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Abstract

The agents in the economy use a plethora of high frequency information, in-

cluding news media, to guide their actions and thereby shape aggregate economic

fluctuations. Traditional nowcasting approches have to a relatively little degree

made use of such information. In this paper, I show how unstructured textual in-

formation in a business newspaper can be decomposed into daily news topics and

used to nowcast quarterly GDP growth. Compared with a big bank of experts,

here represented by official central bank nowcasts and a state-of-the-art forecast

combination system, the proposed methodology performs at times up to 15 per-

cent better, and is especially competitive around important business cycle turning

points. Moreover, if the statistical agency producing the GDP statistics itself had

used the news-based methodology, it would have resulted in a less noisy revision

process. Thus, news reduces noise.
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1 Introduction

Because macroeconomic data are released with a substantial delay, predicting the present,

i.e., nowcasting, is one of the primary tasks of market and policy oriented economists

alike. However, producing accurate assessments of the current conditions is difficult. The

difficulty is particularly pronounced for key policy variables, such as GDP growth, because

the variables themselves, and the information set thought to explain them, are hampered

by revisions and ragged-edge issues.1

The nowcasting literature has addressed these difficulties using a variety of techniques,

such as applying high frequency information as predictors, potentially not subject to sub-

sequent data revisions, methods that handle mixed frequency data, and forecast combi-

nation. Accordingly, the literature on nowcasting is voluminous, and I refer to Banbura

et al. (2011) for a relatively recent survey. Still, although recent advances have delivered

promising results, the state-of-the-art models and systems, used at, e.g., central banks,

have a hard time performing well when economic conditions changes rapidly. This was

particularly evident around the Great Recession, see, e.g., Alessi et al. (2014), when good

forecasting performance perhaps mattered the most.

In this paper I show how model-based nowcasting performance of quarterly GDP

growth can be improved further using Big Data. That is, textual data collected from the

major business newspaper in Norway.2 In particular, I show that it is possible to obtain

nowcasts that perform up to 50 percent better than forecasts from simple time series

models, and at times up to 15 percent better than a state-of-the-art forecast combination

system. If a big bank of experts, here represented by official Norges Bank nowcasts, could

have utilized the methodology proposed, it would have resulted in lower forecasting errors,

especially around the period of the Great Recession. Moreover, if the statistical agency

producing the output growth statistics itself had utilized the news-based methodology, it

would have resulted in a less noisy revision process.

How are these gains achieved? Compared with existing nowcasting approaches, the

framework proposed has two important new characteristics. First, the information set I

use to predict output growth is textual. It is collected from a major business newspa-

per, and represented as a large panel of daily tone adjusted topic frequencies that vary

in intensity across time. The extraction of topics is done using advances in the natural

1The former refers to the fact that macroeconomic data are typically heavily revised after their initial

release, while the ragged edge problem is due to the asynchronous manner in which economic statistics

becomes available within a given period, e.g., month or quarter.
2The term “Big Data” is used for textual data of this type because it is, before processing, highly un-

structured, contains millions of words and thousands of articles. See, e.g., Nymand-Andersen (2016) for

a more elaborate discussion about what “Big Data” constitutes.
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language processing literature, while the tone is identified using simple dictionary based

techniques. My hypothesis is simple: To the extent that the newspaper provides a rel-

evant description of the economy, the more intensive a given topic is represented in the

newspaper at a given point in time, the more likely it is that this topic represents some-

thing of importance for the economy’s current and future needs and developments. For

example, I hypothesize that when the newspaper writes extensively about developments

in, e.g., the oil sector, and the tone is positive, this reflects that something is happening

in this sector that potentially has positive economy-wide effects. This approach stands

in stark contrast to conventional data usage, where the indicators used in the informa-

tion set when doing model-based nowcasting are obtained from structured databases and

professional data providers. The agents in the economy, on the other hand, likely use a

plethora of high frequency information to guide their actions and thereby shape aggregate

economic fluctuations. It is not a brave claim to assert that this information is highly

unstructured and does not come (directly) from professional data providers, but more

likely reflect information shared, generated, or filtered through a large range of channels,

including media.

Second, to bridge the large panel of daily news topics to quarterly GDP growth, I use

a mixed frequency, time-varying, Dynamic Factor Model (DFM). In general, the factor

modeling approach permits the common dynamics of a large number of time series to

be modeled in a parsimonious manner using a small number of unobserved (or latent)

dynamic factors. A key property of the factor model used here, however, is that it

is specified with an explicit threshold mechanism for the time-varying factor loadings.

In turn, this enforces sparsity onto the system, but also takes into account that the

relationship between the variables in the system might be unstable. A prime example is

if a topic is associated with the stock market, where the stock market has been shown to

be very informative of GDP growth in some periods, but not in others (Stock and Watson

(2003)). The threshold mechanism potentially captures such cases in a consistent and

transparent way and safeguards against over-fitting.

In using newspaper data, the approach taken here shares many features with a growing

number of studies in economics using textual information. As thoughtfully described in

Bholat et al. (2015), two often used methods in this respect are so called dictionary

based and Boolean techniques. Tetlock (2007) is a famous example of the former. He

classifies textual information using negative and positive word counts, and link the derived

time series to developments in the financial market. An example of the usage of Boolean

techniques is given in Bloom (2014), who discusses the construction of uncertainty indexes

where the occurrence of words in newspapers associated with uncertainty are used to

derive the indexes. In this paper, a dictionary based technique is used together with
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what is called a topic model belonging to the Latent Dirichlet Allocation (LDA) class

(Blei et al. (2003)). In general, topic modeling algorithms are statistical algorithms that

categorizes the corpus, i.e., the whole collection of words and articles, into topics that

best reflect the corpus’s word dependencies. As such, each topic can be viewed upon as

a word cloud, where the font size used for each word represents how likely it is to belong

to this specific topic. A vast information set consisting of words and articles can thereby

be summarized in a much smaller set of topics facilitating interpretation and usage in

a time series context. Although topic models hardly have been applied in economics,3

their usage as a natural language processing tool in other disciplines has been massive.

Their popularity, and the LDA’s in particular, stems from their success in classifying text

and articles into topics in much the same manner as humans would do, see Chang et al.

(2009).

Compared to existing textual approaches used in economics, the LDA approach offers

several conceptual advantages. In terms of a pure dictionary based approach for example,

what is positive words and what negative obviously relates to an outcome. A topic does

not. A topic has content in its own right. Moreover, the LDA is an automated machine

learning algorithm, so subjectively choosing the words or specific categories to search for

(e.g., uncertainty) is not needed. Instead, the LDA automatically delivers topics that

best describe the whole corpus. This permits us to examine if textual information in

the newspaper is representative for economic fluctuations, and if so, also identify the

type of new information, in terms of topics, that might drive the nowcasts. As discussed

in, e.g., Evans (2005) and Banbura et al. (2013), such decompositions are valuable, and

particularly so for policy makers for which explaining what drives a forecast might be

equally important as the forecast itself.

In sum, this article contributes to three branches of the economic literature. First,

it contributes to the nowcasting literature where the usage of factor models and mixed

frequency data have proven particularly useful, see, e.g., Stock and Watson (2002), Gian-

none et al. (2008), Breitung and Schumacher (2008), Kuzin et al. (2011), and Marcellino

et al. (2013). In terms of modeling, I extend this literature by allowing for time-varying

parameters and a latent threshold mechanism (Nakajima and West (2013) and Zhou et al.

(2014)). In terms of data usage, I provide novel evidence on how information in the news-

paper can be used to nowcast. The DFM I use was developed in Thorsrud (2016) to

construct a daily news-based coincident index of the business cycle with almost perfect

(in-sample) classification properties. Turning off the threshold mechanism, or estimating

the model with a set of conventional high frequency business cycle indicators instead of

news topics, results in much worse classification properties. Here, an extension to the

3See, e.g., Hansen et al. (2014) and Hansen and McMahon (2015) for exceptions.
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model developed in Thorsrud (2016) is offered through the use of particle filtering tech-

niques, making (daily) real-time updates of the model and nowcast computationally fast

and efficient.

Second, this paper is related to a range of newer studies using internet search volume

to predict the present. The most famous example among these is perhaps Choi and

Varian (2012), who use Google Trends and specific search terms to construct predictors

for present developments in a wide range of economic variables. Like when user generated

search volume is used, the news topic approach can be said to capture economic agents’

frame of focus, and thereby resemble some type of survey. In contrast to user generated

internet search, however, the information in the newspaper has already gone through some

type of filter. The number of pages in the newspaper are constrained, and the editors have

to make choices regarding which news to report, and what to leave out. As both search

and newspaper data surely are noisy “survey” measures, good editing likely amplifies the

signal and reduces the noise.

Lastly, this paper speaks to a larger literature where alternative data sources and

methods are used to understand economic behavior and information diffusion. See Tetlock

(2014) and Varian (2014), and the references therein, for two illuminating overview articles

in finance and economics in general, and Dougal et al. (2012) and Peress (2014) on the

role of media, in particular. It is especially noteworthy that studies using almost exactly

the same news measures as I use here finds that: unexpected news innovations lead to

permanent increases in consumption and productivity, as predicted by the news driven

view of the business cycle (Larsen and Thorsrud (2015)); news can be used to classify

the phases of the business cycle with almost perfect accuracy (Thorsrud (2016)); news

predicts intra-day returns and leads to significant continuation patterns lasting for roughly

five business days (Larsen and Thorsrud (2016)). Coupled with the evidence brought

forward here, it stands to reason that textual information generated and shared through

the media is a highly important input when trying to understand how economic agents

form their expectation about the future and thereby shape economic outcomes.

The rest of this paper is organized as follows. Section 2 describes the real-time GDP

dataset, the newspaper data, the topic model, and the estimated news topics. The DFM

is described in Section 3. Section 4 describes the nowcasting experiment. Results are

presented in Section 5, while Section 6 concludes.

2 Data

The raw data used in this analysis consist of a long sample of the entire newspaper cor-

pus for a daily business newspaper and quarterly, real-time, GDP growth for Norway. I
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focus on Norway because it is a small and open economy and thereby representative of

many western countries, and because small economies, like Norway, typically have only

one or two business newspapers, making the choice of corpus less complicated. Here, I

simply choose the corpus associated with the largest and most read business newspaper,

Dagens Næringsliv (DN), noting that DN is also the fourth largest newspaper in Norway

irrespective of subject matter. DN was founded in 1889, and has a right-wing and ne-

oliberal political stance. Importantly, however, the methodology for extracting news from

newspaper data, and analyze whether or not it is informative for nowcasting, is general

and dependent neither on the country nor newspaper used for the empirical application.

To make the textual data applicable for time series analysis, the data are first de-

composed into news topics using a Latent Dirichlet Allocation (LDA) model. The news

topics are then transformed into tone adjusted time series, where the tone is identified

using simple dictionary based techniques, as in, e.g., Tetlock (2007). The newspaper cor-

pus and the LDA specification in this paper is similar to that described in Larsen and

Thorsrud (2015), while the way in which news topics are transformed to tone adjusted

time series follows the procedures described in Thorsrud (2016). I provide a summary

of the computations below. In the interest of preserving space, technical details are del-

egated to Appendix D. The real-time dataset for quarterly GDP growth is described in

the latter part of this section.

Two points are, however, worth noting. First, although many different topic models

exist, a favorable property with the LDA is that it treats each article in the corpus as

consisting of a mixture of topics, as humans typically would do (as opposed to only one).4

Second, identifying the tone of the news using dictionary based techniques is simple,

but could potentially be improved upon with more sophisticated sentiment classification

machine learning techniques, see, e.g., Pang et al. (2002). I leave such endeavors for

future research. Still, in unreported results I experience that using news topics that are

not adjusted by the tone gives much worse nowcasting properties. Thus, the combined

usage of news topic and tone identification is important for the nowcasting performance.

2.1 The News Corpus, the LDA and topics

The DN news corpus is extracted from Retriever’s “Atekst” database, and covers all

articles published in DN from May 2 1988 to December 29 2014. In total this amounts

to nearly half a million articles, well above one billion words, more than a million unique

tokens, and a sample of almost ten thousand days. This massive amount of data makes

statistical computations challenging, but as is customary in this branch of the literature

4Blei (2012) provides a nice layman introduction to topic modeling. More technical expositions of the

LDA approach can be found in, e.g., Blei et al. (2003) and Griffiths and Steyvers (2004).
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Figure 1. The LDA model visualized using plate notation.

some steps are taken to clean and reduce the raw dataset before estimation. This is

done by removing common words, surnames, reduce all words to their respective word

stems, and finally trimming the corpus using what is called the term frequency - inverse

document frequency. A description of how this is done is given in Appendix D.1. I note

here that around 250 000 unique tokens are kept after the filtering procedure.

The “cleaned”, but still unstructured, DN corpus is decomposed into news topics using

a Latent Dirichlet Allocation (LDA) model. The LDA model is an unsupervised topic

model that clusters words into topics, which are distributions over words, while at the

same time classifying articles as mixtures of topics. By unsupervised learning algorithm,

I mean an algorithm that can learn/discover an underlying structure in the data without

the algorithm being given any labeled samples to learn from. The term “latent” is used

because the words, which are the observed data, are intended to communicate a latent

structure, namely the subject matter (topics) of the article. The term “Dirichlet” is used

because the topic mixture is drawn from a conjugate Dirichlet prior.

Figure 1 illustrates the LDA model graphically. The outer box, or plate, represent

the whole corpus as M distinct documents (articles). N =
∑M

m=1Nm is the total number

of words in all documents, and K is the total number of latent topics. Letting bold-

font variables denote the vector version of the variables, the distribution of topics for a

document is given by θm, while the distribution of words for each topic is determined by

ϕk. Both θm and ϕk are assumed to have conjugate Dirichlet distributions with (hyper)

parameter (vectors) α and β, respectively. Each document consists of a repeated choice

of topics Zm,n and words Wm,n, drawn from the Multinomial distribution using θm and

ϕk. The circle associated with Wm,n is gray colored, indicating that these are the only

observable variables in the model.

At an intuitive level, the best way to understand the LDA model is likely to make a

thought experiment of how the articles in the newspaper (the corpus) were generated.
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1. Pick the overall theme of articles by randomly giving them a distribution over topics,

i.e.: Choose θm ∼ Dir(α), where m ∈ {1, . . . ,M}.
2. Pick the word distribution for each topic by giving them a distribution over words,

i.e.: Choose ϕk ∼ Dir(β) , where k ∈ {1, . . . , K}.
3. For each of the word positions m, n, where n ∈ {1, . . . , Nm}, and m ∈ {1, . . . ,M}

3.1. From the topic distribution chosen in 1., randomly pick one topic, i.e.: Choose

a topic Zm,n ∼ Multinomial(θm).

3.2. Given that topic, randomly choose a word from this topic, i.e.: Choose a word

Wm,n ∼ Multinomial(ϕzm,n).

