = matrices[[i]]$cov 

    loop=loop+5 

    loop1=loop1+5 

  } 

  return(roll.matrix) 

} 

 

# 500 matrixes for each spec, ie each of the 100 5-day forecasts repeated 5 times 

every fifth day. 

for.c.cov = cov.roller(roll.forcast) 

for.c.cor = cor.roller(roll.forcast) 

e.for.c.cov = cov.roller(e.roll.forcast) 

e.for.c.cor = cor.roller(e.roll.forcast) 

 

########### Function for simulating with copula with specified correlation and 

covariance ########## 

# Simulating with normal copula and t marginals 
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norm.cop.sim = function(data=Dat, S, P){ 

  c.var = diag(S) 

  para = P[lower.tri(P)] 

  G.cop = normalCopula(param=para, dim=k, dispstr='un') 

  margin.par = lapply(1:k, function(x) list(mean=mean(data[,x]), sd=sqrt(c.var[x]), 

nu=nu[x])) 

  G.cop = normalCopula(param=para, dim=k, dispstr='un') 

  g.mvdc = mvdc(copula = G.cop,  

                margins=c(rep("std", k)), 

                paramMargins = margin.par) 

  G.sim = rMvdc(mvdc = g.mvdc, n = n) 

  return(G.sim) 

} 

# Simulating with t-copula and t marginals 

t.cop.sim =function(data=Dat, S, P){ 

  c.var = diag(S) 

  para = P[lower.tri(P)] 

  T.cop = tCopula(param=para, dim=k, dispstr='un', df=3.4) 

  margin.par = lapply(1:k, function(x) list(mean=mean(data[,x]), sd=sqrt(c.var[x]), 

nu=nu[x])) 

  t.mvdc = mvdc(copula = T.cop,  

                margins=c(rep("std", k)), 

                paramMargins = margin.par) 

  T.sim = rMvdc(mvdc = t.mvdc, n = n) 

  return(T.sim) 

} 

 

########## Simulating data using copula-simulation function for each estimated 

DCC matrix #### 

## Simulation with the normal copula 

cop.dcc.sim.NN = lapply(1:100, function(x) norm.cop.sim(data = 

Dat.all[1:(nrow(Dat)+(5*(x-1))),], S=roll.forcast[[x]]$cov, 

P=roll.forcast[[x]]$cor)) 
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cop.dcc.sim.ET = lapply(1:100, function(x) norm.cop.sim(data = 

Dat.all[1:(nrow(Dat)+(5*(x-1))),], S=e.roll.forcast[[x]]$cov, 

P=e.roll.forcast[[x]]$cor)) 

 

## Simulation with student t copula 

t.cop.dcc.sim.NN = lapply(1:100, function(x) t.cop.sim(data = 

Dat.all[1:(nrow(Dat)+(5*(x-1))),], S=roll.forcast[[x]]$cov, 

P=roll.forcast[[x]]$cor)) 

t.cop.dcc.sim.ET = lapply(1:100, function(x) t.cop.sim(data = 

Dat.all[1:(nrow(Dat)+(5*(x-1))),], S=e.roll.forcast[[x]]$cov, 

P=e.roll.forcast[[x]]$cor)) 

 

########## Regular CVaR and markowitz optimization and equal weights 

portfolio ########## 

 

##Equal weights 

eq.w = as.xts(matrix(rep(rep(1/ncol(Dat), ncol(Dat)), L.ofs),ncol=ncol(Dat), 

nrow=L.ofs), order.by = OOS.index) 

colnames(eq.w)=id 

eq.w.ret = eq.w*OOS.Dat 

eq.w.port.ret = apply(eq.w.ret, 1, sum) 

eq.w.cum.ret = matrix(ncol=1, nrow=L.ofs) 

for(i in 1:L.ofs){ 

  eq.w.cum.ret[i] = sum(eq.w.port.ret[1:i]) 

} 

eq.w.cum.ret=as.xts(eq.w.cum.ret, order.by=OOS.index) 

weight.plot(eq.w, ma="Equal weights portfolio") 

 

##CVAR 

# Weights through time 

CVaR.port.weights = t(sapply(1:L.ofs, function(x) mincvar(data = 

Dat.all[1:nrow(Dat)+x,],constraints = boxConstraints))) 

