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Abstract

Non-fundamentalness arises when observables do not contain enough information to

recover the vector of structural shocks. Using Granger causality tests, the literature

suggested that many small scale VAR models are non-fundamental and thus not useful

for business cycle analysis. We show that causality tests are problematic when VAR

variables are cross sectionally aggregated or proxy for non-observables. We provide an

alternative testing procedure, illustrate its properties with a Monte Carlo exercise, and

reexamine the properties of two prototypical VAR models.
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1 Introduction

Small scale Structural Vector Autoregressive (SVAR) models have been extensively used over

the last 30 years to study cyclical fluctuations. The methodology hinges on the assumption

that structural shocks can be obtained from linear combinations of the observables. Non-

fundamentalness arises when current and past values of the observed variables do not contain

enough information to recover the vector of structural shocks. In this case, shocks obtained

via standard identification procedures may have little to do with the true disturbances, even

when identification is correctly performed, making SVAR evidence unreliable.

Since likelihood or spectral estimation procedures can not distinguish fundamental vs.

non-fundamental Gaussian systems (see e.g. Canova (2011), page 114), it is conventional

in applied work to rule out all the non-fundamental representations that possess the same

second-order structure of the data. However, the focus on fundamental systems is arbi-

trary. There are rational expectation models (Hansen and Sargent, 1991), optimal prediction

models (Hansen and Hodrick, 1980) permanent income models (Fernández-Villaverde et al.,

2007), news shocks models (Forni et al., 2014), and fiscal foresight models (Leeper et al.,

2013), where optimal decisions may generate non-fundamental solutions. In addition, non

observability of certain states or particular choices of observables may make fundamental

systems non-fundamental. Hence, it is important to know if a fundamental system is a

reasonable starting point to investigate the cyclical properties of the data.

Despite the far-reaching implications the fundamentalness assumption has for applied

work, little is known on how to empirically detect non-fundamentalness. Giannone and

Reichlin (2006) and Forni and Gambetti (2014) (henceforth, FG) proposed diagnostics based

on the idea is that, under fundamentalness, external information should not Granger cause

VAR variables. Using such a methodology, FG and Forni et al. (2014) argued that several

small scale SVARs are non-fundamental, thus implicitly questioning the economic conclusions

that are obtained. Considering the popularity of small scale SVARs, this result is disturbing.

In this paper we show that existing diagnostics may be misleading because of aggregation

2



or non-observability problems - we call the phenomenon spurious non-fundamentalness.

Why are there problems? Due to the curse of dimensionality, empirical studies consider

only VARs with a small number of variables, usually much smaller than the potential set of

primitive shocks driving the economy. Because SVARs can recover at most the same number

of shocks as observables, estimated structural shocks are linear transformations of primitive

shocks. Thus, they will be predictable using variables containing information about the

primitive shocks, regardless of whether the VAR is fundamental or not.

For instance, suppose a researcher is interested in the effects of technology shocks on

economic activity. Small scale VARs typically include a measure of total factor productivity

(TFP) and a few other aggregate variables. Suppose that what drives the economy are

sector-specific disturbances. Clearly, the estimated aggregate TFP shock will be a linear

transformation of the vector of sectoral technology shocks and will be predictable using

sectoral variables, regardless of the fundamentalness properties of the VAR.

A similar problem occurs when VAR variables proxy for unobservables. For example,

TFP is latent and estimates are obtained from output, capital and hours worked data. If

capital and hours worked are excluded from the VAR, any variable that predicts them will

Granger cause estimated TFP, both when the VAR is fundamental and when it is not.

We propose an alternative procedure to detect non-fundamentalness, which is robust

to aggregation and non-observability problems, and exploits the fact that if the model is

non-fundamental, future VAR shocks predict a vector of variables excluded from the VAR.

We perform a Monte Carlo exercise using a version of fiscal foresight model of Leeper

et al. (2013) as DGP with two sources of tax disturbances (capital and income taxes) and a

productivity disturbance. We assume that the researcher considers a VAR with an aggregate

tax variable (or with an aggregate tax rate computed from revenues and output data) and

capital and show that, away from the unit circle, our approach has good size and power

properties. In contrast, spurious non-fundamentalness arises with standard diagnostics.

We examine two conventional small scale VARs widely used in the literature. We find that
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Beaudry and Portier (2006) model is fundamental according to our test but non-fundamental

according to a Granger causality test. We show that the rejection of the null with the latter

is due to aggregation problems: once disaggregated TFP data is used in the VAR, the null

of fundamentalness is no longer rejected. We also demonstrate that Gaĺı (1999) model is

non-fundamental according to both tests and that technology shocks can not be obtained

from the growth rate of labour productivity and hours. However, they can be extracted

in an augmented VAR which adds to these variables a confidence indicator. The dynamics

responses in bivariate and trivariate systems are however similar.

Two important caveats need to be mentioned. First, our analysis is concerned with

Gaussian macroeconomic variables. Since most of the small scale VARs considered in the

literature are estimated using quarterly data in post great moderation period, Gaussianity is

approximately correct. For non-Gaussian situations, see Hamidi Saneh (2014) or Gourieroux

and Monfort (2015). Second, although dynamic general equilibrium models deliver VARMA

reduced form representations, we focus on VARs since they are much easier to estimate and

more often used in the macroeconomic literature. The procedure we suggest also works for

VARMA models as long as the MA roots are sufficiently away from unity.

The rest of the paper is organized as follows. Section 2 provides examples of non-

fundamental systems and highlights the reasons for why the problem occurs. Section 3

shows why standard tests may be problematic and propose an alternative approach. Section

4 examines the performance of various procedures using Monte Carlo simulations. Section 5

investigates the properties of two small scale VAR systems. Section 6 concludes.

2 A few example of non-fundamental systems

While the literature has focused on non-fundamentalness driven by omitted variables, see

e.g. Giannone and Reichlin (2006) or Lütkepohl (2012), there are other reasons for why the

problem may emerge.
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First, non-fundamentalness may be intrinsic to an economic model and to the optimiza-

tion process, see e.g. Hansen and Sargent (1980, 1991). It may also be due to its information

structure. For example, Leeper et al. (2013) show that with anticipatory shocks a standard

RBC model could become non-fundamental while Forni et al. (2014) show that a standard

asset pricing model may be non-fundamental when news come in a particular way. Finally,

it may be due to the use of forecast errors in the VAR, see Hansen and Hodrick (1980). In

general, optimizing models producing non-fundamental solutions are numerous. The next

example shows one of these situations.

