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Abstract 

Throughout this thesis we examine the risk adjusted performance of all actively 

managed Norwegian equity mutual funds, using a comprehensive dataset free of 

survivorship bias, spanning the period 1983 to 2015. We utilize a bootstrapping 

methodology which enables us to distinguish between skill and luck in the cross 

sectional distribution of mutual fund α estimates. A methodology of injecting alpha in 

the bootstrapping regressions is pursued to estimate the features of true α (defined as 

the skill to cover fees). After adjusting for luck, we find evidence that the top 5% of 

funds exhibit skills to earn 3.3% or more in annual alpha above the fees they charge, 

whereas the bottom 5% destroy at least 3.7% per year. 
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1. Introduction 

Throughout this master thesis, we pursue to analyse the performance of actively 

managed Norwegian equity mutual funds, listed on Oslo Stock Exchange in the 

period from 1983 to 2015. The funds included all have a mandate of investing solely 

in Norwegian equity, which eases the choice of an appropriate benchmark. In the 

performance evaluation of mutual funds, we expect to identify a cross-sectional 

distribution alpha ranging from low to high. The main goal of this paper is to disclose 

whether good performance of some mutual funds can be attributed to skill or if it is 

most likely just due to luck, and likewise if bad returns are due to a lack of skills or 

simply due to bad luck. 

According to the Norwegian Fund and Asset Management Association (VFF) the 

capital inflows to mutual funds have increased in recent years, and reached an all-

time high in the first half of 2015. Many investors perceive mutual funds to be an 

attractive investment alternative, especially for the time being with historically low 

interest rates on bank deposits (Figure A1). We hope that our research on actively 

managed mutual funds could further contribute to the investors’ assessment between 

active and passive management. 

A similar study as ours has been conducted by Sørensen (2009). We lengthen the 

time period covered up until 2015, and believe this to be a contribution, as it covers 

the post-financial crisis period. Another difference from that of Sørensen, is that we 

have used a dataset containing a sub-set of the funds, excluding all passively 

managed funds. Fama and French (2010) also does this “to focus better on the 

performance of active managers”, and we believe it may increase the power of our 

analysis. We also use an additional methodology of Fama and French (2010) which 

involves injecting alpha into bootstrapping simulations. To our knowledge, this is the 

first paper that seeks to estimate the distribution of true  for the Norwegian mutual 

fund sector using this methodology. 

In order to address our research issue, we compare the historical distribution of actual 

𝑡(α) with ‘luck distribution’ obtained from 10 000 bootstrap simulations. The 

simulation samples are drawn from a return population which by construction have a 
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true α equal to zero. This simulated distribution can be interpreted as a luck 

distribution, where abnormal returns are attributed to luck only. A comparison of the 

distributions of actual 𝑡(α) and simulation distribution enables us to disentangle skill 

from luck. This approach will hence reveal the potential existence of skills, both 

positive and negative.  

The empirical results show evidence of both inferior and superior fund performance, 

in the left and right tails of the distribution, respectively. The overall distribution of 

actual 𝑡(α) seem to be shifted to the left of the simulation distribution, suggesting that 

fund managers as a group do not possess sufficient skills to fully cover for the fees 

imposed on customers. Furthermore, the data suggest a relationship between 

performance and shutdowns. For example, the 20 worst performing funds have all 

ended their operations, whereas the 20 best performers still operate. 

The rest of the paper is organised as follows: Section 2 provides background 

information of the mutual fund industry in general and in Norway, and a review of 

previous research literature on similar topics. Section 3 provides relevant background 

theory for our study, as well the hypothesis we pursue to test. Section 4 covers the 

methodology used, and provides a step-by-step explanation of the statistical approach 

used. Section 5 provides a description of how all the data, factors and fund returns, 

was collected and treated.  Section 6 gives the empirical results, whereas section 7 

concludes. 

 

2. Background and literature 

Background 

In this section we will provide a brief description of mutual funds in general, as well 

as of the Norwegian mutual fund market.  

Mutual funds in general 

A mutual fund is an investment vehicle which pools money from several types of 

investors and can hence make large purchases in a variety of securities or assets (e.g. 

stocks, bonds, money market instruments and real-estate) or a combination of these. 
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The aggregate holding of a fund’s investments constitutes its portfolio (SEC). An 

investor’s fraction of shares in the fund represents the proportionate claim on these 

assets, as well as the income these assets might generate. Investors purchase mutual 

fund shares directly from the fund, instead of in a secondary market. The price equals 

the net asset value (NAV) per share, plus potential front-end costs. During the period 

of ownership in a mutual fund, investors are obliged to pay management fees, and at 

the time of redemption some mutual funds charge additional back-end costs as well.  

Mutual funds can be subdivided into two main types, namely passive and active. A 

passive, or indexed, mutual fund seeks to replicate the components of a market index, 

such as for instance Oslo Børs Benchmark Index (OSEBX). This index is rebalanced 

every half a year, which is associated with relatively low transaction costs. An active 

mutual fund seeks to reap profits mainly from exploitation of mispricing in the 

market. Perceptions of mispricing tend to change quite frequently, which in turns lead 

to frequent trading, hence the term active (Sharpe 1991). Consequently, active mutual 

funds are subject to higher costs originating from transaction and research activity.  

Investing in a mutual fund provides several advantages for investors. The arguably 

most important one is the benefit from diversification. Most mutual funds are 

restricted by legislation in terms of diversification, and European mutual funds are 

subject to the Undertakings for Collective Investment in Transferable Securities 

(UCITS). The most common restriction imposed by this directive is the so-called 

5/10/40-rule. This rule restricts a fund to invest a maximum of 10% of its net assets in 

one single security, and investments greater than 5% in a single security issuer, must 

not exceed 40% of the whole portfolio-value when these investments are added up. 

Such legislation provides diversification which can be difficult to obtain otherwise 

for small investors, especially if the amount to invest is modest.  

Furthermore, an additional advantage of investing in a mutual fund is the access to 

professional money managers and researchers. Many small investors do neither have 

the time nor knowledge to select and monitor the performance of the available 

securities. Hence, many find it tempting to outsource this task to professionals. 
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On the flip-side, mutual funds also have its disadvantages. According to SEC, the 

greatest one might be the need to pay management fees and costs, regardless of fund 

performance. Moreover, another disadvantage could be the lack of control. As 

mentioned, an advantage with mutual funds is that investors let professionals manage 

their funds, but at the same time it could be difficult or even impossible for an 

investor to influence in decisions of which securities the fund should acquire or sell.  

In addition, it is typically difficult to ascertain the exact composition of the fund’s 

portfolio at any given time, and hence the value of ones ownership or level of risk. 

Unlike an investment in the stock market, the mutual fund investors can not know the 

exact value of their investment from second to second, it is hence embedded inertia in 

the price. When an investor decides to sell his shares, he might have to wait for 

several hours after the order is placed to obtain the exact value. 

 

The Norwegian mutual fund market 

According to Gjerde and Sættem (1991) there was only one mutual fund listed on 

Oslo Stock Exchange prior to 1982. In the same year, a scheme with tax rebate 

concerning mutual fund investments was introduced in Norway, which subsequently 

led to a sharp increase in the number of mutual funds. In 1990 the total market value 

of mutual funds in Norway amounted to 5.5% of the total market value of all stocks 

listed on the Oslo Stock Exchange (Gjerde and Sættem 1991). Figure A2 in the 

appendix illustrates the evolution of the total number of actively managed Norwegian 

mutual funds. The figure shows an almost monotonic increase from 1983, reaching a 

maximum of 66 funds operating simultaneously in 2002. In 2015 there was a total of 

78 Norwegian mutual funds, and we estimate that 57 of these were actively managed.  

Table A1 in the appendix shows descriptive statistics for the Norwegian mutual fund 

market in the period from 1995 to 2015. The most remarkable observation from this 

table is in our opinion the third left column. This column displays the proportion of 

mutual funds which solely invests in Norwegian shares, relative to the total 

Norwegian fund market. In 1995, this fraction amounted to approximately 92 per 

cent. Subsequently, it has been in a steady decline, coinciding with increased 

globalization of financial markets easing the access to foreign stock markets. The 
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fraction reached a minimum in 2008 at 19.7 per cent, and now seems to have 

stabilized at the lower half of the twenties, in terms of percent. This is quite close to 

the guidelines from VFF (2015). They recommend the average private investor to 

hold as much as 75% of savings in foreign shares, in order to secure diversification.  

Assets under management have had a yearly average growth rate of 9.2% which 

includes net inflow. Adjusted for net inflows, the Norwegian mutual fund industry 

had an average yearly organic growth in assets under management amounting to 

8.5%. The total number of mutual funds with a Norwegian mandate has been quite 

stable over the timespan, averaging at 73. The number of funds included in our 

dataset averages at 56 per year, which is smaller due to the exclusion of passive index 

funds. 

 

Literature Review 

Literature on how to measure the performance of mutual funds has existed for 

decades, and academia has introduced a large variety of suggestions for measures, 

models and procedure for this purpose. Estimating whether the good/bad performance 

of the mutual fund is due to skill/incompetence or luck/misfortune, however, is a 

relatively new topic. Kosowski et al. (2006) were the first to utilize a bootstrap 

approach in order to distinguish skill from luck in mutual fund performance. They 

analysed the U.S. domestic equity mutual fund industry from 1975 to 2002, in order 

to investigate if mutual fund “stars” do possess a stock-picking skill. Their findings 

reveal that most fund managers do not provide good enough returns to more than 

cover their costs, but that a few fund managers actually do have a superior true alpha. 

A relatively similar approach was put forward by Cuthbertson, Nitzsche and 

O'Sullivan (2008) on UK equity mutual funds. This study revealed stock picking 

ability in quite a small group among the best performing funds. In the other end of the 

scale, the study disclosed that persistent poor performance could not be attributed to 

bad luck only, but to some degree of “bad skill” as well.  

Fama and French (2010) conducted a study of “luck versus skill” among mutual fund 

managers in the U.S. from 1984 – 2006, using a slightly modified bootstrap 
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procedure than the one presented by Kosowski et al. (2006). The main difference in 

approach is that Fama and French jointly sample fund returns, compared to Kosowski 

et al. who simulate for each fund independently. Fama and French conducted the 

analysis on both gross and net returns. Using gross returns, they revealed evidence of 

both inferior and superior performance (nonzero true α), whereas the results using net 

returns were more devastating showing that only a few funds managed to produce 

expected returns sufficient to cover costs. Hence, this study finds less evidence of 

skill than Kosowski et al. (2006). 

Other studies have also investigated fund manager performance in the Norwegian 

market. One study in especially in close relation to ours is “Mutual Fund Performance 

at the Oslo Stock Exchange” by Sørensen (2009). This study distinguishes luck from 

skill, based on the previously mentioned methodology presented by Fama and French 

(their article was published in 2010, but they presented the methodology and much of 

the results in a working paper previous to this), finding no significant evidence of 

superior performance among listed Norwegian mutual funds in the period of 1982 – 

2008. Furthermore, Sørensen points out that there is no persistence in the 

performance of either top or bottom fund managers. In our research, we update the 

results of Sørensen by extending the period up until 2015. Additionally, we 

differentiate from his study by excluding passive funds from our dataset, in order to 

make a better analysis of active management. Furthermore, we conduct an analysis of 

the features of true alpha by simulating with injected alpha, in line with the 

methodology of Fama and French (2010). 

 

3. Theory / Hypothesis 

In the following section we will explain and discuss some of the most relevant 

theories, as well as the implications they make, with respect to our research. 

The Efficient Market Hypothesis 

The Efficient Market Hypothesis (EMH) was first introduced by Eugene Fama 

(1970). Jensen (1978) claims that this is the proposition in economics with most solid 

empirical evidence. According to Fama (1970), in an efficient market the prices will 
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always “fully reflect” all available information. Hence, thorough research and 

analysis aiming to reveal mispriced securities or active investment strategies in 

general, will be in vain if markets are fully efficient. Fama presents three different 

levels of efficiency, depending on the degree of information incorporated in market 

prices.  

First, the weak form efficiency states that prevailing share prices reflects all available 

information with respect to historical trading data, such as prices and volumes. In 

presence of weak form efficiency, technical analysis seeking to reveal price patterns 

will be a waste, as future prices are completely independent of past developments. 

Next, semi-strong form efficiency comprises the weak form, and in addition that 

prices reflect all relevant public information. If the requirements of semi-strong form 

efficiency are fulfilled, neither technical nor fundamental analyses based on public 

information will enable traders to outperform the market (Dimson and Mussavian 

1998). 

Finally, under strong form efficiency, share prices reflect all information regarding the 

company. Unlike semi-strong form, the strong form does not pose a restriction that 

the information is publicly available, thus accounting for information possessed by 

insiders. This is the most extreme form of EMH, and probably more hypothetical than 

realistic. In developed financial markets, it is common to observe large share price 

movements in response to announcements of unexpected information regarding a 

specific company, which violates the strong form hypothesis.  

Of the three abovementioned forms, the semi-strong form is the most likely to apply 

for stock markets such as the Norwegian (Koller, Goedhart and Wessels 2010).  

Identification of investors or fund managers who persistently achieves to outperform 

the market, does not serve as evidence against the existence of efficient markets. 

First, as taught in basic statistic courses, failing to reject a hypothesis does not imply 

acceptance of the same hypothesis. Additionally, tests of market efficiency will face a 

joint hypothesis problem since one will test if the market is efficient given a specific 

asset-pricing model, i.e. a simultaneous test that the market is efficient and the model 
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is correct. Hence, disclosing deviations from EMH could rather be viewed as 

indication that models used to predict equilibrium return are flawed (Summers 1986). 

 

Equilibrium Accounting 

The participants in the market can be separated into two subgroups, consisting of 

active and passive investors. A passive investor holds a portfolio consisting of all the 

shares in the market (Sharpe 1991). Each security in a passive portfolio is held in the 

same fraction as this particular security’s part in the market as a whole. Thus, if a 

security constitutes one per cent of the total value of the market, a passive investor 

will invest one per cent of his or her funds in this particular security. Passive 

investing can be seen as a buy and hold strategy, where rebalancing is only needed 

after particular events such as initial or seasoned public offerings, share buybacks and 

changes is the index composition. 

Active management is based on perceptions of under-priced shares, and not what 

fraction an individual share constitutes in a given index. Active fund managers 

attempt to outperform the market. Active investors’ assumptions of mispricing tend to 

change quite frequently, leading to a need for active rebalancing of the holdings 

(ibid). 

For any given period, the market return will equal the value weighted return from all 

securities that comprise the market. This will equal the gross return acquired by truly 

passive investors, gross of fees and transaction costs. Following from the previously 

mentioned condition that passive and active investors constitute the whole market, the 

market return is a weighted average of the returns from the two subgroups. As Sharpe 

(1991) points out, this implies that the average return achieved by active investors in 

the same period must equal the return gained by passive investors, referred to as 

equilibrium accounting.  

As mentioned, active investing requires buying and selling securities more frequently 

compared to passive investing. This activity generates more transaction costs. 

Additionally, active fund managers charge higher fees to fund their research to find 

mispriced securities. For example, Norwegian equity mutual funds charge an average 
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of 1.4 per cent of the customers’ holdings in management fees per year (Strøm 2014), 

and fees can be much higher, especially for alternative investments such as hedge 

funds, funds of funds and private equity. For passive managers these fees are usually 

much lower, reflecting the simple buy and hold strategy and the smaller proportion of 

resources required to operate a passive fund. 

From this, it follows that on average, the return net of fees and costs provided to 

investors from active investment management must be lower than the return provided 

by passive investments. Hence, active investors participate in a negative sum game, 

and the ones who receive excess returns, must do so at the expense of other active 

investors (Fama and French 2010). This theory does not exclude the possibility that 

some managers are able to persistently beat the market, but they do so at the expense 

of other active investors. 

 

Hypothesis 

In the remainder of this thesis, we will investigate the risk adjusted performance of 

Norwegian Mutual Funds and distinguish whether the performance is attributable to 

skill or luck. We will do this using an overall economic hypothesis as follows: 

H0: Managers of mutual funds do not possess skill (positive or negative), and 

the cross sectional distribution of mutual fund alphas is due to luck only 

H1: Managers of mutual funds are endowed with different levels of skill 

(positive or negative), and the cross sectional distribution of mutual fund 

alphas is due to a combination of skill and luck. 

Although we do believe the skill of mutual fund managers to be a factor influencing 

mutual fund returns, we expect luck to be the major determinant of mutual fund 

alpha, and do not expect to find significant evidence of positive/negative skill in our 

data. 
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4. Methodology 

In our tests we will utilize the risk adjusted performance measure referred to as α, and 

its t-statistic t(α) to measure the performance of Norwegian mutual funds. This is 

combined with a bootstrap procedure, which allows us to compare actual fund 

performance with a ‘luck distribution’. In this section we first look at models and the 

regression framework used, before explaining the bootstrapping procedure in detail. 

Finally, we briefly explain how the simulated results of the bootstrap can be 

compared to actual results, in order to draw inference on mutual fund performance. 

 

Model specification and regression framework 

The models we consider in our regressions are unconditional factor models, of which 

on a general form, can be specified as follows: 

𝑟𝑖,𝑡
𝑒 = 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + ∑ 𝛽𝑖,𝑗 ∗ 𝑓𝑗,𝑡

𝐾
𝑗=1 + 𝜀𝑖,𝑡   (1) 

 

where 𝑟𝑖,𝑡
𝑒 = 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 is the asset (e.g. mutual fund) risk premium, 𝑟𝑖,𝑡 is the return of 

an asset with index number 𝑖, between time 𝑡 − 1 and 𝑡, 𝑟𝑓,𝑡 is the risk free rate, 𝑎𝑖 is 

the asset excess return (or mispricing), 𝐾 is the numbers of risk factors, 𝛽𝑖,𝑗 is asset 

𝑖’s loading to risk factor 𝑗, 𝑓𝑗,𝑡 is the value of risk factor 𝑗 at time 𝑡 and 𝜀𝑖,𝑡 are the 

residuals. 

The simplest of such forms includes only one factor, namely the model developed by 

Jensen (1968), based on the CAPM. Here, asset risk premiums (𝑟𝑖,𝑡 − 𝑟𝑓,𝑡) are linear 

functions of the market risk premium (𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) and the systematic risk of the 

asset (𝛽𝑖), where 𝑟𝑚,𝑡 is the market return between time 𝑡 − 1 and 𝑡, as follows: 

𝑟𝑖,𝑡
𝑒 = 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝛽𝑖 ∗ (𝑟𝑚,𝑡 − 𝑟𝑓,𝑡) + 𝜀𝑖,𝑡   (2) 

The 𝑎𝑖 in this equation is referred to as the Jensen’s Alpha of the asset (in this case 

mutual fund), and is a commonly used performance measure. The model is 

extendable in numerous ways, mainly by including additional factors as independent 

variables, but also for example by allowing for time-varying coefficients. As a 
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performance measure, the constant term remains the main focus. When the expected 

value of the 𝛼𝑖-term is zero, superior/inferior stock-picking ability possessed by an 

individual fund manager will be reflected in a statistically significant nonzero 

𝛼-value. 