# Rebalancing 

Cvar.port.weights.reb = lapply(seq(1,L.ofs,reb) , function(x) 

matrix(rep(CVaR.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 
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Cvar.port.weights.reb = do.call(rbind, Cvar.port.weights.reb) 

# Return 

Cvar.weight.ret = Cvar.port.weights.reb*OOS.Dat 

Cvar.por.ret = apply(Cvar.weight.ret,1,sum) 

# Cumulative return 

cvar.port.cum.ret = matrix(ncol=1, nrow=L.ofs) 

for(i in 1:L.ofs){ 

  cvar.port.cum.ret[i] = sum(Cvar.por.ret[1:i]) 

} 

cvar.port.cum.ret=as.xts(cvar.port.cum.ret, order.by=OOS.index) 

 

##Markowitz  

M.port.weights = t(sapply(1:L.ofs, function(x) Min.var.port(Covar = NULL, 

data=Dat.all[1:(nrow(Dat)+x),], max.all = max.Alloc))) 

# Rebalancing 

M.port.weights.reb = lapply(seq(from = 1, to = 500, by = reb), function(x) 

matrix(rep(M.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 

M.port.weights.reb = do.call(rbind, M.port.weights.reb) 

# Return 

M.weight.ret = M.port.weights.reb*OOS.Dat 

M.port.ret = apply(M.weight.ret,1,sum) 

# Cumulative return 

M.port.cum.ret = matrix(ncol=1, nrow=L.ofs) 

for(i in 1:L.ofs){ 

  M.port.cum.ret[i] = sum(M.port.ret[1:i]) 

} 

M.port.cum.ret=as.xts(M.port.cum.ret, order.by=OOS.index) 

 

#### standard garch, normal margins, mvnorm. DCC portfolio #### 

 

sn.port.w = sapply(1:L.ofs, function(x) Min.var.port(Covar = for.c.cov[,,x], data = 

Dat.all[1:(nrow(Dat)+x),], max.all = max.Alloc)) 

sn.port.w = t(sn.port.w) 

dim(sn.port.w) # 500x10 

# Returns 
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sn.w.ret = OOS.Dat*sn.port.w 

colnames(sn.w.ret) = id 

index(sn.w.ret) = OOS.index 

sn.port.ret = as.xts(apply(sn.w.ret, 1, sum)) 

colnames(sn.port.ret) = "sGarch dcc min.var ret." 

#### e-garch, t margins, mvt. DCC portfolio #### 

ett.port.w = sapply(1:L.ofs, function(x) Min.var.port(Covar = e.for.c.cov[,,x], data 

= Dat.all[1:(nrow(Dat)+x),], max.all = max.Alloc)) 

ett.port.w = t(ett.port.w) 

dim(ett.port.w) # 500x10 

# Returns 

ett.w.ret = OOS.Dat*ett.port.w 

colnames(ett.w.ret) = id 

index(ett.w.ret) = OOS.index 

ett.port.ret = as.xts(apply(ett.w.ret, 1, sum)) 

colnames(ett.port.ret) = "eGarch dcc min.var ret" 

 

#### standard garch, normal margin, mvnorm, CCC portfolio #### 

CCC.cor = cor(Dat) 

# Calculating rolling sigma forecasts 

sgarchsigma = lapply(1:100, function(x) matrix(rep(diag(roll.forcast[[x]]$cov),5), 

ncol=k, nrow=5, byrow=T)) 

sgarchsigma = do.call(rbind, sgarchsigma) 

# Covariance-matrixes 

CCC.cov = lapply(1:500, function(x) 

(as.vector(sgarchsigma[x,]))%*%t(as.vector(sgarchsigma[x,]))*CCC.cor) 

# Portfolio weights 

CCC.port.w = sapply(1:L.ofs, function(x) Min.var.port(Covar = CCC.cov[[x]], 

max.all = max.Alloc)) 

CCC.port.w = t(CCC.port.w) 

dim(CCC.port.w) # 500x10 

head(CCC.port.w) 

# Returns 

CCC.w.ret = OOS.Dat*CCC.port.w 

colnames(CCC.w.ret) = id 
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index(CCC.w.ret) = OOS.index 

CCC.port.ret = as.xts(apply(CCC.w.ret, 1, sum)) 

colnames(CCC.port.ret) = "CCC port.ret" 

 

########## CVAR optimization based on the copula-simulated data ########## 

 

## optimal weights based on the normal copula sgarch-normal-normal simulated 

data.   

