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Abstract 

The primary objective of this thesis is to investigate how well Merton’s corporate 

debt model performs in predicting defaults amongst public firms in Norway. The 

study concludes that the model performs adequately in predicting defaults amongst 

public firms in in this market. However, the application of the model is dependent 

on historical market values of equity, making it unable to estimate default 

probabilities for young public firms.  

In this thesis, Merton’s corporate debt model is used by applying the generated 

distance to default as the covariate in the logit model to estimate the probability of 

default. Three analyses are conducted to validate the model’s performance: 

regression analysis, discriminatory power analysis and a calibration analysis of the 

probability of default quantification. Two different sets of historical defaults are 

used, each with its own definition of default. The first dataset contains data from 

The Brønnøysund Register Centre on historical bankruptcies from 1996-2015. The 

second dataset is based on Stamdata’s registry of bond issuers’ financial failures 

from 2007-2015.  

The model is tested with different types of equity volatility. The logistic regression 

analysis concludes that while no single version of the model exhibits exceptionally 

high explanatory power, models based on equity volatility with an estimation 

window of 90 days seem to be adequate candidates in the application of the model. 

Moreover, the study shows that winsorizing equity returns does not add much 

explanatory power, while a logarithmic functional form in the logit model yields 

higher fit. The discriminatory analysis finds that the model’s ability to discriminate 

between defaulting and non-defaulting firms exceeds that of pure statistical models, 

achieving accuracy levels on par with previous studies. The calibration analysis 

concludes that the model has low risk of underestimating the true credit risk when 

predicting bankruptcies. However, the model exhibits some risk of underestimation 

in distressed economies when predicting financial failures. Moreover, the analysis 

concludes that the logarithmic functional form in the logit model underestimate the 

true credit risk. 
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Part I - Introduction 

The quest for a method that accurately predicts defaults amongst companies is old 

and a trustworthy model has been sought by many. Banks, bondholders, equity 

holders, portfolio managers, and other stakeholders of an economy would benefit 

from being able to detect signs of financial failure before it occurs. Researchers of 

credit risk first started to develop such methods in the early 1930’s (Trueck & 

Rachev, 2009). In 1974, Robert K. Merton presented a model that viewed bonds 

and stocks issued by firms as contingent claims on the assets of the firm. His model 

has been credited for being amongst the most central models of default prediction 

(Lando, 2004). As markets have grown more mature and efficient, more advanced 

models have evolved, but the fundamentals of Merton’s model remain. In 

particular, a default prediction model of the U.S. rating agency Moody’s is partly 

based on that of Merton (Stein & Sobehart, 2000).  

The primary objective of this thesis is to investigate how well Merton’s corporate 

debt model performs in predicting defaults amongst public firms in Norway. In 

validating the model, three analyses are conducted: regression analysis, 

discriminatory power analysis and a calibration analysis of the probability of default 

quantification. The results of the two former analyses are compared to those of pure 

statistical models. Literature does not conclude on an optimal approach of how to 

estimate the volatility input in the model. Eleven different volatility candidates are 

applied in the model, which allows for studying the importance of the volatility 

parameter. To bring nuance to the study, this paper examines the models’ 

performance in light of two different definitions of default; bankruptcies and failure 

of any financial promise. Winsorization of the equity returns is conducted to 

observe how outliers influence the probability of default. In addition, logarithmic 

transformation of the covariate in the logit model is performed to study the impact 

of different functional forms. 

Research Question and Hypotheses 

Three hypotheses are assessed in this paper. Each hypothesis challenges an aspect 

of Merton’s corporate debt model. The hypotheses are meant to give a 

comprehensive picture of how well Merton’s corporate debt model predicts defaults 

amongst Norwegian public firms. 
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The first hypothesis states that the logarithmic distance to default variable of the 

Merton’s corporate debt model exhibits the highest explanatory power in predicting 

defaults when the model is based on GARCH(1,1) volatility estimates with 

untreated returns of equity. Previous research has shown that treating outliers of 

equity returns has minor effects on the model’s explanatory power, while taking the 

logarithm of the independent variable has noteworthy impact (Loffler & Posch, 

2007). Another empirical study suggests that GARCH-estimated volatility may be 

applied to improve the performance of the Black & Scholes model (Duan, 1995). 

The hypothesis will be assessed  through a regression analysis by testing different 

versions of the model differing in estimation window for GARCH and historical 

equity volatility estimates.  

The second hypothesis states that the model outperforms pure statistical models1 in 

distinguishing defaults from non-defaults. Altman’s Z-score and Ohlson’s O-score 

are used as proxies for the performance of such models. Previous research has 

shown that Merton’s corporate debt model has outperformed Altman’s Z-score in 

such discrimination (Stein & Sobehart, 2000). The study was conducted on U.S. 

non-financial public firms, and it is interesting to see if similar conclusion follows 

for Norwegian public firms. The hypothesis will be assessed by a discriminatory 

analysis where three simple, yet powerful, techniques are applied to compare the 

performance of the models. Those techniques are the Cumulative Accuracy Profile 

and Accuracy Ratio. 

The third hypothesis states that the estimated probability of default generated by 

Merton’s corporate debt model underestimates the true probability of default. The 

hypothesis is inspired by research showing that the model tends to underestimate 

the true credit risk (Gemmill, 2002).The hypothesis will be assessed in a calibration 

analysis by comparing the estimated probabilities to the actual outcomes. A Vasicek 

one-factor model which accounts for default correlation is applied to determine the 

likelihood of underestimation. 

Scientific Contribution and Justification of Study 

The Norwegian oil sector represents a substantial portion of the country’s economy, 

and the past years’ drop in the oil price has led to lower activity level within the 

                                                           

1 Statistical models have an unexpected, default-triggering event that is governed by an exogenous 

default-intensity process (Chen & So, 2014). 
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sector. While lower interest rates, weaker domestic exchange rates and 

expansionary fiscal policy have had redeeming effects on the Norwegian economy, 

there are strong signals that the credit risk amongst firms in the country has 

increased in the past years (The Financial Supervisory Authority of Norway, 2016). 

The turmoil has brought workforce cutbacks and an increased amount of covenant 

breaches of corporate debt issuers (Stamdata, 2016). This provides strong 

motivation to study the relevant topic of default prediction amongst Norwegian 

public firms. 

Several extensions have evolved from the original version of Merton’s corporate 

debt model. The application of stochastic interest rate, stochastic volatility and 

different types of debt structures are now common in the literature (Lando, 2004). 

However, default prediction models that have gained attention in Norway appears 

to be of more statistical nature, such as the SEBRA model (Bernhardsen & Larsen, 

2007). Miklos and Ullsfoss have conducted an empirical analysis of the KMV 

Merton corporate debt model on Swedish real estate companies (Miklos & Ullsfoss, 

2015). Grøstad has studied a Merton approach for the Norwegian High Yield Bond 

Market (Grøstad, 2013), but with focus on credit spreads instead of discrimination 

and calibration. As far as our literature research has shown, there is little research 

that explicitly analyzes Merton’s corporate debt model with focus on the 

discriminatory power, nor the calibration power for Norwegian public firms. 

Hopefully, this paper represents an important contribution for academics who are 

interested in the use of structural credit risk models for Norwegian public firms in 

particular. 

Only a few2 companies listed on Oslo Børs ASA3 are rated by internationally 

recognized credit rating agencies (Sundheim & Kvisvik Hårstad, 2012). 

Bondholders and other creditors must therefore rely on alternative ratings to anchor 

their investment decisions. Not recognized by ESMA standards4, these ratings go 

by the name shadow ratings. The problems associated with maintaining adequate 

ratings may cause discrepancy between the firms’ true credit risk and the one 

reflected in these ratings. Thus, in addition to providing relevant academic research, 

                                                           

2 The number of listed non-financial companies with an official credit rating from Moody’s, 

Standard & Poors or Fitch appears to have been 7 in 2012. 
3 Oslo Børs ASA offers the only regulated markets for securities trading in Norway (Oslo Børs 

ASA, 2016) 
4 No Norwegian rating institutions are registered in or certified by the European Securities and 

Markets Authority (European Securities and Markets Authority, 2016). 
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there may be a great potential for a Merton-approach to be applied by Norwegian 

financial institutions to better assess credit risk. 

In our thesis, we present evidence that the distance to default variable produced by 

the Merton’s corporate debt model does carry explanatory power on historical 

defaults. Moreover, we show that the model’s ability to discriminate between 

defaulting and non-defaulting firms exceeds that of pure statistical models, in 

accordance with previous studies on the model’s performance in other markets. 

Lastly, our analysis indicates that proper use of the model involves low risk of 

underestimation when predicting bankruptcies, however, higher risk when 

predicting financial failures. Underestimation seems inevitable when probabilities 

of default are estimated with logarithmic transformation of the covariate.  

The structure of this thesis is as follows: Part I elaborates on the research question 

and hypotheses, motivation of study and a brief summary of the results. Part II 

introduces previous literature on Merton’s corporate debt model. Part III 

summarizes the research design of the study. Part IV presents the data and part V 

describes the details of the methodology. In Part VI we present the findings and 

implications of the study. Part VII concludes on the hypotheses and research 

question, and discusses further research areas.  



GRA 1903 Master thesis  01.09.2016 

5 

Part II - Literature Review 

This section introduces previous literature on the topic of the Merton corporate debt 

(MCD) model. The goal of this section is to give an overview of the topic and its 

underlying assumptions. 

Merton Bibliography 

The roots of the MCD model traces back to Merton’s own research and the Black 

& Scholes option pricing model to value corporate bonds (Merton R. C., 1974) 

(Merton R. C., 1973) (Black & Scholes, 1973). The original MCD model base the 

risk structure from a risk neutral perspective, where debt is seen as a zero-coupon 

bond with the possible extension of accounting for coupon-paying debt. Because of 

its intuitive appeal and economic reasoning, the model is seen as a key reference 

point to credit risk modeling (Lando, 2004). Several extensions have since been 

added to relax some of the strict assumptions surrounding the model. 

In 1990, Merton extended his original model to account for jump-diffusions 

(Merton R. , 1990) which has been further developed to be more general about the 

specification of risk premiums (Lando, 1994). Alternatives to Merton’s own jump-

diffusion model can be found in articles of Zhou and Mason and Bhattacharya 

(Zhou, 2001) (Mason & Bhattacharya, 1981). In 1977, Geske used numerical 

integrals with finite-differences to price coupon bonds in terms of multivariate 

normal integrals (Geske, 1977). Today, this has become a standard procedure. The 

first paper that presents a detailed description of a continuous point of default with 

perpetual debt and finite horizons are the one of Black and Cox (Black & Cox, 

1976). This article is studied further to introduce stochastic interest rates (Briys & 

Varenne, 1997). Stochastic interest rates are relatively complicated, and multiple 

researcher have come up with different procedures to account for the same process. 

First-passage time densities are especially challenging with stochastic interest rates, 

yet Buonocore et al. presents an integral equation to solve the problem when the 

transition densities of the process are known (Buonocore, Nobile, & Ricciardi, 

1987). The same integral techniques are later used by Longstaff and Scwartz 

(Longstaff & Schwartz, 1995) which is clarified by a two-dimensional version of a 

numerical algorithm.  

The extensions presented above are theoretically intuitive, but more complicated to 

apply in practice. One will have to adapt the pricing model to different patterns of 
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coupons, covenants or call ability features that is not easy to model. The first 

noteworthy paper that attempts to test structural models was published in 1989 

(Sarig & Warga, 1989). The researchers test a dataset with zero-coupon bonds only, 

and find that the MCD model performs well in portraying the term structure for 

bonds with different ratings. Several papers have since tested the MCD model and 

accounted for coupons, stochastic interest rates and compound option effects 

(Delianedis & Geske, 2003) (Ericsson & Reneby, 2002). Eom, Hwlwege and Huang 

find support for that the MCD model underestimates the true credit risk for 

investment grade firms (Eom, Helwege, & Huang, 2004). Arguably, the most 

practical approach of the MCD model was presented by Moody’s KMV where the 

maximum-likelihood method is used to assess credit risk (Crosbie & Bohn, 2002) 

(Bohn, 2000) (Sobehart, Stein, Mikityanskaya, & Li, 2000). This is a hybrid model, 

coined as Moody’s Public Firm Risk Model, that couples the MCD model with 

financial information and firms previous credit ratings. Their model exhibits 

discriminatory power that exceeds that of the simple MCD model.  

Credit Risk Theory from a Structural Perspective 

Credit risk is the risk that a debtor fails to meet its repayments according to a pre-

determined schedule (Tung, Lai, Wong, & NG, 2010). Default may be defined as a 

condition when failure of repayment is met and occurs when a company cannot 

cover the payments with cash or proceeds from selling assets. The definition of 

default can therefore be modified to a condition when the market value of assets (V) 

is not sufficient to cover its debt (F) at maturity, 

 𝑉 < 𝐹. (1) 

If E is the market capitalization and 𝐷 is the market value of the firm’s liabilities, 

then by definition the following accounting relationship exist 

 𝑉 = 𝐷 + 𝐸. (2) 

Since equity holders never lose more than they invest (ignoring time value), the 

lower boundary of equity is defined as 𝑚𝑖𝑛(𝐸) = 0. This implies that the only way 

to reach the condition in Equation 1 is when  

 (∆𝑉 < 0 | 𝐸 = 0) ↔ 𝐷 = 𝑉 < 𝐹. (3) 

In contrast, if the default condition is not met, 𝐸 >= 0, then the debt will have the 

convergence, 𝐷 → 𝐹 𝑎𝑠 𝑡 → 𝑇, where T is the time when debt matures and t is a 

time before T. The probability of default (PD) can therefore be expressed as 
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 𝑃𝐷 = 𝑃(𝐷𝑇 < 𝐹) = 𝑃(𝑉𝑇 < 𝐹) (4) 

where 𝑃(∙) is an unknown probability function. The only observable parameter in 

the Equation 4 is F, making the study of PD a challenging task. 

Structural credit risk models study PD through the observable E and are often called 

option theoretic or contingent claim models (Loffler & Posch, 2007). This is 

because 𝐸 can be seen as a residual claim that force Equation 2 to be true at any 

time. The option theory stems from the concept of how equity can be expressed as 

a call option with a strike price equal to the face value of the debt 

 𝐸 = max(𝑉 − 𝐹, 0).  (5) 

Robert C. Merton is recognized as the first to apply option theory to the problem of 

valuing corporate debt and rests on Black, Scholes and Merton’s option theory. 

Assumptions 

The MCD model follows the same seven assumptions as in the Black, Scholes and 

Merton (BSM) option pricing model, which is arguably the most common method 

of valuing options (Black & Scholes, 1973) (Merton R. C., 1973). The list of 

assumptions are as follows 

1. There are no transaction costs or taxes where all assets are tradeable.  

2. Markets are perfect. 

3. Short sales are possible without constraints. 

4. Trading in assets takes place continuously in time. 

5. The Modigliani-Miller theorem that the value of the firm is invariant to its 

capital structure holds. 

6. There is one risk-free interest rate and every asset can be discounted at this 

rate. 

7. The dynamics for the value of the firm V, through time can be described by 

a diffusion-type stochastic process with stochastic differential equation 

 𝑑𝑉 = 𝜇𝑉𝑑𝑡 + 𝜎𝑣𝑉𝑑𝑧 (6) 

where 𝜇 is the drift rate (expected return), 𝜎𝑉
2 is the variance rate and 𝑑𝑧 is 

a wiener process. 

Merton argues that assumption 1 to 3 can be relaxed, that assumption 5 is proved 

and assumption 6 is there to distinguish the risk structure from the term structure 

effect on pricing. Assumption 4 and 7 are critical for the MCD model. Details about 
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assumption 7 are left out in this thesis, and we refer to Hulls book “Options, Futures 

and other Derivatives” for an extensive review (Hull, 2015). 

The MCD Model 

The process described in assumption 7 is only approximately valid when 𝑑𝑡 → 0. 

For larger time intervals, it is common to assume that the asset is log-normally 

distributed. By applying Ito’s Lemma on the function ln(𝑉) reach the following 

process for 𝑑𝑉5 

 𝑑𝑉 = (𝜇 −
𝜎𝑉

2

2
) 𝑉𝑑𝑡 + 𝜎𝑉𝑉𝑑𝑧 (7) 

where the drift rate is (𝜇 −
𝜎𝑉

2

2
). Assumption 2 can be relaxed, but if the no-arbitrage 

condition holds, the price of options needs to be the same regardless of risk 

preferences6. It is therefore possible to estimate the equity value from a risk-neutral 

perspective where every risky asset can be discounted by the risk free interest rate 

𝑟𝑓. For simplicity, annotations reflecting current time is neglected. The BSM 

formula for valuing a call option is expressed as 

 𝐸 = 𝑉Φ(𝑑1) − 𝐹𝑒−𝑟𝑓𝑇Φ(𝑑2) (8) 

where 

 𝑑1 =
ln (

𝑉
𝐹) + (𝑟𝑓 +

𝜎𝑣
2

2 ) 𝑇

𝜎𝑣√𝑇
 𝑎𝑛𝑑 𝑑2 = 𝑑1 − 𝜎𝑣√𝑇. (9) 

The Φ(∙) is the normal cumulative distribution function. Equation 8 and 9 are 

central in Merton’s article; one can easily obtain an equation of the market value of 

debt, D, by inserting those equations into Equation 2 such that 

 𝐷 = 𝐹𝑒−𝑟𝑇 − max(𝐹 − 𝑉, 0). (10) 

The equation shows that D is equal the present value of a risk-free bond with face 

value of F less a put option on the asset. Equation 10 is the MCD model. However, 

in studying PD, it is necessary to apply the model further.  

One can observe E and D through the market prices of equity and bonds, but not V 

nor 𝜎𝑣. However, it is possible to solve the two unknowns from the fact that 𝐸 =

𝑓(𝑉, 𝜎𝑉) and the assumption that the process of E is similar to that of the asset, 

                                                           

5 The expression, 𝑑𝑙𝑛(𝑉) is simplified to 𝑑𝑉. 
6 Going long in the underlying and short a fraction of the security that is written on the underlying 

must give the return equal the risk free interest rate, otherwise an arbitrage condition exist. 
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described in assumption 7. From Ito’s Lemma, one can then derive a second 

equation 

 𝜎𝐸 =
𝜎𝑉Φ(𝑑1)𝑉

𝐸
. (11) 

Here, 𝜎𝐸 is the volatility of the equity, which may be estimated from historical 

market prices. Together, Equation 8, 9, and 11 make it possible to solve for 𝑉 and 

𝜎𝑉, which is the technique used in this thesis.  

PD and DD 

The output 𝑑2 in Equation 9 is a quantitative measure of how many standard 

deviations the expected log-asset value is away from the point that triggers default. 

It is directly connected to PD because, Φ(𝑑2) = Φ(𝑉 > 𝐹), is the probability of 

exercising the call option, 𝑃(𝐸 > 0). The risk neutral PD can therefore be expressed 

as 

 
1 − Φ(𝑑2) = Φ(𝑉𝑇 < 𝐹) 

 
(12) 

 Φ(−𝑑2) = Φ(𝐷𝑇 < 𝐹). (13) 

Another key point is that from the assumption of normal distribution makes 𝑃(∙) 

referred to in Equation 4 to be Φ(∙). 

Assumption 5 needs to be neglected in order to change the 𝑑2 in Equation 9, and 

conversely, the risk neutral PD in Equation 13 to resemble a real world PD. This is 

achieved by applying a drift rate, 𝜇, located in Equation 7. A method that is both 

practical and consistent with economic theory is to estimate 𝜇 through the capital 

asset pricing model (CAPM) (Tung, Lai, Wong, & NG, 2010) 

 𝜇 = 𝑟 + 𝛽𝐸(𝑅𝑀) (14) 

where 𝛽 =
𝜎𝑉,𝑀

𝜎𝑀
2  and 𝐸(𝑅𝑀) = 𝐸(𝑟𝑀) − 𝑟𝑓, where M represents the Market 

portfolio. We choose not to present details on the CAPM, but refer to Bodie, Kane 

and Markus’ book “Investments” for an in-depth explanation of the model. When 

including 𝜇, the 𝑑2 term in Equation 9 is often referred to as the distance to default 

(DD), which is just another way of expressing PD. This thesis will concentrate on 

the DD output, now expressed by 

 𝐷𝐷 =
(ln (

𝑉
𝐹) + (𝜇 −

𝜎𝑉
2

2 ) 𝑇)

𝜎𝑉√𝑇
. (15) 
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The DD output in Equation 15 will be used as the independent variable in the logit 

model that produces estimates of PD. Details of the regression are presented in Part 

V– Methodology.  

Intuition Behind the Model 

The MCD model views equity holders as those who run the company. When debt 

matures, they need to decide whether they want to keep the assets and pay debt 

holders the amount of F or abandon the assets to the debt holders. Assumed to be 

rational, investors will only choose the latter if 𝑉 < 𝐹. In such case, debt holders 

will sell the assets directly at the market price V, which is the recovery amount they 

receive instead of the promised F. 

By inserting Equation 8 and Equation 10 into Equation 2, the fundamental put-call 

parity will be obtained 

  max(𝑉 − 𝐹, 0) − max(𝐹 − 𝑉, 0) = V −  𝐹𝑒−𝑟𝑓𝑇 . (16) 

Important connections between V, E and D in the MCD model can be pointed out 

from this parity relationship. If F, 𝑟𝑓, T and V is fixed, changing any other feature 

of the model will influence call and put options correspondingly. One result is that 

∆𝐷 > 0|∆𝑉 > 0 because the put value incorporated in Equation 10 will be less 

valuable. Furthermore, ∆𝐷 > 0|∆𝐹 > 0 and ∆𝐸 < 0 |∆𝐹 > 0, because a higher 

strike price F reflects a higher promised future cash flow to debt holders at the cost 

of a lower value of the call option, E. It can also be seen from Equation 9 that ∆𝐸 >

0|∆𝑟𝑓 > 0 and ∆𝐷 < 0|∆𝑟𝑓 > 0 because the sum of the options remains unchanged. 

If the time to maturity, T, increases, the value of D will decrease since the effect of 

the discounting factor on F will dominate. Perhaps the most interesting 

consequence of E and D is when ∆𝜎𝑣 > 0 and ∆𝑉 = 0. In this case, value will be 

moved from the debt holders to equity holders. From option theory and the put-call 

parity, the long call option will increase in value, and conversely, the short put 

option will decrease. Equity holders do not have any power to change 𝜎𝑣, which is 

a reason for covenants in loan agreements that gives debt holders some level of 

control of the investment decision. 
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Summary 

Figure 17 summarizes the concept of the MCD model. The drift rate of assets works 

as an estimator for the asset value path at time T. The asset value itself follows a 

process of random walk with drift. The horizontal axis symbolizes time, where T is 

the current time. The vertical axis depicts the market value of the asset. The figure 

illustrates that at time T there is a range of possible asset values and the frequency 

distribution located to the left in the figure illustrates the likelihood of various asset 

values. The most likely outcome is nearest to the starting value added to the drift 

rate times T. The drift rate is shown as a straight line that is increasing with time. 

Greater volatility represents higher probability of extreme outcomes. The horizontal 

line shows the logarithm of the face value of debt, which is the critical point where 

debt matures and triggers default.  

Figure 1: Summary of the MCD model. 