In our brief initial tests on an EW portfolio (see Table 2 in section 6) we considered 

five different models combining the factors 𝑟𝑖,𝑡
𝑒 , 𝑆𝑀𝐵𝑡, 𝐻𝑀𝐿𝑡, 𝑈𝑀𝐷𝑡 and 𝐿𝐼𝑄𝑡 in 

various ways, including but not limited to three common model specifications; the 

Jensen (1968) 1-factor model, the Fama and French (1993) 3-factor, and Fama and 

French’s variation of the Carhart (1997) 4-factor model. Each of the different factors 

are described in detail in the ‘Factor construction’ part under section 5. 

We estimate the models using basic OLS regression. Standard errors are corrected for 

autocorrelation and heteroscedasticity using the Newey and West (1987) procedure, 

as signs of autocorrelation and heteroscedasticity are evident in some of our data. For 

consistency, the procedure is used in all regressions.  

 

Model selection 

We focus on, report results for and discuss two different model specifications in the 

remainder of the thesis. The first is the widely used 3-factor model developed by 

Fama and French (1993), specified as: 

𝑟𝑖,𝑡
𝑒 = 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑟𝑚

𝑒 ∗ 𝑟𝑚,𝑡
𝑒 + 𝛽𝑖,𝑆𝑀𝐵 ∗ 𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐻𝑀𝐿 ∗ 𝐻𝑀𝐿𝑡 + 𝜀𝑖,𝑡    (3) 

Here, the excess return on the market portfolio 𝑟𝑚,𝑡
𝑒 , the returns of a size portfolio 

𝑆𝑀𝐵𝑡, and the return of a value portfolio 𝐻𝑀𝐿𝑡, are the three explanatory variables. 

This model is the industry norm, and allows for comparisons to important research on 

the same topic. It is the main model used in the paper ‘Luck versus Skill in the Cross-

Section of Mutual Fund Returns’ by Fama and French (2010), which first introduced 

the form of the bootstrap procedures which we utilize. Sørensen (2009) also uses it in 

the paper ‘Mutual Fund Performance at the Oslo Stock Exchange’, which is the paper 

we mainly seek to produce an extension of. He utilizes many of the same procedures 

as we do, and we have constructed our dataset in a similar manner as him. The main 
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difference is that we have extended the end date of the period by 7 years; he has data 

for the period 1982-2008, while we use data from 1983 up to and including 2015. In 

addition to this, we have excluded passive funds from our dataset, and focused solely 

on actively managed funds (although some funds may be ‘closet index funds’, i.e. 

they are reported as active, but are in fact index-tracking and more like a passive 

fund).  

The second model we use is motivated by the findings of Næs, Skjeltorp and 

Ødegaard (2009). The main results from their analysis is that “the return at the OSE 

can be explained reasonably well by a multi-factor model consisting of the market 

index, a size index, and a liquidity index”, and they exclude other factors such as 

value- and momentum indices in explaining market returns. We find it interesting to 

compare results using this model to the results using the classic Fama-French 3-factor 

model. The second model specification is: 

𝑟𝑖,𝑡
𝑒 = 𝑟𝑖,𝑡 − 𝑟𝑓,𝑡 = 𝑎𝑖 + 𝛽𝑖,𝑟𝑚

𝑒 ∗ 𝑟𝑚,𝑡
𝑒 + 𝛽𝑖,𝑆𝑀𝐵 ∗ 𝑆𝑀𝐵𝑡 + 𝛽𝑖,𝐿𝐼𝑄 ∗ 𝐿𝐼𝑄𝑡 + 𝜀𝑖,𝑡      (4) 

where 𝐿𝐼𝑄𝑡 is the return of a liquidity portfolio 𝐿𝐼𝑄𝑡. In the section ‘Extension of the 

bootstrap procedure: Injecting alpha’ where we seek to estimate the distribution of 

true alpha (i.e. alpha excluding luck, or skill above fees), we do not have comparable 

results for the Norwegian Mutual Fund market (we believe we are the first to utilize 

this procedure on this data), and choose to use the second model specification 

(equation 4), under the assumption that the results of Næs, Skjeltorp and Ødegaard 

(2009) still hold. 

 

The bootstrap procedure: five steps 

As mentioned, we will utilize a bootstrapping procedure for distinguishing skill from 

luck in the performance of Norwegian mutual funds. We will follow a procedure in 

line with that of Fama and French (2010). It is a modification to the bootstrapping 

procedure introduced by Kosowski et al. (2006), who were the first to use 

bootstrapping for the purpose of distinguishing skill from luck in the performance of 

mutual funds. It implies simultaneously simulating residuals and factor returns for all 

funds, instead of only residuals for just one fund at a time, in order to preserve the 
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cross-correlation of fund returns (Fama and French 2010). The procedure can be 

broken down in five steps, each presented below. 

The first step of the procedure is to estimate regular benchmark regression models, 

one regression for each fund. The observed historical returns of each individual fund 

are regressed against the returns of a specified set of risk factors over the 

corresponding period which the fund is present in the data. For each fund, we save the 

estimate of actual alpha, 𝑎𝑖, and its corresponding t-statistic, 𝑡(𝑎𝑖), the estimates of 

coefficients for risk factor exposure and a vector for residuals 𝜀𝑖.  

The second step is to produce a set of S number of simulation runs (e.g. 10 000 runs). 

The set of simulation runs is always the same, for each and every fund, and 

irrespective of which model specification we use. This is, as mentioned above, in 

order to preserve the cross-correlation of fund returns and comparability between 

models. The procedure used to produce a simulation run is described below (the 

complete algorithms used to produce all runs can be found in the appendix). First, we 

draw a (𝑇 𝑥 1)-dimension vector from the uniform distribution, where 𝑇 is equal to 

the number of periods in the data set (𝑇 = 396 in our main model, 12 𝑚𝑜𝑛𝑡ℎ𝑠 ∗

33 𝑦𝑒𝑎𝑟𝑠, from the first observation of the initial funds in January 1983, to the last 

data point in December 2015). Note that no fund will have return histories for the 

whole period, as all funds initiated later than the first and/or terminated before the last 

observation in the period. We then multiply the matrix with the scalar 𝑇 and round up 

to nearest integer. This yields a vector of time indices, randomly drawn with equal 

probability and with replacement, from the set of available points in time: 

𝑇̃𝑠 = 𝑟𝑜𝑢𝑛𝑑𝑢𝑝(𝑇 ∗ {𝑈𝑡(0,1)}𝑡=1
𝑇 )     (5) 

In the third step, we use the simulations runs, which consist of simulated time indices, 

to construct new series of alpha free fund returns and new series of risk factor returns, 

as follows: For each 𝑇̃𝑠, we construct a new series of risk factor returns,  𝐹(𝑇𝑠̃), with 

dimensions (𝑇 𝑥 𝐾), where 𝐾 is the number of factors. The returns are “picked” from 

the populations according to the drawn time indices of the simulation run. The same 

is done to construct a matrix of (𝑇 𝑥 𝑁) residuals 𝐸(𝑇𝑠̃), where 𝑁 is the number funds 

in our sample. Each (𝑇 𝑥 1) column-vector 𝜀𝑖(𝑇𝑠̃), now consist of drawn residuals 
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from the original regression model of one fund from the first step. However, as funds 

are not present the whole period (all funds have less than 396 observations), some 

draws yield a blank (represented by 𝑁𝑎𝑁 in our data), and the number of returns for 

one fund varies between simulations. We use a cut-off off at least 15 returns for a 

simulation to be valid and included in the results. Then, using the saved coefficients 

and simulated time series of risk factors and residuals, we construct new fund excess 

returns, but leave out alpha (𝑎𝑖), so that all returns have zero alpha by construction: 

𝑟𝑖,𝑡̃𝑠 
𝑒 = ∑ 𝛽𝑖,𝑗

𝐾
𝑗=1 ∗ 𝑓𝑗,𝑡̃𝑠

+ 𝜀𝑖,𝑡̃𝑠
    (6) 

The fourth step is to run regressions in the same manner as we did with actual fund 

returns in the first step, but now with the constructed excess fund returns of the 

simulation as dependent variables, and the corresponding set of risk factor returns as 

explanatory variables.  

Finally, we use different 𝑇̃𝑠 from step two and repeat the processes in step three and 

four 𝑆 times to produce a set of 𝑆 simulated alpha-estimates with corresponding t-

statistics for each of the 𝑁 funds.  

The fifth step is to in various ways compare estimated 𝑡(𝑎) based on actual historical 

returns with the estimated 𝑡(𝑎) from all the simulations. In accordance with previous 

research, we focus our analysis on the 𝑡(𝑎)-estimates because this incorporates the 

precision with which the α is measured (Fama and French 2010). For completeness, 

we make the same calculations for the alphas as well, and report results in tables 

together with those for 𝑡(𝑎). A detailed explanation on how the numbers are 

compared is presented below. 

 

Comparing regression results on historical vs. simulated returns 

For both the benchmark regression performed in step one and for each individual 

simulation run, we separately sort the 𝑁 fund alphas and t-stats. Different 

ranks/percentiles of actual alphas/t-stats are then compared with the corresponding 

ranks/percentiles of the 𝑆 simulations. For example, we compare the 𝑡(𝑎) of the fund 

that performed the best in our benchmark regression, with the best 𝑡(𝑎) of each of the 
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𝑆 simulations, where alpha is completely due to luck. Similarly, we can compare how 

the worst, the 5th best or the 10th percentile-fund actually performed with how well 

they perform in each of the simulations.  

A simple and intuitive way of comparing the numbers is to look at the average over 

all simulations (for a given rank/percentile) of 𝑡(𝑎) vs. the actual estimates (for the 

corresponding rank/percentile). This is done in a qualitative manner in order to gain 

some insight and perspective on the simulations and the relative levels of 

performance of the funds. The average of the simulations provides a measure of how 

well the given rank/percentile should perform gross of fees when there is no presence 

of skill; i.e. all performance is attributable to luck only. 

Another, more useful and powerful comparison, is to measure the fraction of times 

which the simulated 𝑡(𝑎) is either larger or smaller than the actual number for the 

given rank/percentile. The fractions can be interpreted as p-values, and they allow us 

to more formally measure whether the actual performance is extreme compared to 

(not just different from), the performance in the simulations. For example, if a low 

fraction of simulation runs produces 𝑡(𝑎)s in the left tail lower than the estimates 

from actual fund returns (or equivalently that a high fraction of simulations produces 

alphas/t-stats higher than the actual results), we can infer that some managers lack the 

skill to cover fees and trading costs.  The lower this fraction is, the more confident we 

are in the existence of negative skill. The opposite is true for the right tail; if a high 

fraction of simulation runs produces alphas/t-stats lower than the actual estimates we 

infer that some managers are more than skilled enough to cover fees and trading cost. 

 

Extension of the bootstrap procedure: Injecting alpha 

In this section, we continue to follow the methodology of Fama and French (2010). 

Here, the full bootstrap simulation procedure above is repeated several times, but this 

time with random values of α injected into the new constructed fund returns of step 

three, varying the standard deviation of α for each repetition. The results from these 

repetitions are then compared to the actual historical results in order to estimate the 

tail distribution of true α. As Fama and French (2010) point out: the new simulated 
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numbers allow us to examine (i) which levels of α is necessary to reproduce the t(α) 

estimates for actual fund returns, and (ii) levels of α too extreme to be consistent with 

t(α) estimates for actual fund returns. 

The procedure for bootstrapping with injecting alpha is as follows. Overall, the same 

5-step procedure outlined in the previous sections is still used: alpha is injected by 

altering the third step of the procedure, while the other steps are left unchanged. In 

three, instead of leaving out alpha and constructing a ‘luck distribution’ as we did 

previously, equation (6) now becomes: 

𝑟𝑖,𝑡̃𝑠 
𝑒 =

𝛼𝑖,𝑠

12
∗ 𝑠𝑖 + ∑ 𝛽𝑖,𝑗

𝐾
𝑗=1 ∗ 𝑓𝑗,𝑡̃𝑠

+ 𝜀𝑖,𝑡̃𝑠
    (7) 

where 𝛼𝑖,𝑠 is the annual alpha, a random number drawn from the normal distribution, 

individually and independently drawn for each fund and for each simulation (and 

constant over time), with mean equal to zero and standard deviation equal to 𝜎 

(returns are per month and σ is the average injected annual standard deviation of 

alpha). And, 𝑠𝑖 is a scalar adjusting for the individual funds different levels of 

diversification, defined as follows:  

𝑠𝑖 =
𝑆𝐸(𝜀𝑖)

(
∑ 𝑆𝐸(𝜀𝑖)𝑁

𝑖=1
𝑁

)

    (8) 

where 𝑆𝐸(𝜀𝑖) is the standard error of the residuals of the initial benchmark model 

regression for fund 𝑖 and N is the number of funds included, such that the 

denominator becomes the average standard error of the residuals and 𝑠𝑖 becomes a 

scalar that decrease with diversification. The term 𝑠𝑖 is included because: “it seems 

reasonable that more diversified funds have less leeway to generate true α” (Fama 

and French 2010). The implication is that relatively more diversified funds with low 

standard errors of residuals compared to the average and lower 𝑠𝑖 (than 1), will have 

their absolute values of total injected alpha effectively scaled down, while less 

diversified funds with high standard errors of residuals compared to the average and 

higher 𝑠𝑖 (than 1), will have their absolute values of total injected alpha effectively 

scaled up. 
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The overall 5-step bootstrap procedure, with adjustments to step three made 

according to the above, is repeated several times, for different values of σ (average 

injected annual standard deviation of alpha). 

Two different techniques are then used to find (i) the levels of α necessary to 

reproduce the t(α) estimates for actual fund returns, or ‘likely levels of performance’. 

The first technique (see grey markings in the left panel of Table 5 under section 6 for 

illustration) comprises looking for the value of σ which gives average 

ranks/percentiles of simulations equal to those of actual fund returns. The second 

technique (see grey markings in the right panel of Table 5 under section 6) comprises 

looking for the value of σ which gives median ranks/percentiles of simulations equal 

to those of actual fund returns (we look for the value of σ where 50% of simulated 

ranks/percentiles are smaller than corresponding actual ranks/percentiles). 

In order to find (ii) levels of α too extreme to be consistent with t(α) estimates for 

actual fund returns, or ‘unlikely levels of performance’, a technique similar to the 

second technique above is used. We construct the equivalent of a confidence interval, 

where we accept a 20% likelihood of setting a lower band that is too high and a 20% 

likelihood of setting an upper band that is too low (Fama and French (2010). We use 

the same thresholds as Fama and French (2010), which they consider to: “imply a 

narrower range than we would have with standard significance levels, but they are 

reasonable if our goal is to provide perspective on likely values of σ.” In the left tail, 

the value of σ where 20% of simulated ranks/percentiles are smaller than 

corresponding actual ranks/percentiles marks the lower bound, while the value of σ 

where 80% of simulated ranks/percentiles are smaller than corresponding actual 

ranks/percentiles marks the upper bound. The converse is true for the right tail. Here, 

the value of σ where 20% of simulated ranks/percentiles are smaller than 

corresponding actual ranks/percentiles marks the upper bound, while the value of σ 

where 80% of simulated ranks/percentiles are smaller than corresponding actual 

ranks/percentiles marks the lower bound. 

One very important difference in our analysis compared to that of Fama and French 

(2010) is that all our actual fund returns are net of fees, while they have access to 

gross fund returns. This becomes important in this section, when analysing and trying 
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to estimate the true distribution of alpha. Due to (or in spite of) the nature of the data 

we have, we make one important simplification; we use the assumption that each 

fund is endowed with annual net return alpha drawn from a normal distribution with 

mean equal to zero and standard deviation per year equal to σ, whereas Fama and 

French (2010) make the same assumption for annual gross return alpha. This is a 

caveat, as we do not actually expect net return alpha to be symmetric around zero. A 

more reasonable assumption would have been that each fund is endowed with annual 

net return alpha drawn from a normal distribution with mean equal to minus its 

annual fee and standard deviation per year equal to σ. However, we do not have 

access to the level of fees for each fund (or how this has varied over time). And if we 

did, we would be able to construct gross fund returns and estimate corresponding 

actual gross α and t(α), avoiding this issue entirely. Another possibility would be to 

assume constant fees over time, and for the funds we do not have data on 

management fees, assume for example a fee equal to the average of the fees for the 

funds that we do have data, but here also the preferred procedure would be to 

construct gross fund returns, not to subtract fees in the simulation. In general, 

throughout the thesis, we have chosen not to construct estimates of gross returns, but 

rather to work with the precise net returns we have at hand. We do not go away from 

this in the current section, but are aware of the potential significance of management 

fees in the results and keep this in mind in our discussions and results. 

 

5. Data 

Mutual fund returns 

In order to construct an as comprehensive data set as possible, we have searched 

through several sources of information. As students of BI Norwegian Business 

School we were granted access to a OBI (Oslo Børs Informasjon) database. Through 

this portal we were able to retrieve names and tickers of the Norwegian mutual funds 

that were still running in 2015, together with their return series. For defunct funds, 

however, the same data could only be retrieved individually contingent on first 

knowing the specific funds’ tickers. As one of our main goals has been to extend the 
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research of Lars Qvigstad Sørensen, constructing a dataset free of survivorship bias 

was paramount. Fortunately, Sørensen was willing to provide us with a list of the 

funds he used in his research. This included names and tickers of all Norwegian 

mutual funds that had existed between 1982 up until 2008. The remaining funds 

which we would now potentially miss, would be funds which initiated after 2008 and 

shut down before 2015. Through a request to Oslo Stock Exchange we were informed 

that there was one such mutual fund, namely Storebrand Norge Institusjon, which 

operated from 2010 until 2014. Through the above steps, and with the inclusion of 

this last fund, we were able to construct an extensive list containing every Norwegian 

mutual fund present from 1982 up until 2015. Using this list of tickers, we have 

retrieved monthly returns for each fund from the OBI database, and constructed the 

dataset.  

We were able to obtain access to a similar database from Børsprosjektet at the 

Norwegian School of Economics (NHH), also based on data from OBI. This 

contained return histories of all Norwegian funds, global and domestic, operating 

over our desired timespan, but here as well retrieving returns was contingent on first 

knowing funds’ tickers or names. By comparing funds individually, we found that all 

corresponding data points were consistent between the two databases when they 

existed in both of them, but disclosed minor discrepancies with respect to the starting 

date and length of time series of some funds, mostly that histories from 

Børsprosjektet NHH initiated somewhat earlier than those from the OBI database. We 

have consistently used the source that provided the longest return history.  