Ncop.NN.port.weights = t(sapply(1:100, function(x) mincvar(data = 

cop.dcc.sim.NN[[x]],constraints = boxConstraints))) 

#rebalanced 

Ncop.NN.port.weights.reb = lapply(1:100, function(x) 

matrix(rep(Ncop.NN.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 

Ncop.NN.port.weights.reb = do.call(rbind, Ncop.NN.port.weights.reb) 

# Returns 

Ncop.NN.weights.ret = Ncop.NN.port.weights.reb*OOS.Dat 

Ncop.NN.port.ret = apply(Ncop.NN.weights.ret, 1, sum) 

 

## optimal weights based on the t copula sgarch-normal-normal simulated data. 

Tcop.NN.port.weights = t(sapply(1:100, function(x) mincvar(data = 

t.cop.dcc.sim.NN[[x]],constraints = boxConstraints))) 

# rebalanced 

Tcop.NN.port.weights.reb = lapply(1:100, function(x) 

matrix(rep(Tcop.NN.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 

Tcop.NN.port.weights.reb = do.call(rbind, Tcop.NN.port.weights.reb) 

# Returns 

Tcop.NN.weights.ret = Tcop.NN.port.weights.reb*OOS.Dat 

Tcop.NN.port.ret = apply(Tcop.NN.weights.ret, 1, sum) 

 

# optimal weights based on the normal copula egarch-t-t simulated data. 

Ncop.ET.port.weights = t(sapply(1:100, function(x) mincvar(data = 

cop.dcc.sim.ET[[x]],constraints = boxConstraints))) 

# rebalanced 

Ncop.ET.port.weights.reb = lapply(1:100, function(x) 

matrix(rep(Ncop.ET.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 
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Ncop.ET.port.weights.reb = do.call(rbind, Ncop.ET.port.weights.reb) 

# Returns 

Ncop.ET.weights.ret = Ncop.ET.port.weights.reb*OOS.Dat 

Ncop.ET.port.ret = apply(Ncop.ET.weights.ret, 1, sum) 

 

# optimal weights based on the t- copula egarch-t-t simulated data. 

Tcop.ET.port.weights = t(sapply(1:100, function(x) mincvar(data = 

t.cop.dcc.sim.ET[[x]],constraints = boxConstraints))) 

# rebalanced 

Tcop.ET.port.weights.reb = lapply(1:100, function(x) 

matrix(rep(Tcop.ET.port.weights[x,], reb), ncol=k, nrow=reb, byrow=T)) 

Tcop.ET.port.weights.reb = do.call(rbind, Tcop.ET.port.weights.reb) 

# Returns 

Tcop.ET.weights.ret = Tcop.ET.port.weights.reb*OOS.Dat 

Tcop.ET.port.ret = apply(Tcop.ET.weights.ret, 1, sum) 

 

 

 

***** mincvar and Min.var.port are functions for minimizing CVaR and variance 

of a portfolio respectively, each returning a vector of optimal weights. This 

excerpt from the full script will not run on insertion into R, and are included for 

illustrational purposes. 
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Introduction 

In this thesis we seek to compare various risk measures in the context of portfolio 

optimization and risk diversification. We are interested in measures and 

approaches that can be, or are being, used by practitioners in the finance industry. 

Theoretical superiority is thus not the sole criterion for choosing measures to test, 

but also feasibility. To make the thesis as relevant to the real world as possible, 

we intend to use Value at Risk (VaR) and/or Conditional Value at Risk (CVaR, 

also known as expected shortfall/ES) constraints to the portfolio. The risk 

measures we are currently considering is the most popular multivariate GARCH 

models (see methodology section) and copula based approaches. The research 

questions we seek to answer is then: 

 Which of these approaches seem to perform the best in the long run? 

 Are some of the measures performances affected more by a certain type of 

financial climate (boom/recession) than the others? 

 Do certain measures perform better in certain sectors (i.e. the BEKK 

model in the oil service provider sector), or does one measure trump the 

others regardless of sector? 

 Other questions that arise during the process. 