Example 1. Suppose the process for dividends is dt = et − θet−1, where θ < 1, and

suppose stock prices are expected discounted future dividends: pt = Et
∑

j β
jdt+j. Then,

the equilibrium value of pt in terms of the innovations in the dividend process is

pt = (1− βθ)et − θet−1 (2.1)

Thus, even though the dividends process is fundamental, the process for stock prices is

non-fundamental if | (1−βθ)
θ
| < 1, which is the case when θ > 1

1+β
.�

Second, non-fundamentalness may be due to non-observability of some of the endogenous

variables. The next example illustrates how this is possible.

Example 2. Suppose the production function (in logs) is:

yt = kt + et (2.2)

and the law of motion of capital is:

kt = (1− δ)kt−1 + a0et (2.3)

If both (kt, yt) are observable this is just a bivariate restricted VAR(1). However, if the
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capital stock is not observable, the production function becomes

yt − (1− δ)yt−1 = (1 + a0)et + (1− δ)et−1 (2.4)

Clearly, if a0 < 0 and |a0| < |δ|, et can not be recovered from current and past values of

yt and (2.4) is non-fundamental. In addition, if a0 > 0 and δ and a0 are both small, (2.4)

has a MA root close to unity and a finite order VAR for yt is a very poor approximation of

underlying bivariate process, see also Ravenna (2007), and Giacomini (2013). �

Third, particular variable selection may induce non-fundamentalness, even if the system

is, in theory, fundamental.

Example 3. Consider a standard consumption-saving problem. Let income yt = et be

a white noise. Let β = 1
R
< 1 and assume quadratic preferences. Then:

ct = ct−1 + (1−R−1)et (2.5)

Thus, growth rate of consumption has a fundamental representation. However, if instead of

consumption, we setup the model in terms of savings st = yt − ct, the solution is

st − st−1 = R−1et − et−1 (2.6)

and the growth rate of saving is non-fundamental. �

In sum, there may be many reasons for why a VAR system may be non-fundamental.

Assuming away non-fundamentalness, as it is done by standard computer packages, is prob-

lematic. Focusing on omitted variable problems is, on the other hand, reductive. In general,

one ought to have procedures able to detect whether fundamentalness is appropriate and,

when it is not, whether violations are due to theory or to applied investigators choices.
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3 The Methodology

The economy is represented with an n-dimensional vector of stationary variables χt driven

by s (not necessarily equal to n) serial and mutually uncorrelated primitive shocks ϑt.

Assumption 1. (Economy representation) The vector χt satisfies

χt = Γ(L)ϑt (3.1)

where ϑt is a vector white noise, Γ(L) =
∑∞

i=0 ΓiL
i, Γi’s are (n× s) matrices each i, L is the

lag operator, and
∑∞

i=0 Γ2
i <∞.

Assumption 1 can be formally derived using the Wold theorem, assuming a linear rep-

resentation, and repeatedly applying the projection operator (see Canova (2011), Ch. 4).

Given a sample, the number of variables, n, is generally large, and to estimate the Γi matrices

an investigator needs to confine attention to an m-dimensional sub-vector of χt.

Assumption 2. (VAR information set) The VAR is set up in terms of xt, a sub-vector of

χt, driven by a sub-vector ut of ϑt of dimension k (not necessarily equal to m):

xt = Π(L)ut (3.2)

where m ≤ n and k ≤ s, Π(L) =
∑∞

i=0 ΠiL
i has no root on the unit circle, and

∑∞
i=0 Π2

i <∞.

By construction, ut are linear combination of current and, possibly, past values of ϑt.

Next, we provide the definition of fundamentalness for (3.2) (see Rozanov (1967))

Definition 1: An uncorrelated process {ut} is xt-fundamental if Hu
t = Hx

t for all t, where

Hu
t is the closed linear span of {us : s ≤ t}1. {ut} is non-fundamental if Hu

t ⊂ Hx
t and

Hu
t 6= Hx

t , for at least one t.

Model (3.2) is fundamental if and only if all the roots of the determinant of the Π(L)

polynomial lie outside the unit circle in the complex plane - in this case Hu
t = Hx

t , for all t.

1The linear span is the smallest closed subspace which contains the subspaces.
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Fundamentalness is closely related to the concept of invertibility: the latter requires that no

root of the determinant of Π(L) is on or inside the unit circle. Since we consider stationary

variables, the two concepts are equivalent in our framework.

To obtain structural shocks from (3.2) one typically first imposes fundamentalness and es-

timates a VAR. Then, one identifies and estimates the ut using theory-based or informational-

based restrictions, and constructs the structural MA representation. While it is conventional

to assume fundamentalness, it is arbitrary and may lead to incorrect inference.

3.1 Standard approaches to detect non-fundamentalness

Checking whether a Gaussian VAR is fundamental is complicated because the likelihood

function or the spectral density can not distinguish between a fundamental and a non-

fundamental representation. Earlier work by Lippi and Reichlin (1993, 1994) informally

compared the dynamics produced by fundamental and selected non-fundamental representa-

tions. Giannone and Reichlin (2006) and FG proposed to use Granger causality tests. The

procedure works as follows. Suppose we augment xt with a vector of variables ytxt
yt

 =

Π(L) 0

B(L) C(L)


ut
vt

 (3.3)

where vt are specific yt and orthogonal to ut. Assume that all the roots of the determinant

of B(L) are outside the unit circle. If (3.2) is fundamental, ut = Π(L)−1xt, and

yt = B(L)Π(L)−1xt + C(L)vt (3.4)

where B(L)Π(L)−1 is a one-sided polynomial in the non-negative powers of L. Thus, under

fundamentalness, yt is a function of current and past values of xt, but xt does not depend

on yt. Hence, to detect non-fundamentalness one can check whether xt is predicted by yt.

While such an approach might be useful to check if there are variables omitted from the
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VAR - effectively we are testing if the MA representation of the augmented system is lower

triangular - it is not clear whether it can reliably detect non-fundamentalness. To know if it

is the case, we need to know the mapping between SVAR shocks ut and primitive shocks ϑt.

In small scale VARs the number of variables is smaller than the number of potentially

interesting primitive shocks. Hence, it is impossible to obtain primitive shocks from present

and past values of observables and applied researchers consider only systems featuring the

same number of shocks as observables (m=k). However, these systems aggregate primitive

shocks into a smaller number of structural shocks (m = k < s). Aggregation is not innocuous.

For example, Chang and Hong (2006) show that aggregate and sectoral technology shocks

behave quite differently. In general, aggregation may lead to spurious conclusions when

testing for fundamentalness, as the next example shows.

Example 4. Suppose a scalar xt is driven by two primitive shocks

xt = ϑ1t + bϑ1t−1 + ϑ2t (3.5)

where ϑ1t ∼ iid(0, σ2
1) and ϑ2t ∼ iid(0, σ2

2) are mutually independent at all leads and lags.

