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Abstract

Traditional studies of the Dutch disease do not typically account for productiv-

ity spillovers between the booming energy sector and non-oil sectors. This study

identifies and quantifies these spillovers using a Bayesian Dynamic Factor Model

(BDFM). The model allows for resource movements and spending effects through

a large panel of variables at the sectoral level, while also identifying disturbances

to the real oil price, global demand and non-oil activity. Using Norway as a repre-

sentative case study, we find that a booming energy sector has substantial spillover

effects on the non-oil sectors. Furthermore, windfall gains due to changes in the

real oil price also stimulates the economy, but primarily if the oil price increase is

caused by global demand. Oil price increases due to, say, supply disruptions, while

stimulating activity in the technologically intense service sectors and boosting gov-

ernment spending, have small spillover effects on the rest of the economy, primarily

because of reduced cost competitiveness. Yet, there is no evidence of Dutch disease.

Instead, we find evidence of a two-speed economy, with non-tradables growing at

a much faster pace than tradables. Our results suggest that traditional Dutch dis-

ease models with a fixed capital stock and exogenous labor supply do not provide

a convincing explanation for how petroleum wealth affects a resource rich economy

when there are productivity spillovers between sectors.
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1 Introduction

Over the last decade, the value of the Norwegian oil and gas industry - including services

- grew by approximately 90 percent, while employment in this industry grew by 70 per

cent. No other industry exhibited such growth rates.

The oil and gas boom in the North Sea has been the principal, but by no means,

only cause of this substantial growth. Strong rises in oil and gas prices have caused

Norway’s terms of trade to double since 2001. These price rises have profound effects

on the economy, as they constitute both a large shift in relative prices, which induces

resource movements between industries, and a large increase in real incomes, which boosts

aggregate demand in the overall economy.

While the recent financial crisis has suggested that energy rich countries - such as Nor-

way - have occupied a different and better position than many other indebted industrial

countries,1 it is not clear that the gains from the energy sector benefited domestic sectors

equally. For instance, employment in the construction and business sectors in Norway has

increased by 30-40 percent over the last decade, while employment in the manufacturing

industry and the retail, hotel and service industry has either fallen or hardly grown.

The energy boom has prompted much discussion of Norway having become a two-

speed economy. There are concerns that the gains from the boom largely accrue to the

profitable sectors servicing the energy industry, such as the business services, financial and

construction sectors, while the rest of the country is being negatively affected by increased

wage costs, an appreciated exchange rate and a lack of competitiveness as a result of the

boom. Such a phenomenon has commonly been referred to in the literature as the Dutch

disease, based on similar experiences in the Netherlands in the 1960s.2 Concerns are also

raised in other resource rich countries recently, such as the petroleum producer Canada

and the mineral rich Australia.3

Much theoretical work has analyzed the benefits and costs of energy discoveries (see,

e.g., Corden (1984) for a survey), but there have been relatively few empirical studies.

Those that have investigated the empirical relationship between a booming energy sec-

tor and the macro economy have typically employed a structural vector autoregression

(SVAR), which only includes a single sector such as manufacturing in each model, see,

e.g., Hutchison (1994) and Bjørnland (1998), or a panel data approach that studies com-

mon movements in manufacturing across numerous countries, see, e.g., Ismail (2010).

However, neither of these approaches accounts for all of the cross-sectional co-movement

of variables within a country. That is, spillovers between sectors of the economy can be

substantial due to intermediate inputs between the sectors and induced effects through

increased demand and income in the energy sector or the sectors that are indirectly af-

1Mehlum et al. (2006) argue that in countries with strong property rights protection and little corruption,

natural resources may have contributed to growth.
2Following the discovery and development of natural gas industries in the 1960s, the Netherlands experi-

enced a period of real exchange rate appreciation relative to other nations and a corresponding loss of

competitiveness for traditional industries that eventually contracted.
3See e.g., Lama and Medina (2012) for a discussion of the usefulness of exchange rate stabilization in

relation to Dutch disease in Canada, and Corden (2012) for a discussion of the fast growing Australian

mining sector on the one side and the lagging manufacturing sectors on the other.
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fected. In addition, there may be shared productivity dynamics. For Norway, where oil

extraction is conducted offshore and with greater technical difficulties than for typical on-

shore extraction, productivity (knowhow) spillovers through high-tech industries might be

substantial. Lastly, there are other sources of shocks that could be causing the economic

boom that need to be controlled for, such as common global demand shocks.

We contribute to this area of the literature by explicitly identifying and quantifying

the linkages between a booming energy sector and sectoral performance in the rest of

the economy, while also allowing for independent disturbances to the real price of oil,

world activity and domestic (non-oil) activity. Our main focus is to test the hypothesis of

Dutch disease by separately examining the windfall gains associated with energy booms

and real oil price changes for various sectors, while also controlling for changes in global

and domestic activity. Having established the linkages, we analyze how the domestic

economy responded to the energy boom and energy price changes in different periods.

To explore these questions, we estimate a Bayesian Dynamic Factor Model (BDFM),

that includes separate activity factors for oil and non-oil sectors in addition to global

activity and the real price of oil. The BDFM is particularly useful to answer the research

questions we address.4 First, the interdependence between the different branches of an

economy - traditionally measured by the input-output tables from the National Accounts -

do not account for the indirect spillover effects (productivity or demand) between different

sectors. Thus, co-movement across sectors due to common factors, i.e., oil or non-oil, is not

captured by observable variables alone. Conversely, in the BDFM, latent common factors

can be identified and estimated simultaneously with the rest of the model’s parameters.

Thus, the size and sign of spillover effects can be derived and analyzed. Second, to

quantify the spillover effects across a large cross section of sectors and variables, standard

multivariate time series techniques are inappropriate due to the curse of dimensionality.

The BDFM is designed for data rich environments such as ours. Third, macroeconomic

data are often measured with noise and errors. In the factor model framework, we can

separate these idiosyncratic noise components from the underlying economic signal.

We extend the literature in three ways. First, to the best of our knowledge, this is

the first paper to explicitly analyze and quantify the linkages between a booming energy

sector and sectoral performance in the domestic economy using a structural model, while

also allowing for explicit disturbances in real oil prices, world activity and activity in the

non-oil sector. Thus far, very little is known about the effect that energy booms have on

the rest of the economy in a resource rich economy, and equally important, if it is the

booms themselves or the windfall gains associated with real oil price changes that are

the most important. Second, given the large number of variables and industries included

in the analysis, this is also the most comprehensive analysis to date of the relationship

between energy booms and macroeconomic activity at the industry level in a resource rich

economy. We lastly show that standard multivariate methods do not adequately quantify

resource booms in a resource rich country such as Norway. The BDFM does, and the use

of this modeling framework to analyze the Dutch disease is novel in the literature.

4As discussed in, e.g., Boivin and Giannoni (2006), there is a close resemblance between theoretical DSGE

models and Dynamic Factor Models. Moreover, Bai and Wang (2012) discuss how the DFM can be

related to the Structural VAR literature.
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Our main conclusion emphasizes that a booming energy sector has significant and large

productivity spillovers on non-oil sectors, effects that have not been captured in previous

analysis. In particular, we find that the energy sector stimulates investment, value added,

employment and wages in most tradable and non-tradable sectors. The most positively

affected sectors are construction, business services and real estate.

Furthermore, windfall gains due to changes in the real oil price also stimulate the

economy, particularly if the oil price increase is associated with a boom in global de-

mand. Oil price increases due to, say, supply disruptions, while stimulating activity in

the technologically intense service sectors and boosting government spending, have small

spillovers effects to the rest of the economy, in part because of substantial real exchange

rate appreciation and reduced cost competitiveness. Yet, there is no evidence of Dutch

disease as experienced in the Netherlands in the 1970s, where the manufacturing sector

contracted. Instead, we find evidence of a two speed economy, with employment in the

manufacturing sector lagging behind the booming service sectors.

Our results suggest that traditional Dutch disease models with a fixed capital stock

and exogenous labor supply do not provide a convincing explanation for how petroleum

wealth affects a resource rich economy when there are productivity spillovers between the

various sectors.

The remainder of the paper is structured as follows. In Section 2, we briefly discuss the

theoretical literature on Dutch disease and present some stylized facts. Section 3 and 4

describe the data and the model, the identification strategy and the estimation procedure

in detail. Our main results are reported in Section 5, while in Section 6, we show that

these results are robust to numerous specification tests. Section 7 concludes.

2 Macroeconomic impacts of an energy discovery

There is a substantial theoretical literature on the Dutch disease, see, for instance Bruno

and Sachs (1982), Corden and Neary (1982), Eastwood and Venables (1982), Corden

(1984), Van Wijnbergen (1984) and Neary and van Wijnbergen (1984). The general

finding in most of these papers is that there is an inverse long run relationship between

increased exploitation of natural resources and growth in the manufacturing sector, similar

to what the Netherlands experienced in the 1960s.

Although the disease most often refers to the consequences of the discovery of natural

resources, it can also refer to any development that results in a large inflow of foreign

currency, such as a sharp increase in commodity prices. As such, the analysis of the

effects of a commodity price shock on a resource rich economy is simply a special case of

the Dutch disease.

The standard theory model that these papers build on assumes a non-traded goods

and service sector and two traded goods sectors: the booming sector and the lagging

sector, also called the non-booming tradable sector. The booming sector is usually the

extraction of oil or natural gas, but can also be mining. The lagging sector generally

refers to manufacturing, but can also be agriculture when traded. The non-traded goods

and service sector includes the government sector and other non-traded sectors.
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The direct impact of oil and gas resources (or any other sectoral boom) is experienced

through an increased demand for resources and goods and services in the energy producing

sector. This is usually referred to as a the Resource Movement Effect. The increased

demand for goods and services by the energy sector will lead to an indirect (secondary)

effect of increased demand for resources by the sectors that will produce goods and services

for the energy sector. If income in the energy sector has increased, there will also be a

further (induced) effect of increased demand for goods and services. These induced effects

are usually described as the Spending Effects, and will cause a real appreciation that will

hurt some sectors and benefit others.

More formally, Corden and Neary (1982) assume that the booming sector (B) and

the tradeable sectors (T) produce tradeables given world prices, whereas the prices for

non-tradables (N) are given by domestic factors. The energy boom is understood as an

exogenous (unpredicted) technical improvement in B. The resource movement effect will

increase demand for labor in B, as the marginal product of labor increases due to the

boom, given constant wages in terms of the tradables. Thus, there will be a movement

of labor out of T and N into B. The movement of labor from T to B will directly reduce

output in T, whereas the movement of labor from N to B at constant prices will initially

reduce the supply of N and create an excess demand for N. In response to this excess

demand, the price for non-tradables in terms of tradables will rise, which will produce

real appreciation and further movements of resources out of T into N.

The aggregate income of the factors initially employed in the booming sectors will also

rise. This will lead to a spending effect, directly by the factor owners in B or indirectly by

the government that collects (part of) the income through taxes. With positive income

elasticity of demand for N, the price of N relative to the price of T must rise, yielding a

further real appreciation. Given full employment of all resources, this real appreciation

will induce additional movement of labor from T to N.