 

The foundation for modern portfolio theory as a mathematical and statistical 

problem was laid out by Markowitz in 1952. Markowitz’ argues that simply 

maximizing discounted, expected returns as an investment rule is rejected both as 

a hypothesis to explain historic investor behavior, and as a maxim to guide 

optimal investment. Instead he considers a rule that expected return is a desirable 

thing while variance of return is undesirable. This idea implies a demand for 

diversification, not solely by reducing variance through increasing numbers of 

different securities held, but also choosing assets with low covariance. 

Modelling volatility (measured by the standard deviation) and covariance in 

financial time series is crucial for good decision-making. Volatility is well 

documented in the literature to be time-varying, as well as moving in “clusters” of 

high and low volatility. Much has been written on this topic, with variants of the 

Generalized Autoregressive Conditional Heteroscedasticity (GARCH) models 



 

 

being among the most popular.  

Multivariate GARCH models however have a major drawback. The number of 

parameters can become very large as the cross section of stocks increases, 

generating a “dimensionality curse”. Existing approaches work around this 

problem by either relying on constraints to the structure of the model, or using 

alternative estimation criterion to the usual quasi likelihood criterion. 

In this thesis we seek to employ and Equation by Equation (EbE) framework 

originally proposed by Engle and Sheppard (2001), and Engle (2002). This 

approach will allow us to avoid putting constraints to the structure of the model, 

while using quasi likelihood estimation.  

 

Literature review 

Portfolio optimization 

From Markowitz’ paper on portfolio optimization, an optimal portfolio is 

determined based on expected return on the assets, and variance as the measure of 

risk. By minimizing the variance-covariance of the assets in the portfolio subject 

to a return requirement, we get a set of optimal portfolios. These different 

combinations map out the efficient frontier, which is the optimal relationship 

between expected return and risk for different portfolio compositions, i.e. the 

lowest risk/reward relationship.  

The return of security i, ri, is a random variable. The return of a portfolio, rp, is a 

weighted average of the returns of the individual assets included in the portfolio, 

i.e. also a random variable.  

𝑟𝑝 = ∑𝑤𝑖𝑟𝑖

𝑛

𝑖=1

 

Subject to the constraint:  

∑𝑤𝑖

𝑛

𝑖=1

= 1 

The setup of Markowitz has some major drawbacks, however. By using variance 

as a measure of risk, it is assumed that the returns are jointly normally distributed. 



 

 

This is in fact not the case in the real world, as the distribution of returns generally 

are left skewed and leptokurtic. Another drawback is that the variance-covariance 

is constant over time, while in the real world the variance and covariance tend to 

change with unexpected events. Due to this, sample variance and covariance as 

measure of risk does not adequately capture the real distribution of returns. This 

will lead us to underestimate the potential losses, and the weights of the portfolio 

is not optimal.  

Another drawback of the original model is that it equally weighs upside and 

downside moves of the return distribution, while for risk averse investors the 

emphasis should be placed on the downside risk of the portfolio, i.e. the risk of 

large losses. Measures such as value at risk (VaR) and expected 

shortfall/conditional value at risk (CVaR) takes this into account.  

Risk 

We can define risk as the uncertainty regarding a future event, in this case asset 

returns. To measure the risk of a process, we need an appropriate risk measure. 

Artzner et al. (1999) presents the concept of coherent risk measures. For a risk 

measure to be coherent, it needs to satisfy a set of axioms: 

If 𝑟1and 𝑟2 are random variables, and 𝜌(∙) is the risk measure, then the axioms 

states: 

1. Translation invariance (Axiom T): 

𝜌(𝑟1 + 𝑘) =  𝜌(𝑟1) − 𝑘 

When adding quantity k to the asset, the risk is reduced by the same 

amount. 

2. Subadditivity (Axiom S): 

𝜌(𝑟1 + 𝑟2) ≤ 𝜌(𝑟1) + 𝜌(𝑟2) 

Risk can be reduced by diversification. The risk of the combined portfolio 

is less or equal to the sum of the risk for the individual assets.  

3. Positive homogeneity (Axiom PH): 

𝜌(𝑘𝑟1) = 𝑘𝜌(𝑟1) 

By increasing the amount invested in the asset by factor k, the risk is 

increased by the same factor. 

4. Monotonicity (Axiom M) 



 

 

𝜌(𝑟1) ≤ 𝜌(𝑟2), 𝑟1 ≤ 𝑟2 

IF the value of r1 is greater than r2 then the risk of r1 is less than that of 

r2. 

