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The Role of Allocative Effi ciency in a Decade of Recovery∗

Kaiji Chen† Alfonso Irarrazabal‡

July 17th, 2014

Abstract

The Chilean economy experienced a decade of sustained growth in aggregate output

and productivity after the 1982 financial crisis. This paper analyzes the role of allocative

effi ciency on total factor productivity (TFP) in the manufacturing sector by applying the

methodology of Hsieh and Klenow (2009) to establishment data from the Chilean manu-

facturing census. We find that a reduction in resource misallocation accounts for about 40

percent of the growth in manufacturing TFP between 1983 and 1996. In particular, a reduc-

tion in the least productive plants’implicit output subsidies is the primary reason for the

reduction in resource misallocation during this period. Moreover, these plants enjoyed above

industry-average growth in physical productivity, contributing to the overall improvement

in effi cient TFP after the financial crisis. Our evidence suggests that Chile’s banking reform

during the early and mid-1980s is likely to have played an important role in the observed

improvement in allocative effi ciency.
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1 Introduction

Chile experienced a decade-long economic recovery after its 1981-1982 financial crisis. As shown

by Panel (a) of Figure 1, after a declining by more than 20 percent relative to the trend level,

Chile’s real GDP per working-age population (15—64) started to recover in the mid-1980s and

by 1996 was 20 percent above the trend.1 Similar to the pattern seen in its aggregate economy,

a takeoff occurred in the Chilean manufacturing sector after the 1982 crisis. Specifically, in the

late 1980s the manufacturing sector began a rapid increase in value-added.

As many researchers have found, total factor productivity (TFP) is one key factor explain-

ing the sustained post-crisis recovery of Chile.2 This can be seen by the dynamics of Chile’s

manufacturing TFP. Panel (b) show that aggregate TFP in the manufacturing sector closely

tracked manufacturing value-added during both the recession and the recovery. In particular,

aggregate manufacturing TFP, relative to the trend level, increased by more than 20 percent

between 1983 and 1996, providing a strong driving force for the aggregate manufacturing output

during the recovery. Therefore, understanding the sources of the sustained growth of Chile’s

aggregate manufacturing TFP and their connection to the policy reforms in Chile offer a useful

lens to understanding the post-crisis recovery of Chile’s aggregate productivity.

This paper studies the role of allocative effi ciency in the recovery of Chilean manufacturing

TFP after the 1982 crisis. We use establishment-level data from the Chilean manufacturing

census to address these three questions: How important is an improvement in allocative effi -

ciency in accounting for the fast growth in Chilean manufacturing TFP after the crisis? What

are the key distortions that have mitigated and, thus, contributed to this improvement in al-

locative effi ciency? What Chilean policy reforms might be potentially important in explaining

the improvement in allocative effi ciency? To these ends, we employ the framework used in Hsieh

and Klenow (2009) to obtain plant-specific output and capital distortions (wedges), as well as

physical and revenue productivity measures (TFPQ and TFPR), for each year between 1980

and 1996.

Our results show that between 1983 and 1996, an improvement in allocative effi ciency ac-

counted for about 40 percent of the observed growth in aggregate manufacturing TFP. The

key factor behind this improvement is a reduction in the cross-sectional dispersion in output

distortions, which accounts for essentially all the reduction in the cross-sectional dispersion of

revenue productivity during this period. Moreover, the cross-sectional covariance of physical

and revenue productivity shows a similar declining pattern to the cross-sectional dispersion of

revenue productivity, suggesting an improvement in resource allocation among plants with dif-

ferent productivity. When plants are grouped into TFPQ quintiles, we find that a reduction

in the least productive group’s implicit output subsidy is the single most important factor for

1We assume that the trend level of real GDP per working-age person is 2 percent per year.
2See, for example, Bergoeing, Kehoe, Kehoe, and Soto (2007) for a comparison between Chile and Mexico.
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the decline in the resource misallocation during this period. Accordingly, factor inputs were

reallocated from the least productive plants towards more productive ones.

Another important factor to understand the recovery of Chile’s aggregate productivity is the

change in the distribution of physical productivity. We find that, over time, plants with lower

initial physical productivity enjoyed faster growth in physical productivity than the industry

average during our sample period. As a result, the left tail of physical productivity distribution

became thinner. This suggests that Chile’s policy reforms that eliminated the subsidies on

the initially unproductive plants contributed to not only an improvement of resource allocation

among incumbent firms, but also to their faster productivity growth.

It has been argued that the prevalence of self-loans by Chilean banks toward affi liated firms

within the business groups led to credit misallocation and the 1982—1983 financial crisis3. We

therefore make a first pass to assess the role that Chile’s banking reforms during the early

and middle 1980s played in the observed improvement in allocative effi ciency and physical

productivity. Our regression results suggest that in the early 1980s, Chilean plants with lower

revenue or physical productivity had, on average, a higher liability-asset ratio. This suggests

that firms with preferential access to bank credit tended to be less productive, and larger than

their effi cient sizes. Moreover, before the banking reform took place, industries with higher

median liability-asset ratio had larger revenue productivity dispersion, suggesting that industries

dominated by firms with access to preferential credit were more distorted. Since 1983, however,

those firms with higher initial leverage ratio experienced a faster improvement in both allocative

effi ciency and physical productivity. Such evidence suggests that Chile’s banking reforms during

the early and mid-1980s, which largely restricted making self-loans within business groups, are

likely important factors in reducing resource misallocation between business group-affi liated and

independent firms and in improving physical productivity of the former.

Finally, we developed a model with heterogeneous access to bank credit to illustrate the effect

of banking reforms on resource allocation and aggregate TFP. Consistent with our empirical

findings, our model predicts that following the banking reform that restricts self-loans, the

allocative effi ciency improves while the overall leverage ratio of the economy declines.

Our work complements Petrin and Levinsohn (2012) and Oberfield (2013), two recent pa-

pers that use the same manufacturing census data to examine the sources of Chilean aggregate

productivity changes between 1980 and 1995. Specifically, in Petrin and Levinsohn (2012), the

reallocation term is measured by the weighted average of changes in factor inputs across plants,

with weights in the above-mentioned gaps for individual plants. Hence, this measure would

miss the change in allocative effi ciency when both TFPQ and idiosyncratic distortions moves

in the same direction, so that there are no changes in individual plants’ inputs. Oberfield

3See, for example, Diaz-Alejandro (1985), Harberger (1985), Galvez and Tybout (1985), Tybout (1986),
Edwards and Edwards (1991), McKinnon (1991), de la Cuadra and Valdes (1992), and Akerlof and Romer
(1993).
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(2013) obtains measures of both within- and across-industry allocative effi ciency by extending

Hsieh and Klenow’s approach. Hsieh and Klenow’s method focuses on the wedges and their

changes, thus, nesting the changes in allocative effi ciency measured by Petrin and Levinsohn

(2012). Our results are consistent with Oberfield (2013), which finds that within-industry mis-

allocation did not contribute much to the fall in output during Chile’s 1982 recession. The TFP

decomposition in our paper not only confirms this result, but also finds that the role of alloca-

tive effi ciency becomes more important in the post-crisis recovery phase. Importantly, Hsieh

and Klenow (2009)’s analysis focuses on changes in resource allocation, given a distribution of

physical productivity. Our analysis, while adopting their framework, includes changes in both

the distribution of physical productivity and allocative effi ciency. The evidence in this paper

suggests that the evolution of the distribution of physical productivity and allocative effi ciency

are connected, as a policy that removes an implicit subsidy to an unproductive producer will

affect the distribution of physical productivity. Furthermore, to the best of our knowledge we

are the first to link changes in policy distortions as a result of banking reforms in Chile to the

improvements in allocative effi ciency achieved after the financial crisis.

This study is related to a rapidly expanding recent literature on the importance of micro-

distortions for aggregate productivity (Restuccia and Rogerson 2008; Guner, Ventura, and Xu

2008; Buera and Shin 2008; Buera, Kaboski, and Shin 2011; Midrigan and Xu 2010; Moll 2010).

It is also part of the empirical literature that uses micro-data to measure the extent of micro-

level misallocation. Following the methodology of Hsieh and Klenow (2009), this literature

consistently finds large potential aggregate TFP gains from eliminating misallocation. For ex-

ample, these studies found that Argentina could increase its TFP by 50—60 percent (Neumeyer

and Sandleris, 2010), Bolivia by 52—70 percent (Machicado and Birbuet, 2011), Colombia by

50 percent (Camacho and Conover, 2010), and Uruguay by 50—60 percent (Casacuberta and

Gandelman, 2009). Furthermore, our paper relates to a growing literature on the role of policy

distortions in the investment in physical productivity (See Bello, Blyde and Restuccia, 2011,

Hsieh and Klenow 2012, Restuccia, 2013, Bhattacharya, Guner and Ventura, 2013, Bollard,

Klenow and Sharma, 2013, Gabler and Poschke, 2013, and Da-Rocha, Tavares and Restuccia,

2014). Our paper focuses on the dynamics of Chilean manufacturing TFP during the period

following the financial crisis and the potential policies contributing to such a change. Consistent

with the literature, we find that both changes in allocative effi ciency and the physical produc-

tivity contributed to the recovery of Chile’s aggregate TFP. Moreover, we find that Chile’s

banking reforms by restricting self-loans toward group-affi liated firms contributed to changes in

both allocative effi ciency and individual firms’physical productivity. A contribution of the pa-

per, thus, is to connect policy changes to changes in idiosyncratic distortions from an empirical

perspective.

Our findings provide empirical support for Buera and Shin (2010)’s argument that a reduc-

tion in idiosyncratic distortions preceded domestic financial market development in emerging
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economies. In their theoretical framework, economic reforms occur in two stages: in the first,

idiosyncratic output distortions are removed; in the second stage, borrowing constraints are

relaxed. As a consequence, massive capital outflows accompany TFP growth during the first

stage of reform. Consistent with Buera and Shin (2010), our evidence shows that a reduction in

output distortion, rather than the capital distortion, is the key to explain the improvement in

Chilean manufacturing TFP between 1983 and 1996. Furthermore, we show that, for the case

of Chile, output distortions may result from preferential credit policy, which is widely available

in emerging countries. Consequently, banking reforms, by restricting preferential credit policies,

are likely to play important roles in reducing output distortions.

The rest of the paper proceeds as follows: in section 2, we briefly describe the monopolistic

competition model of Hsieh and Klenow (2009) used to measure the effect of distortion on

productivity. In section 3, we describe the dataset used in the analysis and how we compute

idiosyncratic distortions at the plant level. In section 4, we present our empirical findings. In

section 5, we present the Chilean economy’s institutional background for the period examined.

In addition, we assess the importance of the banking reforms in the improvement of allocative

and productive effi ciency. Finally, an illustrative model is provided to shed light on the role of

banking reforms on allocative effi ciency that is consistent with our empirical evidence. Section

6 concludes. The appendix describes the data construction and sampling and provides the

derivation of aggregate TFP using plant-specific wedges and its decomposition.

2 Theoretical Framework

This section describes the linkage between an economy’s aggregate productivity and resource

misallocation resulting from firm-level distortions by using a theoretical framework proposed by

Hsieh and Klenow (2009) (“HK”hereafter). A representative final good producer faces perfectly

competitive output and input markets. The final good producer combines the output Ys of S

manufacturing industries using a Cobb-Douglas production technology with share θs. We set

final output as the numeraire such that its price P = 1. In turn, each industry output Ys is

produced by combining Ms differentiated goods Ysi produced by individual firms using a CES

technology with elasticity parameter δ. The production function for each differentiated product,

Ysi is given by a Cobb-Douglas function of firm-level productivity Asi, capital Ksi and labor Lsi

with labor share αs. Capital elasticity across firms within a given industry is assumed to be the

same as αs. Following HK (2009), we introduce two types of distortions: an output distortion

that takes the form of a tax on revenues, and a capital distortion that takes the form of a tax
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on capital services.4 The problem of a firm i in industry s is described below

max
Psi,Ksi,Lsi

(1− τysi)PsiAsiKαs
si L

1−αs
si︸ ︷︷ ︸

Ysi

−WLsi − (1 + τksi)RKsi

st : Ysi = Ys

[
Ps
Psi

]σ
,

where W is the wage rate and R is the gross interest rate. As shown in HK (2009) the output

distortion affects the marginal revenue product of both factors in a symmetric manner and,

thus, does not distort the capital-labor ratio. By contrast, a capital distortion, 1 + τksi, makes

capital services more costly relative to labor services, distorting the capital-labor ratio below

the first-best level.