Although the simple model of Dutch disease predicts that manufacturing will even-

tually contract as the energy sector expands, there are several ways that the core model

may be altered. By changing some of the underlying assumptions (for instance, by al-

lowing the factors of production to be mobile), the predicted effects of energy booms on

the manufacturing sector may be less severe, and in fact, in some cases there may not

be Dutch disease at all. In particular, if one is initially in a situation where domestic

resources are not fully employed prior to the energy boom, the boom may actually have

a stimulative effect on industry.

Output in the manufacturing industry may also increase if one assumes that the energy

sector has its own specific factor, labor is mobile between the three sectors but capital

is only mobile between the non-tradable and the tradable sector. This constitutes a

miniature Heckscher-Ohlin economy, where one sector will be labor intensive while the

other will be capital intensive. In this case, the resource movement effect will cause the

output of the capital intensive industry to expand (as labor is moving out of the labor

intensive industry and into the booming energy sector during the boom). If the tradable

sector is the capital intensive industry, and the (negative) spending effect on output in

the tradable sector is smaller than the resource movement effects, output in the tradable

sector may actually increase, see Corden (1984) for a further discussion.
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More recently, Torvik (2001) advanced a model in which there is learning by doing

(LBD) in both the traded and non-traded sectors, as well as learning spillovers between

the sectors. Under certain conditions, this will imply a real exchange rate depreciation in

the long run, due to a shift in the steady state relative productivity between the traded and

non-traded sectors. In contrast to the standard models of the Dutch disease, production

and productivity in both sectors can then increase.5

Thus, while the traditional theory of Dutch disease implies that the tradable sector will

eventually contract as the energy sector expands, there are several ways the dynamics of

the core model may change such that the predicted effects of energy booms on the tradable

sector may be less severe than in the basic case, and in some cases there may be no Dutch

disease at all.

2.1 Dutch disease and stylized facts of Norway

Figure 1 depicts the evolution of the important variables involved in the debate on Dutch

disease. Key to the discussion is the real oil price and the real exchange rate, depicted

for the period 1983-2012 in Figures 1a and 1b, respectively. Two features stand out.

The real exchange rate depreciated considerably between the beginning of the 1980s and

2000, after which it appreciated sharply.6 Taking everything else as given, the prolonged

period of real exchange rate depreciation in the first half of the sample fits nicely into

the framework of a model that allows for productivity advances due to learning by doing

within and between sectors, such as in Torvik (2001), discussed above. The timing of the

strong appreciation in the latter half of the sample corresponds to the increase in the real

oil price, and thus indicating a more classical Dutch disease pattern.

Figure 1c shows the evolution of employment by industry since 1996 (from which

data are available). The figure suggests a two speed economy, with resources rapidly

moving into both the booming oil and gas industry and the profitable service sectors,

while employment in other sectors such as manufacturing is lagging behind.

Lastly, Figure 1d illustrates the importance of investments in the energy sector over

the business cycle for GDP in Mainland Norway (value added of total GDP minus the oil

and gas sector). The figure clearly shows a leading and pro-cyclical relationship between

investment in the oil sector and GDP in Mainland Norway (the correlation coefficient

is 0.6 when oil investment leads the business cycle by 4 quarters), except during the

Norwegian banking crisis in the early 1990s, when other factors were at play. However,

the figure also indicates that since 2003/2004, the dynamics of the economy are not all

driven by oil. While oil investment is still pro-cyclical, the stimulus from the oil sector

seems small compared to the stimulus during the booms in the early 1980s and mid 1990s.

Other factors will have to explain the boom in the mainland economy in this period.

Thus, there is evidence that the energy sector has positive spillovers to the mainland

economy, albeit possibly to a smaller extent in the most recent boom and bust. However,

5Traditional LBD models such as Van Wijnbergen (1984), which accounts for LBD by assuming that

productivity in the tradable sector depends on production in the first period alone, or Sachs and Warner

(1995), which employs an endogenous growth model, find unambiguously that productivity will decline.
6This is the effective exchange rate, where an increase implies appreciation.
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Figure 1. Stylized facts
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Note: All employment series are on a log scale, and normalized to 100 in 1996:Q1. Figure 1d displays the

smoothed Hodrick-Prescott filtered output-gap in GDP Mainland Norway as well as the smoothed fraction

between cyclically adjusted oil investments and the trend growth in GDP Mainland Norway.

three concurrent evolutions after 2001, the appreciation of the currency, the strong rise in

commodity prices and strong growth in the oil sector relative to the manufacturing sector,

suggest a typical case of Dutch disease, where some sectors are growing at the expense of

others. We examine this subject below.

3 Theory meets data

How can one apply the theoretical model to the data? The approach we adopt relies

on the standard model presented in Corden and Neary (1982), but augmented in some

dimensions by allowing for productivity spillovers between sectors of the economy. In

particular, we develop a framework where the energy sector uses its own factor of produc-

tion and develops its own specific productivity dynamics, but there may be instantaneous

spillovers to all the other domestic sectors. Thus, developments in the energy sector

will be exogenous at time t, but after a period, it may respond to the other sectors of the

economy. For instance, capacity constraint in the domestic economy could eventually also
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affect the energy sector. Furthermore, we assume that the tradable and the non-tradable

sectors of the economy have their own factors of production and develop their own pro-

ductivity dynamics, but there may be instantaneous spillovers between the tradable and

non-tradable sectors (in addition to the spillovers from the energy sector). Thus, we allow

for learning by doing in both the traded and the nontraded sector and learning spillovers

between these sectors, as suggested in Torvik (2001). Finally, we will allow for common

shocks to the global oil market.

Given the framework described above, we can identify four factors with associated

shocks that have the potential to affect all sectors: Two shocks will relate to the dynam-

ics in domestic economy. The energy boom (or oil activity shock)7 and the non-oil activity

shock. We let energy booms represent an unexpected technical improvement or windfall

discovery of new resources in the energy sector, while the non-oil activity shock controls

for the remaining domestic impulses (tradable and non-tradable) contemporaneously un-

related to the oil sector. In addition, we allow for two shocks that relate to the dynamics

specific to the global oil market, an oil specific shock and a global demand shock. The oil

specific shock allows for a windfall gain due to higher real oil prices from, say, a supply

disruption in oil production, while the global demand shock allows for higher oil prices

due to increased global activity.

A central premise of the theory is that the energy sector supports many more jobs

than it generates, directly owing to its long supply chains and spending by employees and

suppliers. Thus, to accommodate resource movement and spending effects, we employ

a broad range of sectoral employment, production, wage and investment series for the

Norwegian economy. The intuition is as follows: First, energy extraction may stimulate

value-added among downstream industries, such as refining, or industries that provide

the energy sector with goods and services. This will generate additional jobs in excess of

those directly produced in the energy sector. Furthermore, energy extraction can induce a

reallocation of labor from the less profitable sectors into the booming sectors. We capture

these effects by including data for value added and employment at the industry level.

Second, there will be induced spending effects through the wages paid to workers in

the energy sector or the sectors that are indirectly affected. Moreover, as the booming

sector also pays significant taxes on its increased income, these benefits will easily spread

to the whole economy. However, as Norway has a centralized wage bargaining system,

we do not include wage data for all sectors, which would be highly correlated. Instead,

for wages, we separate between the booming sector (oil and gas), the mainland (non-oil)

sector and the public sector. Note that the public sector is included to also account for

the pass through of changes in oil income to the economy.

Third, specific sectors of the economy may benefit due to productivity spillovers when

the patterns of domestic demand shifts in their favor. The loser are those producers that

do not benefit from these spillovers, what Corden (2012) terms the lagging sector. To

account for these productivity spillovers, we also include investment at the sectoral level.

We separate investments in the same way as wages.

Naturally, we include the real price of oil and the real exchange rate, which are core

7We will use the terms energy booms and oil activity shocks interchangeably
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factors in the Dutch Disease literature. The real price of oil is constructed based on Crude

Oil-Brent prices, deflated using the US CPI. As such, it is meant to reflect the global real

price of oil. The notion is that an increase in the real oil price will directly cause the

exchange rate to appreciate via the terms of trade. This will have adverse effects on the

tradable sector, leading to a period of de-industrialization. While this is only one part

of the question we analyze, many papers have only focused on the effects of an oil price

increase when analyzing the Dutch disease, see, e.g., Charnavoki and Dolado (2012) and

the references therein.

The de-industrialization effect described above could be a feature of Dutch disease,

but it could also be a common feature of many open economies. To control for the state of

the international business cycle, we also include a measure of global activity. We measure

global or world activity as the simple mean of four-quarter logarithmic changes in real

GDP in: China, Denmark, Germany, Japan, the Netherlands, Sweden, the UK and the

US. This set of countries includes Norway’s most important trading partners and the

largest economies in the world.

In sum, this gives a panel of 50 international and domestic data series, covering a

sample period from 1996:Q1 to 2012:Q4.

Our focus is on quantifying economic fluctuations over the horizons relevant for medium

term macroeconomic policy and over business cycle horizons. To capture the economic

fluctuations of interest, we transform all variables to four-quarter logarithmic changes;

log(xi,t) − log(xi,t−4)).8 Lastly, all variables are demeaned before estimation. Further

details on the data are provided in Appendix A.

3.1 Quantifying the resource boom - a simple attempt

The petroleum sector’s share of total GDP in Norway has fluctuated around 20 percent

the last decade. However, although the sector is capital intensive, it does not operate

in isolation. According to Eika et al. (2010), the total use of (non-oil) resources in the

petroleum sector was equivalent to 17 percent of the GDP of Mainland Norway (based

on input-output tables from 2008).9 However, this measure of petroleum dependency

likely represents a lower bound on the Norwegian economy’s oil dependence. Typically, it

will underestimate the links across sectors, as it does not account for the effects induced

over time from increased demand and income in the energy sector or the sectors that are

indirectly affected (e.g., the government sector).

To obtain an initial impression of the oil dependence of the Norwegian economy, one

can run a series of simple structural vector autoregressions (VARs) relating the oil sector

to the mainland economy. The analysis below is an attempt in that direction, although

as we will see, it is far from adequate in capturing the spillovers we seek.

Panels (a)-(c) of Figure 2 report the responses of GDP in Mainland Norway to three

different shocks: Global activity, oil price (specific) and oil activity, respectively. Panels

8We experimented with specifying the model using data transformed to quarterly changes, i.e., log(xi,t)−
log(xi,t−1)). However, for Norwegian data, such transformations yield a very weak factor structure,

making the dynamic factor model, see Section 4, less appropriate.
9This number is calculated based on the intermediate inputs to the petroleum sector, adjusted for the

indirect use of resources between the different sectors.
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Figure 2. VAR (non) evidence
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Variance decompositions - GDP Mainland Norway

(d) Global activity
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(f) Oil activity
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Note: The figures report impulse responses and variance decompositions of GDP in Mainland Norway to

three structural shocks: An international activity shock, an oil price shock, and an activity shock to the

petroleum sector. Three different VAR specifications are estimated: 4-VAR (world activity, real price of

oil, oil activity, mainland activity), 3-VAR (real price of oil, oil activity, mainland activity), 2-VAR (oil

activity, mainland activity). All variables are transformed to log year on year changes, and all VARs are

specified with eight lags. The structural shocks are identified employing a recursive ordering.