Risk measures 

Value at risk: 

Value at risk is the maximum level of expected losses given a confidence level, 

over a specified time interval. In other words, the confidence level chosen states 

the probability of losses exceeding the VaR in the specified time horizon. We can 

view the loss function of a portfolio as the negative of the return of the portfolio: 

𝐿(𝒘, 𝒓) =  −(𝑤1𝑟1 +⋯+𝑤𝑛𝑟𝑛) = −𝒘
𝑇𝒓 

Where 𝒓 is the returns of the assets, and 𝒘 is the portfolio weights. The 

probability of the loss 𝐿(𝒘, 𝒓) not exceeding 𝑙 is defined as:  

𝐹(𝒘, 𝑙) =  ∫ 𝑓(𝒓)𝑑𝒓
 

𝐿(𝒘,𝒓) ≤ 𝑙

 

Where 𝑓(𝒓) is the joint density function of returns and 𝐹(𝒘, 𝑙) is the cumulative 

distribution function for losses. The VaR is given by: 

𝑉𝑎𝑅𝛼(𝒘) = min(𝑙: 𝐹(𝒘, 𝑙) ≥ 𝛼) 

Where 1- 𝛼 is the confidence level chosen.  

VaR has some large drawbacks. First, it does not take into account the actual 

extent of the losses exceeding the limit. Second, it does not fulfill the non-

subadditivity axiom which means that it is not by itself supporting diversification. 

Another drawback is that the regular value at risk measure is assuming normality, 

while return series in reality is generally leptokurtic. This means that VaR is 

underestimating the frequency of large losses when assuming normality.  

Copula 

We are considering a copula based approach for estimating the dependence 

structure between assets. This is due to the criticism of covariance as a measure of 

dependence, due to multivariate normality assumption of returns. In the copula 



 

 

framework, the individual distributions can be joined through the copula function, 

allowing us to have non-normality in the individual distributions. 

Data 

We intend to collect data for the thesis through DataStream. For our data sample 

we intend to use time series data from the US stock market, starting January 2006, 

ending December 2015. This data sample includes events such as the financial 

crisis of 2008, allowing us to monitor the models performance in relation to 

volatility clustering and leverage effects. We will study the daily logarithmic 

relative differences of market prices, known as log-returns. Using logarithmic 

scaling is the standard in financial time series studies, and has several advantages; 

 Compounded log returns can conveniently be computed by summation 

 Returns can be interpreted as continuously compounded returns, so that 

the compounding frequency become irrelevant and returns across assets 

can be compared. This matters in regards to benchmarking. 

 

Methodology 

To answer the research questions from the introduction, we plan to build several 

portfolio optimization models. Each measure we decide to test should result in 

one separate model. The models will require input in term of price information 

from the market, and should give us both a starting portfolio, as well as signals of 

when and by how much weights should be rebalanced.  

Rebalancing 

We are not fully decided upon how to model rebalancing as of yet. The options 

we consider are: 

 Continuous rebalancing, ignoring transaction costs. This means that every 

time new information is added, the model should rebalance. 

 Modelling transaction costs, and rebalance only when the model says its 

“optimal” considering said costs 

 Ignoring transactions costs, but only allow for rebalancing if the model 

projects optimal move is to change the weights by above a certain 



 

 

minimum. E.g. if the minimum change in portfolio weight is 10%, and the 

current weight of stock A is 15%, we would need new optimal weight to 

be below 13,5% or above 16,5%. 

The goal of the thesis is to compare the risk measures, yet to do so in a realistic 

manner. Option 1 is the by far easiest to implement, option 2 the most realistic 

and option 3 somewhere in between the two. 

 

For the discussion of the methodology we intend to use, the concepts of 

conditional and unconditional variance is needed. Unconditional variance is 

simply what is most often referred to as just variance, defined as: 

𝑉𝑎𝑟(𝑋) = 𝔼[(𝑋 − 𝔼[𝑋])2] 

Conditional variance on the other hand, is conditional on the previous knowledge 

(history) we have of that variable. If we are interested in the conditional variance 

of the error term in a regression, 𝑢𝑡, denoted as 𝜎𝑡
2, we can write it as 

𝜎𝑡
2 = 𝑣𝑎𝑟(𝑢𝑡|𝑢𝑡−1, 𝑢𝑡−2, … ) = 𝔼[(𝑢𝑡 − 𝔼[𝑢𝑡])

2|𝑢𝑡−1, 𝑢𝑡−2, … ] 

Further, it’s common to assume 𝔼[𝑢𝑡] = 0, so 

𝜎𝑡
2 = 𝑣𝑎𝑟(𝑢𝑡|𝑢𝑡−1, 𝑢𝑡−2, … ) = 𝔼[𝑢𝑡

2|𝑢𝑡−1, 𝑢𝑡−2, … ] 

Stating that the conditional variance of a zero mean normally distributed random 

variable equals the conditional expected value of the squared random variable 

(Brooks 2008, p.387-388). 