Given our research focus on active management, we pursued with investigation of 

each individual fund in order to exclude passively managed funds. We withdrew 

every fund containing any variety of the word index, as well as searching up each 

fund’s investment strategy in order to disclose passively managed funds without 

index in its name or ticker. For a small group of funds that closed several years ago, 

we were not able to obtain reliable information concerning investment strategy. 

Hence, we are aware that we might have unintentionally included a few passive 

funds. Although this may reduce the power of our conclusions slightly, we are 

confident that a possible wrongful inclusion of a few passive funds will not make a 

large impact on our analysis. Most of our research is mainly concerned around the 
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tails of the alpha-distribution, and the passive funds would most likely exhibit an 

alpha close to zero and hence place them in the middle of the distribution. 

We were not able to get reliable data for the OSEAX (previously named 

Totalindeksen) before 1983, and thus chose to begin our analysis from January 1983. 

This means that we excluded one year of returns in 1982 for the two funds that were 

in operation this early, but this should not have any major impact for our analysis. 

Our final data set, ranging over the period from January 1983 to December 2015, 

contains the return series for 101 actively managed mutual funds, comprising a total 

of 15 408 observations of monthly returns, corresponding to an average presence for 

each fund of 153 months.  

Survivorship bias in mutual fund returns 

Motivated by the findings of Sørensen (2009) we test for the existence of a 

survivorship bias among Norwegian mutual funds. Sørensen found evidence of a 

survivorship bias existing among Norwegian funds in the time period 1982 – 2008. 

We run the same tests as Sørensen to verify the results and also test the period from 

2008 up until 2015. Moreover, unlike Sørensen, we have decided to exclude all 

passively managed funds.  

Several of the funds in our data have ceased to exist at some point in time prior to the 

end date. A survivorship bias is believed to arise if one excludes defunct funds, 

assuming poor performing funds are more likely to be closed down, whereas good 

performers tend to continue its operations, i.e. funds do not exit the dataset randomly. 

Hence, by excluding the mutual funds which are not active at the end date, one will 

run the risk of ending up with a dataset containing all of the well performing funds, 

while the bad performers are not considered. When conducting a study of the overall 

performance of the whole mutual fund industry, it is crucial to use an as unbiased 

dataset as possible. This serves as the most predominant reason as of why we chose to 

include such a wide range of mutual funds in terms of length and period of existence. 

Studies such as Brown et al. (1992) found the survivorship bias to be significant 

among U.S mutual funds, and argues that neglecting this fact would give rise to false 

inferences.  
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Figure A3 in the appendix shows the cumulative return on 1 NOK invested in an 

equal-weighted portfolio comprising all funds, compared to a 1 NOK investment in 

an equal-weighted portfolio only consisting of funds that were alive at the end of 

2015. The data for this plot starts in the second half of 1983, since none of the 

surviving funds existed prior to this date. After the first month of 1985, the 

cumulative return on the portfolio consisting solely of surviving funds are 

everywhere above the return of the portfolio in which defunct funds are included. A 

difference among the two groups seems quite conspicuous, which insinuates the 

existence of a survivorship bias. 

In order to formally test for the existence of such a bias, we chose to divide the funds 

into two sub-samples, namely defunct and active, and conduct a two-sample t-test. 

The first sample is the excess return of all the funds which ceased to exist at some 

point in time between 1983 and 2015, the second sample consists of excess return of 

all the funds still active at the end of 2015. We exclude the last month of 2015, since 

the last fund to close down did so in November 2015. 54 of the 101 funds considered 

were still active at the end of 2015, while 47 had ended their operations. We state a 

null hypothesis that the mean of the two samples is equal, and the observations are 

random draws. The t-statistic for this test is 

𝑡 =
µ𝑑−µ𝑎

𝑠𝑑,𝑎 ·√
1

𝑛𝑑
+

1

𝑛𝑎

 ~ 𝑡(𝑛𝑑 + 𝑛𝑎 − 2)     (9) 

Where 𝑛𝑑 and 𝑛𝑎 is the number of observations in the sample of defunct and active 

funds respectively,  µ𝑑 − µ𝑎 is the difference between the two means and 𝑠𝑑,𝑎  is the 

pooled standard deviation computed as follows 

𝑠𝑑,𝑎 =  √
(𝑛𝑑−1)𝑠𝑑

2+(𝑛𝑎−1)𝑠𝑎
2

𝑛𝑑+𝑛𝑎−2
     (10) 

Table A2 shows the difference in means for the whole sample period to be -0.23% 

per month, or -2.79% annualized, with a corresponding t-statistic of -6.14, confirming 

the impression from Figure A3. This leads us to reject the null hypothesis that the two 

means for defunct and extant funds can be assumed to be equal. Furthermore, the 

table shows the results for the same test carried out with varying timespan, yielding 
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the same conclusion. The difference in average returns is quite similar regardless of 

start date for the sample, and the corresponding t-statistic is highly significant. The 

last subsample excludes the period with financial crisis, which helps to explain the 

reduced volatility. This would, ceteris paribus, increase the t-statistic, but the 

relatively low number of observations makes the t-statistic decline, even though still 

at a highly significant level. The difference in excess returns between the surviving 

funds and the entire sample is 0.086% per month, or 1.03% annualized. This is 

consistent, though slightly higher, than the findings of Brown and Goetzmann (1995) 

and Dahlquist, Engström and Söderlind (2000) who finds this difference to be 0.8% 

for U.S mutual funds and 0.7% for Swedish mutual funds per year, respectively. 

Table A3 shows the equal weighted average for both total and excess returns 

calculated for each year in our dataset, excluding the last month of 2015 due to 

comparability issues. The first sample contains all mutual funds in the data set, the 

following two are subsamples containing only funds that were still operating in 

December of 2015 and a sample of mutual funds which had closed down prior to this 

date, respectively. The table shows that the sample containing only extant mutual 

funds had superior excess returns compared to the defunct mutual funds in 28 of the 

33 years considered. Moreover, after 2003 the sample of surviving funds outperforms 

the sample containing all mutual funds every single year up until 2015, whereas the 

sample of defunct funds underperforms relative to the total over the same time span. 

This seems to propose that the complete dataset can be subdivided into two groups; 

one with the top performers and one with relatively bad performers, where mutual 

funds still alive tend to belong in the group of top performers while defunct funds 

tend to belong in the bad performing group. We, as did Sørensen, conclude that 

omitting defunct funds would result in a bias, which justifies the extra work of obtain 

a complete dataset free from survivorship bias. 

 

Factors on the Norwegian Market 

As the market factor, we use a combination of two indices, initially the Oslo Børs All 

Share Index (OSEAX) (1983 to 1995) and from when it is available, the Oslo Børs 
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Mutual Fund Index (OSEFX) (1996-2015). The size, value and momentum factors 

used in this paper are based on the methodology of Fama and French (1998), whereas 

the liquidity portfolio is based on the approach in Næs, Skjeltorp and Ødegaard 

(2009). All factors are obtained from Bernt Arne Ødegaard’s online resources using 

Norwegian data (Ødegaard 2016). See the Factor construction-section below for 

further explanations regarding methodology on how factors are constructed. 

Factor construction 

Market return 

There exist several indexes which could serve as proxies for the return on the 

Norwegian market. The most commonly used Norwegian index is arguably Oslo Børs 

Benchmark Index (OSEBX), which is an investible index, composed of the most 

traded shares. This index would serve as an appropriate benchmark when evaluating 

individual investors, but could be perceived as unfair when assessing mutual fund 

performance. As discussed in Section 2, Norwegian mutual funds are subject to 

legislation forcing diversification, which is not the case for OSEBX. Oslo Børs 

Mutual Fund Index (OSEFX) has historical returns from January 1996, and is 

constructed to comply with legislation concerning mutual funds (OSE 2016) . This is 

hence a common benchmark used for mutual funds. In this paper we have 

consistently used this index as a proxy for market return for the time period the index 

has existed. Since our data starts in 1983 we need an additional index to serve as the 

market portfolio from 1983 up until 1995. Inspired by methodology in similar studies 

as ours, especially by Sørensen (2009), we decided to use the Oslo Børs All Share 

Index (OSEAX) for this period, combined with OSEFX for the period 1996 to 2015. 

The advantage with OSEAX is that it has reliable data ranging all the way back to 

1983. On the flipside, the index consists of small illiquid shares which would incur 

considerable transaction costs and share price movements in an attempt to replicate 

the index.  

 

Pricing factors 

The Asset Pricing Model of Sharpe (1964) Lintner (1965) and Black (1972) long 

served as the most important model for explaining asset returns in relation to risk. 
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The CAPM-model assumes that the market portfolio is mean-variance efficient, as 

described by Markowitz (1959). Under this assumption, the CAPM-model predicts 

expected return of any security as a positive linear relationship with a slope () equal 

to the specific security’s exposure to market risk.  

The preciseness of CAPM relies on the assumption that market s adequately 

describes the cross sectional differences in the distribution of expected returns. This 

assumption has in subsequent years been relaxed by including additional factors. The 

most influential augmentation of CAPM is possibly the Fama and French (1993) 

three-factor model, which extends CAPM by including two factors in addition to the 

market risk premium. Both factors are constructed as zero investment portfolios, 

using publicly available information at the time of construction. In order to construct 

the factors, companies are sorted into three book-to-market value of equity (B/M) 

portfolios, namely high, medium and low using the 30th and 70th percentile as 

breakpoints. In each of the B/M-categories, companies are classified as either small 

or big, using the median company as cut-off point. This generates a three-by-two 

matrix consisting of the following portfolios: (SH, SM, SL, BH, BM, BL). 

The SMB-factor is based on the results from Banz (1981), who through an empirical 

study revealed that smaller firms, in terms of market value, on average had higher 

risk adjusted returns than larger companies, commonly referred to as the ‘size effect’. 

The SMB-factor is constructed in order to capture this effect, and is constructed as 

follows: 

𝑆𝑀𝐵 =
1

3
(𝑆𝐻 + 𝑆𝑀 + 𝑆𝐿) −

1

3
(𝐵𝐻 + 𝐵𝑀 + 𝐵𝐿)   (11) 

The portfolio is a zero-sum investment which takes a long position in an equal-

weighted average of the small companies, and a short position in an equal-weighted 

average of the big companies. 

Moreover, the HML-factor (high minus low) is based on findings by Bhandari (1988), 

Stattman (1980) and Rosenberg, Reid and Lanstein (1985) who found a positive 

relationship between stock returns and the previously described B/M-ratio. The HML 

factor is constructed as follows: 

𝐻𝑀𝐿 =
1

2
(𝑆𝐻 + 𝐵𝐻) −

1

2
(𝑆𝐿 + 𝐵𝐿)    (12) 
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The factor mimics a portfolio which is long in stocks with high book-to-market ratio 

(value stocks), and short in stocks with low book-to-market ratio (growth stocks).  

The three-factor model is frequently augmented with a fourth factor in order to 

capture the effect described by Jegadeesh and Titman (1993). In an empirical study 

on the U.S. stock market they discovered that a strategy named momentum which 

consists of buying stocks that have performed well in the recent past combined with 

selling stocks that have underperformed in the same period. The authors showed that 

this strategy had provided excess returns. Carhart (1997) four-factor model includes a 

momentum factor PR1YR, as well as the three previously mentioned factors. PR1YR 

is constructed as the equal weighted average of the companies with the top 30 per 

cent return in the past eleven months, lagged one month, minus the bottom 30 per 

cent companies in the same time-period.  

In our analysis we chose to make use of the momentum factor proposed by Fama and 

French, namely UMD (up minus down). UMD is quite similar to Carhart’s PR1YR, 

slightly modified in order to remove any prevailing size-effect. UMD is constructed 

in the same manner as HML, except using the previous 11 month return instead of 

B/M (Fama and French 2010). The formula for UMD is as follows: 

𝑈𝑀𝐷 =
1

2
(𝑆𝑈 + 𝐵𝑈) −

1

2
(𝑆𝐷 + 𝐵𝐷)    (13) 

In which U and D comprise the 30% top performers (up) and 30% poorest performers 

(down) respectively. 

Several researchers such as Acharya and Pedersen (2005) and Sadka (2006) have 

suggested that deviations related to CAPM could stem from different levels of 

liquidity among traded companies. Motivated by the findings of Næs, Skjeltorp and 

Ødegaard (2009), who test this factor on the Norwegian stock market, we chose to 

include a liquidity factor (LIQ) instead of the value factor (HML) in some of our 

models (these results can generally be found in the appendix, except for the ‘Injecting 

Alpha’-part, which is included in the main body of the text). According to the 

authors, a model containing a liquidity factor in combination with the market and a 

size-factor provides a reasonable fit for the cross-section of Norwegian stock returns. 

The liquidity factor is constructed by sorting a portfolio which is based on relative 

bid-ask spread, calculated as the closing bid-ask spread relative to the midpoint price. 
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The portfolio is a zero investment which is long in the least liquid companies and 

short in the most liquid companies. 

 

Interest rates 

Throughout our analysis we have used the interest rates provided from Bernt Arne 

Ødegaard’s online resources (Ødegaard 2016). The interest rates are forward looking 

for borrowing in the following month. For the period subsequent to 1986 monthly 

NIBOR is used as the estimate for the risk free rate. Monthly NIBOR is not available 

prior to 1986, and for this period the overnight NIBOR is used as an approximation. 

Figure A1 shows the evolvement of the 1-month risk free rate starting in 1983 up 

until 2015. 

 

Summary Statistics 

The above described factors have all been constructed for the Norwegian equity 

market, following the methodology put forward by Fama and French (1998) and 

Carhart (1997). Panel A of Table 1 shows descriptive statistics for five explanatory 

factors for the Norwegian market from January 1983 through December 2015, as well 

as the risk free rate and an equal weighted portfolio consisting of all actively 

managed Norwegian mutual funds. The equal weighted portfolio exhibits the highest 

average monthly return of 1.26% (t = 4.03). For the independent variables, the size-

factor SMB exhibits the highest average monthly return, 0.79% (t = 3.57) per month, 

and is the only factor statistically different from zero at a five per cent level. The 

average values of the monthly market premium (Rm – Rf) and the momentum 

portfolio UMD are also quite large, though not statistically significant 0.62% (t = 

1.88) and 0.56% (t = 1.95) respectively. The liquidity factor has the lowest average 

return, 0.14% per month (t = 0.60). Panel B of Table 1 reports the correlation-matrix 

of the above mentioned variables. The greatest correlation is not surprisingly between 

the equal weighted portfolio of mutual funds and the market portfolio (0.97). The 
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Table 1: Descriptive statistics 
 
This table provides selected descriptive statistics for the Norwegian 1-month risk free rate, an equal weighted portfolio of the funds in our dataset as well as all the 
factors considered and used throughout our analysis. All non-standard measurements are reported as percentages on a monthly basis. The average return is computed as 
the monthly arithmetic average. All relevant measures are reported as percentages. The market portfolio is a combination of the Total Index (Oslo Børs Totalindeks) up 
until 1995 and OSEFX (Oslo Børs Mutual Fund Index) which was initiated at the beginning of 1996. A thorough description of how the remaining factors are 
constructed is provided under ‘Factor construction’ in section 5. 
 

 

 

R m  - R f SMB HML UMD* LIQ

Panel A: Summary Statistics

Average Return 0.56 1.26 0.62 0.79 0.32 0.56 0.14
Standard Deviation 0.37 6.23 6.59 4.39 4.91 5.72 4.68
t -statistic 30.03 4.03 1.88 3.57 1.29 1.95 0.60
Max 2.07 17.39 16.51 22.22 18.46 25.48 16.42
Min 0.08 -25.49 -28.68 -17.08 -16.65 -24.27 -17.66
Skewness 0.66 -0.73 -1.00 0.47 -0.11 -0.19 0.13
Kurtosis -0.35 1.85 2.89 3.38 1.26 1.93 0.90
Panel B: Cross-correlations

Risk free rate 1.00
Excess return equal weighted portfolio -0.03 1.00
R m  - R f -0.09 0.97 1.00
SMB 0.02 -0.32 -0.42 1.00
HML 0.11 0.04 0.07 -0.13 1.00
UMD* -0.09 -0.09 -0.10 0.13 -0.07 1.00
LIQ 0.12 -0.57 -0.60 0.58 0.03 -0.06 1.00
Overall time period: 1983M01 - 2015M12

Risk free 
rate

Excess return 
equal weighted 

portfolio

* We do not have data for UMD for December 2015. Statistics relating to UMD are over the time period 1983M01 - 2015M11
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second greatest correlation, in absolute terms, is between the market premium and the 

liquidity factor (-0.6). The relatively large negative correlation is in accordance with 

expectations, as the LIQ-portfolio consists of a short position in the most liquid 

companies, which constitutes a great proportion of the market portfolio. Similar 

reasoning could be used to explain the large negative correlation (-0.42) between the 

size-factor (SMB) and the market as well. Moreover, LIQ and SMB exhibit a positive 

correlation of 0.58. This is in line with our anticipation, as large companies tend to be 

relatively more liquid while smaller companies tend to be less liquid. 

 

6. Empirical Results 

Equal weight portfolio regression results 

To get an initial overview of the overall performance of the Norwegian mutual fund 

industry, we report the results from regressions of five different model specifications, 

with the excess return of an EW (equally weighted) mutual fund portfolio as the 

dependent variable. Results are shown in Table 2 below. The portfolio is constructed 

using all of the funds in our data sample, taking an EW average of the fund returns 

available at a given point in time. Ideally, we would report the same for a value 

weighted portfolio, but unfortunately limitations in our dataset, specifically the lack 

of data on assets under management, prevents this (current AUM is easily obtainable 

for funds that still exist, while historical data, especially for defunct funds, is hard to 

obtain). It is important to note that equally weighted returns of mutual funds can be 

misleading and should be handled with care. We nevertheless report results using 

EW, but use them only as interesting observations, while refraining from drawing 

conclusions from the results. 

For the basic Jensen (1968) 1-factor model (1), the annualized alpha is actually 

positive and statistically significant (annualized alpha is equal to 1.5%, with t-statistic 

equal to 5.6), in contrast to what we hypothesise for net returns. However, when 

controlling for additional risk factors in the other models (2-5), the alpha becomes 

negative, albeit not significantly so. For example for model (4), which has the lowest 

t(α), the annualized alpha is -0.2% (not significantly different from 0), which is 
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actually high given that returns are net of fees; for gross returns, we would expect 

average alpha close to 0 as above, but for net returns a number closer to the negative 

of the average annual fee, currently equal to ~1.4% (Strøm 2014), is plausible. But 

again, this could be a result of using EW returns rather than VW returns. With 

annualized standard error of 0.23%, the annualized model (4) alpha is significantly 

higher than -1.4%. 