Following Foster, Haltiwanger, and Syverson (2008), we define revenue productivity as

TFPRsi = PsiYsi
Kαs
si L

1−αs
si

= PsiAsi and physical productivity as TFPQsi = Ysi
Kα
siL

1−α
si

= Asi. It

is easy to show that TFPRsi follows as

TFPRsi =
σ

σ − 1

(
R

αs

)α( W

1− αs

)1−αs (1 + τksi)
αs

(1− τysi)
.

Intuitively, the higher that 1 + τksi is, and the lower that 1 − τysi is, the lower is the output
relative to the first-best level. Accordingly, the price Psi and, thus, TFPRsi are above the

first-best level. Recall that without distortions, revenue productivity should be equalized across

plants. This is because more resources are allocated to plants with higher TFPQ, leading to

higher output and lower prices, which then lowers TFPR.

2.1 Aggregate TFP

We measure TFP in each industry s as TFPs ≡ Ys
Kαs
s L1−αs

s
, where Ks =

Ms∑
i=1

Ksi and Ls =

Ms∑
i=1

Lsi.

In Appendix 7.2, we show that TFPs can be expressed as

TFPs =

[
Ms∑
i=1

(
Asi

(1−τysi)
(1+τksi)

αs

)σ−1] σ
σ−1

[
Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
α(σ−1)+1

]αs [Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

]1−αs , (1)

where Ms is the number of firms in industry s. Note that if we eliminate all the idiosyncratic

distortions, i.e., 1 − τysi = 1 + τksi = 1, we obtain the effi cient TFP, which we denoted as

As =
(∑Ms

i=1A
σ−1
si

) 1
σ−1
. It is easy to show that the manufacturing TFP at each sector can be

4 In an appendix, available upon request, we consider the effect of labor-specific distortions by augmenting the
production function with materials as input.

6



rewritten as

TFPs =

(
Ms∑
i=1

{
Asi

TFPRs
TFPRsi

}σ−1) 1
σ−1

, (2)

where TFPRs = σ
σ−1

[
(1− αs)

Ms∑
i=1

(1− τysi) PsiYsiPSYS
/W

]αs−1 [
αs

Ms∑
i=1

(1−τysi)
1+τksi

PsiYsi
PSYS

/R

]−αs
. For

each manufacturing sector, we calculate the ratio of actual TFP to the effi cient TFP and

aggregate this ratio across all sectors using the Cobb-Douglas aggregator,

Y

Y e
=

S∏
s=1

(
Ms∑
i=1

{
Asi

As

TFPRs
TFPRsi

}σ−1) θs
σ−1

. (3)

2.2 Log-Normal Case

We want to understand the forces driving aggregate TFP by decomposing it into different

components. To this end, we assume that Asi, (1− τysi), and (1 + τksi) follow a joint log normal

distribution. Using the Central Limit Theorem and assumingMs →∞, we obtain the following
decomposition for aggregate TFP (see Appendix 7.3 for details):

log TFPs = log TFP es −
σ

2
var (log TFPRsi)−

αs(1− αs)
2

var log (1 + τksi) . (4)

The term var (log TFPRsi) captures resource misallocation across firms, and var log (1 + τksi)

captures the distortions that drive the capital-labor ratio, KsiLsi
, away from the first-best outcome.

Notice that under the log-normal assumption, only the dispersion of idiosyncratic distortions

matters for resource misallocation, while the correlation between TFPQ and the idiosyncratic

wedges is irrelevant for the size of the TFP loss due to misallocation.

Equation (4) implies that changes in aggregate manufacturing TFP come from two sources:

first, changes in the effi cient TFP or the distribution of physical productivity, captured by the

first argument on the right side of (4); second, changes in the allocative effi ciency, captured by

the second and third arguments on the right side of (4).

In order to further understand the driving forces of the time variation in the TFPR dispersion,

we decompose var (log TFPRsi) as

var (log TFPRsi) = var [log (1− τysi)] + α2svar log (1 + τksi) (5)

− 2αscov [log (1− τysi) , log (1 + τksi)] .

The first term on the right side of equation (5) captures the resource misallocation due to output

distortion, while the second term describes capital-specific distortion. An effi cient resource

allocation implies a value of zero for the variance of TFPR and each of the components on the

right side of equation (5).
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2.3 Size Distribution

Both physical productivity and idiosyncratic distortions jointly determine the distribution of

plant size, measured as individual plants’value added. In our model, the dispersion of firm size

translates into a dispersion of firm output,

PsiYsi = Y
1− 1

σ
si PsY

1
σ
s . (6)

Since σ ≥ 1, equation (6) implies that larger firms should have higher output. Moreover,

Ysi =
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)αsσ (1− αs
W

)σ(1−αs)
Ys. (7)

Combining equations (6) and (7), we have

PsiYsi ∝
[
Asi (1− τysi)
(1 + τki)

αs

]σ−1
. (8)

Absent distortions, more productive firms tend to be larger. If Asi and 1 − τysi are negatively
correlated (or Asi and 1 + τksi are positively correlated), more (less) productive firms tend to

be smaller (larger) than the effi cient size. As a result, the size dispersion becomes smaller. This

implies that when there are frictions, the effi cient size distribution is more dispersed than is the

actual size distribution.

Equation (8) suggests that, over time, a shift in the size distribution is driven by changes in

the distribution of both physical productivity and the idiosyncratic distortions, which determine

the effi cient size distribution and the gap between actual and the effi cient size distribution,

respectively. For example, a faster growth (relative to that of the industry average) of initially

less productive plants in physical productivity led to a thinner left tail of the effi cient size

distribution, whereas a larger fall in idiosyncratic distortions for the less productive plants

produced a shift of the actual size distribution closer to the effi cient one.

In reality, apart from idiosyncratic distortions, the dispersion of revenue productivity may

result from other frictions, such as overhead labor, quasi-fixed capital, idiosyncratic demand and

cost factors. Therefore, we follow Bartlesman, Haltiwanger, and Scarpetta (2013) to compute

the covariance between TFPQ and physical output as an alternative measure of misallocation.5

Intuitively, in the absence of distortions, more productive firms will produce more. This pre-

diction is robust to a wide range of models. The presence of idiosyncratic output or capital

wedges, as implied by equation (7), essentially adds noise to the profitability of plants, thus

reducing such a correlation. It is easy to show that the covariance between physical output and

5The covariance term is first proposed in the seminal paper of Olley and Pakes (1996) as a measure of
misallocation. In that paper, industry-level aggregate productivity is defined as the share-weighted average of
firm-level physical productivity. Accordingly, aggregate productivity can be decomposed into two terms: the
unweighted average of firm-level physical productivity, and a covariance term that reflects the extent to which
firms with higher than average productivity have a higher than average share of activity.
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TFPQ is linked to the covariance between physical and revenue productivity.

cov (log Ysi, logAsi)

σvar (logAsi)
= 1− cov (log TFPRsi, logAsi)

σvar (logAsi)
(9)

Equation (9) implies that there is a one-to-one mapping between the covariance using TFPQ and

physical output and the covariance between physical and revenue productivity, both normalized

by the dispersion of physical productivity.6 For example, without idiosyncratic distortions,

the left side of equation (9) is simply the correlation between TFPQ and physical output,

corr (log Ysi, logAsi) , and equal to one, which implies cov (log TFPRsi, logAsi) = 0. Such a

relationship allows us to proxy the covariance between physical productivity and physical output

with the covariance between physical and revenue productivity. We can further decompose this

covariance as

cov (logAsi, log TFPRsi) = corr (logAsi, log TFPRsi) std (logAsi) std (log TFPRsi) . (10)

Accordingly, a decrease in the covariance of physical and revenue productivity may result from

either a decrease in the correlation between the two, or a fall in the dispersion of physical or

revenue productivity.

3 Empirical Implementation

This section describes the empirical implementation of our theoretical model. We first describe

the data. We then introduce how to measure various distortions using plant-level information.

3.1 The Data

We use Chilean manufacturing census data from 1980 to 1996. The census is an annual survey of

manufacturing plants, collected by the ENIA, which covers firms employing at least 10 workers.7

The data contain information on plant balance sheets at the 4-digit level of aggregation. The

survey reports data on value added, employment, wages, materials, investments, liabilities,

assets, and capitals in different categories. Most of the variables are recorded in nominal terms.

We employ different deflators, collected from Liu (1990), to compute for real values with 1980

as base year. These deflators include output price deflator, price deflators for different capital

goods, intermediate material input price deflator, etc. The appendix 7.1 describes the procedure

to construct plant level capital stock and our data sampling.

We use a plant’s employment as measurement of plant labor input.8 During our sample

6 In addition, the covariance between TFPQ and physical output is linked to the covariance between TFPQ
and employment cov(log Ysi,logAsi)

var(logAsi)
= 1 + cov(logLsi,logAsi)

var(logAsi)
− αscov(log 1+τksi,logAsi)

var(logAsi)
. Due to the possible movement

of the covariance of TFPQ and capital wedge, we prefer using the covariance of TFPQ and TFPR as proxy for
the covariance between physical output and TFPQ.

7ENIA stands for Encuesta Nacional Industrial Annual (Annual National Industrial Survey).
8See also Bartlesman, Haltiwanger and Scarpetta (2013) and Petrin and Levinsohn (2012).
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period, Chile experienced a dramatic change in labor unions’bargaining power. According to

Edwards and Edwards (2000), the 1980 labor market reform allowed union affi liation to be

voluntary. It also decentralized collective bargaining to the firm-level. For example, the revised

labor law stipulated that in the absence of a new collective agreement, the old contract would

continue to be in effect while the negotiations proceeded. As a result, the employers’new con-

tract offer would have to contain a wage adjustment that matched accumulated inflation. Along

with the decentralization of collective bargaining, some firm-level unions bargained more suc-

cessfully than others.9 The heterogeneity of union bargaining power at the firm level motivates

us to use the employment as our measure of plant labor input. A robustness check using the

wage bill as measure of plant labor input is provided in Section 4.5.2.

Given that our focus is on tracking the dynamic changes in measures of allocative effi ciency,

we eliminate plants with incomplete data from the sample.10 Most of our analysis will focus

on the sub-sample labeled “unbalanced panel,” which contains plants for which we have full

information on value-added, labor, capital, and wages for all years the plant is in the sample. In

other words, we drop the plants from the database that systematically reported negative value

added and investment, as well as those that missed information on employees, fixed assets, value

added and wages in some year. We also drop plants at the top and bottom 0.2 percent of the

wage distribution and those at the top 0.1 percent of investment in each year (see Appendix 7.1

for details). After deleting these plants, we arrived at an average number of 1,437 plants per

year. For comparison, we also computed the corresponding statistics for a balanced panel, that

is, the plants that survived from 1980 to 1996.

Table 1 compares the number of plants, the employment distribution and the employment

share by subgroups in 1983 between the unbalanced panel and the entire sample. As shown by

the share of plants in each subgroup, our screening strategy somewhat over-samples the plants

with few employees. For example, the share of plants with fewer than 50 employees is 76.8 and

80.6 percent, in the full sample and in the unbalanced panel respectively. In Section 4.5.3, we

perform robustness checks using a balanced panel.

3.2 Computing Distortions

To calculate distortions, we set the rental price of capital to R = 0.10 and the elasticity of

substitution, σ, to 3. We normalize the wage rate to W = 1. The capital share in sector s, αs,

corresponds to the U.S. capital shares, as in Hsieh and Klenow (2009), which are taken from

the NBER productivity database.

9According to Table 1 in Palacio (2006), between 1990 and 2004, in Chile unions negotiated 64 percent of the
collective contracts and represented 72 percent of the number of workers who engaged in collective bargaining.
10We will perform several robustness checks to test the impact of this cleaning procedure.
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We compute distortions (or wedges) and productivity as follows:

1 + τksi =
α

1− α
WLsi
RKsi

(11)

1− τysi =
σ

σ − 1

WLsi
(1− α)PsiYsi

(12)

Asi =
Ysi

Kαs
si L

1−αs
si

= κs
(PsiYsi)

σ
σ−1

Kαs
si L

1−αs
si

, (13)

where κs = (PsYs)
− 1
σ−1 /Ps. Although we do not observe κs, relative productivity– and, hence,

reallocation gains– are unaffected by setting κs = 1 for each industry s.11

We then use measured Asi to construct

TFP es =

(
Ms∑
i=1

Aσ−1si

) 1
σ−1

= κs

Ms∑
i=1

(
(PsiYsi)

σ
σ−1

Kαs
si L

1−αs
si

)σ−1 1
σ−1

.