(d)-(f) present the variance decomposition of the same three shocks. Three different VAR

models are specified. In the 2-VAR, we jointly model oil activity and mainland activity, in

the 3-VAR we add the real price of oil, while in the 4-VAR world activity is also included,

see Figure 2 for more details. None of the VAR specifications yield results that provide an

economic meaningful depiction for quantifying a resource boom in a two-speed economy.

That is, an unexpected positive innovation in oil activity increases GDP in Mainland

Norway in all VAR specifications (Panel c), but the shock explains a negligible share

of the variance in the GDP of Mainland Norway (3-6 percent, see Panel f). This is at

odds with conventional wisdom, earlier research (see, e.g., Bjørnland (1998) and Larsen

(2006)), and most important, the National Account statistics described above.

However, the positive and large effects of a world activity shock (Panels a and d)

is in accordance with new and existing evidence of international business cycle synchro-

nization, see, e.g., Kose et al. (2003), Stock and Watson (2005b), and Thorsrud (2013).

Furthermore, an unexpected increase in the real price of oil increases mainland activ-

ity, but primarily in the 3-VAR specification, see Panel (b). However, as shown in, e.g.,
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Aastveit et al. (2012), a large fraction of the variation in the real price of oil can be

attributed to global activity. Only the 4-VAR specification takes this into account by

allowing the oil price to also respond to global activity. Thus, the oil price shock in the

3-VAR model is likely a combination of world activity innovations and pure unexpected

oil price innovations. This renders the structural interpretation of this model dubious and

suggests that the 4-VAR specification is more appropriate.10

Why do the structural VAR models fail to explain the resource boom in a two speed

economy? The answer is simple. They do not take all the cross-sectional co-movement of

main sectoral variables into account. That is, oil activity alone does not accurately mea-

sure the resource moving and spending effects induced by an oil boom, or any potentially

shared productivity developments.

The Dynamic Factor Model (DFM) proposed in this study solves these issues. Within

the DFM framework, the co-movement of a large cross section of variables is assumed to be

driven by a few latent (or observable) factors. The factors and the unexpected innovations

(shocks) to the factors can be identified, and structural analysis can be conducted. Geweke

(1977) is an early example of the use of the DFM in the economic literature. Kose et al.

(2003) and Mumtaz et al. (2011) are more recent examples, while Stock and Watson

(2005a) provide a brief overview of the use of this type of models in economics. In the

next section, we provide a more detailed description of the DFM, and identification and

estimation within this framework, before turning to the results in section 5.

4 The Dynamic Factor Model

We specify a Dynamic Factor Model (DFM). As noted above, this model is particularly

useful in a data rich environment such as ours, where common latent factors and shocks

are assumed to drive the co-movements between economic variables in the Norwegian

economy.

The DFM is given by equations 1 and 2:

yt = λ0ft + · · ·+ λsft−s + εt (1)

where the N × 1 vector yt represents the observables at time t. λj is a N × q matrix with

dynamic factor loadings for j = 0, 1, · · · , s, and s denotes the number of lags used for

the dynamic factors ft. In our application the q × 1 vector ft contains both latent and

observable factors. Lastly, εt is an N × 1 vector of idiosyncratic errors.

The dynamic factors follow a VAR(h) process:

ft = φ1ft−1 + · · ·+ φhft−h + ut (2)

where ut is a q × 1 vector of VAR(h) residuals. The idiosyncratic and VAR(h) residuals

are assumed to be independent:[
εt
ut

]
∼ i.i.d.N

([
0

0

]
,

[
R 0

0 Q

])
(3)

10The variables included in the VARs are noise measures of the underlying business cycles. However, the

results reported in Figure 2 are robust to using HP-filtered data.
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Further, in our application R is assumed to be diagonal.

The model described above can easily be extended to the case with serially correlated

idiosyncratic errors. In particular, we consider the case where εt,i, for i = 1, · · · , N , follows

independent AR(l) processes:

εt,i = ρ1,iεt−1,i + · · ·+ ρl,iεt−l,i + ωt,i (4)

where l denotes the number of lags, and ωt,i is the AR(l) residuals with ωt,i ∼ i.i.d.N(0, σ2
i ).

I.e.:

R =


σ2

1 0 · · · 0

0 σ2
2

. . . 0
...

. . . . . .
...

0 · · · · · · σ2
N

 , (5)

4.1 Identification

Equations 1 and 2 are not identified without restrictions. To separately identify the factors

and the loadings, and to be able to provide an economic interpretation of the factors, we

enforce the following identification restrictions on equation 1:

λ0 =

[
λ0,1

λ0,2

]
(6)

where λ0,1 is a q× q identity matrix, and λ0,2 is left unrestricted. As shown in Bai and Ng

(2010) and Bai and Wang (2012), these restrictions uniquely identify the dynamic factors

and the loadings but leave the VAR(h) dynamics for the factors completely unrestricted.

Accordingly, the innovations to the factors, ut, can be linked to structural shocks that are

implied by economic theory.

In our application, we set q = 4 and identify four factors: global activity, the real

price of oil, Norwegian oil specific activity, and Norwegian non-oil (Mainland) activity.

The number of factors and names are motivated by the model as discussed in Section 3

above.11 Of these four factors, the first two are observable and naturally load with one on

the corresponding element in the yt vector. The two latter factors must be inferred from

the data. We require that the Norwegian oil specific activity factor loads with one on

value added in the petroleum sector, and the Norwegian Mainland activity factor loads

with one on value added in Mainland Norway. Note that while this identifies the factors,

it does not mean that the factors and the observables are identical as we will use the full

information set to extract the factors.

Based on a minimal set of identification restrictions, we identify four structural shocks:

a global demand shock, an oil specific shock, a Norwegian oil activity shock (energy booms)

and a Norwegian non-oil (domestic) activity shock. The shocks are identified by imposing

a recursive ordering of the latent factors in the model, i.e. ft = [f gactt , f oilpt , f oactt , fnoactt ]′,

11Moreover, as we show in Appendix C.1, four factors also explain a large fraction of the variance in the

dataset.
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such that Q = A0A
′
0. Specially, the mapping between the reduced form residuals ut and

structural disturbances et, ut = A0et, is given by:
ugactt

uoilpt

uoactt

unoactt

 =


a11 0 0 0

a21 a22 0 0

a31 a32 a33 0

a41 a42 a43 a44



egdemt

eoilst

eoactt

enoactt

 (7)

where eit are the structural disturbances for i = [gdem, oils, oact, noact], with ete
′
t = I,

and [gdem, oils, oact, noact] denote global demand, oil specific, Norwegain oil activity and

non-oil activity, respectively.

For most energy importing countries, a higher price of oil causes production costs and

inflation to gradually increase, thereby eventually affecting overall activity. We therefore

follow the usual assumption from both theoretical and empirical models of the oil mar-

ket, and restrict global activity to respond to oil specific disturbances with a lag. This

restriction is consistent with the sluggish behavior of global economic activity after each

of the major oil price increases in recent decades.

Furthermore, any unexpected news regarding global demand is assumed to affect the

real price of oil contemporaneously. As such, and consistent with recent work, we do

not treat the real price of oil as exogenous to the rest of the macro economy, see, e.g.,

Aastveit et al. (2012). In doing so, we confirm that both global demand and the oil

specific shock can drive up oil prices significantly. However, whereas the global demand

shock also stimulates global activity, the oil specific shock reduces global activity (with a

lag) and can therefore be interpreted as an adverse supply shock to the oil market.

In the short run, disturbances originating in the Norwegian economy are exogenous

to global activity and the real oil price. These are plausible assumptions, as Norway is a

small open economy that only accounts for less than three percent of global oil production.

However, both the oil and the non-oil domestic activity factors respond to unexpected

disturbances in global activity and the real price of oil on impact. In a small open economy

such as Norway, news regarding global activity will affect variables such as the exchange

rate, the interest rate, asset prices and consumer sentiments contemporaneously, and

thereby affect overall demand in the economy. Norway is also a net oil exporter. Thus,

any disturbances to the real price of oil will most likely rapidly affect both the demand

and supply side of the economy.

Lastly, in the short run, the oil activity factor is exogenous to the rest of the domestic

economy but can affect the other sectors contemporaneously (for instance via productivity

spillovers). However, and as discussed in Section 3, after a period we allow the energy

sector to respond to the dynamics in the other sectors of the economy.

4.2 Estimation

Let ỹT = [y1, · · · , yT ]′ and f̃T = [f1, · · · , fT ]′, and defineH = [λ0, · · · , λs], β = [φ1, · · · , φh],
Q, R, and pi = [ρ1,i, · · · , ρl,i] for i = 1, · · · , N , as the model’s hyper-parameters.

Inference in our model can be performed using both classical and Bayesian techniques.

In the classical setting, two approaches are available, two-step estimation, and maximum
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likelihood estimation (ML). In the former, f̃T , H and R are first typically estimated using

the method of principal components analysis (PCA), then the dynamic components of the

system, A and Q, are estimated conditional on f̃T , H and R. Thus, the state variables are

treated as observable variables. If estimation is performed using ML, the observation and

state equations are estimated jointly. However, employing ML still involves some type

of conditioning. That is, we first obtain ML estimates of the model’s unknown hyper-

parameters. Then, to estimate the state, we treat the ML estimates as if they were the

true values for the model’s nonrandom hyper-parameters. In a Bayesian setting, both the

model’s hyper-parameters and the state variables are treated as random variables.

We estimated the DFM using both the two-step procedure in the classical setting and

Bayesian estimation. The results reported in section 5 are not qualitatively affected by

the choice of estimation method. However, we prefer the Bayesian approach primarily due

to: 1) In contrast to the classical approach, inferences regarding the state are based on the

joint distribution of the state and the hyper-parameters, not a conditional distribution.

2) ML estimation would be computationally intractable given the number of states and

hyper-parameters. 3) Our data are based on logarithmic year-on-year differences. This

spurs autocorrelation in the idiosyncratic errors.

In a Bayesian setting, the model can readily be extended to accommodate these fea-

tures of the error terms. In a classical two-step estimation framework, this is not the case.

Furthermore, in the two-step estimation procedure, it is not straightforward to include

lags of the dynamic factors in observation equation.

Thus, our preferred model is a Bayesian Dynamic Factor Model (BDFM). We set,

s = 2, h = 8, and l = 1. That is, we include 2 lags for the dynamic factors in the

observation equation (see equation 1), 8 lags in the transition equation (see equation 2),

and let the idiosyncratic errors follow AR(1) processes (see equation 4).12 In section C.1

we explain the choice of this particular specification and analyze its robustness.