Clearly, we can’t recover ϑ1t and ϑ2t from xt. By considering a system with one observable

and one structural shock, the econometrician implicitly assumes that xt has the form:

xt = ut + cut−1 (3.6)

where ut are iid, and c and σ2
u are obtained from the moment conditions:

E(x2t ) =(1 + b2)σ2
1 + σ2

2 = (1 + c2)σ2
u (3.7)

E(xtxt−1) = bσ2
1 = cσ2

u (3.8)
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These two conditions can be combined to obtain the quadratic equation:

bc2 −
[
(1 + b2) +

σ2
1

σ2
2

]
c+ b = 0 (3.9)

Given b, σ2
1 and σ2

2, (3.9) has two solutions; a fundamental one c∗ , and a non-fundamental

one c̃∗. Since ut is a white noise, it can not be linearly predicted using lagged values of

ut or xt. However, it can predicted using lagged ϑ1t and ϑ2t, regardless of whether ut is

fundamental for xt or not. In fact, using (3.5) and (3.6) and the fundamental c∗ we have

ut = (1 + c∗L)−1
[
ϑ1t + bϑ1t−1 + ϑ2t

]
= (ϑ1t − c∗ϑ1t−1 + c∗2ϑ1t−2 − c∗3ϑ1t−3 + · · · )

+ b(ϑ1t−1 − c∗ϑ1t−2 + c∗2ϑ1t−3 − c∗3ϑ1t−4 + · · · ) + (ϑ2t − c∗ϑ2t−1 + c∗2ϑ2t−2 − c∗3ϑ2t−3 + · · · )

so that P[ut|ϑ1t−1, ϑ1t−2, · · · , ϑ2t−1, ϑ2t−2, · · · ] 6= 0 where P is the linear projection operator.

Since ut is predictable, xt will be predictable. �

This simple setup provides a relevant counterexample to proposition 2 of FG (see page

126) in the sense the existence of variables that Granger cause xt may have nothing to do

with whether the system is fundamental or not. In example 3, the assumptions of FG are

satisfied (here there is no measurement error), but lags of ϑ1t and ϑ2t predict xt in both

cases, making Granger causality tests irrelevant.

To generalize example 3, we first show that the class of moving average models is closed

with respect to linear transformations.

Proposition 1. Let Θ1t be a zero-mean MA(q1) process:

Θ1t = ϑ1t + Φ1ϑ1t−1 + Φ2ϑ1t−2 + · · ·+ Φq1ϑ1t−q1 ≡ Φ(L)ϑ1t (3.10)

with E(ϑ1tϑ1t−j) = σ2
1 if j = 0 and 0 otherwise,and let Θ2t be a zero-mean MA(q2) process:

Θ2t = ϑ2t + Ψ1ϑ2t−1 + Ψ2ϑ2t−2 + · · ·+ Ψq2ϑ2t−q2 ≡ Ψ(L)ϑ2t (3.11)
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with E(ϑ2tϑ2t−j) = σ2
2 if j = 0 and 0 otherwise. Assume that Θ1t and Θ2t are independent

at all leads and lags. Then

xt = Θ1t + Θ2t = ut + Π1ut−1 + Π2ut−2 + · · ·+ Πqut−q ≡ Π(L)ut (3.12)

where q = max{q1, q2}, and ut is a white noise process.

Proof: The proof follows from Hamilton (1994), page 106.�

Next, we show that although ut in (3.12) is unpredictable given own lagged values, it

can be predicted using lagged values of ϑ1t and ϑ2t. This happens because the information

contained in the histories of ϑ1t and ϑ2t is not optimally aggregated in ut.

Proposition 2. Let xt be an m-dimensional process obtained as in Proposition 1. Then,

lagged ϑ1t and lagged ϑ2t Granger causes xt.

Proof: It is enough to show that

P
[
xt|xt−1, xt−2, · · · , ϑ1t−1, ϑ1t−2, · · · , ϑ2t−1, ϑ2t−2, · · ·

]
6= P

[
xt|xt−1, xt−2, · · ·

]
when the model is fundamental. Here Hx

t = Hu
t , and it suffices to show that ut is Granger

caused by lagged values of ϑ1t and ϑ2t. That is

P
[
ut|ut−1, ut−2, · · · , ϑ1t−1, ϑ1t−2, · · · , ϑ2t−1, ϑ2t−2, · · ·

]
6= P

[
ut|ut−1, ut−2, · · ·

]
From Proposition 1, we have that Π(L)ut = Φ(L)ϑ1t + Ψ(L)ϑ2t, and therefore

ut = Π(L)−1Φ(L)ϑ1t + Π(L)−1Ψ(L)ϑ2t

where Π(L)−1 exists since the model is fundamental. Hence, Π(L)−1Φ(L) and Π(L)−1Ψ(L)
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are one-sided polynomial in the non-negative powers of L and

P[ut|ut−1, ut−2, · · · , ϑ1t−1, ϑ1t−2, · · · , ϑ2t−1, ϑ2t−2, · · · ] = P[ut|ϑ1t−1, ϑ1t−2, · · · , ϑ2t−1, ϑ2t−2, · · · ] 6= 0

where the equality follows from ut being a white noise process.�

Proposition 2 implies that lagged values of disaggregated variables or of factors obtained

from a large data set providing signals about primitive shocks can Granger cause aggregated

VAR variables. Hence, the null of fundamentalness might be rejected even if it holds true.

While the analysis so far is concerned with the fundamentalness of the vector ut, it is

common in the VAR literature to focus attention on just one shock, see e.g. Christiano et al.

(1999) or Gaĺı (1999). The next example shows when one can recover a shock from current

and past values of the observables, even when the system is non-fundamental.

Example 5. Consider the following three MA models

x1,t = u1t + 2u2t−1 (3.13)

x2,t = u1t − u2t−1

x1,t = u1t (3.14)

x2,t = u1t + u2t − 3u2t−1

x1,t = u1t − 2u2t−1 (3.15)

x2,t = u1t + u2t−1

All three systems are non-fundamental since the determinants of the MA matrix are −3L,

1 − 3L, and L(1 − 2L) respectively, and they vanishes for L < 1. Thus, it is impossible

to recover ut = (u1t, u2t) from current and lagged xt = (x1,t, x2,t)
′. However, while in the
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first system u2t can be recovered as u2t = (x1,t+1 − x2,t+1)/3 and u1t can be recovered as

u1t = (x1,t + 2x2,t)/3, in the second system only u1t can be recovered from x1,t while in the

third system no shock can be recovered from linear combinations of the xt’s. �

A necessary condition for an estimated shock to be an innovation is that it is orthogonal

to the past of the observables. FG suggest that a shock derived as in the second system of

example 5 is fundamental if it is orthogonal to the lags of the principal components obtained

from a large data set. Three important points need to be made about such an approach.