We follow HK and drop 1 percent of the tails of the distributions of TFPR, log
(
TFPRsi/TFPRs

)
,

and TFPQ, log

(
AsiM

1
σ−1
s /As

)
, for each year and recalculate the firm’s wage bill, capital, and

revenue, as well as physical and revenue productivity. At this stage, we calculate the industry

shares θs = PsYs/Y.

4 Main Results

In this section, we first decompose the aggregate productivity growth and quantify the contri-

bution of improvement of allocative effi ciency in aggregate TFP growth. We then describe the

evolution of various measures of productivity dispersion and plant-size distribution over time.

After this, we explore the resource misallocation and reallocation of factor inputs among plants

with different productivity. Finally, we conduct a robustness check of our main results.

4.1 Decomposition of Aggregate Productivity Growth

We now decompose aggregate TFP growth to explore the contribution of different components.

As equation (4) suggests, an improvement in both effi cient TFP and allocative effi ciency con-

tributes to aggregate TFP growth. Table 2 provides the percentage TFP gains from removing

idiosyncratic distortions in each industry. It is clear that the magnitude of such TFP gains

has a downward trend over time: in 1983, the aggregate manufacturing TFP would gain 76.1

percent by moving to effi cient allocation in each industry; by 1996, it dropped to around 47.8

percent. Therefore, allocative effi ciency improved by 19.2 percent (1.761/1.478-1) between 1983

and 1996, or 1.47 percent per year. The aggregate manufacturing TFP grew at an annual rate

11Since the level of aggregate TFP in each period influences the growth rate of TFP, we multiply the TFP
calculated under the assumption κs = 1 by (PsYs)

− 1
σ−1 /Ps to obtain the actual TFP in each period.
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of 3.83 percent per year between 1983 and 1996. Thus, our results suggest that 38.5 percent

(1.47/3.83) of aggregate manufacturing TFP growth during this period may be attributed to

better resource allocation.12 The remaining 60 percent of aggregate TFP growth can therefore

be attributed to the improvement in effi cient TFP.

An alternative approach to examine the contribution of improved in allocative effi ciency to

the within-industry manufacturing TFP growth is to run a panel regression of the log difference

in aggregate TFP against the log difference in our measured allocative effi ciency, TFPs,tTFP es,t
. The

regression includes year dummies to capture the aggregate shocks, while a constant is included

to capture the trend growth rate. The empirical specification is as follows

∆ log TFPs,t = α+ β∆ log

(
TFPs,t
TFP es,t

)
+ γt + εs,t.

The estimated β =0.328, and is statistically significant at 5 percent. This implies that between

1983 and 1996, a 1 percentage increase in allocative effi ciency would, on average, contribute to

0.33 percent increase in aggregate TFP.13

4.2 Productivity Dispersion

As discussed in section 2.3, the growth in effi cient aggregate TFP stems from changes in the

distribution of physical productivity, while improvement in allocative effi ciency originates from

changes in the dispersion of revenue productivity. Therefore, in this section, we report changes

in the distribution of both physical and revenue productivity. We also report changes in the firm

size distribution, which is jointly determined by the distribution of both physical and revenue

productivity.

To characterize the dynamics of productivity and plant-size distributions, we choose two

years, 1983 and 1996 to report the various measures of productivity dispersions and other

statistics. The initial year 1983, corresponds to the peak of the financial crisis, while 1996 is

the last year in our sample.

Panel (a) of Figure 2 plots the distribution of TFPQ, log

(
AsiM

1
σ−1
s /As

)
, for 1983 and 1996.

The distribution of TFPQ in 1983 has a fat left tail, which is consistent with policies in place

during 1983 that favored the survival of (relatively) less effi cient plants. Over time, the TFPQ

dispersion became narrower, indicating that these ineffi cient plants either exited the sample or

increased their physical productivity faster than the industry average. Table 3 shows that this

pattern is consistent across several measures of dispersion: the standard deviation of TFPQ

12Note that the degree of resource misallocation somehow increased in the 1990s. This could be potentially
due to the fact that our sample missed those plants which were newborn after 1981 due to a lack of data on their
initial capital stocks. The fraction of those plants in total plants increases from about 20 percent in the 1980s to
about one half in the 1990s. Accordingly, we are likely to under-estimate the improvement of allocative effi ciency
when resource were reallocated towards these plants. However, as we show below, missing those observations
would change little our findings about the main source of the improvement in physical productivity and allocative
effi ciency, especially before 1990.
13We thank one of the anonymous referees for suggesting this empirical formulation.
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fell from 1.463 to 1.341 between 1983 and 1996; the ratio of the 75th to the 25th percentile of

TFPQ dropped from 2.148 to 1.923; and the ratio of the 90th to the 10th percentiles dropped

from 3.839 to 3.582.14 Clearly, the change in the left tail of the TFPQ distribution contributed

to the fast growth of effi cient TFP.

Panel (b) of Figure 2 plots the distribution of TFPR, log
(
TFPRsi/TFPRs

)
, for the same

two years. Similar to that of physical productivity, the distribution of revenue productivity

is less dispersed in 1996 than 1983, reflecting an improvement in allocative effi ciency since

1983. Moreover, over time, the left tail has become significantly thinner, implying that the

less-productive plants’revenue productivity became closer to the industry mean. Again, Table

3 suggests that this pattern is consistent across different measures of the dispersion in revenue

productivity. Note that, consistent with our model, revenue productivity is less dispersed than

physical productivity, as our model predicts that prices and physical productivity are negatively

correlated. The numbers in Table 3 are also consistent with greater distortions in Chile than

in the United States. The standard deviation of TFPR in 1996 is 0.86, much larger than the

level of the United States in 1998, which was 0.45. Note that a thinner left tail of both TFPQ

and TFPR in 1996 could be the result of the same policy reform. This is because a policy that

removes a subsidy to an unproductive producer will potentially encourage the manager to make

more effort to increase the productivity of a plant, while reducing its output toward the effi cient

size.

We now explore the evolution of the covariance of physical and revenue productivity and

its various components. Table 3 shows that physical and revenue productivity are positively

correlated. For example, in 1983 the correlation between physical and revenue productivity was

0.898. In Panel (c) of Figure 2, since 1983, all its three components decline steadily until the

early 1990s, which jointly contributed to a significant fall in the covariance between physical and

revenue productivity.15 In particular, a potential explanation for the decline in the correlation

between physical and revenue productivity, as Table 3 suggests, is an increase in the correlation

between physical productivity and 1 − τy (—0.906 in 1983 versus —0.876 in 1996). This fact

provides additional evidence in favor of an improvement in resource allocation.

Both the improvement in allocative effi ciency and physical productivity led to changes in

the size distribution after the crisis. In Panel (d) of Figure 2, we plot the effi cient versus actual

plant size distribution in both 1983 and 1996. Consistent with the evolution of the distribution

of physical productivity, the effi cient plant size distribution became less dispersed and by 1996

had a thinner left tail, which suggests an improvement in effi cient TFP. The actual plant size

14With plant labor input measured as wage bills, between 1983 and 1996 for physical productivity, the standard
deviation fell from 1.21 to 1.073; the ratio of the 75th to the 25th percentile dropped from 1.639 to 1.329; and
the ratio of the 90th to the 10th percentiles dropped from 3.134 to 2.778. These measures of Chilean physical
productivity dispersion in 1996 are higher than their U.S. counterparts in 1998, which are 0.85, 1.22 and 2.22,
respectively (see Hsieh and Klenow, 2009).
15Consistent with the dynamics of covariance of physical and revenue productivity, we find the covariance

between physical productivity and employment increased steadily during the 1980s and leveled off in the 1990s.
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distributions in both years are less dispersed than their corresponding effi cient size distribution.

Interestingly, the gap between the actual and effi cient size distribution is mainly on the left tail.

This suggests that many small plants were implicitly subsidized and produced more than their

counterparts that did not receive implicit subsidies. In contrast to the effi cient size distribution,

overtime, the actual size distribution shifts slightly to the left. This implies that for the less

productive plants, while their physical productivity increases faster (relative to the industry

mean), they also experienced a drop in the implicit subsidy and were downsized.

Finally, to quantify the changes in the gap between effi cient and actual plant size for plants

of different sizes, we follow the approach of Hsieh and Klenow (2009). In Table 4 we show how

the initial relative size of big versus small plants would change if there were no idiosyncratic

distortions within each industry. The rows are the initial (actual) plant size quantiles, and the

columns are bins of effi cient plant size relative to actual size: 0—50 percent (the plant should

shrink in size by one-half or more), 50—100 percent, 100—200 percent, and 200+ percent (the

plant should at least double in size). We see that the column with the most plants is the 0-50

percent for every initial size quantile. In particular, most small plants (those in the bottom

quantile) should have shrunk by half or more compared to their actual size in 1983. The actual

plant-size distribution in 1996 is closer to its effi cient distribution than it was in 1983, especially

on the left tail. Specifically, in 1996, the fraction of small plants that should shrink by at least

50 percent has dropped to 19.1 percent. This pattern is consistent with the fact that, over

time, the correlation between physical productivity and 1 − τysi increases. Accordingly, less
productive plants were downsized, while more productive plants produced more.

We now quantify the contribution of various components of the improvement in allocative

effi ciency under the joint log normal assumption of physical productivity and idiosyncratic

distortions. We ask to what extent is the improvement in allocative effi ciency attributable to

the change in the variance of revenue productivity, as opposed to a change in the capital-specific

distortion? To answer this question, we re-order equation (4) as follows:

log TFP es − log TFPs =
σ

2
var (log TFPRsi) +

α(1− α)

2
var log (1 + τksi) . (14)

Accordingly, total allocative effi ciency can be decomposed into two components as captured by

the right side of equation (14). Panel (a) of Figure 3 plots the evolution of these two factors

over time. Clearly, the dispersion of TFPR tracks the total resource misallocation closely, as

both measures decline steadily since 1983. By contrast, the capital-specific distortion barely

changed. Panel (b) of Figure 3 plots the secular movement in var (log TFPR) and its different

components in equation (5). It is clear that almost all the decline in the dispersion of revenue

productivity can be accounted for by the decline in the dispersion of the output distortion.

Therefore, from here on we focus on the variations in dispersion in revenue productivity and

the output distortion.
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4.3 Misallocation across Plants of Different Productivity

In this section, we quantify the improvement of resource allocation among firms with different

levels of physical productivity. To this end, we classify firms into quintiles based on their physical

productivity in each year. We then decompose the variance of log TFPR into between- and

within-group variation as follows:

V ars(log TFPRsi) =
1

Ms

Q∑
q

Nq∑
i

(
log TFPRsqi − log TFPRs

)2
︸ ︷︷ ︸

overall variation

=
1

Ms

Q∑
q

NqV ar(log TFPRsi)q︸ ︷︷ ︸
within−group component

+
1

Ms

Q∑
q

Nq

(
log TFPRsq − log TFPRs

)2
︸ ︷︷ ︸

between−group component

,

where log TFPRsqi is the log of TFPR for plant i that belongs to the qth TFPQ quintile in

the s industry; log TFPRs is the mean of log TFPR for industry s; and log TFPRsq is the

mean of log TFPR for the qth TFPQ quintile within industry s. Similar to the aggregate

TFP decomposition, the above decomposition suggests that, over time, changes in allocative

effi ciency both within and between groups originate from changes in the gap between actual

and effi cient resource allocation, given the distribution of physical productivity.

The between-group component captures the dispersion of revenue productivity across groups

of firms with different physical productivity. By definition, this component eliminates the

idiosyncratic factors that may potentially drive the dispersion of revenue productivity (e.g. a

reduction of measurement error over time or volatility of idiosyncratic demand shocks) and

provides a clear picture of the degree of resource misallocation across different productivity

groups. By contrast, while the within-group component may still capture the degree of resource

misallocation within each quintile, it may be driven by other idiosyncratic factors.