 

  

                                                           

7 The figure is obtained from Loffler & Posh (2007). 
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Part III – Research design  

The methodology of this thesis is divided into three main parts. The first part aims 

to produce DD for the sample. The second is the process of model testing and the 

third is the course of analyzing the PD output. Figure 2 displays the research design. 

Figure 2: Summary of research design. 

 

Step 1 starts with obtaining raw data from external sources, including market cap, 

face value of debt, interest rates and equity prices. It is essential to have an outline 

of which firms that went default at which time in order to validate the model’s 

performance in predicting default. Equity prices will be used to estimate historical 

and GARCH-estimated volatilities. Next, solve for asset value, asset volatility and 

asset drift rate. The two former parameters are solved numerically, while the drift 

rate is estimated through the CAPM. The final output in step 1 will be DD. 

In Step 2, the DD will be used as the covariate in the logit model, similar to the 

scores in the Altman and Ohlson models. The MCD model is changed to a statistical 

model and becomes comparable to the pure statistical ones. The robustness of the 

estimated PDs will be analyzed through the significance levels and the models’ fit. 

The main focus of the logistic regression analysis will be to determine whether any 

version of the MCD models perform better, as well as studying the effects of 

winsorization and logarithmic transformation of the DD variable. 

Step 3 starts with an analysis of the discriminatory power. Each MCD model will 

be compared to the pure statistical ones in order to find out which model that 

discriminate best and if there is a clear indication of the MCD model’s superiority. 

The calibration analysis will only focus on the MCD models, where the goal is to 

detect signs of underestimation of PD. Lastly, supplementary findings of PDs’ 

evolvement will be discussed to complete the assessment of the research question.  
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Part IV – Data 

The process of data gathering is twofold; finding historical defaults and non-

defaults for Norwegian public firms and combine them with relevant financial data. 

Financial Data 

Financial data is obtained from Datastream Thomson Reuters (Datastream). 

Datastream offers time series for more than 3,5 million financial instruments across 

assets classes with up to 50 years of historical depth. They cover over 80 000 active 

equities and over 85 000 inactive equities for emerging and developed markets that 

includes prices, volumes, market capitalizations, earnings, dividends and much 

more. They source direct from exchanges, leading international and local suppliers 

and published reports (Datastream, 2016).  

Daily stock prices from 1974 to 2014 are used to obtain volatility estimates. The 

downloaded time series includes 918 different equities and other equity 

instruments. Based on company names, equities have been manually filtered out 

which were totaled to 653 firms. Rolling holidays are accounted for by letting 

unpadded network days for all securities to be interpreted as holidays. 

The same accounting process for holidays are done for daily values of the short 

term interest bearing debt, long term interest bearing debt and market 

capitalizations as well. One weakness of the data is that debt values are only updated 

quarterly. Since debt tends to change in a more continuous manner, the firms’ true 

credit risk may not be reflected in the model’s estimated PDs. Another disadvantage 

by using Datastream, instead of manually searching in financial reports, is that there 

may be riskless debt included and risky debt excluded in the downloaded data. 

However, we trust the provider’s ability to distinguish interest-bearing from non-

interest-bearing debt.  

On the 26th of May 2014, a letter from Norges Bank to the Financial Supervisory 

Authority of Norway came to the conclusion that there is currently no realistic 

alternative to NIBOR8 as a reference rate. It is further argued that the reference rate 

can be decomposed into a risk free rate (Norges Bank, 2014). We assume that the 

rate includes no risk premiums and the 3-month NIBOR is used as proxy for the 

                                                           

8 NIBOR is intended to reflect the interest rate level lenders require for unsecure money market 

lending in NOK with delivery in two days after the trade (Oslo Stock Exchange 2014) 
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risk free rate. Lastly, when estimating the drift rate of the asset, daily market returns 

are based on the currency adjusted World MSCI index. 

Default data 

Default data is gathered from two sources: Brønnøysund Register Centre and 

Stamdata. Agreements of data confidentiality from both sources were necessary to 

conduct the study. The two data sources define default differently and has recorded 

defaults from different points in time. To maintain data consistency, the analyses of 

the two definitions of default are performed separately. 

Brønnnøysund Register Center develops and operates a large portion of Norway’s 

most important registers and electronic solutions (The Brønnøysund Register 

Centre, 2016). The original dataset of bankruptcies provided by the registry 

contained 94 defaults of Norwegian firms with limited liability from 1996 to 2015. 

Of these defaulting firms, 25 have been listed on the Oslo Børs ASA. The recorded 

defaults are cases where companies have formally applied for bankruptcy directly 

to the registry, similar to that of Chapter 7 in the US bankruptcy code (United States 

Court, 2016). A practical constraint in the sample is that bankruptcy typically occurr 

1-3 years after the date of delisting. In order to conduct experiments, the dates of 

de-listing are counted as date of default. As such, market capitalization close to the 

de-listing date will not necessarily be able to reflect information about the 

expectations of default.  

The second provider of defaults are Nordic Trustee’s database, Stamdata. 

Independently owned by Nordic banks, insurance companies and security brokers, 

Nordic Trustee serves as a third party information agent between the issuer and the 

bondholder. Stamdata delivers reference data for Nordic debt securities including 

detailed information on bonds, certificates and structured debt securities (Stamdata, 

2016). There is no legal obligation to use a trustee, but 95% of the issued volume 

of debt in the Norwegian market have a trustee arrangement (Grøstad, 2013). In 

contrast to the time horizon of the first default sample, Stamdata only contains 

information on bond issuers’ credit events from 2007 to 2015. While these events 

may resemble certain aspects of Chapter 11 bankruptcies in the US bankruptcy 

code, resolutions from Norwegian defaults rarely take place in court (Grøstad, 

2013) (United States Court, 2016). Nevertheless, the credit events we regard as 

defaults in the Stamdata database may be broadly defined as Chapter 11 defaults. 

In total, Stamdata documents 53 defaults of such definition. 
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The first default sample used in this thesis contains defaults of Brønnøysund 

Registre Center only, and spans from 1996 to 2015. It includes 25 default events 

and will be referred to as the bankruptcy sample. The second sample contains both 

bankruptcy events from Brønnøysund Registre Center and default events from 

Stamdata, spanning from 2006 to 2015. After accounting for overlapping events, 

the second sample amounts to 67 default events. The second default sample will be 

referred to as the reorganization sample.  
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Part V – Methodology 

The methodology section contains three main parts. The first part describes the 

process of obtaining input data for the MCD model. Then, the process of testing 

and comparing the different versions of the model is presented. The last part 

presents the process of model validation.9 

Obtaining Input Data 

Returns of Equity 

Estimates of equity volatility are used to obtain estimates of the value and volatility 

of assets. The MCD model assumes that assets are traded continuously in time. 

Hence, the natural logarithmic returns from daily stock prices are used and 

calculated as 

 𝑟𝑡 = ln (
𝑃𝑡

𝑃𝑡−1
) (17) 

where 𝑃𝑡 is the closing price at time t and 𝑃𝑡−1 is the closing price the day before 

time t. Each price is adjusted for dividends and splits. The logarithmic effect on 

returns sometimes cause unrealistic occurrences of 𝑟𝑡 < −100% for particular 

penny stocks. Penny stocks are of special interest when studying credit risk, and we 

do not find it feasible to exclude those time series. Instead, discrete returns are 

calculated for series of 𝑟𝑡 < −100% 

 𝑟�̂� = 𝑒𝑟𝑡 − 1. (18) 

This solution comes at the cost of violating assumption 4 in the MCD model. 

However, we consider that being able to studying penny stocks is worth the cost of 

this violation. From now, 𝑟�̂� is not distinguished from 𝑟𝑡, but simply referred as 𝑟𝑡 

and treated as log-returns. 

Data Mining 

A direct consequence of assumption 7 is that 𝑑𝑉~Φ(𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒), such that 

𝑑𝐸~Φ(𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒) because 𝐸 = 𝑓(𝑉, 𝜎𝑣) (Hull, 2015). One can therefore 

study the frequency distribution of equity returns to see how well the assumption 

holds and consequently the reliability of the models’ estimated probability of 

default. For example, a negative skew and highly positive kurtosis of the asset 

                                                           

9 All calculations are conducted in Microsoft Excel and Visual Basic for Application for Excel 

(VBA). Codes are to found in appendix G 
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return distribution will underestimate the PD by assuming 

𝑑𝑉~Φ (𝑚𝑒𝑎𝑛, 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒).  

When studying daily returns, two pitfalls arise concerning illiquidity and data errors 

(Koller, Goedhart, & Wessels, 2010). Firms that do not trade when they in are in 

fact open for exchange are problematic. Such illiquid stocks will not be excluded 

by the holiday procedure described in PART IV-Data and induce a downward bias 

in the estimates of volatility and drift rate. Continuing on the assumption that no 

stock can have a return of exactly zero, such particular observations are excluded 

as well. The effects of this filtering on the equity returns are illustrated in Figure 3, 

where the left figure is the filtered time series and the right figure is the unfiltered 

time series. The black line is a theoretical normal distribution. After filtering, the 

middle bin is reduced from about 25% of the observations to about 17% of the 

observations. This 8% reduction indicates that the Oslo Stock Exchange does suffer 

from illiquidity. The filtered distribution is still too peaky compared to a normal 

one, where the excess kurtosis for the filtered and unfiltered distribution are 176,5 

and 227,48 respectively. This implies that there is a higher probability of extreme 

returns, but most of the observations lies close to the mean. 

Figure 3: The effects of filtering zero-returns on the distribution of equity returns.  

  

The second pitfall when studying equity returns is how observable time series of 

returns may include data errors, extreme events or accounting discretion. Such 

observations may have large influence on the PD output. In a normal distribution 

when using the mean and standard deviation from the filtered distribution in Figure 

3; 99% of the observations should lie between -10,7% and 10,8%. The true range 

from the 99% percentile in our sample are -3,89% and 13,2%. It is therefore 

interesting to see how winsorized equity returns will affect the output from the 

MCD model. Winsorization is conducted on each firm separately on either (0,5%, 

99,5%), (1%, 99%) or (2%, 98%) level, and the chosen levels are based on the 

series’ four moments and percentiles. The effects of winsorization and illiquidity 
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filtering of equity returns are quantified in Table 1. All returns are merged to one 

distribution to give an overview of the total effect. 

Table 1: Descriptive statistics for equity returns. 

 

All four samples show positive skew which is mostly caused by interchanging 

between discrete and log-returns. The skew of a distribution with log-returns only 

were in fact negative and the true skewness will lie somewhere in between, which 

may be interpreted as closer to zero. The most significant adjustment to the 

distribution occurs when the data is winsorized; the excess kurtosis on the unfiltered 

dataset drops from 227,48 to 19,53, and the skewness drops from 2,91 to 0,25. The 

dataset is still not normal and one can be critical to the assumption of normality in 

the asset values. Based on the large impact of winsorizing equity returns, there are 

of strong interest to study its effect on the PDs. It is important to remain cautious 

of modifying the dataset to improve the historical fit of the model, as optimized 

historical fit does not equal optimized prediction. Unfiltered datasets are excluded 

from any further analysis because there are few, if any, downsides by filtering out 

illiquid behaviors. 

Volatility of Equity 

The volatility is a measure of the dispersion of returns for a stock (Hull, 2015). To 

be able to obtain inputs for the MCD model, it is necessary to estimate the equity 

volatility. Since it is unobservable, one can only estimate its true value. John Hull 

argues that, in practice, the most used estimate for future equity volatility is the 

volatility implied by option prices observed in the market. However, options written 

on public firms are scarce in the Norwegian market. An alternative is to use the 

historical volatility, but this is backwards-looking and may not be a good estimate 

for the future volatility (Hull, 2015). We therefore choose to apply both historical 

Descriptive Statistics

Filtered Non-Filtered

Avg 0,00         0,00            

Stdev_s 0,04         0,04            

Skew 0,22         0,25            

e_Kurt 17,39       19,53          

Count 766548 984170

Avg 0,00         0,00            

Stdev_s 0,05         0,04            

Skew 2,56         2,91            

e_Kurt 176,50     227,48        

Count 766548 984170
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and the GARCH (1,1)-process when estimating the equity volatility. Historical 

volatility estimates are calculated from daily returns, and annualized with 250 days  

 𝜎𝐸 = √250 (
1

𝑁 − 1
∑ (𝑟𝑡 − �̅�)2

𝑁

𝑡=1
) (19) 

where �̅� =
1

𝑁
∑ 𝑟𝑡

𝑁
𝑡=1  and 𝑁 dictates the estimation window. The window’s length is 

not easily determined. A larger window with more data usually lead to more 

accuracy, but since volatility varies with time, old data may not be relevant for 

predicting future volatility. Hull states that a reasonable compromise is to use the 

most recent 90 to 180 days. Another rule of thumb is to set 𝑁 equal to the number 

of days to which the volatility is to be applied (Hull, 2015). With no definite 

solution, four different rolling windows are used. That is 90 days, 180 days, 250 

days and 5 years. In addition, an expanding window is used with a minimum 

requirement of 90 days.  

The choice of applying the GARCH(1,1) is based on the model’s simplicity and its 

theoretical appeal (Hull, 2015). The equation is  

 𝜎𝑡
2 = (1 − 𝛼 − 𝛽)𝑉𝐿 + 𝛼𝑟𝑡−1

2 + 𝛽𝜎𝑡−1
2  (20) 

where 𝑉𝐿 is the unconditional variance and 𝑟𝑡−1
2  is the previous day’s squared 

returns. The term 𝜎𝑡−1
2  is the previous day’s conditional variance and the parameters 

(1 − 𝛼 − 𝛽), 𝛼, 𝛽 are the weights associated with each variance term. Coefficients 

are solved with maximum likelihood method, optimized through a Nelder Mead 

algorithm10. In order to reach a mean-reverting effect towards 𝑉𝐿, the model requires 

that 𝛼 + 𝛽 < 1. The main difference between the GARCH(1,1) model and the equal 

weighted historical volatility is that the GARCH model may put more weights on 

recent shocks. Hence, the GARCH(1,1) may be a superior estimator if recent 

information is more relevant for future volatility. The rolling windows are restricted 

to 90, 180 and 250 days. Seeing that penny stocks may cause the GARCH volatility 

estimates to be too jumpy, variance targeting11 can help to achieve robustness (Hull, 

2015). In this study, we choose to test the MCD model with and without variance 

targeting.  

                                                           

10 The Nelder-Mead algorithm minimize the value of a function by moving vertices through a set 

of rules (Small & Wang, 2003). In the maximum likelihood method, the value is maximized, by 

minimizing the negative of that value. VBA codes can be found in appendix G. 
11 Variance targeting involves setting the long-run volatility 𝑉𝐿 equal to the sample variance. 
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The output for the GARCH(1,1) model is an estimation of the next day volatility. 

Annualizing this daily volatility estimate will violate the mean-reverting 

assumption of the model. However, predicting 250 days forward with 𝛼 + 𝛽 < 0 

will result in volatility estimates that are fairly close to 𝑉𝐿. As such, the aim of 

putting weight on recent shocks vanishes. The annualized, one-month estimate is 

used 

 𝐸(𝜎𝑇) = √250 (𝑉𝐿 + (𝛼 + 𝛽)
250
12 (𝜎𝑡

2 − 𝑉𝐿)) . (21) 

Due to computational constraints in calculating daily GARCH(1,1) estimates, we 

are forced to simplify by calculating monthly estimates and assume that volatility 

remains constant throughout the month. In total, six different versions of GARCH 

volatility estimates are obtained. Together with the five versions of historical 

volatility, 11 different versions of the MCD model are used to calculate different 

DDs. The versions are summarized in Table 2. Going forward, the versions will be 

referred to as their model name, as described in the first column of the table. In the 

table, the volatility type and estimation window for each model is described. For 

three of the GARCH models, the unconditional variance is fixed.  

Table 2: The different versions of the MCD model.  

 

Face Value of Debt 

The face value of debt, F, is argued to be observable in the MCD model. This 

parameter may be extracted from financial reports, however, such reports are not 

updated as frequently as the debt value changes. We follow the researchers of KMV 

Corporation who assume that F can be estimated by 

 𝐹 = 𝐹𝑆 + 0,5𝐹𝐿 (22) 

where 𝐹𝑆 is current interest bearing debt and 𝐹𝐿 is non-current interest bearing debt. 

The choice of using exactly half of the non-current debt is arbitrary but it has its 

Model Description
Model Vola_Type Time _Int Comment

h90 Historical 90 days

h180 Historical 180 days

h250 Historical 250 days

h5Y Historical 5 years

hTOT Historical Total

g90* GARCH 90 days *Fixed unc.var

g180* GARCH 180 days *Fixed unc.var

g250* GARCH 250 days *Fixed unc.var

g90 GARCH 90 days

g180 GARCH 180 days

g250 GARCH 250 days



GRA 1903 Master thesis  01.09.2016 

21 

intuitive appeal. Refinance-risk is lower during a short term perspective and the 

liquidation options higher as the time to maturity increases (Sobehart, Stein, 

Mikityanskaya, & Li, 2000). In a short-term perspective, short term debt requires a 

repayment of the principal, whereas long term debt requires only coupon payments 

to be met (Lando, 2004). 

Asset Value and Asset Volatility 

Daily Asset value, V, and asset volatility, 𝜎𝑉,  are obtained from the inputs specified 

above. The two equations-two unknowns-method is preferred in this thesis. It is 

solved numerically through a new Nelder Mead algorithm where the two equations 

are  

 
𝐸 − (𝑉Φ(𝑑1) − 𝐹𝑒−𝑟𝑇𝛷(𝑑2)) = 0 

 (23) 

 𝜎𝐸 −
𝛷(𝑑1)𝜎𝑉𝑉

𝐸
= 0. (24) 

Here, E is the market capitalization downloaded from Datastream, F is the face 

value of debt specified by Equation 22, 𝑑1 and  𝑑2 are specified in Equation 9. 

The equity volatility, 𝜎𝐸, is the historical or the GARCH volatility described 

above. 

Drift Rate 

The CAPM method described in the literature review is applied to estimate the drift 

rate of the asset. The coefficients are estimated through the following formula 

 𝑅 = �̂� + �̂�𝑅𝑀 (25) 

where  𝐸(𝑅) = 𝑟 − 𝑟𝑓, r is the return vector of the respective asset and 𝑟𝑓 is the risk-

free interest rate vector. Further, �̂� is the intercept and �̂� =
𝜎𝑉,𝑀

𝜎𝑀
2 , the slope. 𝑅𝑀 =

𝑟𝑀 − 𝑟𝑓 is the risk premium vector, where 𝑟𝑀 is the return of the market portfolio. 

The estimation error is minimized by using the longest period without any structural 

gaps to estimate the expected market returns. All returns are daily arithmetic 

discrete returns. The beta in Equation 25 is smoothed by the following formula 

 𝛽 =
1

3
+

2

3
�̂�. (26) 

When estimating the coefficients in the CAPM, the optimal length of the rolling 

window is five years (Koller, Goedhart, & Wessels, 2010) (Black & Scholes, 1973). 

Longer periods will place too much weights on old, irrelevant data. On the other 
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hand, too frequent measurement may create errors in illiquid assets. Unfortunately, 

only a small fraction of the defaulted firms in our sample have been listed as long 

as five years. In response, daily returns with a minimum or maximum requirement 

of 250 days and 5 years are used, respectively. Short assessment windows increase 

the possibility to estimate unrealistic drift rates, such as negative ones, but such 

disadvantages are inevitable when studying penny stocks. 

The last step is to estimate the annual drift rate last trading day each year by the 

following formula 

 𝜇 = 250 (ln (1 + 𝑟𝑓 + 𝛽𝐸(𝑅𝑀))) (27) 

where 𝐸(𝑅𝑀) =
1

5𝑌
∑ (𝑟𝑀,𝑡 − 𝑟𝑓,𝑡)5𝑌

𝑡=1 , The expected market premiums are always 

calculated with the maximum requirement length of 5 years. The annualized drift 

rate calculated as continuously compounded because of assumption 4 of the MCD 

model specified in the literature review. 

Distance to Default 

The final output from the MCD model is the DD specified in Equation 15. The 

output DD is calculated the last trading day each year which is the predicted DD 

for the upcoming year. That is, the asset value, face value of debt, asset volatility 

and drift rate on the last trading day in December for each year from 1995 to 2014 

will determine the DD for year t+1. This variable is the independent variable in the 

logit model in the subsequent stage of research.  

Summary of Methodology Part 1: Obtaining Input Data 

Table 3 summarizes the input variable for our study of the MCD model. The first 

column describes the calculated variable used in the application of the MCD model, 

and the second column presents the variables formula. The first volatility formula 

represents the annualized historical volatility, and the second represents the formula 

for the annualized GARCH volatility estimate. The asset volatility and asset value 

is solved for numerically and simultaneously. After obtaining the necessary input 

data for the model, each firm’s distance to default (DD) is calculated for each year. 

The time parameter, T, is excluded from the formula for DD because the estimation 

period in our methodology is one-year ahead. Independent variable in the logit 

model. 
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Table 3: Summary of Methodology Part 1: Obtaining Input Data. 

Variable Formula 

Volatility of Equity 𝜎𝐸√250 (
1

𝑁 − 1
∑ (𝑟𝑡 − �̅�)2

𝑁

𝑡=1
) 

√250 (𝑉𝐿 + (𝛼 + 𝛽)
250
12 (𝜎𝑡

2 − 𝑉𝐿)) 

Face Value of Debt 𝐹𝑠 + 0,5𝐹𝐿 

Asset Value and Asset Volatility 
𝐸 − 𝐹𝑒−𝑟𝑇Φ(𝑑2)

𝑁(𝑑1)
 

𝜎𝐸𝐸

𝑉Φ(𝑑1)
 

Drift Rate 𝑙𝑛 (1 + 𝑟𝑓 + 𝛽𝐸(𝑅𝑀)) 

Distance to Default 𝑙𝑛 (
𝑉
𝐹

) + (𝜇 − 𝜎𝑉
2)

𝜎𝑉
 

Table 4 summarizes the final default samples we base our analyses on. The samples 

of defaults are constrained by data availability in the process of calculating the DD 

variable. With this restraint, the final samples of defaults from bankruptcy sample 

amounts to 11 bankruptcies amongst 1999 DDs. The second dataset of defaults 

consisting is restricted to 36 defaults amongst 1089 DDs.  

Table 4: Summary of default samples.  

 

 

 

Def_Bankruptcy_Sample
Year Def Firms Def_rate

2015 1 133 0,75 %

2014 1 127 0,79 %

2013 2 115 1,74 %

2012 0 121 0,00 %

2011 1 120 0,83 %

2010 0 105 0,00 %

2009 3 125 2,40 %

2008 0 133 0,00 %

2007 0 109 0,00 %

2006 0 110 0,00 %

2005 0 91 0,00 %

2004 0 77 0,00 %

2003 0 67 0,00 %

2002 1 78 1,28 %

2001 2 94 2,13 %

2000 0 83 0,00 %

1999 0 74 0,00 %

1998 0 95 0,00 %

1997 0 77 0,00 %

1996 0 65 0,00 %

Total 11 1999 0,55 %

Def_Reorganization_Sample
Year Def Firms Def_rate

2015 5 133 3,76 %

2014 2 127 1,57 %

2013 4 115 3,48 %

2012 4 121 3,31 %

2011 5 120 4,17 %

2010 2 105 1,90 %

2009 10 125 8,00 %

2008 3 133 2,26 %

2007 1 109 0,92 %

Total 36 1088 3,31 %
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Model testing 

Logistic Regression 

It is reasonable to use a universal probability model to compare different models of 

default prediction. Linear probability models are dismissed because of the 

unlikeliness that the PDs are linearly dependent on a set of explanatory variables 

(Brooks, 2014). The logit model12 or the probit model are examples of more 

sufficient models. The former assumes a logistic distribution and the latter assumes 

a normal distribution, but the fitted regression plots will usually be virtually 

indistinguishable (Brooks, 2014). Previous studies tend to weight the analysis on 

the logit model (Stein & Sobehart, 2000), which provides basis for using the logit 

model in this research paper as well.  