The coefficient on excess market return is significantly lower than 1 for all models. 

For example, for our the Fama-French 3-factor model (2) with 𝛽𝑀 equal to 0.96, the 

equal weight portfolio increases/decreases with 0.96% when the market 

increases/decreases with 1%. The deviations from 1 are interesting, and might be 

related to the fact that Norwegian mutual funds cannot borrow money, but rather need 

to hold some very liquid assets such as T-bills. Additionally, as mentioned we use an 

equal-weight portfolio which does not accurately reflect the actual overall return of 

the sector. We also use OSEAX as the market benchmark before 1996, and the 

differences between OSEFX and OSEAX (see ‘Market return’ under section 5 for 

details) could be a reason; we find that regressing the EW portfolio on OSEFX only, 

over the post-1996 period in which it is available, yields a coefficient slightly higher 

than 1 (but not significant). 

The adjusted R-squared is fairly high (almost 95%) for all models. It is slightly lower 

for model (1) than for the other specifications. We observe that going from the FF 3-

factor model (2) to the FF 4-factor model (3), only increase explanatory power very 

slightly, as does going from model (2), (3) or (4) to the full 5-factor specification (5). 

Neither of the coefficients added (HML and UMD) in going from (4) to (5) are 

statistically significant (t = -0.9 and t = -0.53 respectively), and adding the liquidity 

factor used in models (4) and (5) to model (3) increases power slightly (with ~0.1%). 

The coefficient on the size portfolio 𝛽𝑆𝑀𝐵 is positive and statistically significant in all 

models it is included, while coefficients on the value portfolio 𝛽𝐻𝑀𝐿 and on the 

momentum portfolio 𝛽𝑈𝑀𝐷 are never significant. The coefficient on the liquidity 

portfolio 𝛽𝐿𝐼𝑄 is negative and statistically significant when included in models (4) and 

(5).
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Table 2: Regression results of various models specifications for equal-weight portfolio of actively managed Norwegian mutual funds 
 
This table shows time series regression results for different models on net returns of an equal weight portfolio of the actively managed Norwegian mutual funds in our 
sample. The number of funds in our sample used to calculate the equal-weight mean return per period ranges from minimum two in 1983M01 to maximum 66 in 
2002M10 with an average of 56 over the whole sample. Explanatory variables used are the market excess return (M), a size factor (SMB), a value/growth factor (HML), 
a momentum factor (UMD) and a liquidity factor (LIQ) (see ‘Factor construction’ under section 5 for descriptions of the factors). Regression results shown are the 
intercept and coefficient estimates with corresponding t-statistics, the regression R2 and adjusted R2. For the market slope, the t-statistics tests whether the coefficient 
𝛽𝑀 is different from 1, while the other t-statistics test whether coefficients are different from 0. We use the OLS estimator and standard errors corrected for 
heteroscedasticity and autocorrelation with the Newey and West (1986) procedure. 
 
 

 
 

Model specification α βM βSMB βHML βUMD βLIQ R2 Adj. R2

Coefficient 0.001 0.92
t(Coefficient) 1.62 -4.69

Coefficient 0.000 0.96 0.14 -0.02
t(Coefficient) -0.11 -2.31 7.22 -1.34

Coefficient 0.000 0.96 0.14 -0.02 0.00
t(Coefficient) -0.17 -2.25 7.29 -1.29 0.07

Coefficient 0.000 0.94 0.18 -0.07
t(Coefficient) -0.26 -2.77 6.43 -2.02

Coefficient 0.000 0.94 0.18 -0.02 -0.01 -0.07
t(Coefficient) -0.15 -2.67 6.45 -0.90 -0.53 -2.00

Overall time period: 1983M01 - 1983M12
1)

Regressions including UMD are over the time period 1983M01 - 2015M11, as we do not have data for UMD for December 2015.

(5) Fama-French extension (5-factor model incl. liquidity and momentum)1 94.9% 94.9%

(3) Fama-French 4-factor model (incl. momentum)1 94.8% 94.7%

(4) Model specification based on Næs, Skjeltorp & Ødegaard (2009) 94.9% 94.9%

(1) Jensen's Alpha / CAPM 93.9% 93.9%

(2) Original Fama-French 3-factor model 94.8% 94.7%
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Individual fund regression results 

Table 3 shows results from a subset of the benchmark regressions (step one of the 

bootstrap procedure in section 4), using the Fama-French 3-factor model (2).  We are 

mostly interested in the tails of the distribution: the top and bottom ten funds, ranked 

from worst to best according to 𝑡(𝛼), are included in the table. All of the ten worst 

performing funds have a negative constant (α), the nine worst statistically significant 

at the 1 %-level, with the worst being Nordea SMB II with a monthly α of -1.44% per 

month. This fund was closed down after only 69 months of operation, making it 

relatively short-lived compared to an average lifetime in our dataset of 153 months, 

supporting our findings of significant survivorship bias (see ‘Survivorship bias in 

mutual funds’ under section 5). 

All of the best performing funds have delivered a positive α, the eight best 

statistically significant at the 5 %-level, and the four best even at the 1 % level. 

Omega Investment Fund B and C are the two best performing funds, probably with 

very similar holdings as all coefficients are close to equal. The two funds have 

provided an impressive alpha of approximately 1.2 % per month (14.7% per year) and 

with equal 𝛽𝑀𝑠 of only 0.51 they are the two funds with the by far least exposure to 

market risk. We note however that the top four performing funds are new (only 20-34 

months old) and that especially returns of the top two are not as well explained by the 

model as most other funds, both with R2 = 44.8% (it will be interesting to follow the 

new, top performing funds in the future, to see whether they are able to sustain their 

track records over a longer period of time). Actually, there is an inverse u-pattern in 

R2. It is relatively low in both extreme tails of the distribution (i.e. for the worst and 

best funds), whereas it seems to rise towards the center of the distribution. This could 

suggest that extreme performers, high or low, are more active and simultaneously less 

diversified than the average of mid-performers. Fully passive index funds, if 

included, should get a place at the middle of the distribution, with α and t(α) 

unaffected by skill and luck and close zero, while very active funds could end up 

anywhere depending on their individual levels of positive/negate skill and degrees of 

good/bad luck. Another proposition could be that the extreme performers are exposed 

to other risk factors which are not well captured in our chosen model (4), but this 

should not matter much for the presented bootstrap methodology.  The funds with 
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low R2 in the benchmark regressions above, based on actual returns, will on average 

have relatively high absolute values of residuals. And, as residuals (as well as factor 

returns) are ‘drawn’ in the simulations, these funds will more often get low levels of 

R2 and be more probable to get extreme levels of α and t(α) in the simulations as well. 

Some interesting observations from Table 3b are the relative difference in risk factor 

exposure between the top and the bottom funds as groups. For example, it seems like 

the bottom funds are relatively more exposed to market risk and to small companies, 

compared to the best: the equal weighted average of 𝛽𝑀 for the bottom ten is 1.05, 

while the same measure is 0.77 for the best ten, and the equal weighted average of 

𝛽𝑆𝑀𝐵 for the bottom ten is 0.29, while it is 0.07 for the ten best. For 𝛽𝐻𝑀𝐿 there is not 

a clear pattern, with equal weighted averages being -0.05 for the bottom funds and -

0.01 for the top ten funds. 

Another interesting observation is that all of the 20 worst performing funds have 

ended their operations, while all of the funds among the 20 best performing were all 

still operating at the end of 2015, further supporting our findings in the survivorship 

bias section. 

The results are also in line with those of Sørensen (2009), who provides a similar 

table, also using the Fama-French model (2). The funds presented as the bottom four 

in his paper, are still the bottom four in our research (they were all shut down within 

his period of interest). And, among the top four from 2009, three are still among the 

top ten today (all four are alive at the end of both his and our periods). 

In Table A4 in the appendix, the same table based on our second model specification 

(4), with market return, a size portfolio and a liquidity portfolio as factors, is 

provided. Overall the results are very similar, and there are no major discrepancies 

between these and the results based on the FF 3-factor model (2). The fund rankings 

are similar, levels of both α- and t(α)-values are of approximately the same 

magnitude, and we see the same inverse u-pattern in R2.   
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Table 3: Results from regressions on the Fama-French 3-factor model (2) for individual actively managed Norwegian mutual funds 
 
 
This table shows time series regression results for the Fama-French 3-factor model estimated on net returns of the individual actively managed Norwegian mutual funds 
in our sample. The explanatory variables used are the market excess return (M), a size factor (SMB) and a value/growth factor (HML) (see ‘Factor construction’ under 
section 5 for descriptions of the factors). Results are shown for the top and bottom ten funds, ranked by the t-statistic of alpha. In addition to regression results, the table 
shows the following information about each fund from left to right: rank of fund (by t-stat of alpha), ticker of fund, name of fund, the number of returns and the time 
span the fund is present in our sample. Regression results shown are the intercept and coefficient estimates with corresponding t-statistics and the regression R2. For the 
market slope, the t-statistics test whether the coefficient βM is different from 1, while the other t-statistics test whether intercepts/coefficients are different from 0. We use 
the OLS estimator and standard errors corrected for heteroscedasticity and autocorrelation with the Newey and West (1986) procedure.  
 
 

 
  

α βM βSMB βHML t(α) t(βM) t(βSMB) t(βHML)

101 KF-SMBII Nordea SMB II 69 1997M07 - 2003M03 -0.0144 0.96 0.57 -0.12 -3.92 -0.56 4.63 -1.30 76.9%
100 SK-SMB Skandia SMB Norge 96 1994M12 - 2002M11 -0.0112 1.03 0.46 -0.11 -3.35 0.27 6.20 -1.61 85.6%
99 SU-NORGE Globus Norge II 94 1998M12 - 2006M11 -0.0105 1.26 0.32 -0.12 -3.15 3.31 3.80 -1.90 87.4%
98 GF-AKSJE GJENSIDIGE AksjeSpar 151 1987M02 - 1999M08 -0.0035 0.94 0.05 0.03 -3.10 -1.88 1.99 0.76 93.1%
97 KF-SMB Nordea SMB 212 1997M06 - 2015M01 -0.0060 1.04 0.55 -0.04 -3.02 0.89 8.64 -0.80 82.0%
96 GF-INVES GJENSIDIGE Invest 103 1992M04 - 2000M10 -0.0048 0.98 0.19 0.09 -2.92 -0.63 3.38 3.10 93.2%
95 DI-RVKST DnB Real-Vekst 156 1989M12 - 2002M11 -0.0036 0.93 0.11 0.01 -2.81 -4.46 4.30 0.40 95.8%
94 SU-GLNO Globus Norge 103 1998M03 - 2006M11 -0.0090 1.19 0.34 -0.13 -2.78 2.40 4.71 -1.69 87.3%
93 DK-NORII Avanse Norge (II) 286 1991M01 - 2014M10 -0.0017 0.95 0.04 -0.02 -2.55 -3.28 1.31 -1.24 97.5%
92 SU-AKTIV Globus Aktiv 87 1998M12 - 2006M04 -0.0081 1.26 0.29 -0.12 -2.32 3.21 3.49 -1.90 87.5%

10 SP-VERDI Storebrand Verdi 216 1998M01 - 2015M12 0.0018 0.91 -0.02 0.15 1.75 -3.37 -0.49 4.26 91.4%
9 FV-TRNDR FORTE Tr?nder 32 2013M05 - 2015M12 0.0053 0.70 -0.01 -0.10 1.81 -2.09 -0.07 -1.11 53.8%
8 AC-NWECD Arctic Norwegian Equities Class D 34 2013M03 - 2015M12 0.0054 0.74 0.00 -0.03 2.00 -2.33 0.00 -0.58 74.2%
7 CA-AKSJE Carnegie Aksje Norge 245 1995M08 - 2015M12 0.0021 0.95 0.05 -0.13 2.15 -2.21 1.55 -3.88 94.0%
6 FF-NOAI2 Danske Fund Norge Aksj. Inst 2 109 2006M12 - 2015M12 0.0030 0.94 0.05 0.02 2.31 -1.69 1.02 0.77 97.1%
5 FF-NOIII Danske Fund Norge Aksj. Inst 1 188 2000M05 - 2015M12 0.0021 0.93 0.01 0.01 2.39 -3.82 0.54 0.76 97.3%
4 IS-UTBYT Landkreditt Utbytte 34 2013M03 - 2015M12 0.0059 0.66 0.23 0.13 2.62 -2.78 2.94 2.04 69.3%
3 AI-NORGI Alfred Berg Norge Inst 20 2014M05 - 2015M12 0.0072 0.84 0.12 0.00 3.43 -1.84 1.49 -0.09 91.3%
2 OR-INVFB Omega Investment Fund B 25 2013M12 - 2015M12 0.0119 0.51 0.13 -0.10 3.62 -5.07 1.17 -1.61 44.8%
1 OR-INVFC Omega Investment Fund C 25 2013M12 - 2015M12 0.0123 0.51 0.13 -0.10 3.74 -5.08 1.16 -1.61 44.8%

R2Coefficients T-statistics
Rank Ticker Name # of obs Alive 

from - Alive 
to
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Bootstrap results 

The first column (‘Actual’) in Table 4 shows results from the benchmark regressions, 

based on the same numbers as in Table 3. The table also shows results from the 

bootstrap simulations for corresponding ranks/percentiles. Panel A is based on and 

reports values for α, whereas Panel B is for 𝑡(𝛼). According to (Fama and French 

2010) the t-statistic is a more accurate measure since it incorporates the measurement 

precision, and consequently our main focus in the analysis will be on Panel B. The 

results are for ranks and percentiles in ascending order, where percentiles are based 

on interpolations between the ranks closest to the given percentile. The cross 

sectional distribution from the estimated benchmark model can easily be compared 

with the average values of the corresponding rank or percentile of simulated α and 

𝑡(𝛼), based on the average of 10 000 bootstrap simulations. For example, the 5th 

worst and 5th best values of actual 𝑡(𝛼) estimates are -3.02 and 2.39, whereas the 

average value of the corresponding ranks from simulations are -1.76 and 1.66 

respectively.  

The last column in the two panels provide the fraction of simulations yielding a lower 

result than the actual observations. For example, only 1.1% of the simulated values 

are lower than the actual value for the 5th worst fund. This indicates ‘bad skill’ or 

value destruction. Actually, most of the left side of the distribution (from worst rank 

to above the 40th percentile), the simulated 𝑡(𝛼) estimates are greater than the actual 

values in more than 90% of the draws, and recurrently more than 95%. This leaves 

little evidence for misfortune as the main explanation for poor fund performance, i.e. 

we reject a null hypothesis stating that bad results are only due to bad luck. Also, all 

the way from the end of left tail (i.e. 1st percentile) and up until the 80th percentile, we 

observe that the simulated averages are higher than the corresponding actual 

observations from the benchmark regressions.  

In the right tail, the results are more encouraging. From somewhere below the 90th 

percentile and up, every average simulation value is below the actual observation, and 

the proportion of simulated values below the actual frequently exceeds 95% among 

the best performing funds. This allows us to reject a null hypothesis that good 

performance is only due to luck, and thus acknowledge that there exists some skill 

among the best performers. 
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Table 4: Ranks and percentiles of α- and t(α)-estimates for actual and simulated 
mutual fund returns based on the Fama-French 3-factor model (2) 

 
 
Panel A of this table shows estimated values of α at selected ranks and percentiles for actual fund 
returns of actively managed Norwegian mutual funds, while Panel B shows estimated values of t(α). 
The panels are produced separately and α-values of specific ranks do not necessarily correspond t(α)-
values of the same rank. The simulated average is the average of α or t(α) at selected percentiles from 
the simulation. The % < Act columns show the percentage of simulations runs which produce lower 
values of α or t(α) at the given rank/percentile than those observed for actual fund returns. The 
explanatory variables used are the market excess return (M), a size factor (SMB) and a value/growth 
factor (HML) (see ‘Factor construction’ under section 5 for descriptions of the factors). We use the 
OLS estimator and standard errors corrected for heteroscedasticity and autocorrelation with the Newey 
and West (1986) procedure. 
 
 

 

 

  

Rank/ 
percentile Actual Simulated 

average % < Act Rank/ 
percentile Actual Simulated 

average % < Act

Worst -0.0144 -0.0101 16.0 Worst -3.92 -2.83 9.4
2nd -0.0112 -0.0061 3.5 2nd -3.35 -2.32 5.7
3rd -0.0109 -0.0048 0.5 3rd -3.15 -2.06 3.4
4th -0.0105 -0.0042 0.1 4th -3.10 -1.89 1.6
5th -0.0090 -0.0037 0.1 5th -3.02 -1.76 1.1

10% -0.0055 -0.0023 0.1 10% -2.29 -1.31 1.6
20% -0.0027 -0.0013 2.6 20% -1.72 -0.86 2.2
30% -0.0018 -0.0008 4.9 30% -1.21 -0.54 4.8
40% -0.0011 -0.0004 10.2 40% -0.80 -0.28 9.3
50% -0.0005 0.0000 17.5 50% -0.38 -0.03 18.3
60% 0.0001 0.0003 32.3 60% 0.04 0.22 32.6
70% 0.0004 0.0007 32.8 70% 0.41 0.49 43.2
80% 0.0012 0.0012 51.6 80% 0.91 0.80 61.9
90% 0.0027 0.0022 75.5 90% 1.63 1.24 83.2

5th 0.0054 0.0035 92.9 5th 2.39 1.66 93.7
4th 0.0059 0.0039 91.7 4th 2.62 1.78 95.2
3rd 0.0072 0.0046 93.1 3rd 3.43 1.94 99.4
2nd 0.0119 0.0057 98.5 2nd 3.62 2.17 98.5
Best 0.0123 0.0089 82.2 Best 3.74 2.64 92.0

Panel B: t(α)Panel A: α
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One observation worth mentioning is that the funds just below the best performing 

fund actually have a greater proportion of simulated values below the actual value.  

For example, this proportion is 99.4% for the 3rd best fund, whereas the same fraction 

amounts to a slightly lower 92.0% for the best fund. Although this may appear as an 

inconsistency, it is in fact not. It can be explained by the relative performance among 

the funds, e.g. that the third best fund performs extremely well contingent on being 

the third best fund. The opposite is true when focusing on the left tail of the 

distribution. It is important to emphasize that the actual results of each individual 

fund in the is contingent on the results of all the other funds in the comparison with 

simulated numbers. Thus, one cannot draw conclusions for individual funds, but 

rather need to look at the general results of the tails as a whole.  