More formally, the total probability of a document, i.e., the joint distribution of all

known and hidden variables given the hyper-parameters, is:

P (Wm,Zm,θm,Φ;α, β) =

document plate (1 document)︷ ︸︸ ︷
Nm∏
n=1

P (Wm,n|ϕzm,n)P (Zm,n|θm)︸ ︷︷ ︸
word plate

·P (θm;α) ·P (Φ; β)︸ ︷︷ ︸
topic plate

(1)

where Φ = {ϕk}Kk=1 is a (K × V ) matrix, and V is the size of the vocabulary. The two

first factors in (1) correspond to the word plate in Figure 1, the three first factors to

the document plate, and the last factor to the topic plate. Different solution algorithms

exist for solving the LDA model. I follow Griffiths and Steyvers (2004), and do not

treat θm and ϕk as parameters to be estimated, but instead integrate them out of (1).

Considering the corpus as a whole, this results in an expression for P (W ,Z;α, β) =

P (Z|W ;α, β)P (W ;α, β) which can be solved using Gibbs simulations. Estimates of θm

and ϕk can subsequently be obtained from the posterior distribution. Further technical

details, and a short description of estimation and prior specification, are described in

Appendix D.2.

The model is estimated using 7500× 10 draws. The first 15000 draws of the sampler

are disregarded, and only every 10th draw of the remaining simulations are recorded and

used for inference. K = 80 topics are classified. Marginal likelihood comparisons across

LDA models estimated using smaller numbers of topics, see Larsen and Thorsrud (2015),

indicate that 80 topics provide the best statistical decomposition of the DN corpus.

Now the LDA estimation procedure does not give the topics any name or label. To

do so, labels are subjectively given to each topic based on the most important words

associated with each topic. As shown in Table 7 in Appendix A, which lists all the

estimated topics together with the most important words associated with each topic, it

is, in most cases, conceptually simple to classify them. I note, however, that the labeling

plays no material role in the experiment, it just serves as a convenient way of referring

to the different topics (instead of using, e.g., topic numbers or long lists of words). What
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Figure 2. A Network representation of the estimated news topics. The nodes in the graph represent

the identified topics. All the edges represent words that are common to the topics they connect. The

thickness of the edges represents the importance of the words that connect the topics, calculated as edge

weight = 1/ (ranking of word in topici + ranking of word in topicj). The topics with the same color are

clustered together using a community detection algorithm called Louvain modularity. Topics for which

labeling is Unknown, c.f. Table 7 in Appendix C, are removed from the graph for visual clarity.

is more interesting, however, is whether the LDA decomposition gives a meaningful and

easily interpretable topic classification of the DN newspaper. As illustrated in Figure 2,

it does: The topic decomposition reflects how DN structures its content, with distinct

sections for particular themes, and that DN is a Norwegian newspaper writing about

news of particular relevance for Norway. We observe, for example, separate topics for

Norway’s immediate Nordic neighbors (Nordic countries), largest trading partners (EU

and Europe), and biggest and second biggest exports (Oil production and Fishing). A

richer discussion of this decomposition is provided in Larsen and Thorsrud (2015).
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2.2 News Topics as tone adjusted time series

Given knowledge of the topics (and their distributions), the topic decompositions are

translated into tone adjusted time series. To do this, I proceed in three steps, which are

described in greater detail in Appendix D.4. In short, I first collapse all the articles in the

newspaper for a particular day into one document, and then compute, using the estimated

word distribution for each topic, the topic frequencies for this newly formed document.

This yields a set of K daily time series. Then, for each day and topic, I find the article

that is best explained by each topic, and from that identify the tone of the topic, i.e.,

whether or not the news is positive or negative. This is done using an external word list

and simple word counts, as in, e.g., Tetlock (2007). The word list used here takes as a

starting point the classification of positive/negative words defined by the Harvard IV-4

Psychological Dictionary, and then translates the words to Norwegian. For each day, the

count procedure delivers two statistics, containing the number of positive and negative

words associated with a particular article. These statistics are then normalized such that

each observation reflects the fraction of positive and negative words that day, and are

then used to sign adjust the topic frequencies computed in step one. Finally, I remove

high frequency noise from each topic time series by using a (backward looking) moving

average filter. As is common in factor model studies, see, e.g., Stock and Watson (2012),

I also eliminate very low frequency variation, i.e., changes in the local mean, by removing

a simple linear trend and standardize the data.

Figure 6, in Appendix A, reports six of the topic time series, and illustrates how

the different steps described above affect the data. The gray bars show the data as

topic frequencies across time, i.e., as constructed in the first step described above. As

is clearly visible in the graphs, these measures are very noisy. Applying the subsequent

transformations changes the intensity measures into sign identified measures and removes

much of the most high frequency movements in the series. From Figure 6 we also observe

that topics covary, at least periodically. The maximum (minimum) correlation across

all topics is 0.57 (-0.40). However, overall, the average absolute value of the correlation

among the topics is just 0.1, suggesting that different topics are given different weights in

the DN corpus across time.

2.3 Real-time GDP

In a real-time out-of-sample forecasting experiment it is important to use data that were

actually available on the date of the forecast origin. While the newspaper data are not

revised, GDP is. For this reason a real-time dataset for Gross Domestic Product (GDP)

is used. The raw data include 64 vintages of GDP for the Norwegian mainland economy,
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covering the time period 2001:Q1 to 2015:Q4.5 Moreover, each vintage contains time-series

observations starting in 1978:Q1.

To facilitate usage in the nowcasting experiment, see Section 4, I sort these real-

time observations according to their release r, with r = 1, . . . , r̄. Thus, in real-time

jargon, I work with the diagonals of the real-time dataset. For each r, the sample is

truncated such that each r covers the same sample. r̄ = 5 is considered to be the “final

release”. Although this is somewhat arbitrary, working with a higher r̄ results in a loss of

sample length, making an evaluation of the model’s nowcasting performance relative to

benchmarks less informative. The truncation process yields r̄ time series with a length of

56 observations each, for the sample 2001:Q1 to 20014:Q4. For time series observations

prior to 2001:Q1, each r is augmented with earlier time series observations collected from

the 2001:Q1 vintage.6

Finally, the raw release series are transformed to quarterly growth rates. For future

reference, I refer to these as ∆GDP r
tq , where tq is the quarterly time indicator. Prior to

DFM estimation, and as in Stock and Watson (2012), the local mean of these growth

rates is removed using a linear time trend, and the series are standardized. To distinguish

these series from the unadjusted growth rates, I label them ∆GDP r,a
tq .

3 The Dynamic Factor Model

To map the large panel of daily news topic to quarterly GDP growth, and produce now-

casts, I use the mixed frequency, time-varying Dynamic Factor Model (DFM) developed

in Thorsrud (2016). Compared with related time-varying factor models in the literature,7

this model offers two extensions: First, sparsity is enforced upon the system through the

time-varying factor loadings using a latent threshold mechanism. Second, since the vari-

ables in the system are observed at different frequency intervals, cumulator variables are

used to ensure consistency in the aggregation from higher to lower frequencies and make

estimation feasible. A short description of the model is provided below. A more technical

description is given in Appendix E. I refer to Thorsrud (2016) for results showing the

advantages of this modeling strategy relative to existing factor modeling approaches.

5The real-time dataset is maintained by Norges Bank. I thank Anne Sofie Jore for making this data

available to me. In Norway, GDP excluding the petroleum sector is the commonly used measure of

economic activity. I follow suit because it facilitates the formal evaluation of the nowcasts in Section 5.
6Generally, this data augmentation process might create a break in the time series. Here it is needed to

be able to conduct the nowcasting experiment and simply to have enough observations to estimate the

time series models. However, as explained in the next section, the model used contains time-varying

parameters, which potentially adapt to such breaks.
7See, e.g., Lopes and Carvalho (2007), Del Negro and Otrok (2008), Marcellino et al. (2013), Ellis et al.

(2014), and Bjørnland and Thorsrud (2015).
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Measured at the highest frequency among the set of mixed frequency observables, the

DFM can be written as:

yt =Ztat + et (2a)

at =F1at−1 + · · ·+ Fhat−h + ωt (2b)

et =P1et−1 + · · ·+ Ppet−p + ut (2c)

Equation (2a) is the observation equation of the system. yt is a N×1 vector of observable

and unobservable variables assumed to be stationary with zero mean, decomposed as

follows:

yt =

(
y∗1,t

y2,t

)
(3)

where y∗1,t is a Nq × 1 vector of unobserved daily output growth rates, mapping into

quarterly output growth rates as explained below, and y2,t is a Nd × 1 vector of daily

newspaper topic variables, described in Section 2.2. N = Nq + Nd, and Zt is a N × q

matrix with dynamic factor loadings linking the variables in yt to the latent dynamic

factors in at. The factors follow a VAR(h) process given by the transition equation in

(2b), where ωt ∼ i.i.d.N(0,Ω). Finally, equation (2c) describes the time series process for

the N ×1 vector of idiosyncratic errors et. It is assumed that these evolve as independent

AR(p) processes with ut ∼ i.i.d.N(0,U). Thus, P and U are diagonal matrices, and ut

and ωt are independent. In the specification used here q = 1. Therefore, at is a scalar,

and can be interpreted as a latent daily coincident index of the business cycle. Moreover,

I set h = 10 and p = 1, and as discussed below Nq = 1 and Nd = 20.

The model’s only time-varying parameters are the factor loadings. Following the La-

tent Threshold Model (LTM) idea introduced by Nakajima and West (2013), and applied

in a DFM setting in Zhou et al. (2014), sparsity is enforced onto the system through these

using a latent threshold mechanism. For example, for one particular element in the Zt

matrix, zi,t, the LTM structure can be written as:

zi,t = z∗i,tςi,t ςi,t = I(|z∗i,t| ≥ di) (4)

where

z∗i,t = z∗i,t−1 + wi,t (5)

with wi,t ∼ i.i.d.N(0, σ2
i,w). In (4) ςi,t is a zero one variable, whose value depends on

the indicator function I(|z∗i,t| ≥ di). If |z∗i,t| is above the the threshold value di, then

ςi,t = 1, otherwise ςi,t = 0. Accordingly, the LTM works as a dynamic variable selection

mechanism. Letting wt ∼ i.i.d.N(0,W ), it is assumed that wt is independent of both ut

and ωt, and that W is a diagonal matrix.
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Due to the mixed frequency property of the data, the yt vector in equation (2a)

contains both observable and unobservable variables. Thus, the model as formulated

in (2) cannot be estimated. However, following Harvey (1990), and since y∗1,t is a flow

measure, the model can be reformulated such that observed quarterly series are treated

as daily observations with missing observations. To this end, the yt vector is decomposed

as in equation (3). Assuming further that the quarterly variable is observed on the last

day of each quarter, we can define:

ỹ1,t =


∑m

j=0 y
∗
1,t−j if ỹ1,t is observed

NA otherwise
(6)

where ỹ1,t is treated as the intra-period sum of the corresponding daily values, and m

denotes the number of days since the last observation period. Because quarters have

uneven number of days, ỹ1,t is observed on an irregular basis, and m will vary depending

on the relevant quarter and year. This variation is however known and easily incorporated

into the model structure.

Given (6), temporal aggregation can be handled by introducing a cumulator variable

of the form:

C1,t = βt,qC1,t−1 + y∗1,t (7)

where βt,q is an indicator variable defined as:

βt,q =

0 if t is the first day of the period

1 otherwise
(8)

and y∗1,t maps to the latent factor, at, from equation (2b). Thus, ỹ1,t = C1,t whenever

ỹt,1 is observed, and treated as a missing observation in all other periods. Because of the

usage of the cumulator variable in (7), one additional state variable is introduced to the

system. Importantly, however, the system will now be possible to estimate using standard

filtering techniques handling missing observations. Details are given in Appendix E.

As is common for all factor models, the factors and factor loadings in (2) are not

identified without restrictions. To separately identify the factors and the loadings, the

following identification restrictions on Zt in (2a) are enforced:

Zt =

[
z̃t

ẑt

]
, for t = 0, 1, . . . , T (9)

Here, z̃t is a q×q identity matrix for all t, and ẑt is left unrestricted. Bai and Ng (2013) and

Bai and Wang (2014) show that these restrictions uniquely identify the dynamic factors

and the loadings, but leave the VAR(h) dynamics for the factors completely unrestricted.
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The DFM is estimated by decomposing the problem of drawing from the joint posterior

of the parameters of interest into a set of much simpler ones using Gibbs simulations. The

Gibbs simulation employed here, together with the prior specifications, are described in

greater detail in Appendix E. The results reported in this paper are all based on 9000

iterations of the Gibbs sampler. The first 6000 are discarded and only every sixth of the

remaining is used for inference.

To ease the computational burden, I truncate the news topic dataset to include only

20 of the 80 topics. Thus, the number of daily observables Nd = 20. The truncation, and

choice of topics to include, is based on the findings reported in Thorsrud (2016), and is

examined in greater depth there. Table 7 in Appendix C highlights the included topics.

Without going into detail, I note that the topics do for the most part reflect topics one

would expect to be important for business cycles in general, and for business cycles in

Norway in particular. Examples of the former are the Monetary Policy, Fiscal policy,

Wage payments/Bonuses, Stock Market, and Retail topics, while the Oil Service topic is

an example of the latter.8 Still, although most topics are easily interpretable, some topics

either have labels that are less informative, or reflect surprising categories. An example is

the Life topic. That said, such exotic or less informative named topics, are the exception

rather than the rule.

The number of quarterly observables Nq = 1. Instead of using the “final” vintage

of GDP growth to estimate the model, I use the first release series, i.e., ∆GDP 1,a
tq , as

this series is not subsequently revised. Accordingly, as described in, e.g., Croushore

(2006), data revisions will not affect the parameter estimates of the model nor lead to a

change in the model itself (such as the number of lags). In turn, both of these properties

facilitate real-time updating of the model when conducting the nowcasting experiment,

confer Section 4. It follows from the discussion of equations (6) to (8) that ỹ1,t = C1,t =

∆GDP 1,a
tq whenever ∆GDP 1,a

tq is observed.

4 Nowcasting

To produce nowcasts of GDP growth I take advantage of the fact that the daily news

topics are always available, while quarterly GDP growth is published with a substantial

lag. Because the state-space system in (2) is non-linear this conditioning can not be

implemented using the Kalman Filter. Instead, I keep the model’s hyper-parameters

fixed at some initially estimated values, and create updated estimates of the latent states

8Norway is a major petroleum exporter, and close to 50 percent of its export revenues are linked to oil

and gas. See Bjørnland and Thorsrud (2015), and the references therein, for a more detailed analysis of

the strong linkages between the oil sector and the rest of the mainland economy.
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and thus nowcasts of GDP, conditional on knowing the daily observables using particle

filter methods.