4.2.1 The Gibbs sampling approach

Bayesian estimation of the state space model is based on Gibbs simulation, where the

following three steps are iterated until convergence is achieved:

Step 1: Conditional on the data (ỹT ) and all the parameters of the model, generate f̃T
Step 2: Conditional on f̃T , generate β and Q

Step 3: Conditional on f̃T , and data for the i-th variable (ỹT,i), generate Hi, Ri and pi
for i = 1, · · · , N

In Appendix D we describe each step in greater detail and document the employed

prior specifications. We simulate the model using a total of 50000 iterations. A burn-in

period of 40000 draws is employed, and only every 5th iteration is stored and used for

inference.13

12Note that we let s = 0 and l = 0 when estimating the DFM using the two-step estimation procedure.
13Standard MCMC convergence tests confirm that the Gibbs sampler converges to the posterior distribu-

tion. Convergence statistics are available on request.
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5 Results

Our results are presented in the following subsections. We first present the identified

factors before investigating how GDP, investment, employment and wages in the Mainland

economy and the real exchange rate respond to the various shocks. Then we examine the

sectoral reallocation following the energy booms and oil price shocks, before investigating

the implications for spending in the public sector in greater detail.

5.1 Factors and global shocks

The upper panel of Figure 3 displays, from the left, the global activity factor, the real

price of oil, the oil activity factor and the non-oil (Mainland) activity factor. The two

first factors are treated as observables in the estimation. Accordingly, they are measured

without uncertainty.

Global activity declined during the Asian crisis in the latter part of the 1990s, following

the dot com bubble that burst in 2000/2001, and during the recent financial crisis. The

latter trough is by far the most severe. Turning to the real oil price, Figure 3 suggests

that the most pronounced cycles in the real price of oil follow global activity cycles. There

is significant growth in the real oil price during the economic booms in 1999/2000 and

2006/2007 and a decrease in the real price of oil during the Asian crisis and the recent

financial crisis.

It is more interesting to investigate the cyclical patterns of the estimated latent factors,

i.e., oil activity and non-oil activity. Statistically, both factors are identified. As seen in

the figure, they are also economically meaningful. The latent oil activity factor shows

booms and busts that relate to the petroleum sector, such as the investment boom in

the North Sea in the middle of the 1990s, the decline in activity from 2000 (when oil

production peaked) and the decline in new investments in the period after the financial

crisis. The non-oil factor shows cyclical patterns that are well in line with the conventional

view of the Norwegian business cycle over the last two decades. The bust in 2002/2003, the

subsequent boom, and the recent bust during the financial crisis stand out. As expected,

the volatility of the oil activity factor is larger than that of the non-oil activity factor.

The estimation procedure we employ, see section 4, is inherently a smoothing algo-

rithm. Thus, it is unsurprising that the oil and non-oil activity factors resemble the

cyclical patterns of oil investment (cyclical contribution) and the GDP of Mainland Nor-

way, respectively, both displayed in Figure 1d. Importantly, however, the factors and the

observables are not identical. As stressed in section 2, the oil sector’s contribution to

the domestic economy comes through many more channels than investments alone. The

information set used to extract the two latent factors reflects this, as do the estimated

factors.

As discussed in section 3.1 above, we do not wish to treat the oil price as exogenous

and allow for reverse causality from global activity to the oil price. This implies that both

supply and demand shocks can affect oil prices. Figure 3, lower panel, illustrates this. It

displays the effect of a global demand shock to global activity and the real oil price and

subsequently the effect of an oil specific shock to the same two variables. While the global
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Figure 3. Factors and global impulse responses
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Note: The first row in the figure displays the observed variables and the estimated latent factors. The

second row displays impulse responses. The responses are displayed in levels of the variables. The Global

demand shock is normalized to a 1 percent increase, while the oil specific shock is normalized to increase

the real price of oil with 10 percent. The black solid lines are median estimates. The gray shaded areas

are 68 percent probability bands.

demand shock increases both activity and the real oil price, the oil specific shock generates

a temporary inverse relationship between the oil price and global activity, equivalent to

a supply type disturbance. Again, this is consistent with recent studies that have found

that a large fraction of the variation in the real price of oil can be attributed to global

demand, see e.g. Lippi and Nobili (2012) and Aastveit et al. (2012) among many others.

5.2 A resource rich economy

Table 1 displays the variance decomposition to the four identified shocks: oil activity

(energy booms), oil specific, global demand and non-oil activity, for GDP, employment,

investment and wages in the oil sector, the non-oil sector (Mainland Norway) and the

public sector, as well as for the real exchange rate. Figure 4 then displays the impulse

responses to the four identified shocks for the mainland economy and the real exchange

rate.

As expected, the oil activity and oil specific shocks together explain 60-70 percent of

the variation in production, employment, wages and investment in the petroleum sector.

However, while the investment dynamics in the petroleum sector are strongly associated

with oil specific shocks (that drive up oil prices), oil activity shocks are most important

for value added and employment. Lastly, global demand shocks (that drive up oil prices)

also affect the oil sector, and in particular petroleum investment. More than 20 percent

of the variation in petroleum investment refers back to global demand and its effect via
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Table 1. Variance decompositions

Shock

Oil Oil Global Non-oil

Variable Sector activity specific demand activity

& Horizon 4, 8 4, 8 4, 8 4, 8

GDP

Oil 0.82, 0.69 0.13, 0.12 0.04, 0.13 0.02, 0.06

Mainland 0.25, 0.32 0.06, 0.04 0.49, 0.44 0.20, 0.20

Public 0.06, 0.05 0.48, 0.40 0.01, 0.05 0.45, 0.50

Employment

Oil 0.66, 0.54 0.24, 0.20 0.06, 0.12 0.04, 0.14

Mainland 0.08, 0.04 0.12, 0.16 0.20, 0.28 0.59, 0.52

Public 0.21, 0.15 0.18, 0.23 0.05, 0.08 0.56, 0.54

Wages

Oil 0.46, 0.41 0.36, 0.29 0.15, 0.17 0.03, 0.13

Mainland 0.19, 0,08 0.05, 0.08 0.26, 0.38 0.49, 0.47

Public 0.66, 0.37 0.08, 0.15 0.05, 0.15 0.21, 0.32

Other

Investment Oil 0.01, 0.03 0.74, 0.61 0.21, 0.20 0.04, 0.15

Investment Mainland 0.17, 0.28 0.28, 0.16 0.49, 0.49 0.06, 0.06

Real Exchange Rate 0.11, 0.22 0.67, 0.58 0.23, 0.20 0.00, 0.00

Note: Each row-column intersection reports median variance decompositions for horizons 4 (left) and 8

(right)

higher oil prices.

What are the implications for the rest of the economy? Clearly, the oil boom stimulates

the mainland economy. In particular, Figure 4 shows that a boom in the energy sector

that increases oil activity by one percent increases GDP and investment in the mainland

sector by 0.4 and 0.7 percent, respectively, after 1-2 years. The effect is substantial;

approximately 30 percent of the variation in each of these variables is explained by energy

booms (see Table 1).

The spillovers from the energy sector to the labor market are more gradual. Employ-

ment and wages eventually increase after a year, peaking after 2-3 years. Ultimately,

energy booms are more important for wage dynamics than for employment, explaining

more than 20 percent of the changes in wages versus less than 10 percent of the employ-

ment variation in the mainland economy. The evidence is consistent with the view that

productivity increases in the energy sector worked to raise labor income in all sectors via

the centralized system of pay determination.

Lastly, the response in the real exchange rate is small and mostly insignificant, if

anything, showing evidence of real depreciation. This helps to explain why energy booms

can have such stimulative effects on the mainland economy.

There are two structural shocks that increase oil prices, an oil specific shock and a

global demand shock. Figure 4 shows that an oil specific shock is strongly associated

with real exchange rate appreciation. In fact, 60-70 percent of the variation in the real

exchange rate is explained by oil specific shocks, see Table 1. However, after 2-3 years,

the currency appreciation effect no longer operates.
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Figure 4. Domestic impulse responses
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Note: The responses are displayed in levels of the variables. All shocks are normalized to a 1 percent

increase, except for the oil specific shock, which is normalized to increase the real price of oil with 10

percent. The gray shaded area represent 68 percent probability bands, while the black solid lines are

median estimates.
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Table 2. Productivity

Shock Horizon

4 8 16

Oil activity 0.36 0.25 0.22

Oil specific 0.01 -0.01 -0.00

Note: The numbers show the difference between the response in value added and employment for Mainland,

interpreted as labour productivity.

The oil specific shock also has spillovers to the rest of the economy, although to a lesser

extent than the oil activity shock. In particular, following an oil specific shock that

increases oil prices by 10 percent, GDP and investment in Mainland Norway increase

temporarily by 0.25 and 1 percent, respectively, most likely as petroleum investment also

increases, see Table 1. Furthermore, employment and wages gradually increase, suggesting

that there are spending effects owing to the windfall gains associated with increased oil

prices.

The second shock that can potentially increase oil prices, a global demand shock, also

causes the Norwegian currency to appreciate. However, the response in the exchange rate

is less pronounced than for the oil specific shock, explaining approximately 20 percent of

the real exchange rate variation. As a consequence, the effect on GDP and investment,

as well as the spillovers to employment and wages, are more substantial. Between 40 and

50 percent of the variation in mainland GDP and investment activities can be explained

by global demand.14 The finding that foreign factors are important for the Norwegian

business cycles is consistent with Aastveit et al. (2011) and Furlanetto et al. (2013).

Lastly, a non-oil (domestic) activity shock increases GDP, employment and wages

in the mainland economy. The effect on investment is also positive, but the variation

explained by the domestic shock is modest (less than 10 percent). The effect on the real

exchange rate is negligible.

It is too early to make any conclusions regarding any evidence (or lack thereof) of

Dutch disease. To do so, we need to examine sectoral reallocation, which we do below.