Figure 1 shows the empirical cumulative distribution function for simulated and 

actual values of α and t(α). This can be perceived as a visualization of the results from 

the Actual and Simulated average-columns of Table 4. We see that the line based on 

simulated values lie everywhere to the right of the line based on actual values (i.e. are 

higher) up until around the 80th percentile, consistent with our observations in the 

second paragraph of this section, while the top 20% of the funds do have an actual 

alpha which is greater than the averages from simulations.   

Figure 2 shows histograms for simulated values and actual value of 𝑡(𝛼) at selected 

ranks and percentiles. For example, the bottom right subfigure shows the results for 

the best fund. The dotted line represents the actual 𝑡(𝛼)-value for the best fund, here 

amounting to 3.74 (again, numbers are the same as observed in table 3a), whereas the 

histogram shows the distribution of the best 𝑡(𝛼) values collected from 10 000 

simulations. From the histogram it is easy to see that the majority of simulated values 

place below the actual 𝑡(𝛼)-value. In the rightmost column in the bottom row of 

Table 4 it can be seen that exact fraction of simulated values which are less than the 

actual value amounts to 92.0%.  

In Figure 3 we provide an alternative visualization of the bootstrap results, motivated 

by the methodology put forward by Cuthbertson, Nitzsche and O'Sullivan (2008). 

The main focus is still on the t-statistic, which is reported on the right hand side. The 

figure shows the Kernel density estimates of the frequency of funds one might expect  
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Figure 1: Empirical cumulative distribution function of actual and simulated alpha and t(alpha) using Fama-French 3-factor model (2) 
 
This figure shows actual and simulated empirical cumulative distribution functions (ECDF) for alphas and their corresponding t-stats. The left panel shows the ECDFs 
for the actual and simulated alphas based on a three factor model with factors for market, size and value as explanatory variables. The right panel shows the same graphs 
for the t-statistics corresponding to the alphas of the same model. The actual and simulated alphas with corresponding t-statistics used are the same as described in Table 
4 above. 
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Figure 2: Histogram of different ranks/percentiles of the simulated t(alpha) using 
Fama-French 3-factor model (2) 

 
This figure shows histograms for t-statistic of simulated alpha. Each panel displays the histogram of a 
specific rank/percentile from each of the bootstrap simulations, as specified in the titles. The dashed 
line in each panel displays the actual t-statistic of the corresponding rank/percentile. Actual alphas with 
corresponding t-statistics are estimated with the observed historical returns of each fund, while 
simulated alphas are the average of each rank/percentile of all the 10.000 basic bootstrapped 
simulations (described under ‘The bootstrap procedure: 5 steps’ under section 4). The top and bottom 
ranks of actual alpha and of the corresponding t-statistic and the average of the top and bottom 
simulated ranks can be found in Table above. We use the OLS estimator and standard errors, corrected 
for heteroscedasticity and autocorrelation with the Newey and West (1986) procedure, to estimate 
alpha and corresponding t-statistic. 
 

 
 



39 

Figure 3: Kernel smoothing function estimate of actual and simulated alpha and t(alpha) using Fama-French 3-factor model (2) 
 
 
This figure shows actual and simulated kernel smoothing density function (KSDF) estimates for alphas and their corresponding t-stats. The left panel shows the KSDFs 
for the actual and simulated alphas based on a three factor model with factors for market, size and value as explanatory variables. The right panel shows the same graphs 
for the t-statistics corresponding to the alphas of the same model. The actual and simulated alphas with corresponding t-statistics that are used to estimate the Kernel 
smoothing densities are the same as described in Table 4 above and we use the standard bandwidth optimal for normal densities. 
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to achieve a given level of 𝑡(𝛼) as a result of luck alone, compared to the actually 

observed frequencies of achieved t(α).  One of the most remarkable observations 

from Figure 3 is the apparent overpopulated left-tail of the actual 𝑡(𝛼)-distribution 

(solid line), compared to the luck-distribution (dashed line). This observation 

proposes that a large fraction of the funds cannot use poor luck as an explanation to 

bad performance. On the opposite side of the distribution there seems to be evidence 

of outperformance which is not due to luck. Additionally, the actual distributions are 

shifted slightly to the left compared to the simulated distributions, implying that the 

mean is lower than simulated mean. This could be explained by fees; we use net 

returns for the actual numbers, fees are captured in alpha, and in the simulations 

alpha, and fees with it, are left out. The simulated distribution is approximately 

symmetric around zero and looks relatively normal, while the actual distribution has 

negative mean and seems to be platykurtic. 

Overall, the bootstrapping results give evidence for the existence of both inferior and 

superior fund management, i.e. that performance cannot be explain by good/bad luck 

alone. 

 

Bootstrap results with injected alpha 

In the methodology used for estimating the distribution true α (explained at the end of 

‘Extension of the bootstrap procedure: Injecting alpha’ under section 4), a normality 

assumption is used. This will not be completely accurate, and even when allowing for 

different σ for each tail, one cannot expect single values of σ to capture the tails of 

t(α) estimates for actual returns completely (Fama and French 2010). Our simulations 

with injection of alpha, summarized in Table 5 below, suggest that σ in the area 

~2.0% to ~2.5% captures most of the extreme left tail (depending on which point in 

the tail is used), with 2.25% as the best estimate. While σ in the area ~1.75% to 

~2.25%, with 2% as the best estimate, captures the extreme right tail of actual t(α) for 

net fund returns. As a perspective, taking the average of the standard errors of the 

individual alpha estimates from the benchmark regressions (subset shown in table 3) 

yields an annualized number of 2.3%, very close to the estimates from the 

simulations with injected alpha.  
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The estimates above imply some ability in generating returns above fees charged 

among fund managers. E.g. with an estimate of σ equal to 2% for the right tail, ~16% 

of funds have true annual α above 2%, and ~0.6% have true annual alpha above 5%. 

Similarly, for the left tail, with an estimate of σ equal to 2.25% for the left tail, ~16% 

of funds have true annual α below -2.25%, and ~1.3% have true annual alpha below -

5%. Alternatively, we could say that the top 5% of managers generate true alpha of 

around 3.3% or more, i.e. they have the skill to earn at least 3.3% more than the fees 

they charge, and the top 1% of managers generate true alpha of 4.7% or more. And 

for the left tail, we could say that the bottom 5% of managers generate true alpha 

of -3.7% or less, i.e. they represent a value destruction of at least 3.7% including the 

fees they charge, and the bottom 1% of managers generate true alpha of -5.2% or less. 

Our estimates for σ are somewhat higher than the average numbers found by Fama 

and French (2010) for the US market with gross returns. It is important to remember 

that datasets are not remotely comparable (due to different regions, time periods, 

number of funds and net vs. gross returns). All else equal, the direction of the 

difference is opposite of what we would expect given the assumption that there exist 

a positive relationship between the skill of managers and the fees they are able to 

charge. Values of net returns α should be less dispersed than those based on gross 

returns, as high levels of gross return α will effectively be reduced more by the fee 

than low levels of gross return α. We thus expect that the difference between our 

results and those by Fama and French (2010) would be even larger with gross returns. 

However, the mean should go down as well when going from gross to net returns. 

When we impose the mean to remain constant (and equal to zero), the implied right 

tail σ may be additionally biased down (right tail values of net return α are closer to 

the imposed mean of α (zero) than to the actual and unknown mean of α). For the left 

tail σ the effect of holding the mean constant is opposite, it increases the left tail σ-

estimate; while the overall effect may be ambiguous depending on the magnitudes of 

the change in mean and σ when going from gross to net returns. 
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Table 5: Ranks and percentiles of α- and t(α)-estimates for actual and simulated 
mutual fund returns with injected α  

 
This table first shows estimated values of α at selected ranks and percentiles for actual net fund returns 
of actively managed Norwegian mutual funds. Panel A shows the average of t(α) and Panel B the 
percentage of simulations runs which produce lower values t(α) at the same ranks/percentiles from the 
simulation, given 15 different levels of σ (average standard deviation of injected alpha). The columns 
‘Actual t-stat’ and ‘No inj. α' are the same as in Table 4. A randomly drawn alpha is injected into 
returns for each simulation and for each fund, with mean equal to zero (See ‘Extension of the bootstrap 
procedure: Injecting alpha’ under section 4 for a detailed explanation of how alpha is injected). σ 
varies according to the table below (from 0% to 3.5%, in steps of 0.25%), while each individual funds 
injected alpha is scaled by multiplying with the following ratio: 

(
𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑡ℎ𝑒 𝑓𝑢𝑛𝑑

𝑎𝑣𝑒𝑟𝑎𝑔𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑠𝑡𝑎𝑛𝑑𝑎𝑟𝑑 𝑒𝑟𝑟𝑜𝑟 𝑜𝑓 𝑎𝑐𝑡𝑢𝑎𝑙 𝑟𝑒𝑠𝑖𝑑𝑢𝑎𝑙𝑠 𝑜𝑓 𝑎𝑙𝑙 𝑓𝑢𝑛𝑑𝑠
) 

The explanatory variables used to estimate actual and simulated t(α) are the market excess return (M), 
a size factor (SMB) and a liquidity factor (LIQ) (see ‘Factor construction’ under section 5 for 
descriptions of the factors). We use the OLS estimator and standard errors corrected for 
heteroscedasticity and autocorrelation with the Newey and West (1986) procedure. 
 

 

No inj. α 0.25% 0.50% 0.75% 1.00% 1.25% 1.50% 1.75% 2.00% 2.25% 2.50% 2.75% 3.00% 3.25% 3.50%

Worst -3.90 -2.83 -2.85 -2.92 -3.03 -3.18 -3.37 -3.60 -3.87 -4.16 -4.46 -4.79 -5.13 -5.49 -5.85 -6.21
2nd -3.51 -2.35 -2.37 -2.43 -2.52 -2.65 -2.82 -3.01 -3.22 -3.45 -3.71 -3.97 -4.24 -4.52 -4.81 -5.11
3rd -3.15 -2.07 -2.09 -2.15 -2.24 -2.36 -2.51 -2.68 -2.87 -3.07 -3.29 -3.52 -3.76 -4.01 -4.26 -4.51
4th -3.03 -1.90 -1.91 -1.97 -2.05 -2.16 -2.30 -2.45 -2.63 -2.82 -3.01 -3.22 -3.43 -3.66 -3.88 -4.11
5th -3.00 -1.77 -1.78 -1.83 -1.91 -2.01 -2.14 -2.28 -2.44 -2.61 -2.80 -2.99 -3.18 -3.39 -3.59 -3.80

10% -2.55 -1.31 -1.33 -1.36 -1.42 -1.50 -1.59 -1.70 -1.81 -1.93 -2.06 -2.19 -2.33 -2.47 -2.61 -2.75
20% -1.77 -0.86 -0.87 -0.89 -0.93 -0.98 -1.04 -1.11 -1.18 -1.25 -1.33 -1.41 -1.49 -1.58 -1.66 -1.75
30% -1.30 -0.54 -0.54 -0.56 -0.58 -0.61 -0.65 -0.69 -0.73 -0.78 -0.82 -0.87 -0.92 -0.97 -1.02 -1.07
40% -0.86 -0.27 -0.27 -0.28 -0.29 -0.31 -0.32 -0.34 -0.36 -0.38 -0.40 -0.43 -0.45 -0.47 -0.50 -0.52
50% -0.57 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02 -0.02
60% -0.11 0.23 0.23 0.24 0.25 0.26 0.28 0.30 0.32 0.34 0.36 0.39 0.41 0.43 0.46 0.48
70% 0.35 0.49 0.50 0.51 0.54 0.57 0.61 0.64 0.69 0.73 0.78 0.82 0.87 0.92 0.97 1.03
80% 0.80 0.81 0.82 0.84 0.88 0.93 0.99 1.05 1.12 1.20 1.27 1.35 1.43 1.52 1.60 1.69
90% 1.67 1.25 1.26 1.30 1.36 1.44 1.53 1.64 1.75 1.87 2.00 2.13 2.27 2.41 2.55 2.70

5th 2.53 1.67 1.69 1.74 1.82 1.93 2.05 2.20 2.36 2.53 2.72 2.91 3.11 3.31 3.52 3.73
4th 2.54 1.80 1.82 1.87 1.95 2.07 2.20 2.36 2.54 2.73 2.93 3.14 3.36 3.58 3.80 4.04
3rd 3.40 1.96 1.98 2.03 2.12 2.25 2.40 2.57 2.77 2.98 3.20 3.43 3.67 3.92 4.18 4.44
2nd 3.43 2.19 2.21 2.27 2.37 2.51 2.68 2.87 3.09 3.33 3.59 3.85 4.13 4.42 4.71 5.00
Best 3.54 2.67 2.69 2.76 2.87 3.02 3.22 3.45 3.72 4.01 4.32 4.65 5.00 5.36 5.72 6.09

Worst -3.90 9.5 9.8 10.7 12.8 16.2 22.6 32.2 43.2 55.5 67.4 77.2 85.5 91.1 94.6 96.9
2nd -3.51 5.0 5.0 5.5 6.7 9.3 13.7 21.1 31.2 43.7 56.6 68.5 79.0 86.7 92.1 95.6
3rd -3.15 3.7 3.9 4.5 6.0 8.6 13.3 20.6 30.5 42.7 55.7 67.9 78.8 86.3 91.8 95.4
4th -3.03 2.0 2.1 2.6 3.7 5.6 8.9 14.7 23.1 34.1 46.7 59.4 71.2 80.5 87.6 92.4
5th -3.00 1.1 1.1 1.4 1.9 3.0 5.2 8.8 15.3 23.9 34.7 46.9 59.5 70.6 79.8 87.0

10% -2.55 0.4 0.4 0.5 0.7 1.3 2.1 3.4 6.1 10.3 16.0 23.6 32.5 42.6 53.0 63.1
20% -1.77 1.4 1.5 1.7 2.2 3.0 4.1 5.7 8.0 11.3 15.5 20.9 26.6 32.9 39.9 47.1
30% -1.30 2.9 3.1 3.2 3.6 4.3 5.0 6.3 7.8 9.8 12.1 15.0 18.1 21.7 25.2 29.6
40% -0.86 6.8 6.6 6.9 7.3 7.6 8.3 9.0 10.1 11.2 12.6 13.8 15.7 17.3 19.0 20.7
50% -0.57 7.5 7.4 7.3 7.2 7.0 7.1 7.3 7.4 7.5 7.5 7.7 7.9 8.2 8.6 8.9
60% -0.11 18.9 18.6 18.3 17.5 16.2 15.1 14.3 13.1 12.2 11.1 10.3 9.6 9.0 8.3 7.9
70% 0.35 35.6 35.7 34.3 31.8 29.2 26.1 23.1 19.6 16.6 14.1 11.8 9.9 8.2 6.8 5.5
80% 0.80 50.1 49.2 46.6 42.7 37.7 32.5 27.2 22.3 17.2 12.9 9.8 6.8 4.7 3.4 2.4
90% 1.67 84.7 83.9 81.8 77.7 71.5 63.6 54.4 44.3 34.7 25.7 17.8 11.8 7.3 4.5 2.5

5th 2.53 96.3 95.9 94.9 92.6 89.2 83.3 75.1 64.2 51.6 38.5 26.9 17.9 11.1 6.5 3.6
4th 2.54 93.4 93.0 91.5 88.4 83.3 75.5 65.1 52.3 39.0 26.6 17.4 10.6 6.0 3.1 1.5
3rd 3.40 99.2 99.2 99.2 98.6 97.8 96.1 92.7 86.0 76.2 64.0 50.4 36.7 25.2 16.7 10.7
2nd 3.43 97.6 97.3 96.9 95.5 93.6 89.4 82.0 71.1 58.3 44.5 31.5 20.5 12.6 7.4 4.3
Best 3.54 88.2 87.9 86.5 83.9 78.7 70.2 59.1 46.4 33.8 22.6 14.2 8.3 4.6 2.5 1.2

Average of the annual standard deviation of injected αRank/ 
percentile

Actual 
t-stat

Panel A: Average of simulated t(α)

Panel B: % of simulated t(α) < Actual t(α)
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As explained in the last paragraph of ‘Extension of the bootstrap procedure: Injecting 

alpha’ under section 4, we can also use the simulation results for drawing inference 

on unlikely/rejectable levels of σ. Here, we accept an approximate ~20% change of 

setting a lower bound for σ that is too high, and similarly an approximate ~20% 

chance of setting upper bound for that is too low, which are same thresholds as used 

by Fama and French (2010). The appropriate interval for σ is different from the left to 

the right tail, and varies within the tails depending on which points in the tails are 

used. The distance from the estimated σ, or the size of the interval, is much more 

consistent than its position; we find that using a band of plus and minus 0.75% fits 

fairly well. In the left tail, this implies a band ranging from ~1.25% to ~2.75% for the 

lower estimates of σ and from ~1.75% to ~3.25% for the higher estimates of σ. In the 

right tail, it implies a band ranging from ~1.0% to ~2.5% for the lower estimates of σ 

and from ~1.5% to ~3% for the higher estimates of σ. For the best estimate of 2.25% 

in the left tail, the band ranges from 1.5% to 3%, suggesting that values of σ below or 

above this are not very likely. For the right tail, with a best estimate of 2%, the band 

ranges from 1.25% to 2.75%. 

 

Persistence in performance 

In the following section we will discuss the result from tests of persistence in returns 

of the Norwegian mutual fund market. 

In order to disclose any performance persistence among Norwegian mutual funds, we 

chose to make use of the methodology put forward by Brown et al. (1992), 

Goetzmann and Ibbotson (1994) and  Brown and Goetzmann (1995)  using a Cross 

Product Ratio (CPR) test. The results could be found in Table A4 and Table A5 in the 

appendix. The test is used to analyze the persistency relative to a benchmark among 

mutual funds, with a nonparametric methodology based on contingency tables. In our 

tests we use two benchmarks. For the first one, the median return of funds that exist 

throughout the year in which the test is conducted is calculated. This is used as a 

benchmark which allows us to test whether there is a tendency that some funds 

persistently outperform or underperform relative to its peers. Another possible 
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benchmark is simply the market return. This allows us to test for a tendency of funds 

persistently out-performing or losing relative to the market. 

Each year mutual funds are sorted in one of four categories. Two categories comprise 

persistent performing funds, namely winner-winner and loser-loser, which comprise 

funds that persistently outperform or underperform the benchmark respectively in two 

subsequent years. The remaining categories comprise the non-persistent performers, 

namely winner-loser and loser-winner, which contain funds that change their relative 

ranking between two consecutive years. Each year we compute a CPR-value, which 

is defined as: 

𝐶𝑃𝑅 =
𝑁𝑊𝑊 ∙𝑁𝐿𝐿

𝑁𝑊𝐿∙𝑁𝐿𝑊
     (14) 

In which 𝑁𝑊𝑊 is the numbers of funds in the WW-group and so on. This is the odds 

ratio with the product of the two persistent performing groups divided by the product 

of the two groups which does not repeat prior year’s relative ranking. In a large 

sample consisting of independent observations, we would expect an unconditional 

probability 25% for ending up in one of the groups. This will result in a CPR-value 

equal to one. Alternatively, if the data does show a tendency of persistence we would 

expect a greater product in the nominator, and hence a CPR greater than one. 