First, fundamentalness is a property of a system not of a single shock. Thus, the results of

orthogonality tests are insufficient to assess the fundamentalness of a system. Second, as it

is clear from the examples, when one shock can be recovered, it is not the one that creates

the non-fundamentalness in the first place, unless future information is available, a point

stressed also by Leeper et al. (2013). Finally, as shown in the next section, an orthogonality

test has the same shortcomings as a Granger causality test: it will reject the correct null

when one tests for orthogonality of an aggregate shock with respect to some disaggregated

shocks or some factors providing noisy information about them, for exactly the same reasons

that Granger causality tests fail.

3.2 An alternative approach

In this section we propose an alternative testing approach that does not suffer from ag-

gregation or non-observability problems. To see what the procedure involves suppose we

still augment (3.2) with a vector of additional variables yt = B(L)ut + C(L)vt. If (3.2) is

fundamental, ut can be obtained as from current and past values of xt

ut = xt −
r∑
j=1

ωjxt−j (3.16)

where ω(L) = Π(L)−1 and r is generally finite. Thus, under fundamentalness yt only depends

on current and past values of ut. If instead (3.2) is non-fundamental, ut can not be recovered
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from the current and past values of the xt. A VAR econometrician can only recover u∗t =

xt −
∑r

j=1 ω
∗
jxt−j where ω(L)∗ = Π(L)−1θ(L)−1 which is related to ut via

u∗t = θ(L)ut (3.17)

where θ(L) is a Blaschke matrix 2. Then, the relationship between the additional variables

yt and the shocks recovered by the econometrician is yt = B(L)θ(L)−1θ(L)ut + C(L)vt ≡

B(L)∗u∗t + C(L)vt. Since B(L)∗ is generally two-sided polynominal, yt depends on current,

past and future values of u∗t . This proves the following.

Proposition 3. Model (3.2) is fundamental if u∗t+j, j ≥ 1 do not Granger cause yt.

Example 6. To illustrate proposition 3, let xt = (1− 2L)ut, which can be rewritten as

xt = (1− 2L)
(1− 0.5L)

(1− 2L)

(1− 2.0L)

(1− 0.5L)
ut ≡ (1− 0.5L)u∗t (3.18)

where u∗t = (1−2.0L)
(1−0.5L)ut and (1−2.0L)

(1−0.5L) is a Blaschke matrix. Let yt = (1− 0.5L)ut + (1− 0.6L)vt.

Then

yt = (1− 0.5L)
(1− 0.5L)

(1− 2.0L)
u∗t + (1− 0.6L)vt

=
∞∑
j=0

(1/2)j((1− 0.5L)2u∗t+j) + (1− 0.6L)vt−j (3.19)

A few points about our procedure need to be stressed. First, the null we consider differs

from the ones used in the literature. Second, our approach is likely to be robust to linear

transformations of primitive shocks, because when yt is the principal components of a large

data set, it includes more information than the VAR, and thus should not be Granger caused

by future VAR shocks under fundamentalness. Third, our setup is sufficiently general to deal

with non-fundamentalness due to structural causes, omitted or proxy variables.

2Blaschke matrices are complex-valued filters. The main property of Blaschke matrices is that they take
orthonormal white noises into orthonormal white noises. See Lippi and Reichlin (1994) for more details.
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4 Some Monte Carlo evidence

To evaluate the properties of our procedure, we carry out a simulation study using a version

of the fiscal foresight model of Leeper et al. (2013), with two sources of tax disturbances. In

this economy the representative household maximizes:

E0

∞∑
t=0

βt log(Ct)

subject to

Ct + (1− τt,k)Kt + Tt ≤ (1− τt,y)AtKα
t−1 = (1− τt,y)Yt

where Ct, Kt, Yt, Tt, τt,k and τt,y denote time-t consumption, capital, output, lump-sum

taxes, investment tax (or subsidy) and the income tax rate, respectively; At is an exogenous

technology shock and Et is the expectation operator conditional on time t information. To

keep the setup tractable, we assume full capital depreciation and inelastic labor supply.

The government sets tax rates parametrically and adjusts lump-sum transfers to satisfy

Tt = τt,yYt + τt,kKt. The Euler equation and the resource constraints are:

1

Ct
= αβEt

[(1− τt+1,y)

(1− τt,k)
1

Ct+1

At+1K
α
t

Kt

]
(4.1)

Ct +Kt = AtK
α
t−1 (4.2)

Log linearizing the two equations, combining (4.1) and (4.2), and assuming that the tech-

nology shock is iid, we have that

kt = αkt−1 + εt,A − κk
∞∑
i=0

θiEtτ̂t+i,k − κy
∞∑
i=0

θiEtτ̂t+i+1,y (4.3)

where κk = τk(1−θ)
(1−τk)

, κy = τy(1−θ)
(1−τy) , θ = αβ 1−τy

1−τk
, and lower case letters denote percentage

deviations from steady states, kt ≡ log(Kt)− log(K), at ≡ log(At)− log(A), τ̂t,k ≡ log(τt,k)−

log(τk) and τ̂t,y ≡ log(τt,y)− log(τy).
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We posit that income tax shocks are unanticipated, but agents receive a one period in

advance signal of investment tax shocks. Thus, the equilibrium dynamic of capital is:

kt = αkt−1 + ϑt,A − κk
{
ϑt−1,k + θϑt,k

}
− κyϑt,y (4.4)

We assume that the econometrician only observes an aggregate tax variable and does not

have access to data on investment and income tax rates separately. Alternatively, one can

assume that the econometrician observes sub-categorical taxes, but she is only interested in

working with a weighted sum of them. Thus, our design covers both the cases of aggregation

and of a relevant latent variable. Proposition 1 implies that (4.4) can be written as:

kt = αkt−1 + ut,A − ut,τ − cut−1,τ (4.5)

where ut,τ is an aggregate iid tax shock and c is obtained from the quadratic equation:

θc2 −
[
(1 + θ2) + (κ2yσ

2
y/κ

2
kσ

2
k)
]
c+ θ = 0. (4.6)

The equilibrium conditions for capital and the aggregate tax rate are then:

 τ̂t

(1− αL)kt

 =

 1 + cL 0

−1− cL 1


ut,τ
ut,A

 = Π(L)ut (4.7)

The determinant of Π(L) vanishes for L = −1
c

and c is a function of τk and τy through θ and

κk, κy. Thus, by varying τk, (4.7) is fundamental or non-fundamental. For the exercises we

present, we let ϑt,A, ϑt,k, and ϑt,y ∼ iid N(0, 1), set α = 0.36, β = 0.95, τy = 0.25 and select

τk so that the two roots of (4.6) vary in the range c∗ ∈ (0.1, 0.8) (fundamentalness region)

and c̃∗ ∈ (1.25, 10) (non-fundamentalness region). Note that, in the latter region, capital

responses to a tax shock are humped shaped; in the former they peak at zero.