The conditional variance is then allowed to vary over time as a function of 

previous error terms (residuals). 

GARCH 

The GARCH model originated as an extension of Engle’s (1982) ARCH model, 

and was first introduced by Bollerslev in 1986 to “allow for both a longer memory 

and more flexible lag structure” (Bollerslev 1986, page 2). 

To illustrate for our application; let  𝑦𝑡 be a stochastic process of daily returns, 

with mean equation AR(s) 



 

 

𝑦𝑡 = 𝜇 +∑ ∝𝑖 𝑦𝑡−𝑖
𝑠

𝑖=1
+ 𝑢𝑡 

Then a GARCH(p,q)  process is formally defined as 

𝑢𝑡 = 𝜎𝑡𝑧𝑡 

𝜎𝑡
2 =∝0+∑ ∝𝑖 𝑢𝑡−𝑖

2
𝑝

𝑖=1
+∑ 𝛽𝑗𝜎𝑡−𝑗

2
𝑞

𝑗=1
 

This is the univariate case. In portfolio optimization, covariances between the 

securities are arguably even more important than the variance of the individual 

stocks themselves. 

The last 20 years of financial time series research a significant portion has been 

devoted to multivariate extensions of GARCH. The most popular specifications 

seem to be the Constant Conditional Correlations (CCC) model by Bollerslev 

(1990) Jeantheau (1998), the BEKK model by Baba et al. (1995), and the 

Dynamic Conditional Correlations (DCC) models proposed by Tse and Tsui 

(2002) and Engle (2002).  

The use of MGARCH models in applied works has suffered to their complexity. 

In portfolio management, cross-sections of hundreds of stocks are not uncommon. 

When the dimension of the cross section increases, the number of parameters to 

be estimated can become very large in MGARCH models. This is the case for 

most multivariate time series, but maybe even more so in GARCH models as the 

parameters in the conditional variance matrix has to be inverted in Gaussian 

likelihood-based estimation methods. Existing approaches work around this 

problem by either relying on constraints to the structure of the model, or using 

alternative estimation criterion to the usual quasi likelihood criterion. 

Workarounds of the first type has been presented in Engle et al’s Factor ARCH 

models in 1990, van der Weide’s Generalized Orthogonal GARCH model (2002), 

and Lanne and Saikkonen’s Generalized Orthogonal Factor GARCH model 

(2008). The second type approach was presented by Engle et al. in 2008, using a 

composite likelihood instead of the usual quasi-likelihood. Engle and Kelly also 

presented a workaround combining the two concepts in the Dynamic 

Equicorrelation (DECO) model (2012). 

The solution we apply in this thesis is an equation by equation (EbE) framework 



 

 

initially proposed by Engle and Sheppard (2001) and Engle (2002) in the context 

of DCC models, and later by Pelletier (2006) for regime-switching dynamic 

correlation models. The EbE approach alleviates the dimensionality curse in two 

steps; 

1. Estimate univariate GARCH models for each individual series (equation by 

equation) 

2. Standardized residuals from the individual stages are used to estimate 

parameters of the dynamic correlation matrix. 

From Engle and Sheppard’s paper we know that the standard errors of the first 

step remain consistent, and only the standard errors for the correlation matrix 

needs to be modified. 

The statistical properties of this approach (involving “two-step estimators”) had 

not been established until recently by Francq and Zakoïan in a working paper 

from late 2014. That paper establishes strong consistency and asymptotic 

normality (CAN) in a very general framework, including DCC and CCC models. 

 

 

Ranking the measures 

To assess the performance of the risk measures and in turn rank them, we will 

perform in and out of sample testing. If the portfolios then is constrained by 

having the same VaR and/or CVaR, return should be the only relevant criteria, 

and we should be able to rank the measures. We are also considering adding in 

other types of performance measures. 
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