Conversely, a tendency of reversal would manifest as a CPR-value between zero and 

one. Table A4 and Table A5 reports the results from Z-tests with H0 of no 

persistence, corresponding to a CPR-value equal to 1. In Table A4 the median return 

is used as benchmark, i.e. test if funds persistently outperform or underperform 

relative to peers. The test fails each time at least one of the categories amount to zero, 

and the result is reported as NA. The Z-statistic is significant at a 5% level in only 6 

of a total of 32 years. A remarkably lower fraction than the results of e.g. Brown and 

Goetzmann (1995). Furthermore, half of these test results are significantly negative, 

proposing a reversal. Even though 3 out of 32 is slightly higher than what we would 

expect in such a test if returns were purely random, we do not feel safe to conclude 

that the Norwegian mutual fund market exhibit persistence in performance relative to 

peers. 
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Table A5 shows the results from the test using the market return as the relevant 

benchmark. The tests for persistence report a significant result in only 2 of the 32 

years, which are both statistically positive. This is close to what we would expect 

only by chance, and consequently we do neither find evidence of persistent 

performance of fund managers relative to the market index.  

These results do not contradict our findings in the bootstrapping analysis. Even 

though some funds exhibited a significantly positive alpha term, several of these are 

funds with relatively short return histories. The average lifetime of the three best 

performing funds is only just below two years, and their presence coincides with a 

significant and positive Z-statistic. 

 

7. Conclusion 

As expected, for the Norwegian mutual fund managers as a whole, we do not find any 

evidence that managers in general possess sufficient skills necessary to cover the 

costs imposed on investors. Some active fund managers have been able to outperform 

the market, but in accordance with the equilibrium accounting theory, they do so at 

the expense of other active managers. 

In our bootstrapping analysis we find evidence of significant inferior skills among the 

worst performing funds and of significant superior skills among the best performing 

funds: In the left tail of the distribution, the results are discouraging, and we conclude 

that there is some existence of significant ‘bad skill’ (after fees are deducted) or value 

destruction. In the right tail however, we do find evidence of superior performance 

among the top performers. They have delivered returns better than what would be 

expected purely by luck. In line with the Efficient Market Hypothesis, we do not find 

evidence in the data suggesting any general persistence in performance. This implies 

a difficulty for investors in making any reliable ex ante decisions of which fund to 

choose.   

Our results deviates from those of Sørensen (2009) mostly with respect to the best 

performing funds. His study finds week evidence of some superior performance 

among the very best funds, while the best funds perform very well in our data. We 
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believe this difference is mainly due to the fact that the majority of the best 

performing funds in our dataset initiated after 2008. However, we have some 

empirical complications with our best funds, due to the fact that six of the ten best 

funds have existed for less than three years. With fewer observations superior 

performance becomes more likely, and this performance may not be due to actual 

skills. 

With the assumption that true alpha is approximately symmetric around 0, we suggest 

that the level of the annual standard deviation of true α is likely to be around 1.75%-

2.50% and relatively unlikely to be less than 1.00% or more than 3.25%. 

Since the data we have used is based on net returns, it difficult to draw any 

conclusion whether fund managers as a group are actually skilled or unskilled. It is a 

possibility that there exist several highly skilled managers, who deliver significantly 

positive alphas measured on gross return, but not on net returns. The weakness with 

net returns is that high positive skill may be concealed by high fees, and hence 

superior skill will not be detected in our bootstrapping methodology. Overall 

however, this is not a major problem, as the main question posed instead becomes 

whether fund managers, as a group and individually, possess skills sufficient to 

defend their actual levels of fees. And, for an investor, this is actually more 

interesting than skill vs. luck per se. We do however encounter some problems using 

net returns when trying to estimate the σ of true α, due to the assumption that the 

mean is equal to 0, which would be more reasonable for gross returns. 

 

Future research proposals 

In our opinion, future research on this particular topic would benefit the most from 

concentrating on improving the existing dataset. One important improvement would 

be to include gross returns. This could potentially provide powerful contributions 

such as a more solid conclusion of the existence of actual fund manager skill (instead 

of skill to cover costs), and also reveal a possible relationship between skills and fees 

(i.e. if managers with higher skills are able to charge higher fees). Moreover, 

extending the dataset by including each fund’s assets under management would allow 

for the construction of value weighted returns, as well sorting the funds by size. A 
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further improvement of the data would be to map each individual fund’s holdings and 

portfolio weights. This could, among other, be used to compute Tracking Error and 

Active Share in order to make a better assessment of whether a fund is passive or 

active.  

It would also be interesting to duplicate the results using a selection of different 

market benchmarks, e.g. using OSEAX over the whole period or OSEBX instead of 

OSEFX, in order to document the impact on performance measurement. Additionally, 

other model specifications might be investigated (for example by including the FF 3-

factor model in the alpha injection), and one could look at how the results vary 

between different subsets of the time period. 

In terms of extending the methodology, we believe that a study which implements 

conditional factor models, which allows for time-varying coefficients, also would 

generate valuable insight. Using unconditional models, as in this thesis, implicitly 

assumes the factor loadings to be constant for a fund throughout the whole lifetime, 

which is not realistic. It would also be interesting to extend the research to include all 

active Norwegian mutual funds, not just the ones with a Norwegian mandate. 

 

  



48 

Bibliography 

Acharya, Viral V and Lasse Heje Pedersen. 2005. "Asset pricing with 
liquidity risk." Journal of financial Economics 77 (2): 375-410. 

Banz, Rolf W. 1981. "The relationship between return and market value 
of common stocks." Journal of financial economics 9 (1): 3-18. 

Bhandari, Laxmi Chand. 1988. "Debt/equity ratio and expected common 
stock returns: Empirical evidence." Journal of finance: 507-528. 

Black, Fischer. 1972. "Capital market equilibrium with restricted 
borrowing." The Journal of Business 45 (3): 444-455. 

Brown, Stephen J, William Goetzmann, Roger G Ibbotson and Stephen A 
Ross. 1992. "Survivorship bias in performance studies." Review of 
Financial Studies 5 (4): 553-580. 

Brown, Stephen J and William N Goetzmann. 1995. "Performance 
persistence." The Journal of finance 50 (2): 679-698. 

Carhart, Mark M. 1997. "On Persistence in Mutual Fund Performance." 
Journal of Finance 52 (1): 57-82. 

Cuthbertson, Keith, Dirk Nitzsche and Niall O'Sullivan. 2008. "UK mutual 
fund performance: Skill or luck?" Journal of Empirical Finance 15 
(4): 613-634. doi: 10.1016/j.jempfin.2007.09.005. 

Dahlquist, Magnus, Stefan Engström and Paul Söderlind. 2000. 
"Performance and characteristics of Swedish mutual funds." 
Journal of Financial and quantitative Analysis 35 (03): 409-423. 

Dimson, Elroy and Massoud Mussavian. 1998. "A brief history of market 
efficiency." European Financial Management 4 (1): 91. 

Fama, Eugene F and Kenneth R French. 1998. "Value versus growth: The 
international evidence." The journal of finance 53 (6): 1975-1999. 

Fama, Eugene F. 1970. "Efficient Capital Markets: A Review of Theory and 
Empirical Work." The Journal of Finance 25 (2): 383-417. doi: 
10.2307/2325486. 

Fama, Eugene F. and Kenneth R. French. 1993. "Common risk factors in 
the returns on stocks and bonds." Journal of Financial Economics 
33 (1): 3-56. 

———. 2010. "Luck versus Skill in the Cross‐Section of Mutual Fund 
Returns." Journal of Finance 65 (5): 1915-1947. 

Gjerde, Øystein and Frode Sættem. 1991. "Performance evaluation of 
Norwegian mutual funds." Scandinavian Journal of Management 7 
(4): 297-307. 



49 

Goetzmann, William N and Roger G Ibbotson. 1994. "Do winners 
repeat?" The Journal of Portfolio Management 20 (2): 9-18. 

Jegadeesh, Narasimhan and Sheridan Titman. 1993. "Returns to buying 
winners and selling losers: Implications for stock market 
efficiency." The Journal of finance 48 (1): 65-91. 

Jensen, Michael C. 1968. "The Performance of mutual funds in the period 
1945-1964." Journal of Finance 23 (2): 389-416. 

———. 1978. "Some anomalous evidence regarding market efficiency." 
Journal of financial economics 6 (2): 95-101. 

Koller, Tim, Marc Goedhart and David Wessels. 2010. Measuring and 
Managing the Value of Companies. 

Kosowski, Robert, Allan Timmermann, Russ Wermers and Hal White. 
2006. "Can Mutual Fund “Stars” Really Pick Stocks? New Evidence 
from a Bootstrap Analysis." Journal of Finance 61 (6): 2551-2595. 

Lintner, John. 1965. "The valuation of risk assets and the selection of 
risky investments in stock portfolios and capital budgets." The 
review of economics and statistics: 13-37. 

Markowitz, Harry M. 1959. Portfolio Selection: Efticient Diversification of 
Investments. 

Næs, Randi, Johannes Skjeltorp and Bernt Arne Ødegaard. 2009. "What 
factors affect the Oslo Stock Exchange." Norges Bank (Central Bank 
of Norway), Working Paper. 

Newey, Whitney K and Kenneth D West. 1986. A simple, positive semi-
definite, heteroskedasticity and autocorrelationconsistent 
covariance matrix. National Bureau of Economic Research 
Cambridge, Mass., USA. 

Newey, Whitney K. and Kenneth D. West. 1987. "A simple, positive semi-
definite, heteroskedasticity and autocorrelation consistent 
covariance matrix." Econometrica 55: 703. 

Ødegaard, Bernt Arne. 2016. "Asset pricing data at OSE." 
http://finance.bi.no/~bernt/financial_data/ose_asset_pricing_data
/index.html. 

OSE. 2016. "Oslo Børs Benchmark Index."  2016. 
http://www.oslobors.no/ob_eng/Oslo-Boers/Products-and-
services/Market-data/Equity-indices. 

Rosenberg, Barr, Kenneth Reid and Ronald Lanstein. 1985. "Persuasive 
evidence of market inefficiency." The Journal of Portfolio 
Management 11 (3): 9-16. 

http://finance.bi.no/~bernt/financial_data/ose_asset_pricing_data/index.html
http://finance.bi.no/~bernt/financial_data/ose_asset_pricing_data/index.html
http://www.oslobors.no/ob_eng/Oslo-Boers/Products-and-services/Market-data/Equity-indices
http://www.oslobors.no/ob_eng/Oslo-Boers/Products-and-services/Market-data/Equity-indices


50 

Sadka, Ronnie. 2006. "Momentum and post-earnings-announcement 
drift anomalies: The role of liquidity risk." Journal of Financial 
Economics 80 (2): 309-349. 

SEC. “Mutual Funds. A Guide for Investors”. U.S. Securities and Exchange 
Commission. https://www.sec.gov/investor/pubs/sec-guide-to-
mutual-funds.pdf. 

Sharpe, William F. 1964. "Capital asset prices: A theory of market 
equilibrium under conditions of risk." The journal of finance 19 (3): 
425-442. 

Sharpe, William F. 1991. "The arithmetic of active management." 
Financial Analysts Journal 47 (1): 7-9. 

Sørensen, Lars Qvigstad. 2009. "Mutual fund performance at the Oslo 
Stock Exchange." Available at SSRN 1488745. 

Stattman, Dennis. 1980. "Book values and stock returns." The Chicago 
MBA: A journal of selected papers 4 (1): 25-45. 

Strøm, Karl Oscar. 2014. "Hvordan velge riktig fond, og tjene mer 
penger?". Nordnet Accessed 08.01.2016 2016. 
http://www.nordnetbloggen.no/hvordan-velge-riktig-fond-og-
tjene-mer-penger/15/05/2014/. 

Summers, Lawrence H. 1986. "Does the Stock Market Rationally Reflect 
Fundamental Values." Journal of Finance 41 (3): 591-601. 

VFF. 2015. "Tenk helhet, spre risiko."  2016. 
http://www.altomfond.no/Fondshandboken/Hva_MA_du_vite+/Te
nk_helhet_og_spre_risiko/. 

 

  

https://www.sec.gov/investor/pubs/sec-guide-to-mutual-funds.pdf
https://www.sec.gov/investor/pubs/sec-guide-to-mutual-funds.pdf
http://www.nordnetbloggen.no/hvordan-velge-riktig-fond-og-tjene-mer-penger/15/05/2014/
http://www.nordnetbloggen.no/hvordan-velge-riktig-fond-og-tjene-mer-penger/15/05/2014/
http://www.altomfond.no/Fondshandboken/Hva_MA_du_vite+/Tenk_helhet_og_spre_risiko/
http://www.altomfond.no/Fondshandboken/Hva_MA_du_vite+/Tenk_helhet_og_spre_risiko/


I 

Appendix 

 

 

Figure A1: Norwegian 1-month risk free rate 
 
 
This figure shows the evolvement of the 1-month Norwegian risk free rate with daily observations. 
Data are retrieved from the Norwegian Central Bank. 
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Figure A2: Number of actively managed Norwegian mutual funds 
 
This illustration shows the involvement of the number of funds included in our dataset. 
 

 
 

Figure A3: Return on an equal weighted portfolio consisting of funds active at the end 
of 2015 and an equal weighted portfolio comprising all funds 

 
The blue line shows the evolvement of a1 NOK investment in an equal weighted portfolio consisting 
of the all funds in our data set. The dark line is a similar investment in a portfolio in which all defunct 
funds are excluded. 
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Table A1: Descriptive statistics on Norwegian mutual fund industry 
 
 
This table shows selected statistics for Norwegian mutual funds which invests solely in Norwegian 
assets. All data, except the rightmost column, concerns the complete Norwegian mutual fund industry, 
hence passively managed funds are included. The third column shows the proportion of Norwegian 
funds which solely invests in Norway as a percentage of the total Norwegian mutual fund industry 
which includes Norwegian funds investing in foreign assets.  
 
 
 

 

 

1995 68 91.9 14 929 518 220 31
1996 60 86.1 26 512 5930 442 38
1997 76 80.1 45 892 10621 604 48
1998 81 67.3 32 636 357 403 58
1999 65 46.1 37 220 453 573 61
2000 76 38.3 34 915 -1686 459 65
2001 73 37.0 27 280 -813 374 66
2002 79 37.1 17 007 -843 215 67
2003 72 35.8 25 278 -116 351 65
2004 72 31.8 30 336 -3745 421 63
2005 76 26.2 38 283 -4652 504 63
2006 80 24.5 50 767 1267 635 62
2007 71 23.1 52 941 -3110 746 56
2008 71 19.7 25 482 -70 359 54
2009 70 24.8 57 540 10730 822 54
2010 73 26.6 77 576 4362 1 063 57
2011 73 24.6 60 800 -1305 833 61
2012 72 24.5 68 060 -725 945 61
2013 75 22.4 81 548 -945 1 087 65
2014 78 20.9 85 055 -1919 1 090 63
2015 78 19.9 86 746 -3928 1 112 57

Source: Norwegian Fund and Asset Management Association (VFF)

All relevant numbers in NOK millions

Pct of total 
equity fund 

market
Total net 
inflow

Number of funds 
included 
(active)

Assets under 
management

Number of 
Norwegian 

Mutual Funds
Average fund 

size
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Table A2: t-test for difference in means 
 
 
This table shows descriptive statistics and test results for the analysis considering survivorship bias, 
testing for a difference in means. Defunct by 201512 and Extant by 201512 is portfolios comprising 
funds that were “dead/alive” at the end of our dataset, respectively. Hence, the two portfolios 
combined makes up the Whole sample-portfolio. The t-test is carried out in three different starting 
points. The first test covers the whole timespan considered. The second test starts at the beginning of 
1996 which is consistent with the beginning of OSEFX. The last test starts subsequent to the Global 
Financial Crisis. Still, findings of a survivorship bias are consistent across the three tests. 
 
 

 

 

# Obs Std. Dev. t-value

Defunct by 201512 5 682 -0.14 2.32 -4.53

Extant by 201512 9 672 0.09 2.23 4.11

Whole sample 15 354 0.01 2.26 0.40

Difference -0.23 -6.14

Defunct by 201512 4 686 -0.17 2.32 -4.86

Extant by 201512 8 905 0.08 2.10 3.61

Whole sample 13 591 -0.004 2.18 -0.23

Difference -0.25 -6.23

Defunct by 201512 868 -0.22 1.81 -3.55

Extant by 201512 3 934 -0.01 1.60 -0.54

Whole sample 4 802 -0.05 1.64 -2.15

Difference -0.20 -3.33

Mean 

(Pct/Month)

Excess return, time period 200901 - 201511

Excess return, time period 198301 - 201511

Excess return, time period 199601 - 201511
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Table A3: Average yearly total and excess return for all, extant, and defunct funds 
 
 
This table shows the equal weighted average return calculated for each year for three samples. The first 
sample comprises the entire dataset. The two following are subsamples extracted from the total 
sample. The sample in the middle of the table contains all the funds which were still operating at the 
end of 2015, whereas the last sample consists of funds which had closed down prior to this date. 
December 2015 are excluded from all samples since none of the defunct funds were operating at this 
point in time. 
 