Panel (a) of Figure 4 shows that the decline in the variance of revenue productivity since 1983

is mostly accounted for by the between-group variance, which is responsible for 84.8 percent of

the decline in the variance of revenue productivity.16 This finding suggests that improvements

in resource allocation across firms of different productivity, rather than a reduction in the

measurement error or volatility of idiosyncratic shocks, played a crucial role in driving the

decline of the dispersion in revenue productivity.

To further show the direction of resource reallocation, we plot the different elements of the

between-group variance in Panel (b) of Figure 4. The average TFPR of the bottom quintile

experienced the fastest convergence to the mean, followed by the top quintile.17 This result

16We compute the contribution of the changes in the between-group component between 1983 and 1986 in

changes in variance of TFPR of the same period as

∆ 1
N

Q∑
q

Nq(log TFPRq−log TFPR)2

∆V ar(log TFPR)
, where ∆x = x1996 − x1983.

17Again, for each quintile q, we calculate its contribution to the overall change in between-group component
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implies that the main reason for the decline in the between-group variance is that the average

revenue productivity of the bottom and top quintiles converged to the mean. Moreover, given

the positive correlation between physical and revenue productivity in 1983, the convergence of

both the bottom and top quintiles of revenue productivity to the mean implies that the revenue

productivity of the least (most) productive plants became larger (smaller).18

We would like to measure the extent to which the decline in the dispersion of output distor-

tions is attributed to the changes in the distribution of idiosyncratic distortions among plants

of different TFPQ. Accordingly, we decompose the variance of output distortion into between-

and within-group components in a similar fashion as what we did for the variance of log TFPR.

This variance is computed as follows:

vars [log (1− τysi)] =
1

Ms

Q∑
q

Nq∑
i

(
log (1− τyqi)− log (1− τy)

)2
︸ ︷︷ ︸

overall variation

=
1

Ms

Q∑
q

NqV ar log (1− τyi)q︸ ︷︷ ︸
within−group component

+
1

Ms

Q∑
q

Nq

(
log (1− τy)q − log (1− τy)

)2
︸ ︷︷ ︸

between−group component

.

Panel (c) of Figure 4 shows that the between-group variance still plays a dominant role

in the decline in the dispersion of output distortions. The contribution of the between-group

variance to the decline in the variance of total output distortion is 86.5 percent19. As suggested

by Panel (d), this decline is mainly driven by the convergence of the output distortion of the

bottom quintile to the industry mean, followed by that of the top quintile.20 Such a change

in output distortions would naturally trigger resource reallocation across firms with different

productivity, as we examine in the next section.

4.4 Reallocation of Factors

As mentioned before, changes in both physical productivity and idiosyncratic distortions have

an impact on resource allocation. We now provide additional evidence that capital and labor

as
∆
Nq
N (log TFPRq−log TFPR)2

∆between−group component . The measured contribution of the bottom and top quintiles to the between-group
component are 58.9 and 28.1 percent, respectively.
18 In contrast to the pattern of between-group variances, elements of within-group variance across all quintiles

follow similar dynamics. The results are available upon request.
19We compute the contribution of between-group variance to the decline in total output distortion as

∆ 1
Ms

Q∑
q

Nq

(
log(1−τy)

q
−log(1−τy)

)2
∆var log(1−τyi)

.
20We compute the contribution of each quintile q to the changes in between-group variance as
Nq
Ms

(
log(1−τy)

q
−log(1−τy)

)2
1
Ms

Q∑
q

Nq

(
log(1−τy)

q
−log(1−τy)

)2 . Accordingly, the contributions of the bottom and top quintiles are 53.7 and

31.0 percent, respectively.
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were reallocated across firms of different productivity. We first examine the distribution of

capital and labor between 1983 and 1996, plotted in the top two panels of Figure 5. Over time,

the distribution of both capital and labor became more dispersed. In particular, the density of

small plants in terms of capital and labor increased significantly. This result is consistent with

the above finding that the implicit subsidization of less-productive plants decreased significantly

over time.

The bottom two panels of Figure 5 plot the dynamics of capital and labor, respectively, for

the bottom TFPQ quintiles. Between 1983 and 1990, the bottom quintile’s labor input declined

significantly relative to the industry mean, while after 1990 this process slowed down. The

corresponding changes in capital stock exhibit a similar pattern, though this process accelerated

in the late 1980s.

A decline in capital and labor of plants in the bottom quintile results from a decline in

the idiosyncratic distortions they face relative to TFPQ. This can be seen from the following

decomposition of the resource reallocation of the qth TFPQ quintile:

αs∆
(
logKsi |q −logKs

)
+ (1− αs) ∆

(
logLsi |q −logLs

)
= −σ∆

[
log TFPRsq − log TFPRs

]
+ (σ − 1) ∆

[
logAsi |q −logAs

]
, (15)

where logXsi |q=
(∑Nq

i=1 logXsi

)
/Nq, logXs =

(∑N
i=1 logXsi

)
/N for X = A, K or L.21 The

first argument on the right side of equation (15) denotes in change in idiosyncratic distortions

and the second shows the changes in TFPQ, both relative to their corresponding industry

average. An increase in the TFPQ of plants in the bottom quintile, as we found previously,

tends to increase the bottom quintile’s demand for capital and labor, whereas an increase in the

idiosyncratic distortions work in the opposite direction. Our evidence about the decline in both

capital and labor of the bottom TFPQ quintile suggests that in terms of resource reallocation,

the magnitude of the decline of their implicit output subsidy dominates the increase in their

TFPQ for those least productive plants.22

To summarize, our evidence suggests that between 1983 and 1996, around 40 percent of

Chile’s aggregate manufacturing TFP growth is attributable to the improvement in allocative

effi ciency, shown as a fall in the dispersion of revenue productivity. Among those wedges, the

reduction in the dispersion of output distortions plays a dominant role in the reduction of

the revenue productivity dispersion. In particular, a reduction in the least-productive plants’

implicit output subsidy and, to a lesser degree, the most-productive plants’ implicit output

tax constitutes the most important factors that explain the reduction in resource misallocation

21See Appendix 7.2 for the derivation
22A reordering of equation (15) suggests that the increase of revenue productivity of plants in the bottom

quintile can be decomposed into two components: changes in TFPQ (holding constant the relationship between
TFPQ and idiosyncratic distortions) and changes in idiosyncratic distortions relative to TFPQ, shown up as
resource reallocation. We find that around 30 percent of the increase in the average TFPR of plants in the
bottom quintile is attributable to a faster decrease of their implicit subsidy relative to their TFPQ.
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during this period.

4.5 Robustness Checks

In this section, we conduct robustness checks for our main findings. We first restrict our sample

to a balanced panel of plants. We then link revenue productivity with a plant’s exit probability

to shed light on the main source of revenue productivity variation in our sample. After that, we

vary the elasticity of substitution among differentiated goods. Finally, we measure plant labor

input as wage bills.

4.5.1 Balanced versus Unbalanced Panel

In our benchmark sample, a plant could enter or exit at any time. To examine the quantitative

importance of the extensive margin versus the intensive margin in terms of effi cient TFP and

allocative effi ciency and their improvement over time, we now restrict the sample to plants

that survived the whole period (1980—1996), which we denote as the balanced panel. The total

number of observations for the whole sample period is now 9,129, with 537 in each year.

The right column of Table 5 reports the TFP gains of moving to effi cient allocation under the

balanced panel. Compared with the benchmark case, under the balanced panel the TFP gains

are now smaller, suggesting that part of the resource misallocation comes from the extensive

margin. However, the declining pattern of TFP gains over time still holds. Between 1983 and

1996, Chilean allocative effi ciency increased by 9.2 percent, or 0.71 percent per year. These

numbers are again smaller than their counterparts in the benchmark case (19 percent and 1.47

percent), suggesting that about half of the overall improvement in resource allocation comes

from the extensive margin. Aggregate manufacturing TFP for the balanced panel grew by 2.92

percent per year. Therefore, an improvement in allocative effi ciency contributed to about 24.3

percent (0.71/2.92) of the total TFP growth in Chile that took place between 1983 and 1996, a

magnitude about two-thirds of its counterpart in the benchmark case (38.5 percent).

Another margin we examine is whether changes in the distribution of physical productivity

between 1983 and 1986 originate from the extensive or intensive margin. Intuitively, both the

exit of less productive plants and their faster growth of physical productivity than the industry

average would lead to a thinner left tail. To this end, we plot the distribution of physical

productivity for the balanced panel in Figure 6. We find that changes in distribution of physical

productivity share a similar pattern with the unbalanced panel, that is, over time the left tail

of physical productivity became much thinner. This indicates that firms with different physical

productivity initially in 1983 had a different growth rate for physical productivity between 1983

and 1996. To confirm this conjecture, we classify firms in the balanced panel into quintiles

accordingly to their physical productivity in 1983. We then compute the average growth rate

of physical productivity between 1983 and 1996 for each quintile. Consistent with Figure 6,
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plants with lower initial physical productivity had enjoyed faster growth in TFPQ during our

sample period (Table 6). This suggests that between 1983 and 1996, changes in idiosyncratic

distortions, especially on the initially low TFPQ plants, not only contributed to an improvement

of resource allocation among incumbent firms, but also to their faster productivity growth.

Finally, for the unbalanced panel the positive correlation between TFPQ and TFPR in the

data may be driven by selection effects, as firms with high implicit taxes are induced to exit

unless they also have high TFPQ. Hence, even if plant-level effi ciency and idiosyncratic distor-

tions are uncorrelated, the observed plant-level frictions and effi ciency could potentially exhibit

positive correlation due to selection. As a result, the fall the positive correlation in the data

may simple reflect the selection effect. As a robustness check we compute the covariance and

correlation between physical and revenue productivity using the balanced panel. We find a

similar magnitude in the decline for correlation and covariance of physical and revenue produc-

tivity. This result suggests that the main driving force for the observed decline in covariance of

physical and revenue productivity is a fall in the underlying correlation between effi ciency and

micro-distortions.

4.5.2 Selection and Productivity

Our model assumes homogeneous markup across firms. Accordingly, revenue productivity dis-

persion reflects the dispersion of idiosyncratic distortions. In reality, however, within-industry

dispersion in revenue productivity or prices may reflect idiosyncratic demand shift or market

power variations (see Foster, Haltiwanger, and Syverson 2008). To distinguish the source of

TFPR dispersion, we next look at the correlation of TFPR with plant exit.

To this end, we define exit as ξijt = 1 if plant i in industry j at year t exit at t+ 1. We then

run the following pooled Probit regression23 (with industry and time dummies)

Pr(ξijt = 1) = F (βR0 + βR1 log(TFPRijt) + βQ1 log(TFPQijt)).

If the revenue productivity dispersion is mainly driven by idiosyncratic distortions, the estimated

coeffi cient for TFPR tends to be positive, βR1 > 0, suggesting that low TFPR firms are less likely

to exit. If, instead, variations in market power dominate revenue productivity dispersions, then

the estimated coeffi cient for TFPR tends to be negatively, since low TFPR firms tend to have

less market power and thus are more likely to exit.

Table 8 shows that lower revenue productivity is associated with a lower probability of

exit. A one-log-point decrease in TFPR is associated with 40.9 percent lower probability of

exit. On the other hand, lower physical productivity is associated with higher probability of

exit, consistent with the prediction of the standard model. The fact that a lower TFPR plants

have a lower probability of exit suggests that the main driving force of revenue productivity

23We thank one of the anonymous referees for suggesting this analysis. See Yang (2012) for a similar test.
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dispersion across Chilean manufacturing plants is the presence of idiosyncratic distortions.

4.5.3 Elasticity of Substitution

We now check the sensitivity of the TFP gains resulting from removing idiosyncratic distortions

to alternative values of the elasticity of substitution of differentiated goods. Table 5 reports

the TFP gains by removing idiosyncratic distortions within-industry for σ = 3 and σ = 5. As

expected, TFP gains increase for all years when σ = 5. Between 1983 and 1996, the allocative

effi ciency increased by 21.5 percent (2.12/1.74-1), or a gain of 1.66 percent per year. This

increase is more than its counterpart (19 percent or 1.47 percent per year) under σ = 3. As

equation (4) suggests, when σ is larger, changes in the variance of TFPR has a larger impact

on the allocative effi ciency.24

4.5.4 Labor Input Measured by the Wage Bill

In our baseline calculations, we use employment to measure plant labor input. Our logic is

that in the presence of collective bargaining, wage bills would conflate the quantity of labor

with idiosyncratic wage rates at the plant level. However, plants may differ in hours worked or

worker skills, which could mean that wages per worker are a better measure of the plant labor

input. In this section, we examine the robustness of our main results by using the wage bill as

the measure of plant labor input.