However, it is obvious that the Norwegian economy has benefitted from having a highly

profitable oil and gas sector: Both windfall gains due to energy booms and higher oil prices

had positive spillover effects on the mainland economy. What are the mechanisms behind

these spillovers? While we have seen that labor input clearly increased following this

shock, Table 2, which measures productivity gains after 4, 8 and 16 quarters, suggests that

productivity spillovers are also of first order importance for energy booms. As productivity

measures the efficiency of production, this also explains why investment in the mainland

economy increased substantially following this shock. This is interesting, as it highlights

the empirical relevance of alternative theoretical Dutch disease models, see, e.g., Torvik

14An one-percent increase in global demand, increases real oil prices by approximately 10-12 percent, see

Figure 3. Compared to a similar sized oil price increase due to an oil specific shock, the effects on GDP

and investment in Mainland Norway are more than twice as large; GDP increases by 0.7-1 percent after

a year, while investment increases by 2 percent.
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Table 3. Residual regressions

Shock Variable Lag R2

1 2 3 4

Oil activity

CPI -0.00 (0.55) -0.00 (0.92) -0.00 (0.52) 0.00 (0.25) 0.02

PPI -0.03 (0.01) 0.01 (0.69) 0.00 (0.98) -0.01 (0.20) 0.06

OSEBX 0.08 (0.27) 0.11 (0.03) 0.10 (0.19) -0.02 (0.67) 0.16

⇀ Energy 0.13 (0.10) 0.14 (0.00) 0.06 (0.39) -0.06 (0.49) 0.17

ToT -0.01 (0.56) 0.01 (0.22) 0.00 (0.95) 0.00 (0.76) 0.02

Oil specific

CPI 0.00 (0.60) 0.00 (0.13) 0.00 (0.01) 0.00 (0.24) 0.15

PPI 0.04 (0.00) 0.02 (0.00) 0.03 (0.00) 0.00 (0.81) 0.34

OSEBX 0.09 (0.02) 0.03 (0.50) 0.03 (0.48) -0.05 (0.31) 0.13

⇀ Energy 0.12 (0.01) 0.07 (0.23) 0.07 (0.14) 0.00 (0.95) 0.19

ToT 0.01 (0.02) 0.01 (0.17) 0.01 (0.22) -0.01 (0.21) 0.16

Note: For each variable the rows show coefficient estimates and Newey-West estimated p-values (in

parenthesis) from simple OLS regressions:

yt,i = αi,j +

P∑
p=1

βp,i,jet−p,i,j + ut,i,j

where i denotes variable i = 1, · · · , 4, j denotes structural shocks j = [Oil activity and Oil specific],

and p are the number of lags with P = 4. All dependent variables, yt,i, are transformed to four quarter

logarithmic differences. et−p,i,j are the median estimates of the structural shocks. The sample is 1997Q1−
2012Q4.

(2001), which emphasize learning by doing mechanisms and productivity spillovers.

Conversely, the oil specific shocks (that increase oil prices) have virtually no effect

on productivity, see Table 2. As such, our results show that is important to distinguish

between windfall gains due to volume and price changes when analyzing the Dutch disease

hypothesis. To the best of our knowledge, this is the first paper to explicitly separate and

quantify these two channels, while also allowing for explicit disturbances to world activity

and the non-oil sector.

Table 3 adds further evidence to the structural interpretation. In the table, we sep-

arately regressed the lags of the median structural shocks on consumer price inflation

(CPI), producer price inflation (PPI), total stock returns (OSEBX), stock returns for the

energy firms (Energy) and the terms of trade (ToT). Although simple, these regressions

not only confirm that the structural identification of our benchmark model is sound but

also shed light on the additional channels through which the energy sector affects the

economy.

First, as asset prices are the present discounted values of the future net earnings of the

firms in the economy, unexpected energy booms that enhance the production possibilities

for the whole economy should be positively related to stock returns. This is confirmed in

our regressions, where the oil activity shock explains a considerable share of the variation

in stock returns (both OSEBX and Energy). We find no evidence that the shock increases

costs, as energy booms do not explain a substantial amount of the variation in CPI and
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PPI. Furthermore, the effect on terms of trade is insignificant, confirming that the windfall

gains associated with energy booms are not related to energy prices. Instead, energy

booms change the distribution of wealth due to productivity spillovers, the subsequent

movement of resources, higher income and increased spending in the overall economy.

Moreover, we find that the oil specific shock leads to a general rise in production costs

(PPI). This erodes the real effect of spending and may explain why this shock has less

stimulating effects on the economy. However, we confirm that the terms of trade are

positively affected by oil price increases in an oil exporting economy, which explains the

pronounced effect on the real exchange rate we observed above. Furthermore, oil specific

shocks also explain a substantial share of the variation in energy specific stock returns.15

The results presented thus far reflect average responses over the sample analyzed. In

Figure 5, we show that the structural shocks are also well identified in terms of timing. In

particular, the figure displays the model’s historical decomposition of the domestic factor

representing the non-oil economy. As seen in the figure, oil activity shocks stimulated the

Norwegian economy, particularly from the middle of the 1990s and until 2000 (after which

there was a temporary cyclical decline in oil activity, see also Figure 1d), and again during

the economic upswing beginning around 2004. However, while the period of high economic

growth in the middle and late 1990s can in large part be explained by increased oil activity,

the high growth period predating the financial crisis was primarily driven by increased

global demand and oil specific shocks, which both drove up oil prices. The windfall gain

from higher oil prices stimulated investment in the petroleum sector and thereby also

the mainland economy through spillover effects. However, by the end of 2008, Norway

was affected by the financial crisis. The subsequent downturn was primarily caused by

negative global demand as well as by oil specific shocks (that lowered oil prices) and oil

activity shocks. The return to trend growth was gradual, with positive contributions

from oil specific shocks. From 2011, global demand again contributed positively to the

mainland economy (again via higher oil prices).

For the reader with detailed knowledge of the Norwegian economy, Figure 5 presents

a reasonable story of a country that has benefited from increased activities in the North

Sea, albeit with cyclical up and downturns. However, the negative or only mildly pos-

itive contribution from the oil activity shocks since 2006/2007 provides some cause for

concern. To the extent that an oil boom is associated with productivity dynamics (that

positively affect value added in the overall economy), the muted role of these shocks sug-

gests that that productivity spillovers have declined recently. This is consistent with the

view portrayed in Olsen (2013) of a slow down in productivity since 2005. Furthermore,

labor input per hour worked has also declined in recent years relative to Norway’s trading

partners. Thus, while the enhanced linkages from both the oil sector and energy prices

have been positive for growth and employment in the Norwegian economy for nearly two

decades, the declining productivity spillovers coupled with increased costs could be a

15Without reading too much into these simple regressions, we also observe that the oil specific shocks

explain more of the energy specific returns than overall returns in the economy (measured by OSEBX),

which is consistent with the view that the increased costs eroded the value added from the oil specific

shock. I.e., while firms in the Energy sector benefit from increased oil prices, the spillover to value added

in the overall economy was small.
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Figure 5. Historical shock decomposition: Non-oil activity Norway

1996.01 2000.02 2004.03 2008.04 2012.04

−0.06

−0.04

−0.02

0

0.02

 

 

Global demand Oil specific Oil act. Non−oil act.
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major concern in the long run.

5.3 Sectoral performance - Two speed boom?

Figure 6 displays the responses in value added and employment to energy booms (left

column) and oil specific shocks (right column). The figure displays the quarterly average

of each sector’s response (in levels) to the different shocks. The oil activity shock is

normalized to increase oil activity by 1 percent, while the oil specific shock increases oil

prices by 10 percent (which is customary in the literature). Note that the white bars

indicate that the shock explains less than 10 percent of the variation in a sector.

The figure emphasizes that energy booms stimulate value added in all industries in

the private sector, but to a varying degree. The construction and business sectors are

among the most positively affected. Between 30 and 40 percent of the variance in these

sectors is explained by energy booms, see Table 4 in Appendix B. These are industries

with moderate direct input into the oil sector, but the indirect effects are large. Value

added in manufacturing is also positively affected, but less so than in the non-tradable

sectors. Yet, there is no evidence of Dutch disease wherein the sector eventually contracts.

Turning to the labor market, our model confirms the stylized facts presented above in

Figure 1c. Norway has become a two speed economy, with employment in non-tradable

sectors such as construction, the business service sector and real estate growing at a much

faster pace than tradables such as manufacturing. However, and as above, there is no

evidence of Dutch disease; manufacturing does not contract. Interestingly, the effect on

the public sector (value added and employment) is negligible, suggesting only a minor

government spending effect following this shock.

Are these numbers reasonable? Compared to Eika et al. (2010), who calculate the

direct and indirect effects based on input-output tables, our numbers are more substantial.

Yet, Eika et al. (2010) also found the service sector (e.g., as business industries) to be

the most affected, once accounting for indirect effects such as inputs between the sectors.

Where we diverge is in the size of the spillovers and the number of sectors involved.
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Figure 6. Relative responses

Value added: Oil activity shock Value added: Oil specific shock

Employment: Oil activity shock Employment: Oil specific shock

Note: Each plot displays the quarterly average of each sector i’s response (in levels) to the different shocks.

The averages are computed over horizons 1 to 12. The oil activity shock is normalizes to increase oil

activity by 1 percent, while the oil specific shock is normalized to increase the real price of oil with 10

percent. White bars indicate that the shock explains less than 10 percent of the variation in the sector.

However, this should come as no surprise, as we also allow for induced spending effects

via income and wage growth, see Table 1. Moreover, in our framework the input-output

table becomes endogenous, as we allow for shared productivity dynamics across sectors.

As seen in Table 1, and indicated by the white bars in Figure 6, the oil specific shock

generally explains a substantially smaller share of the variance in the sectoral variables

than the oil activity shock. The responses to the oil specific shock also present a more

diverse picture. Now sectors such as scientific services and manufacturing are among the

most positively affected. This is interesting, as these sectors are also technology intensive

and enjoy spillovers from the significant boost in petroleum investment that follows the oil

specific shock. As offshore oil often demands complicated technical solutions, the oil spe-

cific shock generated positive knowledge externalities that benefited employment in these

sectors in particular. Thus, the theory of Dutch disease is turned on its head following

this shock. However, compared to the responses reported for the oil activity shock, the

public sector is now also positively affected, suggesting the presence of a spending effect.

We examine this in greater detail in the next section.

Lastly, the global demand shock is important for all industries in the private sector, but
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most so for manufacturing (relative plots are available on request).16 Thus, the stylized

fact that manufacturing is lagging behind the other sectors, in particular in the financial

crisis (see Figure 1c), also refers to manufacturing’s substantial exposure to foreign shocks

(which were all negative in the financial crisis).

In summary, we find no evidence of Dutch disease as experienced in the Netherlands

in the 1970s. Instead, we find positive spillovers between the energy sector and both the

tradable and non-tradable sectors. As discussed, an important channel for these spillovers

could be productivity and learning by doing. As such, our results highlight the empirical

relevance of alternative theoretical Dutch disease models, such as that proposed by, e.g.,

Torvik (2001). Moreover, our model successfully replicates the stylized facts portrayed in

Figure 1 indicating a two speed economy. Importantly, however, the observed two speed

pattern is not a function of resource wealth in isolation; global factors need to be taken

into account.

5.4 Public sector

One aspect of the results presented above that we have not discussed in detail thus far

is the role of the public sector. Norway has a large public sector, and much of the

petroleum income is directly managed through the Norwegian Petroleum Fund, which

was specially designed with the express purpose of shielding the domestic economy from

potential spending effects caused by the resource endowment. Through a fiscal rule, which

permits the government to spend approximately 4 percent of the fund (expected return)

every year, the income from the oil and gas sector should only gradually be phased into

the economy, and thus ensure fiscal discipline.