Generally, particle filters are part of what’s called Sequential Monte Carlo (SMC)

methods, and many different types of particle filters exist. The one used here, and ac-

commodated to the model in (2), is a so-called mixture auxiliary particle filter, see Michael

K. Pitt (1999), Chen and Liu (2000) and Doucet et al. (2001). A detailed description of

the algorithm is provided in Appendix H. Here I note that the mixture term is used be-

cause the filter exploits that some parts of the model can be solved analytically, which

always is an advantage as it reduces Monte Carlo variation.

An alternative strategy would have been to re-estimate the model at every point in

time when a real-time nowcast is desired. This will work since the model is designed

to handle missing values by definition. However, due to the MCMC procedure used to

estimate the model, this will be a very time consuming and computational demanding

exercise. While a full re-estimation of the system takes many hours (or days), constructing

updated estimates of the latent states using the particle filter takes minutes and also allows

for parallelization. Of course, to the extent that the model’s hyper-parameters change

through time, keeping them constant might degrade the model’s forecasting performance.

Still, because of the large improvement in computation time, this is the solution chosen

in the experiments conducted here.

4.1 Rescaling and accounting for drift

The DMF model gives estimates, and thus forecasts, of the adjusted output growth mea-

sure ∆GDP 1,a
tq . What we are interested in, however, are predictions of actual growth,

∆GDP 1
tq . In other words, a rescaling is needed. Moreover, while we might be interested

in how the model predicts the first release of actual GDP growth, we might also be inter-

ested in how the model predicts later releases, cf. Section 4.2. Insofar as the initial GDP

release is an efficient estimate of later releases, i.e., that data revisions are due to new

information obtained by the statistical agency after the time of the first release, a model

that does a good job of predicting the initial release will also do a good job of predicting

later releases. However, there is substantial evidence showing that initial GDP releases

are not efficient estimates of later (or the “final”) releases, see, e.g., Faust et al. (2005) for

an application to G-7 countries.9 In such cases, it might be better to predict the release

of interest directly.

To address these issues, I estimate a simple time-varying (TVP) rescaling model.

9The forecast rationality arguments used here are due to Mankiw et al. (1984), who introduced the

distinction between news (not news topics) and noise in the revision process for real-time macroeconomic

data.
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First, assume that we are standing at time Tq and have produced DFM estimates and

predictions of ∆GDP 1,a
tq for tq = 1, . . . , Tq using the methodology described above. Then,

to map ∆GDP 1,a
tq to ∆GDP r

tq , the following equation is estimated for each r:

∆GDP r
tq−r = αrtq−r + βrtq−r∆GDP

1,a
tq−r + ertq−r (10)

where the r indexing addresses our interest in how the model predicts different data

releases, and the subtraction of r in the time indexes is done to take into account that GDP

growth is not available at time Tq, because it is published with a lag. To the extent that

GDP growth inhabits a low frequency change in the mean or variance, this will be captured

by the time-varying parameters α and β, which are assumed to follow independent random

walk processes. The posterior estimates of the parameters are obtained by applying

Carter and Kohn’s multimove Gibbs sampling approach (Carter and Kohn (1994)),10 and

predictions of GDP r
Tq

are formed simply as:

∆ ˆGDP r
Tq = α̂rTq + β̂rTq∆

ˆGDP 1,a
Tq

(11)

Apart from allowing for time-varying parameters and using various data releases when

estimating (10), the steps taken here to bridge the DFM estimates with actual GDP

growth are similar to those used in, e.g., Giannone et al. (2008), and many other factor

modeling applications involving mixed frequency data.11

4.2 The nowcasting experiment

To assess the DFM’s nowcasting performance, I run a real-time out-of-sample forecasting

experiment. The informational assumptions are as follows: At each forecast round, I

assume that a full quarter of daily information is available. The first release of GDP

growth, on the other hand, is only available for the previous quarter. In Norway, the

National Accounts Statistics for the previous quarter are usually published in the middle

of the second month of the current quarter. As such, these informational assumptions are

realistic.

The DFM is first estimated using the sample 1 June 1988 to 31 December 2003, and

the hyper-parameters are saved for later usage. Then, for each quarter from 2004:Q1

10The general algorithm is described in Appendix F. Since this is a relatively straight forward application

of a time-varying parameter model, I do not expand on the technical details. In terms of priors, α0 and

β0 is set to 0, and the variance of the error term associated with the law of motion for the parameters

is assumed a priori to be 0.01. For both processes I apply a roughly 10 percent weight on these beliefs

relative to the data.
11I have also estimated the rescaling model as a simple static regression (OLS ). Compared to the TVP

case, the results are slightly, but not significantly, worse. Interestingly, however, there are some important

differences across time. See Appendix B for details.
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to 2014:Q4, I produce a nowcast of GDP growth, yielding a sample of 40 real-time

nowcasts.12 For each forecast round, I use the particle filter, together with the stored

hyper-parameters, to construct updated state estimates, see Appendix H, and then the

rescaling methodology described in Section 4.1 to predict actual GDP growth. For the

models used in the rescaling step, a recursive estimation window is used, starting in

1988:Q2 for all forecast rounds. I note that the word distributions, estimated using the

LDA model and described in Section 2.1, are kept fixed throughout the analysis. In

principle, these should also be updated in real time, but re-estimating these distributions

at each forecast round would be computationally very demanding since simulating the

posterior distribution takes a long time to complete. However, in unreported results I

have compared the implied news topic time series using word distributions estimated

over the full sample with those obtained when truncating the corpus sample to end in

31 December 2000, finding that the correlations are very close to one.13 This suggests

that the output from the LDA model is not very sensitive to the sample split used in

the nowcasting experiment, and that keeping the word distributions fixed is an innocuous

simplification.

The nowcasts are evaluated using two simple statistics, namely the Root Mean Squared

Forecast Errors (RMSFE), and the bias. A key issue in this exercise is the choice of a

benchmark for the “actual” measure of GDP growth. In principle, one could argue that

the nowcasts should be as accurate as possible when evaluated against the most revised

release, i.e., r̄, as this release presumably contains more information and is closer to the

true underlying growth rate. In practice however, the forecaster is often evaluated in real

time, i.e., against the first release. Thus, depending on the forecaster’s loss function, it

is not clear a priori which release one should evaluate the nowcast against (Croushore

(2006)). For this reason, when computing the test statistics, r = 1, . . . , r̄ different GDP r
tq

releases are used as the “true” value. Together with the estimation of r̄ nowcasts, see

Section 4.1, this permits a r̄ × r̄ evaluation of the predictive performance and answering

the question: Which data release is the best to use to form nowcasts when evaluated

against release r?

12The sample split is chosen because it gives the model a substantial number of observations to learn

the hyper-parameter distributions prior to doing the nowcasting experiment, and because the out-of-

sample period corresponds to the sample period available for the benchmarks models, see Section 4.3 and

Appendix C.
13As mentioned in Appendix D.2, one caveat with a comparison like this is lack of identifiability, meaning

that topic 1 in one sample might not equal topic 1 in another sample. Still, creating a (informal) mapping

between the word distributions for different samples based on the most important words that belong to

each distribution is possible, although somewhat cumbersome.
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4.3 Benchmark forecasts

Four benchmark forecasts are used and compared with those from the DFM, news-based,

predictions. The first benchmark forecast is obtained from a simple AR(1), estimated

on GDP 1
tq . For the AR(1), a recursive estimation window is applied, and the estimation

sample begins in 1988:Q2 irrespective of forecast origin. The second benchmark is simply

taken to be the mean of GDP 1
tq , computed using the previous 5 quarters at each forecast

round. I denote this forecast RM.

Arguable, these benchmarks are very simplistic. Therefore, I also compare the now-

casts from the DFM to nowcasts produced in real time by Norges Bank. Two different

types of Norges Bank nowcasts are compared. The first type is the official Norges Bank

nowcasts (NB), while the second type is predictions from Norges Bank’s model-based

nowcasting system (System for Averaging Models, SAM ).14

The Norges Bank nowcasts are interesting benchmarks for two reasons. First, the NB

predictions are subject to judgment, and potentially incorporate both hard economic and

more anecdotal information. As discussed in Alessi et al. (2014), expert judgment poten-

tially plays an important role when producing forecasts in most institutions, and might be

particularly important when economic conditions change rapidly, as they did around the

financial crisis. Second, SAM predictions are produced using a state-of-the-art forecast

combination framework. In contrast to the NB predictions, the SAM forecasts are purely

model based. Aastveit et al. (2014) uses, more or less, the same system to nowcast U.S.

GDP growth, and show that the nowcasts produced by the forecast combination scheme is

superior to a simple model selection strategy and that the combined forecast always per-

forms well relative to the individual models entertained in the system. In general, a large

forecasting literature has documented the potential benefits of using forecast combination

techniques relative to using predictions generated by individual models, see Timmermann

(2006) for an extensive survey. Thus, in a pure forecasting horse-race, it is difficult to

envision a better model-based competitor than SAM.

A detailed description of how the SAM system works and performs can be found

in Bjørnland et al. (2011), Bjørnland et al. (2012), and Aastveit et al. (2014). A brief

description of the SAM system is provided in Appendix C. Importantly, although the

SAM system incorporates information from hundreds of individual models and economic

time series (including forward-looking variables such as surveys, financial market variables,

and commodity prices), none of the individual models entertains textual information.

14I thank Anne Sofie Jore at Norges Bank for making these data available to me. See Appendix C for a

description of how the two Norges Bank nowcasts are compiled to match the timing assumptions for the

nowcasting experiment.
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5 Results

I start this section by reporting how the estimated daily coincident index evolves when

estimated in real time, see Figure 3a. The red line in the figure shows the index as esti-

mated at the last time period in the sample. The blue lines show the index as estimated at

each point in time according to the updating schedule used in the nowcasting experiment.

Apart from the fact that the index seems to pick up important business cycle phases in

the Norwegian economy, as documented thoroughly in Thorsrud (2016), one other fact

stands out.15 The index estimates do not change markedly across vintages.

The index’s stability across vintages is partly due to how the updating of the model

is done when doing the real-time nowcasting experiment, where the hyper-parameters

are kept constant. It is also due to the use of the first releases of output growth when

estimating the model. Vintages of data are revised, but first releases are not. In any

case, to the extent that the index is used for business cycle classification, as in Thorsrud

(2016), small real-time revisions of the index are desirable.

Figures 3b reports the actual realizations of GDP growth together with the nowcasts

produced using the news-based models. For the realizations I report the full range (min

and max) of outcomes at each point in time, for all r̄ releases, as a gray colored area.

Likewise, for the predictions I report the prediction range (min and max), where the

different predictions are determined by the release used for estimating the rescaling model.

As clearly seen in the graphs, data revisions are substantial. For example, around March

2007 the different data releases indicated that output growth could be anything between

roughly 1.25 to 2 percent. Despite these big revisions, visual inspection alone suggests

that the news-based models perform well in predicting the current state of the economy.

It is particularly interesting that all models catch the downturn associated with the Great

Recession particularly well. However, the spread in the predictions are relatively large,

possibly reflecting the flexibility offered by the time-varying TVP class.

5.1 News versus benchmarks

Tables 1 and 2 summarize the first main finding of this article, namely that nowcasts

produced by the news-based model framework are highly competitive in terms of RMSFE

and bias compared with the benchmark forecasts.

I start by looking at the RMSFE comparisons, reported in Table 1, and the results

15The index captures the low growth period in the early 1990s, the boom and subsequent bust around the

turn of the century, and finally the high growth period leading up to the Great Recession. I note that

the downturn in the economy following the Norwegian banking crisis in the late 1980s was longer lasting

than the downturn following the global financial crisis in 2008.
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(a) The coincident index (in real-time)

(b) Nowcasts: News and actual

Figure 3. Figure 3a reports the real-time estimates of the daily news index. The red solid line reports the

news index as estimated using the full sample. The blue line reports the index as estimated at each point

in time according to updating schedule defined by the nowcasting experiment. The out-of-sample period

is marked by the gray area. Figure 3b reports the prediction range (min and max) for the news-based

models, where the different predictions are determined by the release used for estimation (r = 1, . . . , r̄).

The gray area is the range (min and max) of outcomes at each point in time, for releases r = 1, . . . , r̄.

presented under the Estimation release heading, i.e., the internal news-based evaluation

across estimation and evaluation combinations. We observe that it is generally easier to

obtain lower RMSFE values when the nowcasts are evaluated against the first release.

If later data releases contain new information not available at the forecast origin, the

general increase in RMSFE across evaluation releases in Table 1 is a natural outcome.

The difference in terms of which release to estimate the TVP model class on varies too, but

to a smaller degree. On average across evaluations, however, there seems to be a tendency

that the nowcasts are more accurate when the TVP model is estimated on either the first

or second release. In particular, if the fifth release is treated as the “final” release, the

best performance in terms of RMSFE is obtained when constructing the nowcasts using
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Table 1. Nowcasting RMSFE. Each column represents a different model, and each row reports the

RMSFE when evaluated against a different release. The models 1 - 5 under the Estimation release heading

refer to the news-based model where forecasts are rescaled using the TVP model class, and estimated

on releases 1 - 5. The remaining columns refer to the benchmarks models described in Section 4.3. The

numbers in parentheses report forecasting performance relative to the news-based model estimated on the

second release. Likewise, tests for significant difference in forecasting performance are computed relative

to this model, using the DM test with HAC corrected standard errors (Diebold and Mariano (1995)). ∗,
∗∗, ∗ ∗ ∗, denote the 10, 5, and 1 percent significance level, respectively.

Estimation release AR RM NB SAM

1 2 3 4 5

E
v
a
lu

a
ti

o
n

re
le

a
se

1 0.372 0.381 0.391 0.392 0.363 0.569* 0.442 0.331 0.372

(1.025) (1.000) (0.975) (0.973) (1.050) (0.670) (0.864) (1.152) (1.026)

2 0.420 0.431 0.444 0.450 0.423 0.679** 0.549 0.403 0.468

(1.028) (1.000) (0.972) (0.959) (1.021) (0.635) (0.786) (1.069) (0.923)

3 0.404 0.416 0.431 0.435 0.399 0.676** 0.574* 0.414 0.452

(1.030) (1.000) (0.967) (0.957) (1.043) (0.616) (0.726) (1.007) (0.922)

4 0.422 0.434 0.452 0.450 0.425 0.701** 0.613* 0.391 0.454

(1.030) (1.000) (0.961) (0.964) (1.023) (0.619) (0.709) (1.109) (0.957)

5 0.406 0.397 0.424 0.424 0.413 0.738*** 0.576* 0.393 0.403

(0.978) (1.000) (0.938) (0.937) (0.962) (0.538) (0.690) (1.013) (0.987)

the second release.

Compared to the two simple benchmark forecasts, AR and RM, the news-based model

produces superior nowcasts. Using the second release estimation column as a reference,

we see from Table 1 that irrespective of which release the nowcasts are evaluated against,

the news-based model is between 16 to 46 percent better. In most cases the difference in

forecasting performance is also significant, and widens with the age of the release used for

evaluation, suggesting that the news-based predictions contain more information about

the “true” underlying growth rate in the economy.