Table 7 reports the TFP gains of moving to effi cient allocation across years. It is noted that

the TFP gains are smaller than their counterparts in the baseline calculation. For example,

in 1996, the TFP gains from removing idiosyncratic distortions are 40.3 percent, as compared

with 47.8 percent in the baseline calculation.25 A smaller degree of resource misallocation

suggests that part of the wage difference in data may capture the idiosyncratic distortions in

labor market.26 Accordingly, using wage bills to proxy for labor inputs tend to understate the

dispersion of idiosyncratic distortions. Despite such a difference, between 1983 and 1996, the

allocative effi ciency improved by 21 percent, or 1.64 percent per year, which is larger than the

growth rate of allocative effi ciency (1.46 percent per year) under our baseline calculation.27

Therefore, we conclude that our main results are robust to alternative measures of plant labor

input.

24We find that the magnitude of the change in var (log TFPRsi) between 1983 and 1996 is very similar between
σ = 3 and 5 (−0.222 versus −0.230).
25Using the wage bill as the measure of plant labor input, Hsieh and Klenow (2009) report a value of 36.1 percent

of TFP gains in 1998 for U.S. manufacturing plants moving to effi cient resource allocation within industries.
26For example, more productive firms have to pay a higher wage.
27Moreover, the dominant role of the decline in the variance of TFPR and output wedge in the improvement

of allocative effi ciency is robust to the measure of plant labor input as wage bills.
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5 Banking Reforms and Changes in Allocative Effi ciency

What are the potential sources of resource misallocation among Chilean manufacturing plants

and what policies might have led to an improvement of allocative effi ciency observed during

the 1980s? It has been argued in the literature that, in Chile, the presence of business groups

(so called “grupo”) might have distorted the allocation of bank credit between firms owned or

controlled by business groups and independent firms before and during the financial crisis. It

is also noteworthy that Chile conducted a series of banking reforms in the 1980s. Therefore,

we make a first pass in linking the preferential credit policy by Chilean banks to our measured

idiosyncratic distortions and assess the potential roles that Chile’s banking reforms might have

played in the observed improvement of resource allocation after the 1982 financial crisis.

5.1 Preferential Credit Policy and Distortions

In this section, we first document the widespread presence of preferential credit policy among

Chilean banks towards the affi liated firms to motivate our following empirical exercises. We then

characterize the link between our measures of idiosyncratic distortions and a plant’s leverage

position and the link between the degree of resource misallocation and an industry’s leverage

position.

5.1.1 Preferential Bank Loan towards Affi liated Firms

Before the banking reform occurred during the early and mid-1980s, all the major business

groups in Chile were organized around one or more banks, which were used to channel credit

to the firms they owned or controlled. For example, in 1979 business groups directly controlled

10 major banks, whose equity represented more than 80 percent of all private bank equity.

Accordingly, firms in business groups were in a relatively favored financial position.28 This is

evident in the rates of debt growth. In 1980 and 1981, independent firms absorbed debt at a

real rate that exceeded their operating earnings rate by only a few percentage points. Yet, the

group-affi liated firms absorbed debt at rates that exceeded their returns on equity by close to

30 percent over the two-year period (Galvez and Tybout, 1985). In late 1982, the proportion

of credit that banks had granted to the firms directly related to the controlling business groups

became alarmingly high. In fact, some of the banks had granted almost half of their loans to

the controlling grupos (Table 4-2 of Edwards and Edwards, 1987).

The preferential credit access by group-affi liated firms is reflected by the drastically different

investment growth that occurred in 1981 in the presence of high interest rates. According

to Galvez and Tybout (1985), in 1981 independent firms reduced the rate of fixed capital

investment from 7 percent in 1980 to —6 percent. By contrast, group-affi liated firms reduced
28According to Tybout (1986), in 1978, when Chile’s capital accounts were still relatively closed, group-affi liated

firms enjoyed financial costs that average 14 percent a year, while independent firms were paying an average of
22 percent.
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the rate of fixed capital investment from 11 percent in 1980 to 8 percent in 1981, suggesting

these firms adjusted their investment plan by too little in reaction to rising interest rates and

financed the continuing expansion with additional debt.

Another potential channel for preferential access to bank loans by group-affi liated Chilean

firms to translate into output distortion is through working capital used to finance the purchase

of intermediate inputs. Edwards and Edwards (1987, pp.65) argue that in late 1970s there was a

strong credit demand, by all sorts of firms, to finance working capital. Also, according to Corbo

and Sanchez (1985), all the firms in their survey ranked the increasing cost to finance working

capital as the number one negative shock during the 1981—1983 financial crisis, suggesting the

major role bank loans played in funding of working capital. In addition, the findings of Oberfield

(2013) suggest that during Chilean financial crisis, deteriorating financing conditions increased

the cost of working capital required to purchase imported intermediates inputs.

5.1.2 Leverage Position and Distortions

Even though in our data it is not possible to identify which plants belong to the business

groups, in this section we make a first pass of relating a plant’s leverage position to measured

distortions. Intuitively, group-affi liated firms had a larger leverage position. To establish the

linkage between leverage and distortions, we regress TFPR, different wedges, and TFPQ on the

liability-asset ratio, total liabilitytotal assets , with sectoral fixed effects. For example, for TFPR, we specify

log
TFPRsi

TFPRs
= β0 + β1 log

(
total liability
total assets

)
+ εsi.

If the preferential credit access by group-affi liated firms is the main distortion driving our results,

we should observe that firms with a higher liability-asset ratio are less productive, and have

higher revenue productivity and a higher output wedge, 1 − τYsi . Table 9 reports estimates

of β1 for different measures of distortions. We see that for both 1980 and 1981 plants with

a higher liability-asset ratio had a higher output subsidy and a lower TFPR
TFPR

. Moreover, these

plants tended to have lower physical productivity. Thus, our finding points to preferential credit

policy as one plausible source of the observed idiosyncratic distortions.

Similarly, if group-affi liated firms are disproportionally represented by some particular in-

dustries, we should observe that those industries tend to be subject to greater resource mis-

allocation before the banking reform, assuming that the preferential credit policy is the main

policy distortion. We therefore check the cross-industry correlation between an industry’s me-

dian liability-asset ratio and the different measures of its misallocation. Table 10 shows that

during 1980-1981, industries with a larger median liability-asset ratio had, on average, a larger

variance of revenue productivity, output distortions and physical productivity. This positive

correlation got strengthen as Chilean economy moved towards the financial crisis.29 Therefore,

29According to p-values, all the correlation coeffi cients in 1981 are significant at 10% level, while in 1980 only
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our evidence suggests that before the banking reforms, bank’s preferential credit policy towards

affi liated firms were likely to be an important driver for resource misallocation among Chilean

manufacturing plants.

5.2 Banking Reforms and Changes in Distortions

Is it possible that banking reforms in Chile played a role in the observed improvement of

allocative effi ciency? In this section, we first document Chile’s banking reforms that took place

in the early and middle 1980s and their impact on the banks’self-loans. We then assess the role

of banking reforms by examining at the industry level the relationship between the industry’s

initial leverage position and the change in the allocative effi ciency since 1983.

5.2.1 Chile’s Banking Reforms

In response to the alarmingly large share of bank loans made to affi liated firms, Chile conducted

a series of banking reforms started in the middle of a banking crisis. In the late 1981, the

Superintendency of Banks adopted measures that limited the amount of bank exposure to

a single enterprise and to a bank’s own subsidiaries. But it was not until 1982 that a set

of comprehensive measures were approved that tightened bank supervision. The regulation

included a more precise definition of the limit on loans to a single enterprise that took into

account the interlocking ownership of firms. In June 1982, the Superintendency of Banks

announced a new self-loan limit of 5 percent of a bank’s total loans, meaning a 100 percent

of a bank’s equity. Two weeks later, the target was changed to a complete ban on self-loans to

shell companies, and the limit on self-loans to productive companies was reduced to 2.5 percent

of total loans.

Meanwhile, for the first time in the early 1980s, the Superintendency attempted to classify

loans on a risk scale. In April 1981, its required the classification of the 300 largest debtors.

However, it turned out that as of June 1982, when the overall result of the classification pro-

cedure was published, only 6 percent of loans were considered to be at risk. According to

Held (1989), the Superintendency of Banks did not review the classification of loans made by at

least some important banks, and self-loans among the business groups comprising the respective

banks had simply not been classified.

Chile’s new banking legislation was enacted in 1986 (Law No. 18,756) and supplemented in

1988 (Law No. 18707) and 1989 (Law No. 18818). A major issue in the new banking law was the

establishment of stringent restrictions on the power of banks to do business with related parties.

The various loans granted to firms owned by the same group of shareholders were viewed as a

single individual loan subject to relevant loan limitation – 5 percent or 25 percent of the bank’s

equity, depending on whether valid guarantees were involved (Article 84, No. 2). In addition,

var (log(1− τy)) is significant at 10% level.
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the agreed-upon terms for such debt had to be made at market value. The Superintendency of

Banks was also legally empowered to object to various kinds of contracts executed by the bank

and the related parties (Article 19 bis).

Following the series of banking reforms, the preferential credit access by group-affi liated

firms in Chile was largely eliminated. Figure 8, which replicates Figure 7 of Held and Jimenez

(1999), illustrates the substantial reduction of self-loan between June 1982 and 1998, both as a

proportion of bank’s equity and as a proportion of banks’total loans. The ratio of self-loans to

banks’equity dropped from 160 percent in 1983 to about 20 percent in 1986 and has remained

at that level since then. Similarly, the share of self-loans in banks’total loan portfolio declined

from 16 percent in 1983 to around 2 percent by 1988. Such an outcome suggests that the

Superintendency of Banks succeeded in preventing business groups from advancing preferential

credit access to their affi liated firms.

In addition, the reorganization of the banking sector led to a severe curtailing of banking

cartels. Between 1982 and 1985, the government intervened in 21 financial institutions; 14 were

liquidated and the rest were rehabilitated and privatized. A vigorous bank recapitalization

program was carried out in 1985 and 1986, based on selling stocks in those banks to small-scale

stockholders. In the late 1986, the Herfindahl concentration index for Chile’s banking sector

was 0.102, compared to 0.082 in late 1988. During the same period, the share of the five main

institutions in total loans fell from 61 percent to 55 percent.

5.2.2 Leverage Position and Improved Allocation

To assess the contribution of banking reforms to improved allocation, we explore the link be-

tween the magnitudes of different measures of an industry’s improvement in allocation and its

initial leverage position during 1980—1982. Our evidence suggests that plants with initially

higher liability-asset ratios had lower physical and revenue productivity initially. Accordingly,

industries with higher liability-asset ratios before the banking reforms are likely to be subject to

more severe resource misallocation due to the presence of self-loans. Therefore, if the banking

reforms were important for the allocative effi ciency gain in Chile after the financial crisis, we

should observe a larger improvement in allocation for industries with higher initial liability-asset

ratio.

Table 11 reports the cross-industry correlation of the initial liability-asset ratio during 1980-

1982 with the allocative effi ciency gain between 1983 and 1996, and changes in dispersion of

physical and revenue productivity. We use the industry’s value-added shares in the manufac-

turing sector as weights when computing correlation coeffi cients. The correlation of the initial

leverage position with the allocative effi ciency gain during this period is 0.64, and its correlation

with the decline in the dispersion of TFPR is 0.58. This suggests that the banking reforms in

Chile are likely to be important in the resource reallocation via the stringent restrictions on the
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power of banks to do business with related parties.

Another interesting finding is that industries with a higher initial liability-asset ratio in

1980—1982 also experienced a faster decline in the dispersion of TFPQ between 1983 and 1996,

with a weighted correlation coeffi cient of 0.55. A possible explanation is that according to

the new banking law, the Superintendency of Banks requires all banks to rate the quality

of all loans above a certain size according to their risks. In addition, the Superintendency

receives this information monthly and can compare risk ratings given by different banks to

the same companies. This reform would tend to increase banks’ incentive to monitor and

screen the business groups’self-loans, raising the intermediation cost for business-affi liated firms.

Accordingly, managers in group-affi liated firms would exert more effort to increase their plants’

productive effi ciency by, for example, better inventory management, streamlining production

lines, closing ineffi cient plants, and reassigning workers. All these process innovations would

likely contribute to an increase in TFPQ.