To perform the tests, we need additional data not used in the VAR. We assume that an
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econometrician observes a panel of n = 30 time series, generated by:

yi,t = γiϑt,A + (1− γi)ϑt,τ + (εt,y + ϑt,k)ξi,t, i = 1, · · · , n (4.8)

where ξi,t ∼ iid N(0, 0.5) is a variable specific measurement error, and γi is a Bernoulli

random variable taking value 1 with probability 0.5. We set T = 200, so that our sample

length resembles the one typically employed in quarterly macroeconomic exercises.

The properties of our procedure, denoted by CH, are examined with the regression:

ft = φ0+φ1ft−1+· · ·+φpft−p+ψ0ut+ψ−1ut−1+· · ·+ψ−put−p+ψ1ut+1+· · ·+ψqut+q+et (4.9)

where ft is a vector of principal components of (4.8) and ut is obtained estimating

xt = ω0 + ω1xt−1 + · · ·+ ωrxt−r + ut (4.10)

where xt = (τ̂t, kt)
′. The null that ut+i, i = 1, · · · , q are irrelevant in (4.9) is:

HCH
0 : RΨ = 0 (4.11)

where Ψ = Vec[ψ1, ψ2, · · · , ψq] and R is a matrix of zeros and ones, and can be checked

using a standard F-test. We report the results for p = 4 and q = 2, when r = 4 and three

principal components are included in ft vector. The appendix present results obtained with

other values of the nuisance parameters p, q, and r.

To examine the properties of Granger causality tests, denoted by FGGC , we employ

xt = φ0 + φ1xt−1 + · · ·+ φpxt−p + ϕ1ft−1 + · · ·+ ϕqft−q + et (4.12)
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where again xt = (τ̂t, kt)
′. The null that ft−i, i = 1, · · · , q are irrelevant in (4.12) is

HGC
0 : RΦ = 0 (4.13)

where Φ = Vec[ϕ1, ϕ2, · · · , ϕq] and R is a matrix of zeros and ones. To test (4.13) we

use the out-of-sample procedure of Gelper and Croux (2007). In particular, we split the

T observations in two parts, and set T1 = T/2. T1 observations are used to estimate the

parameters of (4.12). Once this is done, a sequence of T2 one-step-ahead forecasts are

constructed from two models: an unrestricted one (4.12), and a restricted one, where the

null is imposed. Let the matrix of one-step-ahead forecast errors of the unrestricted model

be eU and of the restricted model be eR. The null is evaluated using the mean squared

forecast errors MSFE = log
(
|e′ReR|
|e′UeU |

)
. Since the asymptotic distribution of MSFE under the

null is unknown, p-values are obtained by a residual based bootstrap method. As in FG, we

report results when q = p and p is selected using the BIC criteria.

To perform the orthogonality test, denoted by FGOR, we first estimate the VAR:

xt = ω0 + ω1xt−1 + · · ·+ ωrxt−r + ut (4.14)

where xt = (τ̂t, kt)
′, and where r is determined with BIC. The tax shock, ut,τ , is identified

as the only one affecting the tax rate in the long run. Then in the regression

ut,τ = λ1ft−1 + · · ·+ λqft−q + et (4.15)

the null hypothesis that ut,τ and ft−i, i = 1, · · · , q are orthogonal corresponds to

HOR
0 : RΛ = 0 (4.16)

where Λ = Vec[λ1, λ2, · · · , λq] and R is a matrix of zeros and ones. This null can be tested
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Table 1: Testing for fundamental representation: Size

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

1%
CH
FGOR

FGGC

0.8
0.1
0.9

1.2
1.8
1.1

1.0
22.4
2.3

0.8
84.2
13.8

1.0
98.8
58.0

0.9
99.3
91.6

1.1
99.3
97.3

1.1
99.3
97.1

5%
CH
FGOR

FGGC

5.5
1.4
4.9

5.6
9.3
5.6

5.0
47.2
9.8

4.9
93.9
32.9

4.7
99.7
81.3

4.7
99.5
98.6

5.3
99.8
99.6

5.5
99.5
99.5

10%
CH
FGOR

FGGC

10.8
4.5
9.2

10.6
16.3
12.2

9.1
59.3
16.9

9.4
97.5
47.1

9.3
99.8
88.8

9.9
99.5
99.4

10.3
99.8
99.8

10.4
99.5
99.8

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when three principal components of the large dataset are considered; CH is the test proposed in
this paper; FGOR is the orthogonality test of Forni and Gambetti (2014); FGGC is the Granger
causality test of Forni and Gambetti (2014).

using a standard F-test. As in FG we set q = r.

The percentage of rejections of the null of each procedure in 1000 replications when the

model is fundamental are in Table 1. Our procedure has good empirical size properties and

the performance of the test is independent of the confidence level employed. By contrast,

Granger causality and orthogonality tests are prone to spurious non-fundamentalness. The

rejection rate becomes large when the weight on last period information increases and dete-

riorates dramatically when c∗ exceeds 0.4-0.5. The presence of a threshold is intuitive. From

(4.4) and (4.5) we have (1 + cL)uτ,t = κk(θ + L)ϑt,k + κyϑt,y or

uτ,t =
∑
j

cj(κk(θ + L)ϑt−j,k + κyϑt−j,y) ≡ Z1(L)ϑt,k + Z2(L)ϑt,y (4.17)

If c∗ is small, Z1j, Z2j tends to zero fast as j →∞ making predictability hard to detect.

The performance of Granger causality and orthogonality tests is very poor because BIC,

which we use to choose the VAR lag length, underestimates the lag length needed to replicate

the properties of the DGP when c∗ ∈ [0.4, 0.8]. If one would use AIC, which chooses a longer
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Table 2: Testing for fundamental representation: Power

c̃∗ 10 5 3.33 2.5 2.0 1.66 1.43 1.25

1%
CH
FGOR

FGGC

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.4
100
100

40.4
100
100

5%
CH
FGOR

FGGC

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

99.8
100
100

62.6
100
100

10%
CH
FGOR

FGGC

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

99.9
100
100

75
100
100

Notes: The table reports the percentage of rejections of the null hypothesis in 1000 replications
when three principal components of the large dataset are considered; CH is the test proposed
in this paper; FGOR is the orthogonality test proposed by Forni and Gambetti (2014); FGGC

is the Granger causality test proposed by Forni and Gambetti (2014).

lags for all c∗, the performance would be less dramatic but still poor. For example, if c∗ = 0.4,

the rejection rate is 60.7 rather than 93.9 for the orthogonality test and 20.9 rather than

32.9 for the Granger causality test at the 5 percent nominal level.