Compared to the more sophisticated benchmarks, NB and SAM, and continuing using

the news-based model estimated on the second release as a reference forecast, we see that

the news-based performance is sometimes better, sometimes worse, but on average very

similar.16 There is a tendency that the two benchmarks performs relatively better when

evaluated against the first release, but when using the fifth release to evaluate the predic-

16Because of the data availability for the Norges Bank predictions, see Appendix C, only 31 nowcasts are

available for evaluation for these two benchmarks. In contrast, for the news-based models, and the two

simpler benchmarks, 40 nowcasts are evaluated.
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Table 2. Nowcasting bias. A positive number indicates that the nowcasts are on average too high

relative to the outcome. See Table 2 for further details.

Estimation release AR RM NB SAM

1 2 3 4 5

E
v
a
l.

re
le

a
se

1 0.093 0.029 0.021 0.007 0.008 -0.181 0.011 -0.048 0.009

2 0.089 0.025 0.017 0.003 0.004 -0.185 0.007 -0.060 -0.002

3 0.112 0.049 0.040 0.027 0.028 -0.161 0.030 -0.039 0.019

4 0.131 0.067 0.058 0.045 0.046 -0.143 0.049 -0.012 0.046

5 0.078 0.014 0.005 -0.008 -0.007 -0.196 -0.004 -0.043 0.014

tions, there are hardly any differences. If anything, the NB predictions are slightly better

than the news-based predictions, which again are slightly better than the SAM predic-

tions. In contrast to above, the difference in nowcasting performance is not significant

for any of the comparisons. Still, it is rather remarkable that one single DFM, contain-

ing only quarterly output growth and daily data based on a textual decomposition of a

business newspaper, can produce such competitive nowcasts compared with the NB and

SAM benchmarks. After all, as described in Section 4.3, these benchmarks incorporates

an impressive amount of hard economic information, different models specifications and

classes, and expert judgment.

Table 2 reports the biases of the nowcasts. Starting again with the internal news-based

evaluation, it is interesting to note that there is a tendency for the bias to be smaller in

absolute value whenever a later release is used for estimation and evaluation. For the

reference model considered above, the bias is 0.014. Comparing this number with the

ones achieved for the AR, we observe that it is always smaller in absolute value. In fact,

the AR has a large negative bias (meaning that it consistently predicts lower growth

than realized) across all evaluations. The RM benchmark, however, is much better, also

compared with the news-based reference model. The two last columns in Table 2 report

the biases for the NB and SAM benchmarks. The NB predictions are on average too

low, while the SAM predictions are too high. Compared with the news-based biases, and

in particular those for the reference model, we observe that they are generally higher (in

absolute value), especially when evaluated against the fifth release.

The results reported thus far represent averages across the evaluation sample. The

second main finding of this article is summarized in Figure 4, which reports the cumulative

difference in squared prediction errors between the news-based factor model and the two

benchmarks NB and SAM. Each figure shows the time path for this relative performance

measure when the best performing news-based model is used, i.e., the one with the lowest

RMSFE in Table 1, and also the range of outcomes when the whole battery of estimation
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(a) News reative to NB

(b) News reative to SAM

Figure 4. Cumulative difference in squared prediction error between the NB (SAM ) benchmark and

the news-based models. The gray shaded area shows the full range of outcomes according to this metric

when each outcome in the r×r evaluation matrix is taken into account. The black solid line is the median

of this range. The blue (red) solid line reports the cumulative error difference path when the news-based

model with the lowest RMSFE in the estimation evaluation space is used, i.e, the one estimated on the

second release and evaluated against the fifth release.

and evaluation combinations are used.17 Two interesting facts stand out: First, when the

business cycle turned heading for the Great Recession, the news-based model starts to

improve relative to the two benchmarks, and already in mid-2007, the news-based model

is better in an absolute sense. Although the Great Recession had a very long-lasting

effect on many economies, this was not the case in Norway, cf. Figure 3b. Already

17For a given evaluation, irrespective of which estimation release that is used for the news-based model,

it is compared to the same benchmark. In producing the cumulative results in the figures, the time

observations for which no NB and SAM forecast error exists are excluded. For readability, and given

the relative poor performance of the other two simple benchmarks (AR and RM ), I do not report these

results in the graphs.
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in 2009 the Norwegian economy was well into its recovery phase. In the comparisons

reported in Figure 4, we see that this period is associated with a further improvement

of the nowcasts produced by the news-based model relative to the SAM projections,

but a small deterioration relative to the NB projections. Still, the news-based nowcasts

continue to be better (in an absolute sense) than the two benchmarks until 2011, and

particularly so when compared against the SAM nowcasts. Thus, although the results

reported in Table 1 suggested that the three nowcasts on average were equally good (in

terms of RMSFE), there seems to be a substantial difference in their ability to capture

turning points. In particular, if RMSFE scores had been computed up until 2011, the

news-based reference model would have performed roughly 15 percent better than the

two Norges Bank benchmarks. Second, something happens around early 2011, which

is picked up by the two benchmarks, but not the news-based model. Accordingly, the

relative performance of the latter worsens until 2012, before it stabilizes around zero,

indicating equal predictive ability.

To summarize the findings reported in this section, it is clear that the news-based

model on average can produce real-time nowcasts with an RMSFE and bias as low as

those produced by expert judgment (NB) and a state-of-the-art forecast combination

framework (SAM ). When looking more closely on how the nowcast performance varies

across the business cycle, the good performance of the news-based model seems to be

associated with its ability to capture turning points in the economy better than the

benchmarks.

5.2 Could news add value for policy makers?

The correlations between the nowcasts produced by the news-based model and the two

benchmarks NB and SAM are high and vary around roughly 0.7. Still, the time-varying

relative performance documented in Figure 4 suggests that if the central bank could have

exploited the news-based forecasts during the evaluation sample looked at here, news

might have added value. To investigate this hypothesis more thoroughly, I follow Romer

and Romer (2008), and run a number of regressions based on the following equation:

∆GDP 5
tq = α + βNBNBtq + βSAMSAMtq + βNewsNewstq + etq (12)

Here, NBtq , SAMtq , and Newstq are the nowcasts for period tq produced by NB, SAM,

and the news-based model, respectively. I use the fifth release of actual GDP growth

as dependent variable because this is the most revised release, while the news-based

predictions are those produced by the model estimated using the second release (the

reference model used above). The primary object of interest is to investigate if βNews is
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Table 3. Ordinary least squares estimates - original sample. The dependent variable in each regression is

∆GDP 5
tq . R2 denotes the adjusted coefficient of determination. Standard errors (in parenthesis) and test

statistics are derived using a residual bootstrap. ∗, ∗∗, ∗ ∗ ∗, denote the 10, 5, and 1 percent significance

level, respectively.

α βNB βSAM βNews R2 N

-0.218 0.403** 0.578 0.330 0.657 31
(0.139) (0.165) (0.347) (0.231)

-0.253 0.501*** 0.869** 0.637 31
(0.153) (0.164) (0.322)

-0.041 0.589*** 0.492** 0.638 31
(0.077) (0.165) (0.215)

-0.262* 0.913** 0.427* 0.630 31
(0.152) (0.349) (0.238)

significantly different from zero: Conditional on the actual nowcasts produced by Norges

Bank, could news-based predictions have added value?

The results reported in Table 3 suggest that the answer to this question is yes. First,

when all three nowcasts are projected on the actual outturn, only the NB predictions seem

to be significant. However, given the relatively short sample available for estimation, and

the high correlation between the predictors, these estimates are likely not very trustworthy.

As seen in rows two to four of the table, when dropping one of the three regressors, the two

remaining always become significant. In particular, we see that the news-based predictions

can add value in terms of predicting output growth, even after conditioning on either the

NB or SAM nowcasts.

One caveat with the results presented in Table 3 is that relatively few observations

are available for estimation. As described in Appendix C, this is due to missing Norges

Bank data points affecting the sample up until 2012. However, since the results reported

in Figure 4 suggest that the news-based nowcasts perhaps could have added more value

during the middle part of the sample, it is unfortunate that this part of the sample is

somewhat down-weighted in the regressions. To address this issue, I do the following:

Instead of dropping the observations for which no NB and SAM nowcasts exist, interpo-

lated values are used to fill in the missing observations. The interpolation is linear, and is

performed between the two closest neighboring data points to the missing observations.

Arguably, this procedure is ad-hoc, and constructs nowcast series for the two benchmarks

that actually do not exist. Still, it permits running regressions utilizing the full sample

of available news-based nowcasts.18

18I have experimented with other ways of handling the missing observations, such as using the RM predic-

tions, and using the two-step ahead predictions from the NB and SAM benchmarks. Qualitatively, none

of these alternative methods changes the results.
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Table 4. Ordinary least squares estimates - forecast efficiency test. The dependent variable is Rtq =

∆GDP 5
tq − ∆GDP 1

tq . Standard errors (in parenthesis) and test statistics are derived using a residual

bootstrap. ∗, ∗∗, ∗ ∗ ∗, denote the 10, 5, and 1 percent significance level, respectively.

α βGDP βNews R2 N

-0.166 -0.210 0.45*** 0.230 40
(0.110) (0.133) (0.145)

The results of the alternative experiment are reported in Table 6, in Appendix A:

Irrespective of how the regression is specified, the news-based predictions are now always

significant at either the five or one percent level. Thus, taken together the results in

Tables 3 and 6 clearly suggest that if the central bank could have exploited the news-

based forecasts, it would have added value.

Could the news-based predictions also be informative for the statistical agency produc-

ing the GDP statistics? The results reported in Figure 3b suggested that data revisions

are large. As explained in Section 4.1, if these revisions are unpredictable, each new release

of GDP contains new information obtained by the statistical agency after the time of the

first release. Conversely, if the revisions are predictable, the revisions are said to contain

noise (Mankiw and Shapiro (1986)). In this latter case, noise reduction could be possible

using information that could have been available to the statistical agency when publish-

ing their initial release. A standard way to distinguish between these two views is to use

forecast efficiency tests (Mincer and Zarnowitz (1969)). Let Rtq = ∆GDP 5
tq −∆GDP 1

tq ,

then, the following regression is estimated:

Rtq = α + βGDP∆GDP 1
tq + βNewsNewstq + etq (13)

Under the news view (not news topics), revisions must be mean zero and the coefficients

in (13) should not be significant; under noise, the revisions need not be mean zero and the

coefficients might be significant. Here it is particularly interesting if βNews is significantly

different from zero? If so, it means that the statistical agency could have used the nowcasts

produced by the news-based model to improve their own first release of GDP (given the

maintained assumption that the fifth release is closer to the unknown true state of the

economy than the first release).

The results reported in Table 4 indicate that the news-based predictions could be

informative also for the statistical agency producing GDP statistics. In particular, the

βNews coefficient is highly significant and positive. In contrast, neither the constant

nor the βGDP coefficients are significantly different from zero. In unreported results,

when running the regression without the news-based predictions as an extra explanatory

variable, this holds through: The null hypothesis of forecast rationality cannot be rejected
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Table 5. News based information flow and RMSFE. T is the last day of the quarter Tq. GDP for the

previous quarter (Tq−1) is released around T − 40. The nowcasts constructed for T − d 6 T − 40 are

two-step ahead predictions (relative to the quarter Tq), and the predictions constructed for T +d > T are

termed backcasts. The news-based predictions are constructed using the TVP model estimated on the

second release. All evaluations are done with respect to the fifth GDP release. Thus, by construction,

the accuracy of the nowcast produced using time T information is identical to that reported in the last

row and second column of Table 1.

Type Nowcast for Tq Backcast for Tq

Quarterly information Tq − 2 Tq − 1

Daily information T − 80 T − 60 T − 40 T − 20 T T + 10 T + 30

RMSFE 0.460 0.424 0.425 0.426 0.397 0.387 0.386

Cumulative imp. (%) -7.87 -7.59 -7.31 -14.09 -16.55 -16.85

when conditioning on only the first release itself. However, when including the news-based

predictions, forecast rationality is rejected. One potential reason for this finding could be

that economic agents respond to the information contained in the daily newspaper, and

thereby endogenously shape the within quarter and subsequent outcomes. In fact, such

an interpretation is very consistent with that postulated in the news driven business cycle

view, see, e.g., Larsen and Thorsrud (2015) and the references therein.

5.3 High frequency updating and the output news feed

Two important features of newer nowcasting methods are their ability to provide the

forecast user with within the quarter updates as more information becomes available,

and also a decomposition of how this information affects the nowcast updates, see, e.g.,

Giannone et al. (2008) and Banbura et al. (2013). Both of these features carry through

to the news-based methodology proposed here. First, newspaper news is available at a

daily frequency, making high frequency updates of the forecasts throughout the quarter

a simple matter of on-line inference. Second, given the large set of news topics that

enter into the news-based DFM, it is possible to decompose any high frequency changes

in the nowcast of output growth into news topic contributions. For policy makers in

particular, as reflected in the broad coverage of various financial and macroeconomic data

in monetary policy reports and national budgets, explaining what drives a forecast might

be equally important as the forecast itself.

Table 5 illustrates how the information flow affects the accuracy of the nowcast (and

backcast) for a generic quarter Tq. The results are obtained by running an experiment

similar to that described in Section 4.2, but now assuming that daily newspaper infor-
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Figure 5. News topics and their (median) contribution to the latent factor estimate, and thus GDP

forecast, through time. The forecast decomposition illustrated here is similar to the ones used in the

related factor modeling literature, see, e.g., Banbura et al. (2013). Technically, the decomposition is

constructed using the Kalman Filter iterations and decomposing the state evolution at each updating

step into news contributions, see Appendix G. For readability, the contributions are normalized to sum

to one at each time period, and smoothed using a 90-day (backward looking) moving average filter. A

higher value indicates a higher weight.

mation is available only at roughly 20-day windows between T − 80 and T + 30, where T

is the last day of the quarter Tq. Since GDP for the previous quarter (Tq−1) is released

around T − 40, the nowcasts constructed for T − d 6 T − 40 will be two-step ahead

predictions (relative to the quarter Tq), while the predictions for T − d > T − 40 will be

one-step ahead predictions. Finally, the predictions constructed for T + d > T will be

termed backcasts because the daily information set used to construct the predictions are

extended into the subsequent quarter (Tq + 1).

As seen in Table 5, more information reduces the news-based forecast errors. For

example, comparing the accuracy of the nowcasts made using T − 80 information to

that using T + 30 information (backcast), we observe a roughly 16 percent improvement.