Apart from the banking reforms, other policy reforms Chile implemented during this period

might also have contributed to the allocative effi ciency gain established in this paper. For

example, the 1984 corporate tax reform lowered the tax on retained earnings and eliminated the

preferential treatment of a firm’s debt liabilities. By eliminating the taxation of retained profits,

this policy reform might have allowed larger and more productive firms to accumulate more

internal funds for further investment, rather than to distribute these funds as dividends from

retained earnings. As a result, larger firms expanded their production scales. The contribution

of corporate tax reforms to better resource allocation in Chile is clearly an interesting issue for

future research.

5.3 An Illustrative Model of Chile’s Banking Reform

A positive relationship between the industry’s initial leverage position and improvements in

allocative effi ciency is puzzling from the perspective of standard models of financial frictions with

idiosyncratic distortions (e.g. Buera and Shin, 2010 and Moll, 2014). According to these models,

an increase in an economy’s overall leverage ratio implies an improvement in resource allocation.

To reconcile this puzzle, we develop a simple model to formalize the idea that banking reforms

lead to both an improvement in resource allocation and a lower overall leverage position of an

economy. The key ingredient in the model is the heterogeneity in access to the credit market:

a fraction of them own both a bank and a project while the remaining entrepreneurs only own

a project. Accordingly, the collateral constraint on the project belonging to the entrepreneur

who also owns a bank is essentially not binding, while it is binding for a project belonging

to the independent entrepreneur. This creates idiosyncratic distortions that resemble output

distortion. And banking reforms, by restricting the share of self-loans in the net worth of the

entrepreneur who owns a bank, leads to a decline in the dispersion of TFPR.
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To fix idea, we sketch the key ingredients of the model in this section and refer the readers

to the model details in the online Appendix. Consider an economy inhabited by two types of

entrepreneurs: type-E and type-F, with share η and 1−η, respectively. A type-F (financially in-
tegrated) entrepreneur owns a bank, while a type-E (independent) entrepreneur does not. Both

types of entrepreneurs need to finance their working capital each period before the production

takes place. Specifically, a type-j entrepreneur’s problem is

πjt

(
sjt−1

)
= max

Ljt ,K
j
t

Ajt

[(
Kj
t

)α (
Ljt

)1−α]µ
−
(
WtL

j
t +RtK

j
t

)
(1 + it)

subject to (
WtL

j
t +RtK

j
t

)
(1 + it) ≤ ηjt s

j
t−1, η

j
t ≥ 1. (16)

where µ < 1, Y j
t ≡ Ajt

[(
Kj
t

)α (
Ljt

)1−α]µ
, Kj

t , and L
j
t denote the output, capital stock, and

labor of a type-j project, respectively. it is the interest rate for working capital loan, s
j
t−1 is

the net worth for a type-j entrepreneur. ηjt is a choice variable by the bank, as will be specified

below. ηjt = 1 implies that the project is self-financing.

Consistent with (12) , we can define the output distortion as

1− τ jyt ≡
WtL

j
t

(1− α)µY j
t

=
1

(1 + it)
(

1 + λjt

) , j = E or F. (17)

where λjt is the Lagrangian multiplier associated with (16) . Similarly, we define the revenue

productivity as TFPRjt ≡
Y jt

(Kj
t )
α
(Ljt)

1−α .
30 The revenue productivity can be expressed as

TFPRjt =
1

µ
(

1− τ jyt
) (Rt

α

)α( Wt

1− α

)1−α
.

The dispersion of TFPR can be proxied by the ratio of TFPR between the two groups of

entrepreneurs
TFPREt
TFPRFt

=
1− τFyt
1− τEyt

=
1 + λEt
1 + λFt

,

which implies var
[
log TFPRjt

]
= var

[
log
(
1− τytj

)]
= var

[
log
(

1 + λjt

)]
.

Now consider the bank’s choice of leverage ratio for each types of project, ηjt . For a type-F

project, since the bank and the project are owned by the same entrepreneur, there is no conflict

of interest. This implies that the bank would like to set ηFt suffi ciently large to maximize the

type-F project’s profit. By contrast, a type-E entrepreneur, since it does not own the bank,

has incentive to default on the bank loan. The optimal contract per Hart and Moore (1994),

30We can also define the capital wedge as 1 + τ jk,t ≡
αµ

1−α
WtL

j
t

RtK
j
t

. The online Appendix shows that 1 + τ jk,t = 1,

j = E or F.
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determines ηEt , which implicitly is positively related to the recovery rate of the collateral value.

Assuming that the constraint (16) is binding ONLY for a type-E project, we have λEt > λFt = 0,

which implies that τEyt > τFyt.

A banking reform sets the self-loan to be a fraction of the bank’s (the type-F entrepreneur’s)

net worth. In other words, the banking reform places an upper bound on the bank’s leverage

ratio, ηFt ≤ ηF . This is captured in our model by a decrease in ηFt , such that the type-F projects
are subject to a binding borrowing constraint. Accordingly, the Lagrangian multiplier associated

with working capital constraint becomes positive, λFt > 0. This implies that 1 − τFt = 1−it
1+λFt

will fall. Since the working capital constraint for a type-E project is unaffected by the banking

law’s restriction on self-loans, the leverage ratio for the type-E entrepreneur, ηEt will not change.

Accordingly, the dispersion of output distortion and TFPR, as measured by 1+λEt
1+λFt

will decline.

In the meantime, the overall leverage ratio of the economy will decline as a result of banking

reform. Therefore, consistent with Chile’s evidence found in this paper, our model predicts that

following the banking reform that restricts self-loans, the allocative effi ciency improves while

the overall leverage ratio of the economy declines.

6 Conclusion

Chile’s aggregate TFP grew spectacularly and became the country’s engine of output growth in

the decade following its 1982 financial crisis. In this paper, we use micro data on manufacturing

firms to assess the role that changes in allocative effi ciency played in aggregate productivity

growth during this period. We find that the cross-sectional allocative effi ciency significantly

improved and contributed to about 40 percent of the aggregate TFP growth between 1983 and

1996. Moreover, a reduction in the least productive plants’ implicit output subsidy and the

corresponding increase in their average revenue productivity were the most important reasons

for the reduction in resource misallocation during this period. Furthermore, less productive

plants enjoyed faster productivity growth than the industry average during this period. This

suggests that Chile’s policy reforms that eliminated the subsidies on the initially unproductive

plants contributed to not only an improvement of resource allocation among incumbent firms,

but also to their faster productivity growth.

We have provided a first pass in linking a series of Chile’s banking reforms during the

early and mid-1980s to the observed improvement in resource allocation. The regression results

suggest that in the early 1980s, Chilean plants with higher implicit output subsidy and thus

lower physical and revenue productivity had, on average, a higher liability-asset ratio, suggesting

preference credit access by these firms. Moreover, industries with a higher average liability-asset

ratio in the early 1980s enjoyed a faster improvement in allocative effi ciency since 1983, with

a correlation coeffi cient of 0.64. Such evidence suggests that Chile’s banking reforms during

the early and mid-1980s, which largely restricted self-loans within business groups, were likely
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important factors in reducing the resource misallocation between business group-affi liated and

independent firms. We provide a model to illustrate the mechanism for banking reforms to

improve resource allocation, which predictions are consistent with the above evidence.

Given the importance of output distortions in the improvement of resource allocation, the

next question is: what are the origins of these distortions, and what is the quantitative impor-

tance of banking reforms in reducing such distortions?31 A related issue is why similar reforms

have not happened in other countries after a financial crisis−for example, in Japan and Mexico.
Answers to these questions are important for shedding light on how Western economies can

emerge from their current recession as Chile did in the mid-1980s. We address some of these

issues in our ongoing research.

31To our knowledge, Buera, Moll, and Shin (2011) is the first attempt to provide a theory for idiosyncratic
distortions. They show that well-intended policy intervention during a period of market failure may evolve into
idiosyncratic distortions.
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7 Appendix

In this appendix, we first describe the procedure for data construction and sampling. We then

derive the aggregate TFP and decompose it into various components. Finally, we present a

simple model to capture the idea that banking reforms, by restricting self-loans, contribute to

the improvement in allocative effi ciency.

7.1 Data Construction and Sampling

The construction of capital series follows Liu (1990). There are five categories of capital good:

buildings, machines, vehicles, furniture and others. First, we deflate investment and capital for

each category using category-specific deflators. Most plants in our sample that existed before

1982 have capital stock available for two years 1980 and 1981. However, some plants may have

missing capital information in later years. For plants having capital available in 1980, we use

the perpetual inventory method to update forward the capital using real investment following

the law of motion for capital. For the plants without capital in 1980, we generate their capital

backward starting from the year when capital and investment information is available. We

assume a depreciation rate of 5 percent for building, 10 percent for machines and 20 percent

for vehicles, and zero for furniture and others. Finally, the aggregate real capital series for the

manufacturing sector is the sum of capital stock for each category using the 1980 base series.

For those plants where the 1980 capital information is missing, we aggregate using the 1981

based series.

In our original data, all plants have at least 10 employees. We clean the dataset in the

following steps.32 First, we drop the plants which enter/exit more than twice, and those that

stay in the sample for less than five consecutive years. Second, we drop those plants at the top

0.1 percent of investment in each year. Third, we drop those plants with negative value added

and investment, and missing information in employment, fixed assets, value added, and wage.

Finally, we drop plants within the top and bottom 0.2 percent tails of wage distribution in each

year.

7.2 Derivation of Aggregate TFP

In this section, we derive (1) and (4). Again, we use the growth accounting TFPs = Ys
Kαs
s L1−αs

s
.

The first-order conditions of a firm i in industry s imply

MRPLsi = W/ (1− τysi) (18)

MRPKsi = R (1 + τksi) / (1− τysi) , (19)

32Our results are robust to the order of the data cleaning steps.
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From the first-order conditions, we obtain

Ksi

Lsi
=
W

R

αs
1− αs

1

1 + τksi
. (20)

We can express Lsi and Ksi as functions of Ys. Equation (19) implies

αs [(1− τysi)Psi]
σ

σ − 1
Asi

(
Ksi

Lsi

)αs−1
= (1 + τksi)R. (21)

Note also:

Psi =

(
Ysi
Ys

)− 1
σ

Ps =

(
AsiK

α
siL

1−α
si

Ys

)− 1
σ

P =

(
Asi (Ksi/Lsi)

α Lsi
Ys

)− 1
σ

Ps (22)

=

(
Asi (Ksi/Li)

αs−1Ksi

Ys

)− 1
σ

Ps. (23)

Plugging (22) into (21) and using (20), we get

Lsi =
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

(
σ − 1

σ

)σ (R
α

)αs(1−σ)( W

1− αs

)αs(σ−1)−σ
Ys. (24)

Plugging (23) into (21) and using (20), we get

Ksi =
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)−1( W

1− αs

)(αs−1)(σ−1)
Ys. (25)

We now compute Ysi

Ysi = Asi

(
Ksi

Lsi

)αs
Lsi

= Asi

[
Wsi

R

αs
1− αs

1

1 + τksi

]αs
Lsi

=
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)ασ (1− αs
W

)σ(1−αs)
Ys. (26)

Using (24) and (25), we can rewrite L and K as

Ls =

Ms∑
i=1

Lsi = Ys

Ms∑
i=1

Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)( W

1− αs

)αs(σ−1)−σ
, (27)

Ks =

Ms∑
i=1

Ksi = Ys

Ms∑
i=1

Aσ−1si (1− τysi)σ

(1 + τki)
αs(σ−1)+1

(
σ − 1

σ

)σ ( R
αs

)αs(1−σ)−1( W

1− αs

)(αs−1)(σ−1)
. (28)
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Plugging (27) and(28) into the definition of TFP, we get

TFPs =
1[(

Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)+1

(
σ−1
σ

)σ ( R
αs

)αs(1−σ)−1 (
W
1−αs

)(αs−1)(σ−1))]αs
1[

Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

(
σ−1
σ

)σ ( R
αs

)αs(1−σ) (
W
1−αs

)αs(σ−1)−σ]1−αs

=

[
σ
σ−1

(
W
1−αs

)1−αs (
R
αs

)αs]σ
[
Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)+1

]αs [Ms∑
i=1

Aσ−1
si (1−τysi)σ

(1+τksi)
αs(σ−1)

]1−αs . (29)

Finally, using (26), we have

Ys =

[
Ms∑
i=1

Y
σ−1
σ

si

] σ
σ−1

=

Ms∑
i=1

(
Aσsi (1− τysi)σ

(1 + τksi)
αsσ

(
σ − 1

σ

)σ (αs
R

)αsσ (1− αs
W

)σ(1−αs)
Ys

)σ−1
σ


σ
σ−1

= Ys

[
σ − 1

σ

(αs
R

)αs (1− αs
W

)(1−αs)]σ [Ms∑
i=1

(
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1] σ
σ−1

,

which gives

σ

σ − 1

(
W

1− αs

)1−αs ( R
αs

)αs
=

[
Ms∑
i=1

(
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1] 1
σ−1

. (30)

Substituting (30) for σ
σ−1

(
1

1−αs

)1−αs (
R
αs

)αs
in the numerator of (29), we get equation (1) .