Table 2 reports the empirical power. All tests are similarly powerful against local depar-

tures from the null, regardless of the confidence level. However, the CH test looses power as

c̃∗ gets close to one. Thus, it is important to check the magnitude of the roots of the system

before applying the test in empirical applications.

The additional tables in the appendix indicate that the size and the power of the CH

test are insensitive to nuisance parameter problems. In particular, the lag length of the

preliminary VAR does not matter, the number of lags of the principal components and of

VAR residuals in the auxiliary regression is irrelevant, and the properties of the test are

independent of the number of leads of VAR residuals we include and test for.

It is also interesting to examine how our procedure performs when there are no aggre-

gation problems. The DGP is the same as before, but we now set τy = 0. Table 3, which
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Table 3: Testing for fundamental representation: No aggregation

c̃∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
1%
5%
10%

0.6
5.4
11.4

0.7
5.4
10.7

0.8
5.5
10.4

0.8
5.6
10.7

0.9
5.5
10.7

1.2
5.2
10.5

1.1
6.6
11.6

1.0
7.3
12.0

c̃∗ 10 5 3.33 2.5 2.0 1.66 1.43 1.25
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

89.4
93.8
99.4

68.6
70.1
85.4

reports the size and the power in this situation, indicates that the properties of the CH test

are independent of whether aggregation is present or not.

5 Reconsidering two small scale VARs

Standard business cycle theories assume that economic fluctuations are driven by surprises

in current fundamentals, such as aggregate productivity or demand disturbances. Motivated

by the idea that changes in expectations about future fundamentals may drive business

fluctuations, Beaudry and Portier (2006) find that positive news shocks have a positive

impact on output, consumption, investment and hours worked. These responses are at odds

with those obtained in a Real Business Cycle (RBC) model: here, positive news about future

technology increase consumption, while hours, output and investment fall.

Since models featuring news shocks have solutions displaying moving average components,

finite order models may be unable to capture the underlying dynamics, making the VARs

considered in the literature prone to non-fundamentalness. In addition, Forni et al. (2014)

provide a stylized Lucas tree model where predictable news to the dividend process may

induce non-fundamentalness in a system comprising the growth rate of stock prices and the

growth rate of dividends. The solution of their model, when news come two periods in
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advance, is: ∆dt

∆pt

 =

 L2 1

β2

1−β + βL β
1−β


u1t
u2t

 ≡ C(L)ut (5.1)

where dt are dividends, pt are stock prices, 0 < β < 1 is the discount factor. Here, since

|C(L)| vanishes for L = 1 and L = −β, ut is non-fundamental for (∆dt,∆pt). Intuitively, this

occurs because agents observe u1t at t, but the shock affects dividends at t+2. Thus, agents’

information set, which includes current and past values of structural shocks, does not match

the econometrician’s information set, which includes current and past values of the growth

rate of dividends and stock prices. As noted by Beaudry et al. (2015), the fundamental

and non-fundamental dynamics this model generates are similar. This is because the root

generating non-fundamentalness is near unity. In general, the properties of the solution

depend on the details of the economy, on the process describing the information flows, and

the variables observed by the econometrician.

We estimate a VAR with the growth rate of capacity adjusted TFP and of stock prices

for the period 1960Q1 to 2010Q4, both of which are taken from Beaudry and Portier (2014)

and we use the same principal components as in Forni et al. (2014). The VAR system has no

root larger than 0.75; thus power problems are not relevant. Table 4 reports the p−values

of the tests for different numbers of principal components, which enter in first difference in

all the tests. In the CH test, the testing model has four lags of the PC and of the VAR

residuals and we are examining the predictive power of 2 leads of the VAR residuals.

The CH test finds the system fundamental, regardless of the number of PC included

in the testing equations. In contrast, a Granger causality test soundly rejects the null of

fundamentalness. Since the VAR includes TFP, which is latent and aggregated, differences

in the conclusions could be due to aggregation or non-observability problems.

To verify this possibility we consider a VAR where in place of utilization adjusted ag-

gregated TFP we consider two different utilization adjusted sectoral TFP measures. The

first is obtained using the methodology of Basu et al. (2013), which produces time series for
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Table 4: Testing fundamentalness: VAR with TFP and stock prices.

PC=3 PC=4 PC=5 PC=6 PC=7 PC=8 PC=9 PC=10
CH, sample 1960-2010

0.12 0.13 0.28 0.48 0.23 0.11 0.18 0.04
FGGC , sample 1960-2010

0.05 0.00 0.04 0.00 0.00 0.00 0.00 0.00
FGGC , Fernand 1960-2005 data

Aggregate
Sectorial

0.02
0.07

0.04
0.21

0.23
0.30

0.00
0.02

0.00
0.00

0.00
0.01

0.00
0.03

0.02
0.05

FGGC Wang 1960-2009 data
Aggregate
Sectorial

0.05
0.36

0.03
0.49

0.15
0.38

0.04
0.21

0.00
0.19

0.00
0.27

0.00
0.31

0.01
0.28

Notes: The table reports the p-value of the tests; CH is the test proposed in this paper; FGGC

is the Granger causality test proposed by Forni and Gambetti (2014); PC is the number of
principal component in the auxiliary regression. In CH test the number of leads tested is two.

private consumption TFP, private investment TFP, goverment consumption and investment

TFP and ’ net trade” TFP. The second panel of table 4 presents results obtained in a VAR

which includes consumption TFP (obtained aggregating private and public consumption),

investment TFP (obtained aggregating private and public investments) and net trade TFP,

all in log growth rates and the growth rate of stock prices. Because the sample for this data

terminates in 2005, the panel also reports p-values of a Granger causality test for the original

bivariate system restricted to the 1960-2005 sample. As an alternative, we use the utilization

adjusted industry TFP data constructed by Christina Wang at the Federal Reserve Bank

of Boston. We reaggregate industry TFPs into manufacturing, services and ’others’ sectors,

and use the growth rate of these three variables together with the log of stock prices in

the VAR 3. The third panel of table 4 presents results obtained with this VAR. Because

the sample ends in 2009, the panel also reports p-values of a Granger causality test for the

bivariate system restricted to the 1960-2009 sample.