 

Total return Excess return Total return Excess return Total return Excess return
1983 5.15 0.51 1.74 -0.70 5.85 0.77
1984 3.26 1.25 3.30 1.30 3.22 1.22
1985 1.94 -0.49 2.16 -0.27 1.72 -0.71
1986 -0.27 0.41 -0.06 0.63 -0.49 0.19
1987 0.29 0.73 1.14 1.55 -0.36 0.10
1988 2.13 -0.69 1.41 -1.42 2.68 -0.14
1989 4.15 0.34 4.65 0.74 3.81 0.06
1990 -1.45 -0.26 -1.36 0.08 -1.49 -0.45
1991 -0.65 -0.08 -0.92 -0.35 -0.48 0.10
1992 -1.09 -0.42 -0.66 -0.14 -1.34 -0.59
1993 4.87 0.46 5.03 0.63 4.77 0.36
1994 0.48 -0.29 0.48 -0.28 0.49 -0.30
1995 1.43 0.43 1.78 0.73 1.08 0.11
1996 2.97 0.52 3.12 0.67 2.79 0.32
1997 2.37 -0.08 2.83 0.24 1.87 -0.43
1998 -2.80 -0.66 -2.90 -0.83 -2.72 -0.53
1999 3.80 0.28 4.05 0.51 3.62 0.12
2000 0.42 0.11 0.63 0.30 0.25 -0.04
2001 -1.18 0.00 -0.99 0.14 -1.36 -0.13
2002 -3.27 -0.29 -3.02 -0.07 -3.54 -0.53
2003 3.78 -0.08 3.75 -0.15 3.81 0.02
2004 2.74 -0.16 2.87 -0.03 2.56 -0.34
2005 3.31 0.41 3.47 0.53 3.03 0.20
2006 2.27 -0.23 2.42 -0.07 1.95 -0.55
2007 1.02 0.12 1.09 0.20 0.81 -0.12
2008 -5.46 0.51 -5.40 0.57 -5.67 0.31
2009 4.86 0.15 4.89 0.17 4.79 0.07
2010 1.88 -0.09 1.90 -0.09 1.83 -0.10
2011 -1.65 -0.06 -1.56 0.03 -1.93 -0.35
2012 1.33 -0.35 1.34 -0.32 1.26 -0.42
2013 1.82 -0.03 1.84 -0.01 1.76 -0.12
2014 0.66 0.18 0.72 0.24 0.03 -0.50
2015 0.74 -0.14 0.75 -0.13 0.53 -0.67

Whole sample Active 201512 Defunct 201512
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Table A4: Results from regression using model (4) for indidual actively managed Norwegian mutual funds 
 
 
This table shows time series regression results for a three factor model estimated on net returns of the individual actively managed Norwegian mutual funds in our 
sample. The explanatory variables used are the market excess return (M), a size factor (SMB) and a liquidity factor (LIQ) (see ‘Factor construction’ under section 5 for 
descriptions of the factors). Results are shown for the top and bottom ten funds, ranked by the t-statistic of alpha. In addition to regression results, the table shows the 
following information about each fund from left to right: rank of fund (by t-stat of alpha), ticker of fund, name of fund, the number of returns and the time span the fund 
is present in our sample. Regression results shown are the intercept and coefficient estimates with corresponding t-statistics and the regression R2. For the market slope, 
the t-statistics test whether the coefficient βM is different from 1, while the other t-statistics test whether intercepts/coefficients are different from 0. We use the OLS 
estimator and standard errors corrected for heteroscedasticity and autocorrelation with the Newey and West (1986) procedure.  
 

 
 

α βM βSMB βLIQ t(α) t(βM) t(βSMB) t(βLIQ)

101 KF-SMBII Nordea SMB II 69 1997M07 - 2003M03 -0.0148 0.95 0.66 -0.11 -3.90 -0.56 4.54 -0.85 76.9%
100 SK-SMB Skandia SMB Norge 96 1994M12 - 2002M11 -0.0119 0.95 0.60 -0.25 -3.51 -0.72 6.49 -2.21 85.6%
99 SU-NORGE Globus Norge II 94 1998M12 - 2006M11 -0.0108 1.12 0.42 -0.33 -3.15 1.81 6.47 -4.13 87.4%
98 KF-SMB Nordea SMB 212 1997M06 - 2015M01 -0.0062 1.03 0.56 -0.03 -3.03 0.57 8.13 -0.47 82.0%
97 SU-GLNO Globus Norge 103 1998M03 - 2006M11 -0.0098 1.09 0.45 -0.27 -3.00 1.00 6.19 -2.53 87.3%
96 GF-AKSJE GJENSIDIGE AksjeSpar 151 1987M02 - 1999M08 -0.0033 0.95 0.06 -0.02 -2.97 -1.78 1.52 -0.52 93.1%
95 DI-RVKST DnB Real-Vekst 156 1989M12 - 2002M11 -0.0036 0.94 0.10 0.02 -2.85 -3.49 3.91 0.67 95.8%
94 DK-NORII Avanse Norge (II) 286 1991M01 - 2014M10 -0.0018 0.94 0.05 -0.04 -2.69 -3.25 2.26 -1.73 97.5%
93 EO-NORDN Nordnet Superfondet Norge 15 2014M10 - 2015M12 -0.0043 1.08 -0.04 0.01 -2.60 1.37 -0.51 0.17 97.7%
92 GF-INVES GJENSIDIGE Invest 103 1992M04 - 2000M10 -0.0044 1.00 0.13 0.06 -2.59 0.12 2.55 1.36 93.2%

10 KF-NOEQM Nordea Norw Eq Mark Fund 123 2005M10 - 2015M12 0.0016 0.92 -0.16 0.05 1.71 -2.67 -5.28 1.63 97.5%
9 FV-TRNDR FORTE Tr?nder 32 2013M05 - 2015M12 0.0055 0.69 0.01 -0.02 1.76 -2.48 0.03 -0.19 53.8%
8 SP-VERDI Storebrand Verdi 216 1998M01 - 2015M12 0.0022 0.94 -0.07 0.13 1.81 -1.99 -1.54 2.54 91.4%
7 AC-NWECD Arctic Norwegian Equities Class D 34 2013M03 - 2015M12 0.0054 0.74 0.00 0.00 2.02 -2.28 0.02 0.04 74.2%
6 FF-NOAI2 Danske Fund Norge Aksj. Inst 2 109 2006M12 - 2015M12 0.0022 0.88 0.10 -0.16 2.09 -2.78 2.57 -2.65 97.1%
5 IS-UTBYT Landkreditt Utbytte 34 2013M03 - 2015M12 0.0062 0.79 0.05 0.33 2.53 -2.45 0.69 4.22 69.3%
4 FF-NOIII Danske Fund Norge Aksj. Inst 1 188 2000M05 - 2015M12 0.0020 0.89 0.03 -0.09 2.54 -3.83 1.04 -2.08 97.3%
3 AI-NORGI Alfred Berg Norge Inst 20 2014M05 - 2015M12 0.0073 0.85 0.11 0.02 3.40 -1.94 1.33 0.29 91.3%
2 OR-INVFB Omega Investment Fund B 25 2013M12 - 2015M12 0.0118 0.47 0.14 -0.06 3.43 -4.01 1.12 -0.42 44.8%
1 OR-INVFC Omega Investment Fund C 25 2013M12 - 2015M12 0.0121 0.47 0.14 -0.06 3.54 -4.02 1.12 -0.42 44.8%

T-statistics
R2Rank Ticker Name # of obs Alive 

from - Alive 
to

Coefficients
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Table A5: Ranks and percentiles of α- and t(α)-estimates for actual and simulated 
mutual fund returns based on regression (4) 

 
 
Panel A of this table shows estimated values of α at selected ranks and percentiles for actual fund 
returns of actively managed Norwegian mutual funds, while Panel B shows estimated values of t(α). 
The panels are produced separately and α-values of specific ranks do not necessarily correspond t(α)-
values of the same rank. The simulated average is the average of α or t(α) at selected percentiles from 
the simulation. The % < Act columns show the percentage of simulations runs which produce lower 
values of α or t(α) at the given rank/percentile than those observed for actual fund returns. The 
explanatory variables used to estimate actual and simulated α and t(α) are the market excess return 
(M), a size factor (SMB) and a liquidity factor (LIQ) (see ‘Factor construction’ under section 5 for 
descriptions of the factors). We use the OLS estimator and standard errors corrected for 
heteroscedasticity and autocorrelation with the Newey and West (1986) procedure. 
 
 
 

 
 

 
 
  

Rank/ 
percentile Actual Simulated 

average % < Act Rank/ 
percentile Actual Simulated 

average % < Act

Worst -0.0148 -0.0088 8.9 Worst -3.90 -2.83 9.5
2nd -0.0120 -0.0059 1.6 2nd -3.51 -2.35 5.0
3rd -0.0119 -0.0048 0.1 3rd -3.15 -2.07 3.7
4th -0.0118 -0.0041 0.0 4th -3.03 -1.90 2.0
5th -0.0108 -0.0037 0.0 5th -3.00 -1.77 1.1

10% -0.0061 -0.0023 0.0 10% -2.55 -1.31 0.4
20% -0.0032 -0.0013 0.3 20% -1.77 -0.86 1.4
30% -0.0021 -0.0008 1.5 30% -1.30 -0.54 2.9
40% -0.0014 -0.0004 2.9 40% -0.86 -0.27 6.8
50% -0.0009 0.0000 4.7 50% -0.57 -0.02 7.5
60% -0.0002 0.0003 15.0 60% -0.11 0.23 18.9
70% 0.0003 0.0007 25.0 70% 0.35 0.49 35.6
80% 0.0012 0.0013 49.5 80% 0.80 0.81 50.1
90% 0.0026 0.0022 71.6 90% 1.67 1.25 84.7

5th 0.0055 0.0036 92.7 5th 2.53 1.67 96.3
4th 0.0062 0.0041 92.6 4th 2.54 1.80 93.4
3rd 0.0073 0.0048 91.8 3rd 3.40 1.96 99.2
2nd 0.0118 0.0060 97.9 2nd 3.43 2.19 97.6
Best 0.0121 0.0092 80.3 Best 3.54 2.67 88.2

Panel B: t(α)Panel A: α
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Table A6: Performance persistence using median return as benchmark  
 
 
This table shows the results from a performance persistence test based on the methodology of Brown 
and Goetzmann (1995). The Total-column reports the number of funds present in each specific year. 
New- and Gone-columns reports number of funds which entered or exited the market respectively. 
Funds in the winner-winner (WW) group have a yearly return greater than or equal to the median return 
among the funds present the specific year, and the subsequent year. Consequently, a fund in the loser-

winner (LW) group in year 2005 had a return less than the median return in 2005 and greater or equal 
to the median in 2006, and so on. The Cross product ratio (CPR) is computed as the product of 
persistent funds (WW * LL) divided by the product of non-persistent funds (LW * WL). The Z-stat is 

computed as:  ln (𝐶𝑃𝑅𝑡)

𝜎ln (𝐶𝑃𝑅)𝑡

   in which 𝜎ln (𝐶𝑃𝑅) = √
1

𝑁𝑊𝑊
+

1

𝑁𝐿𝐿
+

1

𝑁𝑊𝐿
+

1

𝑁𝐿𝑊
 and the Z-stat reports the result 

in a test with H0 of no persistence (i.e. CPR = 1).  Significant test results are reported in bold. 
 
 

 

 

1983 5 3 0 0 0 1 1 0.00 NA

1984 5 0 0 1 1 2 1 0.50 -0.37
1985 6 0 0 3 3 0 0 NA NA

1986 6 0 0 2 2 1 1 4.00 0.80
1987 7 1 0 1 0 2 3 0.00 NA

1988 7 0 0 2 1 2 2 0.50 -0.44
1989 9 2 0 3 2 1 1 6.00 1.06
1990 12 3 0 2 0 3 4 0.00 NA

1991 13 0 0 4 3 3 3 1.33 0.26
1992 17 4 0 3 3 4 3 0.75 -0.26
1993 18 1 0 5 5 4 3 2.08 0.74
1994 25 4 0 6 7 5 3 2.80 1.12
1995 31 6 0 8 8 5 4 3.20 1.39
1996 38 5 0 12 11 5 5 5.28 2.20
1997 48 9 0 6 7 14 12 0.25 -2.03
1998 58 8 0 7 9 18 16 0.22 -2.49
1999 61 1 3 18 18 11 10 2.95 1.97
2000 65 5 3 18 17 11 11 2.53 1.70
2001 66 2 6 18 16 11 13 2.01 1.31
2002 67 6 4 9 8 20 20 0.18 -2.96
2003 65 1 3 13 14 18 16 0.63 -0.89
2004 63 1 2 15 17 15 13 1.31 0.52
2005 63 2 3 13 16 16 13 1.00 0.00
2006 62 2 6 15 17 12 10 2.13 1.36
2007 56 0 2 15 15 12 12 1.56 0.81
2008 54 0 0 11 11 16 16 0.47 -1.35
2009 54 0 0 17 17 10 10 2.89 1.88
2010 57 3 0 11 12 16 15 0.55 -1.09
2011 61 2 0 14 13 16 16 0.71 -0.65
2012 61 0 1 16 18 14 12 1.71 1.03
2013 65 5 4 12 17 16 11 1.16 0.27
2014 63 2 6 19 20 9 7 6.03 3.01

Median return as benchmark

TOTAL Cross product 
ratioNEW GONE Z-statWINNER - 

WINNER
WINNER - 

LOSER
LOSER - 
LOSER

LOSER - 
WINNER
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Table A7: Performance persistence using market return as benchmark  
 
 
This table uses the same methodology as described for the table above, except that the relevant 
benchmark is switched to market return, instead of median fund return. 
 

 

  

1983 5 3 0 2 0 0 0 NA NA

1984 5 0 0 0 0 5 0 NA NA

1985 6 0 0 0 2 0 4 NA NA

1986 6 0 0 4 1 0 1 NA NA

1987 7 1 0 1 0 4 1 NA NA

1988 7 0 0 2 1 0 4 NA NA

1989 9 2 0 1 1 5 0 NA NA

1990 12 3 0 1 3 0 5 NA NA

1991 13 0 0 0 6 7 0 NA NA

1992 17 4 0 0 6 0 7 NA NA

1993 18 1 0 2 5 8 2 0.63 -0.41

1994 25 4 0 3 11 1 6 5.50 1.35

1995 31 6 0 12 4 1 8 6.00 1.48

1996 38 5 0 13 6 14 0 NA NA

1997 48 9 0 2 14 13 10 0.22 -1.77

1998 58 8 0 7 20 10 13 1.08 0.12

1999 61 1 3 14 20 12 11 2.12 1.38

2000 65 5 3 17 12 9 19 1.19 0.32

2001 66 2 6 18 17 19 4 4.03 2.16

2002 67 6 4 4 28 16 9 0.78 -0.37

2003 65 1 3 3 33 10 15 0.66 -0.57

2004 63 1 2 15 10 4 31 1.21 0.28

2005 63 2 3 18 10 29 1 6.21 1.67

2006 62 2 6 16 13 4 21 2.48 1.37

2007 56 0 2 37 0 2 15 0.00 NA

2008 54 0 0 40 0 12 2 0.00 NA

2009 54 0 0 21 8 21 4 2.00 NA

2010 57 3 0 8 13 17 16 0.38 -1.69

2011 61 2 0 3 24 25 7 0.41 -1.19

2012 61 0 1 2 30 8 20 0.38 -1.17

2013 65 5 4 14 19 8 15 2.22 1.42

2014 63 2 6 22 16 12 5 5.87 2.83

Market return used as benchmark

TOTAL
Cross product 

ratio
NEW GONE Z-stat

WINNER - 

WINNER

WINNER - 

LOSER

LOSER - 

LOSER

LOSER - 

WINNER
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MatLab Scripts / Code 

The main MATLAB-code we have produced and used in our thesis is included below. Some of the 
code may rely on the ‘Econometrics’- and the ‘Statistics and Machine Learning’-toolboxes of 
MATLAB being activated. Given that the file ‘z_data_for_import.mat’ is stored in the current working 
directory, the code should work without modifications, but scripts need to be executed in the same 
order as given below. We thank Matteo Ottaviani, Education Account Manager at MathWorks, for 
providing us with MATLAB licences. 
 

1. Constructing matrix of dependent variables (fund returns) 

%% Script that loads data, extracts fund returns and constructs matrix ...'Y_all' of 

excess fund ruturns.  

% Raw fund returns are constructed in excel prior to importing to matlab. 

% The imported returns are already limited to the specific period we are 

% looking at, 396 months beginning with Jan 1983 and ending with Dec 2015. 

  

load('z_data_for_import.mat'); % Load the file containing tables with data. 

% |||| Contact 'mathias.krafft@outlook.com' for access to the file. ||| 

  

date_begin = 198301; % First date, format: YYYYDD 

date_end = 201512; % Last date, format: YYYYDD (max=201511 if UMD is a X-factor). 

  

% Create date-series, extracted from fund returns table: 

dates = fund_r.date(fund_r.date >= date_begin & fund_r.date <= date_end); 

  

% Convert tables to array, limited to the relevant dates: 

fund_returns = table2array... 

    (fund_r(fund_r.date >= date_begin & fund_r.date <= date_end,2:end)); 

rf_returns = risk_free_r.Rf1m... 

    (risk_free_r.date >= date_begin & risk_free_r.date <= date_end); 

  

ii = size(fund_returns,2); % Number of funds in data matrix 

n = size(dates,1); % Total number of periods in data matrix 

  

Y_all = fund_returns - repmat(rf_returns,1,ii); % Calculate excess returns 

  

n_i = sum(~isnan(Y_all),1); % Number of periods per fund 

  

%% Option to convert 'Y_all' to series of equally weighted fund returns (remove '%' 

below): 

% Calculate EW returns:  |     Redefine 'ii'   |   Redefine 'n_i'    % 

% Y_all = nanmean(Y_all,2) ;  ii = size(Y_all,2) ;  n_i = sum(~isnan(Y_all),1); 

  

%% Option to include first 20 observations only of all funds (remove % from for-loop): 

% for i_i = 1:ii 

%     a = 0; 

%     for nn = 1:n 

%         if isnan(Y_all(nn,i_i)) == 0 

%             a = a + 1; 

%             if a > 20 

%                 Y_all(nn,i_i) = NaN; 

%             end 

%         end 

%     end 

% end 

 

%% Option to include last 20 observations only of ALL funds: 

% for i_i = 1:ii 

%     a = 0; 

%     for nn = 1:n 

%         if isnan(Y_all(nn,i_i)) == 0 

%             a = a + 1; 

%             if a < n_i(i_i)-20+1 

%                 Y_all(nn,i_i) = NaN; 

%             end 

%         end 

%     end 

% end 
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%% Option to include last 20 observations only of SURVIVING funds: 

% for i_i = 1:ii 

%     a = 0; 

%     if isnan(Y_all(n,i_i)) == 1 

%         Y_all(:,i_i) = NaN; 

%     end 

%     for nn = 1:n 

%         if isnan(Y_all(nn,i_i)) == 0 

%             a = a + 1; 

%             if a < n_i(i_i)-20+1 

%                 Y_all(nn,i_i) = NaN; 

%             end 

%         end 

%     end 

% end 

  

clear i_i nn a 

 

2. Constructing matrix of explanatory variables (factor returns) 

%% Script that extracts factor returns from tables and construct explanatory variable 

matrix 'X-mat'. 

% Extract market and risk free returns: 

mrkt_returns = market_r.OSE_AX_FX...  

    (market_r.date >= date_begin & market_r.date <= date_end); 

mrkt_prem = mrkt_returns-rf_returns; % Construct excess returns 

  

% Extract other risk factors (add/remove '%' to disclude/include factors); 

SMB = more_factors_r.SMB(more_factors_r.date >= date_begin & more_factors_r.date <= 

date_end); 

% HML = more_factors_r.HML(more_factors_r.date >= date_begin & more_factors_r.date <= 

date_end); 

% UMD = more_factors_r.UMD(more_factors_r.date >= date_begin & more_factors_r.date <= 

date_end); 

LIQ = more_factors_r.LIQ(more_factors_r.date >= date_begin & more_factors_r.date <= 

date_end); 

  

X_mat = [mrkt_prem SMB LIQ]; % Construct 'X-mat'. Include variables from above. 