Perhaps somewhat surprising, however, the largest gain in relative forecasting performance

is not obtained when GDP for the previous quarter is released (after T − 40), but earlier

in the quarter, when daily newspaper information starts to accumulate. Comparing the

results in Table 5 with those in Table 1, we see that already early in the quarter the

news-based model produces nowcasts that are almost as accurate as those produced by

the Norges Bank benchmarks at the end of the quarter (at time T ). When utilizing

T + d information, i.e., backcasting, the accuracy of the news-based predictions become

marginally better.

The second point addressed above is exemplified in Figure 5, which shows that there

is a substantial variation in terms of which news topics contribute to the nowcasts. For

example, during the 1990s, the Norwegian Industry topic seems to contain important
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information, while the Oil Service topic becomes particularly important during the mid-

2000s. Other topics, like IT systems, Stock Market, and Monetary Policy varies much

more in their relevance, but all seem to contain important news at different points in

time. Conversely, and perhaps somewhat surprising, the Oil production topic does not

seem to add any useful information at any point in time.19

6 Conclusion

The agents in the economy use a plethora of high frequency information, including media,

to guide their actions and thereby shape aggregate economic fluctuations. In this paper

I show how unstructured textual data collected from a major business newspaper can

be used to improve nowcasting performance with regards to quarterly GDP growth, on

average, and around turning points. In particular, by decomposing the textual data into

daily news topics, and using a mixed frequency time-varying Dynamic Factor Model, I

show that it is possible to obtain nowcasts that perform up to 50 percent better than

forecasts from simple time series models, and at times up to 15 percent better than

a state-of-the-art nowcasting system. It is noteworthy that, if a big bank of experts,

here represented by official central bank nowcasts, could have utilized the methodology

proposed, it would have resulted in lower forecasting errors, especially around the period

of the Great Recession. Moreover, if the statistical agency producing the output growth

statistics itself had utilized the methodology proposed, it would have resulted in a less

noisy revision process. Thus, news reduces noise.

The (macro)economic literature utilizing textual information and alternative (Big)

data sources is fast growing, but still in its early stages. Key to the results obtained

in this analysis is the use of a Latent Dirichlet Allocation (LDA) model to decompose

the unstructured text into news topics. Compared with existing textual approaches used

in economics and finance, such as word counting, sentiment classification, and collecting

web search terms and trends, the approach taken here is undoubtedly highly data and

computationally intensive. However, one could argue that the LDA approach offers sev-

eral advantages in terms of automation and interpretation. Still, to what extent these

advantages also make the topic model a preferred tool to work with when unstructured

textual data are used to nowcast macroeconomic variables is an open question worthy

future research.

19The observant reader, comparing these results with the ones presented in Thorsrud (2016), will notice

that the news decomposition differs. This is natural, since the news-based factor model used here is

estimated on the first release of output growth, and not the “final” vintage, as in Thorsrud (2016).
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Appendices

Appendix A Additional results

(a) Monetary Policy (72) (b) Retail (60) (c) Funding (42)

(d) Results (46) (e) Startup (61) (f) Statistics (44)

Figure 6. Individual news topics (topic numbers, cf. Table 7 in Appendix A, in parenthesis). The gray

bars and blue lines report topic time series from step one and three of the data processing, respectively.

See the text for details.

Table 6. Ordinary least squares estimates - interpolated sample. The dependent variable in each regres-

sion is ∆GDP 5
tq . R2 denotes the adjusted coefficient of determination. Standard errors (in parenthesis)

and test statistics are derived using a residual bootstrap. ∗, ∗∗, ∗ ∗ ∗, denote the 10, 5, and 1 percent

significance level, respectively.

α βNB βSAM βNews R2 N

-0.214 0.525*** 0.275 0.509** 0.698 40
(0.142) (0.180) (0.319) (0.195)

-0.281 0.727*** 0.686** 0.639 40
(0.179) (0.214) (0.328)

-0.124 0.617*** 0.576*** 0.700 40
(0.098) (0.163) (0.172)

-0.266 0.687** 0.657*** 0.655 40
(0.161) (0.324) (0.220)
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Table 7. Estimated topics and labeling. The topics are labeled based on the meaning of the most

important words, see the text for details. The “Corr” column reports the topics’ correlation with linearly

interpolated daily GDP a, see Thorsrud (2016) for details. The topics included in the DMF model, see,

Section 3, are marked with bold. The words are translated from Norwegian to English using Google

Translate.

Topic Label Corr First words

Topic 0 Calender 0.03 january, march, october, september, novem-

ber, february

Topic 1 Family business 0.18 family, foundation, name, dad, son, for-

tune, brothers

Topic 2 Institutional investing 0.10 fund, investments, investor, return, risk, capi-

tal

Topic 3 Justice 0.04 lawyer, judge, appeal, damages, claim,

supreme court

Topic 4 Surroundings 0.18 city, water, meter, man, mountain, old, out-

side, nature

Topic 5 Housing 0.14 housing, property, properties, apartment,

square meter

Topic 6 Movies/Theater 0.08 movie, cinema, series, game, producer, prize,

audience

Topic 7 Argumentation 0.11 word, besides, interesting, i.e., in fact, sure,

otherwise

Topic 8 Unknown 0.09 road, top, easy, hard, lift, faith, outside, strug-

gle,fast

Topic 9 Agriculture 0.03 industry, support, farmers, export, produc-

tion, agriculture

Topic 10 Automobiles 0.18 car, model, engine, drive, volvo, ford,

møller, toyota

Topic 11 USA 0.09 new york, dollar, wall street, president, usa,

obama, bush

Topic 12 Banking 0.00 dnb nor, savings bank, loss, brokerage firm,

kreditkassen

Topic 13 Corporate leadership 0.05 position, chairman, ceo, president, elected,

board member

Topic 14 Negotiation 0.04 solution, negotiation, agreement, alternative,

part, process

Topic 15 Newspapers 0.22 newspaper, media, schibsted, dag-

bladet, journalist, vg

Topic 16 Health care 0.00 hospital, doctor, health, patient, treatment,

medication

Topic 17 IT systems 0.17 it, system, data, defense, siem, contract,

tanberg, deliver

Continued on next page
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Table 7 – continued from previous page

Topic Label Corr First words

Topic 18 Stock market 0.23 stock exchange, fell, increased, quote,

stock market

Topic 19 Macroeconomics 0.07 economy, budget, low, unemployment, high,

increase

Topic 20 Oil production 0.18 statoil, oil, field, gas, oil company, hy-

dro, shelf, stavanger

Topic 21 Wage payments 0.26 income, circa, cost, earn, yearly, cover,

payed, salary

Topic 22 Norwegian regions 0.17 trondheim, llc, north, stavanger, tromsø, lo-

cal, municipality

Topic 23 Family 0.04 woman, child, people, young, man, parents,

home, family

Topic 24 Taxation 0.03 tax, charge, revenue, proposal, remove, wealth

tax, scheme

Topic 25 EU 0.04 eu, eea, commission, european, brussel, mem-

bership, no

Topic 26 Norwegian industry 0.20 hydro, forest, factory, production,

elkem, industry, produce

Topic 27 Unknown 0.07 man, he, friend, smile, clock, evening, head,

never, office

Topic 28 Norwegian groups 0.09 orkla, storebrand, merger, bid, shareholder,

acquisitions

Topic 29 UK 0.06 british, london, great britain, the, of, pound,

england

Topic 30 Narrative 0.03 took, did, later, never, gave, stand, happened,

him, began

Topic 31 Shipping 0.10 ship, shipping, dollar, shipowner, wilhelmsen,

fleet, proud

Topic 32 Projects 0.10 project, nsb, development, fornebu, en-

trepreneurship

Topic 33 Oil price 0.11 dollar, oil price, barrel, oil, demand, level,

opec, high

Topic 34 Sports 0.00 olympics, club, football, match, play, lilleham-

mer, sponsor

Topic 35 Organizations 0.10 leader, create, organization, challenge, con-

tribute, expertise

Topic 36 Drinks 0.13 wine, italy, taste, drinks, italian, fresh, fruit,

beer, bottle

Topic 37 Nordic countries 0.04 swedish, sweden, danish, denmark, nordic,

stockholm

Topic 38 Airline industry 0.21 sas, fly, airline,norwegian, braathens,

airport, travel

Continued on next page
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Table 7 – continued from previous page

Topic Label Corr First words

Topic 39 Entitlements 0.02 municipality, public, private, sector, pension,

scheme

Topic 40 Employment conditions 0.08 cut, workplace, measures, salary, labor, work-

ing, employ

Topic 41 Norwegian politics 0.05 høyere, party, ap, labor party, stoltenberg,

parlament, frp

Topic 42 Funding 0.31 loan, competition, creditor, loss,

bankruptcy, leverage

Topic 43 Literature 0.01 book, books, read, publisher, read, author,

novel, wrote

Topic 44 Statistics 0.27 count, increase, investigate, share, aver-

age, decrease

Topic 45 Watercraft 0.01 ship, boat, harbor, strait, shipowner, on

board, color

Topic 46 Results 0.31 quarter, surplus, deficit, tax, group, op-

erating profit, third

Topic 47 TV 0.12 tv, nrk, channel, radio, digital, program, me-

dia

Topic 48 International conflicts 0.10 war, africa, irak, south, un, army, conflict,

troops, attack

Topic 49 Political elections 0.02 election, party, power, politics, vote, politi-

cian, support

Topic 50 Music 0.09 the, music, record, of, in, artist, and, play, cd,

band, song

Topic 51 Oil service 0.19 rig, dollar, contract, option, offshore,

drilling, seadrill

Topic 52 Tourism 0.21 hotel, rom, travel, visit, stordalen,

tourist, guest

Topic 53 Unknown 0.16 no, ting, think, good, always, pretty, actually,

never

Topic 54 Aker 0.11 aker, kværner, røkke, contract, shipyard, mar-

itime

Topic 55 Fishery 0.16 fish, salmon, seafood, norway, tons, nourish-

ment, marine

Topic 56 Europe 0.08 german, russia, germany, russian, west, east,

french, france

Topic 57 Law and order 0.06 police, finance guards, aiming, illegal, investi-

gation

Topic 58 Business events 0.00 week, financial, previous, friday, wednesday,

tdn, monday

Topic 59 Supervision 0.10 report, information, financial supervision, en-

lightenment

Continued on next page
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Table 7 – continued from previous page

Topic Label Corr First words

Topic 60 Retail 0.31 shop, brand, steen, rema, reitan, as,

group, ica, coop

Topic 61 Startup 0.28 bet, cooperation, establish, product,

party, group

Topic 62 Food 0.19 food, restaurant, salt, nok, pepper, eat, table,

waiter

Topic 63 Listed stocks 0.11 shareholder, issue, investor, holding, stock ex-

change listing

Topic 64 Asia 0.09 china, asia, chinese, india, hong kong, south,

authorities

Topic 65 Art 0.09 picture, art, exhibition, gallery, artist, mu-

seum, munch

Topic 66 Disagreement 0.08 criticism, express, asserting, fault, react,

should, alleging

Topic 67 Debate 0.15 degree, debate, context, unequal, actually,

analysis

Topic 68 Life 0.18 man, history, dead, him, one, live,

church, words, strokes

Topic 69 Distribution 0.18 customer, post, product, offers, service, indus-

try, firm

Topic 70 Telecommunication 0.08 telenor, mobile, netcom, hermansen, telia,

nokia, ericsson

Topic 71 IT technology 0.21 internet, net, pc, microsoft, technology,

services, apple

Topic 72 Monetary policy 0.33 interest rate, central bank, euro, ger-

man, inflation, point

Topic 73 Education 0.04 school, university, student, research, professor,

education

Topic 74 Government regulations 0.03 rules, authorities, competition, regulations,

bans

Topic 75 Trade organizations 0.16 lo, nho, members, forbund, strike, organiza-

tion, payroll

Topic 76 Fear 0.04 fear, emergency, hit, severe, financial crisis,

scared

Topic 77 Fiscal policy 0.19 suggestions, parliamentary, ministry, se-

lection, minister

Topic 78 Energy 0.05 energy, emissions, statkraft, industry, environ-

ment

Topic 79 Foreign 0.07 foreign, abroad, japan, japanese, immigration,

games
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Appendix B OLS versus TVP

As described in Section 4.1 of the main paper, I use a time-varying parameter model to

rescale the news-based forecasts. As a robustness check, I have also done the rescaling

using a static model, estimated using simple ordinary least squares (OLS ). A formal eval-

uation of the nowcasts produced by the two model classes TVP and OLS are illustrated

in Figures 7a and 7b, which report relative RMSFE and bias of each estimation and eval-

uation combination considered. Two impressions stand out: First, the performance of the

two model classes is very similar, and we do not observe any significant difference between

the two in terms of RMSFE across evaluation vintages. At best (worst), the TVP class is

roughly 7 percent better (worse) than the OLS class. Still, for a given evaluation release,

it is almost always the case that the model with the lowest RMSFE belongs to the TVP

class. Across all the 25 different evaluation and estimation combinations, the TVP class

has a lower RMSFE in 60 percent of the cases. Second, there is a substantial difference

in the biases. Inf fact, the nowcasts produced by the OLS class are on average always to

low, resulting in a negative bias. In contrast, the nowcasts produced by the TVP class

are on average almost always to high, resulting in a positive bias (results not shown).

However, comparing the absolute value of the biases across model classes, I find that in

85 percent of the cases, the nowcasts produced by the TVP model class is smaller (closer

to zero), cf. Figure 7b.

Figure 8 provides a comparison of the two model class predictions across time, and

reports the cumulative difference in squared prediction error between the TVP and OLS

model class. At each point in time, a value above zero indicates that the OLS class

is better, and vice versa. As seen in Figure 8, during the first part of the evaluation

sample, the OLS class performs slightly better than the TVP class, almost irrespective of

which release is used for evaluation and estimation. Around the Great Recession, the gap

between the two classes widens further. Only well into the recovery phase of the recession

does the OLS class start to deteriorate relative to the TVP class, and at the end of the

sample, the difference between the two is basically zero. It is tempting to attribute the

relatively good performance of the TVP class in the latter part of the sample to the

mediocre growth rates that many developed countries have experiences in the aftermath

of the Great Recession. To the extent that these represent a low frequency change in the

trend growth rate, this would potentially be picked up much faster in the TVP models

than in the OLS models. If one focuses on the best performing model in terms of RMSFE

across the whole sample, it turns out that this model belongs to the TVP class when

estimated on the second release and evaluated against the fifth release. See the red line

in the figure.

I draw two main conclusions from the evaluations conducted above. First, although

40



(a) Relative RMSFE (b) Relative (absolute) bias

Figure 7. Relative RMSFE and bias (in absolute value). A value below one indicates that the TVP

class has a lower RMSFE or bias (in absolute value) than the OLS class. The evaluations are done for

the r̄ different releases, as indicated on the x-axis. For each evaluation, r̄ different releases are used to

estimate the models and construct nowcasts, as indicated by the r̄ bars for each evaluation ticker.

Figure 8. Cumulative difference in squared prediction error between the TVP and OLS model classes.