A Granger causality test applied to the original bivariate system estimated over the two

3Because the input of both methodologies are annual series, we interpolate TFP series from annual to
quartely using a polynominal regression procedure.
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new samples confirms that the system is non-fundamental. However, when it is applied to

the VAR with the first set of sectorial TFP measures, the null of non-fundamentalness is not

rejected in four of the eight cases and, for all choices of PC, the p-values increase relative

to the baseline system with only aggregated TFP. When the test is applied to the VAR

with the second set of sectorial TFP measures, the system turns out to be fundamental.

Since this holds when we enter the three sectoral TFP variables in level rather than growth

rates, when we allow for a break in the TFP series, and when we exclude the ’others’ sector

TFP variable from the VAR, the conclusion is that a Granger causality diagnostic rejects

the null in the original VAR because of aggregation problems. Instead, the diagnostic of

this paper, being robust to aggregation problems, correctly identifies the original small scale

VAR as fundamental. Nevertheless, one should remember that even if the original system

is fundamental, its shocks and dynamics are likely to be complicated averages of the shocks

and dynamics of the primitive economy, which surely includes more than two disturbances.

The seminal paper of Gaĺı (1999) investigated the comovements of labour productivity

and hours in response to technology shocks. Since a negative conditional correlation is found,

and since a textbook RBC model predicts a positive conditional correlation, the author

concludes that technology shocks can not be the main sources of macroeconomic fluctuations.

The paper has spurred a large literature refuting, see e.g. Christiano et al. (2003), or

confirming the conclusions, see e.g. Canova et al. (2010). However, since small scale VARs

are typically used, omitted variables, non-observability, or anticipatory information about

productivity developments could potentially induce non-fundamentalness.

We focus on the bivariate specification used in the literature, which include the growth

rate of the log of labor productivity (∆xt) and of the log of hours (∆nt):

∆xt

∆nt

 =

C11(L) C12(L)

C21(L) C22(L)


uzt
umt

 = C(L)

uzt
umt

 (5.2)

where uzt and umt are assumed to be orthogonal at all leads and lags and typically interpreted
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as technology and non-technology shocks, respectively. Fundamentalness is imposed assum-

ing that the determinant of C(L) has no roots inside the unit circle. Our task is to check

whether such an assumption is reasonable.

The sample 1960Q1 to 2010Q4 is used to match the time span that our large dataset

covers. The labor input is the log of US hours of all persons in the nonfarm business sector;

labor productivity is constructed from this variable and the log of US real GDP. The largest

root of the VAR is 0.685, so that power problems are not relevant also in this case. To

conduct the tests, we use the same principal components used in the previous VAR.

Table 5 reports the results. Different columns represent the number of principal compo-

nents used in the testing equation which enter in first difference in all tests. Both CH and

Granger causality tests find the system non-fundamental. Thus, aggregation/non observ-

ability problems do not seem relevant.

Recall that even if the system is non-fundamental, we may be able to recover technology

shocks, which is all that matter here. The technology disturbance is identified as the only

disturbance with a permanent impact on labor productivity, i.e., C12(1) = 0. The second

panel of table 5 reports the results of applying our test and the orthogonality test to the

technology shock recovered this way. As mentioned, we are not testing for fundamentalness

here; but only if there is enough information in the data to recover the technology shock.

Both tests reject also this possibility.

To verify whether the selection of the variables included in the VAR matters, we repeat the

latter exercise using a VAR with the growth rate of labor productivity and the unemployment

rate. The third panel of table 5 indicates that in a number of cases technology shocks are

now recoverable from current and past values of the observables. Thus, it seems that it is

the use total hours worked in the VAR that causes problems.

In a representative agent RBC model what matters, however, is total hours, not the

unemployment rate. Thus, if one is interested in using the data to evaluate this model, a

system with the unemployment rate is far from ideal. Is there any way to add variables to
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Table 5: Testing fundamentalness: VAR with labor productivity and hours

PC=3 PC=4 PC=5 PC=6 PC=7 PC=8 PC=9 PC=10
∆(y/n),∆n) System

CH
FGGC

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

0.00
0.00

∆(y/n),∆n) Technology shock
CH
FGOR

0.00
0.06

0.00
0.02

0.00
0.04

0.00
0.03

0.00
0.05

0.00
0.02

0.00
0.03

0.00
0.03

∆(y/n),∆u) Technology shock
CH
FGOR

0.15
0.32

0.02
0.15

0.02
0.04

0.05
0.09

0.14
0.16

0.07
0.01

0.07
0.02

0.07
0.02

∆(y/n),∆n,∆CI) Technology shock
CH
FGOR

0.56
0.50

0.14
0.38

0.11
0.37

0.24
0.52

0.23
0.59

0.40
0.51

0.46
0.63

0.38
0.59

Notes: The table reports the p-value of the tests; CH is the test proposed in this paper; FGGC

is the Granger causality test proposed by Forni and Gambetti (2014); PC is the number of
principal component in the testing equations. In CH test the number of leads tested is 2. The
extended system includes the growth rate of the consumer confidence indicator.

the original system so that current and past values of the observables allow us to recover

the technology shocks? To study this possibility, we include the growth rate of a confidence

indicator in the VAR. The last panel of table 5 shows that a technology shock recovered from

this trivariate system is indeed a function of the current and past values of the observables.

Since the confidence indicator proxies for the current (and future) state of the economy,

crucial information may be missing from the original VAR.

We plot in figure 1 the responses of labor productivity and hours to technology shocks

obtained in bivariate and trivariate models. While the responses have similar shape, those

obtained in the bivariate system tend to overestimate the initial negative response of hours

and the initial positive response of labor productivity.
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Figure 1: Responses to technology shocks

Note: The shaded regions report pointwise 50 and 68% credible intervals. The x-axis reports quarters, the

y-axis the response of the level of the variable in deviation from the predictable path.

6 Conclusions

Small scale VAR models are typically used in empirical business cycle analyses. Thus, the

structural shocks which are obtained are linear transformations of primitive structural shocks.

Aggregate shocks might be fundamental or non-fundamental, depending on the details of

the economy, the information set, and the variables chosen in the empirical analysis. If one

observes some variables that provide noisy information about the primitive shocks, Granger

causality (orthogonality) tests will reject the null of no causality (no orthogonality), even

when the shocks are fundamental. A similar problem arises when VAR variables proxy for

latent variables. A simulation study illustrates that spurious non-fundamentalness occurs

when primitive shocks are aggregated and a small scale VAR is used.

We propose an alternative procedure which has the same power properties as existing

diagnostics when non-fundamentalness is present, but does not face aggregation or non-
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observability problems when the system is fundamental. We also show that the procedure is

robust to specification issues and to nuisance features.