To derive equation (15), we rewrite TFPR for an individual plant as

TFPRsi = A
1− 1

σ
si

(
Kαs
si L

1−αs
si

)− 1
σ PsY

1
σ
s (31)

= A
1− 1

σ
si A

1
σ
−1

si

(1 + τksi)
αs

1− τysi
σ

σ − 1

(
R

αs

)αs ( W

1− αs

)1−αs
. (32)

Equation (32) implies that if an increase in (1+τksi)
αs

1−τysi is accompanied by a proportional increase

in A
1− 1

σ
si , then changes in TFPR show up as an increase in TFPQ (holding constant the rela-

tionship between TFPQ and TFPR). On the other hand, when (1+τksi)
αs

1−τysi increases while Asi

stays unchanged, then the relationship between TFPQ and idiosyncratic distortions (TFPR)
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changes. Taking log difference to (31) , we have

∆ log TFPRsi =

(
1− 1

σ

)
∆ logAsi −

1

σ
[αs∆ logKsi + (1− αs) ∆ logLsi] + ∆ logPsY

1
σ
s . (33)

Taking average of both sides of (33) across all firms for the qth quintile and across all firms in

the industry s, respectively, and subtracting each other, we obtain equation (15) .

7.3 Decomposition of Aggregate TFP

Under the central limit theorem, as M s →∞, equation (1) becomes

log TFPs =
σ

σ − 1
log

∫ (
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1
− αs log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

− (1− αs) log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

. (34)

Assuming that Asi, 1− τysi and 1 + τksi are joint log normal, we have

log

∫ (
Asi

(1− τysi)
(1 + τksi)

αs

)σ−1
= (σ − 1)E [logA] +

(σ − 1)2

2
var [logA] + (σ − 1)E [log (1− τysi)] +

(σ − 1)2

2
var [log (1− τysi)]

− αs (σ − 1)E [log (1 + τksi)] +
(σ − 1)2 α2s

2
var [log (1 + τksi)]

+ (σ − 1)2 cov [logAsi, log (1− τysi)]

− αs (σ − 1)2 cov [logAsi, log (1 + τksi)]− αs (σ − 1)2 cov [log (1− τysi) , log (1 + τksi)] . (35)

log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)+1

(36)

= (σ − 1)E [logA] +
(σ − 1)2

2
var [logA] + σE [log (1− τysi)] +

σ2

2
[var log (1− τysi)]

− [1 + αs (σ − 1)]E [log (1 + τksi)] +
[1 + αs (σ − 1)]2

2
var log (1 + τksi)

+ (σ − 1)σcov [logA, log (1− τysi)]

− (σ − 1) [1 + αs (σ − 1)] cov [logA, log (1 + τksi)]

− σ [1 + αs (σ − 1)] cov [log (1− τysi) , log (1 + τksi)] .
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log

∫
Aσ−1si (1− τysi)σ

(1 + τksi)
αs(σ−1)

= (σ − 1)E [logA] +
(σ − 1)2

2
var logA+ σE [log (1− τysi)]

+
σ2

2
var [log (1− τysi)]− αs (σ − 1)E [log (1 + τksi)]

+
[αs (σ − 1)]2

2
var [log (1 + τksi)]

+ (σ − 1)σcov [logA, log (1− τysi)]

− (σ − 1)αs (σ − 1) cov [logA, log (1 + τksi)]

− σαs (σ − 1) cov [log (1− τysi) , log (1 + τksi)] . (37)

Plugging (35), (36) and (37) into (34) and rearranging, we have

log TFPs

= E logAsi +
σ − 1

2
var logAsi

− σ

2
var [log (1− τysi)]−

αs + α2s (σ − 1)

2
var [log (1 + τksi)]

+ αsσcov [log (1− τysi) , log (1 + τksi)] . (38)

To see the relationship between equations (4) and (38), note that in (4), the first two

arguments are
1

σ − 1
log
∑

Aσ−1i = E [logA] +
σ − 1

2
var [logA] . (39)

var (log TFPRsi)

= var

(
log

(1 + τksi)
αs

1− τysi

)
= α2svar [log (1 + τksi)] + var [log (1− τysi)] (40)

− 2αscov [log (1− τysi) , log (1 + τksi)]

Plugging equations (39) and (40) into (4), we have

log TFPs = E logA+
σ − 1

2
[var logA]

− σ

2
var [log (1− τysi)]−

αs + α2s (σ − 1)

2
var [log (1 + τksi)]

+ αsσcov [log (1− τysi) , log (1 + τksi)] ,

which is the same as (38).
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7.4 A Simple Model of Banking Reforms

In this section, we develop a simple model to formalize the idea that the preferential bank loan

access by group-affi liated firms creates idiosyncratic distortions that resemble output distortion.

The model abstracts from many ingredients such as the entrepreneurial saving decision and the

household’s problem to highlight the asymmetric access to bank loan by different types of firms

and the effects of banking reforms on such asymmetry.33 In particular, we would like our model

to match the following facts found in this paper:

1. Before the banking reform, firms having a higher implicit output subsidy, 1− τy were less
productive in terms of physical productivity and had a higher debt-to-asset ratio.

2. The banking reform, which had restricted the ratio of self-loans in the bank equity, has

led to a decline in 1 − τy for firms with low physical productivity (and initially higher

1− τy).

3. After the banking reform, the variance of output distortion and, thus, revenue productivity

declined steadily, while the covariance between physical and revenue productivity declined.

Consider an economy with a continuum of entrepreneurs with unit mass. Entrepreneurs have

access to the technology of operating projects and are residual claimants on the profits. Each

entrepreneur can operate only one project. Entrepreneurs are classified into two types, type-E

and type-F, with share η and 1−η, respectively. A type-F (financially integrated) entrepreneur
owns a bank, while a type-E (independent) entrepreneur does not.

7.4.1 Technology

The revenue function of a type-j project is given by

yjt = Ajt

[(
kjt

)α (
ljt

)1−α]µ
, j = E or F.

where yjt , k
j
t , and l

j
t denote the output, capital stock, and labor of a type-j project, respectively.

For simplicity, we assume away the within-group heterogeneity and time variation in physical

productivity , i.e. AEt = χE , AFt = χF , where 0 < χF < χE reflecting that the technology of a

type-E project is more effi cient than that of a type-F project.34

33A fully fledged model is available upon request.
34 In an appendix, available upon request, we extend the model to allow for entrepreneurial effort choices and

the fixed banking intermediation costs, thus endogenizing a project’s mean TFPQ. The banking reform forces
the bank to exert more strict screening or monitoring on a self-loan. This would incur a fixed intermediation
cost to type-F entrepreneurs. With a negative wealth effect, type-F entrepreneurs would exert more effort, which
enhances their TFPQ.
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7.4.2 Working Capital Finance

Both types of projects need to advance working capital before production takes place. Entre-

preneurs finance working capital with their net worth or a bank loan. A type-E entrepreneur

has only limited access to bank lending due to limited enforcement of debt repayment. By con-

trast, a type-F entrepreneur can borrow freely from the bank, reflecting the preferential policy

of Chilean bank loans toward affi liated enterprises. Accordingly, credit is misallocated between

the two types of entrepreneurs.

7.4.3 The Type-j Entrepreneur’s Problem

At time t, a type-j entrepreneur with net worth sjt−1 solves

πjt

(
sjt−1

)
= max

ljt ,k
j
t ,b

j
t

Ajt

[(
kjt

)α (
ljt

)1−α]µ
− bjt (1 + it) (41)

subject to

(
Wtl

j
t +Rtk

j
t

)
(1 + it) ≤ bjt , (42)

bjt ≤ η
j
t s
E
t−1, η

j
t ≥ 1. (43)

(42) is the working capital constraint in that the size for working capital is constrained by the

value of bank loan. (43) is the borrowing constraint, stating that the bank loan is constrained

to be a fraction ηjt of entrepreneur’s net worth. η
j
t is a choice variable by the bank, as will be

specified below. ηjt = 1 implies that the project is self-financing. Implicitly, entrepreneurs have

incentive to default on the factor payment. Accordingly, the size of their working capital loans

is constrained to be proportional to the individual entrepreneur’s net worth, which serve as the

collateral for bank loan. It is easy to see that the working capital constraint (42) is binding.

Accordingly, the entrepreneur’s problem can be rewritten as

πjt

(
sjt−1

)
= max

ljt ,k
j
t

Ajt

[(
kjt

)α (
ljt

)1−α]µ
−
(
Wtl

j
t +Rtk

j
t

)
(1 + it)

subject to (
Wtl

j
t +Rtk

j
t

)
(1 + it) ≤ ηjt s

j
t−1, η

j
t ≥ 1. (44)

The first-order conditions for labor and capital are

MRPLjt ≡ (1− α)µAjt

(
kjt

)αµ (
ljt

)(1−α)µ−1
= (1 + it)

[
1 + λjt

]
Wt, (45)

MRPKj
t ≡ αµA

j
t

(
kjt

)αµ−1 (
ljt

)(1−α)µ
= (1 + it)

[
1 + λjt

]
Rt, (46)
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where λjt is the Lagrangian multiplier associated with (44) . Moreover, consistent with equation

(12) in the main text, we can define the output distortion as

1− τ jyt ≡
Wtl

j
t

(1− α)µyjt
=

1

(1 + it)
(

1 + λjt

) , j = E or F

Similarly, we define the capital wedge as 1 + τ jk,t ≡
αµ
1−α

Wtl
j
t

Rtk
j
t

, and revenue productivity as

TFPRjt ≡
yjt

(kjt)
α
(ljt)

1−α . Equations (45) and (46) implies that 1 + τ jk,t = 1, j = E or F. The

revenue productivity can be expressed as

TFPRjt =
1

µ
(

1− τ jyt
) (Rt

α

)α( Wt

1− α

)1−α
.

The dispersion of TFPR can be proxied by the ratio of TFPR between the two groups of

entrepreneurs
TFPREt
TFPRFt

=
1− τFyt
1− τEyt

=
1 + λEt
1 + λFt

,

which implies var
[
log TFPRjt

]
= var

[
log
(

1− τ jyt
)]

= var
[
log
(

1 + λjt

)]
. Finally, the covari-

ance between physical and revenue productivity is

cov (log TFPQ, log TFPR) = η (1− η)
(
χE − χF

)
log

1 + λEt
1 + λFt

.

Note that the fact that more productive projects (type-E projects) are more likely to be finan-

cially constrained implies a positive covariance between physical and revenue productivity.

7.4.4 The Bank’s Problem

Each period, the bank draws deposits dt, which is the sum of deposits from type-E entrepreneur,

sEt and from the foreign lender, sIt . The bank promises to pay a deposit rate 1 + it+1 at period

t + 1. The bank’s assets, which are the sum of the bank’s deposit and its net worth (sFt ), are

then lent to each type of entrepreneur at an lending rate 1 + ilt+1. For expositional simplicity,

the lending rate for both types of firms is the same. Moreover, we assume that banks commit to

repay all the deposit. The bank solves a two-stage problem: in the first, it chooses the amount

of deposit.