The gray shaded area shows the full range of outcomes according to this metric when each outcome in

the r × r evaluation matrix is taken into account - containing a total of 25 cumulative error differences.

The black solid line is the median of this range. The red solid line reports the path for the evaluation

and estimation combination that produces the lowest RMSFE across the whole sample.

the differences are small, both the RMSFE and bias comparisons indicate that the best

performing specification allows for time-varying parameters. Second, the variation in per-

formance across time between the two model classes suggests that a well devised forecast

combination scheme might improve upon only using one of them. To keep the analysis

focused on the main contribution of this paper, I do not follow up on this insight here,

but leave such extensions for future investigation.
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Appendix C The Norges Bank benchmarks

Starting in 2009, both the NB and SAM predictions are published in Norges Bank’s

Monetary Policy Report. Prior to 2009, however, only the official Norges Bank predictions

(NB) were published. Still, real-time predictions from the SAM system exist for earlier

periods. In total I have access to 31 real-time predictions from Norges Bank, covering the

sample 2003.Q4-2014:Q1.

One caveat with using the Norges Bank forecasts as benchmark models is that up-

until 2012 the NB and SAM forecasts were only produced three times every year; in

March, June, and October. During this period I assign the March (1-step) predictions

from Norges Bank to the fourth quarter the previous year, the June (1-step) predictions

to the second quarter of the same year, and the October (1-step) predictions to the

third quarter. Thus, from 2003 to 2012, Norges Bank’s predictions for the fourth quarter

will be backcasts, while the other predictions (published in June and October) will be

nowcasts. Compared to the informational assumptions used when running the news-based

model, see Section 4.2, the Norges Bank benchmarks will potentially have a three-month

informational advantage for the fourth quarter predictions, a two-month disadvantage for

the third quarter predictions, and roughly similar information available for the second

quarter nowcast.

The latest documentation of the SAM system used for policy at Norges Bank can

be found in Aastveit et al. (2011). Here I briefly note that the system contains almost

500 individual models. These models belong to three different model classes, known to be

particularly useful for nowcasting: Bridge regressions, Mixed frequency vector autoregres-

sions, and Dynamic Factor Models, see, e.g., Baffigi et al. (2004), Angelini et al. (2011),

Kuzin et al. (2011), Breitung and Schumacher (2008), and Giannone et al. (2008). For all

model classes the system is set up such that monthly information can be used together

with quarterly information when making predictions for output growth. Each individual

model produces, in real-time, both a density and point forecast. For each forecast round,

these individual predictions are combined in two steps using a linear opinion pool. In the

first step, models belonging to the same class are combined, and in the second step, the

combined forecasts from step one are combined to produce the finalized prediction. At

each combination step a larger weight is put on models that have historically performed

well, where the weights are either computed using historical logarithmic scores or mean

squared prediction errors.
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Appendix D The textual data

D.1 Filtering the news corpus

To clean the raw textual dataset a stop-word list is first employed. This is a list of common

words not expected to have any information relating to the subject of an article. Examples

of such words are the, is, are, and this. The most common Norwegian surnames and given

names are also removed. In total the stop-word list together with the list of common

surnames and given names removed roughly 1800 unique tokens from the corpus. Next,

an algorithm known as stemming is run. The objective of this algorithm is to reduce all

words to their respective word stems. A word stem is the part of a word that is common

to all of its inflections. An example is the word effective whose stem is effect. Finally,

a measure called tf-idf, which stands for term frequency - inverse document frequency,

is calculated. This measures how important all the words in the complete corpus are in

explaining single articles. The more often a word occurs in an article, the higher the tf-idf

score of that word. On the other hand, if the word is common to all articles, meaning the

word has a high frequency in the whole corpus, the lower that word’s tf-idf score will be.

Around 250 000 of the stems with the highest tf-idf score are kept, and used as the final

corpus.

D.2 LDA estimation and specification

The LDA model was developed in Blei et al. (2003). Here the estimation algorithm

described in Griffiths and Steyvers (2004) is implemented. First, recall that the corpus

consists of M distinct documents. N =
∑M

m=1Nm is the total number of words in all

documents, K is the total number of latent topics, and V is the size of the vocabulary.

Each document consists of a repeated choice of topics Zm,n and words Wm,n. Let t be

a term in V , and denote P (t|z = k), the mixture component, one for each topic, by

Φ = {ϕk}Kk=1. Finally, let P (z|d = m) define the topic mixture proportion for document

m, with one proportion for each document Θ = {θm}Mm=1. The goal of the algorithm is

then to approximate the distribution:

P (Z|W ;α, β) =
P (W ,Z;α, β)

P (W ;α, β)
(14)

using Gibbs simulations, where α and β are the (hyper) parameters controlling the prior

conjugate Dirichlet distributions for θm and ϕk, respectively. A very good explanation

for how this method works is found in Heinrich (2009). The description below provides a

brief summary only.
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With the above definitions, the total probability of the model can be written as:

P (W ,Z,Θ,Φ;α, β) =
K∏
k=1

P (ϕi; β)
M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm)P (wm,t|ϕzm,t) (15)

Integrating out the parameters ϕ and θ:

P (Z,W ;α, β) =

∫
Θ

∫
Φ

P (W ,Z,Θ,Φ;α, β) dΦ dΘ

=

∫
Φ

K∏
k=1

P (ϕk; β)
M∏
m=1

N∏
t=1

P (wm,t|ϕzm,t) dΦ

∫
Θ

M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm) dΘ

(16)

In (16), the terms inside the first integral do not include a θ term, and the terms inside

the second integral do not include a ϕ term. Accordingly, the two terms can be solved

separately. Exploiting the properties of the conjugate Dirichlet distribution it can be

shown that:∫
Θ

M∏
m=1

P (θm;α)
N∏
t=1

P (zm,t|θm) dΘ =
Γ
(∑K

k=1 αk
)∏K

k=1 Γ(αk)

∏K
k=1 Γ(n

(k)
m + αk)

Γ
(∑K

k=1 n
(k)
m + αk

) (17)

and ∫
Φ

K∏
k=1

P (ϕk; β)
M∏
m=1

N∏
t=1

P (wm,t|ϕzm,t) dΦ =
K∏
k=1

Γ
(∑V

t=1 βt
)∏V

t=1 Γ(βt)

∏V
t=1 Γ(n

(t)
k + βt)

Γ
(∑V

t=1 n
(t)
k + βt

) (18)

where n
(k)
m denotes the number of word tokens in the mth document assigned to the kth

topic, and n
(t)
k is the number of times the tth term in the vocabulary has been assigned to

the kth topic.

Since P (W ;α, β), in (14), is invariable for any of Z, the conditional distribution

P (Z|W ;α, β) can be derived from P (W ,Z;α, β) directly using Gibbs simulation and

the conditional probability:

P (Z(m,n) | Z−(m,n),W ;α, β) =
P (Z(m,n),Z−(m,n),W ;α, β)

P (Z−(m,n),W ;α, β)
(19)

where Z(m,n) denotes the hidden variable of the nth word token in the mth document,

and Z−(m,n) denotes all Zs but Z(m,n). Denoting the index of a word token by i =

(m,n), and using the expressions in (17) and (18), cancellation of terms (and some extra

manipulations exploiting the properties of the gamma function) yields:

P (Zi = k | Z−(i),W ;α, β) ∝ (n
(k)
m,−i + αk)

n
(t)
k,−i + βt∑V

t=1 n
(t)
k,−i + βt

(20)

where the counts n
(·)
·,−i indicate that token i is excluded from the corresponding document

or topic. Thus, sampling topic indexes using equation (20) for each word in a document
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and across documents until convergence allows us to approximate the posterior distri-

bution given by (14). As noted in Heinrich (2009), the procedure itself uses only five

larger data structures; the count variables n
(k)
m and n

(t)
k , which have dimension M × K

and K×V , respectively, their row sums nm and nk, as well as the state variable zm,n with

dimension W .

With one simulated sample of the posterior distribution for P (Z|W ;α, β), ϕ and θ

can be estimated from:

ϕ̂k,t =
n

(t)
k + βt∑V

t=1 n
(t)
k + βr

(21)

and

θ̂m,k =
n

(k)
m + αk∑K

k=1 n
(k)
m + αk

(22)

In the analysis of the main paper the average of the estimated θ̂ and ϕ̂ from the 10

last samples of the stored Gibbs simulations are used to construct the daily news topic

frequencies.20 In un-reported experiments, the topic extraction results reported in Section

2.1 do not change much when choosing other samples for inference, for example using the

last sample only.

Before estimation three parameters need to be pre-defined: the number of topics and

the two parameter vectors of the Dirichlet priors, α and β. Here, symmetric Dirichlet

priors, with α and β each having a single value, are used. In turn, these are defined as a

function of the number of topics and unique words:

α =
50

K
, and β =

200

N

The choice of K is discussed in Section 2.1. In general, lower (higher) values for α and β

will result in more (less) decisive topic associations. The values for the Dirichlet hyper-

parameters also reflect a clear compromise between having few topics per document and

having few words per topic. In essence, the prior specification used here is the same as

the one advocated by Griffiths and Steyvers (2004).

D.3 Estimating daily topic frequencies

Using the posterior estimates from the LDA model, the frequency with which each topic is

represented in the newspaper for a specific day is computed. This is done by first collapsing

all the articles in the newspaper for one specific day into one document. Following Heinrich

(2009) and Hansen et al. (2014), a procedure for querying documents outside the set on

20Because of lack of identifiability, the estimates of θ̂ and ϕ̂ can not be combined across samples for an

analysis that relies on the content of specific topics. However, statistics insensitive to permutation of the

underlying topics can be computed by aggregating across samples, see Griffiths and Steyvers (2004).
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which the LDA is estimated is then implemented. In short, this corresponds to using the

same Gibbs simulations as described above, but with the difference that the sampler is

run with the estimated parameters Φ = {ϕk}Kk=1 and hyper-parameter α held constant.

Denote by W̃ the vector of words in the newly formed document. Topic assignments,

Z̃, for this document can then be estimated by first initializing the algorithm by randomly

assigning topics to words and then performing a number of Gibbs iterations using:

P (Z̃i = k | Z̃−(i), W̃ ;α, β) ∝ (n
(k)
m̃,−i + αk)ϕ̂k,t (23)

Since ϕ̂k,t does not need to be estimated when sampling from (23), fewer iterations are

needed to form the topic assignment index for the new document than when learning

both the topic and word distributions. Here 2000 iterations are performed, and only

the average of every 10th draw is used for the final inference. After sampling, the topic

distribution can be estimated as before:

˜̂
θm̃,k =

n
(k)
m̃ + αk∑K

k=1 n
(k)
m̃ + αk

(24)

D.4 News Topics as time series

Given knowledge of the topics (and their distributions), the topic decompositions are

translated into time series. To do this, I proceed in three steps:

Step 1. For each day, the frequency with which each topic is represented in the news-

paper that day is calculated. This is done by collapsing all the articles in the newspaper

for a particular day into one document, and then computing, using the estimated word

distribution for each topic, the topic frequencies for this newly formed document. See

Appendix D.3 for details. By construction, across all topics, this number will sum to one

for any given day. On average, across the whole sample, each topic will have a more or

less equal probability of being represented in the newspaper. Across shorter time periods,

i.e., days, the variation can be substantial. I define this as the D0 dataset, which will be

a T d × K matrix, where T d is the number of days in the sample and K the number of

topics.21

Step 2. Since the time series objects constructed in Step 1 will be intensity measures,

i.e., reflecting how much DN writes about a given topic at a specific point in time, their

tone is not identified. That is, whether the news is positive or negative. To mediate

this, a sign identified dataset based on the number of positive relative to negative words

21Since DN is not published on Sundays, but economic activity also takes place on Sundays, missing

observations are filled by simple linear interpolation. Note also that the construction described in Step

1 does not mean that only one topic is used as representative for a given day. For such an assumption

mixture models other than the LDA would have been more appropriate.
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in the text is constructed. In particular, for each day t, all Na
t newspaper articles that

day, and each news topic in D0, the article that news topic k describes the best is found.

Given knowledge of this topic article mapping, positive/negative words in the articles

are identified using an external word list and simple word counts. The word list used

here takes as a starting point the classification of positive/negative words defined by the

Harvard IV-4 Psychological Dictionary. As this dictionary contains English words only,

it must be translated to Norwegian. The translated set of words consists of 40 positive

and 39 negative Norwegian words, which is somewhat different from the Harvard IV-4

Psychological Dictionary both in terms of numbers and exact meaning.22

The count procedure delivers two statistics for each article, containing the number of

positive and negative words. These statistics are then normalized such that each article

observation reflects the fraction of positive and negative words, i.e.:

Post,na =
#positivewords

#totalwords
Negt,na =

#negativewords

#totalwords
(25)

The overall mood of article na, for na = 1, . . . , Na
t at day t, is defined as:

St,na = Post,na −Negt,na (26)

Using the St,na statistic and the topic article mapping described above, the sign of each

topic in D0 is adjusted accordingly as:

Dt,1 = St,naDt,k̃,0

where k̃ reflects that article na is mapped to topic k.

Step 3. To remove daily noise from the topic time series in the D1 dataset, each topic

time series is filtered using a 60 day (backward looking) moving average filter. As is

common in factor model studies, see, e.g., Stock and Watson (2012), I also eliminate very

low frequency variation, i.e., changes in the local mean, by removing a simple linear trend

and standardize the data. For future reference I label this dataset Df
1 .

Appendix E The Dynamic Factor model, estimation,

and prediction

For estimation the Dynamic Factor Model described in Section 3 is re-written to incorpo-

rate the latent threshold mechanism for the time-varying factor loadings and the mixed

22 The translated word list can be obtained upon request. Counting the number of positive and negative

words in a given text using the Harvard IV-4 Psychological Dictionary is a standard methodology in this

branch of the literature, see, e.g., Tetlock et al. (2008). In finance, Loughran and Mcdonald (2011) among

others, show that word lists developed for other disciplines mis-classify common words in financial text,

and suggest an alternative (English language) list. I leave it for future research to investigate if this also

holds for macroeconomic applications and other languages than English.
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frequency variables. For notational simplicity, I assume in the following that the number

of lags in the transition equations for the dynamic factors and idiosyncratic errors are

h = 1 and p = 1, respectively. Moreover, I describe a model structure which includes

both one quarterly and monthly variable, i.e., N q = 1 and Nm = 1, in addition to a

Nd×1 vector of daily observables. Accordingly, following Harvey (1990), the system used

for estimation can be written in matrix form as:

yt = Ztat + et (27a)

at = Ftat−1 +Rωt (27b)

et = Pet−1 + ut (27c)

where

yt =



yq1,t

ym1,t

yd1,t

yd2,t
...

yd
Nd,t


Zt =



1 0 0

0 1 0

0 0 z1,t

0 0 z2,t

...
...

...