The logistic function, Ψ, which is the cumulative logistic distribution, can be 

interpreted as the PD dependent on a random variable 𝑧. The binary dependent 

variable, 𝑦, is 0 in case of non-default and 1 in case of defaults. If 𝑃(𝑦 = 1) =

Ψ(𝑧), then the formula is expressed as 

 Ψ(𝑧) =
1

1 + 𝑒−𝑧
. (28) 

The random variable z is estimated thorough the linear function, 𝑧 = 𝜷´𝒙. Where 𝜷 

is a column vector of coefficients and 𝒙 is a two dimensional set of explanatory 

variables. We include an intercept such that 𝑥1 = 1 and so z will be regressed 

explicitly as 

 𝑧 = 𝛽1 + 𝛽2𝐷𝐷 (29) 

where DD is the distance to default series. The weights 𝜷 are estimated through 

maximum likelihood method, which is calculated by the product of the likelihood 

function for individual observations i, 

 𝐿 = ∏ 𝐿𝑖 =
𝑁

𝑖=1
∏ Ψ(𝑧𝑖)𝑦𝑖(1 − Ψ(𝑧𝑖))

1−𝑦𝑖
𝑁

𝑖=1
 (30) 

Equation 30 is globally concave, such that when the root of the first derivative is 

found, one can be sure to have found the global maximum of L. A Newton Raphson 

algorithm, based on Taylor approximation, is used in the optimization.  

After finding the coefficients, each firm’s DD for each year are inserted into 

Equation 29 which is the input for the final equation 

                                                           

12 The logit model is also called logistic regression model. 
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 𝑃𝐷𝑖,𝑡 =
1

1 + 𝑒−𝑧𝑖,𝑡
 (31) 

where 𝑃𝐷𝑖,𝑡 is the implied PD for the upcoming year. Mark that the coefficients are 

fixed, such that the PD is not binary but 0 ≤ 𝑃𝐷𝑖,𝑡 ≤ 1. 

P-value 

To evaluate whether a variable is helpful in explaining defaults or not, the p-value 

of each coefficient is assessed. The distribution of the t-statistic follows a normal 

distribution, and is applied to obtain the p-value, 

 𝑝 − 𝑣𝑎𝑙𝑢𝑒 = 2 ∗ (1 − 𝑁(|𝑡𝑠𝑡𝑎𝑡|)). (32) 

The multiplier of 2 indicates a two-tailed test, | ∙ |  is the absolute value, 𝑡𝑠𝑡𝑎𝑡 =

𝛽𝑖

𝑆𝐸(𝛽𝑖)
 and 𝑆𝐸(𝛽𝑖) = √𝜎𝛽𝑖

2 . 

McFadden 𝑅2  

The models’ goodness of fit is analyzed to compare the performance of the different 

versions of the MCD model and the pure statistical models. The classical linear 

regression statistic 𝑅2 is used to evaluate how well the sample regression function 

fits the data. In the logit model, this quadratic measure of variation is modified to 

the “pseudo-𝑅2” because of the non-linear property that is estimated through 

maximum likelihood (Loffler & Posch, 2007). Another name for the test statistic is 

McFadden’s 𝑅2 (𝑅𝑀𝐶𝐹
2 ). True PDs are unobservable, and thus RMcF

2  cannot say 

anything about whether the model correctly predicted default probabilities. 

However, the statistics illustrate whether the model correctly predicted defaults. 

The formula is 

 𝑅𝑀𝑐𝐹
2 = 1 −

ln(𝐿)

ln(𝐿0)
. (33) 

𝐿0 is the log-likelihood of the function without any covariate and 𝐿 log-likelihood 

of the function with covariate(s). 𝑅𝑀𝑐𝐹
2 has the same boundary as the 𝑅2; 0 ≤

𝑅𝑀𝑐𝐹
2 ≤ 1, but similar general quality standards are difficult or impossible to apply 

(Loffler & Posch, 2007). If the model where perfectly able to classify defaults from 

non-defaults, it would have two different classes of firms; one high risk class, 𝑃𝐷 ≈

100% and a low risk calls, 𝑃𝐷 ≈ 0%. This is clearly unrealistic and one cannot 

hope to get RMcF
2 ≈ 1. Altman argues that a 𝑅𝑀𝑐𝐹

2 ≥ 35% is achievable for credit 
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risk models (Altman & Rijken, 2004). This is held as benchmark but with caution, 

seeing that our study consists of a different dataset. 

Likelihood Ratio Test 

The two likelihood functions used in RMcF
2 , 𝐿0 and 𝐿, can also be applied to 

statistically test the entire logit model. Here, it is called the likelihood ratio test and 

the formula is 

 𝐿𝑅 = 2(ln(𝐿) − ln(𝐿0)). (34) 

It is distributed asymptotically chi-squared with the degrees of freedom equal to 

number of restrictions imposed.  

Functional Form 

The random variable, z, in Equation 29 is linearly dependent on the value of the 

DD. Loffler et al. have experimented with using the natural logarithm of the DD in 

the regression and found that it could improve the quality of the model (Loffler & 

Posch, 2007). This method may be a solution to the problem of extreme values 

impacting coefficient estimates, which could impair the logit model. We will 

therefore perform similar experiments. In situations where the DD is negative, the 

functional form is calculated as 

 ln(𝐷𝐷) = − ln(1 − 𝐷𝐷). (35) 

Tjur’s 𝑅2 

Tue Tjur has come up with a relatively new measure of explanatory power that he 

calls “the coefficient of discrimination” (Tjur, 2009). Subsequent references often 

call the measure “Tjur’s 𝑅2” (𝑅𝑇𝑗𝑢𝑟
2 ). Tjur argues that RMcF

2  are based on ideas 

related to variance and quadratic variation, which are somewhat strange concepts 

in a universe of binary observations. The proposed alternative takes the averages of 

the fitted values for successes and failures  

 𝑅𝑇𝑗𝑢𝑟
2 = |𝑃𝐷𝐷

̅̅ ̅̅ ̅̅ − 𝑃𝐷𝑁𝐷
̅̅ ̅̅ ̅̅ ̅|. (36) 

Here, 𝑃𝐷𝐷
̅̅ ̅̅ ̅̅  is the average PD for firms that defaulted and 𝑃𝐷𝑁𝐷

̅̅ ̅̅ ̅̅ ̅ is the average PD 

for firms that did not default. The absolute term, |∙|, is to make sure that the 

boundary of the measure is between 1 and 0. In contrast to RMcF
2 , 𝑅𝑇𝑗𝑢𝑟

2  is not based 

on the value of the log-likelihood function. It is credited for its intuitive appeal and 

the model’s ability to discriminate between defaults and non-defaults will be 

reflected in the statistic, and both over and under-estimation of default probability 
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is penalized. For more details on the discrimination statistic, we refer to Tjur’s own 

article “Coefficients of Determination in Logistic Regression Models – A new 

Proposal: The coefficient of Discrimination” (Tjur, 2009). 

Summary of Methodology Part 2 

The regression analysis is conducted on eleven different types of MCD models that 

only vary in terms of the equity volatility estimate. Different equity volatility 

estimates will influence the estimated asset value and asset volatility, which in turn 

will produce different distances to default. Each model is tested on two different 

types of default samples. The first one spans from year 1996 to 2015 where default 

is defined as bankruptcy. The latter from year 2007 to 2015, and consists of all 

credit events we define as reorganization. Each default sample is tested four 

different times where the sample differs in terms of winsorization, and the 

regression differs in terms of its functional form. Table 5 summarizes the tests 

applied in the section of model testing. The left column lines up the models that are 

tested, and the heading illustrates which samples are used in the regression analysis: 

“Org” indicate that the original, non-winsorized sample is used, “Ln” indicate that 

the independent variable is the natural logarithm of the DD, “Wins” indicates that 

the sample being used in the regression analysis is winsorized. 

Table 5: Summary of Methodology part 2: Model testing.  

 

Model Validation 

There are two dimensions along which credit ratings are commonly assessed: 

discrimination and calibration (Lando, 2004). The former dimension describes how 

well the model ranks firms with respect to their actual outcome, default or non-

default. The latter describes to which extent the estimated PDs match the true 

default rates. 

Model Org Ln Wins Wins_ln Org Ln Wins Wins_ln

h90

h180

h250

h5Y

hTot

g90*

g180*

g250*

g90

g180

g250

Bankruptcy_S ample Reorganization_Sample

Logit Model

Likelihood Ratio Test

P-value

McFadden's r-squared

Tjur r-squared

Logit Model

Likelihood Ratio Test

P-value

McFadden's r-squared

Tjur r-squared
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Discriminatory analysis 

We use the Cumulative Accuracy Profile (CAP) and the Accuracy Ratio (AR) to 

evaluate discriminatory power. The CAP curve is a graphical illustration of a 

models ability to rank companies by their probability of default. To plot a CAP 

curve, firms are ordered by their PD from the highest to the lowest. Figure 4 

illustrates a CAP curve for a hypothetical credit model. The line to the left of Area 

A represents an ideal model which perfectly distinguishes between defaulters and 

non-defaulters. The line below Area B represents a model that does not distinguish 

defaulters from non-defaulters. The line between Area A and Area B represents a 

hypothetical credit risk model (Morokoff, 2011). 

Figure 4: Cumulative Accuracy Profile (CAP). 

 

The random model is a total uninformative model that ranks PD randomly. It is 

expected to capture a proportional fraction of defaulters with each increment of the 

sorted sample, and is visualized by a straight line. The perfect model perfectly 

distinguishes defaulted companies from non-defaulted companies, such that the 

curve looks like a steep straight line until the fraction of defaulters to the total 

number of firms are met on the x-axis. It then turns to a horizontal line since there 

are no defaults left in the sample. The closer the credit model is to the perfect model, 

the better it is at discriminating between defaulter and non-defaulters.  

The AR is a single summary measure of the CAP curve, that ranks the predictive 

accuracy of each credit model for both Type 1 errors and Type 2 errors. More 

precisely, it measures the proportion of defaulters in a sample that can be identified 

per increment of the risk score that is being evaluated. It has the boundary 0 ≤

𝐴𝑅 ≤ 1, where 𝐴𝑅 → 1 as 𝐶𝑟𝑒𝑑𝑖𝑡 𝑚𝑜𝑑𝑒𝑙 → 𝑃𝑒𝑟𝑓𝑒𝑐𝑡 𝑚𝑜𝑑𝑒𝑙. From Figure 4 one 

can calculate the AR by the following formula 
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 𝐴𝑅 =
𝐴𝑟𝑒𝑎 𝐵

𝐴𝑟𝑒𝑎 𝐴 + 𝐴𝑟𝑒𝑎 𝐵
 . (37) 

Most credit risk models have an AR between 50% and 75% (Keenan & Sobehart, 

1999).  

A bootstrap simulation is conducted in order to reduce the sensitivity of the AR to 

outliers and small samples of defaults. The core idea is to re-sample from the data 

and re-estimate the AR analysis with the new re-sampled data. It is performed with 

1000 trials, measured through a 95% confidence interval. 

Comparable Models 

The second hypothesis states that the MCD model outperforms pure statistical 

models in discriminating between defaulting and non-defaulting companies. Since 

it is difficult to determine a model’s discriminatory power in isolation, a comparison 

between the models is necessary to validate their performance. Altman’s Z-score 

and Ohlson’s O-score are used as proxies for pure statistical models.  

Altman’s Z-score is one of the earliest examples of bankruptcy-prediction models 

(Altman E. I., 1968). It acts as a statistical distillation of historical data and can be 

used to discriminate between different level of credits. Altman concluded that a 

parsimonious model that best predicts bankruptcies contains the working capital, 

retained earnings, EBIT, market capitalization, sales and total assets. 

Notwithstanding the model’s simplistic nature, Altman’s Z-score was shown to 

predict bankruptcies with 70% accuracy in its 1968 experiments, and has since been 

subject to comparison with subsequent default prediction models (Altman E. I., 

1968). The formula is as follows 

 
𝑍 = 1,2 (

𝑊𝐶

𝑇𝐴
) + 1,4 (

𝑅𝐸

𝑇𝐴
) + 3,3 (

𝐸𝐵𝐼𝑇

𝑇𝐴
) + 0,6 (

𝑀𝑉

𝑇𝐿
)

+ (
𝑆𝑎𝑙𝑒𝑠

𝑇𝐴
) 

(38) 

where WC= working capital, TA=total assets, RE=retained earnings, EBIT=Earning 

before interest and taxes, MV=market value of equity and TL= total liabilities. 

Ohlson’s O-score was developed 1980 (Ohlson, 1980). In contrast with previous 

linear models, the model assumes that the PD is logistically distributed, which is 

consistent with the methodology in this paper. Ohlson concluded that the optimal 

model to predict bankruptcies contain nine financial ratios, primarily from 

companies’ balance sheets. The extensive formula is  
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𝑂 = −1,32 − 0,407 ln (
𝑇𝐴

𝐺𝑁𝑃
) + 6,03 (

𝑇𝐿

𝑇𝐴
) − 1,43 (

𝑊𝐶

𝑇𝐴
)

+ 0,0757 (
𝐶𝐿

𝐶𝐴
) − 1,72𝑋 − 2,37 (

𝑁𝐼

𝑇𝐴
)

− 1,83 (
𝐹𝐹𝑂

𝑇𝐿
) + 0,285𝑌

− 0,521 (
𝑁𝐼 − 𝑁𝐼−1

|𝑁𝐼| + |𝑁𝐼−1|
). 

(39) 

Here, TA = total asset, GNP = Gross National Product price index level, TL = total 

liabilities, WC = working capital, CL = current liabilities, CA = current assets, 

𝑋 {
1 𝑖𝑓 𝑇𝐿 > 𝑇𝐴
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

, NI = net income, FFO = funds from operations, 

𝑌 {
1 𝑖𝑓 𝑁𝐼 < 0  𝑓𝑜𝑟 𝑙𝑎𝑠𝑡 𝑡𝑤𝑜 𝑦𝑒𝑎𝑟𝑠

0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
. 

Calibration of Rating-Specific Default Probabilities 

To assess the third hypothesis in this thesis, which states that the MCD model 

systematically underestimates the true probability of default, the Vasicek’s one 

factor model is applied (Vasicek, 1997). Its application is motivated by DD, but the 

model of dependence is Gaussian Copula. Since default rates are dependent on 

macroeconomic factors, it is important to account for joint default probabilities 

(Loffler & Posch, 2007). The Vasicek one factor model accounts for such 

correlations.  

Default correlations are modeled through correlations in asset values and the one 

factor model assumes that they can be captured through the common factor Z and a 

unique factor 𝜀. The asset value, 𝑉, for firm i can be written as 𝑤𝑖𝑍 + √(1 − 𝑤𝑖
2)𝜀𝑖 

where 0 ≤ 𝑤𝑖 ≤ 1, ∀𝑖. The default correlation between form i and j is 𝜌𝑖,𝑗 =
𝜎𝑖,𝑗

𝜎𝑖𝜎𝑗
. 

By assuming that 𝑍~Φ(0,1), 𝜀~Φ(0,1), 𝜎𝜀𝑖,𝜀𝑗
= 0 for 𝑗 ≠ 𝑖, 𝜎𝜀𝑖,𝑍 = 0, ∀𝑖 and 

𝑉~Φ(0,1), the covariance term is equal to the correlation because 

 𝜎𝑖,𝑗 = 𝑐𝑜𝑣 (𝑤𝑖𝑍 + √(1 − 𝑤𝑖
2)𝜀𝑖 , 𝑤𝑗𝑍 + √(1 − 𝑤𝑗

2)𝜀𝑗) (40) 

 𝜎𝑖,𝑗 = 𝑤𝑖𝑤𝑗𝜎𝑍
2 = 𝑤𝑖𝑤𝑗 = 𝜌𝑖,𝑗 . (41) 

In the absence of other information, the one factor model also assume that all firms 

have the same default probability such that every default threshold, 𝐹𝑖 = 𝐹, ∀𝑖. The 

correlation can therefore be simplified, 𝜌𝑖,𝑗 = 𝜌 = 𝑊2, ∀𝑖, 𝑗. The joint probability 

of default is found by the following formula 
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 𝜓(𝐹, 𝐹, 𝜌) (42) 

where 𝜓(∙) is the bivariate standard normal distribution function. Equation 42 is 

solved numerically to find 𝜌 by using the method of moments through a Nelder 

Mead algorithm. The two moments solved are 𝑃(𝑉𝑖  < 𝐹𝑖) and 𝑃(𝑉𝑖 < 𝐹𝑖 , 𝑉𝑗 < 𝐹𝑗).  

The one factor model ignores individual bad luck, such that a single years default 

rate is identical to the default probability that year. The rate can be shown to be 

larger than the underlying default probability if the market is depreciating. The 

default rates are shown in Table 4 displayed in Part V – Methodology. 

The Vasicek one factor model should be applied within the binomial probability 

distribution, 𝜓(∙), but since 𝜓(∙) → Φ(∙) as 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠 → ∞, we allow 

ourselves to use Φ(∙). The formula is 

 
𝐷𝑡

𝑁𝑡
= Φ (

Φ−1(𝑃𝐷𝑡
̅̅ ̅̅ ̅) − √𝜌𝑍𝑡

√1 − 𝜌
) (43) 

where 
𝐷𝑡

𝑁𝑡
 is the default rate for year t, 𝑃𝐷𝑡

̅̅ ̅̅ ̅ is the average PD for that year. The 

common factor, 𝑍𝑡, is the only unknown value and can thus be solved, 

 𝑍𝑡 =
Φ−1(𝑃𝐷𝑡) − √1 − 𝜌Φ−1 (

𝐷𝑡

𝑁𝑡
)

√𝜌
. (44) 

The probability of observing the result of 𝑍𝑡 is Φ(𝑍𝑡). A one sided hypothesis test 

is conducted to investigate signs of underestimation. If the probability is lower than 

1%, we keep the null hypothesis that the MCD model does not underestimate the 

true PD, Φ(𝑍𝑡). If 1% ≤ Φ(𝑍𝑡) ≤ 5%, we find that Z is in a “danger area”, with 

some probability of underestimation. Be mindful that keeping the null hypothesis 

is equivalent to rejecting the third research hypothesis in this thesis.   
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Part VI – Findings and Analysis 

This section starts with presenting and analyzing the results of the regression 

analysis, followed by the results of the discriminatory analysis and the calibration 

analysis. Each analysis will assess one hypothesis of the thesis. The last part of this 

section is reserved to a discussion of supplementary findings, where the focus will 

be on how the estimated PDs evolve over time for defaulting firms.  

Regression Analysis 

The regression analysis will concentrate on the explanatory power of the MCD 

model and the pure statistical ones, with the aim of assessing the first hypothesis of 

the thesis. All regression results are summarized in appendix A. 

The first step in evaluating hypothesis one is to determine the estimated 

coefficients’ level of significance. All coefficients are statistically significant on the 

1% level or lower, where the p-value of the intercepts are literally non-

distinguishable from zero. Moreover, every version of the MCD model has 𝛽1 < 0 

and 𝛽2 < 0. Negative coefficients were anticipated because an increased DD should 

lead to a lower PD; the distance to the point that triggers default increases. 

Winsorization of equity returns has large impact on descriptive statistics, yet only 

marginal effect on the estimated coefficients. Appendix B shows that the PDs 

endures little changes as well, inferring that the DD values in the winsorized dataset 

are virtually equal those in the original dataset. On the contrary, the coefficients 

estimated by the logarithmic transformed regressor are lower. This stems from the 

how the logarithmic transformation will push the DD values toward zero, which 

indicates higher credit risk. To compensate for some of these effects, the 

coefficients are lowered, adjusting the PDs.  

Overall, the DD variable does carry explanatory power because the coefficients are 

persistently significantly different from zero. The likelihood ratio of all regressions 

are also statistically significant on 1% level or better. The statistical hypothesis that 

the DD add nothing to the prediction of default can therefore be rejected with high 

confidence. 

Goodness of Fit 

After justifying that the DD variable does indeed carry explanatory power in 

predicting defaults, the next step is to study how well the variable explains defaults. 
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Table 6 displays the RMcF
2  in percentage for each version of the MCD model, for 

both samples of default. It shows the results from the non-winsorized dataset 

without logarithmic transformation of the covariate DD. The highest ranked RMcF
2  

for each default sample are highlighted. The GARCH-based models are only 

updated monthly, while the historical estimates are updated daily. This has biased 

the results, but we ignore this in the analysis and discuss the models uniformly.  

Table 6: Summary of McFadden’s R-squared. 

 

At first glance, the h90 model seems to outperform the others. It has a RMcF
2  of 10% 

for the bankruptcy sample and 11,3% for the reorganization sample. In the 

bankruptcy sample, the difference between h90 and the MCD model with the lowest 

RMcF
2 , the g250* model, is 4,2%. In the reorganization sample, the same measured 

difference is 4,4%. 

All models, except of the g90 model has ∆RMcF
2 > 0 when observing the 

reorganization sample instead of the bankruptcy sample. Market prices react on 

many different signals concerning the future and a broader definition may allow 

more signals to be explained by a credit event. This might be the reason why the 

MCD model seems to explain failure of financial promises better than bankruptcy. 

Ignoring the results for the g250, the table displays a trend that models with shorter 

estimation windows for volatility have higher explanatory power on bankruptcies. 

This is consistent with Hulls rule of thumb that 90 to 180 days, or alternatively the 

same length of the estimation window and forecasting period, works reasonably 

well when predicting future volatility (Hull, 2015). A similar trend is found 

amongst the historical volatility models for the reorganization sample, but not for 

the GARCH-based models. It is clear that g90* and g250 perform well in the 

reorganization sample where the g250 scores higher than g180 and g90 in terms of 

RMcF
2 . Instead of striving for an economical reasoning behind this inconsistency, we 

Logit_Results(r_mcf)

Model Bankruptcy Reorganization

h90 10,0 % 11,3 %
h180 9,0 10,4

h250 9,0 10,7

h5Y 7,9 9,1

hTot 7,6 8,3

g90* 8,5 9,5

g180* 5,9 6,9

g250* 5,8 7,2

g90 8,3 8,2

g180 6,6 7,7

g250 6,8 10,6
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conclude that the h90 model seem to be the best candidate with respect the RMcF
2 . 

Nevertheless, we acknowledge that the differences between the models’ fit are 

marginal.  

Altman’s argumentation that a RMcF
2  of 35% or more is achievable for credit risk 

models indicate that our results are comparatively low. While the DD variable does 

exhibit goodness of fit in the original dataset, it may be fruitful to study the 

influence of winsorization and logarithmic transformation of the DD variable. 