Very few studies have analyzed the effects of oil price changes on government spending

in Norway. Those that do find very small effects, see, e.g., Pieschacon (2012). However,

Pieschacon (2012) does not control for the different sources that may affect the oil price.

As we have shown here, oil price increases can be due to either global demand or oil specific

shocks, and the mechanisms by which they affect the economy will not be identical.

Although we do not explicitly examine fiscal policy in this study, the results presented

above reveal two interesting points regarding government spending in a resource rich

economy. First, energy booms do not explain a large share of the variance in value added

or employment in the public sector. As such, governmental arrangements to ensure fiscal

discipline seem to work.17 However, the results presented in Figure 6 suggested that the

public sector is positively affected by the oil specific shock. Furthermore, 40 percent of

the variation in government spending is explained by oil specific shocks (see Table 1).

This suggests evidence of a spending effect from increased oil prices via the public sector,

even though the fiscal rule is in place. To explore this further, we augment the dataset

with the value added in the central and local governments, and re-estimate the model.18

16As seen in tables 1 and 4, the variance explained by the global demand shock is substantial for all sectors

except the public one. However, the manufacturing sector is by far the most affected; 60 percent of the

variation in value added in the manufacturing sector can be explained by foreign shocks.
17However, if the oil activity shocks are pure productivity spillovers, the public sector does not seem to

benefit from these in the same manner as the other sectors of the economy.
18The baseline results are not quantitatively affected.
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Figure 7. Impulse responses: Oil specific shocks
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Note: The responses are displayed in levels of the variables. The oil specific shock is normalized to

increase the real price of oil with 10 percent. The gray shaded area represent 68 percent probability bands,

while the black solid lines are median estimates.

Norway has had an active population maintenance policy for rural districts. We therefore

expect the increased income from the North Sea to have benefited local governments in

particular. The impulse responses of the newly added government variables are displayed

in Figure 7.

The results emphasize that there is a positive link between increased oil prices and

government spending, in particular at the local government. While 30-40 percent of the

variation in value added at the state level is determined by oil specific shocks, the corre-

sponding number for local government is close to 60 percent. The results are consistent

with Norway having an active government policy of investing in rural development. These

could be regions that may not directly benefit from oil-related developments.

On a final note, in our model, government spending will respond to the various shocks

affecting the economy. As oil specific shocks are generally beneficial for an oil exporter such

as Norway, but less so for other oil importing countries (see Figure 3), increased spending

by the government could also be a way to shelter the economy from a decline in foreign

demand due to higher oil prices. However, our analysis shows that the consequences of

increased spending will be manifested in an appreciated exchange rate and eventually

increased costs, as can be seen in Figure 6 and Table 3, respectively. Both mechanisms

deteriorate competitiveness, which could be a concern for the Norwegian economy in the

long run.

6 Additional results and robustness

As mentioned in the main text, our results are robust to estimating the model using

classical two-step estimation techniques. Furthermore, as descried in Section D.0.4, our

results seem robust to different prior specifications. We have also conducted a series of

other robustness checks. These are described fully in Appendix C. Below, we provide a

brief summary.

First, global activity is not observed. We have approximated global activity by taking

the simple mean across eight countries thought to be important to the global business

cycle and Norway in particular. Qualitatively, the results reported in Section 5 are not
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affected by excluding countries from this set or changing its composition. Details are

provided in Appendix C.2.

Second, running the analysis on a different sample does not change the main conclu-

sions reported in Table 1. That is, on average across sectors, a booming oil sector explains

approximately 20-30 percent of the variation in the disaggregated series, irrespective of

whether we estimate the model on a sample period from 1986:Q1 to 2012:Q4 or 1996:Q4

to 2012:Q4. However, as described in Appendix C.3, the subsample analysis should be

interpreted with caution due to differences in data availability.

Third, the model specification is uncertain. The number of factors and lags employed

in the model should be tested. We do this primarily by running a quasi-real-time forecast-

ing experiment. The results reported in Appendix C.1 show that our benchmark model,

outlined in Section 4, performs superior to simple univariate autoregressive processes.

The Benchmark specification is also among the best performing specifications and is the

best model specification over shorter forecasting horizons.

7 Conclusion

This study examines the empirical validity of the classical Dutch disease theory in a small

and open oil and gas producing economy. Using Norway as a case study, we provide a

novel contribution on the subject by explicitly identifying and quantifying windfall gains

from a booming energy sector or higher oil prices and the associated sectoral performance

in the rest of the economy.

We estimate a Bayesian Dynamic Factor Model that includes separate activity factors

for oil and non-oil sectors in addition to global activity and the real price of oil. The

model is particularly useful in a data rich environment such as ours, where common latent

factors and shocks are assumed to drive the co-movements between economic variables in

the economy.

We have two main results: First, booms in the energy sector have substantial produc-

tivity spillovers on the non-oil sectors, effects that have not been captured in previous

analysis. In particular, we find that the energy sector stimulates investment, production,

employment and wages in nearly all non-oil industries. Construction, business services

and real estate are the most stimulated sectors. Second, windfall gains due to changes in

the real oil price also stimulate the economy, but primarily if the oil price increase relates

to a boom in global demand. Oil price increases due to, say, supply disruptions, while

stimulating activity in the technologically intense service sectors and boosting government

spending, have small spillover effects to the rest of the economy, in part because of a sub-

stantial real exchange rate appreciation and reduced cost competitiveness. Yet, there is

no evidence of Dutch disease as experienced in the Netherlands in the 1970s, where natu-

ral gas discoveries had adverse effects on the Dutch manufacturing sector. Instead, there

is evidence of a two speed economy, with the manufacturing sector lagging behind the

booming service sectors. Importantly, however, the observed two speed pattern is not a

function of resource wealth in isolation; global factors need to be taken into account.

Our results suggest that traditional Dutch disease models with a fixed capital stock
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and exogenous labor supply do not provide a convincing explanation for how petroleum

wealth affects a resource rich economy when there are productivity spillovers between the

various sectors.
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Appendices

Appendix A Data and Sources

Sector Abbreviation Moments Variable in National Accounts

Mean Std.

GDP

Oil extraction -0.63 6.28 Oil and natural gas extraction

Oil service 6.89 25.65 Service activities incidental to oil and gas

Manufacturing 1.56 3.53 Manufacturing

Construction 3.04 5.02 Construction

Retail 4.39 3.46 Wholesale and retail trade, repair of motor vehicles

Transp ocean -5.32 16.22 Ocean transport

Transp mainland 1.03 5.26 Transport activities excl. ocean transport

Hotel and food 1.76 4.84 Accommodation and food service activities

Financial 3.90 7.88 Financial and insurance activities

Real estate 9.20 10.81 Real estate activities

Scientific 4.12 4.75 Professional, scientific and and technical activities

Business 6.79 6.91 Administrative and support service activities

Mainland 2.79 1.95 Mainland Norway

Public 1.64 1.46 General government

Empl

Oil extraction 2.43 5.32

See above

Oil service 11.14 14.30

Manufacturing -0.59 3.35

Construction 3.95 4.05

Retail 1.28 1.99

Transp ocean 0.91 2.79

Transp mainland 0.70 2.22

Hotel and food 1.10 2.70

Financial -0.13 2.92

Real estate 5.98 6.61

Scientific 3.61 3.75

Business 5.66 6.32

Mainland 1.33 1.54

Public 1.33 0.92

Other

Wages oil 9.90 6.87 Wages petroleum

Wages public 6.04 1.77 Wages public

Wages mainland 6.06 2.38 Wages mainland

Investment oil 4.52 22.62 Investment petroleum

Investment

mainland

4.06 8.60 Investment mainland

Exchange rate 0.57 4.79 BIS effective exchange rate index, broad basket

Int.
World activity 2.78 1.90 See text, section 3

Oil Price 9.01 33.11 Crude Oil-Brent, deflated using US CPI

Note: The table lists all the variables used in the Benchmark model. All activity, investment, wages and

employment series for Norway are collected from the Quarterly National Accounts database of Statistics

Norway. The international series were downloaded from Datastream. The real exchange rate is collected

form BIS. All series are seasonally adjusted by their source. Std. denotes standard deviation. Int. denotes

international. The moments are computed based on the transformed variables, i.e. log(xi,t)− log(xi,t−4)).
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Appendix B Figures and tables

Table 4. Variance decompositions

Shock

Oil Oil Global Non-oil

Variable Sector activity specific demand activity

& Horizon 4, 8 4, 8 4, 8 4, 8

GDP

Manufacturing 0.04, 0.08 0.27, 0.18 0.65, 0.69 0.04, 0.04

Construction 0.26, 0.35 0.03, 0.01 0.51, 0.46 0.20, 0.18

Retail 0.74, 0.81 0.01, 0.02 0.21, 0.15 0.03, 0.02

Transport ocean 0.27, 0.37 0.62, 0.48 0.10, 0.11 0.01, 0.04

Transport mainland 0.21, 0.32 0.18, 0.10 0.55, 0.51 0.06, 0.06

Hotel and food 0.10, 0.19 0.13, 0.06 0.57, 0.54 0.20, 0.20

Financial 0.19, 0.31 0.58, 0.43 0.22, 0.24 0.01, 0.02

Real estate 0.08, 0.14 0.77, 0.70 0.15, 0.15 0.00, 0.00

Scientific 0.07, 0.03 0.43, 0.34 0.41, 0.50 0.08, 0.12

Business 0.32, 0.42 0.19, 0.09 0.37, 0.36 0.12, 0.13

Employment

Manufacturing 0.07, 0.04 0.14, 0.17 0.23, 0.31 0.56, 0.48

Construction 0.28, 0.39 0.14, 0.06 0.40, 0.37 0.18, 0.17

Retail 0.32, 0.35 0.04, 0.02 0.32, 0.35 0.32, 0.28

Transport ocean 0.10, 0.11 0.34, 0.18 0.22, 0.13 0.34, 0.59

Transport mainland 0.31, 0.14 0.11, 0.11 0.03, 0.16 0.55, 0.59

Hotel and food 0.29, 0.11 0.14, 0.17 0.30, 0.39 0.28, 0.33

Financial 0.52, 0.63 0.05, 0.03 0.42, 0.30 0.01, 0.04

Real estate 0.10, 0.12 0.22, 0.08 0.52, 0.61 0.16, 0.18

Scientific 0.28, 0.09 0.03, 0.11 0.20, 0.35 0.49, 0.45

Business 0.04, 0.08 0.16, 0.10 0.61, 0.62 0.19, 0.20

Note: Each row-column intersection reports median variance decompositions for horizons 4 (left) and 8

(right)
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Appendix C Robustness

C.1 Model specification

The correct model specification is uncertain. Different test statistics, see Bai and Ng

(2002), suggest between 3 and 8 static factors. Using 4 factors explains approximately 60

percent of the variation in the dataset. Including an additional 4 static factors increases

the variance explained by a modest 17 percent. Although informative, the tests for the

number of static factors are far from conclusive.