0 0 zNd,t


at =


Ct,q

Ct,m

at,d

 et =



0

0

e1,t

e2,t

...

eNd,t


Ft =


βt,q 0 zqΦ

0 βt,m zmΦ

0 0 Φ



R =


1 0 zq

0 1 zm

0 0 1

 ωt =


ωt,q

ωt,m

ωt,d

 P =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... Φ1 0 0
...

... 0
. . . 0

0 0 0 0 ΦNd


ut =



0

0

u1,t

u2,t

...

uNd,t


Here, q, m, or d superscripts denote that the variable is observed on a quarterly, monthly

or daily frequency, respectively, while q, m, or d subscripts denote that the parameter or

variable is associated with quarterly, monthly or daily variables, respectively. Ct,q and Ct,m

are the quarterly and monthly cumulator variables, and at,d is the daily coincident index.

βt,q and βt,m are indicator variables, associated with quarterly and monthly variables,

respectively.

The time-varying factor loadings are modeled as random walks following the Latent

Threshold Model (LTM) idea introduced by Nakajima and West (2013). For example, for

one particular element in the Zt matrix, zi,t, the LTM structure can be written as:

zi,t = z∗i,tςi,t ςi,t = I(|z∗i,t| ≥ di) (28)

where

z∗i,t = z∗i,t−1 + wi,t (29)
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with wi,t ∼ i.i.d.N(0, σ2
i,w). In (28) ςi,t is a zero one variable, whose value depends on the

indicator function I(|z∗i,t| ≥ di). If |z∗i,t| is above the the threshold value di, then ςi,t = 1,

otherwise ςi,t = 0.

The vectors of error terms, vt, ut, and wt are independent:
ωt

ut

wt

 ∼ i.i.d.N(


0

0

0

 ,


Ω 0 0

0 U 0

0 0 W

)

and both Ω, U , and W are diagonal matrices:

Ω =


σ2
ωq

0 0

0 σ2
ωm

0

0 0 σ2
ωd

 U =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... σ2
1,u 0 0

...
... 0

. . . 0

0 0 0 0 σ2
Nd,u


W =



0 0 · · · · · · 0

0 0 · · · · · · 0
...

... σ2
1,w 0 0

...
... 0

. . . 0

0 0 0 0 σ2
Nd,w


I note here that by restricting the error matrix Ω to be non-singular, the model specifi-

cation basically assumes that the quarterly and monthly variables contain some measure-

ment error relative to the latent daily business cycle factor. Accordingly, identification of

the latent factors, Ct,q, Ct,m, and at,d, is obtained by restricting the upper 3× 3 block of

the time-varying factor loadings matrix Zt to be an identity matrix. Thus, z1,t = 1 for all

t, and σ2
1,w = 0.

The model’s hyper-parameters are Ω, U , W , Ft, P , and d. Inside Ft, the indicator

variables βt,q and βt,m are time-varying, but their evolution is deterministic and need not

be estimated. Thus, the only time-varying parameters to be estimated within the model

are those in Zt, which together with at, are the model’s unobserved state variables.23

Estimation consists of sequentially drawing the model’s unobserved state variables and

hyper-parameters utilizing 4 blocks until convergence is achieved. In essence, each block

involves exploiting the state space nature of the model using the Kalman Filter and the

simulation smoother suggested by Carter and Kohn (1994), coupled with a Metropolis-

Hastings step to simulate the time-varying loadings. Below I describe each block in

greater detail. For future reference and notational simplicity it will prove useful to define

the following: Y = [y1, . . . ,yT ]′, A = [a1, . . . ,aT ]′, Z = [Z1, . . . ,ZT ]′, E = [e1, . . . , eT ]′,

F = [F1, . . . ,FT ]′, and Q = RΩR′.

23Note that, in principle, the zq, and zm hyper-parameters could have been made time-varying. However,

I experience that estimation of the model then becomes much more sensitive to the prior specification,

and have therefore chosen to treat them as constant.
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E.1 Block 1: A|Y ,Z,E,F ,P ,U ,Q

Equations (27a) and (27b) constitute a state space system we can use to draw the unob-

served state at using the Carter and Kohn’s multimove Gibbs sampling approach. How-

ever, to do so we need to make the errors in the observation equation conditionally i.i.d.

Given knowledge of equation (27c), we can define P (L) = (I − PL) and pre-multiply

equation (27a) by P (L) to obtain the system:

ỹt =Z̃tat + ut ∼ N(0,U) (30a)

at =Ftat−1 +Rωt ∼ N(0,Q) (30b)

where ỹt = P (L)yt and Z̃t = P (L)Zt.

Since all hyper-parameters and state variables, less A, are known (or conditionally

known), we can use the equations in (30) together with Carter and Kohn’s multimove

Gibbs sampling approach, see Appendix (F), to sample at from:

aT | · · · ∼ N(aT |T ,P
a
T |T ) t = T (31a)

at| · · · ∼ N(at|t,at+1 ,P
a
t|t,at+1

) t = T − 1, T − 2, · · · , 1 (31b)

to get A. Note here that the Kalman Filter can be run straightforwardly despite the fact

that the ỹt vector contains missing values, see Harvey (1990) for details.

E.2 Block 2: Z,U ,W ,d|Y ,A,E,P

Conditionally on A the errors in (27a) are independent across the N variables in yt.

Moreover, we have assumed that the covariance matrix W associated with the time-

varying factor loadings in equation (29) is diagonal. Consequently, one can draw Z one

equation at a time. As above, we deal with the fact that the errors in the observation

equation are not conditionally i.i.d. by applying the quasi differencing operator, P (L), to

each equation. Thus, for each i = 2, . . . , Nd, we obtain the following Gaussian system:

ỹdi,t =ãt,dzi,t + ui,t (32a)

zi,t =z∗i,tςi,t ςi,t = I(|z∗i,t| ≥ di) (32b)

z∗i,t =z∗i,t−1 + wi,t (32c)

where ỹdi,t = (I − ΦiL)ydi,t, and ãt,d = (I − ΦiL)at,d.

To simulate from the conditional posterior of z∗i,ti and di in (32), the procedure outlined

in Nakajima and West (2013) is followed. That is, conditional on all the data and hyper-

parameters, we draw the conditional posterior of z∗i,t sequentially for t = 1 : T using a

Metropolis-Hastings (MH) sampler. As described in Nakajima and West (2013), the MH
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proposals come from a non-thresholded version of the model specific to each time t, as

follows: Fixing ςi,t = 1, take proposal distribution N(z∗i,t|mt,Mt) where:

M−1
t =σ−2

i,u ãt,dãt,d + σ−2
i,w(I + 1) (33a)

mt =Mt[σ
−2
i,u ãt,dỹ

d
i,t + σ−2

i,w{(z∗i,t−1 + z∗i,t+1) + (I − 1)z∗i,0}] (33b)

for t = 2 : T − 1. For t = 1 and t = T , a slight modification is needed. Details can be

found in Nakajima and West (2013). The candidate is accepted with probability:

α(z∗i,t, z
p∗
i,t) = min

{
1,

N(ỹdi,t|ãt,dz
p
i,t,σ

2
i,u)N(z∗i,t|mt,Mt)

N(ỹdi,t|ãt,dzi,t,σ2
i,u)N(zp∗i,t |mt,Mt)

}
(34)

where zi,t = z∗i,tςi,t is the current state, and zpi,t = zp∗i,tς
p
i,t is the candidate.

The independent latent thresholds in di can then be sampled conditional on the data

and the hyper-parameters. For this, a direct MH algorithm is employed. Let di,−j =

di,0:s\di,j. A candidate is drawn from the current conditional prior, dpi,j ∼ U(0, |β0|+K),

where K is described below, and accepted with probability:

α(di,j, d
p
i,j) = min

{
1,ΠT

t=1

N(ỹdi,t|ãt,dz
p
i,t,σ

2
i,u)

N(ỹdi,t|ãt,dzi,t,σ2
i,u)

}
(35)

where zi,t is the state based on the current thresholds (di,j, di,−j), and zpi,t the candidate

based on (dpi,j, di,−j).

Lastly, conditional on the data, the hyper parameters and the time-varying parameters,

we can sample the elements of U and W using the inverse Gamma distributions. Let

letters denoted with an underscore reflect the prior, then:

σ2
i,u| · · · ∼ IG(v̄u, σ̄2

i,u) (36)

where v̄u = T +
¯
T u and σ̄2

i,u = [
¯
σ2
i,u¯
T u +

∑T
t=1(ỹdi,t − ãt,dzi,t)′(ỹdi,t − ãt,dzi,t)]/v̄u, and:

σ2
i,w| · · · ∼ IG(v̄w, σ̄2

i,w) (37)

where v̄w = T +
¯
Tw and σ̄2

i,w = [
¯
σ2
i,w¯
Tw +

∑T
t=1(z∗i,t − z∗i,t−1)′(z∗i,t − z∗i,t−1)]/v̄w. Note here

that for σ2
i,u, the simulations are done for i = 1, . . . , Nd, while for σ2

i,w they are only done

for i = 2, . . . , Nd because z1,t = 1 for all t by restriction.

E.3 Block 3: F ,Ω|A

Conditional onA, the transition equation in (27b) is independent of the rest of the system.

While the first and second equations of (27b) do depend on the estimates of Φ, the part of

the transition equation associated with at,d is independent of the rest of the components

in (27b). Accordingly, Φ and σ2
ωd

, the element in the lower right corner of Ω, can first be

51



simulated independently from the rest of the parameters in (27b), and then σ2
ωm

, σ2
ωq

, zm,

and zq can be simulated conditionally on Φ and σ2
ωd

.

To simulate Φ and σ2
ωd

, we employ the independent Normal-Gamma prior. Accordingly,

continuing with letting letters denoted with an underscore reflect the prior, the conditional

posterior of Φ is:

Φ| · · · ∼ N(Φ̄, V̄ Φ)I[s(Φ)] (38)

with

V̄ Φ = (
¯
V Φ−1

+
T∑
t=1

a′t−1,dσ
−2
ωd
at−1,d)

−1 (39)

Φ̄ = V̄ Φ(
¯
V Φ−1

¯
Φ+

T∑
t=1

a′t−1,dσ
−2
ωd
at,d) (40)

and I[s(Φ)] is an indicator function used to denote that the roots of Φ lie outside the unit

circle. Further, the conditional posterior of σ2
ωd

is:

σ2
ωd
| · · · ∼ IG(vωd , σ2

ωd
) (41)

with v̄ωd = T +
¯
T ωd , and σ̄2

ωd
= [

¯
σ2
ωd¯
T ωd +

∑T
t=1(at − at−1Φ)′(at − at−1Φ)]/v̄ωd .

Once Φ and σ2
ωd

are drawn, we can construct, for j = {q,m}:

Ct,j − βt,jCt−1,j ≡ C∗t,j = zjat,d + ωt,j (42)

and draw from the conditional posterior of zj and σ2
ωj

. Using again the independent

Normal-Gamma prior:

zj| · · · ∼ N(z̄j, V̄
zj) (43)

with

V̄ zj = (
¯
V z−1

j +
T∑
t=1

a′t,dσ
−2
ωj
at,d)

−1 (44)

z̄j = V̄ zj(
¯
V z−1

j

¯
zj +

T∑
t=1

a′t,dσ
−2
ωj
C∗t,j) (45)

Finally, the conditional posterior of σ2
ωj

is:

σ2
ωj
| · · · ∼ IG(v̄ωj , σ̄2

ωj
) (46)

with v̄ωj = T +
¯
T ωj , and σ̄2

ωj
= [

¯
σ2
ωj¯
T ωj +

∑T
t=1(C∗t,j − at,dzj)′(C∗t,j − at,dzj)]/v̄ωj .

E.4 Block 4: E|Y ,A,Z and P |E,U

For each observation of the Nd daily variables we have that:

ei,t = yi,t − zi,tat,d (47)
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Thus, conditional on Y , A and Z, E is observable. As above, since E is independent

across the Nd equations, we can sample the elements of P in (27c) one equation at the

time. As this is done in the same manner as in equations (38) to (40) of Block 3 (with

the obvious change of notation), I do not repeat the computations here.

E.5 Prior specification

To implement the MCMC algorithm, and estimate the model, prior specifications for the

initial state variables a0, Z0, and for the hyper-parameters Ω, U , W , Ft, P , and d

are needed. The prior specifications used for the initial states take the following form:

a0 ∼ N(0, I · 100), and Z0 ∼ N(0, I · 100). The priors for the hyper-parameters Φ and Φ,

which are part of the Ft and P matrices, respectively, are set to:

¯
Φ ∼N(Φ̂OLS, V (Φ̂OLS))

¯
Φi ∼N(0, 0.5) for i = 1, . . . , Nd

where Φ̂OLS are the OLS estimates of an AR(h) using the first principal component of

the daily news dataset as dependent variable. V (Φ̂OLS) is a diagonal matrix where the

non-zero entries are the variance terms associated with the Φ̂OLS elements. To draw zq

and zm, which are part of the Ft matrix, I use:
¯
zj ∼ N(1, 1) for j = {q,m}.

The priors for the hyper-parameters Ω, U , and W , are all from the Inverse-Gamma

distribution, where the first element in each prior distribution is the shape parameter, and

the second the scale parameter:
¯
σ2
i,w ∼ IG(

¯
Tw, κ2

w) where
¯
Tw = 8000 and κw = 0.003 for

i = 2, . . . , Nd;
¯
σ2
i,u ∼ IG(

¯
T u, κ2

u) where
¯
T u = 100 and κu = 0.1 for all i = 1, . . . , Nd;

¯
σ2
ωj
∼

IG(
¯
T ωj , κ2

ωj
) where

¯
T ωj = 1000 for j = {q,m, d}, and κωq = 0.003, and κωm = κωd

= 0.1.

In sum, as the full sample size T = 9713 observations, these priors are very informative

for the variance terms associated with the time-varying factor loadings, but less so for the

other parameters. Note, however, that the prior variance associated with the quarterly

cumulator variable error term, σ2
ωq

, is assumed to be considerably lower than the other

variance terms.

Finally, to draw the latent threshold, d, using the algorithm described in Appendix E.2,

the K parameter needs to be defined. K controls our prior belief concerning the marginal

sparsity probability. For example, assuming that a time-varying parameter follows Bt ∼
N(0, v2), and marginalizing over Bt, it can be shown that Pr(|Bt| = 0) = 2Φ(d

v
)−1, where

Φ is the standard normal CDF. DefiningK = d
v

as the standardized scaling parameter with

respect to the threshold, it can be seen that K = 3 implies a marginal sparsity probability

exceeding 0.99. As described in Nakajima and West (2013), a neutral prior will support

a range of sparsity values in order to allow the data to inform on relevant values, and
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they suggest that setting K = 3 is a reasonable choice.24 However, in contrast to in

Nakajima and West (2013), where the time-varying parameters follows AR(1) dynamics,

the time-varying factor loadings in (32) follows independent random walk processes. The

random walk is non-stationary, and does not have a marginal distribution. Thorsrud

(2016) experiments with estimating the model using different values for K, finding that

higher values for K, coupled with the rather tight priors for the variance of the factor

loadings, results in worse model performance (in terms of ROC and AUROC scoring).