  

k = size(X_mat,2); % Calculate number of factors: 

  

clear SMB HML UMD LIQ % Clear "excess" variables 

clear date_begin date_end dates % Clear "excess" variables 

clear fund_r market_r more_factors_r risk_free_r % Clear "excess" variables 

clear fund_returns mrkt_returns mrkt_prem ref_returns % Clear "excess" variables 
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3. Performing initial regressions on actual fund returns (HAC) 

%% Script that constructs HAC benchmark regression results for all funds. 

tic; % Start timing 

% Populate target output vectors to be filled with loop: 

orig_SE_coefs = NaN(k+1,ii); orig_coefs = NaN(k+1,ii); 

  

n_i = sum(~isnan(Y_all),1); % Redifine number of periods per fund 

  

% Calculate the lag selection parameter for the standard HAC Newey-West 

% (1994) plug-in procedure: 

maxLag = floor(4*(n_i/100).^(2/9)); 

  

% Loop through all funds and estimate the standard Newey-West OLS 

% coefficient covariance using 'hac(__)' by setting the bandwidth to 

% 'maxLag+1'. Exctract the OLS coefficient estimates and their standard 

% errors. 

for jj = 1:ii 

    if (n_i(jj) ~= 0) 

        [~ , orig_SE_coefs(:,jj), orig_coefs(:,jj)] = ... 

            hac(X_mat,Y_all(:,jj),'display','off'),'bandwidth',maxLag(jj)+1); 

    end 

end 

  

% Calculate t-statistics (with the null that coefficient = 0). 

orig_t_stats = orig_coefs./orig_SE_coefs;  

  

% Calculate standard error of residuals of all funds: 

orig_resids = Y_all - [ones(size(X_mat,1),1), X_mat]*orig_coefs; 

orig_SSR = nansum((orig_resids.^2),1); 

orig_SE_resid = sqrt(orig_SSR ./ (n_i - ones(1,ii)*(k+1))); clear orig_SSR 

  

toc; % End timing 

clear n_i jj MaxLag % Clear temporary / redundant variables 

  

% Sort alphas and provide index of sorted alpha: 

[sort_a, sort_index_a] = sort(orig_coefs(1,:),'ascend'); 

% Sort t-stats of alphas and provide index of sorted t-stats: 

[sort_t, sort_index_t] = sort(orig_t_stats(1,:),'ascend'); 

 

 

4. Constructing simulation indices 

%% Script that creates the random number indices used for all our simulations 

rng(0); % Set RNG for reproducibility                    

s = 10000; % Set number of simulations 

  

% 'n' is calculated in the script 'a1_..' and is equal to the total number 

% of periods/months that we use in our calculations. 

  

% Construct a matrix of 's' vectors of 'n' random integers ranging from 

% minimum '1' to to maximum 'n': 

sim_indices = randi(n,n,s); 
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5. Constructing series of simulated returns 

%% Construct simulated series based on "sim_indices" 

tic; % Begin timer 

% This script used the simulated index numbers to: 

%   1) Pick corresponding numbers from factors and residuals, and 

%   2) Construct series of fund returns (potentially including injected alpha) 

%   3) Series are "alpha free" if 'std_alpha' below is set to '0'. 

%  

% The constructed returns will be the basis for new regressions to 

% calculate simulated alphas. 

  

% From before:  ii = total number of funds 

%               k = total number of factors 

%               n = total number of time periods 

%               s = total number of simulations, s = 1 here refers sim #1 

  

% Check if the value for annual "average" standard deviation is already 

% defined. If it is, dont't touch it. If it isn't, define a chosen 

% value (usually '0') below. We do this to avoid overriding the std of alpha 

% in the loop running through different values of std of alpha. 

if exist('annual_std_alpha') == 0; 

    annual_std_alpha = 0; % Set a desired value of std of alpha 

end 

  

std_alpha = annual_std_alpha / sqrt(12); % convert std to monthly 

clear annual_std_alpha; % clear no longer needed variable 

  

% Construct matrix of betas from coefficient matrix (excluding alphas): 

orig_betas = orig_coefs(2:(k+1),:); 

  

% Populate matrices for simulted residuals and factor- and fund returns: 

constructed_X_mat = NaN(n,k,s); 

constructed_resids = NaN(n,ii,s); 

constructed_Y_all = NaN(n,ii,s); 

  

temp_avg_orig_std_resid = mean(orig_SE_resid,2); % Find std of orig reg residuals 

temp_std_resid_ratio = orig_SE_resid/temp_avg_orig_std_resid; % Ratio residual std to 

avg resid std for each fund 

rng(0); % reset random number generator 

% construct series of alphas for injection (constant over time, scaled per 

% fund, independent per simulation). These numbers become zero when we set 

% desired injection of average annual alpha to zero above. 

temp_alpha = 

std_alpha*repmat(randn([1,ii,s]).*repmat(temp_std_resid_ratio,1,1,s),n,1,1);  

clear      temp_avg_orig_std_resid      temp_std_resid_ratio 

  

% Construct matrices of all simulated factor and fund returns: 

for ss = 1:s 

constructed_X_mat(:,:,ss) = X_mat(sim_indices(:,ss),:); 

constructed_resids(:,:,ss) = orig_resids(sim_indices(:,ss),:); 

constructed_Y_all(:,:,ss) = temp_alpha(:,:,ss) + constructed_X_mat(:,:,ss)*orig_betas 

+ constructed_resids(:,:,ss); 

end 

  

clear ss; % Clear loop counter: 

toc; % End timer 
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6. Performing regressions on simulated series 

(N.B. this script may take long time, mainly due to the total number of total regressions (1.01 million) and because the hac-

formula is slow) 

% Script that does bootstrap regression results for all funds. 

tic; % Begin timer 

  

% Set minumum number of observations(n) required in simulation for the 

% regression to be valid: 

sim_cutoff = 15; 

  

% Populate target output vectors to be filled in with loop: 

sim_SE_resid = NaN(k+1,ii,s); sim_coefs = NaN(k+1,ii,s); 

  

% Calculate number of observations per fund per simulation for future 

% reference:  

n_i_s = sum(~isnan(constructed_Y_all),1); 

  

% Calculate the lag selection parameter for the standard Newey-West HAC 

% estimate (Andrews and Monohan, 1992), one number per fund per simulation: 

maxLag_s = floor(4*(n_i_s/100).^(2/9));  

  

% Loop through each simulation, and for each simulation loop through each 

% fund and use OLS-regression from sheet 'c1_..' on constructed 

% returns/factors based simulated time indices. Fill in results in matrices 

% defined above. 

  

% Loop through each simulation run: 

for ss = 1:s 

    % Loop through each fund: 

    for jj = 1:ii 

        if n_i_s(1,jj,ss) >= sim_cutoff 

            [~, sim_SE_resid(:,jj,ss), sim_coefs(:,jj,ss)] = 

hac(constructed_X_mat(:,:,ss),constructed_Y_all(:,jj,ss),'bandwidth',maxLag_s(1,jj,ss)

+1,'display','off'); 

        end 

    end 

end 

  

% Calculate t-statistics (with the null that coefficient = 0): 

sim_t_stats = sim_coefs./sim_SE_resid;  

  

clear n_i_s sim_cutoff jj ss; % Clear temporary / redundant variables: 

  

toc; % End timer 
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7. Estimating/constructing the bootstrapping results/tables 

% This script calculates the averages of alphas/t-stat in different 

% ranks/percentiles of the simulation runs. Additionally, it estimates the 

% percent of simulated alphas/t-stats of each rank/percentile, that are 

% lower than the 'actual' (historically observed) alpha/t-stat at the same 

% rank/percentile. 

  

% NOTE: With 101 funds to calculate percentiles from, for the low and high 

% percentiles, we rather use the value of funds with rank #1-5 and 97-101. 

% For the 'middle' percentiles, we use matlab's 'prctile(___)'-function 

% which interpolates linearly between observations. 

  

% Construct matrix of relevant percentages (10 through 90); 

percentages = [10,20,30,40,50,60,70,80,90]'; 

  

% Sort original alphas and t-values in order to extract top/bottom ranked 

% values:  

temp_sorted_orig_a = sort(orig_coefs(1,:))'; 

temp_sorted_orig_t = sort(orig_t_stats(1,:))'; 

  

% Construct tables of relevant ranks and percentiles of alpha & t-values: 

percentiles_orig_a = ... 

    [temp_sorted_orig_a(1:5) ; prctile(orig_coefs(1,:),percentages) ; 

temp_sorted_orig_a((end-4):end)]; 

percentiles_orig_t = ... 

    [temp_sorted_orig_t(1:5) ; prctile(orig_t_stats(1,:),percentages) ; 

temp_sorted_orig_t((end-4):end)]; 

clear temp_sorted_orig_a temp_sorted_t_alpha 

  

% Find averages of simulated ranks/percentiles for alphas and t-values: 

% NOTE: For each simulation run, we find the percentiles corresponding to the 

% percentages above and the top/bottom 5 ranked values. For each 

% rank/percentile, we then take the average of the alphas/t-stats over 

% all simulation runs with ('prctile'-formula treats 'NaN' values as 

% missing and removes them, so this is not a problem). Some simulation runs 

% may have less than 101 valid regressions (due to some funds with short 

% original series and our required number of observations for a regression 

% to be valid). 

  

% Descending sort of simulated alphas per simulation (thorny due to NaN's 

% which are considered to be 'largest' in matlab's sort function; we change 

% the NaN's to nagative infinite to make the smallest instead of largest): 

temp_sort_desc_sim_a = permute(sim_coefs(1,:,:),[2 3 1]); 

temp_sort_desc_sim_a(isnan(temp_sort_desc_sim_a)) = -Inf; 

temp_sort_desc_sim_a = sort(temp_sort_desc_sim_a,1,'descend'); 

temp_sort_desc_sim_a(isinf(temp_sort_desc_sim_a)) = NaN; 

% Ascending sort of simulated alphas per simulation: 

temp_sort_asc_sim_a = sort(permute(sim_coefs(1,:,:),[2 3 1]),1,'ascend'); 

  

% Descending sort of simulated t-stats per simulation (thorny due to NaN's 

% which are considered to be 'largest' in matlab's sort function; we change 

% the NaN's to nagative infinite to make the smallest instead of largest): 

temp_sort_desc_sim_t = permute(sim_t_stats(1,:,:),[2 3 1]); 

temp_sort_desc_sim_t(isnan(temp_sort_desc_sim_t)) = -Inf; 

temp_sort_desc_sim_t = sort(temp_sort_desc_sim_t,1,'descend'); 

temp_sort_desc_sim_t(isinf(temp_sort_desc_sim_t)) = NaN; 

% Ascending sort of simulated t-stats per simulation: 

temp_sort_asc_sim_t = sort(permute(sim_t_stats(1,:,:),[2 3 1]),1,'ascend'); 

  

% Construct matrix containing the top/bottom 5 ranks and 9 different 

% percentiles of alpha each simulation (result is a 21 x 10000 matrix): 

temp_percentiles_sim_a = ... 

        [temp_sort_asc_sim_a(1:5,:) ; ...  

            prctile(permute(sim_coefs(1,:,:),[2 3 1]),percentages,1) ; ...  

                temp_sort_desc_sim_a(5:-1:1,:)]; 

% Construct matrix containing the top/bottom 5 ranks and 9 different 

% percentiles of t-stat in each simulation (result is a 21 x 10000 matrix): 

temp_percentiles_sim_t = ... 

    [temp_sort_asc_sim_t(1:5,:) ; ...  

        prctile(permute(sim_t_stats(1,:,:),[2 3 1]),percentages,1) ; ... 

            temp_sort_desc_sim_t(5:-1:1,:)]; 

  

% Take the means across each rank/percentile: 
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mean_percentiles_sim_a = mean(temp_percentiles_sim_a,2); 

mean_percentiles_sim_t = mean(temp_percentiles_sim_t,2); 

  

% Calcualte the percentage of simulated alphas in each rank/percentile that 

% are smaller than actual alpha (and same for t-values):  

sim_smaller_a = ... 

    sum(temp_percentiles_sim_a < repmat(percentiles_orig_a,1,s),2) /s*100; 

sim_smaller_t = ... 

    sum(temp_percentiles_sim_t < repmat(percentiles_orig_t,1,s),2) /s*100; 

  

% Combine the above in one table (one for alpha and one for t-stat): 

table_a = array2table([[(101:-1:97)';percentages/100;(5:-1:1)'], ... 

    percentiles_orig_a, mean_percentiles_sim_a, sim_smaller_a],... 

    'VariableNames',{'Percentile_Rank','Act','Sim','Perc_sim_lower'}); 

table_t = array2table([[(101:-1:97)';percentages/100;(5:-1:1)'], ... 

    percentiles_orig_t, mean_percentiles_sim_t, sim_smaller_t], ... 

    'VariableNames',{'Percentile_Rank','Act','Sim','Perc_sim_lower'}); 

  

% Clear 'excess' variables no longer needed: 

clear percentages  

clear temp_sort_desc_sim_a temp_sort_asc_sim_a  

clear temp_sort_desc_sim_t temp_sort_asc_sim_t 

clear mean_percentiles_sim_a mean_percentiles_sim_t 

clear sim_smaller_a sim_smaller_t 

 

 

8. Generating CDF plots 

% Generate CDF plot for alphas: 

figure('name','Empirical CDF for actual and simulated alpha'); 

hold on 

plot_orig = cdfplot(orig_coefs(1,:)*100); 

plot_sim = cdfplot(mean(prctile(permute(sim_coefs(1,:,:),[2 3 

1])*100,(100*0.5/ii:100/ii:100-50/ii),1),2)); 

hold off 

title('Empirical CDF for actual and simulated alpha') 

axis([min(orig_coefs(1,:))*100*1.2 max(orig_coefs(1,:))*100*1.2 0 1]) 

set(plot_orig,'LineStyle','-','Color','Black') 

set(plot_sim,'LineStyle','--','Color','Black') 

legend('Actual','Simulated','Location','NW') 

xlabel('alpha(%)') % x-axis label 

ylabel('F(alpha)') % y-axis label 

clear plot_orig plot_sim; 

  

% Generate CDF plot for alpha t-stats: 

figure('name','Empirical CDF for actual and simulated t(alpha)'); 

plot_orig = cdfplot(orig_t_stats(1,:)); 

hold on 

plot_sim = cdfplot(mean(prctile(permute(sim_t_stats(1,:,:),[2 3 

1]),(100*0.5/ii:100/ii:100-50/ii),1),2)); 

hold off 

title('Empirical CDF for actual and simulated t(alpha)') 

axis([min(orig_t_stats(1,:))*1.2 max(orig_t_stats(1,:))*1.2 0 1]) 

set(plot_orig,'LineStyle','-','Color','Black') 

set(plot_sim,'LineStyle','--','Color','Black') 

legend('Actual','Simulated','Location','NW') 

xlabel('t(alpha)') % x-axis label 

ylabel('F(t(alpha))') % y-axis label 

clear plot_orig plot_sim; 
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9. Generating Kernel smoothing density estimate plots 

% Generate Kernel smoothing density estimate plot for alphas: 

figure('name','Kernel smoothing density estimate for actual and simulated alpha'); 

title('Kernel smoothing density estimate for actual and simulated alpha') 

hold on 

[ksd_orig_a, x1] = ksdensity(orig_coefs(1,:)*100); 

[ksd_sim_a, x2] = ksdensity(mean(prctile(permute(sim_coefs(1,:,:),[2 3 

1]),(100*0.5/ii:100/ii:100-50/ii),1),2)*100); 

plot(x1, ksd_orig_a,'Black-',x2, ksd_sim_a,'--Black'); 

hold off 

legend('Actual','Simulated','Location','NW') 

xlabel('alpha(%)') % x-axis label 

ylabel('Frequency') % y-axis label 

clear ksd_orig_a x1 ksd_sim_a x2; 

  

% Generate Kernel smoothing density estimate plot for t-stats of alpha: 

figure('name','Kernel smoothing density estimate for actual and simulated t(alpha)'); 

title('Kernel smoothing density estimate for actual and simulated t(alpha)') 

hold on 

[ksd_orig_t, x1] = ksdensity(orig_t_stats(1,:)); 

[ksd_sim_t, x2] = ksdensity(mean(prctile(permute(sim_t_stats(1,:,:),[2 3 

1]),(100*0.5/ii:100/ii:100-50/ii),1),2)); 

plot(x1, ksd_orig_t,'Black-',x2, ksd_sim_t,'--Black'); 

hold off 

legend('Actual','Simulated','Location','NW') 

xlabel('t(alpha)') % x-axis label 

ylabel('Frequency') % y-axis label 

clear ksd_orig_t x1 ksd_sim_t x2; 

 

 

10. Generating histograms 

(Includes a subset of the code only, i.e. only the code for generating a histogram for the best fund) 
 

%% Generate histogram of simulated t(alpha)'s for various ranks/percentiles: 

% Includes vertical line representing the actual performance of fund at 

% equivalent rank/percentile: 

  

% Different index INPUTS used to make histograms from 

% 'temp_percentiles_sim_t' and vertical lines from 'percentiles_orig_t' 

% represent different ranks/percentiles to extract, as specified below:    

% input: 1:5 - represents ranks: 101(worst):-1:97 

% input: 6:14 - represents percentiles 10:10:90 

% input: 15:19 - represents ranks 5:-1:1(best))  

  

%% BEST FUND 

figure('name','Bootstrapped t-statistics of t(alpha): Best fund'); 

title('Bootstrapped t-statistics of t(alpha): Best fund','FontSize',16) 

hold on 

% plot_orig = cdfplot(orig_coefs(1,:)); 

temp_input = 19; % SET INPUT value chosen from table at top 

line_hight = 900; % ADJUST this to just above max of highest bar  

line([percentiles_orig_t(temp_input) percentiles_orig_t(temp_input)],[0 

line_hight],'LineWidth',2,'Color','Black','LineStyle','--'); 

plot_sim = histogram(temp_percentiles_sim_t(temp_input,:),... 

    'BinLimits',[0.5,7]); % Adjust max/min values here (start with large numbers to 

see range)  

hold off; 

plot_sim.FaceColor = 'k'; plot_sim.EdgeColor = 'k'; 

xlabel('t(alpha)','FontSize',14) % x-axis label 

ylabel('Frequency','FontSize',14) % y-axis label 

legend({['Actual t(alpha) = ' num2str(percentiles_orig_t(temp_input))],'Simulated 

t(alpha)'},... 

    'Location','NE','FontSize',14); % legend font size. 

clear plot_sim temp_input 

 

 