To fully test our preferred model relative to alternative specifications, we run a quasi-

real-time forecasting experiment. The experiment is conducted as follows: For the sample

period from 1996.01 to 2012.04, we estimate the BDFM with different lag specifications.

in particular, we allow for up to 2 lags of the vector of factors in the observation equation

(s = 0, . . . , 2). For each lag specification we also estimate the model with and without

autocorrelated idiosyncratic errors (l = 0, 1). Ultimately, this yields 6 different specifica-

tions. Lastly, for each of these combinations we estimate the model with 4 and 8 lags in

the transition equation (h = 4, 8).

We compute the model’s out of sample forecasting performance over the period from

1996.02 to 2012.04. The performance is scored by root mean forecasting errors (RMSE)

and log scores (logScore).19 The forecasting experiment is quasi-real-time, as we do not

re-estimate the models for each new vintage of data we forecast, and we also do not use

real-time vintage data when estimating the models or in the evaluation of forecasting

performance. Thus, the distribution of the model parameters used to forecast is assumed

to be constant throughout the evaluation period. For our purpose, which is to make

comparison among nested structural models, this is an innocuous assumption. Further-

more, an advantage of a quasi-real-time forecasting experiment, as opposed to a real-time

forecasting experiment, is that we can evaluate the forecasting performance over a much

longer sample.20

Table 5 reports the results.21 Panels (a) and (b) reports the results for h = 4 and

h = 8, respectively. At the two step ahead horizon, and evaluated across all variables, our

preferred model specification, BDFM s(2)a(1) (denoted Benchmark in the table), performs

substantially better than any other model specification. In Panel (a) (Panel (b)), for 20

(19) and 19 (21) out of 39 variables, the Benchmark model performs best in terms of

respectively RMSE and average logScore, respectively. At the four step ahead horizon,

the ranking of the different model specifications changes, and the BDFM s(2)a(0) model

receives a better score than the other models in approximately 40 to 50 percent of the

cases.

19The RMSE is a quadratic loss function that is often used to evaluate point forecasts. If the focus is on

the whole forecast distribution, the RMSE is not appropriate and log scoring is a better metric. The

logScore is the logarithm of the probability density function evaluated at the outturn of the forecast. As

such it provides an intuitive measure of density fit.
20I.e., in a real-time experiment, we would have to re-estimate the models for each new vintage and use a

substantial part of the sample to estimate the initial parameter distributions.
21To save space, we only report the results for forecasting horizons 2 and 4. The conclusions do not change

for horizons 1 and 3. These results are available on request.
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Table 5. Forecast performance

Horizon Model Variable All

Y E I W variables

Panel a:

2 BDFM s(0)a(0) 0.90, 0.97 1.00, 1.03 0.96, 0.96 1.00, 1.00 0, 1

BDFM s(1)a(0) 1.01, 1.00 1.02, 1.01 0.98, 0.99 1.06, 1.00 1, 3

BDFM s(2)a(0) 1.05, 1.02 1.05, 1.01 1.00, 1.01 1.08, 1.01 11, 7

BDFM s(0)a(1) 0.99, 0.99 0.97, 1.02 0.97, 0.98 1.00, 1.01 0, 5

BDFM s(1)a(1) 0.98, 1.00 0.99, 1.01 0.98, 0.99 0.99, 1.00 5, 2

AR(1) 0.77, 0.90 0.62, 0.84 0.86, 0.87 0.51, 0.73 2, 2

Benchmark 0.01, 2.92 0.01, 3.58 0.07, 1.30 0.01, 3.16 20, 19

4 BDFM s(0)a(0) 1.01, 1.01 1.01, 1.01 1.00, 0.97 0.98, 1.01 5, 7

BDFM s(1)a(0) 1.07, 1.02 1.02, 1.02 1.02, 1.01 1.04, 1.02 9, 11

BDFM s(2)a(0) 1.06, 1.03 1.03, 1.02 1.04, 1.03 1.07, 1.02 19, 16

BDFM s(0)a(1) 1.00, 1.00 1.00, 1.00 0.97, 0.96 0.98, 1.01 0, 0

BDFM s(1)a(1) 0.99, 1.00 1.02, 1.01 0.99, 0.98 1.00, 1.01 2, 3

AR(1) 0.75, 0.75 0.65, 0.53 0.85, 0.78 0.47, 0.40 0, 0

Benchmark 0.02, 2.63 0.01, 3.17 0.07, 1.19 0.01, 2.84 4, 2

Panel b:

2 BDFM s(0)a(0) 0.90, 0.96 0.91, 1.02 0.97, 0.98 0.92, 0.98 1, 1

BDFM s(1)a(0) 1.04, 1.02 0.96, 1.00 0.98, 0.99 1.02, 0.99 0, 2

BDFM s(2)a(0) 1.08, 1.03 0.97, 0.98 1.00, 1.01 1.13, 1.00 13, 5

BDFM s(0)a(1) 0.98, 0.98 0.96, 1.03 0.97, 0.98 0.99, 1.01 4, 5

BDFM s(1)a(1) 0.99, 1.00 0.99, 1.01 0.97, 0.99 1.00, 1.01 0, 3

AR(1) 0.66, 0.87 0.49, 0.82 0.85, 0.87 0.49, 0.71 2, 2

Benchmark 0.01, 3.05 0.00, 3.69 0.07, 1.30 0.01, 3.21 19, 21

4 BDFM s(0)a(0) 1.01, 0.99 0.95, 1.02 1.00, 1.00 0.94, 0.99 6, 5

BDFM s(1)a(0) 1.07, 1.03 0.98, 1.01 1.02, 1.01 1.03, 1.00 2, 8

BDFM s(2)a(0) 1.09, 1.03 0.99, 0.99 1.04, 1.03 1.13, 1.01 22, 17

BDFM s(0)a(1) 1.00, 0.99 0.99, 1.02 0.96, 0.96 1.00, 1.01 1, 2

BDFM s(1)a(1) 1.00, 1.00 0.99, 1.01 0.97, 0.98 1.00, 1.01 0, 0

AR(1) 0.59, 0.69 0.45, 0.48 0.82, 0.78 0.37, 0.36 0, 1

Benchmark 0.01, 2.84 0.01, 3.45 0.07, 1.22 0.01, 3.04 8, 6

Note: Panel a) reports the results for h = 4, and Panel b) reports the results for h = 8, where h refers

to the number of lags used in equation 2. Benchmark is BDFM s(2)a(1). s() denotes the number of lags

used for the factors in the observation equation, a() denotes the number of lags used for the idiosyncratic

AR process. The abbreviations Y, E I and W are respectively GDP, employment, investment and wages

in mainland Norway. AR(1) is a univariate AR(1) models for each variable. For each model, variable,

and horizon the reported numbers are relative RMSE (left) and - average logScore (right) scores, i.e.
Mi,H,v

BDFMs(2)a(1)H,v
for i = 1, · · · 6 and v = (Y,E, I,W ). For the BDFM s(2)a(1) model the numbers

reported are the actual scores. The numbers in the last column show how many times model i, at horizon

H, is ranked as the best model when the performance across all variables v = 1, · · · , N is evaluated.
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Generally, forecasting performance increases with the number of lagged factors, while

the inclusion of autocorrelated idiosyncratic errors seems to be less important for forecasts

four quarters into the future. Viewed from a bias-variance trade-off perspective, this is

intuitive. The richer specified Benchmark model has a better in sample fit, thus a lower

bias, but may have a higher degree of variance. At longer forecasting horizons, this reduces

forecast accuracy.

Bai and Wang (2012) show in a simulation study that specifying a BDFM without

autocorrelated idiosyncratic errors, although the underlying data generating process has

this feature, generally produces estimates of the latent factors that are less reliable than

specifying a BDFM with autocorrelated idiosyncratic errors, despite the underlying data

generating process lacking this feature. Thus, although the BDFM s(2)a(0) specification

also performs well in terms of forecasting, we prefer the Benchmark model.

Evaluating the Benchmark model across Panel (a) and (b), i.e., with h = 4 and h = 8,

we see that the results are somewhat better in Panel (b). That is, the logScore is generally

higher, indicating a better density fit (while the RMSE is essentially unchanged). The

findings reported in section 5 are qualitatively similar, irrespective of whether we use h = 4

or h = 8. However, as documented in Hamilton and Herrera (2004), when modeling the oil

market, an overly restrictive lag structure might lead to misleading results. Accordingly,

we report the results for the h = 8 specification.

For many variables, e.g., GDP, simple time series models such as AR processes are

often difficult to outperform with respect to forecasting performance. We therefore also

compare the performance of the Benchmark model with that of a simple univariate AR(1)

model.22 As can be seen from Panel (a) and (b) in Table 5, the forecasting performance of

the dynamic factor model is substantially better than the AR(1). For example, at horizon

2, and for GDP in Mainland Norway (Y), the performance of the Benchmark model is over

20 and 10 percent better than the AR(1) model when evaluated using RMSE and average

logScores, respectively. For wages in Mainland Norway (W), the Benchmark model is

even more superior, with an improvement of over 50 percent relative to the AR(1) model

at horizon 4.

In summary, the results reported in table 5 support our Benchmark model specifica-

tion. The highly parameterized, and structural, factor model is also superior to simple

AR(1) models for most variables and at most horizons. As such, our findings confirm

a voluminous literature documenting the usefulness of factor models for forecasting, see,

e.g., Stock and Watson (2002).

C.2 What is global activity?

As described in Section 3, we construct the observable world activity series based on the

mean across 8 different countries. These countries are not chosen ad-hoc: they represent

Norway’s most important trading partners and the largest economies in the world. That

being said, world activity is not an observable variable. Thus, we have attempted to

estimate the world activity factor as a latent factor in the same manner as we estimate

22We estimate one AR(1) model for each observable variable, v = 1, · · · , N , and conduct the same quasi-

real-time forecasting experiment as described above.
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the latent oil and domestic activity factors. This did not work well. Employing reasonable

uninformative priors, and without restrictions on the hyper-parameters, the model is not

able to distinguish the different factors from each other in any meaningful manner. Our

approach of approximating world activity as the mean across 8 different countries could

be regarded as employing more informative priors and placing restrictions on the hyper-

parameters. Ideally, this should have been performed within the modeling framework.

However, as the extraction of the world activity factor is not the main research question

of this study, we have not pursued the issue further.

Importantly, our main results are robust to different world activity approximations,

with one exception. China should not be excluded from the set. As shown in Aastveit et al.

(2012), growth in emerging economies (here represented by China), has been fundamental

in explaining the surge in oil prices over the last two decades. To capture this important

driver of the oil market, China should not be excluded from the construction of the global

activity factor. Including or excluding countries other than the US and China from the

international set, does not alter our main conclusions.