πBt+1 ≡ max
dt

(
1 + ilt+1

) (
dt + sFt

)
− (1 + it+1) dt

where dt is bank demand for deposits. It is easy to see that the first-order condition implies

that the equilibrium deposit rate equals the lending rate, that is 1 + ilt+1 = 1 + it+1. As a result,

the bank profit is πBt+1 = (1 + it+1) s
F
t .
35

35Note that in equilibrium ilt+1 is such that the bank loan market clears

sEt + sFt + sIt = bEt+1 + bFt+1.
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Given the bank’s demand for deposit, dt, the bank sets a financial contract with each type

of projects. For a type-F project, since the bank and the project are owned by the same

entrepreneur, there is no conflict of interest. This implies that the bank would like to set ηFt

suffi ciently large to maximize the type-F project’s profit. Without tight banking regulation,

as was the case in Chile before the banking reform, the bank simply sets ηFt such that the

borrowing constraint (43) is essentially not binding. By contrast, a type-E entrepreneur, since

it does not own the bank, has incentive to default on the bank loan. As a consequence, the bank

would advance the loan based on the collateral of the type-E entrepreneurs, that is, their bank

deposit. The optimal contract per Hart and Moore (1994), determines ηEt , which implicitly is

positively related to the recovery rate of the collateral value. Assuming that the constraint (44)

is binding ONLY for a type-E project, we have λEt > λFt = 0, which implies that τEyt > τFyt.

A banking reform sets the self-loan to be a fraction of the bank’s (the type-F entrepreneur’s)

net worth. In other words, the banking reform places an upper bound on the bank’s leverage

ratio, ηFt ≤ ηF . This is captured in our model by a decrease in ηFt , such that the type-F projects
are subject to a binding borrowing constraint. Accordingly, the Lagrangian multiplier associated

with working capital constraint becomes positive, λFt > 0. This implies that 1− τFt = 1−it
1+λFt

will

fall. Since the working capital constraint for a type-E project is unaffected by the banking law’s

restriction on self-loans, the leverage ratio for the type-E entrepreneur, ηEt will not change. This

implies that the overall leverage ratio of the economy will decline as a result of banking reform.

Accordingly, the dispersion of output distortion and TFPR, as measured by 1+λEt
1+λFt

will decline.

Correspondingly, the covariance between physical and revenue productivity also declines.
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Table 1: Number of Plants and Employees by Subgroups (1983)

All plants (shares) Unbalanced panel (shares)
Number of
Employees

#plants
Share of
Total (%)

Labor (%) #plants
Share of
Total (%)

Labor (%)

10—19 1720 41.7 10.7 768 44.3 14.0
20—49 1447 35.1 19.5 629 36.3 24.0
50—99 491 11.9 15.6 179 10.3 16.9
100—249 314 7.6 22.7 119 6.9 25.1
250—499 96 2.3 14.7 30 1.7 13.4
500—999 36 0.9 11.2 8 0.5 6.5
>=1000 24 0.6 5.7 0 0 0

Table 2: TFP Gains from Removing Idiosyncratic Distortions within Industries

Year 1983 1984 1985 1986 1987 1988 1989
TFP gains 76.1 69.4 63.9 61.4 50.8 54.6 45.7

Year 1990 1991 1992 1993 1994 1995 1996
TFP gains 43.2 53.4 40.6 47.3 46.2 44.2 47.8

Notes: Entries are (Y e/Y − 1) × 100, where Y/Y e = ΠS
s=1

(
ΣMs
i=1

{
Asi
As

TFPRs
TFPRsi

}σ−1) θs
σ−1

.

TFPRsi = PsiYsi
Kαs
si L

1−αs
si

. This table is based on HK (2009)’s table IV.
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Table 3: Summary Statistics for the Distribution of Wedges and Productivity

log TFPQsi log TFPRsi log (1− τysi) log (1 + τksi)

1983
SD 1.463 0.971 0.945 1.482
90—10 3.839 2.538 2.491 3.597
75—25 2.148 1.393 1.393 1.931
Correlation with Asi 1 0.898 -0.906 -0.335

1996
SD 1.341 0.860 0.846 1.568
90—10 3.582 2.206 2.150 4.009
75—25 1.923 1.204 1.273 2.223
Correlation with Asi 1 0.824 -0.876 -0.458

Notes: For each plant i, TFPQsi ≡ Ysi
Kαs
si L

1−αs
si

, TFPRsi ≡ PsiYsi
Kαs
si L

1−αs
si

. S.D. = standard deviation,

75—25 is the difference between the 75th and 25th percentiles, and 90—10 the 90th and 10th percentiles.
Industries are weighted by their value-added shares. The first column is based on HK (2009)’s table I
and II.

Table 4: Percent of Plants: Actual Size vs. Effi cient Size

1983 0—50 50—100 100—200 200+
Top size quantile 10.0 6.9 4.7 3.3
2nd quantile 16.9 4.5 2.3 1.3
3rd quantile 21.9 2.0 0.5 0.6
Bottom quantile 24.3 0.6 0.1 0.1
1996 0—50 50—100 100—200 200+
Top size quantile 8.6 7.8 6.0 2.5
2nd quantile 12.6 5.9 3.3 3.2
3rd quantile 14.3 4.8 3.3 2.5
Bottom quantile 19.1 2.8 1.8 1.3

Notes: In each year, plants are put into quantiles based on their actual value added, with an equal number
of plants in each quantile. The hypothetically effi cient level of each plant’s output is then calculated,
assuming that idiosyncratic distortions are removed. The entries above show the percent of plants with
effi cient/actual output levels in the four bins: 0%—50% (effi cient output less than half of actual output),
50%—100%, 100%—200%, and 200%+ (effi cient output more than double actual output). The rows add
up to 25%, and the rows and columns together to 100%. This table is based on HK (2009)’s table V.
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Table 5: Sensitivity Analysis: TFP Gains from Removing Idiosyncratic Distortions within
Industries

TFP Gain
σ = 3,Unbalanced Panel σ = 3,Balanced Panel σ = 5,Unbalanced Panel

1983 76.1 51.5 111.6
1984 69.4 47.8 97.0
1985 63.9 43.8 86.7
1986 61.4 40.5 83.7
1987 50.8 36.8 80.2
1988 54.6 39.0 81.4
1989 45.7 32.2 66.1
1990 43.2 35.2 67.2
1991 53.4 39.1 76.8
1992 40.6 33.3 53.2
1993 47.3 39.3 66.8
1994 46.2 38.4 68.3
1995 44.2 35.4 51.5
1996 47.8 38.7 74.1

Notes: See notes in Table 4.
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Table 6: Average Growth Rate of TFPQ by Quantitles of TFPQ in 1983

Quintile of TFPQ
(in 1983)

gTFP q
mean of y-by-y
growth 83-96

1 0.174
2 0.119
3 0.048
4 0.070
5 0.001

Table 7: TFP Gain by Removing Idiosyncratic Distortions (L= Wage Bill)

Year 1983 1984 1985 1986 1987 1988 1989
TFP gains 70.2 58.0 55.6 50.9 44.7 50.4 45.4

Year 1990 1991 1992 1993 1994 1995 1996
TFP gains 34.3 40.0 37.2 39.3 38.2 38.5 40.3

Notes: See notes in Table 4.

Table 8: Regression of Exit on TFPR and TFPQ

w/o. Time Dummy w. Time Dummy

exit on TFPR 0.409
(0.059)

*** 0.406
(0.062)

***

exit on TFPQ −0.434
(0.033)

*** −0.452
(0.038)

***

Notes: The dependent variables are dummies for exiting plants. The independent variables are the
deviation of log(TFPR) and log(TFPQ) from their industry means. Entries above are the estimated
coeffi cients on log(TFPR) and log(TFPQ), with standard errors in parentheses. Regressions also include
sector dummies and, for the right column, time dummies. Results are pooled for all years between 1983
and 1995. This table is based on HK(2009)’s table VIII.
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Table 9: Regression of TFPQ and TFPR with Liability-Asset Ratio (OLS)

logTFPR
TFPR

log (1− τY ) log (1 + τK) log (Asi)

β1 β1 β1 β1

1980 −0.418
(0.096)

*** 0.200
(0.115)

* −0.822
(0.159)

*** −0.386
(0.174)

**

1981 −0.394
(0.145)

*** 0.471
(1.135)

*** −0.132
(0.159)

−0.683
(0.230)

***

Notes: Robust Standard error in brackets. *** if significant at 1%; ** if significant at 5%; * if significant
at 10%.

Table 10: Cross-Industry Correlation of Liability-Asset Ratio with Measures of Distortions

1980 1981

log
(
TFP es
TFPs

)
-0.074 0.518

vars (log TFPR) 0.012 0.493
vars (log (1− τY )) 0.352 0.527
vars (log TFPQ) 0.068 0.340

Note: Entries are cross-industry weighted correlations between industry median liability-asset ratios and
different measures of resource misallocation.

Table 11: Cross-Industry Correlation of Liability-Asset Ratio (1980—1982) with Changes in
Allocative Effi ciency

Correlation

∆ log
(
TFP es
TFPs

)
0.638

∆vars (log TFPR) 0.580
∆vars (log (1− τY )) 0.717
∆vars (log TFPQ) 0.549

Note: Entries are weighted correlations between the industry’s median liability-asset ratio in 1980—1982
and changes in various moments during 1983—1996. For each industry, the liability-asset ratio is computed
as the simple average of the median liability-asset ratios across 1980-1982. ∆ for each moment in the
left column denotes its 1983 value minus its 1996 value. The weighted correlation is computed using
industry value-added shares as weights.
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Figure 1: Chilean Manufacturing Value-Added and TFP
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Note: Panel (a) shows Chilean GDP and value-added (referred to as “VA”) for the manufacturing

sector, while panel (b) shows value added and TFP for the manufacturing sector. Measured TFP is

V A
KαL1−α with α = 0.3. Both GDP and the value-added for manufacturing sector are detrended by 2

percent per year and normalized such that their 1980 values equal to 100. The manufacturing TFP is

detrended by 1.4 percent per year and normalized in a similar way.

Source: authors’calculations.
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Figure 2: Distribution of Productivity and Plant Size
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P anel (c): Correlation between TFP Q and TFP R
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Note: Panel (a) plots the distribution of TFPQ, log

(
AsiM

1
σ−1
s /As

)
, while panel (b) plots the

distribution of TFPR, log
(
TFPRsi/TFPRs

)
, both for 1983 and 1996. Panel (c) plots the time-series

of correlation between logTFPQ and logTFPR. Value added share is used as the weight for computing

the industry mean. Panel (d) plots the effi cient and actual plant size distribution, log
(
PsiYsi/PsYs

)
,

where PsYs refers to the mean value-added of industry s.

Source: authors’calculations.
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Figure 3: Decomposition of Resource Misallocation
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Note: Panel (a) plots total misallocation and its two components, variance of TFPR, measured as
σ
2 var (log TFPRi), and the dispersion on plant-specific distortion to capital-labor ratio, as captured

by α(1−α)
2 var [log (1 + τki)] . Panel (b) plots variance of TFPR and its various components between

1980 and 1996. Variances and components plot in the graphs are the weighted mean across sectors.

Value-added share, θs, is used as the weight for computing the mean, and α =
∑S

s=1 θsαs.

Source: authors’calculations.
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Figure 4: Quantile Analysis of Dispersion in TFPR and Output Distortion
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Note: Panel (a) plots TFPR dispersion, var (log TFPRsi) , and its within-group and between-group

components. Panel (b) plots the quintiles average of var (log TFPRsi) , together with its between-group

component. Panel (c) plots the dispersion of output distortion, var [log (1− τysi)] , and its within-group
and between-group components, while panel (d) plots quintile averages of dispersion of output, together

with its between-group component. Variances and components plot in the graphs are the weighted mean

across sectors. Value-added share, θs,is used as the weight for computing the mean.

Source: authors’calculations.
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Figure 5: Capital and Labor Allocation over Time
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Note: Panel (a) and (b) plot the distribution of capital and labor, measured by log
(
Ksi/Ks

)
and

log
(
Lsi/Ls

)
for 1983 and 1996. Panel (c) and (d) plot the time series of capital and labor in the bottom

quintile, measured by as log
(
Ks |1 /Ks

)
and log

(
Ls |1 /Ls

)
. Ks denotes the mean of capital for s

industry. Ks |1 denotes the mean of capital for the bottom quintile of s industry. Similar definition

applies to labor.

Source: authors’calculations.
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Figure 6: Distribution of TFPQ in the Balanced Panel
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Figure 7: Self-Loan as a Fraction of Banks’Equity and Total Loans
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Figure 8:

Note: The dash circle line refers to the ratio of self-loan to banks’equity; the dash dot line refers to

the ratio of self-loan to the banks’total loan. The data comes from Held and Jimenez (1999).
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