We show that a Granger causality diagnostic finds that a bivariate model measuring the

impact of TFP news is non-fundamental, while our test finds it fundamental. We show that

the use of an aggregated TFP measure in the VAR explains the discrepancy. When sectorial

TFP measures are used, a Granger causality diagnostic also finds the VAR fundamental.

We also show that both tests find a bivariate VAR system with labour productivity growth

and hours growth non-fundamental and that the technology shocks can not be recovered from

current and past values of the observables. This last conclusion changes when the growth

rate of a confidence indicator enters the VAR. Hence, lack of information may be the reason

for why technology shocks can’t be obtained from the original system.

A few lessons that can be learned from our paper. First, Granger causality tests may

give misleading conclusions when testing for fundamentalness whenever aggregation or non-

observability problems are present. The test proposed in this paper is robust to these issues.

Second, tests focusing on omitted variable problems may fail to identify the properties of

small scale systems when the source of non-fundamentalness is theoretical or due to investi-

gators’ choice. Third, to derive reliable conclusions, one should have fundamentalness tests

that are insensitive to specification and nuisance features. The test proposed in this pa-

per satisfies both criteria; those present in the literature do not. Finally, to make business

cycle analysis advance on solid ground, it is important to check that the VAR system con-

tains enough information to recover structural shocks from current and past values of the

observables. The test proposed in this paper facilitates this ”reality” check.
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Appendix

This appendix reports tables with the results of the Monte Carlo exercise using the CH

test. From the baseline values, the three nuisance parameters: r, the number of lags in the

preliminary VAR; p, the number of lags of the PC and the VAR residuals in the auxiliary

regression; and q, the number of leads of the VAR residuals tested in the null.

Table 6: Testing for fundamental representation: Size

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Preliminary VAR,r = 2 lags

CH
1%
5%
10%

1.2
5.1
10.6

1.2
4.3
9.9

1.1
4.6
9.8

1.1
4.7
9.7

0.9
5.2
9.8

0.8
5.4
10.1

1.2
5.9
10.8

1.7
7.0
11.8

Preliminary VAR,r = 3 lags

CH
1%
5%
10%

1.1
5.3
11.0

1.2
4.6
11.0

0.9
4.1
9.7

0.8
4.4
9.9

0.8
4.6
11.0

0.9
4.5
11.2

1.2
5.2
12.2

1.4
6.2
13.4

Preliminary VAR, r = 5 lags

CH
1%
5%
10%

1.1
5.7
10.9

0.9
5.1
9.8

0.9
4.5
9.4

0.9
5.0
9.5

1.0
4.8
9.7

1.1
5.1
9.6

1.2
5.5
9.9

1.6
5.8
10.5

Preliminary VAR, r = 6 lags

CH
1%
5%
10%

1.0
5.4
10.6

0.8
4.6
11.0

0.8
4.5
9.3

0.9
4.4
9.2

0.9
4.0
9.0

1.1
4.1
9.0

1.3
4.4
9.6

1.2
4.9
10.0
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Table 7: Testing for fundamental representation: Power

c̃∗ 10 5 3.33 2.5 2.0 1.66 1.43 1.25
Preliminary VAR,r = 2 lags

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

99.2
99.8
99.9

56.8
78.2
85.8

Preliminary VAR r = 3 lags

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

97.6
99.6
99.9

40.0
63.0
74.4

Preliminary VAR, r = 5 lags

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.7
99.9
99.9

41.1
64.1
76.2

Preliminary VAR r = 6 lags

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.4
99.7
99.9

42.6
67.4
76.6

Table 8: Testing for fundamental representation: Size

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Conditioning on 4 lags of PC, testing q = 2 leads

CH
1%
5%
10%

0.8
5.5
10.8

1.2
5.6
10.6

1.0
5.0
9.1

0.8
4.9
9.4

1.0
4.7
9.3

0.9
4.7
9.9

1.1
5.3
10.3

1.1
5.5
10.4

Conditioning on 4 lags of PC, testing q = 4 leads

CH
1%
5%
10%

1.0
6.5
12.6

1.0
6.1
12.0

1.0
6.1
12.1

1.0
6.4
11.6

0.9
5.8
11.6

1.3
6.1
12.1

1.3
6.2
12.4

1.5
6.6
13.0

Conditioning on 4 lags of PC, testing q = 6 leads

CH
1%
5%
10%

1.1
7.2
12.3

1.2
6.5
11.8

1.1
5.8
11.1

1.0
5.5
11.0

1.2
5.4
11.5

1.2
5.7
12.3

1.5
5.8
11.3

1.5
6.2
11.3
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Table 9: Testing for fundamental representation: Power

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Conditioning on 4 lags of PC, testing q = 2 leads

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.4
99.8
99.9

39.8
62.9
75.0

Conditioning on 4 lags of PC, testing q = 4 leads

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

99.8
100
100

49.5
73.0
82.3

Conditioning on 4 lags of PC, testing q = 6 leads

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

99.6
99.8
99.9

47.1
72.6
82.2

Table 10: Testing for fundamental representation: Size

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Conditioning on 3 lags of PC and 4 lags of ut, testing q = 2 leads

CH
1%
5%
10%

0.7
5.3
11.1

0.6
5.1
10.7

0.7
5.0
9.9

0.8
4.8
9.5

0.9
4.4
9.7

1.0
4.7
10.1

1.0
4.8
10.4

1.2
5.5
10.9

Conditioning on 4 lags of PC and 4 lags of ut, testing q = 2 leads

CH
1%
5%
10%

0.8
5.5
10.8

1.2
5.5
10.9

1.0
5.0
9.1

0.8
4.9
9.4

1.0
4.7
9.3

0.9
4.7
9.9

1.1
5.3
10.1

1.1
5.5
10.4

Conditioning on 5 lags of PC and 4 lags of ut, testing q = 2 leads.

CH
1%
5%
10%

1.2
6.0
11.4

1.2
5.5
11.0

1.0
4.5
9.8

1.0
4.8
9.8

1.0
5.4
10.2

0.9
4.1
10.4

1.0
4.9
10.3

1.0
6.0
11.6
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Table 11: Testing for fundamental representation: Power

c∗ 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8
Conditioning on 3 lags of PC and 4 lags of ut, testing q = 2 leads

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.7
99.8
99.9

40.2
64.0
76.0

Conditioning on 4 lags of PC and 4 lags of ut, testing q = 2 leads.

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

98.4
99.8
99.9

39.8
62.9
75.0

Conditioning on 5 lags of PC and 4 lags of ut , testing q = 2 leads.

CH
1%
5%
10%

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

100
100
100

96.9
99.6
99.9

32.4
56.0
67.5
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