Consequences of Data Mining 

Table 7 summarizes the average increased RMcF
2  (∆RMcF

2̅̅ ̅̅ ̅̅ ̅̅ 13) for all eleven models 

when winsorizing the dataset and conducting the logarithmic transformation of DD 

variable. The table specifies the winsorized RMcF
2  values less the original RMcF

2  

values, log-DD RMcF
2  values less the original RMcF

2  values and the winsorized log-

DD RMcF
2  values less the original RMcF

2  values for the bankruptcy sample and 

reorganization sample respectively. All figures are displayed in percentage points. 

Table 7: Average change in McFadden’s R-squared. 

 

The results confirm that winzorization rewards little value in predicting defaults. 

The ∆RMcF
2̅̅ ̅̅ ̅̅ ̅̅  of winsorization is of only 0,13% for the bankruptcy sample and 0,18% 

for the reorganization sample. Larger changes appear in the logarithmic 

transformation, where the ∆RMcF
2̅̅ ̅̅ ̅̅ ̅̅  for the bankruptcy sample and the reorganization 

sample is of 6,52% and 4,44% respectively. If the samples are winsorized as well, 

the ∆RMcF
2̅̅ ̅̅ ̅̅ ̅̅  is of 7,09% and 5,27%. The ln(𝐷𝐷) pulls the DD values downwards. 

This explains the differences in the RMcF
2  between the two sorts of data 

manipulation.  

Table 8 below shows each model’s RMcF
2  for the original dataset, the logarithmic 

transformed dataset, the winsorized dataset and the winsorized logarithmic 

transformed dataset. The default samples are distinguished from each other and the 

                                                           

13 ∆RMcF
2̅̅ ̅̅ ̅̅ ̅̅ =

1

11
∑ (RMcF,Org

2 − RMcF,Fixed
2 )11

𝑖=1 , Org symbolize the original dataset and fixed 

symbolize some form of data mining, like winzorized or logarithmic transformed. 

Avg_Increase(r_mcf)
Bankruptcy Reorganization

Wins-Org -0,01 % 0,18 %

Ln-Org 6,52               4,44                    

Wins_ln-Org 7,09               5,27                    
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highest ranked models are highlighted. Interestingly, the ranking order in terms of 

RMcF
2  values changes from Table 6. 

Table 8: McFadden’s R-squared for the different MCD models.  

 

The h90 model is ranked highest in the winzorized as well as in the original dataset. 

In some instances, winsorization leads to ∆RMcF
2 < 0 which confirms the previous 

indications that winsorization does not provide value to the use of the MCD model. 

The h90 has the sixth highest RMcF
2  in the bankruptcy sample which is 2,9% lower 

than the h5Y model. This is a remarkable difference from the results in the original 

dataset. To explain the difference between which model seems optimal, we turn to 

the calculation of the RMcF
2 . From Equation 30, one can see that 0 ≤ 𝑃𝐷𝑖 ≤ 1 ↔

0 ≤ 𝐿𝑖 ≤ 1, ∀𝑖, such that ln(𝐿) ≤ 0. Also, ln(𝐿) > ln(𝐿0) 14, because a covariate 

has to endure some explanatory power. It is clear from equation 33 and the 

properties just presented, that ΔRMcF
2 > 0 when Δ ln(L) > 0 and/or Δ ln(𝐿0) < 0. 

Because ∆𝐿0 = 0 when executing the logarithmic transformation, the only 

alternative to get ∆RMcF
2 > 0 is if ∆ ln(𝐿) > 0. This is accomplished if ∆𝑃𝐷𝑖 >

0|𝑦𝑖 = 1 ⊕ ∆𝑃𝐷𝑖 < 0|𝑦𝑖 = 015. From the last validation one can study the 

descriptive statistics of the PDs to answer why the logarithmic transformation leads 

to another optimal model. Table 8 below displays descriptive statistics of the PDs 

for the h90, h90_ln, h5Y and h5Y_ln models in the bankruptcy sample. Similar 

findings for other samples are found amongst the complete sets of descriptive 

statistics for PDs, which is displayed in appendix B.  

                                                           

14 ln(𝐿0) = 𝑁(�̅� ln(�̅�) + (1 − �̅�) ln(1 − �̅�)), where N is the total number of observations and �̅� is 

the average default rate for the sample. 
15 Recall that y is a dummy variable that turns 1 if the firm defaulted and 0 if the firm did not 

default. 

Model Org Ln Wins Wins_ln Org Ln Wins Wins_ln

h90 10,0 % 14,4 % 10,0 % 15,6 % 11,3 % 15,0 % 11,2 % 15,4 %

h180 9,0 14,8 9,0 13,9 10,4 13,5 10,3 13,6

h250 9,0 12,0 9,0 14,5 10,7 12,6 10,5 14,5

h5Y 7,9 17,3 7,9 17,1 9,1 14,4 8,6 14,6

hTot 7,6 16,3 7,6 17,3 8,3 14,2 8,0 13,9

g90* 8,5 15,8 8,5 14,0 9,5 15,3 9,0 14,2

g180* 5,9 15,7 6,0 16,5 6,9 13,7 7,2 15,2

g250* 5,8 12,7 5,9 13,2 7,2 13,0 7,9 13,4

g90 8,3 12,2 9,0 11,5 8,2 11,0 9,3 11,6

g180 6,6 13,9 6,9 15,9 7,7 12,2 9,4 15,6

g250 6,8 12,2 7,2 13,8 10,6 13,8 10,6 15,8

Logit_Bankruptcy(r_mcf) Logit_Reorganization(r_mcf)



GRA 1903 Master thesis  01.09.2016 

36 

Table 9: Descriptive statistics of PD for default and non-default firms in the bankruptcy sample. 

 

The increased RMcF
2  of the h90 model compared to the h5Y model is caused by 

higher PDs of the defaulters which is shown by the higher (𝑃𝐷̅̅ ̅̅ ) and its quartiles 

(Q). The h90 model also displays a higher skew, implying that more PDs are shifted 

to the right side of the 𝑃𝐷̅̅ ̅̅  in the distribution. The h90 model has a lower Q1, Q2 

and positive skewness for the non-defaulters, which further favors the model 

compared to the h5Y model. The differences in the descriptive statistics for the non-

defaulters are less clear, but with only 11 defaults, such small differences will 

explain more of the higher RMcF
2 .  

When executing the logarithmic transformation, the resulting descriptive statistics 

for the defaulters favor the 90-day version even more. The 𝑃𝐷̅̅ ̅̅  for the non-defaulters 

are lower for the h90_ln model, but the Q3 and the skew is higher. This implies that 

more PDs are shifted to the right of the mean, which is the main explanation of how 

the h5Y_ln model increase RMcF
2  further.  

There are undeniably some pitfalls by valuing a model’s predictive power by the 

RMcF
2  (Tjur, 2009). Almost all descriptive statistics of the PD of the h90_ln model 

are superior to those of the h5Y_ln model, but this is not reflected in the RMcF
2 . The 

g90*_ln model is ranked as the highest performed model with respect to RMcF
2  in 

the reorganization sample and it is ranked higher than the h90_ln model in the 

bankruptcy sample. The RTjur
2  values in appendix B, shows that the g90* version is 

superior to all other models in all samples of defaults, including the original and the 

manipulated series. 

The implied PDs of the companies that did default are only marginally higher than 

those firms that did not, with a typical RTjur
2  of 0,5%. This low RTjur

2 is also reflected 

Def N_Def Def N_Def Def N_Def Def N_Def

Avg 0,97 % 0,46 % 0,65 % 0,18 % 0,82 % 0,46 % 0,51 % 0,22 %

Median 0,95 % 0,37 % 0,41 % 0,01 % 0,82 % 0,41 % 0,34 % 0,01 %

Std 0,3 % 1,7 % 0,7 % 2,9 % 0,19 % 1,51 % 0,50 % 3,81 %

Skew 0,66 38,77 1,56 33,78 0,30 39,37 1,33 24,95

Kurt -0,61 1626,24 1,73 1151,11 -1,06 1701,13 1,23 632,99

Min 0,61 % 0,00 % 0,08 % 0,00 % 0,57 % 0,00 % 0,07 % 0,00 %

q1 0,74 % 0,21 % 0,16 % 0,00 % 0,66 % 0,27 % 0,13 % 0,00 %

q3 1,12 % 0,58 % 0,79 % 0,06 % 0,97 % 0,54 % 0,74 % 0,05 %

Max 1,50 % 75,10 % 2,25 % 100,0 % 1,15 % 67,99 % 1,63 % 100,0 %

Mcf

Tjur

7,94 %

0,36 %

17,26 %

0,28 %

h90 h90_ln

10,04 %

0,51 %

14,38 %

0,47 %

h5Y_ln
Bankruptcy Sample

h5Y
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in the difference between the quartiles. Moreover, some extreme values of non-

defaulting firms’ PD push the 𝑃𝐷̅̅ ̅̅  upwards, further lowering RTjur
2 . Such signals 

indicate high credit risk for firms with no upcoming default event, potentially 

compromising the MCD model’s credibility. 

The regression analysis reveals that the MCD model does carry explanatory power 

on historical defaults. The analysis does not conclude on whether models based on 

GARCH-volatility estimates are superior to those based on historical volatility. 

Nevertheless, the models based on a 90-day estimation window seems to be decent 

candidates. The results are not definite, and which volatility estimate is optimal is 

still up for debate. We conclude that the MCD model does carry explanatory power, 

yet no single version of the MCD model stand out with exceptionally good fit.  

Logarithmic transformation of the DD variable is beneficial for the application of 

the MCD model in predicting defaults, and the model seems to work best on 

untreated equity returns. These findings are in accordance with the first hypothesis. 

However, the GARCH-based models do not systematically display extraordinary 

explanatory power, which contradicts the hypothesis. As such, based on the 

findings of the regression analysis, the first hypothesis of the thesis is rejected. 

These findings are indications that the use of forward-looking volatility models in 

the application of the MCD model is not superior to the use of backward-looking 

volatility models. An interpretation of this finding is that recent and non-recent 

information about firms’ credit risk is processed uniformly by the model when 

predicting defaults one year ahead.  

Discriminatory Analysis 

This analysis will concentrate on the discriminatory power of the MCD model and 

the pure statistical ones, with the aim of assessing the second hypothesis of the 

thesis. Logarithmic transformation of the DD does not influence how the model 

ranks firms with respect to the estimated PDs. Moreover, seeing that winsorization 

is not beneficial in the application of the model, the AR and CAP analysis will 

solely focus on the original time series.  

Accuracy Ratio 

The AR is a single summary measure that ranks the predictive accuracy of each 

credit model for both Type 1 errors and Type 2 errors. Table 10 illustrates the AR 
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for all models in both default samples as well as bootstrapping at the 95% 

confidence interval. The highest AR statistic for each sample is highlighted. 

Table 10: Summary of the accuracy ratio for each MCD model. 

 

All MCD models appear to outperform the pure statistical ones in both samples of 

default. The AR for the Altman model is insensible because of data shortage16 in 

the bankruptcy sample and are still not trustworthy in the reorganization sample. 

The MCD models in the bankruptcy sample range from 79% to 87% with a typical 

confidence interval of ± 9%. When broadening the definition of default, the AR 

range falls to (66%, 77%) with a typical confidence interval of ± 13%. In contrast, 

the pure statistical models increase their discriminatory power with higher certainty 

when changing the definition of default. This indicates that the pure statistical 

models perform better in ranking firms in terms of financial failures rather than in 

bankruptcies, while the MCD models work better in ranking firms in regards of 

bankruptcies rather than in reorganizations. Nonetheless, the discriminatory power 

of the MCD models always exceeds that of the pure statistical models and with high 

certainty uninformative rating systems, which have AR of 0%.  

Since AR is influenced by number of defaulters to number of non-defaulters, it is 

difficult to determine exactly how high AR a good system should achieve (Loffler 

& Posch, 2007). Previous research of Moody’s shows an AR in the range of 53% 

to 76% (Sobehart, Stein, Mikityanskaya, & Li, 2000). Our findings are arguably no 

worse, seeing that the 2.5% confidence interval in the bankruptcy sample is 75% 

on average, and the similar interval in the reorganization sample is 57%. These 

                                                           

16 The data shortage stems from Datastream’s scarce coverage of “Retained Earnings” before 2002, 

which is included in the calculation of Altman’s Z-score. 

Accuracy_Ratios

2,5%_conf Bankruptcy 97,5_conf 2,5_conf Reorganization 97,5_conf

h90 75,4 % 83,2 % 92,0 % 56,1 % 72,2 % 83,0 %

h180 75,6        84,0             93,1        57,1        73,2             83,1        

h250 72,0        83,6             93,4        57,6        74,0             83,8        

h5Y 76,7        85,9             93,8        60,3        76,5              85,4        

hTot 76,9        86,0             93,8        58,3        75,3             83,9        

g90* 78,5        86,8              93,7        58,5        75,4             85,6        

g180* 76,9        86,6             94,7        54,9        72,8             83,9        

g250* 76,6        86,1             94,4        58,2        73,2             83,7        

g90 73,6        82,1             89,5        46,4        65,7             78,0        

g180 72,6        82,3             91,4        55,7        71,2             82,7        

g250 66,4        79,4             90,9        61,3        73,6             83,3        

Altman 91,3-        4,9               99,9        15,3        64,7             84,4        

Ohlson 47,8        52,0             77,9        48,2        61,8             74,1        
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findings imply that the MCD model does, fairly successfully, distinguish defaulting 

from non-defaulting firms in the Norwegian market.  

Cumulative Accuracy Profile 

The AR analysis indicates that the MCD models are superior to the pure statistical 

models but that there is little that distinguishes the ratio of the MCD models from 

each other. Appendix C illustrates CAP curves. The CAP curves confirm that the 

discriminatory power is approximately equal for all the MCD models. It is also clear 

that every MCD model outperforms the pure statistical models in the bankruptcy 

sample, but less so in the reorganization sample. Figure 5 displays the CAP curve 

of the MCD model, represented by the h5Y model, and compares it to that of the 

pure statistical models, the random model (Rnd) and the perfect model (Prf).  

Figure 5: Cumulative Accuracy Profiles for the MCD model. 

 

The CAP curve of the h5Y model lies mostly above the statistical models where it 

discriminates particularly well for the 20% riskiest firms. However, it seems like 

the models intersects after approximately 30% of the sorted sample is observed, 

while there are still defaults left in the sample. The part of firms that are left after 

30% are mostly investment grade firms17. This could indicate that the MCD model’s 

superiority at discriminating is less prevalent for less risky firms, which may be 

particularly relevant for investors that are restricted to invest in only safe assets. 

The discriminatory analysis concludes that the AR for the MCD model is superior 

to that of the pure statistic models. Moreover, it shows that the CAP curve of the 

MCD model is superior to the statistical model for the bankruptcy sample, yet 

slightly less superior for the reorganization sample. The analysis reveals that the 

model benefits by broadening the definition of default, in contrast to Ohlson’s O-

                                                           

17 Firms  deemed as investment grade by Stamdata, i.e firms with low credit risk. 
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score, which appears to benefit from a narrow definition. The MCD model’s ability 

to discriminate is not as dominant for less risky firms. Still, the MCD models ability 

to discriminate generally exceeds that of statistical models. In light of these 

findings, we conclude that the second hypothesis of the thesis holds.  

Calibration Analysis 

This analysis focuses on the likelihood that the MCD model systematically 

underestimates the true PD, with the aim to assess the third hypothesis of the thesis. 

Calculated by Equation 42, the default correlation for the bankruptcy sample 𝜌𝐵 is 

5,5% and for the reorganization sample, 𝜌𝑅 is 2,3%. Table 11 displays the test 

results of the Vasicek one factor model conducted on the original dataset in 

bankruptcy sample. All values are displayed in percentage. Because the test requires 

default events, years without any defaults are excluded from the table. The dark 

grey area reflects significant test results on the 1% level and the light grey area 

reflects significant test results on the 5% level. The white areas are test results that 

are insignificant on both 1% and 5% level, which translates to no sign of 

underestimation.  

Table 11: Test results from the Vasicek’s single factor model on the bankruptcy sample. 

 

A general observation for both default samples is that the results for the different 

versions of the MCD model are non-distinguishable. The table shows signs of 

underestimation during the dot-com bubble in 2001. On the other hand, the models 

seem to predict bankruptcies quite well in the backwash of the financial crisis in 

2009. One may speculate whether this is caused by how investors have learned from 

the previous crisis and showed more caution during this period. The danger area 

appearing in 2013 is somewhat unexplainable for the authors and is interpreted as 

a random effect. In general, the model does not seem to underestimate the true PD 

when it comes to predicting default in terms of bankruptcy. Table 12 illustrates 

quite different results for the reorganization sample. 

Vasicek_Bankruptcy

g250 Year h90 h180 h250 h5Y hTot g90* g180* g250* g90 g180 g250

0,184 2015 18,58 15,68 15,25 16,79 18,07 17,87 19,48 19,33 21,18 19,47 18,36 

0,145 2014 11,34 12,55 12,91 17,23 16,85 13,63 15,45 15,77 13,07 14,50 14,47 

0,015 2013 1,09   1,43   1,54   1,80   1,64   1,31   1,46   1,41   1,14   1,41   1,50   

0,159 2011 11,80 15,43 15,33 16,83 16,81 14,18 16,03 16,28 11,84 15,16 15,94 

0,106 2009 15,05 11,45 11,08 10,73 10,64 14,66 8,79   9,02   12,77 9,11   10,58 

0,078 2002 10,22 8,68   8,47   6,93   6,74   7,44   6,84   7,04   9,88   7,53   7,84   

0,007 2001 0,66   0,68   0,70   0,49   0,50   0,50   0,57   0,59   0,69   0,69   0,68   
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Table 12:: Test results from the Vasicek’s single factor model for the reorganization sample. 

 

The tests performed on the reorganization sample show signs of underestimation in 

year 2009, 2011 and 2015. In addition, there is a risk of underestimation in year 

2008 and 20013. The common trait for those years is that the default rate exceeds 

2%, as illustrated in Table 4 in Part V – Methodology. On the contrary, the model 

produces insignificant test results in periods with default rate less than 2%. Previous 

research shows a median default rate of 1,8% for a period between 1976-2006 for 

US public firms (Altman E. , 2007). An interpretation of the above results is that 

the MCD model does not seem to underestimate the true PD in periods of stable 

economies, yet bears some risk of underestimation in periods of macroeconomic 

distress. That is, information about firm specific credit risk factors is more easily 

captured than common market factors. 

Results for the logarithmic time series are shown in appendix D, and it is concluded 

that systematic underestimation takes place in both default samples. Appendix E 

shows the distribution of DDs, where it can be seen that in addition to pulling DDs 

towards zero, the logarithm changes the skewness from being positive to negative. 

All else equal, this should imply higher PDs and less likelihood of underestimation. 

However, the maximum likelihood method used to solve for the coefficients in the 

logit model responds accordingly by generating lower coefficients, resulting in 

lower estimated PDs18. This is the mechanism that causes the log-based MCD 

model to underestimate the PDs. 

The calibration analysis shows that logarithmic transformation of the DD variable 

forces the PDs downwards, resulting in underestimation of the true credit risk. If 

the application of the MCD model was restricted to the use of the log-covariate, one 

could argue that the third hypothesis in this thesis would hold. Nonetheless, the 

                                                           

18 Descriptive statistics for the PDs are illustrated in appendix B. 

g250 Vasicek_Reorganization

0,002 Year h90 h180 h250 h5Y hTot g90* g180* g250* g90 g180 g250

0,435 2015 0,26   0,10   0,09   0,13   0,18   0,19   0,28   0,24   0,39   0,28   0,21   

0,027 2014 35,10 40,02 41,78 55,94 54,25 43,05 46,74 47,15 41,96 44,77 43,51 

0,27 2013 1,49   2,55   3,11   3,28   2,66   1,84   2,22   1,89   1,39   2,05   2,73   

0,005 2012 45,37 37,71 33,77 24,31 21,68 27,77 22,07 19,01 29,94 27,93 27,01 

0,657 2011 0,18   0,54   0,52   0,74   0,74   0,38   0,56   0,59   0,18   0,44   0,51   

0,01 2010 46,54 66,71 77,20 53,47 53,55 49,45 52,59 50,11 45,79 56,81 65,73 

0,016 2009 2,37   0,95   0,72   0,51   0,48   1,76   0,28   0,57   0,94   0,41   1,02   

0,443 2008 2,17   1,38   1,04   3,58   4,32   4,29   6,21   5,93   4,34   4,62   1,60   

2007 30,94 53,35 47,99 71,20 73,01 60,80 74,32 71,66 46,15 65,97 44,32 
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MCD model may be applied in ways that can reduce the likelihood of systematic 

underestimation of PD. The test results for the PDs estimated with the original DD 

variable show few signs of underestimation in the bankruptcy sample and indicate 

that the model calibrates reasonably well in normally behaving markets for the 

reorganization sample. With this in mind, we argue that the third hypothesis is 

rejected, implying that the MCD model does not systematically underestimate the 

true PDs for Norwegian public firms. This is in contrast to the findings of Gemmill 

(Gemmill, 2002). His research was conducted on low-risk, zero-coupon bonds in 

the U.K., which by definition will have lower volatility. The sample used in this 

thesis comprises firms with more nuanced debt-structures, with different levels of 

risk. Higher estimated volatility generates higher PDs, which may reduce the risk 

of underestimation.  

Supplementary Findings 

The above analyses conclude on the three hypotheses of the thesis, and assist in 

answering the paper’s research question of how well the MCD model performs in 

predicting defaults amongst Norwegian public firms. This section discusses how 

PDs of defaulting firms evolve over time, as an additional finding which contributes 

to the discussion of the research question. Relevant graphs and tables are found in 

Appendix F. 

As established in Part IV – Data, only 11 out of 25 defaults have sufficient data to 

be included in the tests of the MCD models. Of those 11 defaulters, 4 have only one 

PD observation and an additional 2 defaulters only have two PD observations. The 

few observations indicate that young public companies have higher risk of being 

liquidated in Norway. One explanation of this occurrence may be that the private 

market shows no funding interest, firms will turn to the public market to receive its 

capital requirement. Those companies will have higher credit risk, reflected in how 

banks may already have rejected their request for more debt.  

Since the MCD model is unable to analyze firms with insufficient historical data, 

the model’s applicability for the Norwegian market may be severely compromised. 

However, the MCD model adequately predicts bankruptcies when companies 

survive their first years as a public firm. 

The graphs from the reorganization sample shows that most of the defaulters have 

enough PDs to study trends. Optimally, the firms’ estimated riskiness should peak 
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the year before a credit event occurs. However, the graphs display multiple signals 

of increased credit risk without any following credit event taking place. 

Additionally, there are signs that PDs tend to increase after such events do occur.  

An interpretation of these observations is that failure to meet financial promises is 

more difficult to predict than bankruptcies. Since firms often fail to meet financial 

promises before equity holders choose to liquidate19, the liquidation occurrence 

may be predicted after a series of such failures. Investors respond to financial 

failures by selling the stock, as they then interpret the firm as riskier. This will lower 

the equity, and consequently the asset value of the firm, which raises the PD. This 

may be one reason for why the MCD model works better in predicting defaults in 

the bankruptcy sample.  