C.3 Subsample analysis

For production variables we have data going back until the beginning of the 1980’s. Thus,

for comparison we estimate the BDFM with production data only, i.e. excluding employ-

ment, wage and investment series, on the two samples 1986:Q1 to 2012:Q4 and 1996:Q1

to 2012:Q4. We stress that extending the sample all the way back to the 1980s is not

uncontroversial. In the 1980s the Norwegian exchange rate was more or less fixed, and the

central bank was not targeting inflation. Further, as numerous papers have documented,

both the volatility of foreign shocks and the degree of business cycle synchronization was

different in the 1980s compared to today. Thus, the comparison between the two samples

is only conducted as part of our robustness analysis. Further, the information set used to

extract the latent factors effectively becomes much smaller when employment, wage and

investment series are excluded from the analysis.23

Nevertheless, Table 6 compares the average non-mainland variance decompositions

for the two periods. One finding stand out. The domestic economy’s dependence on oil

specific and international shocks have increased over the sample. Domestic activity shocks

explain roughly 45 percent of the variation of key domestic sectors when we estimate the

model over longest sample, and only around 25 percent when we estimate the model over

the shorter sample. The results also show that world activity shocks are more important

today than in previous periods, while the variance explained by the oil activity shock is

more or less unchanged.

23Due to the smaller information set we also use the h = 4 model specification in this exercise.
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Table 6. Variance decompositions: Short versus long sample comparison

Shock

Sample Sector Oil Oil Global Non-oil

activity specific demand activity

1986:Q1-2012:Q4 Average 0.27, 0.26 0.20, 0.16 0.14, 0.12 0.40, 0.46

1996:Q1-2012:Q4 Average 0.22, 0.23 0.23, 0.16 0.32, 0.35 0.23, 0.25

Note: Each row-column intersection reports median variance decompositions for horizons 4 (left) and 8

(right)

As alluded to above, the results reported in Table 6 are not directly comparable to the

once reported in Table 1. Still, the results for the shorter sample are consistent with our

earlier findings, although the fraction of variance explained attributed to the different oil

specific and international shocks differ.
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Appendix D The Gibbs sampling approach

The three steps of the Gibbs sampler, described in Section 4.2.1, are iterated until con-

vergence. Below we describe the three steps in more detail. The exposition follows Kim

and Nelson (1999) closely, and we refer to their book for details.

For convenience, we repeat some notation: ỹT = [y1, · · · , yT ]′, f̃T = [f1, · · · , fT ]′,

H = [λ0, · · · , λs], and pi = [ρ1,i, · · · , ρl,i] for i = 1, · · · , N , and rewrite the state space

model defined in equation 1 and 2 as:

yt = ΛFt + εt (8)

and

Ft = AFt−1 + et (9)

where Ft = [f ′t , · · · , f ′t−h]′, et = Gut, with ut ∼ i.i.d.N(0, Q) and:

A =


φ1 φ2 · · · φh
Iq 0 · · · 0

0 Iq
. . .

...

0 0 Iq 0

 , G =


Iq
0
...

0

 , Λ =
(
H 0N,h−s

)
(10)

Note that h > s in our application.

We also allow for serially correlated idiosyncratic errors. In particular, we consider

the case where εt,i, for i = 1, · · · , N , follows independent AR(l) processes:

εt,i = piEt,i + ωt,i (11)

where ωt,i is the AR(l) residuals with ωt,i ∼ i.i.d.N(0, σ2
i ). I.e.:

R =


σ2

1 0 · · · 0

0 σ2
2

. . . 0
...

. . . . . .
...

0 · · · · · · σ2
N

 , (12)

and Et,i = [εt−1,i, · · · , εt−l,i]′.

D.0.1 Step 1: f̃T |ỹT ,Λ, A,R,Q, p

We employ Carter and Kohn’s multimove Gibbs sampling approach (see Carter and Kohn

(1994)). Because the state space model given in equations 8 and 9 is linear and Gaussian,

the distribution of FT given ỹT and that of Ft given Ft+1 and ỹt for t = T − 1, · · · , 1 are

also Gaussian:

FT |ỹT ∼ N(FT |T , PT |T ) (13)

Ft|ỹt, Ft+1 ∼ N(Ft|t,Ft+1 , Pt|t,Ft+1), t = T − 1, T − 2, · · · , 1 (14)
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where

FT |T = E(FT |ỹT ) (15)

PT |T = Cov(FT |ỹT ) (16)

Ft|t,Ft+1 = E(Ft|ỹt, Ft+1) = E(Ft|Ft|t, Ft|t+1) (17)

Pt|t,Ft+1 = Cov(Ft|ỹt, Ft+1) = Cov(Ft|Ft|t, Ft|t+1) (18)

Given F0|0 and P0|0, we obtain FT |T and PT |T from the last iteration of the Gaussian

Kalman filter:

Ft|t−1 = AFt−1|t−1 (19)

Pt|t−1 = APt−1|t−1A
′ +GQG′ (20)

Kt = Pt|t−1Λ′(ΛPt|t−1Λ′ +R)−1 (21)

Ft|t = Ft|t−1 +Kt(yt − ΛFt|t−1) (22)

Pt|t = Pt|t−1 −KtΛPt|t−1 (23)

I.e., at t = T , equation 22 and 23 above, together with equation 13, is used to draw

FT |T .

We draw Ft|t,Ft+1 for t = T − 1, T − 2, · · · , 1 based on 14, where Ft|t,Ft+1 and Pt|t,Ft+1

are generated from the following updating equations:

Ft|t,Ft+1 = E(Ft|Ft|t, Ft|t+1)

= Ft|t + P ′t|tA(APt|tA
′ +GQG′)−1(Ft+1 − AFt|t)

(24)

Pt|t,Ft+1 = Cov(Ft|Ft|t, Ft|t+1)

= Pt|t + Pt|tA
′(APt|tA

′ +GQG′)APt|t
(25)

D.0.2 Step 2: A,Q|ỹT , f̃T ,Λ, R, p

Conditional on f̃T , equation 9 is independent of the rest of the model, and the distribution

of A and Q are independent of the rest of the parameters of the model, as well as the

data.

By abusing notation, we put the transition equation in SUR form and define:

y = Xβ + ε (26)

where y = [f1, · · · , fT ]′, X = [X1, · · · , XT ]′, ε = [ε1, · · · , εT ]′ and β = [β1, · · · , βq]′, with

βk = [φ1,k, · · · , φh,k] for k = 1, · · · , q. Further,

Xt =


xt,1 0 · · · 0

0 xt,2
. . .

...
...

. . . . . .
...

0 · · · · · · xt,q


with xt,k = [f ′t−1, · · · , f ′t−h]. Finally, ε ∼ i.i.d.N(0, Iq ⊗Q).24

24With the transition equation specified in SUR form it becomes easy to adjust the VAR(h) model such

that different regressors enter the q equations of the VAR(h).
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To simulate β and Q, we employ the independent Normal-Whishart prior:

p(β,Q) = p(β)p(Q−1) (27)

where

p(β) = fN(β|β, V β) (28)

p(Q−1) = fW (Q−1|vQ, Q−1) (29)

The conditional posterior of β is:

β|y,Q−1 ∼ N(β, V β)I[s(β)] (30)

with

V β = (V −1
β +

T∑
t=1

X ′tQ
−1Xt)

−1 (31)

and

β = V β(V −1
β β +

T∑
t=1

X ′tQ
−1yt) (32)

I[s(β)] is an indicator function used to denote that the roots of β lie outside the unit

circle.

The conditional posterior of Q−1 is:

Q−1|y, β ∼ W (vQ, Q
−1

) (33)

with

vQ = vQ + T (34)

and

Q = Q+
T∑
t=1

(yt −Xtβ)(yt −Xtβ)′ (35)

D.0.3 Step 3: Λ, R, p|ỹT , f̃T , A,Q

Conditional on f̃T , and given our assumption of R being diagonal, equation 8 result in N

independent regression models.

However, to take into account serially correlated idiosyncratic errors, and still employ

standard Bayesian techniques, we need to transform equation 8 slightly.

Thus, for i = 1, · · · , N , conditional on p, and with l = 1, we can rewrite equation 8

as:

y∗t,i = ΛiF
∗
t + ωt,i (36)

with y∗t,i = yt,i − p1,iyt−1,i, and F ∗t = Ft − p1,iFt−1, and Λi being the i-th row of Λ.

From 36 we can then simulate the parameters Λi and Ri,i = σ2
i = 1

hi
using standard

independent Normal-Gamma priors (for notational convenience we drop the subscript i

from the expressions below):25

p(Λ, h) = p(Λ)p(h) (37)

25Note that with l = 0, we could have simulated the parameters Λi and σ2
i without doing the transformation

of variables described above.
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where

p(Λ) = fN(Λ|Λ, V Λ) (38)

p(h) = fG(h|s−2, vh) (39)

The conditional posterior of Λ is:

Λ|ỹ, h, p ∼ N(Λ, V Λ) (40)

with;

V Λ = (V −1
Λ + h

T∑
t=1

F ∗
′

t F
∗
t )−1 (41)

and

Λ = V Λ(V −1
Λ Λ + h

T∑
t=1

F ∗
′

t y
∗
t ) (42)

The conditional posterior for h is:

h|ỹ,Λ, p ∼ G(vh, s
−2) (43)

with

vh = vh + T (44)

and

s =

∑T
t=1(y∗t − ΛF ∗t )′(y∗t − ΛF ∗t ) + vhs

2

vh
(45)

Finally, conditional on Λ and h, the posterior of p depends upon its prior, which we

assume is a multivariate Normal, i.e.:

p(p) = fN(p|p, V p) (46)

Accordingly, the conditional posterior for p is:

p|ỹ,Λ, h ∼ N(p, V p)I[s(p)] (47)

with

V p = (V −1
p + h

T∑
t=1

E ′tEt)
−1 (48)

and

p = V p(V
−1
p p+ h

T∑
t=1

E ′tεt) (49)
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D.0.4 Prior specifications and initial values

The Benchmark model is estimated using two-step parameter estimates (see Section 4.2)

as priors. We label these estimates OLS. In particular, for equations 28 and 29 we set

β = βOLS, V β = V OLS
β × 3, Q = QOLS and vQ = 10.

For equations 38, 39 and 46 we set vh = 10, s2 = s2,OLS, Λ = [λOLS0 : 0N,h−s−1] and

V Λ = [(Is × 3)⊗ VλOLS
0

]. p = 0, and V p = 0.5.

In sum, these priors are reasonable uninformative, but still proper. We have also

experimented with other prior specifications, e.g. using Minnesota style prior for the

transition equation parameters, and setting Λ = 0. This yields similar results as the once

reported in the main text. However, the variables in our sample display very different

unconditional volatilities. The prior specification should accommodate this feature.

The Gibbs sampler is initialized using parameter values derived from the two-step

estimation procedure. Parameters not derived in the two-step estimation (i.e. p and

λ1, · · · , λs) are set to 0.

In this model, a subtle issue arises for the t = 0 observations (i.e. lags of the dynamic

factors and the idiosyncratic errors at time t = 1). However, since we assume stationary

errors in this model, the treatment of initial conditions is of less importance. Accordingly,

we follow common practice and work with the likelihood based on data from t = h +

1, · · · , T .
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