Accordingly, K = 0.05, in the estimations conducted in this analysis.

Appendix F The Carter and Kohn algorithm

Consider a generic state space system, written in companion form, and described by:

yt =Ztat + ut ∼ N(0,U) (49a)

at =Fat−1 +Rωt ∼ N(0,Q) (49b)

where we assume that the hyper-parameters θ = {U ,F ,R,Q}, and Zt are known, and

we wish to estimate the latent state at for all t = 1, . . . , T . To do so, we can apply Carter

and Kohn’s multimove Gibbs sampling approach (see Carter and Kohn (1994)).

First, because the state space model given in equation (49) is linear and (conditionally)

Gaussian, the distribution of at given Y and that of at given at+1 and Y for t = T −
1, . . . , 1 are also Gaussian:

aT |Y ∼ N(aT |T ,PT |T ), t = T (50a)

at|Y ,at+1 ∼ N(at|t,at+1 ,Pt|t,at+1), t = T − 1, T − 2, · · · , 1 (50b)

where

aT |T = E(aT |Y ) (51a)

PT |T = Cov(aT |Y ) (51b)

at|t,at+1 = E(at|Y ,at+1) = E(at|at|t,at|t+1) (51c)

Pt|t,at+1 = Cov(at|Y ,at+1) = Cov(at|at|t,at|t+1) (51d)

Given a0|0 and P0|0, the unknown states aT |T and PT |T needed to draw from (50a)

24Note that when combined with the priors over the other hyper-parameters in the model, the implied

marginal prior for each threshold will not be uniform, see Nakajima and West (2013) for details.
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can be estimated from the (conditionally) Gaussian Kalman Filter as:

at|t−1 = Fat−1|t−1 (52a)

Pt|t−1 = FPt−1|t−1F
′ +Q (52b)

Kt = Pt|t−1Z
′
t(ZtPt|t−1Z

′
t +U )−1 (52c)

at|t = at|t−1 +Kt(yt −Ztat|t−1) (52d)

Pt|t = Pt|t−1 −KtZtPt|t−1 (52e)

That is, at t = T , equation 52d and 52e above, together with equation 50a, can be used

to draw aT |T . Moreover, at|t,at+1 for t = T − 1, T − 2, · · · , 1 can also be simulated based

on 50b, where at|t,at+1 and Pt|t,at+1 are generated from the following updating equations:

at|t,at+1 = at|t + Pt|tF
′(FPt|tF

′ +Q)−1(at+1 − Fat|t) (53a)

Pt|t,at+1 = Pt|t + Pt|tF
′(FPt|tF

′ +Q)−1FPt|t (53b)

Appendix G Forecast error decompositions

When computing the news topic contributions in Figure 5, I decompose the state vector

into a history of forecast error contributions. For simplicity I use the notation introduced

in Appendix F to describe how this is done. At each time interval t, the forecast error

in predicting yt is given by vt = yt − Ztat|t−1. In computing at|t, equation (52d) above,

the Kalman gain Kt is used to weight each forecast error when computing the updated

state estimate. If the predictions of the ith observable at time t are perfect, vi,t = 0

and this observation does not contribute to potential updates from at|t−1 to at|t. If the

predictions of the ith observable at time t are not perfect, vi,t 6= 0, the observation will

influence the updated state estimate as long as it is given weight through the Kt matrix.

As the updating equation in 52d has a recursive structure, the time evolution of at|t can

easily be decomposed into a set of weighted forecast error contributions, resulting in the

decompositions shown in Figure 5.

For simplicity, the decompositions reported in Figure 5 are based on running the

Kalman Filter using the posterior median estimates of the hyper-parameters and the

time-varying factor loadings (at each time t), after the model has been estimated on the

whole sample. As seen in Figure 3a already, the real-time estimates of the model’s states

do not seem to change considerably across time. Accordingly, there should not be large

differences in a forecast decomposition preformed in real-time versus the one illustrated

here.
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Appendix H A Mixture Auxiliary Particle Filter ap-

proach

As alluded to in Section 4, a so called mixture auxiliary particle filter is used to update

the latent state estimates at each forecast round. The particle filter approach is adopted

because it allows a much faster update of the states, and thus also the construction of

a nowcast, than a full re-estimation of the model would allow for. Below I first give

a brief description of the particle filtering methodology in general, and then describe

the algorithm adopted here. See Creal (2009), and the references therein, for a useful

introduction to particle filter methods used in economics, and Michael K. Pitt (1999),

Chen and Liu (2000) and Doucet et al. (2001) for a more detailed description of the

mixture auxiliary particle filter.

Abusing notation introduced earlier, but for notational simplicity, consider again a

non-linear state space system of the type described in Appendix F, with known hyper-

parameters θ, unknown state variable at and observable data given by yt:

yt =Zt(a2,t)a1,t + ut ∼ N(0, U) (54a)

a1,t =Fa1,t−1 +Rωt ∼ N(0, Q) (54b)

a2,t =a2,t−1 + wt ∼ N(0,W ) (54c)

where the state at is now explicitly decomposed into two blocks; at = (a1,t, a2,t)
′, and Z

is a function of a2,t. Given a system like (54), the goal is to estimate the joint smoothing

distribution of the latent state, given by:

p(a0:t|y1:t; θ) =
p(y1:t, a0:t; θ)

p(y1:t; θ)
=
p(yt|at; θ)p(at|at−1; θ)

p(yt|y1:t−1; θ)
p(a0:t−1|y1:t−1; θ) (55)

However, solving (55) analytically is difficult due to the assumed non-linearity of the

system. This motivates the use of SMC methods, such as the particle filter. Instead of

solving (55) directly, these methods utilize the recursive structure of the joint smoothing

distribution, as highlighted by the last equality sign in (55), and two of it’s marginal dis-

tributions, namely the predictive distribution p(at|y1:t−1; θ) and the filtering distribution

given by:

p(at|y1:t; θ) =
p(yt, at|y1:t−1; θ)

p(yt|y1:t−1; θ)
=
p(yt|at; θ)p(at|y1:t−1; θ)

p(yt|y1:t−1; θ)
(56)

Here, p(yt, at|y1:t−1; θ) = p(yt|at; θ)p(at|y1:t−1; θ) is the joint distribution of the data and

the state variables, and p(yt|yt−1; θ) is the contribution to the likelihood function (or the

normalizing constant). Accordingly, to sequentially solve 55, starting from an initial draw

of the state, the last period’s filtering distribution is projected forward using the predictive

distribution and then updated using the filtering distribution. These iterations continue

until the end of the sample.
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Difficulty arises because the contribution to the likelihood (p(yt|yt−1; θ)) involves in-

tegrals:

p(yt|y1:t−1; θ) =

∫
p(yt|at; θ)p(at|y1:t−1; θ)dat (57)

that typically cannot be calculated analytically (except in special cases, like when the

linear Kalman Filter is applicable). Still, this integral can be approximated using Monte

Carlo integration. Instead of drawing the entire joint smoothing distribution p(a0:t|y1:t; θ)

from standard Monte Carlo simulation, the general idea is to employ importance sampling

where draws are taken from an appropriate importance distribution q(a0:t|y1:t;ψ) that

approximates the target distribution p(a0:t|y1:t; θ). The draws are then reweighted to

correct for the fact that they are drawn from the wrong distribution:

wt =
p(a0:t|y1:t; θ)

q(a0:t|y1:t;ψ)
(58)

While computing (58) at each iteration t would be highly computationally demanding,

the importance distribution can be factorized such that it takes on a recursive structure

q(a0:t|y1:t;ψ) = q(at|a1:t−1, y1:t;ψ)q(a1:t−1|a1:t−1, y1:t−1;ψ). Exploiting this factorization,

and the last part of (55), it can be shown that wt can be written as:

wt ∝ wt−1
p(yt|at; θ)p(at|at−1; θ)

q(at|a1:t−1, y1:t;ψ)
(59)

Here, the densities in the numerator are determined by the state-space model, and the

ratio of the densities on the right-hand side of (59) are called the incremental importance

weight. Thus, given Monte Carlo draws of {ai1:t, w
i
t}Ni=1 an approximation to the function

f(a1:t) can be obtained as:
N∑
i=1

f(ai1:t)ŵ
i
t ≈ Eq[f(a1:t)] (60)

where ŵt = wt∑N
i=1 w

i
t

are self normalizing importance weights. The empirical distribution

function determined by the particles is given by:

p̂(a1:t|y1:t; θ) =
N∑
i=1

ŵitδai1:ta
i
1:t ≈ p(a1:t|y1:t; θ) (61)

where δai1:t is a Dirac measure located at a1:t.

Although the steps described above seem relatively straight forward to implement,

two issues regarding implementation turn out to be crucial for the filter’s success. First,

as is well known, particle filter methods in general often suffer from weight degeneracy

problems. As the number of iterations increases, all the probability mass will eventually

be allocated to only one particle. For this reason, different re-sampling procedures have

been proposed and used within the filter, after computing the importance weights. In
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practical terms, this means that particles are replicated in proportion to their normal-

ized importance weights. The re-sampling procedure used in the particle filter algorithm

employed here utilizes so called systematic re-sampling. However, while the re-sampling

step partly alleviates the weight degeneracy problems, it comes with it’s own weaknesses.

Especially, the re-sampling step reduces the number of particles representing the earlier

parts of the joint distribution, making the approximation of p(a0:t|y1:t; θ) poor. Still, the

filter’s approximation to p(at−k:t|y1:t; θ), for small k, can be good. See Creal (2009) for an

illuminating example of these effects.

Second, partly due to the importance sampling step, which creates options regarding

importance distribution, many different particle filters have been proposed. The specific

particle filter used here is called, as mentioned, a mixture auxiliary particle filter. The

auxiliary term is used because the importance distribution is sampled in two steps, where

some auxiliary variables are drawn in the first step. The point of this two-step sam-

pling is that the first step uses information in the current observables to find particles

within the existing set in order to form a better importance distribution. The mixture

term is used because some parts of the model can be solved analytically, which always

is an advantage because it reduces Monte Carlo variation. To see more clearly how this

latter property is utilized, consider again the system in (54), where the state at is decom-

posed into two blocks; at = (a1,t, a2,t)
′. Thus, the filtering distribution can be written

as p(a1,t, a2,t|y1:t; θ) = p(a1,t|a2,t, y1:t; θ)p(a2,t|y1:t; θ). Here, particles only need to be sim-

ulated randomly for p(a2,t|y1:t; θ), because p(a1,t|a2,t, y1:t; θ) can be evaluated analytically

given draws from p(a2,t|y1:t; θ).

Building on the discussion and notation used above, the general form of the particle

filter algorithm used to construct updated state estimates at each forecast round is as

follows:

1. At time t, i.e., the first day of a given quarter, draw ai1,t and ai2,t, for i = 1, . . . , N

from their posterior estimates obtained from t− 1. Set h = 0, and set wih = 1
N

.

2. Set h = h+ 1.

(a) For i = 1, . . . , N

i. Run the prediction step of the Kalman Filter to obtain ai1,t+h|t−1+h and

P i
1,t+h|t−1+h (see (52a) and (52b))

ii. Calculate importance weights using the Kalman Filter prediction error

decomposition, i.e., wih ∝ N(vit+h, V
i
t+h), where:

vit+h = yt+h − Zt(ai2,t+h|t−1+h)a
i
1,t+h|t−1+h

V i
t+h = U + Zt(a

i
2,t+h|t−1+h)P

i
1,t+h|t−1+hZt(a

i
2,t+h|t−1+h)

′
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(b) Normalize the importance weights as ŵih =
wi

h∑N
j=1 w

j
h

.

(c) Re-sample N particles {ai1,t+h−1|t−1+h, P
i
1,t+h−1|t−1+h, a

i
2,t+h−1|t+h−1}Ni=1 with prob-

abilities {ŵih}Ni=1, and for i = 1, . . . , N set wih = 1
N

.

(d) For i = 1, . . . , N

i. Draw ai2,t+h ∼ N(ai2,t+h−1,W ).

ii. Set ai1,t+h|t−1+h = ai1,t+h−1|t−1+h and P i
1,t+h|t−1+h = P i

1,t+h−1|t−1+h, and run

the Kalman Filter conditional on ai2,t+h to obtain ai1,t+h|t+h and P i
1,t+h|t+h

(see (52c) to (52e)).

(e) Compute the filtered estimate: E[f(aij,t+h)] ≈
∑N

i=1 ŵ
i
hf(aij,t+h) for j = 1, . . . , 2.

3. Stop if h = h̄, where t+ h̄ is the last day of a given quarter, else, return to 2.

Relating this to the notation used for the state-space model (2) in Section 3, it is

easily seen that a2,t corresponds to the time-varying factor loadings, while a1,t relates to

the daily factors. It therefore follows by (6) that the algorithm described above yields a

nowcast of ỹ1,t+h̄.

Two points that are important for the DFM used in the main paper, but not described

in the algorithm above, is how the latent threshold mechanism is handled, and how the

autoregressive structure of the idiosyncratic errors is handled. The first point relates to

step 2.d.i of the algorithm. Here, in the actual implementation, the time-varying factor

loadings are simulated from their time series process, but the draws that in absolute value

are smaller than the estimated threshold, are set to zero, cf. equations (4) and (5). The

treatment of the autoregressive structure of the idiosyncratic errors affects steps 2.a.ii

and 2.d.ii of the algorithm. Here, the yt+h, Zt(a
i
2,t+h|t−1+h), and ai2,t+h terms need to be

adjusted to appropriately take into account the autocorrelation in the idiosyncratic errors.

In the practical implementation of the algorithm, this is done in the same manner as for

the MCMC procedure, see Appendix E.1, using the quasi difference operator.

Finally, although the algorithm described above works well for one single forecasting

round, it is my experience that it becomes less accurate across forecasting rounds. This

is due to the weaknesses of re-sampling, which makes the particle filter’s approximation

to p(a0:t|y1:t; θ) poor (as described above). In particular, if the estimated latent states

(and their distributions) are saved and subsequently used as starting values for the next

forecast round, as in Step 1 of the algorithm, the approximations of historical latent state

distributions become centered on only a few draws after relatively few forecasting rounds.

To mediate this issue, at each forecast round I use the updated state estimates from the

particle filter as starting values for the MCMC algorithm described in Appendix E, and

construct updated and smoothed state estimates accordingly. Importantly, however, com-

pared with a full re-estimation of the model using the MCMC approach, a substantially
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smaller number of draws are needed to construct a good approximation to the posterior

distributions because the MCMC algorithm is initiated using the posterior estimates of

the hyper-parameters and particle filtered updates of the state estimates.
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