  

                                                           

19 From the MCD model theory, equity holders are viewed as those who run the company and will 

choose to leave all assets to debt holders when the firm goes bankrupt. 
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PART VII - Conclusion 

We present evidence that the DD variable produced by the MCD model does carry 

explanatory power on historical defaults, whether default is defined as bankruptcy 

or reorganization of the firm. The model is tested with eleven different types of 

equity volatility, as well as logarithmic transformation of the covariate DD and 

winsorization of equity returns. The regression analysis concludes that no single 

version of the model exhibits exceptionally high explanatory power. It was 

hypothesized that GARCH-based models would exhibit superior goodness of fit, 

particularly those of a shorter volatility estimation window. Our findings reject this 

notion, as models based on GARCH and historical volatility estimates display quite 

similar fit. Nonetheless, models based on equity volatility with an estimation 

window of 90 days seem to be adequate candidates in the application of the model. 

The study shows that winsorizing equity returns only marginally improves 

explanatory power, while regressing on the logarithmic DD variable improves the 

fit considerably.  

The study finds that the model’s ability to discriminate between defaulting and non-

defaulting firms exceeds that of pure statistical models, in accordance with previous 

studies. The analysis indicates that the MCD model’s discriminatory power declines 

with a broader definition of default, in contrast to that of statistical models. 

The results further indicate that proper use of the model involves low risk of 

underestimation of PDs when predicting bankruptcies, in contrast to what was 

hypothesized. However, the model exhibits some risk of underestimation in 

distressed economies when predicting financial failures. That is, information about 

firm specific credit risk factors is more easily captured than common market factors. 

The calibration analysis concludes with high certainty that the logarithm of the DD 

variable will underestimate the true credit risk. 

We conclude that the MCD model performs adequately in predicting defaults 

amongst public firms in Norway. However, many defaults are unable to be 

predicted by the model because of insufficient market values of equity, and thus it 

will have difficulties in predicting default probabilities for young public firms. Our 

study is inspired by previous research on the MCD model’s performance in 

predicting defaults in other markets. It provides scientific contribution by proving 

that market prices contain information of future defaults in Norway. We believe 

that financial institutions and other practitioners can apply the MCD model as a 
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supplement to qualitative analysis, to improve their assessment of Norwegian 

public firms’ credit risk. The PDs estimated by the MCD model only reveal parts 

of the risk picture of firms. The model’s predictive power may be improved by 

extending it to a hybrid model that accounts for more relevant information 

concerning credit risk, as well as qualitative assessments of the respective firms. 

Criticism and Further Research 

One must be careful when interpreting the results from the logit model given the 

relatively small sample. With only 10 years of historical data in the reorganization 

sample, it is especially hard to evaluate the robustness of the results. Small sample 

sizes have made us unable to draw random samples from the population to estimate 

PDs and to perform out-of-sample testing. The regression analysis is therefore 

solely based on historical fit, which may not be optimal for future prediction. 

The fact that most of the defaulters are relatively young public firms makes it 

difficult to study how the PDs evolve over time. Optimally, the firms’ estimated 

riskiness should peak the year before a credit event occurs. One could conduct a 

transition matrix analysis to see how the models estimated credit risk change over 

time. With few years of historical data, such analyses are obsolete when studying 

annual PDs. A possible solution to overcome this constraint is to use higher 

frequency of PDs, such as monthly or weekly. 
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Appendix A - Regression Statistics 

The tables below display the regression output for the different MCD models. The 

names of the models are highlighted and the details of each model are as illustrated 

in Table 2. In the tables below, the intercept is denoted β(1), while the coefficient 

for the independent variable DD is denoted β(2). “Coeff” is short for coefficient, 

“SE” is short for standard error of the coefficient, z-stat denotes the coefficients’ z-

statisitc. Some of the p-values for the intercepts are so close to zero that excel 

rounds down the figure and displays it as “-“. The statistic of 𝑅𝑀𝑐𝐹
2 is denoted 

McFadR2. C&SR2 is the name for the statistics of Cox & Snell, which has the same 

interpretation as 𝑅𝑀𝑐𝐹
2 . However, since 𝑅𝑀𝑐𝐹

2 varies more than the Cox & Snell 

statistics, the latter is left out of the discussion. The amount of iterations for each 

regression analysis is summarized by “Iter.”. Lastly, “LR” denotes the likelihood 

ratio of the regression.  
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Non-Winsorized, Bankruptcy Sample 

 

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,37-    0,29-    Coeff 4,45-    0,26-    Coeff 4,44-    0,27-    

SE() 0,35    0,07    SE() 0,35    0,07    SE() 0,35    0,07    

z-stat 12,31-  3,88-    z-stat 12,76-  3,86-    z-stat 12,63-  3,80-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,10    McFadR2 0,09    McFadR2 0,09    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 8 Iter. 9

LR 14,07  LR 12,58  LR 12,57  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,53-    0,26-    Coeff 4,55-    0,26-    Coeff 4,53-    0,26-    

SE() 0,34    0,07    SE() 0,34    0,07    SE() 0,34    0,07    

z-stat 13,21-  3,80-    z-stat 13,38-  3,80-    z-stat 13,32-  3,89-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,08    McFadR2 0,08    McFadR2 0,09    

C&SR2 0,00    C&SR2 0,00    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 8

LR 11,13  LR 10,66  LR 11,95  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,76-    0,18-    Coeff 4,78-    0,17-    Coeff 4,45-    0,25-    

SE() 0,34    0,06    SE() 0,34    0,06    SE() 0,35    0,07    

z-stat 13,94-  3,12-    z-stat 14,07-  3,10-    z-stat 12,57-  3,60-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,06    McFadR2 0,06    McFadR2 0,08    

C&SR2 0,00    C&SR2 0,00    C&SR2 0,00    

Iter. 8 Iter. 8 Iter. 9

LR 8,33    LR 8,11    LR 11,60  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,68-    0,19-    Coeff 4,64-    0,20-    

SE() 0,34    0,05    SE() 0,35    0,06    

z-stat 13,87-  3,44-    z-stat 13,07-  3,15-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,07    McFadR2 0,07    

C&SR2 0,00    C&SR2 0,00    

Iter. 8 Iter. 8

LR 9,18    LR 9,46    

LR p-value 0,00    LR p-value 0,00    
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Logarithmic Non-Winsorized, Bankruptcy Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,44-    1,07-    Coeff 4,32-    1,18-    Coeff 4,56-    0,90-    

SE() 0,31    0,20    SE() 0,31    0,22    SE() 0,31    0,18    

z-stat 14,33-  5,35-    z-stat 13,75-  5,37-    z-stat 14,66-  5,05-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,14    McFadR2 0,15    McFadR2 0,12    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 20,15  LR 20,67  LR 16,78  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,45-    1,19-    Coeff 4,49-    1,15-    Coeff 4,42-    1,21-    

SE() 0,31    0,20    SE() 0,31    0,20    SE() 0,31    0,22    

z-stat 14,28-  5,96-    z-stat 14,48-  5,82-    z-stat 14,25-  5,60-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,17    McFadR2 0,16    McFadR2 0,16    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 24,18  LR 22,83  LR 22,12  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,38-    1,23-    Coeff 4,60-    0,91-    Coeff 4,44-    1,00-    

SE() 0,31    0,22    SE() 0,31    0,18    SE() 0,31    0,20    

z-stat 14,01-  5,57-    z-stat 14,61-  5,07-    z-stat 14,24-  4,96-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,16    McFadR2 0,13    McFadR2 0,12    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 21,99  LR 17,72  LR 17,14  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,45-    1,05-    Coeff 4,47-    1,03-    

SE() 0,31    0,20    SE() 0,31    0,21    

z-stat 14,34-  5,30-    z-stat 14,44-  4,95-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,14    McFadR2 0,12    

C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9

LR 19,49  LR 17,06  

LR p-value 0,00    LR p-value 0,00    
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Winzorized, Bankruptcy Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,36-    0,29-    Coeff 4,44-    0,26-    Coeff 4,43-    0,27-    

SE() 0,36    0,07    SE() 0,35    0,07    SE() 0,35    0,07    

z-stat 12,26-  3,88-    z-stat 12,69-  3,86-    z-stat 12,55-  3,80-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,10    McFadR2 0,09    McFadR2 0,09    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 8 Iter. 8

LR 14,06  LR 12,58  LR 12,55  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,52-    0,26-    Coeff 4,54-    0,26-    Coeff 4,51-    0,26-    

SE() 0,34    0,07    SE() 0,34    0,07    SE() 0,34    0,07    

z-stat 13,13-  3,80-    z-stat 13,29-  3,80-    z-stat 13,23-  3,89-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,08    McFadR2 0,08    McFadR2 0,08    

C&SR2 0,00    C&SR2 0,00    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 8

LR 11,04  LR 10,62  LR 11,90  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,75-    0,18-    Coeff 4,77-    0,17-    Coeff 4,42-    0,26-    

SE() 0,34    0,06    SE() 0,34    0,06    SE() 0,36    0,07    

z-stat 13,86-  3,12-    z-stat 13,96-  3,10-    z-stat 12,44-  3,65-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,06    McFadR2 0,06    McFadR2 0,09    

C&SR2 0,00    C&SR2 0,00    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 9

LR 8,35    LR 8,27    LR 12,56  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,73-    0,17-    Coeff 4,67-    0,19-    

SE() 0,34    0,05    SE() 0,36    0,06    

z-stat 13,95-  3,46-    z-stat 13,06-  3,17-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,07    McFadR2 0,07    

C&SR2 0,00    C&SR2 0,00    

Iter. 8 Iter. 8

LR 9,71    LR 10,12  

LR p-value 0,00    LR p-value 0,00    
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Logarithmic Winzorized, Bankruptcy Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,34-    1,18-    Coeff 4,37-    1,12-    Coeff 4,35-    1,15-    

SE() 0,31    0,22    SE() 0,31    0,21    SE() 0,31    0,22    

z-stat 13,92-  5,44-    z-stat 13,98-  5,26-    z-stat 13,91-  5,34-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,16    McFadR2 0,14    McFadR2 0,14    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 21,81  LR 19,49  LR 20,31  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,42-    1,20-    Coeff 4,39-    1,24-    Coeff 4,46-    1,07-    

SE() 0,31    0,20    SE() 0,31    0,21    SE() 0,32    0,20    

z-stat 14,21-  5,92-    z-stat 14,10-  5,92-    z-stat 14,13-  5,26-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,17    McFadR2 0,17    McFadR2 0,14    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 23,94  LR 24,31  LR 19,65  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,29-    1,32-    Coeff 4,55-    0,94-    Coeff 4,53-    0,86-    

SE() 0,32    0,24    SE() 0,32    0,18    SE() 0,33    0,20    

z-stat 13,58-  5,53-    z-stat 14,29-  5,08-    z-stat 13,81-  4,24-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,17    McFadR2 0,13    McFadR2 0,11    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9 Iter. 9

LR 23,12  LR 18,49  LR 16,08  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 4,32-    1,18-    Coeff 4,36-    1,15-    

SE() 0,31    0,21    SE() 0,31    0,22    

z-stat 13,73-  5,54-    z-stat 13,95-  5,15-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,16    McFadR2 0,14    

C&SR2 0,01    C&SR2 0,01    

Iter. 9 Iter. 9

LR 22,52  LR 19,51  

LR p-value 0,00    LR p-value 0,00    
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Non-Winsorized, Reorganization Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 2,75-    0,41-    Coeff 2,79-    0,40-    Coeff 2,75-    0,41-    

SE() 0,28    0,09    SE() 0,29    0,09    SE() 0,29    0,09    

z-stat 9,92-    4,80-    z-stat 9,67-    4,53-    z-stat 9,48-    4,60-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,11    McFadR2 0,10    McFadR2 0,11    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 8

LR 42,99  LR 39,78  LR 40,93  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 2,99-    0,36-    Coeff 3,05-    0,34-    Coeff 3,00-    0,36-    

SE() 0,26    0,07    SE() 0,26    0,07    SE() 0,26    0,07    

z-stat 11,46-  4,79-    z-stat 11,83-  4,69-    z-stat 11,64-  4,78-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,09    McFadR2 0,08    McFadR2 0,09    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 8

LR 34,53  LR 31,80  LR 36,11  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,10-    0,31-    Coeff 3,10-    0,31-    Coeff 3,01-    0,30-    

SE() 0,28    0,08    SE() 0,26    0,07    SE() 0,26    0,07    

z-stat 11,13-  3,92-    z-stat 11,83-  4,26-    z-stat 11,56-  4,46-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,07    McFadR2 0,07    McFadR2 0,08    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 8

LR 26,25  LR 27,34  LR 31,40  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,12-    0,28-    Coeff 2,72-    0,44-    

SE() 0,27    0,07    SE() 0,27    0,09    

z-stat 11,54-  4,01-    z-stat 9,96-    4,92-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,08    McFadR2 0,11    

C&SR2 0,01    C&SR2 0,02    

Iter. 8 Iter. 8

LR 29,29  LR 40,34  

LR p-value 0,00    LR p-value 0,00    
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Logarithmic Non-Winzorized, Reorganization Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,13-    1,10-    Coeff 3,02-    1,17-    Coeff 3,24-    0,96-    

SE() 0,18    0,14    SE() 0,19    0,15    SE() 0,18    0,13    

z-stat 17,15-  8,12-    z-stat 15,79-  7,61-    z-stat 17,63-  7,52-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,15    McFadR2 0,14    McFadR2 0,13    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 7

LR 57,22  LR 51,49  LR 47,90  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,14-    1,13-    Coeff 3,19-    1,11-    Coeff 3,10-    1,21-    

SE() 0,18    0,14    SE() 0,18    0,13    SE() 0,18    0,14    

z-stat 17,12-  8,24-    z-stat 17,63-  8,32-    z-stat 17,04-  8,33-    

p-value -      0,00    p-value -      -      p-value -      -      

McFadR2 0,14    McFadR2 0,14    McFadR2 0,15    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 7 Iter. 8

LR 54,70  LR 54,15  LR 58,47  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2)(2) β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,07-    1,20-    Coeff 3,23-    1,01-    Coeff 3,17-    0,96-    

SE() 0,19    0,16    SE() 0,19    0,14    SE() 0,19    0,13    

z-stat 16,37-  7,73-    z-stat 17,28-  7,31-    z-stat 17,07-  7,15-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,14    McFadR2 0,13    McFadR2 0,11    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 7 Iter. 7

LR 52,16  LR 49,50  LR 41,81  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2)(2) β(1) β(2)(2)

Coeff 3,17-    1,01-    Coeff 3,17-    1,09-    

SE() 0,18    0,13    SE() 0,18    0,14    

z-stat 17,23-  7,54-    z-stat 17,47-  7,90-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,12    McFadR2 0,14    

C&SR2 0,02    C&SR2 0,02    

Iter. 7 Iter. 8

LR 46,55  LR 52,75  

LR p-value 0,00    LR p-value 0,00    
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Winzorized, Reorganization Sample 

 

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 2,74-    0,41-    Coeff 2,79-    0,39-    Coeff 2,75-    0,41-    

SE() 0,28    0,09    SE() 0,29    0,09    SE() 0,29    0,09    

z-stat 9,84-    4,78-    z-stat 9,54-    4,50-    z-stat 9,38-    4,56-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,11    McFadR2 0,10    McFadR2 0,11    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 8

LR 42,50  LR 39,23  LR 40,09  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 3,01-    0,34-    Coeff 3,07-    0,33-    Coeff 3,01-    0,34-    

SE() 0,26    0,07    SE() 0,26    0,07    SE() 0,26    0,07    

z-stat 11,63-  4,76-    z-stat 11,94-  4,68-    z-stat 11,74-  4,77-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,09    McFadR2 0,08    McFadR2 0,09    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 8

LR 32,70  LR 30,42  LR 34,47  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 3,06-    0,32-    Coeff 3,03-    0,33-    Coeff 2,92-    0,33-    

SE() 0,28    0,08    SE() 0,26    0,07    SE() 0,27    0,07    

z-stat 10,87-  3,99-    z-stat 11,49-  4,48-    z-stat 10,99-  4,56-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,07    McFadR2 0,08    McFadR2 0,09    

C&SR2 0,01    C&SR2 0,01    C&SR2 0,01    

Iter. 8 Iter. 8 Iter. 8

LR 27,26  LR 30,02  LR 35,34  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2) β(1) β(2)

Coeff 2,98-    0,32-    Coeff 2,78-    0,40-    

SE() 0,29    0,08    SE() 0,28    0,08    

z-stat 10,21-  4,14-    z-stat 10,04-  4,89-    

p-value -      0,00    p-value -      0,00    

McFadR2 0,09    McFadR2 0,11    

C&SR2 0,01    C&SR2 0,02    

Iter. 8 Iter. 8

LR 36,36  LR 40,92  

LR p-value 0,00    LR p-value 0,00    
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Logarithmic Non-Winzorized, Reorganization Sample 

 

  

LR p-value 0,00    LR p-value 0,00    

Logit (h90) Logit (h180) Logit (h250)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 3,02-    1,20-    Coeff 3,06-    1,12-    Coeff 3,03-    1,17-    

SE() 0,19    0,15    SE() 0,19    0,14    SE() 0,19    0,15    

z-stat 16,29-  8,04-    z-stat 16,40-  7,80-    z-stat 16,23-  7,96-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,15    McFadR2 0,14    McFadR2 0,14    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 8

LR 58,70  LR 51,90  LR 55,17  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (h5Y) Logit (hTot) Logit (g90*)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 3,11-    1,15-    Coeff 3,10-    1,16-    Coeff 3,10-    1,15-    

SE() 0,18    0,14    SE() 0,18    0,14    SE() 0,19    0,15    

z-stat 16,96-  8,36-    z-stat 16,79-  8,16-    z-stat 16,40-  7,63-    

p-value -      -      p-value -      0,00    p-value -      0,00    

McFadR2 0,15    McFadR2 0,14    McFadR2 0,14    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8 Iter. 8

LR 55,73  LR 53,12  LR 54,08  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180*) Logit (g250*) Logit (g90)
β(1) β(2) β(1) β(2) β(1) β(2)

Coeff 2,96-    1,32-    Coeff 3,15-    1,07-    Coeff 3,16-    0,97-    

SE() 0,19    0,17    SE() 0,19    0,15    SE() 0,19    0,14    

z-stat 15,58-  7,94-    z-stat 16,34-  7,20-    z-stat 16,55-  6,79-    

p-value -      0,00    p-value -      0,00    p-value -      0,00    

McFadR2 0,15    McFadR2 0,13    McFadR2 0,12    

C&SR2 0,02    C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 7 Iter. 8

LR 57,87  LR 50,95  LR 44,29  

LR p-value 0,00    LR p-value 0,00    LR p-value 0,00    

Logit (g180) Logit (g250)
β(1) β(2) β(1) β(2)

Coeff 2,99-    1,21-    Coeff 3,04-    1,22-    

SE() 0,19    0,15    SE() 0,18    0,15    

z-stat 15,73-  8,05-    z-stat 16,51-  8,31-    

p-value -      0,00    p-value -      -      

McFadR2 0,16    McFadR2 0,16    

C&SR2 0,02    C&SR2 0,02    

Iter. 8 Iter. 8

LR 60,01  LR 60,96  

LR p-value 0,00    LR p-value 0,00    
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Appendix B - Descriptive Statistics of PDs 

The tables below illustrate the descriptive statistics for the implied PDs for different 

versions of the MCD model with different samples. The models are specified above 

the table, with names similar to those in Table 5 in Part V - Methodology. In the 

table below, “Def” indicates descriptive statistics for the firms that did default and 

“N_Def” indicates descriptive statistics for firms that did not. “Avg” indicate 

average, “Std” indicate standard deviation, “Kurt” specifies kurtosis, “Min” and 

“Max” are short for lowest and highest observed PD, q1 and q3 are the first and 

third quartile and “Mcf” is short for McFadden’s R-squared.  

Bankrupty Sample 

 

 

 

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 1,0 % 0,5 % 0,6 % 0,2 % 1,0 % 0,5 % 0,7 % 0,2 %

Median 0,9 % 0,4 % 0,4 % 0,0 % 1,0 % 0,4 % 0,4 % 0,0 %

Std 0,3 % 1,7 % 0,7 % 2,9 % 0,3 % 1,7 % 0,9 % 2,9 %

Skew 0,66 38,77 1,56 33,78 0,71 38,77 1,59 33,64

Kurt -0,61 1626,24 1,73 1151,11 -0,68 1625,60 1,55 1144,70

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,2 % 0,2 % 0,0 % 0,7 % 0,2 % 0,1 % 0,0 %

q3 1,1 % 0,6 % 0,8 % 0,1 % 1,1 % 0,6 % 0,8 % 0,1 %

Max 1,5 % 75,1 % 2,3 % 100,0 % 1,5 % 75,1 % 2,7 % 100,0 %

Mcf 10,0 % 14,4 % 10,0 % 15,6 %

Tjur 0,5 % 0,5 % 0,5 % 0,5 %

h90_wins_lnh90 h90_winsh90_ln

Tjur 0,5 % 0,5 % 0,5 % 0,5 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,9 % 0,5 % 0,6 % 0,2 % 0,9 % 0,5 % 0,6 % 0,2 %

Median 0,9 % 0,4 % 0,4 % 0,0 % 0,9 % 0,4 % 0,4 % 0,0 %

Std 0,2 % 1,6 % 0,7 % 2,9 % 0,2 % 1,6 % 0,6 % 2,9 %

Skew 0,37 38,26 1,25 33,60 0,31 38,26 1,07 33,75

Kurt -1,14 1576,53 0,37 1142,85 -1,33 1575,53 -0,15 1149,87

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,2 % 0,2 % 0,0 % 0,7 % 0,2 % 0,2 % 0,0 %

q3 1,0 % 0,6 % 0,8 % 0,1 % 1,1 % 0,6 % 0,8 % 0,1 %

Max 1,3 % 70,8 % 2,0 % 100,0 % 1,2 % 70,9 % 1,7 % 100,0 %

Mcf 9,0 % 14,8 % 9,0 % 13,9 %

Tjur 0,4 % 0,5 % 0,4 % 0,4 %

h180_wins_lnh180_winsh180_lnh180

Tjur 0,4 % 0,5 % 0,4 % 0,4 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,9 % 0,5 % 0,5 % 0,2 % 0,9 % 0,5 % 0,6 % 0,2 %

Median 0,9 % 0,4 % 0,4 % 0,0 % 0,9 % 0,4 % 0,4 % 0,0 %

Std 0,2 % 1,6 % 0,4 % 2,9 % 0,2 % 1,6 % 0,5 % 2,9 %

Skew 0,10 39,37 0,74 33,96 0,03 39,37 0,75 33,66

Kurt -1,41 1670,05 -0,63 1159,56 -1,57 1668,98 -0,87 1145,58

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,2 % 0,2 % 0,0 % 0,7 % 0,2 % 0,1 % 0,0 %

q3 1,1 % 0,6 % 0,8 % 0,1 % 1,1 % 0,6 % 0,9 % 0,1 %

Max 1,3 % 72,6 % 1,3 % 100,0 % 1,2 % 72,6 % 1,5 % 100,0 %

Mcf 9,0 % 12,0 % 9,0 % 14,5 %

Tjur 0,4 % 0,4 % 0,4 % 0,4 %

h250_wins_lnh250_winsh250_lnh250
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Tjur 0,4 % 0,4 % 0,4 % 0,4 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,8 % 0,5 % 0,5 % 0,2 % 0,8 % 0,5 % 0,5 % 0,2 %

Median 0,8 % 0,4 % 0,3 % 0,0 % 0,8 % 0,4 % 0,3 % 0,0 %

Std 0,2 % 1,5 % 0,5 % 3,8 % 0,2 % 1,5 % 0,5 % 3,8 %

Skew 0,30 39,37 1,33 24,95 0,14 39,35 0,96 24,88

Kurt -1,06 1701,13 1,23 632,99 -1,37 1700,29 -0,35 629,08

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,3 % 0,1 % 0,0 % 0,7 % 0,3 % 0,1 % 0,0 %

q3 1,0 % 0,5 % 0,7 % 0,1 % 1,0 % 0,5 % 0,8 % 0,1 %

Max 1,2 % 68,0 % 1,6 % 100,0 % 1,1 % 67,6 % 1,4 % 100,0 %

Mcf 7,9 % 17,3 % 7,9 % 17,1 %

Tjur 0,4 % 0,3 % 0,4 % 0,3 %

h5Y_wins_lnh5Y_winsh5Y_lnh5Y

Tjur 0,4 % 0,3 % 0,4 % 0,3 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,8 % 0,5 % 0,5 % 0,2 % 0,8 % 0,5 % 0,5 % 0,2 %

Median 0,8 % 0,4 % 0,3 % 0,0 % 0,8 % 0,4 % 0,3 % 0,0 %

Std 0,2 % 1,5 % 0,5 % 3,8 % 0,2 % 1,5 % 0,5 % 3,9 %

Skew 0,35 38,82 1,31 25,20 0,19 38,79 1,01 24,62

Kurt -1,02 1657,74 1,11 647,24 -1,37 1655,30 -0,26 615,12

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,3 % 0,1 % 0,0 % 0,6 % 0,3 % 0,1 % 0,0 %

q3 0,9 % 0,5 % 0,7 % 0,1 % 1,0 % 0,5 % 0,8 % 0,0 %

Max 1,1 % 65,8 % 1,5 % 100,0 % 1,1 % 65,5 % 1,4 % 100,0 %

Mcf 7,6 % 16,3 % 7,6 % 17,3 %

Tjur 0,3 % 0,3 % 0,3 % 0,3 %

hTot_wins_lnhTot_winshTot_lnhTot

Tjur 0,3 % 0,3 % 0,3 % 0,3 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,9 % 0,5 % 0,7 % 0,2 % 0,9 % 0,5 % 0,7 % 0,2 %

Median 0,8 % 0,4 % 0,4 % 0,0 % 0,8 % 0,4 % 0,4 % 0,0 %

Std 0,2 % 1,6 % 0,9 % 3,6 % 0,2 % 1,6 % 0,7 % 3,6 %

Skew 0,79 38,50 1,90 27,64 0,76 38,47 1,76 27,74

Kurt -0,04 1633,87 3,24 768,22 -0,23 1632,02 2,68 771,82

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,3 % 0,2 % 0,0 % 0,7 % 0,3 % 0,2 % 0,0 %

q3 1,0 % 0,6 % 0,8 % 0,1 % 1,0 % 0,6 % 0,8 % 0,1 %

Max 1,3 % 69,7 % 2,8 % 100,0 % 1,3 % 69,4 % 2,5 % 100,0 %

Mcf 8,5 % 15,8 % 8,5 % 14,0 %

Tjur 0,4 % 0,5 % 0,4 % 0,5 %

g90*_wins_lng90*_winsg90*_lng90*

Tjur 0,4 % 0,5 % 0,4 % 0,5 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,7 % 0,5 % 0,6 % 0,2 % 0,7 % 0,5 % 0,7 % 0,2 %

Median 0,7 % 0,4 % 0,4 % 0,0 % 0,7 % 0,4 % 0,4 % 0,0 %

Std 0,1 % 1,5 % 0,6 % 2,9 % 0,1 % 1,5 % 0,7 % 2,9 %

Skew 0,19 46,95 1,27 33,60 0,27 46,93 1,31 33,30

Kurt -0,92 2249,39 0,33 1141,64 -1,12 2248,22 0,41 1127,64

Min 0,5 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,6 % 0,3 % 0,2 % 0,0 % 0,6 % 0,3 % 0,1 % 0,0 %

q3 0,8 % 0,5 % 0,8 % 0,1 % 0,8 % 0,5 % 0,9 % 0,0 %

Max 0,9 % 70,7 % 1,8 % 100,0 % 0,9 % 70,7 % 2,1 % 100,0 %

Mcf 5,9 % 15,7 % 6,0 % 16,5 %

Tjur 0,3 % 0,5 % 0,3 % 0,5 %

g180*_wins_lng180*_winsg180*_lng180*
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Tjur 0,3 % 0,5 % 0,3 % 0,5 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,7 % 0,5 % 0,6 % 0,2 % 0,7 % 0,5 % 0,6 % 0,2 %

Median 0,7 % 0,4 % 0,4 % 0,0 % 0,7 % 0,4 % 0,5 % 0,0 %

Std 0,1 % 1,4 % 0,4 % 3,5 % 0,1 % 1,5 % 0,5 % 3,5 %

Skew 0,11 47,16 0,83 27,78 0,11 47,15 0,88 27,74

Kurt -1,37 2264,01 -0,57 773,66 -1,40 2263,41 -0,43 772,14

Min 0,5 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,6 % 0,3 % 0,2 % 0,0 % 0,6 % 0,3 % 0,2 % 0,0 %

q3 0,8 % 0,5 % 0,8 % 0,1 % 0,8 % 0,5 % 0,8 % 0,1 %

Max 0,9 % 69,9 % 1,3 % 100,0 % 0,9 % 70,8 % 1,5 % 100,0 %

Mcf 5,8 % 12,7 % 5,9 % 13,2 %

Tjur 0,2 % 0,3 % 0,3 % 0,4 %

g250*_wins_lng250*_winsg250*_lng250*

Tjur 0,2 % 0,3 % 0,3 % 0,4 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,8 % 0,5 % 0,4 % 0,2 % 0,9 % 0,5 % 0,5 % 0,2 %

Median 0,9 % 0,4 % 0,3 % 0,0 % 0,9 % 0,4 % 0,4 % 0,0 %

Std 0,1 % 1,5 % 0,3 % 2,9 % 0,2 % 1,6 % 0,4 % 2,9 %

Skew 0,43 41,82 1,63 33,77 0,57 41,64 1,46 33,90

Kurt 0,12 1878,66 3,33 1150,22 -0,44 1861,42 2,06 1156,19

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,6 % 0,0 % 0,1 % 0,0 %

q1 0,7 % 0,2 % 0,2 % 0,0 % 0,7 % 0,2 % 0,2 % 0,0 %

q3 0,9 % 0,6 % 0,4 % 0,1 % 1,0 % 0,6 % 0,6 % 0,1 %

Max 1,1 % 69,3 % 1,0 % 100,0 % 1,3 % 73,5 % 1,4 % 100,0 %

Mcf 8,3 % 12,2 % 9,0 % 11,5 %

Tjur 0,4 % 0,2 % 0,4 % 0,3 %

g90_wins_lng90_winsg90_lng90

Tjur 0,4 % 0,2 % 0,4 % 0,3 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,7 % 0,5 % 0,5 % 0,2 % 0,7 % 0,4 % 0,5 % 0,2 %

Median 0,7 % 0,4 % 0,2 % 0,0 % 0,7 % 0,4 % 0,4 % 0,0 %

Std 0,1 % 1,4 % 0,5 % 2,9 % 0,1 % 1,4 % 0,5 % 2,9 %

Skew 0,59 42,94 1,61 33,70 0,02 44,72 1,70 34,33

Kurt -0,64 1953,42 2,26 1146,56 -0,80 2108,39 3,48 1196,44

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,5 % 0,0 % 0,0 % 0,0 %

q1 0,7 % 0,3 % 0,2 % 0,0 % 0,6 % 0,3 % 0,1 % 0,0 %

q3 0,8 % 0,6 % 0,7 % 0,1 % 0,8 % 0,5 % 0,8 % 0,0 %

Max 1,0 % 65,7 % 1,7 % 100,0 % 0,9 % 68,9 % 1,9 % 100,0 %

Mcf 6,6 % 13,9 % 6,9 % 15,9 %

Tjur 0,3 % 0,3 % 0,3 % 0,4 %

g180_wins_lng180_winsg180_lng180

Tjur 0,3 % 0,3 % 0,3 % 0,4 %

Def N_Def Def N_Def Def N_Def Def N_Def
Avg 0,8 % 0,5 % 0,5 % 0,2 % 0,8 % 0,4 % 0,6 % 0,2 %

Median 0,7 % 0,4 % 0,3 % 0,0 % 0,8 % 0,4 % 0,4 % 0,0 %

Std 0,2 % 1,5 % 0,6 % 2,9 % 0,1 % 1,5 % 0,6 % 2,9 %

Skew 0,38 46,88 1,16 33,84 0,18 48,17 1,30 34,47

Kurt -1,19 2246,69 -0,04 1154,01 -0,93 2372,15 0,54 1203,28

Min 0,6 % 0,0 % 0,1 % 0,0 % 0,5 % 0,0 % 0,0 % 0,0 %

q1 0,6 % 0,3 % 0,1 % 0,0 % 0,7 % 0,3 % 0,2 % 0,0 %

q3 0,9 % 0,6 % 0,8 % 0,1 % 0,8 % 0,5 % 0,7 % 0,1 %

Max 1,0 % 72,9 % 1,6 % 100,0 % 1,0 % 76,3 % 1,7 % 100,0 %

Mcf 6,8 % 12,2 % 7,2 % 13,8 %

Tjur 0,3 % 0,4 % 0,3 % 0,4 %

g250_wins_lng250_winsg250_lng250
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Reorganization Sample 

 

 

 

 

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,9 % 1,5 % 2,1 % 0,4 % 3,9 % 1,5 % 2,2 % 0,4 %

0,0 % Median 3,8 % 1,1 % 1,1 % 0,0 % 3,8 % 1,1 % 1,1 % 0,0 %

2,9 % Std 2,0 % 3,1 % 2,8 % 3,1 % 2,0 % 3,1 % 3,0 % 3,1 %

33,64 Skew 0,52 25,12 2,09 29,19 0,44 25,25 1,99 28,34

1144,70 Kurt 0,20 769,27 3,97 933,36 0,01 774,84 3,12 891,51

0,0 % Min 0,2 % 0,0 % 0,0 % 0,0 % 0,2 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,7 % 0,5 % 0,5 % 0,0 % 2,7 % 0,5 % 0,4 % 0,0 %

0,1 % q3 4,7 % 2,0 % 2,1 % 0,2 % 4,6 % 2,1 % 2,0 % 0,2 %

100,0 % Max 8,8 % 99,3 % 11,5 % 100,0 % 8,2 % 99,3 % 11,5 % 100,0 %

Mcf 11,3 % 15,0 % 11,2 % 15,4 %

Tjur 2,4 % 1,7 % 2,3 % 1,8 %

h90_winsh90_lnh90h90_wins_ln h90_wins_ln

Tjur 2,4 % 1,7 % 2,3 % 1,8 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,6 % 1,5 % 2,0 % 0,4 % 3,6 % 1,5 % 1,8 % 0,4 %

0,0 % Median 3,4 % 1,2 % 0,9 % 0,0 % 3,5 % 1,2 % 1,0 % 0,0 %

2,9 % Std 1,8 % 3,1 % 2,7 % 3,1 % 1,7 % 3,0 % 2,2 % 3,1 %

33,75 Skew 0,44 26,23 2,13 28,30 0,28 26,38 1,91 29,20

1149,87 Kurt 0,10 815,29 4,28 889,31 -0,10 821,72 3,49 931,56

0,0 % Min 0,5 % 0,0 % 0,0 % 0,0 % 0,5 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,6 % 0,6 % 0,4 % 0,0 % 2,6 % 0,6 % 0,4 % 0,0 %

0,1 % q3 4,4 % 2,1 % 2,1 % 0,2 % 4,3 % 2,1 % 1,9 % 0,2 %

100,0 % Max 7,8 % 99,4 % 11,1 % 100,0 % 7,5 % 99,4 % 9,4 % 100,0 %

Mcf 10,4 % 13,5 % 10,3 % 13,6 %

Tjur 2,1 % 1,6 % 2,1 % 1,4 %

h180_wins_ln h180 h180_ln h180_wins h180_wins_ln

Tjur 2,1 % 1,6 % 2,1 % 1,4 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,8 % 1,5 % 1,7 % 0,4 % 3,7 % 1,5 % 1,8 % 0,4 %

0,0 % Median 3,3 % 1,1 % 0,9 % 0,1 % 3,3 % 1,2 % 0,8 % 0,0 %

2,9 % Std 1,9 % 3,1 % 1,9 % 3,0 % 1,8 % 3,1 % 2,2 % 3,1 %

33,66 Skew 0,46 25,90 1,71 30,53 0,29 26,10 1,79 28,57

1145,58 Kurt -0,09 800,82 2,67 995,30 -0,35 809,50 3,12 898,44

0,0 % Min 0,4 % 0,0 % 0,0 % 0,0 % 0,4 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,8 % 0,5 % 0,6 % 0,0 % 2,8 % 0,5 % 0,5 % 0,0 %

0,1 % q3 4,6 % 2,0 % 2,1 % 0,3 % 4,5 % 2,0 % 2,0 % 0,2 %

100,0 % Max 8,1 % 99,6 % 7,7 % 100,0 % 7,7 % 99,6 % 9,3 % 100,0 %

Mcf 10,7 % 12,6 % 10,5 % 14,5 %

Tjur 2,2 % 1,3 % 2,1 % 1,4 %

h250_wins_ln h250 h250_ln h250_wins h250_wins_ln

Tjur 2,2 % 1,3 % 2,1 % 1,4 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,0 % 1,5 % 1,5 % 0,4 % 2,9 % 1,5 % 1,4 % 0,4 %

0,0 % Median 2,9 % 1,3 % 0,9 % 0,1 % 2,7 % 1,3 % 0,7 % 0,1 %

3,8 % Std 1,1 % 3,2 % 1,6 % 4,1 % 1,1 % 3,1 % 1,6 % 4,1 %

24,88 Skew 0,17 24,40 1,94 22,89 0,23 24,66 2,09 22,83

629,08 Kurt 0,15 664,57 3,68 543,13 0,26 682,21 4,53 539,85

0,0 % Min 0,6 % 0,0 % 0,0 % 0,0 % 0,6 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,5 % 0,8 % 0,5 % 0,0 % 2,5 % 0,8 % 0,5 % 0,0 %

0,1 % q3 3,5 % 1,9 % 1,5 % 0,2 % 3,3 % 1,9 % 1,3 % 0,2 %

100,0 % Max 5,7 % 98,5 % 7,1 % 100,0 % 5,5 % 98,0 % 7,3 % 100,0 %

Mcf 9,1 % 14,4 % 8,6 % 14,6 %

Tjur 1,5 % 1,0 % 1,4 % 0,9 %

h5Y_wins_ln h5Y h5Y_ln h5Y_wins h5Y_wins_ln
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Tjur 1,5 % 1,0 % 1,4 % 0,9 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 2,9 % 1,5 % 1,4 % 0,4 % 2,8 % 1,5 % 1,3 % 0,4 %

0,0 % Median 2,7 % 1,4 % 0,8 % 0,1 % 2,6 % 1,4 % 0,6 % 0,1 %

3,9 % Std 1,1 % 3,1 % 1,5 % 4,0 % 1,0 % 3,0 % 1,6 % 4,1 %

24,62 Skew 0,18 24,92 1,98 23,03 0,22 25,12 2,17 22,67

615,12 Kurt 0,21 689,30 3,91 549,23 0,26 704,36 4,98 533,58

0,0 % Min 0,6 % 0,0 % 0,0 % 0,0 % 0,6 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,4 % 0,8 % 0,5 % 0,0 % 2,4 % 0,8 % 0,5 % 0,0 %

0,0 % q3 3,4 % 1,9 % 1,5 % 0,2 % 3,2 % 1,9 % 1,3 % 0,2 %

100,0 % Max 5,3 % 97,8 % 6,7 % 100,0 % 5,2 % 97,2 % 7,5 % 100,0 %

Mcf 8,3 % 14,2 % 8,0 % 13,9 %

Tjur 1,3 % 0,9 % 1,2 % 0,9 %

hTot_wins_ln hTot hTot_ln hTot_wins hTot_wins_ln

Tjur 1,3 % 0,9 % 1,2 % 0,9 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,2 % 1,5 % 2,1 % 0,4 % 3,1 % 1,5 % 1,8 % 0,4 %

0,0 % Median 3,1 % 1,3 % 1,0 % 0,0 % 3,0 % 1,3 % 0,9 % 0,1 %

3,6 % Std 1,4 % 3,2 % 2,9 % 3,7 % 1,3 % 3,1 % 2,3 % 3,7 %

27,74 Skew 0,41 24,37 2,30 25,01 0,21 24,56 2,04 25,30

771,82 Kurt 0,50 661,75 5,13 663,27 0,26 674,16 3,54 674,61

0,0 % Min 0,5 % 0,0 % 0,0 % 0,0 % 0,5 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,5 % 0,7 % 0,4 % 0,0 % 2,4 % 0,7 % 0,4 % 0,0 %

0,1 % q3 3,6 % 2,0 % 1,7 % 0,2 % 3,7 % 2,0 % 2,0 % 0,2 %

100,0 % Max 6,6 % 98,6 % 12,7 % 100,0 % 5,9 % 98,1 % 9,4 % 100,0 %

Mcf 9,5 % 15,3 % 9,0 % 14,2 %

Tjur 1,7 % 1,7 % 1,6 % 1,4 %

g90*_wins_ln g90* g90*_ln g90*_wins g90*_wins_ln

Tjur 1,7 % 1,7 % 1,6 % 1,4 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 2,9 % 1,5 % 1,7 % 0,4 % 3,0 % 1,5 % 1,8 % 0,4 %

0,0 % Median 2,8 % 1,4 % 0,8 % 0,1 % 2,9 % 1,4 % 0,8 % 0,0 %

2,9 % Std 1,1 % 2,6 % 2,4 % 3,1 % 1,2 % 2,7 % 2,5 % 3,2 %

33,30 Skew 0,11 29,87 2,21 28,68 -0,04 29,43 2,00 26,68

1127,64 Kurt 0,58 1034,39 4,48 903,72 0,26 1002,89 3,15 805,91

0,0 % Min 0,5 % 0,0 % 0,0 % 0,0 % 0,5 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,5 % 0,8 % 0,5 % 0,0 % 2,5 % 0,8 % 0,4 % 0,0 %

0,0 % q3 3,3 % 2,0 % 1,6 % 0,2 % 3,6 % 2,0 % 2,0 % 0,2 %

100,0 % Max 5,4 % 99,9 % 10,1 % 100,0 % 5,3 % 99,9 % 9,6 % 100,0 %

Mcf 6,9 % 13,7 % 7,2 % 15,2 %

Tjur 1,3 % 1,4 % 1,4 % 1,5 %

g180*_wins_ln g180* g180*_ln g180*_wins g180*_wins_ln

Tjur 1,3 % 1,4 % 1,4 % 1,5 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 2,9 % 1,5 % 1,5 % 0,4 % 3,1 % 1,5 % 1,7 % 0,4 %

0,0 % Median 2,8 % 1,4 % 0,9 % 0,1 % 2,9 % 1,4 % 0,9 % 0,1 %

3,5 % Std 1,0 % 2,6 % 1,6 % 3,7 % 1,2 % 2,8 % 1,9 % 3,7 %

27,74 Skew -0,04 27,81 1,62 25,65 0,13 26,34 1,68 25,13

772,14 Kurt 0,02 939,59 2,17 686,65 0,09 834,62 1,97 664,85

0,0 % Min 0,7 % 0,0 % 0,0 % 0,0 % 0,6 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,5 % 0,8 % 0,6 % 0,0 % 2,6 % 0,8 % 0,6 % 0,0 %

0,1 % q3 3,4 % 2,0 % 1,8 % 0,3 % 3,6 % 2,0 % 1,8 % 0,3 %

100,0 % Max 5,1 % 99,9 % 6,4 % 100,0 % 5,5 % 100,0 % 7,1 % 100,0 %

Mcf 7,2 % 13,0 % 7,9 % 13,4 %

Tjur 1,4 % 1,1 % 1,6 % 1,3 %

g250*_wins_ln g250* g250*_ln g250*_wins g250*_wins_ln
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Tjur 1,4 % 1,1 % 1,6 % 1,3 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,0 % 1,5 % 1,6 % 0,4 % 3,3 % 1,5 % 1,8 % 0,4 %

0,0 % Median 3,1 % 1,3 % 1,0 % 0,1 % 3,2 % 1,2 % 1,0 % 0,1 %

2,9 % Std 1,3 % 2,6 % 2,0 % 3,1 % 1,5 % 2,8 % 2,1 % 3,1 %

33,90 Skew 0,14 27,28 2,54 29,96 0,10 26,47 2,12 29,86

1156,19 Kurt 0,44 903,41 6,84 969,33 0,20 846,67 4,78 964,19

0,0 % Min 0,3 % 0,0 % 0,0 % 0,0 % 0,2 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,2 % 0,7 % 0,3 % 0,0 % 2,5 % 0,6 % 0,5 % 0,0 %

0,1 % q3 3,6 % 2,1 % 1,7 % 0,3 % 3,9 % 2,1 % 1,8 % 0,3 %

100,0 % Max 6,2 % 96,9 % 9,2 % 100,0 % 6,8 % 98,4 % 9,4 % 100,0 %

Mcf 8,2 % 11,0 % 9,3 % 11,6 %

Tjur 1,4 % 1,2 % 1,8 % 1,3 %

g90_wins_ln g90 g90_ln g90_wins g90_wins_ln

Tjur 1,4 % 1,2 % 1,8 % 1,3 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 2,9 % 1,5 % 1,7 % 0,4 % 3,3 % 1,5 % 1,8 % 0,4 %

0,0 % Median 3,0 % 1,3 % 1,1 % 0,1 % 3,2 % 1,1 % 1,0 % 0,0 %

2,9 % Std 1,1 % 2,8 % 2,1 % 3,1 % 1,2 % 2,9 % 2,3 % 3,1 %

34,33 Skew -0,09 28,91 2,23 29,49 -0,06 28,59 2,33 27,83

1196,44 Kurt 0,65 942,10 4,96 944,46 0,63 933,62 5,74 870,98

0,0 % Min 0,4 % 0,0 % 0,0 % 0,0 % 0,4 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,4 % 0,8 % 0,5 % 0,0 % 2,8 % 0,6 % 0,5 % 0,0 %

0,0 % q3 3,4 % 2,0 % 1,8 % 0,3 % 3,8 % 1,9 % 2,0 % 0,1 %

100,0 % Max 5,3 % 99,2 % 8,8 % 100,0 % 6,0 % 99,9 % 10,5 % 100,0 %

Mcf 7,7 % 12,2 % 9,4 % 15,6 %

Tjur 1,4 % 1,3 % 1,8 % 1,4 %

g180_wins_ln g180 g180_ln g180_wins g180_wins_ln

Tjur 1,4 % 1,3 % 1,8 % 1,4 %

N_Def Def N_Def Def N_Def Def N_Def Def N_Def
0,2 % Avg 3,9 % 1,5 % 1,9 % 0,4 % 3,7 % 1,4 % 1,9 % 0,4 %

0,0 % Median 3,7 % 1,1 % 1,1 % 0,1 % 3,6 % 1,0 % 1,0 % 0,0 %

2,9 % Std 2,0 % 2,8 % 2,5 % 3,0 % 1,7 % 2,8 % 2,4 % 3,1 %

34,47 Skew 0,75 24,52 2,06 29,98 0,33 25,86 1,85 28,29

1203,28 Kurt 0,43 798,06 3,57 969,67 -0,10 835,20 2,92 896,56

0,0 % Min 0,3 % 0,0 % 0,0 % 0,0 % 0,2 % 0,0 % 0,0 % 0,0 %

0,0 % q1 2,8 % 0,5 % 0,6 % 0,0 % 2,7 % 0,5 % 0,4 % 0,0 %

0,1 % q3 4,6 % 2,1 % 1,9 % 0,3 % 4,6 % 2,0 % 2,1 % 0,2 %

100,0 % Max 8,8 % 100,0 % 9,8 % 100,0 % 7,5 % 100,0 % 9,8 % 100,0 %

Mcf 10,6 % 13,8 % 10,6 % 15,8 %

Tjur 2,4 % 1,6 % 2,3 % 1,5 %

g250_wins_ln g250 g250_ln g250_wins g250_wins_ln
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Appendix C - CAP Curves 

The tables below display the different CAP curves for the different versions of the 

MCD models, as well as the curves for Altman’s Z-score and Ohlson’s O-score. 

Every CAP curve of the MCD model is compared to the best performing model in 

terms of AR, the random model and the perfect model with respect to its default 

sample. “Prf” signifies the perfect model and “Rnd” signifies the random model.  

Bankruptcy Sample 
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Reorganization Sample 
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Appendix D – Vasicek One Factor Model 

 

 

 

  

Vasicek_Bankruptcy_Ln

g250 Year h90 h180 h250 h5Y hTot g90* g180* g250* g90 g180 g250

0,004 2015 0,51   0,24   0,16   0,08   0,06   0,19   0,36   0,28   0,57   0,45   0,37   

0,001 2014 0,03   0,04   0,09   0,04   0,03   0,03   0,03   0,07   0,05   0,06   0,13   

5E-05 2013 0,00   0,02   0,01   0,00   0,00   0,01   0,01   0,00   0,00   0,01   0,01   

7E-04 2011 0,02   0,03   0,08   0,04   0,04   0,02   0,03   0,10   0,02   0,04   0,07   

0,058 2009 7,14   5,88   5,53   21,72 21,73 25,01 5,32   23,76 6,50   5,83   5,81   

6E-04 2002 0,08   0,06   0,08   0,02   0,02   0,03   0,02   0,05   0,10   0,05   0,06   

7E-06 2001 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   

g250 Vasicek_Reorganization_Ln

5E-10 Year h90 h180 h250 h5Y hTot g90* g180* g250* g90 g180 g250

1E-04 2015 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   

1E-07 2014 0,00   0,00   0,01   0,01   0,00   0,00   0,00   0,00   0,00   0,01   0,01   

0,007 2013 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   

3E-11 2012 1,72   1,15   0,74   0,39   0,37   0,86   0,51   0,61   1,30   0,84   0,65   

1E-04 2011 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   

1E-06 2010 0,00   0,02   0,19   0,00   0,00   0,00   0,00   0,00   0,00   0,01   0,01   

8E-14 2009 0,00   0,00   0,00   0,00   0,00   0,01   0,00   0,01   0,00   0,00   0,00   

4E-09 2008 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   

2007 0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   0,00   
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Appendix E - DD Distribution 

Below follow descriptive statistics of the DD-values and the logarithmic 

transformed DD-values. The h90 and the h90_ln model are chosen to represent the 

effect. In the descriptive statistics table, “Avg”: the average, “stdev”: the sample 

standard deviation, “Skew”: skewness, “Kurt”: Excess kurtosis, “min” and “max” 

is the minimum and maximum DD value, “q1” and “q3” is the first and thirds 

quartiles and “b(1) and b(2) is the intercept and coefficient value for the logit model. 

The graphs below are the distribution of the DD values. 

 

 

 

 

  

Bankruptcy_Sample
h90 h90_ln

Avg 4,99     1,37     

Median 4,21     1,44     

stdev 3,58     0,77     

skew 1,45     1,14-     

kurt 5,37     3,91     

min 18,96-   3,58-     

q1 2,68     0,99     

q3 6,30     1,84     

max 30,10   3,40     

b(1) 4,37-     0,29-     

b(2) 4,44-     1,07-     
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Appendix F - PD Evolvement 

Appendix F shows how PDs of defaulters evolve over time. The years of default 

for each respective defaulting firm is displayed in the tables, while the firms’ PD 

evolvement is displayed in the graphs below.  

 

 

 

Bankruptcy Sample 

 

 

Bankruptcy_Sample
Firm #Def Year

404 1 2015

378 1 2014

623 1 2013

743 1 2013

431 1 2011

324 1 2009

603 1 2009

642 1 2009

488 1 2002

340 1 2001

421 1 2001

11

Default_Sample
Firm #Def Year

64 1 2010

65 1 2006

98 1 2011

114 2 2008,2009

130 1 2010

137 1 2014

139 2 2012,2014

153 1 2014

166 2 2008,2010

170 1 2010

199 1 2008

324 1 2008

378 3 2011,2013,2014

384 1 2011

404 1 2014

415 3 2008,2011,2013

431 1 2010

473 2 2008,2012

550 1 2008

603 1 2008

623 2 2009,2012

642 1 2008

692 2 2007,2008

693 1 2007

729 1 2007

743 1 2012

Sum_def: 36
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Reorganization Sample 
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Appendix G - VBA Codes 

The VBA codes applied in this study are displayed in the following link.  

https://drive.google.com/open?id=0B3G7PewLNHcXSl8wV3JBRnp0TU0 

  

https://drive.google.com/open?id=0B3G7PewLNHcXSl8wV3JBRnp0TU0
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Prologue 

In the backwash of the fall in the oil price, multiple Norwegian High Yield bonds 

have experienced a substantial increase in spreads, which in theory could an 

increase in credit risk. Our preliminary research indicates that about 20% of 

Norwegian Gross Domestic Product stems from the petroleum industry, and thus 

the shockwaves from the fall in the oil price may increase credit risk on a national 

basis. In our study, we will attempt to quantify credit risk amongst defaulted 

Norwegian High Yield companies that have been listed on the Oslo Stock 

Exchange. In particular, we will study following research question: 

How well does Merton’s extended corporate debt model perform in 

predicting defaults amongst Norwegian High Yield companies? 

This preliminary analysis is split in six parts. Part one provides a summary of the 

motivation for our area of study. Part two presents a review of existing literature 

on the topic at hand. Part three provides some theoretical basis for our study. Part 

four outlines our methodology. Part five presents our data and resources. Lastly, 

part six contains a brief summary of the main challenges we expect to encounter 

in our research. 

  



Preliminary Thesis in GRA 19002  15.1.2015 

2 

Part I - Motivation for study 

Our motivation for studying credit risk
1
 amongst Norwegian high yield (HY) 

firms can be summarized in two key points: firstly, it is anchored in the country’s 

dependency on the petroleum sector and the notable increase in credit spreads 

amongst HY firms. Secondly, our motivation is connected to the challenge of 

applying official rating agencies’ methodology in assessing credit risk in 

Norwegian markets. While default risk amongst Norwegian High Yield has been 

studied with statistical models, no one, to our knowledge, has attempted to apply 

structural models to do the same. The following section summarizes the basis for 

our motivation. 

The development of Norwegian dependence on the petroleum industry 

Since the 1970’s, the country of Norway has experienced an exponential growth 

in its GDP. Data on Norwegian GDP is displayed in Figure 1 below, and 

illustrates the development country’s mainland GDP and total GDP. The 

difference between the two figures in GDP reflects contribution from the 

petroleum industry and shipping (OECD 2011). GDP contribution from the 

petroleum and shipping industry represented on average 14,5% of total GDP from 

1978Q1 to 1997Q4. The industries’ contribution has since increased to 20,7% on 

average from 1998Q1 until 2015Q3, which gives an indication of Norway’s 

increasing dependence on oil & gas and shipping services.  

                                                 

1
  Credit risk as the risk that the obligor does not meet its payment on time (Lu 2008) 
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Figure 1 - Total, Mainland and petro-related GDP in Norway  

(Statistics Norway 2016) 

Norway’s dependence on petroleum and corporate debt 

Figure 2 below illustrate the extent of how different industries’ deliveries are 

dependent on the petroleum industry.  

 

Figure 2 - Percentage of deliveries to the petroleum industry out of the industry's total deliveries. 

Source: (Prestmo, Strøm og Midsem 2015) 

Services relating to extraction of petroleum represent 54% of the category’s GDP, 

while the equivalent figure is 13,5% and 9,3% for industrial and mainland 

services respectively (Prestmo, Strøm og Midsem 2015). Evidently, multiple 

industries are dependent on the petroleum industry. Data from Norsk Tillitsmann 

displayed in Figure 3 shows that petroleum related HY industries rank at the top 

of outstanding corporate debt (Norsk Tillitsmann - Stamdata 2015). Furthermore, 
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Norwegian HY companies have significant outstanding debt – 13% more than 

Norwegian corporate investment grade (IG)
2
 companies, as shown in Figure 4. 

 
Figure 3 - Outstanding HY bonds by industry 

Source: Stamdata 

 
Figure 4 - Outstanding HY debt and corporate IG debt 

Source: Stamdata 

To avoid banks taking excessive debt, regulations such as BASEL I and II have 

enforced more focus on credit risk amongst banks on international basis (Bank for 

International Settlements 2016). It is likely that future regulations will strengthen 

the focus even more. As such, understanding of default probabilities of HY bond 

issuers is a hot topic. 

Increase in credit risk amongst HY companies 

Bond yield spreads is the terminology on the spread between bond yield to 

maturity and a risk free rate. These credit spreads are assumed to compensate 

bondholders for credit risk (Hull, Options, Futures and Other Derivatives 2015). 

                                                 

2
 Corporate IG = Total IG less financials and government IG bonds 
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Multiple researchers have proven that default risk alone does not fully explain 

credit spreads, a problem referred to as ‘The Credit Spread Puzzle’ (Amato og 

Remolana 2003). Attempting to explain this puzzle is beyond the scope of our 

paper, though in regards to the motivation for our research question, we allow 

ourselves to view bond yield spreads as indications of credit risk. 

With the drop of the oil price during the fall of 2014, petroleum exposed 

industries in Norway have experienced turbulence. Figure 5 shows five selected 

Norwegian high yield (HY) bonds related to petroleum and shipping that have 

experienced a drastic increase in credit spreads in the backwash of the fall in the 

oil price. The correlation between these two time series, the average spread and 

the WTI price, is -0.92. In light of the petroleum industry’s impact on Norwegian 

GDP, and the aforementioned increase in spreads, it may be fruitful to study credit 

risk amongst Norwegian High Yield companies.  

 

Figure 5 - Average spreads over LIBOR on HY bonds for Aker ASA, Color Group, DOF Subsea, 

Seadrill and Stolt-Nilsen and spot prices for Western Texas Intermediate (WTI). 

Source: Danske Bank Markets and Yahoo Finance 

Assessing Credit risk in Norway 

Researchers of credit risk have proposed numerous ways to estimate probabilities 

of default, some of which will be discussed in our section of literature review.  

“Nationally recognized statistical rating organization” (NRSRO), is the name 

given to official credit rating agencies. These agencies are organizations that 

provide an opinion on the creditworthiness of a company or a financial 

instrument, in the form of a credit rating (U.S Securities and Exchange 
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Commission 2016). Three major U.S rating agencies are Moody’s Investors 

Services (Moody’s), Standard & Poor’s (S&P) and Fitch Investor Services (Fitch). 

The agencies’ rating methodology is frequently conveyed in their own reports, 

guiding investors and other financial institutions in understanding rating 

procedures. Norway does not have NRSRO institutions, and obtaining an NRSRO 

rating is often uneconomical (Stein, Keenan og Sobehart 2000). Norwegian 

financial institutions may provide their own rating of companies of interest, 

referred to as shadow ratings (DNB Markets 2014). Optimally, these shadow 

ratings should reflect default risk in the company, and explain the increase in 

spreads as illustrated in Figure 5. However, Fitch notes that the difficulty in 

maintaining up-to-date and adequate shadow ratings may cause discrepancy 

between the firms’ true credit risk and the one reflected in the shadow ratings 

(Fitch Ratings 2015).  

In their book ‘Rating Based Modelling of Credit Risk’, Trueck and Rachev 

acknowledges credit rating agencies’ role during the financial crisis. Specifically, 

they explains how these institutions failed to provide adequate ratings for different 

derivative products (Trueck and Rachev 2009). With the interpreted rise in credit 

risk amongst Norwegian HY companies, appropriate assessment of credit risk is 

of dire need. Without it, default probabilities may be underestimated, and debt 

holders could face significant losses. This puts further basis for our research 

question. 

We argue that there is a strong indication that Norway’s dependence on the 

petroleum industry has indeed increased throughout the past twenty years. The 

petroleum sector’s effects on the country’s industries are substantial, and 

shockwaves from the petroleum sector’s turmoil may affect large parts of the 

economy. We argue that all holders of high yield debt – banks, financial 

institutions, credit portfolio managers and private holders of corporate debt – will 

have an interest in a study of defaults with Merton’s corporate debt model. This 

puts strong basis for our research question, as previously stated; 

How well does Merton’s extended corporate debt model perform in 

predicting defaults amongst Norwegian High Yield companies? 
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Part II - Literature review 

Credit valuation and default prediction has gained much attention in global 

markets throughout the past decades (Trueck and Rachev 2009). However, 

equivalent research on Norwegian HY companies is limited. The following 

section provides a brief introduction to previous literature on this field of research. 

Two classes of credit risk models 

The first published paper on credit risk date as far back as 1932, when Fitzpatrick 

presented his findings on financial multiples as signals of imminent bankruptcy 

(Fitzpatrick 1932). Since then, research on credit risk has grown steadily. 

Throughout the past forty years, two paths of modelling credit risk have been 

primarily studied; structural models and reduced form models. Structural models 

commonly use a theoretical option pricing approach, and apply equity prices to 

solve for default probabilities. Reduced form models use a statistical approach, 

and apply historical debt prices and default risk premiums to solve for default 

probabilities (Saunders and Allen 2002). Which of the two classes of models 

perform better is highly debated. (Hull, Options, Futures and Other Derivatives 

2015) (Jarrow og Protter, Structural versus Reduced Models 2004).  

Structural models 

In 1974, Robert K. Merton proposed a model of valuing the debt of distressed 

companies – that is, companies with a significant probability of default – through 

option pricing theory (K. R. Merton 1974). This was an extension of both Black 

and Scholes’ and his own article of the general option pricing model (Black og 

Scholes 1973) (R. K. Merton 1973) . With the model, Merton defined debt as a 

function of five parameters. Specifically, 

          )       ) 

where D is the market value of the company’s debt, PV(B) is the present value of 

the face value of debt, r is risk free rate of interest, t is time and V and    are the 

market of the company’s assets and its volatility, both of which are unobservable 

parameters. The intuition behind Merton’s corporate debt model (Hereafter: the 

MCD model) approach is that equity can be seen as a call option on the firm’s 

assets, where face value of debt is viewed as a strike price. When the debt 
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matures, the equity holders may either repay the debt and keeps the assets, or 

relinquish the firm, leaving the debt holders with compromised asset value. The 

choice of repaying the debt (exercising the call option) depends on whether the 

market value of the firm’s assets is above that of its debt (Sobehart og Keenan 

1999). 

Extensions to the MCD model have since been developed by researchers such as 

Longstaff & Schwartz (1995) and Zhou (1997), who introduced the following 

concepts to Merton’s corporate debt model: 

 Jumps 

 Stochastic interest rates 

 Discrete coupons 

Traditional and reduced form models 

Empirical research on statistical models’ ability to predict defaults began in 1966, 

with Beaver’s ‘Financial Ratios as Predictors of Failure’. This has been 

recognized as the birth of traditional models to predict defaults. Although credit 

research had been in focus since the 1930’s, no previous research provided 

empirical evidence of financial ratios having predictive power in regards to 

corporate default. Beaver assessed the likelihood ratio of financial multiples such 

as cash-flow to total-debt, and determined that signs of default could be 

statistically significant even five years in advance (Beaver 1966).  

Shortly after, in 1968, Altman developed the now familiar Z-score. The score was 

a statistical output from a linear multivariate model, and proved helpful in ranking 

firm’s creditworthiness. 

The application of logistic regression to estimate models to predict defaults was 

first introduced by Ohlson (1980). He, too, tested the predictive power of financial 

multiples, of which he acquired from financial statements. This was the first time 

the output of a prediction model could be interpreted directly as a probability of 

default (Ohlson 1980).  

The application of reduced form models to address credit risk traces its roots back 

to 1994. This year, Fons illustrated the relationship between default probabilities, 

recovery rates for bonds and credit spreads (Fons 1994) (Trueck and Rachev 
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2009). He concluded that spreads for differently rated bonds should lie within 

certain intervals, and that discrepancies to the rule could be explained by a 

liquidity premium required by investors; an early reference to what should later be 

called ‘the credit spread puzzle” (Amato og Remolana 2003). Fons introduced the 

ability to incorporate other exogenous variables than financial figures into models 

to determine probabilities of default, such as corporate credit ratings and recovery 

rates
3
. 

Extensions to Fons reduced model have since been introduced. In 1997, Jarrow et 

al. provided a Markow model for the term structure of credit risk that could be 

used to price corporate debt (Jarrow, Lando and Turnbull, A Markow Model for 

the Term Structure of Credit Risk Spreads 1997). Other extensions include Duffie 

and Singleton, who extended the model to also applying the term structure of 

corporate debt (Duffie og Singleton 1999).  

Hybrid models 

Which of the types of models perform better is heavily debated. Trueck explains 

that, due to their superior performance, the types of models that have gained 

researchers’ attention the past decades are structural models and reduced form 

models (Trueck and Rachev 2009). Jarrow and Protter (2004) argue that choice 

between structural models and reduced form models is a question about the 

availability of information about the true value and volatility of firms’ assets. It is 

generally understood that the market is unable to observe the true values of assets 

(Saunders and Allen 2002). The authors claim that reduced form models are 

superior, because these models do not use asset values in their calculations. In 

contrast, Stein, Keenan and Sobehart shows that Moody’s Public Firm model, a 

hybrid extension of Merton’s option pricing model, outperforms other models 

when measuring default prediction. 

The discussion on which model performs better has contributed to the 

experimentation of hybrid models – models that combines structural and reduced 

form models. Sobehart and Stein were amongst the first to introduce a general 

hybrid model to the field of credit risk studies, which proved to perform 

                                                 

3
 The left-over capital for debt holders post default as percentage of face value (Jarrow og Protter, 

Structural versus Reduced Models 2004). 
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particularly well at predicting defaults (Sobehart og Stein, Rating methodology - 

Moody's Public Firm Risk Model: A Hybrid Approach To Modeling Short Term 

Default Risk 2000). Their studies concluded that by combining a variation of the 

MCD model with financial multiples and ratings, they were able to predict 

defaults with surprisingly high accuracy. 

Credit risk measurement of Norwegian High Yield firms 

Moving towards previous research of default risk amongst Norwegian HY firms, 

the range of studies is shortened. Bernhardsen (2001) studied the predictive power 

of multiple financial ratios in regards to defaults of Norwegian companies. He 

constructed the ‘SEBRA-model’, which incorporates multiples such as equity to 

assets, trade accounts payable to assets and liquid assets less short-term debt as a 

percentage of operating revenues. The model, which would be classified as a 

reduced form model, proved to perform well at predicting defaults (Nordahl 

Grøstad 2013). 

Although reduced form models have been used to quantify credit risk amongst 

Norwegian companies, the application of structural and hybrid models have 

gained little attention. The reason is most certainly the lack of data; Merton’s 

option pricing model requires time series of share prices and sufficient amount of 

listed defaulters (Nordahl Grøstad 2013).  
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Part III -Theory 

Merton’s corporate debt model is at the core of our research paper. This section 

provides an overview of the theoretical background the model and its extensions. 

We have put focus on the development of the model. This makes it easier to 

enlighten the model’s assumptions; these are central in regards to the model’s 

strengths and weaknesses, and how applicable the model is in practice.  

Risk neutrality and interest rate 

If one categorizes risk behavior into risk seeking, risk neutral and risk averse, it is 

generally accepted that investors fall into the latter. This implies that they require 

additional returns to compensate for any additional risk. In contrast, a risk neutral 

investor would require the same rate of return for every investment opportunity. 

The concept of risk neutral investors is not realistic. However, in regards of 

valuing derivatives, a risk neutral approach has shown to be appropriate for all 

attitudes towards risk (Hull, Options, Futures and Other Derivatives 2015). 

Another main characteristic of a risk neutral approach is that the rate can be used 

to discount an expected pay-off.  

Central in financial research is the risk free rate. In a risk neutral world, investors 

are assumed to require a return  and discount at the same rate – the risk free rate. It 

is the rate of interest one earns on one’s investments without taking any risk. The 

practical use of the risk free interest is not all that easy. The true risk free rate is in 

fact unobservable, and there is no clear answer as to which proxy one should use 

for the risk free interest rate. Natural candidates for such proxies are government 

bonds in countries with high creditworthiness, and thus common proxies for the 

risk free rate are yields of Bunds, T-bills or Gilts. However, derivative dealers 

argue that some government bonds may have a slightly lower yields than the risk 

free rate (Hull, Options, Futures and Other Derivatives 2015). They argue that the 

interbank-offered rates in banks with high creditworthiness or overnight index 

swap could be superior proxies. The choice of risk free rate proxies bears high 

importance, as only tiny differences in returns may have sever effect on financial 

valuation. 
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Stock movements 

Modeling credit risk is, as illustrated in literature review, dependent on the 

application of equity prices. Therefore, to understand Merton’s corporate debt 

model, it is crucial to understand how stock price movements are modeled.  

The following section provides a brief summary of the theoretical basis for market 

efficiency, and its connection to credit risk modeling.  

Market efficiency and Markov Property 

One heavy researched topic in finance has been that of market efficiency. In 

academics, market efficiency has been categorized into three forms: week, semi-

strong and strong market efficiency. Bodie, Kane and Marcus conclude that 

markets are generally competitive enough that investment opportunities with 

superior returns are quickly diminished by demand (Bodie, Kane og Marcus 

2014). This is in line with academics’ assumption that arbitrage
4
 opportunities are 

rare and immediately taken by arbitrageurs, which supports the hypothesis that 

markets are at least weakly efficient.  

Given the assumption of markets being efficient (at least weakly), market values 

can be said to follow a stochastic process
5
. A Markov process is stochastic, 

meaning that only the current value of a variable is relevant for predicting future 

movements, and past movements are irrelevant. Hence, the probability 

distribution of the future value is independent from past values. Hull claims that 

there is little evidence supporting long term abnormal returns from technical 

analysis
6
. Stock prices are usually assumed to follow a Markov process. 

Weiner Process 

A stochastic process can be classified as discrete or continuous in time and 

variable. From here on, we assume continuity in every variable.  

                                                 

4
An arbitrage opportunity is defined as a trading strategy that takes advantage of two securities that 

are mispriced relative to each other.  

5
 A stochastic process is the process in which the future value is uncertain (Hull, Options, Futures 

and Other Derivatives 2015). 

6
 Studying past prices of stocks. 
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A Wiener process or Brownian motion is a type of Markov process where the 

mean change is 0 and the variance is 1. During a small change in time   , the 

change in a Wiener process    will be 

    √   
Equation 1 

where   (   |   )       ) and        ). A large change in time from t=0 to 

t=T can be written as       , where   is number of time intervals, such that a 

large change in Z from time 0 to time T, can be written as  

      ∑    √  
 

   
 

Since    is independent from each other,         ) because         ). 

Generalized Wiener processes 

A generalized Wiener process is a stochastic process.  It has a mean change per 

unit time called drift rate. The name of the variance change per unit time is 

variance rate. In contrast to the basic Wiener process (Equation 1), the 

generalized Wiener process can be written as 

           

where              )   is the drift rate, and   is the variance rate. Hence, the 

expected value of   from time 0 to time   is
7
 

 [  ]        

Itô’s Lemma 

A stochastic process where the parameters in the generalized Wiener process are 

functions of its variable and time can be defined as Itô process. The mathematical 

expression for an Itô process is 

        )        )   

                                                 

7
     vanishes because E [  ]   . 
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Note that   is still a Markov process. This is because   is a function of time from 

time 0 to time t; it is still independent from past periods. Also, the process 

assumes that the parameters will stay constant in subsequent periods. From now, 

every drift rate and variance rate is written as constants but still assumed to be a 

function of the variable and time. In 1951, Itô proved that if a variable follows an 

Itô process, then      ) will follow the following process, known as Itô’s 

Lemma: 

   (     
 

 
   )        

Here,   
  

  
   

  

  
   

   

   
 and     ((     

   

 
)         ) 

In financial markets, it is usually assumed that stock prices will follow a 

stochastic process. Yet, unlike a generalized Wiener process, where drift and 

variance rate are assumed to be constant, 
  

 
 is assumed to be constant and 

independent from the stock price. Hence, the stock price of time   can be 

modeled as 

  

 
         

Equation 2 

where   is the stock price,   is the expected return (drift rate) and    is the 

variance rate. To better reflect the stock price movements (geometrical 

calculations), it is common to assume that such prices will follow a lognormal 

distribution.  Because Equation 2 is an Itô process and in light of Itô’s Lemma, the 

function      ) will have the properties 

     )      ) 

   (  
  

 
)       

Equation 3 

where      )  (     )  (  
  

 
)       ) and by integrating with respect to 

time, 

       )        )  (  
  

 
)        
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(  

  

 
)    

 

As can be seen from Equation 3, the drift rate in lognormal stock prices are 

adjusted downward compared to Equation 2. This is a well known property in 

geometric means compared to arithmetic means (Hull, Options, Futures and Other 

Derivatives 2015). 

Market Price of Risk 

Recall our previous mention that investors are generally considered to be risk 

averse, such that they require compensation for bearing risk. Investor’s price on 

such risk is termed the market price of risk. Valuation of credit risk requires some 

understanding of how the market prices such risk. In light of the assumption that 

asset values follow the same process as stock prices, equation Error! Reference 

source not found. can alternatively be expressed as 

  

 
         

Equation 4 

where   is the change of asset values in the time interval   , and   and   is the 

drift and variance rate. The generalized Wiener process is   . Mark that the 

parameters   and   are assumed to only be dependent on the asset   and the time 

 . Then, two securities that are also only dependent on   and   will have the 

process 

   

  
                     

Equation 5 

The uncertainty term    is the same for both securities as well as for the asset 

itself. This is because those three processes are based upon the same “shocks”. 

The securities are based upon the same risk, and thus it is possible to make a 

riskless portfolio   by going long      in    and short      in   : 

                

Equation 6 

such that 
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Equation 7 

and by substituting for    and    from Equation 5 into Equation 7, we have 

                     )   

Equation 8 

Here the uncertain term reflected in the Wiener process is eliminated. Hence, 

given no-arbitrage assumption,    gives the risk-free rate in return 

        

Equation 9 

where   is the risk free rate in the time interval   . And by substituting Equation 5 

into Equation 6 and then substituting Equation 6 and Equation 8 into Equation 9 

     )

  
 

     )

  
 

   

 
   

Equation 10 

  may be interpreted as the market price of risk of the asset  , that is dependent 

on both   and  . In other words, it is the trade-off between risk and return. 

Equation 10 shows that in general, for the no arbitrage condition to hold, every 

security with the same dependence on risk factors needs to have the same price,  . 

The above equation may also be expressed as 

       

Therefore, in general, the expected return from any security with multiple risk 

factors may be modelled as 

  

 
    ∑     

 

   
)       

Equation 11 

The intuition behind Equation 11 is that the expected percentage change in   in 

time interval    is the risk free rate plus the sum of the market prices times the 

quantities of risks. This relationship is crucial in the following theoretical 

concepts.  
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Martingales 

Some applications of credit risk models relate to option pricing theory, where 

option prices are heavily impacted by the concept of risk neutrality. Interest rates 

in such models are often assumed to be constant, whereas in the real world, they 

are in fact stochastic processes (Hull, Options, Futures and Other Derivatives 

2015). To fully understand risk neutral valuation with stochastic interest rates it is 

important to understand martingales and measures. A martingale can be defined as 

a stochastic process with a drift rate equal to zero.  

One aspect of this measure is particularly relevant for option pricing theory; the 

equivalent martingale measure   . This concept is most easily understood by 

thinking of two securities,   and  , that bear the same source of undertainty and 

follow an Itô process as in Equation 2. Further, imagine that one measures the 

price   
 

 
. Here,   will be the relative price of   with respect to  . Therefore,   

is the unit of measure and is referred to as the numeraire. By setting     ,   is a 

martingale for every security  . This way, the processes of the two securities can 

from be written similar to Equation 11, as 

  

 
 (      )        

  

 
 (    

 )        

Similar to stock prices, we assume that    and   are lognormally distributed, with 

the processes 

     )  (       
  

 

 
)        

     )  (  
  

 

 
)        

By using Itô’s Lemma again on 
 

 
 from the process of   (

 

 
); 

 (
 

 
)  (     )
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This process is referred to an equivalent martingale, since there is no drift rate in 

the process. If there was a drift rate, then an arbitrage opportunity exists and one 

could short the security which returns would be worse and buy the superior. To 

conclude, it is possible to write the price of   at time 0 as 

       [
  

  
] 

Equation 12 

This state of nature is referred to as a forward neutral risk world. Due to the no-

arbitrage argument,   [
  

  
] will converge to 1 such that the return of   equals that 

of  .  

In regards to risk neutral valuation,    , which implies that Equation 11 will be 

             

Equation 13 

This state is referred to as the traditional risk neutral world. Another state of a 

risk neutral world could be defined by setting the money market account as the 

numeraire,  . The process of   is 

        

Equation 14 

As can be seen from Equation 14, the change in   in the time interval dt is equal 

to the risk free rate times  . The Wiener process is eliminated because     . 

Further, from the equivalent martingale result from Equation 12, security   will 

have the same return as the money market account  . Equation 14 shows that this 

is the risk free rate  . An equivalent martingale result is normally distributed such 

that       ∫    
 
 . This implies that by setting     , the security    can be 

valued as 

      
 [

  

  
]    (  ∫    

 
   )        ̅   ) 

Here, Q is the equivalent martingale measure and  ̅ is the average risk free rate 

from time 0 to time T. The crucial point from this proof is that in a risk neutral 

state, where there is a martingale process, the expected return and discount factor 
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on every security will be the risk free rate. Forward, we are referring to the Q-

measures that are based on the theory of martingales.  

Black-Scholes-Merton Model 

As briefly summarized in the literature section, the Merton corporate debt model 

stems from Black-Scholes-Merton option pricing model (herafter: BSM-model). 

The BSM-model assume that its underlying follows an Itô process, with similar 

structure as Equation 2. The model assumes access to risk-free investments, with 

the following process 

        

where   is the risk free interest rate,    is the change in price of the risk free 

security of time   . Note how the uncertainty, reflected through the Wiener 

process   , is non-existent in the process. 

Recall that in a risk-neutral world, the expectation from every security, both risky 

and risk-free, will be  . Therefore, as in  Equation 13, 

             

Recall that   is assumed to be lognormally distributed, and that every function 

based upon an Itô process will have the properties of Equation 2. If   is a function 

of   and time, then the following relationship can be expressed from time 0 to 

time T as 

    

  
   [  

  

  
)] 

E reflects the risk neutral expectations with a Q-martingale measure, where   is 

the numeraire. The present value of a future risk-free investment can be written as 

      
    

such that 

       [    )] 
    

By having equation x and equation x in mind we can write 
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      ∑    √  
 

   
  √   

where   ∑   
 
   and        ). This implies that 

      ) 

    )   (   
(  

  

 
)    

) 

 (   
(  

  

 
)    

)   (   
 ̂    √ )  

where  ̂  (  
  

 
). Every term in the equation above is assumed to be constant, 

except Y is assumed to be constant. Therefore, G can be interpreted as a function 

of Y:    )  

   )       
 ̂    √ ) 

Since Y is standard normally distributed, equation x can be written as 

  [    )]  ∫    )    )
  

  

 ∫    )   )  
  

  

 

Equation 15 

where 

   )  
 

√  
  

 
 
  

 

Equation 16 

It is from here that the option pricing becomes specific. If we assume that ξ(y) is a 

European call option on the underlying S, where the strike price is K 

   )             ) 

where,     )           
  (

 

  
)  ̂ 

 √ 
8 

The critical point where    ) turns to zero can be denoted as 

                                                 

8
    

 ̂    √         )   ̂    √      ) 
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  (

 
  

)   ̂ 

 √ 
 

Then, Equation 15 can be written as 

  [    )]  ∫    )   )   
  

  

∫    )   )  
  

  

 ∫    )   )  
  

  

 

By some algebraic manipulations this can be written as 

  [    )]     
  ∫   

 
 
     √    )  

  

  

  ∫    )  
  

  

 

Equation 17 

The second integral in Equation 17 can be rewritten due to symmetry in a standard 

normal variable, such that 

∫    )  
  

  

 ∫    )  
   

  

        )       ) 

where     
  (

  
 

)  ̂ 

 √ 
 

By substituting equation Equation 16 into Equation 17, the first integral can be 

written as 

∫   
 
 
     √    )  

  

  

 
 

√  
∫   

 
 
(   √ )

    

  

  (   √     )

  (       √ )         √ ) 

In the BSM-model:      )      ) and  (     √ )      ) 

To conclude the BSM-meodel, when    ) has the boundaries of the a european 

call option, we have that 

       [    )] 
          )           ) 

Equation 18 
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Merton Corporate Debt model 

In a very simple case, where a company’s assets are financed through equity and 

zero-coupon bonds, the payoff structure for each type of investment may be 

described as 

           ) 

      )            ) 

Here,   represents equity value,   represents the debt value,     ) is the present 

value of the face value and   is the market value of the assets. In other words, 

equity value can be seen as a call option on the assets at a strike price equal F and 

debt value can be interpreted as its present value less the put price on the assets at 

the same strike price. It is assumed that the assets will follow an Itô process as 

described in Equation 2. In a risk neutral state, asset values are assumed to have 

the process 

             

Such that from the BSM-model Equation 18, the equity value as a call option may 

be expressed as 

       )           ) 

Equation 19 

where,    
  (

  
 

) (  
  
 

 
) 

  √ 
 and         √  

The catch here is that the market value and the volatility of the assets are 

unobservable. However, by observing equity prices of publicly traded companies, 

it is possible to calculate   and    applying Itô’s Lemma on Equation 19, so that 

        )    

Equation 20 

Together Equation 19 and Equation 20 make a set of equations with two 

unknowns,   and   , and thus the market value of corporate debt may be 

calculated 

      

Equation 21 
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Figure 6 - Graphical illustration of Merton's corporate debt model 

Figure 6 summarizes the MCD model from time 0 to time T. The blue line reflects 

how a hypothetical firm’s assets may evolve over time, while the red line reflects 

the expected increase in the asset value as time evolves. Realistically, the actual 

asset movement will not move linearly as the market expects. The difference 

between the red and the blue line is the volatility of the asset. In the figure, 

           √  
  (

  

 
)  (  

  
 

 
) 

  √ 
 

   in Figure 6 is the «distance to default» that gives the distance between the 

expected value of the firm’s assets and the set point of default. It is standardized 

by dividing the distance by the estimated volatility of the assets from time 0 to T. 

The model assumes that the asset values are normally distributed around its mean. 

From Equation 21, the market value of debt can now be expressed as 

                   )         )) 

where 

     )        )          

     ), the grey area below F in Figure 6, is the risk neutral probability of 

default. Merton’s option pricing theory assumes that every sort of risk is reflected 

into market price of the assets. This implies that the risk neutral probabilities will 

apply to the real world (Hull, Options, Futures and Other Derivatives 2015). 
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Extensions to Merton’s corporate debt model 

While having strong theoretical basis, MCD model does meet multiple challenges 

when applied in practice. Changes in interest rates and asset prices or coupon 

obligations throughout time are all aspects of corporate debt that require 

modifications to the model. In our thesis, we will investigate and attempt to apply 

three particular extensions to the model: 

 The extension of modeling stochastic interest rates 

 The extension of modeling jumps in asset prices 

 The extension of modeling discrete coupon payments 

The rather portentous proofs we have presented above is all the works of Kiyosi 

Itô, Robert Brown, Myron Scholes, Fischer Black and Robert Merton. The proofs 

themselves bear little relevance for this thesis, yet the assumptions they carry does 

affect the applicability of our methodology. Specifically, in order to use 

extensions of Merton’s model, it is practical to refer to which parts of the 

theoretical basis are applied. 

  



Preliminary Thesis in GRA 19002  15.1.2015 

25 

Part IV – Methodology 

Existing literature on methods to assess credit risk has indeed flourished 

throughout the past two decades, and structural and reduced form models are 

central in the field of research. In this study, we attempt to construct a default 

prediction model by combining structural and reduced form models; a so called 

hybrid model. The goal is to build a hybrid model that outperforms both Merton’s 

initial model as well as acknowledged reduced form models in predicting defaults 

amongst Norwegian HY companies. To our knowledge, such a study has not yet 

been conducted for the Norwegian market. Given the particular credit risk present 

in the Norwegian petroleum industry, an up-to-date default prediction model with 

respectable accuracy would be valuable.  

Regression model 

The complexity of credit risk is non-linear, and thus standard linear regression 

models will not suffice as tools to model default probabilities (Saunders and Allen 

2002). This causes linear models such as Altman’s Z-score to be less reliable. A 

more suitable approach to modeling credit risk is by a logistic regression model, 

or simply, the logit model (Woolridge 2009). This is a type of binary response 

model with the form: 

     | )         ) 

Here   is a set of independent explanatory variables and   is the coefficients that 

best fit the condition 

 {
              

           
 

and   is the residual which is assumed to be independent from   with symmetrical 

distribution of zero. In the logit model, the cumulative distribution function (CDF) 

  for standard logic random variables has the function: 

   )  
 

     
 

Equation 22 

Here,      )    for    . As             )    and as  

              )   . Further,       | ) may be interpreted as the 
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probability of an observed company (the dependent variable) defaults, taking the 

value of 1. The suggested model should include variables such as Merton’s 

implied probability of default      ), leverage financials, interest coverage 

financials, operational financials, and macro economic variables.  

Due to the model’s non-linearity, it cannot be estimated using Ordinary Least 

Squares (OLS). A more appropriate method to estimate the parameters is 

maximum likelihood (ML). Another consequence of the non-linearity of the logit 

model is stricter rules of interpreting the estimated coefficients. While one is still 

able to determine the direction of a variable’s impact by observing the estimated 

coefficient, exact determination of each of the coefficients’ impact is only 

observable through derivation of    ) with respect to each variable.  

Measuring model performance 

We will proceed by comparing the estimated probability of default of the 

population with the actual defaults. Estimates of the models can be logged by 

categorizing them into four groups;  

 true positive (TP) – Predicting high default rate in actual default event 

 true negative (TN) – Predicting low default rate in actual non-default event 

 false positive (FP) – Predicting high default rate in actual non-default event 

 false negative (FN) – Predicting low default rate in actual default event 

Figure 6 presents each error’s consequences bondholders. 

 

Figure 7 - Bondholders consequences of model prediction 
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The above categorization of estimates is crucial to our selected method of 

studying model precision. Inspired by Moody’s Investors Service (Sobehart og 

Stein, Rating methodology - Moody's Public Firm Risk Model: A Hybrid 

Approach To Modeling Short Term Default Risk 2000) and Fitch Solutions (Fitch 

Solutions 2007), we aim to study each model’s accuracy by applying two 

particular performance measurements: Cumulative Accuracy Profile (CAP) and 

Accuracy Ratio (AR).  

Cumulative Accuracy Profile 

The first performance measurement, CAP, is a visual tool which offers qualitative 

assessment of performance by plotting different models’ precision and comparing 

it with a perfect model and one based on random guesses. Figure 8 illustrates the 

accuracy of a random model, an ideal model and an estimated model. 

 

Figure 8 - Hypothetical CAP curves for perfect, random and estimated model. 

Source: Quantitative Finance Research Centre, UTS (2006) 

                       
  

     
 

Equation 23 

 

                    
     

 
 

  
     

 
 

The fraction of defaulters can be interpreted as the amount of correctly predicted 

defaulters as a fraction of the total amount of actual defaulters. Fraction of 

obligors can be interpreted as total amount of default predictions as a fraction of 
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the sample size. X is the actual amount of defaulters as a fraction of the sample 

size. Moreover; 

 The perfect model (PM) represent how precise the estimated model could 

possible be. It sorts out defaulters and non-defaulters with perfect 

accuracy. In the figure, X would mark the changing point where the 

observations turn from defaulters to non-defaulters, from left to right.  

 The random model (RM) is the worst kind of model one could possible 

estimate. It can be interpreted as a model that randomly picks defaulters 

and non-defaulters with equal probability.  

 The estimated model (EM) represents the performance of the estimated 

model.  

Accuracy Ratio 

In quantifying predictive power, one application of Figure 8 is the measurement of 

accuracy ratio (AR). This figure is a linear transformation that is based on 

integrals of integrals’ CAP curves. Given the denotations in the figure, AR can be 

expressed as  

   
  

  
 

As such, the closer a model’s AR is to 1, the higher its predictive power.  

Recall how the logistic regression    ) from Equation 22 provides an output 

between 0 and 1. At which point from 0 to 1 is it appropriate to assume that a 

company is likely to default? This threshold is up to the researchers to define, and 

is referred to as the cut-off,  . It has a major impact on the estimated fraction of 

defaulters (Equation 23) and thus how well the model performs. By assuming that 

rating systems produces continuous rating scores it is possible find AR as a 

function of   (Engelmann, Hayden og Tasche 2003). 

From a randomly perspective, it is possible to draw in three different ways: 

 Draw randomly from the total sample of obligors N, denoted as    

 Randomly drawn from the total sample of defaulters   , denoted as    
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 Drawn randomly from the total sample of non-defaulters    , denoted as 

   .  

In this case, it is therefore possible to find    from the the cumulative 

distribution function 

      )  
        )            )

      
 

since the area under the “worst case model” is 0,5, it is possible to find    by 

   ∫       )       )     
 

 

 

Thus    may be expressed as 

   
   

  
 

To conclude, AR is a tool to quantify the CAP curves in Figure 8. It is an 

analytical tool that allows the researchers to rank models by their precision with a 

single statistic; even models that produce an output that is difficult to compare, 

such as Altman’s Z-score.   
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Part V - Data 

Default data 

Our study will primarily be based on data on default events throughout the period 

of 2007-2015. The data is provided by Nordic Trustee through the group’s 

database Stamdata. Independently owned by Nordic banks, insurance companies 

and security brokers, Nordic Trustee serves as a third party information agent 

assisting bond investors. Specifically, the group ensures that debt issuers comply 

with scheduled payments and covenants. In cases of breaches of loan agreements, 

Nordic Trustee may proceed with legal actions.  

The group’s subsidiary and primary source of information, Stamdata, offers 

unparalleled information on bonds; including up-to-date figures and loan 

documents for all structured debt securities issued by government, municipals, 

banks or corporate borrowers. Amongst Stamdata’s products is information on 

corporate defaults and recovery rates. This product offers an overview over all 

recorded credit events in the Nordic region; events where companies have filed 

for bankruptcy, failed to pay instalments, applied for restructuring or relaxations 

of bank covenants.  

The data we currently possess consists of approximately 100 companies which 

have experienced a credit event in the period of 2007-2015. Of these, 35 

companies have been listed and experienced a default where bondholders’ face 

value was compromised. This is not a particularly large sample, which is may be 

one of the reasons why a similar study has not been conducted on the Norwegian 

HY marked already. Sobehart, Keenan and Stein (2000) explains that, while out-

of-sample and out-of-time test of models’ performance would be the optimal way 

of testing and comparing default prediction models, such amounts of default data 

is rarely available (Sobehart, Keenan og Stein, Benchmarking Quantitative 

Default Risk Models 2000). Previous researchers of credit risk with experience 

with our type of methodology claim that a sample of 50 defaulted companies will 

suffice in order to obtain general statistical findings (Engelmann, Hayden og 

Tasche 2003). Hence, amongst the challenges of our study is the pursuit of 

sufficient data. 
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Accounting information and share price data 

In addition to credit event data on defaulted companies, we will need share price 

data on both defaulted and non-defaulted companies. This is necessary for the 

application of the extended MCD model. Furthermore, historical accounting 

information will be necessary in order to construct financial variables that may be 

used alone or together with the extended MCD model. Such information is usually 

available either on Bloomberg, of which we are familiar with, or the companies’ 

financial statements. All computations and modelling will be performed with 

Excel and R. 

Even though our primary source of default information will stem from Stamdata, 

we will investigate the database of BI Finance Faculty, which contains 

information on listed companies from 1994 and onwards.  
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Part VI – Epilogue 

We are thankful for having acquired access to data from Danske Bank Markets on 

credit spreads, bond flows and volumes. Furthermore, we are grateful for 

Stamdata’s contribution of default and recovery statistic, as well as substantial 

data on the Norwegian bond market in general. Although the data we have 

acquired so far is of high quality and detrimental value to our research, we fear 

that the empirical quality of our final findings may suffer from a small sample 

size. As such, one of the main challenges of our thesis will be to obtain more data 

on historical defaults of listed companies. Access to the internal database of BI’s 

Finance Faculty may assist us in our search for sufficient data.  

Another challenge of our thesis is the amount of assumptions of which the MCD 

model is based upon. While extensions to the model will help, the practical 

application of the model may be thwarted by unrealistic assumptions.  

We expect that the learning outcome of our Master’s Thesis is significant, and 

hopefully a respectable conclusion to the education we have attained at BI 

Norwegian Business School.  
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